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ABSTRACT Bionic limb control through myoelectric pattern recognition, offering intuitive decoding of
motor intent, can improve the quality of life for individuals with amputations. However, most work on pattern
recognition only uses a small subset of the myoelectric data generated during daily life, to train an Artificial
Neural Network (ANN) via Supervised Learning (SL). Scenarios substantially different from the recording
session e.g. different limb positions, can lead to misclassifications by the ANN during everyday usage of the
bionic limb. Recording labeled data from all scenarios encountered in daily life could alleviate the problem,
but would be prohibitively time consuming. Unsupervised Domain Adaptation (UDA) offers a solution by
leveraging unlabeled data from a target domain, not represented in the labeled dataset i.e. the source domain,
to calibrate ANNSs for improved performance. In this study we explore the potential of two UDA algorithms
for domain shifts in myoelectric pattern recognition: Domain Adversarial Neural Networks (DANN)
and Sliced Wasserstein Discrepancy (SWD). Offline evaluation identified SWD as the best-performing
algorithm, which was subsequently validated in online experiments with 11 participants. Using UDA
improved the performance on the target domain by 19% compared to an ANN trained through SL on data
from the source domain only. Indeed, it nearly matched the performance of an ANN trained through SL on
labeled data from both the source and target domain. Our results offer an initial validation of UDA working in
an online myoelectronic control task to overcome domain shift problems caused by changes in limb position.

INDEX TERMS Myoelectric control, myoelectric pattern recognition, unsupervised domain adaptation.

I. INTRODUCTION

Bionic limb research has been making progress towards
restoring lost functionality due to limb amputation. While
there are several biological signals that can be used to control
a bionic limb, electromyography (EMG) from residual mus-
cles is the most prevalent measurement modality for decoding
movement intentions of the user. Achieving accurate motor
intent decoding from EMG signals is the central objective
for myoelectric control of bionic prostheses. However, this

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

is still an open challenge in the field, especially when the
bionic limb is to be used in daily life outside of the laboratory.
Indeed, many promising techniques have been validated
on offline datasets [1], [2] alone. There are many factors
that make reproducing offline accuracy results in online
settings challenging, such as electrode shift and lift-off,
or compensatory limb movements, both leading to EMG
signals not accounted for during fitting of a myoelectrically
controlled prosthesis.

The two main myoelectric control approaches are Direct
Control (DC) and Myoelectric Pattern Recognition (MPR).
In DC, individual muscle signals are mapped to specific

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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Source domain Target domain

FIGURE 1. Photograph of the recording setup used for the online
evaluation while performing the thumb flexion movement. The left panel
illustrates the relaxed (source) domain and the right panel the supinated
(target) domain.

bionic joints. DC is thus limited by the number of available
independent muscles and higher-level amputations are there-
fore often restricted to a single degree of freedom. In contrast,
MPR can handle a broader range of electrode inputs, decod-
ing signal patterns in higher-dimensional spaces. Classical
MPR methods often rely on feature extraction from EMG
signals (e.g. the Hudgins set [3] and Temporal-Spatial
Descriptors [4]) followed by traditional machine learning
algorithms like linear discriminant analysis [5], support
vector machines [6], or shallow Artificial Neural Networks
(ANNGS) [7]. Following recent developments in other research
fields, deep learning methods, such as Convolutional Neural
Networks (CNNs) [8] and Transformers [9], have largely
superseded the use of traditional algorithms.

While MPR often yields superior predictive accuracy
compared to DC [10], it can display a higher degree
of susceptibility to environmental factors: The complex
mapping of features to predict a movement class can lead to
unexpected classifications when the incoming signals deviate
from the ones found in the training data. This is referred to as
the domain shift problem, which can greatly decrease the
reliability of bionic prostheses. A solution to this problem
would be to record training data for each movement class
in every imaginable scenario one could encounter in daily
life, while simultaneously obtaining labels for each class.
However, this naive approach is clearly unattainable and
other solutions need to be found. An alternative approach
is to continuously record the myoelectric signals from
people using their prosthesis in daily life. Such data is
inherently representative of daily life usage but cannot
directly be assigned to the correct class, therefore Supervised
Learning (SL) methods cannot be applied. Unsupervised
Domain Adaptation (UDA) is a technique that can make
use of such unlabelled data, by first training a model with
labeled samples from a source set and then adapting it with
the additional unlabeled dataset to be more effective in the
domain of interest i.e. target set [11].

177460

In this work, we explore the use of UDA for offline and
online myoelectric motor intent decoding during domain
shift. Specifically, we hypothesize that UDA can signifi-
cantly improve myoelectric pattern recognition performance
under limb position-induced domain shift, approaching the
accuracy of supervised models trained on data from both
domains. In a preliminary offline experiment, we first
compare different ANN architectures based on previous
work by Zbinden et al. [12] and a newer architecture that
shows promise for time-series data, the TSEncoder [13].
The best performing architectures are then paired with two
state-of-the-art UDA algorithms, namely Domain Adver-
sarial Neural Networks (DANN) and Sliced Wasserstein
Discrepancy (SWD). Offline experiments show that the
TSEncoder together with SWD achieves the highest accuracy
and is consequently employed in our online experiments.
To that end, 11 non-disabled participants are tasked to control
a virtual limb while having their biological limb in two
different poses shown in Fig. 1, thus creating a domain
shift. We find that UDA achieves a significantly better online
classification accuracy in a different limb pose than the SL
baseline trained only on the source set.

Il. RELATED WORK

Scheme and Englehart [14] describe four dynamic factors
that make MPR particularly challenging: varying gesture
intensity, changes in limb position, electrode shift, and the
transient nature of EMG signals (i.e. signals following the
onset of muscle contractions). Transient EMG signals are
inherent to muscle contractions and omnipresent during real-
time control, while the other three factors are a more direct
source of domain shift.

Research on domain adaptation for MPR has mainly
focused on domain shifts that are linked to the use of
surface electromyography (SEMGQG), e.g. electrode shift [15].
While electrodes may shift within an EMG recording
session, i.e. intra-session, greater differences are observed
between sessions i.e. inter-session, as the surface electrodes
are reattached. These intra- and inter-session, as well as
inter-subject (e.g. in transfer learning research aiming to pre-
train a subject-agnostic ANN) domain shift problems were
explored by Ketyko et al. [16]. They employed Supervised
Domain Adaptation (SDA) together with a Recurrent Neural
Networks (RNN) trained on pairings of source and target
datasets to compare the offline accuracy on different datasets.
Domain adaptation was achieved by pre-training on samples
from the source set followed by fine-tuning on samples from
the target set. While they observed that fine tuning resulted
in improved performance, labels from the target set must be
used and the method is thus limited to cases where these are
readily available.

To avoid the need for additional labels to study inter-
session and inter-subject domain shifts during SEMG gesture
classification, Du et al. [17] employed UDA. They combined
a CNN architecture with Adaptive Batch Norm (AdaBN) [18]
and found an up to 20% improvement in offline classification
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accuracy for both inter-session and inter-subject problems
using AdaBN. Du et al. further published the CapgMyo
dataset, obtained during their study. Co6té-Allard et al. [19]
expanded on Du et al’s work and compared different
UDA approaches, including AdaBN and DANN, combined
with a CNN. They found that DANN combined with
a pseudo-labelling heuristic procedure, in what they call
the Self-Calibrating Asynchronous DANN (SCADANN),
to provide the best performance. In our offline experiment,
we expand on these findings by exploring an additional UDA
approach, SWD, which has been shown to outperform other
UDA approaches including DANN [20]. As an additional
contribution, we also explore different ANN architectures,
e.g. the TSEncoder architecture, which has been shown
effective in other time-series classification problems.

The electrode shift problem addressed in the related
work listed above occurs when sEMG is used and can
be circumvented by using implanted electrodes instead.
Indeed, suturing the electrodes onto the muscles prevents
both electrode shift and loosening [21], [22]. An under-
explored MPR problem which results in domain shift in EMG
data is changes in limb position, e.g. during compensatory
movements (i.e. movements that are not relating to the desired
hand grasp but general limb pose changes to reposition
the hand). Contrary to the electrode shift problem, limb
position changes can also affect EMG data from implanted
electrodes. Coté-Allard et al. [23] created a dataset containing
different scenarios of domain shifts - including changes in
limb position. They found clear differences in hand gesture
classification accuracy depending on the elbow position,
in an offline analysis. In another offline analysis, Li et al. [24]
later showed that applying adversarial domain adaptation can
mitigate such arm-position effects.

Relative to the work summarized in this section, the two
main contributions of our paper are i. the offline evaluation of
SWD as a more effective UDA algorithm when compared to
DANN, especially when coupled with a TSEncoder network,
and ii. the online evaluation of UDA on motor intent decoding
accuracy in a domain shift problem induced by limb pose
changes.

ill. METHODS

The goal of this study is to further investigate how UDA
methods can improve the performance of MPR when changes
of limb position occur. Importantly, we aim to test the best
UDA method, as determined by our offline tests, in an online
experiment to validate the promising results obtained in other
related works which were limited to offline tests.

While online tests are the gold standard to validate
MPR policies for bionic control, such tests can be both
tiresome and time consuming. Therefore, sufficient offline
tests have to be carried out beforehand, to limit the number of
evaluations to be done with test subjects. To that end, we first
investigate the performance of different ANN architectures
on inter-session data from Du et al. CapgMyo dataset [17],
which specifically includes recordings containing domain
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FIGURE 2. Visualization of the finger movements used during the online
experiment. The movements are comprised of thumb flexion and
extension, index flexion and extension, and a combined middle/ring/little
finger flexion and extension. Together with a rest movement, this equates
to a total of 7 different movement classes with 3 degrees of freedom.

shift problems. We then take the best-performing ANNs to
compare two state-of-the-art UDA methods.

A. ANN ARCHITECTURES
In this study, we evaluate the following network architectures:
a Feed-Forward Neural Network (FFNN), a CNN with
Squeeze and Excitation (CNNSE), a Temporal Convolutional
Network (TCN) and a Time Series Encoder (TSEncoder).
An FFNN is a vanilla ANN, with a scalar input for
each channel. The CNNSE [25] is a modified version of
a regular CNN, with an additional squeeze and excitation
layer which is proposed as a mechanism to help the network
learn interdependencies between the channels. TCN [26]
uses causal dilated convolutions, i.e. convolutions in which
the output only depends on inputs that are from an earlier
timestamp in some time axis. Dilation is used to keep the
convolutional kernels small while retaining a large receptive
field. TSEncoder is similar to TCN in the sense that it
uses the same kind of convolutions. Adding a binomial
timestamp masking layer to the TSEncoder architecture has
been reported to result in substantial improvements to the
performance in domain adaptation settings [13]. Therefore,
we also evaluate the TSEncoder architecture with timestamp
masking (TSEncoder-TM).

B. UDA ALGORITHMS

We explore two unsupervised domain adaptation methods:
DANN and SWD. DANNSs learn to produce domain-invariant
representations by training two classifier heads on the output
of a feature extractor i.e. an encoder [27]. The training
procedure uses labeled data from a source set and unlabeled
data from a target set. Each sample is assigned an additional
domain label, indicating its domain of origin. The label
classifier head focuses on correctly predicting the class
labels of each sample, while the domain classifier head
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aims to identify the domain of the output representation.
For samples with only domain labels, the label classifier’s
forward propagation is omitted. The encoder is trained
to deceive the domain classifier by negating the loss
derivatives using a gradient reversal layer, thereby promoting
representations that obfuscate true domain origins.

SWD [20] evolved from the Maximum Classifier Dis-
crepancy (MCD) [11] concept. Like MCD, SWD employs
a distance-based loss function suitable for training with
unlabeled samples. After initial encoding, two classifier
branches with different random initializations are trained,
yielding slightly varied decision boundaries. These classi-
fiers, when exposed to unlabeled samples, exhibit discrep-
ancies in classification results, leveraged as a loss function.
This loss is maximized to align the classifiers with the
training set’s support, subsequently updating the encoder
to accommodate unlabeled samples within this support.
SWD differentiates itself from MCD by employing a dis-
tinct distance/discrepancy function, which has demonstrated
improvements in benchmark tests [20].

While both DANN and MCD (and by extension SWD) can
be considered distribution matching methods, MCD makes an
attempt to align distributions while simultaneously avoiding
ambiguous features near class boundaries. Both algorithm
implementations used in this work were obtained from the
PyTorch Adapt library [28].

C. OFFLINE EXPERIMENTS

Two offline experiments were conducted to select the best-
performing ANN architecture and UDA algorithm. The
primary goal was not to fine-tune models for our specific
setup but to identify an ANN architecture that is broadly
suitable for UDA within our online experiment conditions
by evaluating its performance across different models in a
controlled domain shift scenario.

1) DATASET AND PREPROCESSING
The CapgMyo DB-b dataset includes recordings from
10 participants, with each participant completing two
sessions spaced at least one week apart. This natural inter-
session domain shift makes it well-suited for testing domain
adaptation techniques. However, the CapgMyo dataset was
originally recorded using a 128-channel High-Density SEMG
(HD-sEMG) setup, whereas our online experiment used a
low-density recording setup with eight bipolar electrodes.
To create a more comparable dataset, we modified the
CapgMyo dataset by selecting a subset of its electrodes.
Specifically, for each of the eight l6-electrode arrays,
we retained signals from only a single longitudinal pair of
the center-most electrodes, discarding the other 14 channels.
This resulted in the Low Density CapgMyo (LD-CapgMyo)
dataset, which, while not identical to our experimental setup,
still captures the core challenge of bio-signal time-series
classification under domain shift.

In all training procedures, the data was z-score normal-
ized with a mean and standard deviation computed from
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the source data. Source and target domains correspond to
the two different recording sessions from each subject in the
LD-CapgMyo dataset.

Results from offline experiments are presented in terms of
mean classification accuracy for all movements. Accuracy
is computed by averaging 10 training runs with different
pseudo-random number generation seeds per subject, result-
ing in a total of 100 samples.

2) SELECTION OF ANN ARCHITECTURE

Initially, all five ANN architectures described in Section I1I-A
were trained on the LD-CapgMyo dataset in a supervised
manner. Only one recording per subject was used to train
the ANNSs. For the FFNN, we employed the Hudgins set as
input features. The network consisted of 6 hidden layers,
each with 128 neurons, which is a well-established MPR
setup [29]. Compared to the FFNN, the CNNSE, TCN, and
TSEncoder have the inherent capability of extracting features
from raw data, and therefore no feature extraction was used
for the input. A more detailed description of the FFNN,
as well as the CNNSE and TCN architectures and the involved
pre-processing steps can be found in [12]. Training was
carried out with the Adam optimizer, a constant learning rate
of 0.001, a batch size of 128 and no weight decay. Models
were trained for 50 epochs without early stopping, which was
sufficent for convergence.

The Wilcoxon Signed rank test was used to determine
statistical significance (p < 0.05) between the different
architectures. The Bonferroni method was used to account
for multiple comparisons (m = 10, where m is the number
of comparisons).

3) SELECTION OF UDA ALGORITHM

Three ANN architectures, namely CNNSE, TSEncoder and
TSEncoder-TM, showed similar performance in the previous
experiment, with no statistical difference between them.
Therefore they were all selected to be evaluated with
UDA algorithms. To determine the best performing UDA
algorithm, each ANN was paired with DANN and SWD, and
trained using unlabelled target domain data. The optimization
algorithm and hyperparameters were identical to the training
as described above, apart from the number of epochs which
were increased to 5000 in order to compensate for the slower
convergence of UDA methods.

The Wilcoxon Signed rank test together with Bonferroni
(m = 15) was used to determine statistical significance
(» < 0.05) between the different architecture and UDA
combinations.

D. ONLINE EXPERIMENT

For the online experiment, we explore a limb position domain
shift problem. Specifically, we introduce a domain shift by
instructing the participants to either relax or supinate their
forearm, as illustrated in Fig. 1. Similar to Coté-Allard et al.’s
setup where elbow movements were used to create a domain
shift [23], supination also leads to a change in muscle
activations in the forearm.

VOLUME 13, 2025
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FIGURE 3. For both offline experiments, results were computed over n = 100 samples; 10 different inter-session source/target pairs averaged across
10 random seeds. (a) Offline prediction performance on the LD-CapgMyo dataset using SL without domain adaptation. Shown are the target domain
accuracies when training all the considered ANN architectures on source domain samples only. (b) Offline prediction performance on the LD-CapgMyo
dataset with domain adaptation of best performing ANN architectures. Shown are the target domain accuracies of the CNNSE, TSEncoder and
TSEncoder-TM, with the two evaluated domain adaptation methods, DANN and SWD.

Eleven participants were recruited (7 male, 4 female, with
an average age of 30 £+ 11) for the online experiments.
The number of participants was chosen based on a power
analysis assuming a 10% accuracy increase at 0.1 standard
deviation. The study protocol was carried out in accordance
with the declaration of Helsinki. Signed informed consent
was obtained before conducting the experiments. The study
was approved by the Regional Ethical Review Board in
Gothenburg (Dnr. 2022-06513-01).

1) DATA COLLECTION PROCEDURE
To record sEMG data, we attached 8 pairs of Ag/AgCl
surface electrode to the forearm of the dominant hand of the
participants, two on the front and back of the wrist along
with six equally distributed in a semi-circle around the upper
forearm, as shown in Fig. 1. A single electrode was attached
to the Ulnar Styloid to serve as ground reference.
Participants were asked to execute the 6 finger movements
shown in Fig. 2, plus rest (i.e. no movement). In order
to induce the desired domain shift, we recorded a source
set of sSEMG data with a relaxed pose (palm down), and
a target set of SEMG data in a supinated pose (palm up),
as illustrated in Fig. 1. The participants were instructed
to perform each movement at 50-70% of their maximum
voluntary contraction strength. Each movement was recorded
6 times, for 5s. The 5s movement prompts were each
followed by a 3s pause, and a roughly 30s pause between
different movements. The first and last 10% of each
recording was removed to exclude the transient period of
the contraction. The data was recorded at a sampling rate
of 1000 Hz and then filtered (a butterworth high-pass filter
with cutoff frequency of 20 Hz and a second order notch filter
at 50 Hz).

VOLUME 13, 2025

2) TRAINING PROCEDURE

The recorded source and target datasets were used to train
three instances of a TSEncoder-TM, as this architecture
performed the best during the offline experiments. The first
instance only used the labeled source dataset for SL training,
akin to how a myoelectrical prosthesis is normally fitted. The
second instance was trained through SL on both source and
target datasets to act as a baseline for a best case scenario in
which labeled data from the target domain is available. The
third instance used labeled source data and unlabeled target
data together with the SWD domain adaptation method.

3) EVALUATION PROCEDURE

Each participant performed a total of six Motion Tests [30],
two for each TSEncoder-TM instance. During a Motion
Test the participants received prompts on a screen to
perform each finger movement shown in Fig. 2. Movements
were performed either for a maximum of 10s or until
40 accurate predictions were observed (equivalent to 2s, given
the 20 Hz classifier prediction frequency). Note that the
adaptive stopping criterion is a trade-off intended to reduce
participant fatigue, but it introduces variability in the number
of recorded predictions per movement class. All models were
evaluated under identical stopping conditions, ensuring that
this effect did not systematically favor any approach. Each
classifier was used once in the relaxed (source domain) and
once in the supinated (target domain) position. The order
of each instance and domains was randomized. Real-time
performance of the classifiers to decode motion intent was
evaluated by calculating the mean classification accuracy
across all movements. A Wilcoxon Signed rank test was used
to determine statistical significance (p < 0.05) between
online accuracy results, given the different instances.
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IV. RESULTS

Results from the two offline experiments are summarized
in Fig. 3 and the online effect of the best UDA method on
a limb pose domain shift is shown in Fig. 4. All results
are presented in boxplots where the bottom and top edges
indicate the 25th and 75th percentiles, respectively. Outliers
are represented as diamonds (), and statistical significance
is indicated by a star (x). Median values are shown as a
horizontal line across each corresponding box.

A. OFFLINE ANN SELECTION

Notably, all ANN architectures performed rather poorly on
the target dataset. However, the classification accuracies of
the CNNSE (0.206 +£ 0.072), TSEncoder (0.210 £ 0.068),
and TSEncoder-TM (0.202 4 0.075) architectures were
significantly higher (p < 0.001 in all cases) compared to the
TCN (0.1304£0.015) and FFNN (0.181+£0.053) architectures,
asis clear from Fig. 3a. This allowed us to narrow the scope of
the following experiment, by excluding the FFNN and TCN
architectures.

B. OFFLINE UDA SELECTION

By employing UDA, all results showed an improvement over
the SL baselines of the previous experiment. Furthermore
SWD appears to outperform DANN across architectures.
The classification accuracy of the TSEncoder (minimum
0.292 + 0.083) was significantly higher (p < 0.001 in all
cases) compared to the CNNSE (ranging from 0.218 4 0.048
t00.244 £ 0.057), regardless of domain adaptation method or
timestamp masking (see Fig. 3b). Using SWD in combination
with the TSEncoder architecture resulted in slightly higher
accuracy (0.307 £ 0.105 and 0.292 £ 0.083 with p = 0.13,
respectively), when compared to DANN. Furthermore, add-
ing timestamp masking when using SWD resulted in the
best performing ANN, with a significant (p < 0.001 in all
cases) accuracy increase (0.413+0.142), compared to DANN
(0.326 &+ 0.067) aswell as all other network and UDA
algorithm combinations.

C. ONLINE EVALUATION

The results of the Motion Tests confirmed that move-
ment decoding performance substantially decreases (from
0.553 £ 0.195 10 0.48640.201, p = 0.105) when movements
are performed in a limb position different from the original
pose in which labelled data was collected (see Fig. 4).
We found, as expected, that this decrease in accuracy can
be mitigated through the use of labeled data originating
from both domains during training (i.e. all of the data
recorded from the participant before motion tests). The
ANN trained using all of the available data performed
similarly when tested in the relaxed (0.600 £ 0.249) and
the supinated (0.615+£0.208, p = 0.695) Motion Test
conditions. As expected, it also performed significantly better
in the target domain compared to the ANN trained only on
source data (p = 0.019). Curiously, having access to data
from another domain marginally improved the performance
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FIGURE 4. Movement decoding accuracy during online Motion Tests,
averaged over all 7 movements (for n = 10 participants, since 1 was
excluded due to signal loss). Motion Tests were performed with the
forearm relaxed or supinated, indicated by stripes on the boxplots. Three
settings were evaluated: (left) SL training on source data; (middle) SL
training on both source and labeled target data; (right) training with UDA,
using unlabeled target data.

in the source domain (from 0.553 4+ 0.195 trained on the
source domain to 0.600 £ 0.249 trained on both domains,
p = 0.625).

Using UDA resulted in a decoding performance increase
while performing the Motion Test in a relaxed position
as well (0.553 &+ 0.195 trained on the source domain to
0.619 £+ 0.221 trained with domain adaptation, p = 0.13).
Importantly, using domain adaptation resulted in a perfor-
mance (p = 0.43) in the target domain (0.578 +0.234) which
is comparable to the ANN trained through SL on both source
and target data (0.615 £ 0.208). Finally, we observed that
UDA significantly outperformed SL (p = 0.048) with source
data, when evaluated in the target domain (0.485 &£ 0.20).

Recording the source and target data set took an average
of 10 minutes per set.

Note that results from one participant had to be excluded
from our analysis due to loosening of a surface electrode (loss
of input signal) during the Motion Test. Exclusion was based
solely on signal integrity and did not affect overall outcome
trends.

V. DISCUSSION

Our results showed that the reported benefits of using
UDA for MPR, previously only explored through offline
experiments, also carry over to online use. Indeed, using UDA
resulted in a 19% increase in real-time motor intent decoding
performance in the target domain, compared to a classifier
that was trained via SL on source data. More importantly,
the UDA approach resulted in comparable performance to
an ANN trained on labelled data from both source and
target domain. This is important because the latter is a much
more time consuming approach, as it requires recording
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all desired movements for each target domain to obtain
ground truth labels (recording time o number of additional
domains). While recording additional labelled datasets would
be an option for a controlled research setting, dataset size
for MPR is much more limited in unstructured daily life
settings: patients wanting to use a MPR system with surface
electrodes have to record data daily while donning the
prosthesis and sometimes even multiple times a day due to
electrode shift or fatigue induced signal changes. UDA offers
improved performance without the need for an impractical
and frustratingly long donning procedure to obtain large
labelled data sets.

UDA opens up another avenue to improve prosthetic
control without additional time-burden on the user: simply
by storing unlabeled data from daily use (e.g., on a SD card),
our UDA method can be expanded to a target domain that not
only includes a single position shift, but data representative
of daily use.

Regardless if UDA is used on just source training data
or daily life data, this method can be seamlessly integrated
into commercial prosthetic systems, as they do not require
additional sensors or complex modifications to existing
prostheses and they can be simply implemented in the already
existing MPR training apps without any additional compute
or memory burden for the target device.

The results of the offline experiments are in line with
previous results, where a CNNSE architecture performs
slightly better than the FFNN and TCN architectures [12].
The TSEncoder performing similarly to the CNNSE further
suggests that such a architecture is a viable alternative
to decode movement intent. As expected, due to the
downsampling (which probably has led to a suboptimal signal
representation) from 128 unipolar to 8 bipolar channels,
the obtained absolute offline accuracies of all the tested
architectures were lower compared to the reported values for
the CapgMyo DB-b dataset.

Comparing the relative accuracy improvements, we can
conclude that domain adaptation generally leads to increased
motor intent decoding performance. With domain adaptation
compared to SL, we observed an accuracy increase of at least
11% (CNNSE) to up to 104% (TSEncoder-TM with SWD)
in our offline experiment. Using domain adaptation on the
original CapgMyo DB-b dataset led to 16% improvement
compared to not using domain adaptation [17], which
matches the above reported 19% performance increase in
our online experiment. With regards to why SWD performs
better than DANN, we speculate that a combination of the
SWD’s alignment strategy, gradient behavior, and robustness
to noise, class imbalance, and multi-modal distributions make
it better suited to handling the variability and domain shifts
characteristic of EMG signals.

This study was limited to an online experiment that only
tests a single cause of domain shift. It remains to be shown
if unsupervised domain adaptation can be equally effective
when presented with other or additional causes of domain
shift. An alternative to using UDA methods could be using
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Reinforcement Learning [31], [32], where a classifier trained
on an initial dataset could be fine-tuned on data collected in
a different use-case scenario. Furthermore, training stability
and overfitting risks are important considerations for UDA.
In our setup, adopting conservative optimizer settings aligned
with SL and library defaults yielded qualitatively stable
training without signs of divergence. Nevertheless, early-
stopping criteria, systematic hyperparameter sweeps, and
multi-seed replication in the online phase are valuable
extensions for future work as long as they are balanced
against participant time and calibration overhead.

Another limitation of our study was the lack of an offline
dataset that perfectly matched our experimental setup while
also providing a controlled domain shift scenario. Although
the CapgMyo dataset differs from our setup in terms of
electrode type, placement, and movement selection, the
fundamental challenge (bio-signal time-series classification
under domain shifts) remains the same. While our adaptation
of the CapgMyo dataset introduces some discrepancies,
the original structure of EMG time-series remains, and
it enabled a meaningful offline comparison of different
ANN architectures and UDA algorithms under domain shift,
allowing us to identify a model that performed robustly within
our experimental conditions.

Moreover, while our focus was on decoding motion intent,
we did not evaluate key aspects such as controllability
(i.e. the ease of controlling a prosthesis) and functionality
(i.e. the extent to which a prosthesis enhances daily life
activities). Both controllability and functionality are critical
for the successful transition of prosthetic technology from
the laboratory to everyday use. For future work, it would
be advantageous to involve participants with amputation
who are actual users of prostheses. This approach would
enhance the relevance of the study to its intended clinical
applications, providing more practical insights into the real-
world effectiveness of the research findings.

VI. CONCLUSION

In this work, we validated through online experiments that
unsupervised domain adaptation for MPR can lead to a
significant increase in motor intent decoding performance
compared to traditional SL training on source data, when a
domain shift is caused by a limb pose change. Furthermore,
we presented a comparative study which showed that
Sliced Wasserstein Discrepancy can outperform Domain
Adversarial Neural Networks when applied to myoelectric
pattern recognition with domain shifts. These findings offer
encouraging prospects for future applications of UDA, when
fitting bionic limbs using MPR. Domain adaptation has the
potential to effectively handle daily usage scenarios not
included in a labeled EMG recording session as well as
improve control performance in settings already included
in the training dataset. For people using MPR-controlled
prostheses, advancements in UDA could mitigate the issue
of unintended prosthesis activation that currently limits
prosthetic functionality.
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