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Photonics provides a viable path to a scalable fault-tolerant quantum computer. The natural framework
for this platform is measurement-based quantum computation, where fault-tolerant graph states supersede
traditional quantum error-correcting codes. However, the existing formalism for foliation—the construction of
fault-tolerant graph states—does not reveal how certain properties, such as single-shot error correction, manifest
in the measurement-based setting. We introduce the fault complex, a representation of dynamic quantum error-
correction protocols particularly well suited to describe foliation. Our approach enables precise computation of
fault tolerance properties of foliated codes and provides insights into circuit-based quantum computation. Ana-
lyzing the fault complex yields improved thresholds for three- and four-dimensional toric codes, a generalization
of stability experiments, and the existence of single-shot lattice surgery with higher-dimensional topological
codes.

DOI: 10.1103/cjb4-l57n

Introduction. Photonic platforms for quantum computing
[1–6] are well suited to measurement-based quantum comput-
ing (MBQC) [7]. In this paradigm, in contrast to circuit-based
quantum computation (CBQC), the central object is not a
quantum error-correcting (QEC) code but a fault-tolerant
graph state (FTGS). Various methods for constructing FTGS
exist [8–10], with the concept of foliation [11,12] offering
a prescription for any Calderbank-Shor-Steane (CSS) code
[13,14]. Here, we introduce the fault complex, a representation
of faults in a dynamic QEC protocol (rather than a static QEC
code) formulated in the language of homology and chain
complexes [15–18]. We focus on fault complexes obtained
via foliation, which we recast in the language of homology as
a tensor product [19,20] between a CSS code and a repetition
code. This formalism allows us to easily calculate properties
like the fault distance and also applies to CBQC, where it
represents repeated rounds of error correction. Analysis of the
fault complex enables us to understand the decoding of single-
shot codes in MBQC and achieve improved error thresholds
for three-dimensional (3D) and 4D toric codes [21–24].
Through the explicit calculation of the homology groups
of the fault complex, we generalize the notion of stability
experiments [25], which in turn allows us to conclude that
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single-shot lattice surgery is possible in higher-dimensional
topological codes. The fault complex provides a formal lan-
guage for fault-tolerant protocols, similar to how homological
descriptions serve CSS codes, laying the groundwork for
future advances in fault-tolerant quantum computation.

Background and notation. An [n, k, d] binary linear code
C forms a k-dimensional subspace within the n-dimensional
vector space over F2. Such a code can be defined by a parity-
check matrix (PCM) H , where the codewords are the elements
of ker H . The distance d is the minimum Hamming weight of
any nonzero codeword. We use ei to denote the ith unit vector
and [M] j to denote the jth row of a matrix M. We write 0 and
1 for the all-zero and all-one vectors, respectively.

A stabilizer code [26] is the quantum analog of a linear
code and is defined by an Abelian subgroup, S , of the Pauli
group with −I /∈ S . The codespace is the +1 eigenspace of S;
logical operators commute with S but are not themselves in
S . The notation �n, k, d� describes a code in which the stabi-
lizer group is generated by m = n − k independent generators,
which are themselves elements of the n-qubit Pauli group Pn.
The number of encoded qubits is k and the distance d is de-
termined by the minimum weight nontrivial logical operator.
A stabilizer code admitting a set of stabilizer generators that
are each either X -type or Z-type operators is referred to as
a CSS code [13,14]. These codes can be described by two
classical binary linear codes with PCMs HX and HZ repre-
senting stabilizer generators as tensor products of X and I ,
and Z and I , respectively. Commutativity of X - and Z-type
generators is expressed through the condition HT

Z HX = 0.
Error correction proceeds via the measurement of the stabi-
lizer generators, yielding the syndrome s, which is the list of
stabilizer eigenvalues. This allows the detection and cor-
rection of Pauli errors that anticommute with stabilizer
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FIG. 1. Foliation of the surface code viewed as a fault complex. (a) The distance-3 surface code Tanner graph with circles representing
qubits, squares representing X and Z checks, and dashed and solid lines representing the connectivity of these checks, respectively. (b), (c)
Hypergraph product of (a) with a repetition code check and bit node, respectively. This yields two types of fault locations, teal and yellow,
along with primal (red) and dual (purple) detectors. Dashed and solid lines indicate boundary maps of the fault complex. For simplicity, we
omit out-of-plane connections. (d) Unit cell of the fault complex obtained by stacking alternating layers of (b) and (c). A dual detector (purple)
is formed by the parity of six dual fault locations (yellow). Vertical red dashed lines are omitted for clarity. (e) Mathematical structure of the
fault complex and its relation to (b)–(d): colored circles and squares represent chain complex vector spaces and lines represent boundary maps.

generators; a classical decoder is used to infer recovery op-
erators given a syndrome.

Here, a chain complex of length n denotes a collection
of F2-vector spaces Ci and linear maps ∂C

i called boundary
operators,

C = {0} ∂C
n+1−→ Cn

∂C
n−→ · · · ∂C

2−→ C1
∂C

1−→ C0
∂C

0−→ {0}, (1)

with the composition fulfilling ∂C
i ∂C

i+1 = 0. We suppress su-
perscripts if no distinction is necessary. The quotient Hi(C) :=
ker ∂i/im ∂i+1 is called the ith homology group of C. Asso-
ciated with C is also a cochain complex, with coboundary
operators δi : Ci → Ci+1 defined as δi = ∂T

i+1:

CT = {0} δ−1→ C0
δ0→ C1 · · · δn−1→ Cn

δn→ {0}, (2)

with cohomology groups Hi := ker δi/im δi−1.
Each length-1 chain complex describes an [n, k, d] linear

code with boundary map ∂1 = H from Fn
2 to the space of

syndromes F r
2 with r � n − k. Similarly, a CSS code, C, can

represented by a length-2 chain (sub)complex

· · · → Ci+1
∂i+1−→ Ci

∂i−→ Ci−1 → · · · , (3)

where, by convention, ∂i+1 = HT
Z and ∂i = HX , such that

∂i∂i+1 = 0 is encoded in the condition that HX HT
Z = 0. Iden-

tifying qubits with the space Ci, the code parameters are
n = dim Ci, k = dim Hi(C), and the logical operators are ele-
ments of the groups Hi(C) and Hi(C), with the smallest weight
element defining d .

Motivating example. A common way to obtain an FTGS
from a CSS code is via foliation [11]. In this procedure, the
X and Z Tanner graphs of the code are interpreted as alter-
nating layers of the FTGS and data qubits between adjacent
layers are entangled with each other; see Figs. 1(a)–1(d). The
computation is then performed by a sequence of adaptive local
measurements on the FTGS. We observe that foliation can be
algebraically formulated as the tensor (or hypergraph [19,20])
product of a base CSS code with a repetition code [27]; see
Fig. 1(e). Denote the resulting complex as F = C × R, where
C is a length-2 chain complex describing a CSS code and R
is a chain complex describing a repetition code. The spaces of

F are

Fj =
⊕

�+m= j

R� ⊗ Cm, (4)

where R� and Cm are the �th and mth spaces of R and C,
respectively. The boundary operators of F are

∂ j =
(

1r ⊗ ∂C
j R ⊗ 1nC

j−1

0 1c ⊗ ∂C
j−1

)
, (5)

where ∂C
j is the jth boundary operator of C and R is the r × c

PCM of the binary linear code. One can observe that ∂2 is
the biadjacency matrix of the (bipartite) FTGS, whereas ∂1

and ∂T
3 describe the detectors (or foliated stabilizers) of the

FTGS. For example, the rows of ∂1 are of the form (eα ⊗
[HX ]β |[R]α ⊗ eβ ), with an analogous form for the columns
of ∂3. These are exactly the foliated stabilizers of [11]; see
Fig. 1(d), which illustrates a dual detector. Each detector (row)
above is triggered by a fault on one of the qubits participating
in the check [HX ]β or by a syndrome fault in an adjacent layer.

Fault complexes. Motivated by the previous example, we
define a fault complex to be a length-3 chain (sub)complex F ,

· · · → Fi+2
∂i+2−→ Fi+1

∂i+1−→ Fi
∂i−→ Fi−1 → · · · , (6)

where we define primal fault locations to be elements of Fi

and dual fault locations to be elements of Fi+1. The fault
complex has n = ni + ni+1 total faults, where ni = dim Fi.
The boundary map ∂i+1 determines equivalent primal and dual
faults. We define the primal and dual detector matrices to
be DX = ∂i and DZ = ∂T

i+2, respectively. The syndrome of a
primal fault x ∈ Fi is DX x and the support of a primal detector
u ∈ Fi−1 is DT

X u and similarly for dual faults and detectors. In
a fault complex, there is no requirement for the commutativity
of the primal and dual detector matrices. Instead, we have
∂i∂i+1 = 0, meaning that a primal fault that is equivalent to
a dual fault has trivial (primal) syndrome, with an analogous
interpretation for ∂T

i+2∂
T
i+1 = 0.

We refer to the elements of Hi(F ) and Hi+1(F ) as primal
and dual logical correlations, respectively. These represent
the information that the fault complex is designed to protect.
Similarly, the elements of Hi(F ) and Hi+1(F ) are the primal
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and dual logical errors, respectively. These operators change
the values of the logical correlations but have no syndrome
and are therefore undetectable. Note that the number of primal
logical correlations (or errors) ki = dim Hi(F ) = dim Hi(F )
need not equal the number of dual logical correlations (or er-
rors) ki+1 = dim Hi+1(F ) = dim Hi+1(F ). The primal (dual)
fault distance di (di+1) of the fault complex is the weight of
the minimal weight primal (dual) logical error.

Recently, there have been many proposals for formalizing
fault-tolerant protocols [9,10,28–35], some of which resemble
our fault complexes. In particular, our definition of a fault
complex builds on the definition of a fault-tolerant cluster
state in [10]. We also note that fault complexes are dis-
tinct from the fault-tolerant complexes of [32], which are
defined geometrically and are limited to topological codes.
Fault complexes have an interpretation in CBQC where the
faults can represent both qubit, gate, and measurement errors.
In this interpretation, ∂i+1 is related to the gauge group of
the space-time code; see [36] for further discussion. Here,
we concentrate on the interpretation of fault complexes in
MBQC.

Foliated CSS codes. We now return to our motivating ex-
ample of the fault complex F = C × R, where C represents
a CSS code and R represents a repetition code. Suppose that
R, HX , and HZ are full rank. From the Künneth formula, we
obtain the number of primal and dual correlations

ki = dim H0(R) dim Hi(C) + dim H1(R) dim Hi−1(C),

ki+1 = dim H0(R) dim Hi+1(C) + dim H1(R) dim Hi(C).

One can show [20,36] that the primal and dual fault distances
of F are given by

di = min[d0(R)di(C), d1(R)di−1(C)],

di+1 = min[d0(RT )di+1(CT ), d1(RT )di(CT )], (7)

where di(C) and di(CT ) are equal to the minimal weight of an
element in Hi(C) and Hi(C), respectively. For trivial homol-
ogy groups the associated distance is defined as ∞.

The logical correlations of F are recovered from the ho-
mology group; that is, for example,

H2(F ) ∼= H0(R) ⊗ H2(C) ⊕ H1(R) ⊗ H1(C)

= 〈
(0, 1 ⊗ �Z ) | �Z ∈ ker HX /im HT

Z

〉
, (8)

where �Z is a logical Z operator of the base code. See [36] for a
detailed derivation. This operator is a dual logical correlation;
it acts as a copy of the logical Z operator on the qubits in
the R1 ⊗ C1 block of the F1 space. The dual logical errors are
given by

H2(F ) ∼= H0(R) ⊗ H2(C) ⊕ H1(R) ⊗ H1(C)

= 〈
(0, (1, 0, . . . , 0) ⊗ �X ) | �X ∈ ker HZ/im HT

X

〉
,

(9)

where �X is a logical X operator of the base code. We observe
that this operator acts as a logical X operator on one of the fac-
tors in the R1 ⊗ C1 portion of the F1 space. Applying Eq. (7),
we find that the (dual) fault distance of F is d2 = dX —the X
distance of the base code.

For our choice of R, the homology groups H0(R) and
H0(R) are trivial, so the fault complex lacks primal logical
correlations arising from the base code’s logical X . This may
seem surprising, given that the foliated surface code can be
used to prepare an encoded Bell state on the two boundaries
[37]. There is no contradiction, however: the interpretation
of fault complexes as foliated codes implicitly assumes that
all qubits are measured in the X basis during the protocol
and therefore that the encoded Bell state of [37] is measured
destructively. The analogous CBQC interpretation is of a
memory experiment with logical state preparation and readout
both performed in the Z basis. In addition, we note that all
the logical correlations can be recovered by considering an
alternative repetition code PCM; see [36].

Stability experiments. Lattice surgery [38] is the leading
technique for performing logical operations on topological
codes [39,40] and stability experiments [25] estimate the log-
ical error during a lattice surgery operation. Such experiments
test our ability to accurately measure the product of many
stabilizer generators.

Returning to our foliated CSS code example, suppose that
HX of the base code C is rank deficient. The fault complex
F = R × C now has additional logical correlations and errors
coming, respectively, from the following homology groups:

H1(F ) ∼= 〈
(0, (1, 0, . . . , 0) ⊗ g) | g ∈ ker HT

X

〉
,

H1(F ) ∼= 〈(0, 1 ⊗ h) | h ∈ C0/im HX 〉. (10)

Here, g represents any subset of HX rows that sum to zero and
h is any vector in C0 that is not the syndrome of a Z-type error.
An example of such a code is a 2D surface code with four
smooth boundaries; in this case we have g = 1 (the product
of all X stabilizers is I) and h = (1, 0, . . . , 0) (all valid syn-
dromes have even weight). The logical correlation g is exactly
the product of stabilizer generators considered in stability
experiments. Using Eq. (7) we find that the primal distance
of F is d1 = δ, i.e., equal the distance of the repetition code
(or the number of CBQC measurement rounds; cf. [25]). A
2D surface code with four smooth boundaries encodes no
logical qubits, but if instead we let C be the 2D toric code
(with periodic boundaries) then our formalism shows that the
fault complex F = R × C can be used to perform a combined
memory and stability experiment; see [36].

Single-shot lattice surgery. Certain CSS codes are natu-
rally associated with length-3 or length-4 chain complexes,
where the additional vector spaces represent metachecks,
i.e., redundancies between subsets of checks. Metachecks
are related to single-shot error correction [23,41,42], where
a single round of parity-check measurements suffices for
fault-tolerant QEC.

As a prototypical example of a code with metachecks, let C
represent the 3D toric code [21,22] defined on an L × L × L
cubic tiling, which has single-shot QEC for Z errors. We
focus on this code for ease of presentation, but our results
also hold for true single-shot CSS codes such as the 4D toric
code. We assign the metacheck matrix MX = ∂C

1 and PCMs
HX = ∂C

2 and HZ = (∂C
3 )T . The primal detectors of the fault

complex F = R × C are given by ∂2, which now contains
the metachecks; see [36] for the explicit expression. We note
that F is effectively a length-3 chain complex exactly because
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"data" and "measurement" faults are treated on an equal foot-
ing; see [36] for an extended discussion.

The expression for the primal logical correlations and
errors of F is the same as Eq. (10), but now with g ∈
ker HT

X /im MT
X and h ∈ ker MX /im HX . As in the previous

example, g is the logical correlation relevant for stability ex-
periments and lattice surgery and h is the logical error that can
disrupt this correlation. In the 3D toric code, there are three in-
dependent choices of g given by all edges cutting through one
of the independent 2D planes of the tiling. The corresponding
h vectors correspond to noncontractible chains of edges along
one of the coordinate axes of the tiling. As a result, all choices
of h have extensive weight, i.e., |h| � L. Thus, even for a
fault complex formed using a constant-length repetition code,
a macroscopic number of faults (∼L) is necessary to disrupt
the g logical correlations. This is captured by the primal fault
distance of F , d1 = δL, where δ = d1(R) is the distance of
the repetition code. Therefore, higher dimensional topological
codes such as the 3D and 4D toric codes are compatible
with single-shot lattice surgery, though at the cost of reduced
performance. The full distance can be restored by choosing
R such that δ = L = O(

√
d ) (where d is the distance of the

code) or equivalently by performing O(
√

d ) rounds of stabi-
lizer measurement in the lattice surgery protocol. This should
be contrasted with the 2D toric code case where the number
of measurement rounds must be O(d ). Thus we expect that
a fault-tolerant quantum computing architecture based on the
4D toric code would have an asymptotic space-time overhead
reduction when compared to the standard 2D toric code archi-
tecture.

We address the case of single-shot codes with rank-
deficient PCMs without metachecks in [36]. We note that there
exist single-shot quantum codes with full-rank PCMs [43,44],
to which our arguments above cannot be applied, and the ex-
istence of single-shot lattice surgery protocols for these codes
remains an open question. We conjecture that codes enabling
single-shot lattice surgery without performance degradation
can be constructed from the balanced product of two good
qLDPC codes [45–49].

Improved decoding of single-shot codes. Estimating the
error threshold of a single-shot code requires simulating
multiple rounds of noisy syndrome measurement until the
threshold has converged [50]. Since in MBQC there always
exist detectors spanning multiple rounds, decoding must pro-
ceed using an overlapping window decoder [21,51–54], which
is naturally defined for a fault complex. The fault complex
framework provides a systematic guide for constructing ef-
ficient simulations and evaluating the performance of these
protocols.

A (w, c)-overlapping window decoder determines in each
round a correction for a window of w ∈ N+ rounds and com-
mits a correction to c � w rounds; see Refs. [53,55] for a
more detailed description. Here, one round constitutes a check
node and a bit node layer; see Fig. 1. For the 3D toric code,
the effective distance of the decoding window then becomes
min(wL, L2) [36]. However, wL is the weight of timelike
logical errors and, in this section, we consider memory experi-
ments, i.e., only spacelike logical errors cause logical failures;
see [36] for stability experiment simulations. State-of-the-art

FIG. 2. Sustainable thresholds for 3D (a) and 4D (b) toric codes
under phenomenological Pauli noise. Markers represent the threshold
for a (w, 1)-overlapping window decoder as a function of noisy
syndrome rounds. The black dashed line shows the threshold for the
optimal window choice w = L; see [36] for details.

results in decoding higher-dimensional topological codes [24]
employ a single-stage decoding approach that is recovered
using a (1, 1)-overlapping window decoder [36]. We find that
increasing w to 2 or 3 significantly increases the sustain-
able threshold of 3D and 4D toric codes compared to w = 1
when using belief propagation (BP) plus ordered statistics
decoding (OSD) [56,57]; see [36] for details concerning the
simulations. For w = 3, the thresholds for phenomenological
Pauli noise (see [36] for a photonic noise model) of approxi-
mately 9.65% (3D) and 5.9% (4D) surpass all previous results
[23,24,58–64], approaching the thresholds achieved with the
optimal window choice w = L; see Fig. 2(a) and Fig. 2(b).
We note that, for the 3D toric code, we only consider primal
faults, as the dual side of the fault complex does not have the
single-shot property.

While larger decoding regions increase decoding time,
recent advances provide solutions. Findings on localized
statistics decoding [65], a parallelizable OSD variant,
and belief propagation for higher-dimensional toric codes
[64] suggest time-efficient decoding with minimal per-
formance reduction, supporting the practical applicability
of our results.

Conclusion. We introduced fault complexes to represent
dynamic QEC protocols and characterize foliated codes. This
approach provided insights into stability experiments and lat-
tice surgery and yielded improved decoding protocols for
higher-dimensional topological codes like the 4D toric code.
The increased thresholds and space-time overhead advantages
make 4D toric codes promising for compatible architectures
like photonics [1–6], trapped ions [66], and neutral atoms
[67]. While algorithmic fault tolerance [68] offers a lower
overhead, it requires complex decoding; 4D toric codes allow
simpler windowed decoding. Meanwhile, the lower threshold
requirements of 3D toric codes make them suitable for exper-
imental validation in the near term.

Our formalism can extend to circuit-level noise by, for
example, reformulating Li’s [35] LDPC representation of
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fault-tolerant quantum circuits [many of their results in [35,
Sec. VIII] are already structurally equivalent to Eq. (5)]. Fu-
ture work could explore the fault complexes of subsystem
codes [69–71] (especially those with single-shot error cor-
rection [41,50,72]), symplectic chain complexes for non-CSS
codes, and alternative product constructions like balanced [48]
and lifted [73] products. In addition, by using alternative lin-
ear codes in the construction, we may hope to algebraically
recover FTGS beyond foliation [9,32]. See [36] for some
initial ideas on these extensions.
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