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ABSTRACT: Environmental sustainability is a crucial issue for all human beings, and vehicle emissions significantly contribute to
climate change. This has prompted many countries, including China, Norway, and Germany, to focus on electrifying transportation.
This study quantifies the life cycle carbon dioxide (CO,) emissions of electric buses (EBs) in Guangzhou, China, via a life cycle analysis
methodology, revealing an average life cycle emission of 1,097.07 g CO,-km-vehicle”'. The operation and charging stage
contributes the most to the lifespan of CO, emissions at 69.6%, driven by carbon-intensive power grid. Compared with
conventional internal combustion engine buses, EBs result in significant emission reductions, but regional grid carbon intensity
variations across China mean that their benefits depend on nationwide green energy adoption. By 2030, emissions are projected to
decline by 15.28%, aligning with carbon peak goals. The findings emphasize that transitioning to renewable energy grids and

hybrid technologies is critical for sustainable transportation.

KEYWORDS: EBs; GHG emissions; life cycle analysis (LCA); electrification of transportation

1 Introduction

Our world is confronted with an unprecedented challenge in the
realm of climate change. Research indicates that the global
automotive sector, including transportation, accounts for up to
23% of global energy-related greenhouse gas (GHG) emissions,
equivalent to approximately 8.7 Gt of carbon dioxide (CO,) per
year. Road vehicles are the largest contributors, representing
approximately 70% of direct transportation emissions (Ritchie,
2020). In Europe, road vehicles also emit significant amounts of
GHGs, particularly methane and nitrous oxide (Liu et al., 2024).
Moreover, Japan is actively working to reduce its GHG emissions
and has set ambitious carbon neutrality goals (Li et al., 2023).
Across different regions, countries are introducing new policies to
support the electrification of transportation and invest in
improved charging infrastructure (Shui et al., 2024). The adoption
of electric buses (EBs) in urban mass transit systems offers a
promising opportunity to reduce fossil fuel consumption, GHG
emissions, and pollution while enhancing the efficiency and
sustainability of urban mobility (Koech and Fahimi, 2024). These
policies reflect a global consensus on electrification as a pathway
to decarbonization. However, the implementation of these policies
varies significantly: Europe focuses on strict emission standards
and grid decarbonization, Japan prioritizes technological self-
sufficiency, and China leverages subsidies and infrastructure
expansion. Despite these efforts, gaps remain in harmonizing
policy objectives with operational realities. Nevertheless, existing

studies on electric bus sustainability often overlook critical real-
world complexities (Lin et al., 2025). For example, most life cycle
analysis (LCA) models assume constant energy consumption rates
and neglect variations caused by driving patterns, weather
conditions, or infrastructure quality factors that significantly affect
emissions and costs in practice. Moreover, while there are links
between these policies, such as the shared goal of reducing
emissions  through electrification, they often operate
independently without sufficient coordination.

Electric public transit systems also present significant
challenges. EBs are already 2-4 times more expensive than
conventional diesel buses (DBs). Moreover, EBs have secondary
impacts on other systems, such as changes in grid demand and
infrastructure requirements. They also face issues related to service
availability and frequent battery replacements due to degradation.
A key limitation of prior research is its heavy reliance on
theoretical assumptions rather than empirical data. Similarly,
service availability rates are frequently exaggerated because
charging delays or maintenance downtime observed in cities with
high EV adoption are underestimated.

These factors can significantly increase life-cycle emissions and
energy consumption, which are highly dependent on real-world
usage and charging pattern data that can be obtained through field
operations. The studies concerning LCA of electric buses are
either qualitative discussions or are based on strong consumption
of the availability of EBs for service and the life spans of electric
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buses and batteries without field data, which can result in biases to
some extent. To resolve these biases, a case study of electric buses
in Guangzhou is conducted for this thesis project, where the
sustainability of electric buses during operation is evaluated via
field data. The LCA is the main method for evaluating bus
sustainability. Additionally, the performance of EBs under
different ambient temperatures was also investigated. In this study,
socioeconomic factors such as the cost of electric buses, changes in
grid demand, and infrastructure needs also implicitly influence the
outcome changes. In this study, the goal of LCA is to evaluate the
GHG emissions of each stage of the entire life cycle of electric
buses, namely, manufacturing, operation and end-of-life.

This study aims to conduct a quantitative life-cycle analysis on
electric buses with field data in Guangzhou, China. Inventory data
involving all the processes of an electric bus will be collected.
Afterward, a customized assessment framework is developed to
conduct a life-cycle analysis of electric buses, followed by a
qualitative analysis of the influence of electrification of buses on
power systems, real operation costs, and emissions. The last step is
to identify the hot spot process that results in the most emissions
during the life cycle and critical hurdles for sustainable
development.

2 Literature review

2.1 Energy consumption of EBs

Sun et al. (2024) demonstrated that buses consume more energy
under congested traffic conditions. This finding aligns with that of
Eufrasio et al. (2023). By using dedicated bus lanes in traffic
congestion, the energy consumption of both EBs and DBs can be
lowered by up to 25% compared with regular traffic conditions for
buses that are in shared-use bus lanes. These findings highlight the
importance of the operational context in energy efficiency. Using
specific energy consumption is a great way to evaluate the energy
consumption of vehicles in general The specific energy
consumption is the energy consumption per km. In this way, the
difference in the operational route can be offset. The average
consumption of the two buses studied by Eufrasio et al. (2023) is
1.19 kWh-km™ for one bus and 1.27 kWh-km™ for the other, with
a daily range of 0.94-2.29 kWh-km™. Building on these empirical
insights, Abdelwahab et al. (2024) proposed a comprehensive
model to compute energy consumption, charging time, and state
of charge (SoC). This approach integrates parameters such as
battery capacity, driving distance, and charging station spacing,
addressing gaps in previous studies that focused solely on static
energy metrics. For example, by incorporating battery discharge
rates and thermal dynamics, their model refines the estimation of
minimum charging time constraints, thereby improving
operational planning accuracy. Therefore, this research focuses on
the accuracy and comprehensiveness of data related to the
operation stage.

—— Discharge curve
Vi Exponential area
Mominal area

0 Qnom Qexp Qmax
Capacity (Ah)
Fig.1 Example of a typical battery discharge curve. Reproduced with
permission from Karabacak et al. (2020), © Tlker Ors 2020.

2.2 Electrical vehicle (EV) batteries

Fig. 1 shows a typical battery discharge voltage curve (Karabacak
et al,, 2020). It is common for battery discharge to have a high
discharge rate during the initial period; this phase is called the
exponential area on a battery discharge curve. Within the nominal
discharge area, the battery’s power output is consistent as the
voltage decreases steadily and stably. Toward energy depletion, the
internal resistance of the battery increases; as a result, the voltage
decreases drastically (Cui et al, 2025). This discharge behavior
directly influences the battery lifespan and number of replacement
cycles. For commercial EV batteries, degradation thresholds are
standardized at 80% of the nominal capacity (Chen et al., 2022).
The relationship between the discharge time and discharge rate at
a certain capacity is described by Eq. (1) (Liu et al., 2023):

c\*
t=H ( IH) (1)
where t (h) is the time taken during discharge, H (h) is the
nominal discharge time in hours, C (Ah) is the nominal capacity, I
(A) is the discharge current, and k is the Peukert constant.
Currently, 2 types of batteries (Table 1) are generally used in
pure electric vehicles: ternary lithium-ion batteries (NMCs) and
lithium-iron LiFePO, phosphate batteries (LEPs). Currently,
NMC is the dominant battery type used in electric transportation
(Fallah and Fitzpatrick, 2023). One leading reason is that NMC is
lighter than the LiFeO, battery (LFB) in weight, making it more
portable than its main competitor. Additionally, the energy
density of NMC is generally approximately 190-260 Whkg,
which is much greater than that of LFP, which is only
approximately 90-130 Whkg™. Although LFP is stil a very
competitive alternative, as LFP is considerably less expensive than
NMC and is even a better choice in the long run, as outside of the
mutually toxic element lithium, NMC batteries also contain
critical elements such as cobalt, which is also a toxic heavy metal.
In addition, LFP is much safer than NMC, as the burning point of
NMC is approximately 350 °C, while LFB temperatures are much

Table1 EV battery life-cycle CO, emissions from different studies

Type of battery Region Emission Unit Source
NMC811 China 91.21+154.1+2.68 kg CO,-eq-kWh™ Chen et al. (2022)
Li-ion — 22 kg CO,-eq-kg™ Majeau-Bettez et al. (2011)
Li-ion Europe 6 kg CO,-eq-kg™ Notter et al. (2010)
Li-ion USA 9.6 kg CO,-eq-kg™ Li et al. (2023)
Li-ion China 0.158-44.59 kg CO,-eqkg™ Lietal. (2023)

Note: Global averages mask regional disparities in electricity grids and recycling infrastructure.
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higher at approximately 740-910 °C, and NMC tends to have
greater temperature fluctuations during charging and discharging.
Fallah and Fitzpatrick (2023) also reported that retired LFPs have
advantages over NCMs on a second life, particularly in regions
where renewable energy integration is limited but grid stability is
critical for urban mobility systems. This finding aligns directly
with the research subject of optimizing lifecycle emissions for
electric buses in Guangzhou. Majeau-Bettez et al. (2011) and
colleagues calculated GHG emissions of 22 kg CO, (eqkg™) from
Li-ion batteries. Li et al. (2023) reported that the global warming
potential (GWP) and cumulative energy demand (CED) of
recycling 1 kg spent lithium-ion phosphate batteries (LiBs) are
0.158-44.59 kg CO,-eq and 3.3-154.4 M], respectively. These
distinctions underscore the need for region-specific battery
selection criteria. These findings indicate that carbon emissions
during the lifespan of batteries are significant and cannot be
ignored, especially in countries where electricity production relies
heavily on fossil resources.

3 Methodology

The entire method (Fig. 2) is built around a cradle-to-grave LCA
on an EB, which includes two main parts: the LCA process and
operation data analysis.

3.1 LCA

LCA is a comprehensive method for evaluating the environmental
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impact of a product throughout its entire life cycle. This approach
is particularly valuable in the energy sector. The framework of a
general LCA is shown in Fig. 3 (Hauschild et al,, 2018).

In this study, a cradle-to-grave LCA is conducted, i.e., from raw
material extraction to disposal. This is crucial for e-buses where
impacts are not only operational but also substantial in the
production and disposal stages, especially considering electricity
generation and battery manufacturing and disposal. The life cycle
of an EB is usually divided into the following processes: electricity
generation and transformation, raw material extraction and
transportation, operation and charging electricity, and end-of-life.
Specific processes are explained in Section 3.1, ie., system
boundaries and life cycle inventory (LCI) analysis.

The selection of the LCA for this study is based on several key
advantages. First, LCA provides a holistic view of the
environmental impacts across all stages of the electric bus life
cycle, allowing for a comprehensive assessment that includes not
only the operational phase but also the often-overlooked
production and disposal stages. This is particularly important for
electric buses, as the environmental impact of battery production
and disposal can be significant. Second, LCA enables the
comparison of different energy sources and technologies, which is
essential for understanding the overall environmental footprint of
electric buses in the context of the local energy grid.

However, it is important to acknowledge the limitations of the
LCA method. One limitation is the data requirements; accurate
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Fig.3 Framework of the LCA modified from the ISO 14,040 standard. Reproduced with permission from Hauschild et al. (2018), ©Springer International Publishing

2018.
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Fig.2 Framework of the methodology used in this study.
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and comprehensive data are needed for each stage of the life cycle,
which can be challenging to obtain, especially for emerging
technologies such as electric buses. Additionally, LCA models can
be complex and require significant computational resources,
which may limit their accessibility and ease of use. Furthermore,
the results of LCA can be sensitive to assumptions about future
technological developments and changes in the energy mix, which
may affect the long-term accuracy of the findings.

Despite these limitations, LCA remains the most suitable
method for evaluating the environmental impact of electric buses
in this study because of its comprehensive nature and ability to
provide a detailed understanding of the full life cycle impacts.

The goal of this LCA is to evaluate the sustainability of EBs. To
quantify sustainability, the environmental impact category needs
to be fixed. Greenhouse gas emissions from vehicles are among
the most significant environmental impacts contributing to
climate change. CO, emissions are selected as the quantitative
indicator for this study. The following specific questions are
researched: (1) How much CO, emission will be emitted during
the life cycle of an EB operating in Guangzhou, China, on the
basis of field data. (2) Which process in the life cycle has the
highest emission. (3) How do these factors, such as the assumed
local power grid and temperature, affect the CO, emissions of an
EB. The overall intention is to provide a quantitative evaluation of
the emissions of EBs for the study of their environmental impact,
strategic planning of public transportation, and further adjustment
of the energy grid aimed at electrification and the net zero
strategy. The intended audience includes bus manufacturers,
public transportation operation companies, government decision-
makers, and environmental organizations.

When conducting LCA, it is critical to select an appropriate
functional unit. Three functional units are commonly used when
the assessment objective is an EB: impact per kilowatt-hour
battery, impact per km battery, and impact per km the EB drives.
Since the aim is to evaluate the EB’s sustainability performance
instead and the field data for analysis are focused on the operation
stage instead of the battery, the impact per km is selected as the
functional unit in this study, i.e., the grams of CO, emitted per km
per EB.

Since all the buses analyzed are still at the service of public
transportation, no monitored data of a lifetime driving distance
are accessible. Given the estimated lifespan (by the number of
years) of an EB (L), the total length of all routes (L) using km as
the unit, the number of buses in operation, the number of shifts
per route per day (N ), and the approximate lifespan of an EB,
the lifetime driving distance of one EB can be calculated via
Eq. (2). The number of buses is given by Nyuces.

365LLtothhiﬁs

2
Nbuses ( )

TotalKilometersperBus =

In addition to the technical and environmental aspects,
socioeconomic factors play a crucial role in the overall
sustainability assessment of electric buses (Liu et al., 2023). These
factors include the costs associated with electric bus procurement,
operation, and maintenance, as well as the impact on grid demand
and the requirements for supporting infrastructure. Studies have
shown that the transition to electric buses can lead to a higher
total cost of ownership because of significant investments in buses
and charging infrastructure (Sistig et al., 2025). Additionally, the
limited range of electric buses can increase the need for additional
vehicles and drivers, further affecting operational costs. These
socioeconomic considerations are essential for understanding the
feasibility and impact of electric bus systems in real-world
applications.

The system boundaries refer to the scope of the LCA. The
technical boundary is built on the basis of a literature review and
is shown in Fig. 4. The temporal boundary refers to the lifespan
duration of an EB. The selection of CO, as the core indicator is
further justified by Guangzhou’s electricity mix: as of 2022, coal-
fired power accounted for 52% of the city’s grid energy, making
CO, emissions highly sensitive to grid decarbonization progress.
This context underscores the necessity of region-specific emission
factors in life cycle analysis.

The 8-year service life for EBs in Guangzhou is guided
primarily by local regulatory requirements. According to the
Guangzhou Municipal Public Security Bureau Traffic Police
Detachment Vehicle Management Office (2018), heavy-duty
vehicles (including electric buses) operating with > 20 seats must

Foreground
}‘ Recycling |
ici i Electrical bus maintenance
Electricity generating Y Electricity production for bus l
operation
l J' Battery dismantlement
and scrapping
Electricity transformation 1 | —* Battery manufacturing
v
Operation and charging . )
- —
'L —#*| Powertrain manufacturing “1 electricity Rest of vehicle scrapping
Electricity transmission 'l'
Guilder manufacturing &
g assembly 9 ‘ Vehicle incineration |
A
|
Raw material extraction and . Charging infrastructure ey infrast.ructure > Charg‘”g ITIESHIEITE
transportation for manufacturing maintenance manufacturing disposal

Background

Fig.4 Initial flowchart.
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undergo mandatory scrapping after 8 years of service to align with
provincial air quality improvement targets. This regulation reflects
Guangzhou’s accelerated phase-out strategy for aging vehicles,
which is stricter than the national average lifespan of 12 years for
diesel buses.

To frame the technical boundaries, the foreground and
background are set to differentiate between the processes that are
directly controlled or influenced by the decision-makers of the
product system being studied (foreground) and those that are not
(background). In the foreground, the assessment begins with the
generation and further processing of electricity, manufacturing
bus components and assembling. Afterward, there is operation
charging and maintenance of the bus itself. Additionally, end-of-
life scenarios are considered, featuring recycling processes, battery
dismantlement, and vehicle scrapping. This foreground analysis is
critical because it captures the direct emissions and energy usage
associated with the active service life of electric buses. The
background processes provide context for the support systems
that indirectly contribute to the life cycle of EBs. This includes the
raw material extraction and transportation required for
manufacturing bus components and batteries and the creation of
charging infrastructure. These stages are imperative for
understanding the cradle-to-grave environmental impacts of the
system. Buses usually have a 12-year service life before being
eliminated. However, this study refers to the local regulation on
vehicle service life by the Guangzhou Municipal Public Security
Bureau Traffic Police Detachment Vehicle Management Office
(2018), where vehicles with or with more than 20 seats, operating
vehicles to nonoperating vehicles, or nonoperating vehicles to
operating vehicles, are usually in operation for 8 years. Given that
and following the form of a time frame in LCA from Hauschild et
al. (2018), the time frame for this LCA is shown in Fig. 5. The
adoption of Hauschild et al.’s (2018) time frame approach is based
on its dynamic alignment with policy-driven lifecycle phases. This
framework allows us to isolate direct emissions from regulated
operational activities while accounting for indirect, long-term
impacts through sensitivity analyses.

Inventory analysis is a crucial aspect of life cycle assessment and
involves the collection and compilation of data on elementary
flows from all processes in a product system. It starts by
identifying unit processes of the product system and then
collecting data. With the needed data available, the LCI model is
constructed, and calculations are conducted.

On the basis of the initial flowchart (Fig. 4) and further
literature reviews, the identified unit processes of an EB, i.e., stages
in the life cycle, include powertrain manufacturing, battery
manufacturing, glider manufacturing and assembly, operation and
charging electricity, and end-of-life.

Battery
manufacturing
Powertrain
manufacturing
Glider
manufacturing and
assembly
Operation and charging
electricity
End of
life
T T T T
1 year 8 years

Fig.5 Time frames for different life cycle stages. Reproduced with permission
from Hauschild et al. (2018), © Springer International Publishing 2018.

https://doi.org/10.26599/JICV.2025.9210061

The inventory data collection involves gathering information
on all the inputs (e.g., raw materials, energy) and outputs (e.g.,
emissions, waste) associated with each stage of the life cycle. The
data used in this study were collected from two sources. Data on
the operation and charging of electricity are extracted from field
data collected from sensor monitoring of buses in Guangzhou,
China. The rest are from local governmental disclosure and
academic studies.

This study collects numerical data at the unit process level (e.g.,
battery, powertrain, and glider manufacturing), with inputs
including energy, raw materials, and components, and outputs
comprising products, byproducts, and CO, emissions (Table 2).
CO, emissions are critical for environmental impact assessment,
whereas intermediate outputs (e.g., battery packs and scrapped
EBs) serve as inputs for subsequent processes in the life cycle
analysis.

As previously mentioned, data on the operation and charging
electricity are from sensor monitoring of the buses. This study
utilizes comprehensive field data from more than 500 buses in
2021, detailing bus charging, location, operation, etc. Specifically,
charging data—including timestamps, battery SoC, charging
status, count, and station location—are analyzed to estimate
energy consumption. Details about data wrangling and processing
are presented in Section 3.2. For the total lifespan operation
distance, because the current EBs are still in operation and not yet
disposed of, it is calculated with the raw data collected and
through Eq. (2), which has already been justified in Section 3.1.
According to the local public transportation app, the average
number of shifts of one bus route per day is 96. The length of all
bus routes is 23,000 km, while the total number of buses is 15,000
vehicles. Since Guangzhou city has achieved 100% electrification
with respect to public buses, these numbers are applicable for this
study, especially for EBs. Given this, the lifespan operation can be
calculated via Eq. (3):

365LLotNinisis

Nbuses
_ 365 x 23000 x 96 x 8
- 15000

LifespanOperation =

= 429824 (3)

The rest of the inventory data are from other research or
governmental disclosure. Table 3 shows the data sources and
values that were used. Initial normalization for values here has
already been conducted.

Fig. 6 presents a simplified unit process in which battery
manufacturing is used as an example. Two primary inputs are
shown: electricity (used for manufacturing) and materials. The
output first includes a completed battery pack, which is ready for
further processes, ie., glider manufacturing and assembly.
Materials losses are another output that needs to be considered,
inevitably from inefficiencies during manufacturing. Additionally,
the process generates emissions of CO, directly from electricity
used for manufacturing and indirectly from material extraction.
The qualitative relationships among all the inputs and outputs are
shown in Egs. (4) and (5):

Materialsmassinpu = MasSSpaterypack + MaSSiosses (4)

(:OZoutput= COZMaterialexlraction+ COZElectricilyuse (5)

Here, a highly critical indicator is the emission factor (EF). It
relates the quantity of a pollutant released to the atmosphere with
the activity causing the release. The context of electricity (Eq. (6))
refers to the quantitative relationship between electricity
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Table2 Identified inputs and outputs for each unit process

Unit process Input Output
Material CO, emission
Battery manufacturing In battery From cell materials
In other parts of battery pack From other materials
Losses From electricity use
Electricity Battery pack
Battery manufacturing For cells Wasted materials
For others —
Material CO, emission

Powertrain manufacturing

Glider manufacturing and assembly

Glider manufacturing and assembly

Operation and charging electricity

End of life

Materials in powertrain
Material losses
Electricity
Battery pack
Electric powertrain
Glider, materials
In glider
Losses
Electricity
EB
Charging electricity
EB, preparation of recycling
Battery, dismantled, and scrapped
Rest of EB scrapped

Share of EB for incineration

From materials
From electricity use
Electric powertrain

Wasted materials

CO, emissions

From materials
From electricity use

EB
Wasted materials
CO, Emission

From electricity use

Scrapped EB after operation lifespan

CO, emissions
From electricity use

From incineration

Shredding, refining, and sorting —

generation or consumption and carbon emissions (Yang et al,
2023). This study used predicted EFs for China’s southern grid in
2021, derived from models established in the referenced paper via
statistical analysis of fossil fuel-fired power generation data from
2006-2019 (Zhang et al., 2023). The selection of EFs in this study
is based on the need for accurate and up-to-date data that reflect
the current and future trends of China’s energy grid. The
predicted EFs are used to account for the evolving nature of the
grid, which is crucial for assessing the long-term environmental
impact of electric buses.

- Emission
EmissionFactorpicicy = — . (6)
Electricity consumption
Therefore, the total CO, emissions in the battery
manufacturing stage can be written as Eq. (7):
COZBattery Manu. — Z EnergyuSeEF
source=1
= MaSSCell materialsEFExtraction
+ MaSSOther materialsEFExtraction
+ EleCtriCityEFElecnicity consumption (7)

Summing the five identified unit processes and inputs/outputs
of each process, the life cycle of the EB is connected and shown in
Fig. 7. Using the same method, the quantification formulas of
emissions for the other four stages can also be modeled via Egs.
(8)-(11). The emissions of all five processes are summed via
Eq. (12).
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COZPowertrain Manu — MaSSMaterialsEFExtmction

+ EleCtriCitYEFElectricitymnsumption (8)

COZGiler Manu. Assembly — MaSSMaterialsEFExtrac(ion

+ EleCtriCityEFElectricityconsumption (9)
CO2Operationandchargingelectricity = EleCtricityEFElectricityconsumption ( 1 0)

COZEndOflife - MassMaterialsEFincineration
—+ EleCtriCitYEFE]ectricityconsumption (1 1)

COZLifecycle - COZPowenrainMa.nu, + COZGilerManu,&:Assembly

+ COs0perationandehargingelectricity + CO2pndoniee (12)

Understanding the environmental implications of adopting
electric bus systems is pivotal Impact analysis involves
categorizing and quantifying sustainable impacts via inventory
data. As mentioned above, the primary focus on impacts is on
CO, emissions. What follows is to calculate the emissions, convert
them into the set functional unit, and then interpret these results,
including comparisons and source analysis.

Comparing the environmental impact of EBs and conventional
internal combustion engine (ICE) buses is crucial in the
transportation industry (Koech et al, 2024). Therefore, a
discussion of this topic will focus on analyzing the sustainability of
these two modes of transportation, particularly in terms of their

J Intel Connect Veh, 2025, 8(3): 9210061
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Table3 Data values and sources

Data Value Unit Source
Battery manufacturing
Materials 1.648 ton-batt! Summation of materials in battery and losses
In battery 1.200 ton-batt™! China buses (2024)
In other parts of battery pack 0.400 ton-batt™
Losses (3%) 0.048 ton-batt™!
Electricity Nordelof et al. (2019)
For cells 15.000 kWh-kg™!
For others 1.000 kWh-kg™
Powertrain manufacturing
Materials 0.412 ton-pwt! Summation of materials in powertrain and losses
Materials in powertrain 0.400 ton-pwt™ Guangzhou Municipal Public Security Bureau (2018)
Material losses (3%) 0.012 ton-pwt! .
Nordelof et al. (2019)
Electricity use in factory 5.000 kWh-kg"
Glider manufacturing and assembly
Battery pack 2.000 batt-veh™! Set by LCA
Electric powertrain 1.000 pwt-veh™!
Glider, materials 7.745 ton-veh™! Summation of materials in glider and losses
In glider 7.000 ton-veh! China buses (2024)
Losses (3%) ton-veh™ Nordelof et al. (2019)
0.475
Electricity 0.470 kWhkg™ —
Operation and charging electricity
Operation Lifetime 3 year Guangzhou Municipal Publl\i/;: Security Bureau Traffic Police Detachment Vehicle
anagement Office (2018)
Total length of all bus routes  23,000.000 km Daily (2021)
Number of buses in operation  15,000.000 No. of buses
Numbers ;2:}5:;5 perroute 96.000 No. of shifts Guangzhou Local Information (2024)
Charging electricity,,including 132.700 KWh-veh-.day™
charger losses
From Electricity 0.8475 kg CO, Zhang and Xu (2023)
Use (China South Grid) eq.-kWh™!
End of Life
Vehicle, preparation of 1.000 veh Set by LCA
recycling
Battery, dismantled, scrapped 2.000 batt-veh™
Share of vehicle, incineration 0.15% — Nordelof et al. (2019)
Shredding, refining and 1.000 KWhkg" .

sorting

Electricity (used for Battery pack

manufacturing)

Battery
manufacturing

Material losses

Materials CO, emissions

Fig.6 Simplified unit process of battery manufacturing. Reproduced with
permission from Nordelof et al. (2019), © Elsevier 2019.

CO, emissions. Additionally, inspired by the literature review, this
analysis examines and interprets how factors such as the power
grid and temperature can influence the sustainable performance
of electric buses.

3.2 Bus operation field data analysis

Three sets of field data were used in this study, all from May 2021
in the city of Guangzhou, China. In total, there are 1,048,576 data

https://doi.org/10.26599/JICV.2025.9210061

entries. The scopes of the datasets are shown in Figs. 8 and 9.

The first 2 datasets are the controller area network (CAN) and
GPS data of 500 buses on May 1, 2021; a data sample for both the
bus CAN and the GPS can be found in Tables 4 and 5. These 2
sets of data have a larger time gap between data input points, and
they are used to understand the general operational behavior of
buses, such as the operation time, break time, and number of trips
per day, and to calculate the average energy consumption of
different buses.

The third dataset contains bus No. 497's CAN and GPS
operation data for all days in May 2021. The data are read and
logged every second during all the trips recorded in this dataset.
Since the temperature range is quite wide during this month, this
dataset is used to understand the impact that the ambient
temperature has on battery performance, energy consumption
and bus operation. An example of this dataset and more
information on the analysis process for the impact of ambient
temperature can be found in Section 4.2.
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Materials Emission
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) Powertrain Powertrain
Materials manufacturing
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) Scrapped EB Operation and Electricity
End of life + . s —
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of CO,
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of CO,

Fig.7 Simplified unit processes connected. Reproduced with permission from Zhang and Xu (2023), © Elsevier 2023.

Fig.8 Scope of the bus routes included in the data.

Both sets of field data used in this study have extensive
information on bus charging, location/GPS, departing station and
terminal station, bus operation (speed, speed on wheel, total
mileage, total voltage, total current, operation time, running
mileage, running duration, single trips’ beginning and ending
time, service type, etc.), inside and outside temperature, route,
direction, component status and gears.

Following the aim and scope of this study defined in Section 1,
the objective data for the bus operation analyses included the bus
ID, data input time stamp, SoC, charging status, speed, total
voltage, total current, total mileage, GPS mileage, service type and
operation time. These data were extracted and ordered by bus ID
as the primary sorting criterion and the time stamp of the data
input point as the secondary sorting criterion. Bus temperature
and component status are considered factors in the LCA process.

The total mileage was read directly from the odometer on the
buses. This and the GPS mileage were used to estimate the lengths
of different bus trips. Although the exact length of these trips
could not be calculated, as the odometer only reads integers in
kilometers, only the point-to-point distance could be calculated
with GPS mileage data.
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Fig.9 Scope of the data.

Table4 CAN data sample of 3 buses on May 01, 2021

Bus ID 51 100 119
Time stamp 18:12:48 14:39:58 12:12:42
SoC (%) 40 67 70
Charging status 00 00 00
Speed (km-h™') 16.834 15.001 0.000
Total mileage (km) 27,836 15,089 15,312

Different bus service types (round trips, one-way routes, short
routes, breaks, first/last trips, and fast routes) significantly impact
traffic congestion simulations and energy consumption analysis.
Fast routes, operating on highways/dedicated lanes with minimal
congestion and traffic signals, reduce braking/acceleration and
lower overall energy use. The first trips start with 100% battery
charge (overnight charging), minimizing initial energy loss.
Conversely, last trips experience slightly higher energy
consumption due to battery aging and lithium-ion battery
kinetics: faster discharge/charge rates occur at the start and end of
typical battery cycles (Fig. 1), aligning with daily trip start/end
phases. This classification directly links service type characteristics
to traffic intensity and battery states for precise energy modeling.

J Intel Connect Veh, 2025, 8(3): 9210061
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Table5 GPS data sample

Bus ID Triplog ID Duration Trip mileage (km) Begin End
1 914876697 12 3 11:53:00 12:05:00
1 915010112 16 2.6 17:35:00 17:51:00
1 915026658 15 2.6 18:35:00 18:50:00
500 914786308 38 19.11 08:30:00 09:08:00
500 914813553 45 20.52 09:10:00 09:55:00

Table6 Charging status reference and the corresponding statuses

Charging status reference Charging status
00 Not charging
01 Charging
02 Charging finished
03 Charging stopped

Specifically, the data on bus charging, which consists of the data
input time, SoC in the battery pack, charging status, bus charge
count and location of the charging station, are used to
calculate/estimate the energy consumption in this study; more
details are discussed in Section 3.2. There are 4 different charging
statuses in the data, and they refer to different charging scenarios,
as listed in Table 6. This information was used to better determine
how many times the buses were charged through a 24-h window.

The speed and SoC against time-bus operational graphs were
plotted first. Outliers can often be found in the dataset, as the
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sensors on the buses have limited accuracy during operation;
hence, singular outliers were removed by removing data points
that make the SoC curve gradient inconsistent in Python. Data
entries that contained too many outliers or more than a few hours
of no data input were excluded from further investigation. In total,
125,801 data entries were removed, which left 922,775 data entries
for the rest of the study.

An example of the operational graph of bus No. 237 on May 1,
2021, can be found in Fig. 10. Before data cleaning (Fig. 10a), an
obviously inconsistent data outlier that misreads the SoC as 0%
can be found at approximately 6:00, causing the SoC curve to
suddenly drop. After the data outliers are removed, as shown in
Fig. 10b, a smooth decrease in the SoC curve, which indicates
consistent energy consumption during bus operation, is obtained.

The speed of the buses was included in the graphs to determine
how many trips and breaks they took during a 24-hour period.
Additionally, these data help identify whether the bus was charged
during breaks, which is crucial for accurately calculating energy

Speed and SOC of Bus ID = 237

——S0cC After data cleaning
1100
40}’ N
190
sor 180
9
e 170
O 2l
3 20
@ | 140
10 120
(b)
0'......J...'O
O & L © I L & N O
0'\0 Q\Q 0"0 Q\Q Q\\ Q\\ Q\'\ 0"(1' O
IS ESESS
Data & time

Fig. 10 Example of the operational graph of bus No. 237 on May 1, 2021.
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Fig. 11 Operation of buses on May 01, 2021.
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consumption. Taking bus No. 231 as an example, as shown in Fig.
11a, it can be easily seen from the speed information (red lines)
that the bus had been charging from 03:00 to 06:00 overnight
before driving out for its first trip in the morning from 09:00 to
12:00. The bus then took a break from 12:00 to 15:00 while being
charged at the charging station, causing the SoC (blue curve) to
rise from 65% to 100%.

Bus No. 178 is an example of one bus running a long trip
without taking breaks or intermediate charging throughout 24 h,
as shown in Fig. 11b. Bus No. 184 in Fig. 11c is an example of a
bus taking one break (13:30-15:30) without being charged.

As previously mentioned in Section 3.2, there are 3 general
types of bus operations. In the first type, the bus is charged
overnight and only overnight and then continues to operate
without breaks until the last trip of the day. In the second type, the
bus is charged overnight and only overnight; it breaks during the
day without charging until the last trip of the day. In the third
type, the bus is charged overnight but also during break time in
operation (Fig. 11a).

If the bus operates within the scope of the first 2 types, then its
daily energy consumption is calculated via Eq. (13): SoCgna—the
SoC in the battery pack at the end of the recorded trip (%),
SoCinia —the initial SoC in the battery pack at the start of the trip
(%), and Qnom —the nominal battery capacity (kWh).

S0Cinitial — SOChnal
Econsumption = 100 Quom (13)

If the bus can be categorized into the third operation type, then
the extra charging times must be taken into consideration, as
simply using the final and initial SoC to calculate the energy
consumption will ignore the extra energy being charged into the
battery. For this type, the bus’s daily energy consumption is
calculated via Eq. (14):

> (80Cii, — S0Cinm,)
Econsumption = 100 Qnom ( 14)

The 3 most common EV bus models in operation in the city of
Guangzhou are the HUNAN CSR TIMES TEG6129 12-m pure
electric city bus, the BYD Auto GZ6122LGEV?2 electric bus, and
the CRRC TEG6129BEV11 electric bus. The nominal battery
capacity of these models can be found on the official website of
Guangzhou Municipal Public Security Bureau (2018) and is listed
in Table 7. Since the nominal battery capacities for these 3 models
are similar, this study is performed under the assumption that all
buses have a nominal battery capacity of 337.1 kWh.

The trip log of bus No. 178 in Fig. 11 is taken as an example to
calculate its energy consumption on May 01, 2021. In this
particular trip, the bus took only one trip in the 24-h window
from 12:00-24:00, with a rather consistent decrease in the blue
SoC curve, indicating a smooth journey. Upon the start of the trip,
the bus had an initial SoC of SoC,sq = 100%. The SoC then
gradually decreased to 60% at 24:00. The energy consumption of
this trip can then be obtained through Eq. (15):

100 — 60

Epusia=17s = 337.1 X
busid=178 100

x 134.84 (15)
The graph of energy consumption of this bus is shown in Fig. 12.

Table 7 Nominal battery capacity of the 3 major models of EBs in Guangzhou

Brand Model Nominal battery capacity (kWh)
HUNAN CSR TIMES TEG6129 333.70
BYD AUTO GZ6122LGEV2 337.71
CRRC TEG6129BEV11 340.00

Bus ID =178

140
120 1
100

Energy consumption (kWh)

Data & time

Fig. 12 Energy consumption graph of bus No. 178 (Guangzhou Municipal
Public Security Bureau, 2018).

Equations (13) and (14) were used to calculate the daily energy
consumption of all 500 buses during May 2021. The average
energy consumption of these buses is 132.7 kWh. The average
mileage per triplog ID for all 500 buses can be calculated by
simply performing an average over all run_mileage (km), and the
result is 132.7 kWh. The same is true for the average trip duration.
The average mileage per day per bus can be calculated by adding
the mileage of all trips logged for the same bus ID, and the result is
1523 km. The average mileage per day per bus is 110.9 km.
Finally, the average specific energy consumption for all buses can
be calculated via Eq. (16), which yields a value of 1.197 kWh-km™.

Econsumption _ 132 7

= =11 1
run_mileage  110.9 7 (16)

Econs,per,km -

4 Results and discussion

4.1 Results

Table 8 below shows the lifetime environmental impact results,
ie, CO, emissions, for the EB’s life cycle. Fig. 13 shows the
emissions from each stage more visually. The operation and
charging electricity process contributes the most to the overall
lifespan CO, emission of an EB, at 764.02 g CO,-km™, accounting
for 70% of the overall emissions. This value is much greater than
the sum of all three manufacturing processes, which is 311.74 g
COykm™. This strongly pinpoints where sustainability efforts
should be made. The secondary hot spot is battery manufacturing,
with a value of 202.19 g CO,ykm™, even though it accounts for
only 18%. Considering the significant emissions from the
operation stage, reflecting those important input data, the primary
data for electricity consumed by EBs are from field data, the
lifetime operation distance is based on a calculation based on
public transportation information, and the EF for the local grid is
obtained from model prediction for academic research.

4.2 Discussion

Given the CO, emissions of an EB and the identification of the

Table8 CO, emissions in each life cycle stage

Process Emission (g CO,-km™-veh™)
Battery manufacturing 202.19
Powertrain manufacturing 11.61
Glider manufacturing and assembly 97.94
Operation and charging electricity 764.02
End of life 21.31
Total 1,097.07
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Fig. 13 Emissions in each life cycle stage chart. Reproduced with permission from Yang et al. (2024), ©Higher Education Press 2024.

hot spot in an EB’s life cycle, the discussion focuses on research
question 3, exploring the potential reasons behind the results
(Yang et al, 2024). First, the emissions of an EB and a
conventional ICE bus are compared, which reveals that
electrification greatly reduces emissions. The discussion then shifts
to whether and how the power grid affects the benefits of bus
electrification. Finally, the effects of temperature are considered.
Suggestions are proposed following each topic of discussion.

In this study, stages such as powertrain manufacturing, glider
assembly, and end-of-life processes for conventional ICE buses
and EBs are assumed to be identical, allowing standardization, as
shown in Fig. 14. The analysis focuses solely on battery
manufacturing and charging electricity for EBs versus fuel

Cell manufacturing 2%
(b) Pie chart

production for ICE buses, enabling clear emission comparisons
between the two vehicle types (Cui et al., 2024a). Built on the
model through the same approach as in Section 3.1, the inputs
and outputs needed for an ICE bus are shown in Table 9.

The calculated result (Table 10) of CO, emissions from the
operation and fuel production stage of a conventional bus is
1,359.50 g COykm™, whereas that of summing battery
manufacturing and charging electricity stages of an EB is 933.36 g
COykm™. The emission reductions resulting from electrification
are 426.14 g CO,km™ and 31.3%, respectively. This reduction in
emissions highlights the environmental benefits of electrifying bus
fleets. The comparative analysis reveals critical differences in
lifecycle stages between EBs and conventional ICE buses. While

EB
Battery
i manufacturing
i Glider Operation
’ # manufacturing * and charging End of life i
and assembly electricity i
Powertrain i
manufacturing
] Glider Operation
Povs:(erttral_n —| manufacturing »  and fuel End of life
manutacturing and assembly production
Conventional bus

Fig. 14 Comparative flowcharts of the EB and conventional ICE buses. Reproduced with permission from Cui et al. (2024a), ©Elsevier 2024.

Table9 Inputs and outputs for the LCI analysis of the operation and fuel production stages of the conventional bus

Data Value Unit Source
Input
Vehicle 1 veh
Same as EB
Lifetime operation 429,824 km
Fuel 41.67 L-100 km™ Nilrit and Sampanpanish (2012)
Output
CO, Emissions
From tailpipe CO, emissions 11401 kg CO,-100 km™ Nilrit and Sampanpanish (2012)
From fuel production CO, emissions 0.50 kg CO,-eq-L™ Global Energy Internet Development and Cooperation Organization (2021)
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Table 10 CO, emission comparison between EBs and conventional buses

(Unit: g CO, km™)

Conventional bus

EB
Battery manufacturing 169.34
Operation and charging electricity 764.02
Total 933.36
g COykm™

Operation and fuel production 1,359.50
Total 1,359.50
g COykm™

both vehicle types share equivalent powertrain manufacturing and
glider assembly processes, the divergence arises from energy
sourcing and end-use efficiency. For ICE buses, Table 9 highlights
that over 88% of operational emissions originate from direct fuel
combustion, with only 0.43% attributed to upstream fuel
production. Conversely, EBs shift 71% of emissions to electricity
generation and battery production (764.02 g CO,km™ from
charging vs. 169.34 g CO, km™ from batteries). This shift creates a
leverage point for emission reduction through renewable energy
integration in power grids—a factor not fully captured in this
study owing to its reliance on the IPCC’s 2006 average emission
factors for grid electricity.

Notably, the 31.3% emission reduction assumes standardized
battery production processes, which may underestimate material-
specific impacts. For example, cathode material selection can
cause +20% variation in manufacturing emissions according to
data from Argonne National Laboratory’s 2022. Additionally, the
429,824 km lifetime assumption aligns with Guangzhou’s
operational requirements but may not reflect shorter vehicle
lifespans in regions with intensive road conditions, potentially
affecting total life cycle emission calculations. The reduction in
emissions from EBs compared with those from conventional
buses directly supports EBs.

This study demonstrates that scaling up Guangzhou’s 15,000
electric buses over its 429,824 km lifespan could reduce life cycle
CO, emissions by 2,747.5 kton, substantially lowering
transportation-related emissions. While large-scale electrification
of bus fleets is critical for sustainable urban mobility, regional
variations in energy structures globally significantly impact life-
cycle GHG emissions—fossil fuel-dependent regions exhibit far
higher emissions than those using renewable energy. The next
section analyzes how power grid composition influences
electrification benefits on a national scale.

The results revealed that most emissions originate from the
operation and charging electricity phase, which suggests that the
energy used during the operation of the vehicle and the electricity
sources for charging are highly carbon intensive. To determine
why, it is crucial to assess the mix of energy sources in the
electricity grid where EBs are charged. Guangzhou city is the
capital city of Guangdong Province. Of all the province’s
electricity sources, one-third come from external power. The
remainder is internal power, with thermal power accounting for
approximately 65% of the province’s installed capacity and
hydropower accounting for approximately 11.7% (Guangzhou
Municipal Public Security Bureau, 2018), as shown in Fig. 15.

The electrification of buses is an effective way to reduce
emissions. However, regional divergence needs to be considered.
Fig. 16 shows such divergence USA, which is measured as the EB
fraction of the ICEB lifetime CO, emissions. A value less than 1
indicates that the EB is preferred in terms of its environmental
impact (Koech et al., 2024).

Regional divergence can also directly influence the preference
for EBs in China and demonstrated by the indicator of carbon
emission intensity of electricity generation (CEIE) (Cui et al,
2024b; Sun et al,, 2023; Zhang et al., 2020). Since Guangzhou city
is one of the most developed cities in China, the area of
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Fig. 15 Electricity sources in Guangdong province.
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Fig. 16 State-by-state preference for EB or ICEB accounting for electric grid
differences in USA.

Guangzhou city is located at the middle level of CEIE, ie.,
(500-700)x10° tkWh™. Considering that there are still other cities,
especially the regions distributed in Northeast China and North
China, that feature higher CEIE and fewer green electricity
generation approaches or are facing difficulties in building
adequate and technically proper charging infrastructure for EVs.
For those areas, apart from developing a greener power grid, it is
still important to develop and innovate in conventional vehicles.
China aims to peak CO, emissions by 2030 and advance net-
zero goals through accelerated development of renewable energy,
particularly large-scale and high-quality wind and solar power
projects. This strategy emphasizes both centralized and distributed
energy systems while prioritizing the construction of wind and
photovoltaic power bases to reduce fossil fuel reliance. Therefore,
based on the same prediction model (Zhang et al., 2023) as the EF
used earlier, when the carbon peak reaches 2030, the EF will be
0.7363. The calculation reveals that there will be a significant
reduction in CO, emissions, 167.64 g CO,km™, between the LCA
results in 2021, as above, and those in 2030, as shown in Table 11.
Noticeably, the emission from every stage is reduced (Fig. 17).
The reduction in emissions for operation and charging electricity
is the greatest, by 100.25 g COykm™ and 13.12%, respectively,
followed by that for battery manufacturing, which is 42.37 g
COykm™ and 20.85%, respectively. However, even though the
reduction at the end-of-life stage is as high as 27.17%, the absolute

J Intel Connect Veh, 2025, 8(3): 9210061
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Table11 CO, emissions corresponding to EFs in 2021 and 2030 and their reduction

Emission (g CO,-eq-km™)

Life cycle stage

Reduction rate

2021 2030 Reduction
Battery manufacturing 202.19 159.82 42.37 20.95%
Powertrain manufacturing 11.61 9.19 2.42 20.83%
Glider manufacturing and assembly 97.94 81.12 16.82 17.17%
Operation and charging electricity 764.02 663.77 100.25 13.12%
End of life 21.31 15.52 5.79 27.17%
Total 1,097.07 929.43 167.64 15.28%
1.200 Emission (g CO,-eq-km™) Table 12 Proportions of electricity generation sources in China, Sweden, and
' m 2021 = 2030 Singapore in 2021
1,000
800 Electricity generation sources China Sweden  Singapore
Coal 63.0000% 0.43% 1.19%
6001 Oil 0.1300% 0.20% 0.99%
. 0 . 0 . 0
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ig. 17 Emission comparison between 2021 and 2030. Reproduced wi o _ _
permission from Zhang and Xu (2023), © Elsevier 2023, Solar thermal 0.0200%
Geothermal 0.0015% — —
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Fig. 18 Proportions of emission reduction in different stages of the total
reduction from 2021 to 2030. Reproduced with permission from Zhang and Xu
(2023), © Elsevier 2023.

reduction is only 5.79 g CO,km™ (see Fig. 18). However, even
with the anticipated improvements in the power grid by 2030,
which are expected to further reduce emissions due to greener
electricity sources, the slight reduction in emissions from EBs is
projected to be only 167.64 g CO,km™.

The EF used in the LCA is from China’s southern power grid,
0.8475, which is much greater than Singapore’s 0.4085, Sweden’s
0.027. The local power grid is relatively carbon intensive. This is
also reflected by the electricity generation sources in these three
countries (see Table 12 and Fig. 19). Clearly, more than 60% of
electricity was generated from coal in 2021, while the majority of
electricity generation sources in Singapore were wind, and Sweden
mainly used nuclear and hydro energy. The impact of the
electricity grid on the sustainability performance of EBs is a
complex issue. The results of the analysis clearly indicate that the
electricity charging phase of EBs results in the highest emissions,
largely because of the high carbon intensity of the local electricity
grid.

Section 4.2 reveals the carbon intensity of the local power grid
as a main cause of high emissions during EB operation and

https://doi.org/10.26599/JICV.2025.9210061
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Fig.19 Proportions of electricity generation sources in China, Sweden, and
Singapore in 2021.

charging in its life cycle and highlights regional differences in
China’s carbon intensity. Moreover, by 2030, when China reaches
its carbon peak with a lower EF, the reduction in an EB’s life cycle
CO, emissions is minimal. Moreover, it compared China’s grid
with others, confirming that it is far from optimal. Combined with
the analysis of the benefits of electrifying the bus fleet for CO,
emissions, Section 4.2 concludes that due to regional and global
power grid differences, universal public bus electrification is not
the sole sustainable solution in the automotive industry. This
represents a single approach among many for reducing emissions.
Thus, tailored regional strategies are needed. In areas with green
grids, electrification helps mitigate CO, emissions, whereas in
carbon-intensive grid areas, policies should focus on cleaner
electricity. Moreover, more comprehensive strategies involving
technological progress, such as improving hybrid vehicle
performance, enhancing energy efficiency, and promoting
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renewable energy, should be considered. Meeting these
requirements will make substituting conventional buses with EBs
truly beneficial.

When processing the data, many bus trips with similar trip
durations but dissimilar energy consumption rates were noted.
There could be many factors behind this phenomenon:
(1) Frequency of braking and acceleration. Vehicles in general
consume less energy when operating in a steady state than when
constantly braking and accelerating. The choice of bus lanes must
be considered. Most bus operation lanes in the city of Guangzhou
are hybrid lanes; these lanes are dedicated only to bus lanes from
7:00 AM to 7:00 PM. In addition to these hours, the lanes are
shared-use bus lanes that also allow regular vehicles. Energy
consumption will be greater in shared-use bus lanes, especially in
traffic congestion (Sun et al, 2024). Bus routes that focus on
dedicated bus lanes tend to consume less energy than routes that
focus on hybrid or share-used bus lanes. (2) Different battery
types. The field data used in this study only separate buses by
different bus ID and trip ID. Exactly which bus model/brand is
used for which route is unknown, along with the type of battery
and its nominal capacitance. One can make an educated guess on
one of the potential reasons for some trips for similar bus routes
with the same service type and similar operation times consuming
relatively different amounts of energy, which could be that the
buses use different batteries with different weights and nominal
capacities. Battery packs that weigh more will add more weight to
the bus itself and consume more energy to power. (3) Differences
in regional topography. The topography of Guangzhou city is
relatively high and hilly in the northeast, with an altitude of
1,210 m, and lower in the southwest. The northern and
northeastern areas are mountainous areas, and the southern area
is an alluvial plain of the Pearl River Delta. The central part is a
hilly basin, while the urban area has Baiyun Mountain. The energy
consumption will be greater when buses operate in mountain
areas where there are many sharp turns and up-and-downs on the

bus route and lower when operating on a relatively flat and
smooth route. (4) Traffic condition. Despite the attempt to offset
the influence of peak hours in this study, different buses operating
in different parts of the city where traffic conditions are different
will lead to minor differences in energy consumption. (5)
Ambient temperature. EV batteries have an optimal operating
window with respect to ambient temperature. Within this
window, the energy consumption is the lowest when all other
factors are equal. The energy consumption of morning-only bus
trips tends to be lower than that of afternoon-only bus trips, as in
most cases, the ambient temperature in the morning is lower than
that in the afternoon.

This section investigates the impact of ambient temperature on
energy consumption in electric buses via CAN and GPS data from
a single bus (No. 497) operating in Guangzhou during May 2021.
Ambient temperature fluctuations alter battery resistance,
affecting total energy use, whereas extreme temperatures increase
the air conditioning demand. Table 13 shows that the data
spanned 131 trips recorded every second, with ambient
temperatures ranging from 21 to 37.5 °C (excluding nighttime
trips). To isolate temperature effects, rush-hour trips (7:00-9:00
AM and 5:00-7:00 PM) were excluded on the basis of Guangzhou’s
traffic regulations. Energy consumption for each trip was
calculated via Eq. (13) to account for trip duration, initial/final
battery state-of-charge (SoC), and hourly temperature data from
Global Energy internet Development and Cooperation
Organization (2021). Trips were grouped into 3.9 °C intervals
(e.g, 21-239 °C) to mitigate measurement errors caused by
delayed SoC readings. The dataset, sorted by trip start/end times
and temperature, revealed average trip durations of 23 min and
15 s. This approach ensures robust analysis of temperature-driven
energy variations while addressing data limitations. Fig. 20 is an
example of an expected SoC (blue line) that decreases as the bus
continues to operate. Fig. 21 shows an example of fluctuating SoC
values being read by the battery level meter on the bus; the value

Table 13  Example of singular trip data with hourly temperature information

Date Triplog ID Begin End Duration SoC initial SoC final E (kWh) Temp (°C)
May 02 915193375 08:35:00 08:53:00 00:18:00 100 97 10.113 26.5
915205130 09:00:00 09:25:00 00:25:00 97 95 6.742 27.5
915216077 10:00:00 10:23:00 00:23:00 95 92 10.113 29
May 31 927403 348 09:00:00 09:24:30 00:24:30 97 95 6.742 30
triplog_id = 926338116
40 + 1 193.0
—— Speed
30F ! 192.0
251 H 191.5
?3 20 91.0 8
) Z

151 190.5

10} 4190.0
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Fig.20 Example of expected SoC behavior.
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Fig.21 Example of delayed SoC behavior.

jumps between 63% and 62% at approximately 5:35 PM.

The average energy consumption per trip of the 6 bus groups
was calculated separately and then divided by the average mileage
per trip to obtain the average specific energy consumption under
different ambient temperatures, as shown in Table 14. From the
graph in Fig. 22, for bus ID = 497 running on the same route, the
per-trip energy consumption is lowest at approximately 22-23 °C
and increases when the temperature exceeds 22 °C. Morning's
first trip usually has the lowest ambient temperature during bus
operation, and owing to the faster initial battery discharge speed at
100% SoC, its energy consumption is higher, making the
theoretical per-trip energy consumption value slightly lower than
the calculated value. Despite this small error, it is clear that the
average per-trip energy consumption increases with increasing
ambient temperature.

According to China’s annual average temperature map from
Top China Travel, the middle east part of China generally has the

Table14 Average energy consumption per trip for different ambient
temperature trip groups

Temperature group (°C) Average energy consumption (per trip-kWh™)

21.0-23.9 6.74
24.0-26.9 8.43
27.0-29.9 8.85
30.0-32.9 8.99
33.0-35.9 9.23
36.0-38.9 9.69

.5 95}
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E_ 9.0}

c e

SZ 85}

°x=

Bo

o+ 80F

C =

2

S 75}

o

[0

Z 7.0t

225 250 275 30.0 325 350 375
Ambient temperature (°C)

Fig.22 Average energy consumption per trip at the different ambient
temperatures. Reproduced with permission from Yang et al. (2024), ©Higher
Education Press 2024.
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most suitable temperature range for electric vehicles, yet the CEIE
is quite high, so policymakers should prioritize promoting electric
buses and making energy cleaner in this area. Guangdong
Province has a lower CEIE than some other regions do, but since
Guangzhou (with the highest annual average temperature in
China) has a higher specific energy consumption for electric buses
than most regions in the country do, efforts in this region should
focus on cleaner energy production for improvement.

4.3 Limitations

Even though our study uses field data during operation obtained
from a city in China, other datasets of battery production and
powertrain manufacturing would only be found through existing
studies, instead of being obtained directly from a production
company. Such data inevitably lead to slight inaccuracies due to
temporal and regional discrepancies. This study is subject to the
following key limitations, which may influence the generalizability
and precision of the results:

1) Regional data constraints

The field data were geographically confined to Guangzhou.
This restricts their applicability to cities with similar climates and
operational patterns.

2) Battery production data limitations

Manufacturing data for batteries and powertrains relies on
existing studies, introducing potential discrepancies due to
technological evolution and regional production variances.

3) Incomplete environmental variables

Ambient temperature impact analysis overlooks interactions
with humidity, wind speed, and air pressure fluctuations.

4) Assumption sensitivities

The 31.3% emission reduction assumes static battery chemistry,
whereas emerging LFP batteries could alter manufacturing
emissions by £15% (Argonne National Lab, 2022).

5 Conclusions

This study assessed the life cycle CO, emissions of electric buses in
Guangzhou via LCA, with a focus on stages from manufacturing
to disposal. Field data combined with government and academic
sources were analyzed to quantify emissions, prioritizing variables
such as speed patterns and charging intervals. The results revealed
that operational energy use dominated, driven by Guangzhou’s
carbon-intensive grid. While EBs have lower emissions than
conventional ICE buses do, regional grid variability necessitates
renewable energy integration and smart grid adoption for
significant reductions.
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The data used in this study were collected over a short period,
which may not fully represent the annual variation in energy
consumption and emissions. Additionally, the study focused on a
localized area in Guangzhou and did not account for the diversity
of electric bus models and battery types, which could influence the
results. The accuracy and completeness of the field data, as well as
potential biases in the data sources, also pose challenges to the
generalizability of the findings.

To address these limitations and guide future research, several
specific directions are proposed. First, improving data collection
methods is crucial. This can be achieved by utilizing more
advanced and continuous data monitoring systems, increasing the
frequency and duration of data collection, and ensuring the
accuracy and completeness of the data through rigorous validation
processes. Second, expanding the scope of research is essential.
Future studies should cover a wider range of regions with different
climatic conditions and grid structures and include various types
of electric buses and battery technologies to increase the
robustness and generalizability of the results. Finally,
incorporating additional factors such as detailed battery
degradation models, regional policies, and socioeconomic impacts
will further enrich the analysis. This study proposes two focused
future research directions: validating the LCA model in cities with
contrasting grid structures and correlating real-time temperature
data with energy consumption patterns to optimize charging
schedules.

Replication and data sharing

The program code used within this research can be made
accessible upon request via email to the corresponding author.

Acknowledgements

This research was supported by the National Natural Science
Foundation of China (No. 52372313) and JPI Urban Europe and
Energimyndigheten (No. e-MATS, P2023-00029).

Declaration of competing interest

The authors have no competing interests to declare that are
relevant to the content of this article.

References

Abdelwahab, S. H., Alhasheem, M., Sharkawy, R. M., 2024. Optimization
for charging scheduling in electric bus system. In: 2024 6th Interna-
tional Youth Conference on Radio Electronics, Electrical and Power
Engineering (REEPE), 1-6.

Chen, Q,, Lai, X., Gu, H,, Tang, X., Gao, F.,, Han, X,, et al., 2022. Investi-
gating carbon footprint and carbon reduction potential using a cra-
dle-to-cradle LCA approach on lithium-ion batteries for electric
vehicles in China. J Clean Prod, 369, 133342.

Cui, S, Xue, Y., Gao, K., Wang, K., Yu, B,, Qu, X,, 2024a. Delay-through-
put tradeoffs for signalized networks with finite queue capacity.
Transp Res Part B Methodol, 180, 102876.

Cui, S., Xue, Y., Lv, M., Gao, K., Yu, B., Cao, J., 2025. Temporal finite-
time adaptation in controlling quantized nonlinear systems amidst
time-varying output constraints. IEEE Trans Autom Sci Eng, 22,
3265-3279.

Cui, S, Yang, Y., Gao, K., Cui, H., Najafi, A., 2024b. Integration of UAVs
with public transit for delivery: Quantifying system benefits and pol-
icy implications. Transp Res Part A Policy Pract, 183, 104048.

Eufrésio., Daniel, J., Delgado, O., 2023. Operational Analysis of Battery
Electric Buses in Sdo Paulo. International Council on Clean Trans-
portation(ICCT). https://theicct.org/wp-content/uploads/2023/02/
Operational-analyis-of-battery-electric-buses-in-Sao-Paulo-final-

' % i % £ 2 pit | IEEE Xplore®

Tsinghua University Press

feb2023.pdf

Fallah, N., Fitzpatrick, C., 2023. Is shifting from Li-ion NMC to LFP in
EVs beneficial for second-life storages in electricity markets? ] Energy
Storage, 68, 107740.

Guangzhou Municipal Public Security Bureau, 2018. Guangzhou motor
vehicle service life standards and scrapping Procedure instructions.
http://www.gz.gov.cn/gzgov/s5812/201809/ae562c2c6bf24841b2d9c-
518c84b4cec.shtml

Hauschild, M. Z., Rosenbaum, R. K., Olsen, S. L., 2018. Life Cycle Assess-
ment: Theory and Practice. Cham, Switzerland: Springer Interna-
tional Publishing.

Karabacak, Y., Ali Ozkan, 1., Saritas, 1., 2020. Estimation of li-ion battery
state of charge using adaptive neural fuzzy inference system (ANFIS).
Int ] Energy Appl Technol, 7, 88-94.

Koech, M. C., Fahimi, B., 2024. An energy demand analysis and emission
reduction potential of electric buses for cities in developing
economies: A case study of Nairobi, Kenya. In: 2024 IEEE PES/IAS
PowerAfrica, 1-5.

Li, J., Li, L., Yang, R., Jiao, J., 2023. Assessment of the lifecycle carbon
emission and energy consumption of lithium-ion power batteries
recycling: A systematic review and meta-analysis. ] Energy Storage,
65, 107306.

Liu, F., Shafique, M., Luo, X., 2024. Unveiling the determinants of battery
electric vehicle performance: A systematic review and meta-analysis.
Commun Transp Res, 4, 100148.

Lin, H,, Liu, Y., Wang, L., Qu, X,, 2025. Big data-driven advancements
and future directions in vehicle perception technologies: From
autonomous driving to modular buses. IEEE Trans Big Data, 11,
1568-1587.

Liu, Y., Wu, F,, Liu, Z,, Wang, K., Wang, F., Qu, X, 2023. Can language
models be used for real-world urban-delivery route optimization?
Innovation, 4, 100520.

Majeau-Bettez, G., Hawkins, T. R., Stromman, A. H., 2011. Life cycle
environmental assessment of lithium-ion and nickel metal hydride
batteries for plug-In hybrid and battery electric vehicles. Environ Sci
Technol, 45, 4548—4554.

Notter, D. A., Gauch, M., Widmer, R., Wiger, P., Stamp, A., Zah, R,, et al,,
2010. Contribution of Li-ion batteries to the environmental impact of
electric vehicles. Environ Sci Technol, 44, 6550—-6556.

Nordelof, A., Romare, M., Tivander, J., 2019. Life cycle assessment of city
buses powered by electricity, hydrogenated vegetable oil or diesel.
Transp Res Part D Transp Environ, 75, 211-222.

Ritchie, H., 2020. Cars, planes, trains: where do CO, emissions from
transport come from our world in data. https://ourworldindata.org/
co2-emissions-from

Argonne National Lab., Meisterling, K., 2022. Life cycle assessment of
greenhouse gas emissions from plug-in hybrid vehicles: Implications
for policy. Environ Sci Technol, 42, 3170-3176.

Sistig, H. M., Sinhuber, P., Rogge, M., Sauer, D. U., 2025. Evaluating costs
and operations of public bus fleet electrification. NPJ Sustain Mobil
Transp, 2, 15.

Shui, B., Shafique, M., Luo, X., 2024. Light-duty passenger vehicle electri-
fication in China from 2021 to 2050 and associated greenhouse gas
emissions: A dynamic fleet perspective. Transp Res Part D Transp
Environ, 130, 104199.

Sun, S, Batista, S. F. A., Menéndez, M., Wang, Y., Zhang, S., 2024. Power-
ing up urban mobility: A comparative study of energy efficiency in
electric and diesel buses across various lane configurations. Sustain
Cities Soc, 101, 105086.

Sun, X,, Lian, W,, Gao, T., Chen, Z., Duan, H., 2023. Spatial-temporal
characteristics of carbon emission intensity in electricity generation
and spatial spillover effects of driving factors across China’s
provinces. ] Clean Prod, 405, 136908.

Top China Travel, 2004. Average annual temperature map of China. https://
www.topchinatravel.com/China-map/average-annual-temperature-

J Intel Connect Veh, 2025, 8(3): 9210061



Evaluating the sustainability of electric buses during operation via field data

9210061-17

map-of-China.html

Yang, Y., Cheng, J., Liu, Y., 2024. An overview of solutions to the bus
bunching problem in urban bus systems. Front Eng Manag, 11,
661-675.

Yang, Y., Tian, G, Li, F, Jia, T. X,, Wang, X. H., Huang, X. D., 2023.
Application scenario analysis and prospect of electricity emissions
factor. In: 2022 12th International Conference on Power and Energy
Systems (ICPES), 697-703.

Zhang, M., Lv, T., Zhao, Y., Pan, J., 2020. Effectiveness of clean develop-
ment policies on coal-fired power generation: An empirical study in
China. Environ Sci Pollut Res Int, 27, 14654—14667.

Zhang, X., Xu, K., 2023. Statistical data-based prediction of carbon diox-
ide emission factors of China’s power generation at carbon peak in
2030. Case Stud Therm Eng, 51, 103633.

Baozhen Yao received the Ph.D. degree from
Beijing Jiaotong University in 2011 and is
currently a Professor and doctoral supervisor at
the School of Mechanical Engineering at Dalian
University of Technology. Her research
interests focus on vehicle-road collaboration
systems, intelligent connected vehicles (ICVs),
and intelligent transportation systems (ITSs).

Zhihao Qi is currently pursuing the M.S. degree
in vehicle engineering at the School of
Mechanical Engineering, Dalian University of
Technology. His research focuses on perception-
oriented technologies in intelligent driving
systems, particularly in terms of exploring
sensor fusion algorithms and understanding the
driving environment.

Ziqi Liu received the B.S. degree from Tongji
University and the M.S. degree from Chalmers
University of Technology in 2025. Her research
focuses on life cycle assessment and data
analysis, with an emphasis on evaluating the
environmental impacts of transportation
systems, and utilizing data analytics for
sustainability assessments.

Minke Zhu received the B.S. degree from
Chongqing University in 2023 and the M.S.
degree  from  Chalmers  University of
Technology in 2025. Her research interests
include electrification technologies and data
analysis, with a focus on developing efficient
methodologies for electric vehicle systems, and
applying  data-driven = approaches  for
performance evaluation and optimization.

https://doi.org/10.26599/JICV.2025.9210061

Shaohua Cui is currently a postdoctoral
researcher with the Urban Mobility Systems
Research Group, Department of Architecture

J= and Civil Engineering, Chalmers University of
% e ¥ Technology (CTH). He received the M.S. degree
\ from the systems science institute, School of

‘ Traffic and Transportation, Beijing Jiaotong
University, in 2019 and the Ph.D. degree in
transportation ~ engineering from Beihang
University in 2023. His research interests

include traffic flow analysis, vehicle control, adaptive control, and robust
control.

Radu-Emil Precup received the Dipl.Ing.
(Hons.) degree in automation and computers
from the Traian Vuia Polytechnic Institute of
Timisoara, Timisoara, Romania, in 1987; the
diploma degree in mathematics from the West
University of Timisoara, Timisoara, in 1993;
and the Ph.D. degree in automatic systems from
the Politehnica University of Timisoara (UPT),
Timisoara, in 1996. He is currently with UPT,
¥ where he became a Professor with the
Department of Automation and Applied Informatics in 2000. Since 2022,
he has also been a Senior Researcher (CSI) and the Head of the Data
Science and Engineering Laboratory, Center for Fundamental and
Advanced Technical Research, Romanian Academy Timisoara Branch,
Timisoara. From 2016 to 2022, he was an Adjunct Professor with the
School of Engineering, Edith Cowan University, Joondalup, WA,
Australia. He is the author or coauthor of more than 300 papers. His
current research interests include intelligent and data-driven control
systems. He is a corresponding member of the Romanian Academy. He is
a member of the Technical Committees on Data-Driven Control and
Monitoring and Control, Robotics and Mechatronics of the IEEE
Industrial Electronics Society. He is the Editor-in-Chief of the Romanian
Journal of Information Science and Technology, the Executive Editor-in-
Chief of Information Sciences, and an Associate Editor/Editorial Board
Member of IEEE Transactions on Cybernetics, IEEE Transactions on
Neural Networks and Learning Systems, Applied Soft Computing, Expert
Systems with Applications, Engineering Applications of Artificial
Intelligence, Evolving Systems, Applied Artificial Intelligence, and
Healthcare Analytics.

Raul-Cristian Roman received the B.S., M.S,,
and Ph.D. degrees in systems engineering from
the Politehnica University of Timisoara (UPT),
Timisoara, Romania, in 2012, 2014, and 2018,
respectively. He is currently with UPT, where
he became an Assistant Lecturer with the
Department of Automation and Applied
Informatics in 2018. He has coauthored more
than 40 articles. His research interests include
control  structures and algorithms and
optimization with a focus on data-driven control. He was a corecipient of
the Best Paper Award at the 7th International Conference on Information
Technology and Quantitative Management, Granada, Spain, in 2019. He
is a member of the Romanian Society of Control Engineering and
Technical Informatics.

72X M :j 5 Available on
i % £ £ it | IEEE Xplore®

Tsinghua University Press



