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ABSTRACT: Environmental  sustainability is  a crucial  issue for all  human beings,  and vehicle emissions significantly contribute to
climate change. This has prompted many countries, including China, Norway, and Germany, to focus on electrifying transportation.
This study quantifies the life cycle carbon dioxide (CO2) emissions of electric buses (EBs) in Guangzhou, China, via a life cycle analysis
methodology,  revealing  an  average  life  cycle  emission  of  1,097.07  g  CO2·km−1·vehicle−1.  The  operation  and  charging  stage
contributes  the  most  to  the  lifespan  of  CO2 emissions  at  69.6%,  driven  by  carbon-intensive  power  grid.  Compared  with
conventional  internal  combustion  engine  buses,  EBs  result  in  significant  emission  reductions,  but  regional  grid  carbon  intensity
variations across China mean that their benefits depend on nationwide green energy adoption. By 2030, emissions are projected to
decline  by  15.28%,  aligning  with  carbon  peak  goals.  The  findings  emphasize  that  transitioning  to  renewable  energy  grids  and
hybrid technologies is critical for sustainable transportation.
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1  Introduction
Our world is  confronted with an unprecedented challenge in the
realm  of  climate  change.  Research  indicates  that  the  global
automotive  sector,  including  transportation,  accounts  for  up  to
23%  of  global  energy-related  greenhouse  gas  (GHG)  emissions,
equivalent  to  approximately  8.7  Gt  of  carbon  dioxide  (CO2)  per
year.  Road  vehicles  are  the  largest  contributors,  representing
approximately  70%  of  direct  transportation  emissions  (Ritchie,
2020).  In  Europe,  road  vehicles  also  emit  significant  amounts  of
GHGs,  particularly  methane  and  nitrous  oxide  (Liu  et  al.,  2024).
Moreover, Japan is actively working to reduce its GHG emissions
and  has  set  ambitious  carbon  neutrality  goals  (Li  et  al.,  2023).
Across different regions, countries are introducing new policies to
support  the  electrification  of  transportation  and  invest  in
improved charging infrastructure (Shui et al., 2024). The adoption
of  electric  buses  (EBs)  in  urban  mass  transit  systems  offers  a
promising  opportunity  to  reduce  fossil  fuel  consumption,  GHG
emissions,  and  pollution  while  enhancing  the  efficiency  and
sustainability of urban mobility (Koech and Fahimi, 2024). These
policies  reflect  a  global  consensus  on  electrification  as  a  pathway
to decarbonization. However, the implementation of these policies
varies  significantly:  Europe  focuses  on  strict  emission  standards
and  grid  decarbonization,  Japan  prioritizes  technological  self-
sufficiency,  and  China  leverages  subsidies  and  infrastructure
expansion.  Despite  these  efforts,  gaps  remain  in  harmonizing
policy  objectives  with  operational  realities.  Nevertheless,  existing

studies  on  electric  bus  sustainability  often  overlook  critical  real-
world complexities (Lin et al.,  2025). For example, most life cycle
analysis (LCA) models assume constant energy consumption rates
and  neglect  variations  caused  by  driving  patterns,  weather
conditions, or infrastructure quality factors that significantly affect
emissions  and  costs  in  practice.  Moreover,  while  there  are  links
between  these  policies,  such  as  the  shared  goal  of  reducing
emissions  through  electrification,  they  often  operate
independently without sufficient coordination.

Electric  public  transit  systems  also  present  significant
challenges.  EBs  are  already  2–4  times  more  expensive  than
conventional  diesel  buses  (DBs).  Moreover,  EBs  have  secondary
impacts  on  other  systems,  such  as  changes  in  grid  demand  and
infrastructure requirements. They also face issues related to service
availability and frequent battery replacements due to degradation.
A  key  limitation  of  prior  research  is  its  heavy  reliance  on
theoretical  assumptions  rather  than  empirical  data.  Similarly,
service  availability  rates  are  frequently  exaggerated  because
charging delays or maintenance downtime observed in cities with
high EV adoption are underestimated.

These factors can significantly increase life-cycle emissions and
energy  consumption,  which  are  highly  dependent  on  real-world
usage and charging pattern data that can be obtained through field
operations.  The  studies  concerning  LCA  of  electric  buses  are
either qualitative discussions or are based on strong consumption
of  the  availability  of  EBs  for  service  and  the  life  spans  of  electric
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buses and batteries without field data, which can result in biases to
some extent. To resolve these biases, a case study of electric buses
in  Guangzhou  is  conducted  for  this  thesis  project,  where  the
sustainability  of  electric  buses  during  operation  is  evaluated  via
field  data.  The  LCA  is  the  main  method  for  evaluating  bus
sustainability.  Additionally,  the  performance  of  EBs  under
different ambient temperatures was also investigated. In this study,
socioeconomic factors such as the cost of electric buses, changes in
grid demand, and infrastructure needs also implicitly influence the
outcome changes. In this study, the goal of LCA is to evaluate the
GHG  emissions  of  each  stage  of  the  entire  life  cycle  of  electric
buses, namely, manufacturing, operation and end-of-life.

This study aims to conduct a quantitative life-cycle analysis on
electric buses with field data in Guangzhou, China. Inventory data
involving  all  the  processes  of  an  electric  bus  will  be  collected.
Afterward,  a  customized  assessment  framework  is  developed  to
conduct  a  life-cycle  analysis  of  electric  buses,  followed  by  a
qualitative  analysis  of  the  influence  of  electrification  of  buses  on
power systems, real operation costs, and emissions. The last step is
to identify the hot spot process that results in the most emissions
during  the  life  cycle  and  critical  hurdles  for  sustainable
development.

2  Literature review

2.1  Energy consumption of EBs
Sun et  al.  (2024) demonstrated that  buses  consume more energy
under congested traffic conditions. This finding aligns with that of
Eufrásio  et  al.  (2023).  By  using  dedicated  bus  lanes  in  traffic
congestion, the energy consumption of both EBs and DBs can be
lowered by up to 25% compared with regular traffic conditions for
buses that are in shared-use bus lanes. These findings highlight the
importance of the operational context in energy efficiency. Using
specific energy consumption is a great way to evaluate the energy
consumption  of  vehicles  in  general.  The  specific  energy
consumption is the energy consumption per km. In this way, the
difference  in  the  operational  route  can  be  offset.  The  average
consumption of the two buses studied by Eufrásio et al. (2023) is
1.19 kWh·km−1 for one bus and 1.27 kWh·km−1 for the other, with
a daily range of 0.94–2.29 kWh·km−1. Building on these empirical
insights, Abdelwahab  et  al.  (2024) proposed  a  comprehensive
model to compute energy consumption, charging time, and state
of  charge  (SoC).  This  approach  integrates  parameters  such  as
battery  capacity,  driving  distance,  and  charging  station  spacing,
addressing  gaps  in  previous  studies  that  focused  solely  on  static
energy  metrics.  For  example,  by  incorporating  battery  discharge
rates and thermal dynamics, their model refines the estimation of
minimum  charging  time  constraints,  thereby  improving
operational planning accuracy. Therefore, this research focuses on
the  accuracy  and  comprehensiveness  of  data  related  to  the
operation stage.

2.2  Electrical vehicle (EV) batteries
Fig.  1 shows a typical  battery discharge voltage curve (Karabacak
et  al.,  2020).  It  is  common  for  battery  discharge  to  have  a  high
discharge  rate  during  the  initial  period;  this  phase  is  called  the
exponential area on a battery discharge curve. Within the nominal
discharge  area,  the  battery’s  power  output  is  consistent  as  the
voltage decreases steadily and stably. Toward energy depletion, the
internal resistance of the battery increases;  as a result,  the voltage
decreases  drastically  (Cui  et  al.,  2025).  This  discharge  behavior
directly influences the battery lifespan and number of replacement
cycles.  For  commercial  EV  batteries,  degradation  thresholds  are
standardized  at  80% of  the  nominal  capacity  (Chen et  al.,  2022).
The relationship between the discharge time and discharge rate at
a certain capacity is described by Eq. (1) (Liu et al., 2023):

t = H
(

C
IH

)k

(1)

where t (h)  is  the  time  taken  during  discharge, H (h)  is  the
nominal discharge time in hours, C (Ah) is the nominal capacity, I
(A) is the discharge current, and k is the Peukert constant.

Currently,  2  types  of  batteries  (Table  1)  are  generally  used  in
pure  electric  vehicles:  ternary  lithium-ion  batteries  (NMCs)  and
lithium-iron  LiFePO4 phosphate  batteries  (LFPs).  Currently,
NMC is the dominant battery type used in electric transportation
(Fallah and Fitzpatrick, 2023). One leading reason is that NMC is
lighter  than  the  LiFeO4 battery  (LFB)  in  weight,  making  it  more
portable  than  its  main  competitor.  Additionally,  the  energy
density  of  NMC  is  generally  approximately  190–260  Wh·kg−1,
which  is  much  greater  than  that  of  LFP,  which  is  only
approximately  90–130  Wh·kg−1.  Although  LFP  is  still  a  very
competitive alternative, as LFP is considerably less expensive than
NMC and is even a better choice in the long run, as outside of the
mutually  toxic  element  lithium,  NMC  batteries  also  contain
critical elements such as cobalt, which is also a toxic heavy metal.
In addition, LFP is much safer than NMC, as the burning point of
NMC is approximately 350 °C, while LFB temperatures are much
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Fig. 1    Example  of  a  typical  battery  discharge  curve.  Reproduced  with
permission from Karabacak et al. (2020), © Ilker Örs 2020.

 

Table 1    EV battery life-cycle CO2 emissions from different studies

Type of battery Region Emission Unit Source
NMC811 China 91.21+154.1+2.68 kg CO2-eq·kWh−1 Chen et al. (2022)

Li-ion — 22 kg CO2-eq·kg−1 Majeau-Bettez et al. (2011)
Li-ion Europe 6 kg CO2-eq·kg−1 Notter et al. (2010)
Li-ion USA 9.6 kg CO2-eq·kg−1 Li et al. (2023)
Li-ion China 0.158–44.59 kg CO2-eq·kg−1 Li et al. (2023)

Note: Global averages mask regional disparities in electricity grids and recycling infrastructure.
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higher  at  approximately  740–910  °C,  and  NMC  tends  to  have
greater temperature fluctuations during charging and discharging.
Fallah and Fitzpatrick (2023) also reported that retired LFPs have
advantages  over  NCMs  on  a  second  life,  particularly  in  regions
where renewable energy integration is limited but grid stability is
critical  for  urban  mobility  systems.  This  finding  aligns  directly
with  the  research  subject  of  optimizing  lifecycle  emissions  for
electric  buses  in  Guangzhou. Majeau-Bettez  et  al.  (2011) and
colleagues calculated GHG emissions of 22 kg CO2 (eq·kg−1) from
Li-ion batteries. Li  et  al.  (2023) reported that the global  warming
potential  (GWP)  and  cumulative  energy  demand  (CED)  of
recycling  1  kg  spent  lithium-ion  phosphate  batteries  (LiBs)  are
0.158–44.59  kg  CO2-eq  and  3.3–154.4  MJ,  respectively.  These
distinctions  underscore  the  need  for  region-specific  battery
selection  criteria.  These  findings  indicate  that  carbon  emissions
during  the  lifespan  of  batteries  are  significant  and  cannot  be
ignored, especially in countries where electricity production relies
heavily on fossil resources.

3  Methodology
The entire method (Fig. 2) is built around a cradle-to-grave LCA
on  an  EB,  which  includes  two  main  parts:  the  LCA  process  and
operation data analysis.

3.1  LCA
LCA is a comprehensive method for evaluating the environmental

impact of a product throughout its entire life cycle. This approach
is  particularly  valuable  in  the  energy  sector.  The  framework  of  a
general LCA is shown in Fig. 3 (Hauschild et al., 2018).

In this study, a cradle-to-grave LCA is conducted, i.e., from raw
material  extraction  to  disposal.  This  is  crucial  for  e-buses  where
impacts  are  not  only  operational  but  also  substantial  in  the
production  and  disposal  stages,  especially  considering  electricity
generation and battery manufacturing and disposal. The life cycle
of an EB is usually divided into the following processes: electricity
generation  and  transformation,  raw  material  extraction  and
transportation, operation and charging electricity, and end-of-life.
Specific  processes  are  explained  in  Section  3.1,  i.e.,  system
boundaries and life cycle inventory (LCI) analysis.

The selection of the LCA for this study is based on several key
advantages.  First,  LCA  provides  a  holistic  view  of  the
environmental  impacts  across  all  stages  of  the  electric  bus  life
cycle,  allowing for  a  comprehensive  assessment that  includes  not
only  the  operational  phase  but  also  the  often-overlooked
production and disposal  stages.  This is  particularly important for
electric buses,  as the environmental impact of battery production
and  disposal  can  be  significant.  Second,  LCA  enables  the
comparison of different energy sources and technologies, which is
essential for understanding the overall environmental footprint of
electric buses in the context of the local energy grid.

However, it is important to acknowledge the limitations of the
LCA  method.  One  limitation  is  the  data  requirements;  accurate
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and comprehensive data are needed for each stage of the life cycle,
which  can  be  challenging  to  obtain,  especially  for  emerging
technologies such as electric buses. Additionally, LCA models can
be  complex  and  require  significant  computational  resources,
which may limit  their  accessibility  and ease  of  use.  Furthermore,
the  results  of  LCA  can  be  sensitive  to  assumptions  about  future
technological developments and changes in the energy mix, which
may affect the long-term accuracy of the findings.

Despite  these  limitations,  LCA  remains  the  most  suitable
method for evaluating the environmental impact of electric buses
in  this  study  because  of  its  comprehensive  nature  and  ability  to
provide a detailed understanding of the full life cycle impacts.

The goal of this LCA is to evaluate the sustainability of EBs. To
quantify  sustainability,  the  environmental  impact  category  needs
to  be  fixed.  Greenhouse  gas  emissions  from  vehicles  are  among
the  most  significant  environmental  impacts  contributing  to
climate  change.  CO2 emissions  are  selected  as  the  quantitative
indicator  for  this  study.  The  following  specific  questions  are
researched:  (1)  How much CO2 emission  will  be  emitted  during
the  life  cycle  of  an  EB  operating  in  Guangzhou,  China,  on  the
basis  of  field  data.  (2)  Which  process  in  the  life  cycle  has  the
highest  emission.  (3)  How do these  factors,  such as  the  assumed
local power grid and temperature, affect the CO2 emissions of an
EB. The overall intention is to provide a quantitative evaluation of
the emissions of EBs for the study of their environmental impact,
strategic planning of public transportation, and further adjustment
of  the  energy  grid  aimed  at  electrification  and  the  net  zero
strategy.  The  intended  audience  includes  bus  manufacturers,
public transportation operation companies, government decision-
makers, and environmental organizations.

When  conducting  LCA,  it  is  critical  to  select  an  appropriate
functional unit.  Three functional units are commonly used when
the  assessment  objective  is  an  EB:  impact  per  kilowatt-hour
battery, impact per km battery, and impact per km the EB drives.
Since  the  aim  is  to  evaluate  the  EB’s  sustainability  performance
instead and the field data for analysis are focused on the operation
stage  instead  of  the  battery,  the  impact  per  km is  selected  as  the
functional unit in this study, i.e., the grams of CO2 emitted per km
per EB.

Ltot

Nshifts

Nbuses

Since  all  the  buses  analyzed  are  still  at  the  service  of  public
transportation,  no  monitored  data  of  a  lifetime  driving  distance
are  accessible.  Given  the  estimated  lifespan  (by  the  number  of
years) of an EB (L), the total length of all routes ( ) using km as
the  unit,  the  number  of  buses  in  operation,  the  number  of  shifts
per route per day ( ), and the approximate lifespan of an EB,
the  lifetime  driving  distance  of  one  EB  can  be  calculated  via
Eq. (2). The number of buses is given by .

TotalKilometersperBus = 365LLtotNshifts

Nbuses
(2)

In  addition  to  the  technical  and  environmental  aspects,
socioeconomic  factors  play  a  crucial  role  in  the  overall
sustainability assessment of electric buses (Liu et al.,  2023). These
factors include the costs associated with electric bus procurement,
operation, and maintenance, as well as the impact on grid demand
and  the  requirements  for  supporting  infrastructure.  Studies  have
shown  that  the  transition  to  electric  buses  can  lead  to  a  higher
total cost of ownership because of significant investments in buses
and  charging  infrastructure  (Sistig  et  al.,  2025).  Additionally,  the
limited range of electric buses can increase the need for additional
vehicles  and  drivers,  further  affecting  operational  costs.  These
socioeconomic considerations are essential  for understanding the
feasibility  and  impact  of  electric  bus  systems  in  real-world
applications.

The  system  boundaries  refer  to  the  scope  of  the  LCA.  The
technical boundary is built on the basis of a literature review and
is  shown in Fig.  4.  The  temporal  boundary  refers  to  the  lifespan
duration  of  an  EB.  The  selection  of  CO2 as  the  core  indicator  is
further justified by Guangzhou’s  electricity  mix:  as  of  2022,  coal-
fired  power  accounted  for  52% of  the  city’s  grid  energy,  making
CO2 emissions  highly  sensitive  to  grid  decarbonization  progress.
This context underscores the necessity of region-specific emission
factors in life cycle analysis.

The  8-year  service  life  for  EBs  in  Guangzhou  is  guided
primarily  by  local  regulatory  requirements.  According  to  the
Guangzhou  Municipal  Public  Security  Bureau  Traffic  Police
Detachment  Vehicle  Management  Office  (2018),  heavy-duty
vehicles (including electric buses) operating with > 20 seats must
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undergo mandatory scrapping after 8 years of service to align with
provincial air quality improvement targets. This regulation reflects
Guangzhou’s  accelerated  phase-out  strategy  for  aging  vehicles,
which is stricter than the national average lifespan of 12 years for
diesel buses.

To  frame  the  technical  boundaries,  the  foreground  and
background are set to differentiate between the processes that are
directly  controlled  or  influenced  by  the  decision-makers  of  the
product system being studied (foreground) and those that are not
(background).  In  the  foreground,  the  assessment  begins  with the
generation  and  further  processing  of  electricity,  manufacturing
bus  components  and  assembling.  Afterward,  there  is  operation
charging and maintenance of  the bus itself.  Additionally,  end-of-
life scenarios are considered, featuring recycling processes, battery
dismantlement, and vehicle scrapping. This foreground analysis is
critical  because it  captures  the direct  emissions and energy usage
associated  with  the  active  service  life  of  electric  buses.  The
background  processes  provide  context  for  the  support  systems
that indirectly contribute to the life cycle of EBs. This includes the
raw  material  extraction  and  transportation  required  for
manufacturing bus components and batteries and the creation of
charging  infrastructure.  These  stages  are  imperative  for
understanding  the  cradle-to-grave  environmental  impacts  of  the
system.  Buses  usually  have  a  12-year  service  life  before  being
eliminated.  However,  this  study  refers  to  the  local  regulation  on
vehicle  service  life  by  the  Guangzhou  Municipal  Public  Security
Bureau  Traffic  Police  Detachment  Vehicle  Management  Office
(2018), where vehicles with or with more than 20 seats, operating
vehicles  to  nonoperating  vehicles,  or  nonoperating  vehicles  to
operating vehicles, are usually in operation for 8 years. Given that
and following the form of a time frame in LCA from Hauschild et
al.  (2018),  the  time  frame  for  this  LCA  is  shown  in Fig.  5.  The
adoption of Hauschild et al.’s (2018) time frame approach is based
on its dynamic alignment with policy-driven lifecycle phases. This
framework  allows  us  to  isolate  direct  emissions  from  regulated
operational  activities  while  accounting  for  indirect,  long-term
impacts through sensitivity analyses.

Inventory analysis is a crucial aspect of life cycle assessment and
involves  the  collection  and  compilation  of  data  on  elementary
flows  from  all  processes  in  a  product  system.  It  starts  by
identifying  unit  processes  of  the  product  system  and  then
collecting data.  With the needed data available,  the LCI model  is
constructed, and calculations are conducted.

On  the  basis  of  the  initial  flowchart  (Fig.  4)  and  further
literature reviews, the identified unit processes of an EB, i.e., stages
in  the  life  cycle,  include  powertrain  manufacturing,  battery
manufacturing, glider manufacturing and assembly, operation and
charging electricity, and end-of-life.

The  inventory  data  collection  involves  gathering  information
on  all  the  inputs  (e.g.,  raw  materials,  energy)  and  outputs  (e.g.,
emissions,  waste)  associated with each stage of  the life  cycle.  The
data used in this study were collected from two sources. Data on
the  operation  and  charging  of  electricity  are  extracted  from  field
data  collected  from  sensor  monitoring  of  buses  in  Guangzhou,
China.  The  rest  are  from  local  governmental  disclosure  and
academic studies.

This study collects numerical data at the unit process level (e.g.,
battery,  powertrain,  and  glider  manufacturing),  with  inputs
including  energy,  raw  materials,  and  components,  and  outputs
comprising  products,  byproducts,  and  CO2 emissions  (Table  2).
CO2 emissions  are  critical  for  environmental  impact  assessment,
whereas  intermediate  outputs  (e.g.,  battery  packs  and  scrapped
EBs)  serve  as  inputs  for  subsequent  processes  in  the  life  cycle
analysis.

As  previously  mentioned,  data  on  the  operation  and  charging
electricity  are  from  sensor  monitoring  of  the  buses.  This  study
utilizes  comprehensive  field  data  from  more  than  500  buses  in
2021,  detailing  bus  charging,  location,  operation,  etc.  Specifically,
charging  data—including  timestamps,  battery  SoC,  charging
status,  count,  and  station  location—are  analyzed  to  estimate
energy consumption. Details about data wrangling and processing
are  presented  in  Section  3.2.  For  the  total  lifespan  operation
distance, because the current EBs are still in operation and not yet
disposed  of,  it  is  calculated  with  the  raw  data  collected  and
through  Eq.  (2),  which  has  already  been  justified  in  Section  3.1.
According  to  the  local  public  transportation  app,  the  average
number of shifts of one bus route per day is 96. The length of all
bus routes is 23,000 km, while the total number of buses is 15,000
vehicles.  Since  Guangzhou  city  has  achieved  100%  electrification
with respect to public buses, these numbers are applicable for this
study, especially for EBs. Given this, the lifespan operation can be
calculated via Eq. (3):

LifespanOperation =
365LLtotNshifts

Nbuses

=
365 × 23000 × 96 × 8

15000 = 429824 (3)

The  rest  of  the  inventory  data  are  from  other  research  or
governmental  disclosure. Table  3 shows  the  data  sources  and
values  that  were  used.  Initial  normalization  for  values  here  has
already been conducted.

Fig.  6 presents  a  simplified  unit  process  in  which  battery
manufacturing  is  used  as  an  example.  Two  primary  inputs  are
shown:  electricity  (used  for  manufacturing)  and  materials.  The
output first includes a completed battery pack, which is ready for
further  processes,  i.e.,  glider  manufacturing  and  assembly.
Materials  losses  are  another  output  that  needs  to  be  considered,
inevitably from inefficiencies during manufacturing. Additionally,
the  process  generates  emissions  of  CO2 directly  from  electricity
used  for  manufacturing  and  indirectly  from  material  extraction.
The qualitative relationships among all the inputs and outputs are
shown in Eqs. (4) and (5):

Materialsmassinput = MassBatterypack +Masslosses (4)

CO2output= CO2Materialextraction+ CO2Electricityuse (5)

Here,  a  highly  critical  indicator  is  the  emission  factor  (EF).  It
relates the quantity of a pollutant released to the atmosphere with
the activity causing the release. The context of electricity (Eq. (6))
refers  to  the  quantitative  relationship  between  electricity
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Fig. 5    Time frames for different life cycle stages. Reproduced with permission
from Hauschild et al. (2018), © Springer International Publishing 2018.
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generation  or  consumption  and  carbon  emissions  (Yang  et  al.,
2023). This study used predicted EFs for China’s southern grid in
2021, derived from models established in the referenced paper via
statistical  analysis  of  fossil  fuel-fired  power  generation  data  from
2006–2019 (Zhang et al., 2023). The selection of EFs in this study
is based on the need for accurate and up-to-date data that reflect
the  current  and  future  trends  of  China’s  energy  grid.  The
predicted  EFs  are  used  to  account  for  the  evolving  nature  of  the
grid,  which  is  crucial  for  assessing  the  long-term  environmental
impact of electric buses.

EmissionFactorElectricity =
Emission

Electricity consumption (6)

Therefore,  the  total  CO2 emissions  in  the  battery
manufacturing stage can be written as Eq. (7):

CO2Battery Manu. =

n∑
source=1

EnergyuseEF

= MassCell materialsEFExtraction

+MassOther materialsEFExtraction

+ ElectricityEFElectricity consumption (7)

Summing the five identified unit  processes and inputs/outputs
of each process, the life cycle of the EB is connected and shown in
Fig.  7.  Using  the  same  method,  the  quantification  formulas  of
emissions  for  the  other  four  stages  can  also  be  modeled  via  Eqs.
(8)–(11).  The  emissions  of  all  five  processes  are  summed  via
Eq. (12).

CO2Powertrain Manu = MassMaterialsEFExtraction

+ ElectricityEFElectricityconsumption (8)

CO2Giler Manu. Assembly = MassMaterialsEFExtraction

+ ElectricityEFElectricityconsumption (9)

CO2Operationandchargingelectricity = ElectricityEFElectricityconsumption (10)

CO2Endoflife = MassMaterialsEFincineration

+ ElectricityEFElectricityconsumption (11)

CO2Lifecycle = CO2PowertrainManu. + CO2GilerManu.&Assembly

+ CO2Operationandchargingelectricity + CO2Endoflife (12)

Understanding  the  environmental  implications  of  adopting
electric  bus  systems  is  pivotal.  Impact  analysis  involves
categorizing  and  quantifying  sustainable  impacts  via  inventory
data.  As  mentioned  above,  the  primary  focus  on  impacts  is  on
CO2 emissions. What follows is to calculate the emissions, convert
them into the set functional unit, and then interpret these results,
including comparisons and source analysis.

Comparing the environmental impact of EBs and conventional
internal  combustion  engine  (ICE)  buses  is  crucial  in  the
transportation  industry  (Koech  et  al.,  2024).  Therefore,  a
discussion of this topic will focus on analyzing the sustainability of
these  two  modes  of  transportation,  particularly  in  terms  of  their

 

Table 2    Identified inputs and outputs for each unit process

Unit process Input Output

Battery manufacturing

Material CO2 emission

In battery From cell materials
In other parts of battery pack From other materials

Losses From electricity use

Battery manufacturing
Electricity Battery pack
For cells Wasted materials

For others —

Powertrain manufacturing

Material CO2 emission

Materials in powertrain From materials
Material losses From electricity use

Electricity Electric powertrain
— Wasted materials

Glider manufacturing and assembly
Battery pack CO2 emissions

Electric powertrain From materials
Glider, materials From electricity use

Glider manufacturing and assembly
In glider EB
Losses Wasted materials

Electricity —

Operation and charging electricity
EB CO2 Emission

Charging electricity From electricity use
— Scrapped EB after operation lifespan

End of life

EB, preparation of recycling CO2 emissions

Battery, dismantled, and scrapped From electricity use
Rest of EB scrapped From incineration

Share of EB for incineration —
Shredding, refining, and sorting —
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CO2 emissions. Additionally, inspired by the literature review, this
analysis  examines  and  interprets  how  factors  such  as  the  power
grid  and  temperature  can  influence  the  sustainable  performance
of electric buses.

3.2  Bus operation field data analysis
Three sets of field data were used in this study, all from May 2021
in the city of Guangzhou, China. In total, there are 1,048,576 data

entries. The scopes of the datasets are shown in Figs. 8 and 9.
The first 2 datasets are the controller area network (CAN) and

GPS data of 500 buses on May 1, 2021; a data sample for both the
bus CAN and the GPS can be found in Tables  4 and 5.  These  2
sets of data have a larger time gap between data input points, and
they  are  used  to  understand  the  general  operational  behavior  of
buses, such as the operation time, break time, and number of trips
per  day,  and  to  calculate  the  average  energy  consumption  of
different buses.

The  third  dataset  contains  bus  No.  497’s  CAN  and  GPS
operation  data  for  all  days  in  May  2021.  The  data  are  read  and
logged  every  second  during  all  the  trips  recorded  in  this  dataset.
Since the temperature range is quite wide during this month, this
dataset  is  used  to  understand  the  impact  that  the  ambient
temperature  has  on  battery  performance,  energy  consumption
and  bus  operation.  An  example  of  this  dataset  and  more
information  on  the  analysis  process  for  the  impact  of  ambient
temperature can be found in Section 4.2.

 

Table 3    Data values and sources

Data Value Unit Source
Battery manufacturing

Materials 1.648 ton·batt–1 Summation of materials in battery and losses
In battery 1.200 ton·batt–1 China buses (2024)

In other parts of battery pack 0.400 ton·batt–1

Nordelöf et al. (2019)
Losses (3%) 0.048 ton·batt–1

Electricity
For cells 15.000 kWh·kg–1

For others 1.000 kWh·kg–1

Powertrain manufacturing
Materials 0.412 ton·pwt–1 Summation of materials in powertrain and losses

Materials in powertrain 0.400 ton·pwt–1 Guangzhou Municipal Public Security Bureau (2018)
Material losses (3%) 0.012 ton·pwt–1

Nordelöf et al. (2019)
Electricity use in factory 5.000 kWh·kg-1

Glider manufacturing and assembly
Battery pack 2.000 batt·veh–1 Set by LCA

Electric powertrain 1.000 pwt·veh–1

Glider, materials 7.745 ton·veh–1 Summation of materials in glider and losses
In glider 7.000 ton·veh–1 China buses (2024)

Losses (3%)
0.475 ton·veh–1 Nordelöf et al. (2019)

Electricity 0.470 kWh·kg–1 —
Operation and charging electricity

Operation Lifetime 8 year Guangzhou Municipal Public Security Bureau Traffic Police Detachment Vehicle
Management Office (2018)

Total length of all bus routes 23,000.000 km Daily (2021)
Number of buses in operation 15,000.000 No. of buses

Numbers of shifts perroute
per day 96.000 No. of shifts Guangzhou Local Information (2024)

Charging electricity,,including
charger losses 132.700 kWh·veh–1·day–1

From Electricity 0.8475 kg CO2 Zhang and Xu (2023)
Use (China South Grid) eq.·kWh–1

End of Life
Vehicle, preparation of

recycling 1.000 veh Set by LCA

Battery, dismantled, scrapped 2.000 batt·veh–1

Share of vehicle, incineration 0.15% — Nordelöf et al. (2019)
Shredding, refining and

sorting 1.000 kWh·kg–1 —

 

Electricity (used for
manufacturing)

Materials

Battery
manufacturing

Battery pack

Material losses

CO2 emissions

Fig. 6    Simplified  unit  process  of  battery  manufacturing.  Reproduced  with
permission from Nordelöf et al. (2019), © Elsevier 2019.
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Both  sets  of  field  data  used  in  this  study  have  extensive
information on bus charging, location/GPS, departing station and
terminal  station,  bus  operation  (speed,  speed  on  wheel,  total
mileage,  total  voltage,  total  current,  operation  time,  running
mileage,  running  duration,  single  trips’ beginning  and  ending
time,  service  type,  etc.),  inside  and  outside  temperature,  route,
direction, component status and gears.

Following the aim and scope of this study defined in Section 1,
the objective data for the bus operation analyses included the bus
ID,  data  input  time  stamp,  SoC,  charging  status,  speed,  total
voltage, total current, total mileage, GPS mileage, service type and
operation time. These data were extracted and ordered by bus ID
as  the  primary  sorting  criterion  and  the  time  stamp  of  the  data
input  point  as  the  secondary  sorting  criterion.  Bus  temperature
and component status are considered factors in the LCA process.

The total  mileage was read directly  from the odometer  on the
buses. This and the GPS mileage were used to estimate the lengths
of  different  bus  trips.  Although  the  exact  length  of  these  trips
could  not  be  calculated,  as  the  odometer  only  reads  integers  in
kilometers,  only  the  point-to-point  distance  could  be  calculated
with GPS mileage data.

Different  bus service  types  (round trips,  one-way routes,  short
routes,  breaks,  first/last trips,  and fast routes) significantly impact
traffic  congestion  simulations  and  energy  consumption  analysis.
Fast routes,  operating on highways/dedicated lanes with minimal
congestion  and  traffic  signals,  reduce  braking/acceleration  and
lower  overall  energy  use.  The  first  trips  start  with  100%  battery
charge  (overnight  charging),  minimizing  initial  energy  loss.
Conversely,  last  trips  experience  slightly  higher  energy
consumption  due  to  battery  aging  and  lithium-ion  battery
kinetics: faster discharge/charge rates occur at the start and end of
typical  battery  cycles  (Fig.  1),  aligning  with  daily  trip  start/end
phases. This classification directly links service type characteristics
to traffic intensity and battery states for precise energy modeling.
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Fig. 7    Simplified unit processes connected. Reproduced with permission from Zhang and Xu (2023), © Elsevier 2023.

 

Fig. 8    Scope of the bus routes included in the data.

 

Fig. 9    Scope of the data.
 

Table 4    CAN data sample of 3 buses on May 01, 2021

Bus ID 51 100 119
Time stamp 18:12:48 14:39:58 12:12:42

SoC (%) 40 67 70
Charging status 00 00 00
Speed (km·h–1) 16.834 15.001 0.000

Total mileage (km) 27,836 15,089 15,312
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Specifically, the data on bus charging, which consists of the data
input  time,  SoC  in  the  battery  pack,  charging  status,  bus  charge
count  and  location  of  the  charging  station,  are  used  to
calculate/estimate  the  energy  consumption  in  this  study;  more
details are discussed in Section 3.2. There are 4 different charging
statuses in the data, and they refer to different charging scenarios,
as listed in Table 6. This information was used to better determine
how many times the buses were charged through a 24-h window.

The  speed  and  SoC  against  time-bus  operational  graphs  were
plotted  first.  Outliers  can  often  be  found  in  the  dataset,  as  the

sensors  on  the  buses  have  limited  accuracy  during  operation;
hence,  singular  outliers  were  removed  by  removing  data  points
that  make  the  SoC  curve  gradient  inconsistent  in  Python.  Data
entries that contained too many outliers or more than a few hours
of no data input were excluded from further investigation. In total,
125,801 data entries were removed, which left 922,775 data entries
for the rest of the study.

An example of the operational graph of bus No. 237 on May 1,
2021, can be found in Fig. 10. Before data cleaning (Fig. 10a),  an
obviously  inconsistent  data  outlier  that  misreads  the  SoC  as  0%
can  be  found  at  approximately  6:00,  causing  the  SoC  curve  to
suddenly  drop.  After  the  data  outliers  are  removed,  as  shown in
Fig.  10b,  a  smooth  decrease  in  the  SoC  curve,  which  indicates
consistent energy consumption during bus operation, is obtained.

The speed of the buses was included in the graphs to determine
how  many  trips  and  breaks  they  took  during  a  24-hour  period.
Additionally, these data help identify whether the bus was charged
during  breaks,  which  is  crucial  for  accurately  calculating  energy

 

Table 5    GPS data sample

Bus ID Triplog ID Duration Trip mileage (km) Begin End
1 914 876 697 12 3 11:53:00 12:05:00
1 915 010 112 16 2.6 17:35:00 17:51:00
1 915 026 658 15 2.6 18:35:00 18:50:00

… … … … … …
500 914 786 308 38 19.11 08:30:00 09:08:00
500 914 813 553 45 20.52 09:10:00 09:55:00

 

Table 6    Charging status reference and the corresponding statuses

Charging status reference Charging status
00 Not charging
01 Charging
02 Charging finished
03 Charging stopped
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consumption. Taking bus No. 231 as an example, as shown in Fig.
11a,  it  can  be  easily  seen  from  the  speed  information  (red  lines)
that  the  bus  had  been  charging  from  03:00  to  06:00  overnight
before  driving  out  for  its  first  trip  in  the  morning  from 09:00  to
12:00. The bus then took a break from 12:00 to 15:00 while being
charged  at  the  charging  station,  causing  the  SoC  (blue  curve)  to
rise from 65% to 100%.

Bus  No.  178  is  an  example  of  one  bus  running  a  long  trip
without taking breaks or intermediate charging throughout 24 h,
as shown in Fig.  11b. Bus No. 184 in Fig.  11c is an example of a
bus taking one break (13:30–15:30) without being charged.

As  previously  mentioned  in  Section  3.2,  there  are  3  general
types  of  bus  operations.  In  the  first  type,  the  bus  is  charged
overnight  and  only  overnight  and  then  continues  to  operate
without breaks until the last trip of the day. In the second type, the
bus is charged overnight and only overnight; it breaks during the
day  without  charging  until  the  last  trip  of  the  day.  In  the  third
type,  the  bus  is  charged  overnight  but  also  during  break  time  in
operation (Fig. 11a).

SoCfinal

SoCintial

Qnom

If the bus operates within the scope of the first 2 types, then its
daily energy consumption is calculated via Eq. (13): —the
SoC  in  the  battery  pack  at  the  end  of  the  recorded  trip  (%),

—the initial SoC in the battery pack at the start of the trip
(%), and —the nominal battery capacity (kWh).

Econsumption =
SoCinitial − SoCfinal

100 Qnom (13)

If the bus can be categorized into the third operation type, then
the  extra  charging  times  must  be  taken  into  consideration,  as
simply  using  the  final  and  initial  SoC  to  calculate  the  energy
consumption will  ignore the extra  energy being charged into the
battery.  For  this  type,  the  bus’s  daily  energy  consumption  is
calculated via Eq. (14):

Econsumption =

∑i

n=1
(SoCinitiali − SoCfinali)

100 Qnom (14)

The 3 most common EV bus models in operation in the city of
Guangzhou  are  the  HUNAN  CSR  TIMES  TEG6129  12-m  pure
electric  city  bus,  the  BYD Auto  GZ6122LGEV2 electric  bus,  and
the  CRRC  TEG6129BEV11  electric  bus.  The  nominal  battery
capacity  of  these  models  can  be  found  on  the  official  website  of
Guangzhou Municipal Public Security Bureau (2018) and is listed
in Table 7. Since the nominal battery capacities for these 3 models
are similar, this study is performed under the assumption that all
buses have a nominal battery capacity of 337.1 kWh.

The trip log of bus No. 178 in Fig. 11 is taken as an example to
calculate  its  energy  consumption  on  May  01,  2021.  In  this
particular  trip,  the  bus  took  only  one  trip  in  the  24-h  window
from  12:00–24:00,  with  a  rather  consistent  decrease  in  the  blue
SoC curve, indicating a smooth journey. Upon the start of the trip,
the  bus  had  an  initial  SoC  of  SoCinitial =  100%.  The  SoC  then
gradually decreased to 60% at 24:00.  The energy consumption of
this trip can then be obtained through Eq. (15):

Ebusid=178 = 337.1 × 100− 60
100 × 134.84 (15)

The graph of energy consumption of this bus is shown in Fig. 12.

Equations (13) and (14) were used to calculate the daily energy
consumption  of  all  500  buses  during  May  2021.  The  average
energy  consumption  of  these  buses  is  132.7  kWh.  The  average
mileage  per  triplog  ID  for  all  500  buses  can  be  calculated  by
simply performing an average over all run_mileage (km), and the
result is 132.7 kWh. The same is true for the average trip duration.
The average mileage per day per bus can be calculated by adding
the mileage of all trips logged for the same bus ID, and the result is
15.23  km.  The  average  mileage  per  day  per  bus  is  110.9  km.
Finally, the average specific energy consumption for all buses can
be calculated via Eq. (16), which yields a value of 1.197 kWh·km−1.

Econs_per_km =
Econsumption

run_mileage =
132.7
110.9 = 1.197 (16)

4  Results and discussion

4.1  Results
Table  8 below  shows  the  lifetime  environmental  impact  results,
i.e.,  CO2 emissions,  for  the  EB’s  life  cycle. Fig.  13 shows  the
emissions  from  each  stage  more  visually.  The  operation  and
charging  electricity  process  contributes  the  most  to  the  overall
lifespan CO2 emission of an EB, at 764.02 g CO2·km−1, accounting
for 70% of the overall emissions. This value is much greater than
the  sum  of  all  three  manufacturing  processes,  which  is  311.74  g
CO2·km−1.  This  strongly  pinpoints  where  sustainability  efforts
should be made. The secondary hot spot is battery manufacturing,
with  a  value  of  202.19  g  CO2·km−1,  even  though  it  accounts  for
only  18%.  Considering  the  significant  emissions  from  the
operation stage, reflecting those important input data, the primary
data  for  electricity  consumed  by  EBs  are  from  field  data,  the
lifetime  operation  distance  is  based  on  a  calculation  based  on
public transportation information, and the EF for the local grid is
obtained from model prediction for academic research.

4.2  Discussion
Given  the  CO2 emissions  of  an  EB  and  the  identification  of  the
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Fig. 12    Energy  consumption  graph  of  bus  No.  178  (Guangzhou  Municipal
Public Security Bureau, 2018).

 

Table 7    Nominal battery capacity of the 3 major models of EBs in Guangzhou

Brand Model Nominal battery capacity (kWh)
HUNAN CSR TIMES TEG6129 333.70

BYD AUTO GZ6122LGEV2 337.71
CRRC TEG6129BEV11 340.00

 

Table 8    CO2 emissions in each life cycle stage

Process Emission (g CO2·km−1·veh−1)

Battery manufacturing 202.19
Powertrain manufacturing 11.61

Glider manufacturing and assembly 97.94
Operation and charging electricity 764.02

End of life 21.31
Total 1,097.07
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hot  spot  in  an  EB’s  life  cycle,  the  discussion  focuses  on  research
question  3,  exploring  the  potential  reasons  behind  the  results
(Yang  et  al.,  2024).  First,  the  emissions  of  an  EB  and  a
conventional  ICE  bus  are  compared,  which  reveals  that
electrification greatly reduces emissions. The discussion then shifts
to  whether  and  how  the  power  grid  affects  the  benefits  of  bus
electrification.  Finally,  the  effects  of  temperature  are  considered.
Suggestions are proposed following each topic of discussion.

In  this  study,  stages  such  as  powertrain  manufacturing,  glider
assembly,  and  end-of-life  processes  for  conventional  ICE  buses
and EBs are assumed to be identical,  allowing standardization, as
shown  in Fig.  14.  The  analysis  focuses  solely  on  battery
manufacturing  and  charging  electricity  for  EBs  versus  fuel

production  for  ICE  buses,  enabling  clear  emission  comparisons
between  the  two  vehicle  types  (Cui  et  al.,  2024a).  Built  on  the
model  through  the  same  approach  as  in  Section  3.1,  the  inputs
and outputs needed for an ICE bus are shown in Table 9.

The  calculated  result  (Table  10)  of  CO2 emissions  from  the
operation  and  fuel  production  stage  of  a  conventional  bus  is
1,359.50  g  CO2·km−1,  whereas  that  of  summing  battery
manufacturing and charging electricity stages of an EB is 933.36 g
CO2·km−1.  The  emission  reductions  resulting  from  electrification
are 426.14 g CO2·km−1 and 31.3%, respectively.  This  reduction in
emissions highlights the environmental benefits of electrifying bus
fleets.  The  comparative  analysis  reveals  critical  differences  in
lifecycle  stages  between  EBs  and  conventional  ICE  buses.  While
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Table 9    Inputs and outputs for the LCI analysis of the operation and fuel production stages of the conventional bus

Data Value Unit Source
Input

Vehicle 1 veh
Same as EB

Lifetime operation 429,824 km
Fuel 41.67 L·100 km−1 Nilrit and Sampanpanish (2012)

Output
CO2 Emissions

From tailpipe CO2 emissions 114.01 kg CO2·100 km−1 Nilrit and Sampanpanish (2012)
From fuel production CO2 emissions 0.50 kg CO2-eq·L−1 Global Energy Internet Development and Cooperation Organization (2021)
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both vehicle types share equivalent powertrain manufacturing and
glider  assembly  processes,  the  divergence  arises  from  energy
sourcing and end-use efficiency. For ICE buses, Table 9 highlights
that over 88% of operational emissions originate from direct fuel
combustion,  with  only  0.43%  attributed  to  upstream  fuel
production.  Conversely,  EBs  shift  71%  of  emissions  to  electricity
generation  and  battery  production  (764.02  g  CO2·km−1 from
charging vs. 169.34 g CO2 km−1 from batteries). This shift creates a
leverage  point  for  emission  reduction  through  renewable  energy
integration  in  power  grids—a  factor  not  fully  captured  in  this
study owing to  its  reliance  on the  IPCC’s  2006 average  emission
factors for grid electricity.

Notably,  the  31.3%  emission  reduction  assumes  standardized
battery production processes, which may underestimate material-
specific  impacts.  For  example,  cathode  material  selection  can
cause  ±20%  variation  in  manufacturing  emissions  according  to
data from Argonne National Laboratory’s 2022. Additionally, the
429,824  km  lifetime  assumption  aligns  with  Guangzhou’s
operational  requirements  but  may  not  reflect  shorter  vehicle
lifespans  in  regions  with  intensive  road  conditions,  potentially
affecting  total  life  cycle  emission  calculations.  The  reduction  in
emissions  from  EBs  compared  with  those  from  conventional
buses directly supports EBs.

This  study  demonstrates  that  scaling  up  Guangzhou’s  15,000
electric  buses over its  429,824 km lifespan could reduce life  cycle
CO2 emissions  by  2,747.5  kton,  substantially  lowering
transportation-related  emissions.  While  large-scale  electrification
of  bus  fleets  is  critical  for  sustainable  urban  mobility,  regional
variations  in  energy  structures  globally  significantly  impact  life-
cycle  GHG  emissions—fossil  fuel-dependent  regions  exhibit  far
higher  emissions  than  those  using  renewable  energy.  The  next
section  analyzes  how  power  grid  composition  influences
electrification benefits on a national scale.

The  results  revealed  that  most  emissions  originate  from  the
operation  and  charging  electricity  phase,  which  suggests  that  the
energy used during the operation of the vehicle and the electricity
sources  for  charging  are  highly  carbon  intensive.  To  determine
why,  it  is  crucial  to  assess  the  mix  of  energy  sources  in  the
electricity  grid  where  EBs  are  charged.  Guangzhou  city  is  the
capital  city  of  Guangdong  Province.  Of  all  the  province’s
electricity  sources,  one-third  come  from  external  power.  The
remainder  is  internal  power,  with  thermal  power  accounting  for
approximately  65%  of  the  province’s  installed  capacity  and
hydropower  accounting  for  approximately  11.7%  (Guangzhou
Municipal Public Security Bureau, 2018), as shown in Fig. 15.

The  electrification  of  buses  is  an  effective  way  to  reduce
emissions.  However,  regional  divergence  needs  to  be  considered.
Fig. 16 shows such divergence USA, which is measured as the EB
fraction  of  the  ICEB lifetime  CO2 emissions.  A  value  less  than  1
indicates  that  the  EB  is  preferred  in  terms  of  its  environmental
impact (Koech et al., 2024).

Regional  divergence  can  also  directly  influence  the  preference
for  EBs  in  China  and  demonstrated  by  the  indicator  of  carbon
emission  intensity  of  electricity  generation  (CEIE)  (Cui  et  al.,
2024b; Sun et al., 2023; Zhang et al., 2020). Since Guangzhou city
is  one  of  the  most  developed  cities  in  China,  the  area  of

Guangzhou  city  is  located  at  the  middle  level  of  CEIE,  i.e.,
(500–700)×106 t·kWh−1. Considering that there are still other cities,
especially  the  regions  distributed  in  Northeast  China  and  North
China,  that  feature  higher  CEIE  and  fewer  green  electricity
generation  approaches  or  are  facing  difficulties  in  building
adequate  and  technically  proper  charging  infrastructure  for  EVs.
For those areas, apart from developing a greener power grid, it is
still important to develop and innovate in conventional vehicles.

China  aims  to  peak  CO2 emissions  by  2030  and advance  net-
zero goals through accelerated development of renewable energy,
particularly  large-scale  and  high-quality  wind  and  solar  power
projects. This strategy emphasizes both centralized and distributed
energy  systems  while  prioritizing  the  construction  of  wind  and
photovoltaic power bases to reduce fossil fuel reliance. Therefore,
based on the same prediction model (Zhang et al., 2023) as the EF
used  earlier,  when  the  carbon  peak  reaches  2030,  the  EF  will  be
0.7363.  The  calculation  reveals  that  there  will  be  a  significant
reduction in CO2 emissions, 167.64 g CO2·km−1, between the LCA
results in 2021, as above, and those in 2030, as shown in Table 11.

Noticeably,  the emission from every stage is  reduced (Fig.  17).
The reduction in emissions for operation and charging electricity
is  the  greatest,  by  100.25  g  CO2·km−1 and  13.12%,  respectively,
followed  by  that  for  battery  manufacturing,  which  is  42.37  g
CO2·km−1 and  20.85%,  respectively.  However,  even  though  the
reduction at the end-of-life stage is as high as 27.17%, the absolute

 

Table 10    CO2 emission comparison between EBs and conventional buses (Unit: g CO2 ·km−1)

EB Conventional bus
Battery manufacturing 169.34 —

Operation and charging electricity 764.02 Operation and fuel production 1,359.50
Total 933.36 Total 1,359.50

g CO2·km–1 g CO2·km–1
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reduction  is  only  5.79  g  CO2·km−1 (see Fig.  18).  However,  even
with  the  anticipated  improvements  in  the  power  grid  by  2030,
which  are  expected  to  further  reduce  emissions  due  to  greener
electricity  sources,  the  slight  reduction  in  emissions  from  EBs  is
projected to be only 167.64 g CO2·km−1.

The EF used in the LCA is from China’s southern power grid,
0.8475,  which is  much greater than Singapore’s  0.4085,  Sweden’s
0.027.  The  local  power  grid  is  relatively  carbon intensive.  This  is
also  reflected  by  the  electricity  generation  sources  in  these  three
countries  (see Table  12 and Fig.  19).  Clearly,  more  than  60%  of
electricity was generated from coal in 2021, while the majority of
electricity generation sources in Singapore were wind, and Sweden
mainly  used  nuclear  and  hydro  energy.  The  impact  of  the
electricity  grid  on  the  sustainability  performance  of  EBs  is  a
complex issue. The results of the analysis clearly indicate that the
electricity  charging phase of  EBs results  in the highest  emissions,
largely because of the high carbon intensity of the local electricity
grid.

Section 4.2 reveals the carbon intensity of the local power grid
as  a  main  cause  of  high  emissions  during  EB  operation  and

charging  in  its  life  cycle  and  highlights  regional  differences  in
China’s carbon intensity. Moreover, by 2030, when China reaches
its carbon peak with a lower EF, the reduction in an EB’s life cycle
CO2 emissions  is  minimal.  Moreover,  it  compared  China’s  grid
with others, confirming that it is far from optimal. Combined with
the  analysis  of  the  benefits  of  electrifying  the  bus  fleet  for  CO2
emissions,  Section  4.2  concludes  that  due  to  regional  and  global
power  grid  differences,  universal  public  bus  electrification  is  not
the  sole  sustainable  solution  in  the  automotive  industry.  This
represents a single approach among many for reducing emissions.
Thus,  tailored  regional  strategies  are  needed.  In  areas  with  green
grids,  electrification  helps  mitigate  CO2 emissions,  whereas  in
carbon-intensive  grid  areas,  policies  should  focus  on  cleaner
electricity.  Moreover,  more  comprehensive  strategies  involving
technological  progress,  such  as  improving  hybrid  vehicle
performance,  enhancing  energy  efficiency,  and  promoting

 

Table 11    CO2 emissions corresponding to EFs in 2021 and 2030 and their reduction

Life cycle stage
Emission (g CO2-eq·km–1)

Reduction rate
2021 2030 Reduction

Battery manufacturing 202.19 159.82 42.37 20.95%
Powertrain manufacturing 11.61 9.19 2.42 20.83%

Glider manufacturing and assembly 97.94 81.12 16.82 17.17%
Operation and charging electricity 764.02 663.77 100.25 13.12%

End of life 21.31 15.52 5.79 27.17%
Total 1,097.07 929.43 167.64 15.28%

 

Table 12    Proportions of  electricity generation sources in China,  Sweden,  and
Singapore in 2021

Electricity generation sources China Sweden Singapore
Coal 63.0000% 0.43% 1.19%
Oil 0.1300% 0.20% 0.99%

Nature gas 3.1200% 0.16% 93.93%
Nuclear 4.7400% 30.83% —
Hydro 15.5700% 43.03% —
Tide 0.0001% — —

Biofuels 1.9000% 6.56% 0.51%
Waste 0.0800% 2.03% 2.09%
Wind 7.6300% 15.86% —

Solar PV 3.8000% 0.89% 1.30%
Solar thermal 0.0200% — —
Geothermal 0.0015% — —
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Fig. 17    Emission  comparison  between  2021  and  2030.  Reproduced  with
permission from Zhang and Xu (2023), © Elsevier 2023.
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renewable  energy,  should  be  considered.  Meeting  these
requirements will  make substituting conventional buses with EBs
truly beneficial.

When  processing  the  data,  many  bus  trips  with  similar  trip
durations  but  dissimilar  energy  consumption  rates  were  noted.
There  could  be  many  factors  behind  this  phenomenon:
(1)  Frequency  of  braking  and  acceleration.  Vehicles  in  general
consume less energy when operating in a steady state than when
constantly braking and accelerating. The choice of bus lanes must
be considered. Most bus operation lanes in the city of Guangzhou
are hybrid lanes; these lanes are dedicated only to bus lanes from
7:00  AM  to  7:00  PM.  In  addition  to  these  hours,  the  lanes  are
shared-use  bus  lanes  that  also  allow  regular  vehicles.  Energy
consumption will be greater in shared-use bus lanes, especially in
traffic  congestion  (Sun  et  al.,  2024).  Bus  routes  that  focus  on
dedicated bus lanes tend to consume less energy than routes that
focus  on  hybrid  or  share-used  bus  lanes.  (2)  Different  battery
types.  The  field  data  used  in  this  study  only  separate  buses  by
different  bus  ID  and  trip  ID.  Exactly  which  bus  model/brand  is
used for  which route  is  unknown,  along with the  type of  battery
and its nominal capacitance. One can make an educated guess on
one of the potential  reasons for some trips for similar bus routes
with the same service type and similar operation times consuming
relatively  different  amounts  of  energy,  which  could  be  that  the
buses  use  different  batteries  with  different  weights  and  nominal
capacities. Battery packs that weigh more will add more weight to
the bus itself and consume more energy to power. (3) Differences
in  regional  topography.  The  topography  of  Guangzhou  city  is
relatively  high  and  hilly  in  the  northeast,  with  an  altitude  of
1,210  m,  and  lower  in  the  southwest.  The  northern  and
northeastern areas are mountainous areas,  and the southern area
is  an  alluvial  plain  of  the  Pearl  River  Delta.  The  central  part  is  a
hilly basin, while the urban area has Baiyun Mountain. The energy
consumption  will  be  greater  when  buses  operate  in  mountain
areas where there are many sharp turns and up-and-downs on the

bus  route  and  lower  when  operating  on  a  relatively  flat  and
smooth route.  (4) Traffic condition. Despite the attempt to offset
the influence of peak hours in this study, different buses operating
in different parts of  the city where traffic conditions are different
will  lead  to  minor  differences  in  energy  consumption.  (5)
Ambient  temperature.  EV  batteries  have  an  optimal  operating
window  with  respect  to  ambient  temperature.  Within  this
window,  the  energy  consumption  is  the  lowest  when  all  other
factors  are  equal.  The  energy  consumption  of  morning-only  bus
trips tends to be lower than that of afternoon-only bus trips, as in
most cases, the ambient temperature in the morning is lower than
that in the afternoon.

This section investigates the impact of ambient temperature on
energy consumption in electric buses via CAN and GPS data from
a single bus (No. 497) operating in Guangzhou during May 2021.
Ambient  temperature  fluctuations  alter  battery  resistance,
affecting total energy use, whereas extreme temperatures increase
the  air  conditioning  demand. Table  13 shows  that  the  data
spanned  131  trips  recorded  every  second,  with  ambient
temperatures  ranging  from  21  to  37.5  °C  (excluding  nighttime
trips).  To  isolate  temperature  effects,  rush-hour  trips  (7:00–9:00
AM and 5:00–7:00 PM) were excluded on the basis of Guangzhou’s
traffic  regulations.  Energy  consumption  for  each  trip  was
calculated  via  Eq.  (13)  to  account  for  trip  duration,  initial/final
battery  state-of-charge  (SoC),  and  hourly  temperature  data  from
Global  Energy  internet  Development  and  Cooperation
Organization  (2021).  Trips  were  grouped  into  3.9  °C  intervals
(e.g.,  21–23.9  °C)  to  mitigate  measurement  errors  caused  by
delayed SoC readings.  The dataset,  sorted by  trip  start/end times
and  temperature,  revealed  average  trip  durations  of  23  min  and
15 s. This approach ensures robust analysis of temperature-driven
energy  variations  while  addressing  data  limitations. Fig.  20 is  an
example of  an expected SoC (blue line)  that  decreases as  the bus
continues to operate. Fig. 21 shows an example of fluctuating SoC
values being read by the battery level meter on the bus; the value

 

Table 13    Example of singular trip data with hourly temperature information

Date Triplog ID Begin End Duration SoC initial SoC final E (kWh) Temp (°C)
May 02 915 193 375 08:35:00 08:53:00 00:18:00 100 97 10.113 26.5

915 205 130 09:00:00 09:25:00 00:25:00 97 95 6.742 27.5
915 216 077 10:00:00 10:23:00 00:23:00 95 92 10.113 29

… … … … … … … … …
May 31 927 403 348 09:00:00 09:24:30 00:24:30 97 95 6.742 30

… … … … … … … … …
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jumps between 63% and 62% at approximately 5:35 PM.
The average  energy consumption per  trip  of  the  6  bus  groups

was calculated separately and then divided by the average mileage
per trip to obtain the average specific energy consumption under
different  ambient  temperatures,  as  shown  in Table  14.  From  the
graph in Fig. 22, for bus ID = 497 running on the same route, the
per-trip energy consumption is lowest at approximately 22–23 °C
and  increases  when  the  temperature  exceeds  22  °C.  Morning`s
first  trip  usually  has  the  lowest  ambient  temperature  during  bus
operation, and owing to the faster initial battery discharge speed at
100%  SoC,  its  energy  consumption  is  higher,  making  the
theoretical  per-trip energy consumption value slightly lower than
the  calculated  value.  Despite  this  small  error,  it  is  clear  that  the
average  per-trip  energy  consumption  increases  with  increasing
ambient temperature.

According  to  China’s  annual  average  temperature  map  from
Top China Travel, the middle east part of China generally has the

most suitable temperature range for electric vehicles, yet the CEIE
is quite high, so policymakers should prioritize promoting electric
buses  and  making  energy  cleaner  in  this  area.  Guangdong
Province has a lower CEIE than some other regions do, but since
Guangzhou  (with  the  highest  annual  average  temperature  in
China) has a higher specific energy consumption for electric buses
than most regions in the country do, efforts in this region should
focus on cleaner energy production for improvement.

4.3  Limitations
Even though our study uses field data during operation obtained
from  a  city  in  China,  other  datasets  of  battery  production  and
powertrain manufacturing would only be found through existing
studies,  instead  of  being  obtained  directly  from  a  production
company.  Such  data  inevitably  lead  to  slight  inaccuracies  due  to
temporal  and  regional  discrepancies.  This  study  is  subject  to  the
following key limitations, which may influence the generalizability
and precision of the results:

1) Regional data constraints
The  field  data  were  geographically  confined  to  Guangzhou.

This restricts their applicability to cities with similar climates and
operational patterns.

2) Battery production data limitations
Manufacturing  data  for  batteries  and  powertrains  relies  on

existing  studies,  introducing  potential  discrepancies  due  to
technological evolution and regional production variances.

3) Incomplete environmental variables
Ambient  temperature  impact  analysis  overlooks  interactions

with humidity, wind speed, and air pressure fluctuations.
4) Assumption sensitivities
The 31.3% emission reduction assumes static battery chemistry,

whereas  emerging  LFP  batteries  could  alter  manufacturing
emissions by ±15% (Argonne National Lab, 2022).

5  Conclusions
This study assessed the life cycle CO2 emissions of electric buses in
Guangzhou via LCA, with a focus on stages from manufacturing
to disposal.  Field data combined with government and academic
sources were analyzed to quantify emissions, prioritizing variables
such as speed patterns and charging intervals. The results revealed
that  operational  energy  use  dominated,  driven  by  Guangzhou’s
carbon-intensive  grid.  While  EBs  have  lower  emissions  than
conventional  ICE  buses  do,  regional  grid  variability  necessitates
renewable  energy  integration  and  smart  grid  adoption  for
significant reductions.
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Table 14    Average  energy  consumption  per  trip  for  different  ambient
temperature trip groups

Temperature group (°C) Average energy consumption (per trip·kWh–1)
21.0–23.9 6.74
24.0–26.9 8.43
27.0–29.9 8.85
30.0–32.9 8.99
33.0–35.9 9.23
36.0–38.9 9.69
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The data used in this study were collected over a short period,
which  may  not  fully  represent  the  annual  variation  in  energy
consumption and emissions. Additionally, the study focused on a
localized area in Guangzhou and did not account for the diversity
of electric bus models and battery types, which could influence the
results. The accuracy and completeness of the field data, as well as
potential  biases  in  the  data  sources,  also  pose  challenges  to  the
generalizability of the findings.

To address these limitations and guide future research,  several
specific  directions  are  proposed.  First,  improving  data  collection
methods  is  crucial.  This  can  be  achieved  by  utilizing  more
advanced and continuous data monitoring systems, increasing the
frequency  and  duration  of  data  collection,  and  ensuring  the
accuracy and completeness of the data through rigorous validation
processes.  Second,  expanding  the  scope  of  research  is  essential.
Future studies should cover a wider range of regions with different
climatic  conditions and grid structures and include various types
of  electric  buses  and  battery  technologies  to  increase  the
robustness  and  generalizability  of  the  results.  Finally,
incorporating  additional  factors  such  as  detailed  battery
degradation models, regional policies, and socioeconomic impacts
will  further  enrich  the  analysis.  This  study  proposes  two focused
future research directions: validating the LCA model in cities with
contrasting  grid  structures  and  correlating  real-time  temperature
data  with  energy  consumption  patterns  to  optimize  charging
schedules.

Replication and data sharing
The  program  code  used  within  this  research  can  be  made
accessible upon request via email to the corresponding author.
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