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ARTICLE INFO ABSTRACT

Keywords:

Infrastructure inspections are still largely manual, episodic, and subjective, which delays damage detection and
limits data-informed decision making. The paper introduces a Digital Twin framework designed to enhance
infrastructure inspections using Distributed Optical Fiber Sensors (DOFS) and Augmented Reality (AR). The
framework integrates advanced sensing technologies, edge computing, and web-based applications to provide
real-time and historical data visualization during inspections. DOFS technology, known for its high spatial res-
olution and sensitivity to strain and temperature variations, is utilized to capture high-resolution strain data for
continuous structural health monitoring. The framework combines DOFS data with Building Information
Modelling (BIM) and AR to create a virtual representation of the assets, enabling precise and efficient on-site
inspections. Two case studies demonstrate the practical application of this system: one focusing on historical
data visualization and the other on real-time sensor data visualization. The results highlight the framework’s
ability to provide valuable insights into infrastructure health, improve inspection accuracy, and enhance
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Infrastructure management
Edge computing
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decision-making processes.

1. Introduction

Most current infrastructure management strategies use time-based
inspections, where an operator inspects the structure regardless of its
condition and manually collects data [1]. These data are then analysed
and entered in a database manually. This method has several significant
drawbacks: 1) initial inspections rely purely on human visual assess-
ment, limiting accuracy and depending heavily on the inspector’s
experience; 2) documentation relies on journal records and photos,
making the process tedious, especially in hard-to-reach areas or adverse
weather conditions, leading to inefficient data processing; 3) inspections
often require partial or full closure of the infrastructure for inspector
safety, which is inconvenient for users.

To enhance and support inspection processes, the monitoring of
infrastructure through advanced sensing technologies such as Digital
Image Correlation (DIC) and optical fiber-based strain and temperature
sensors has recently been adopted in structural engineering. Optical
fiber sensors offer several advantages over traditional sensors, including
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their compact size, lightweight nature, and resistance to corrosion and
electromagnetic interference. Among these technologies, Fiber Bragg
Grating sensors are widely employed; however, their limitations in
providing detailed spatial measurements render them less effective for
applications such as detecting cracks in concrete. Recently, advance-
ments in Distributed Optical Fiber Sensors (DOFS) have enabled high
spatial resolution and introduced novel testing techniques. DOFS utilize
light backscattering phenomena such as Raman, Brillouin, and Rayleigh
scattering. The latter two are particularly pertinent to civil engineering
applications due to their sensitivity to strain and temperature variations.
While Brillouin-based DOFS can sense over extensive ranges of up to
300 km, Rayleigh-based systems provide superior spatial resolution,
making them well-suited for detailed structural monitoring.
Distributed Optical Fiber Sensing (DOFS) is an emerging technology
in structural engineering, showing potential for geotechnical and
infrastructure applications [2-5]. Research indicates its capability to
assess key performance indicators and monitor crack widths without
strain transfer models [5,6]. When combined with advancements in
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Information and Communication Technology (ICT), such as the Internet
of Things (I0T), 5G networks, and wireless connectivity, along with data
visualization using Building Information Models (BIM), this forms an
effective approach for developing innovative structural health moni-
toring (SHM) systems. This integrated method is referred to as a Digital
Twin (DT), which creates a virtual representation of a physical asset by
merging sensor data and numerical models to simulate and visualize
real-time behaviour of the asset. Typically, digital twins are used for
remote monitoring; however, current infrastructure management phi-
losophies consider on-site inspection data as crucial and complementary
to sensor data [7]. Therefore, integrating the digital twin into the local
environment to superimpose it onto its physical counterpart would
enhance on-site inspections by providing additional practical value.
Augmented Reality (AR) is identified as the most effective method to
achieve this.

Augmented Reality (AR) is a technology that places computer-
generated content, including graphics, text, audio, or video, onto a
user’s view of the real world in real time. In contrast to Virtual Reality
(VR), which creates an entirely digital environment, AR enhances the
physical environment by adding digital layers or annotations without
completely replacing the user’s surroundings [8]. The application of AR
in civil engineering spans a large number of cases, from education to real
life applications [9-12]. Therefore, the combination of BIM and AR re-
sults very appealing to bring visualize and represent data on the physical
counterpart. Some application in this direction can be found, such as
Park et al. [13] that created a defect-management workflow for civil
structures by linking BIM and AR, focus on a lot on production. Another
work presented by Chi et al. [14] focuses on production enhancement in
the construction processes of infrastructure by allowing AR based in-
spection of steel reinforcement bar deployments. Zhou et al. [15] pro-
posed an AR inspection tool for tunnels that overlays a BIM model onto
the real structure using physical markers or Huang et al. [16] that built
an AR visualization of finite-element results so users can see load effects
in situ. More related to bridge management inspection solutions Nguyen
et al. [17] implemented an integrated system based on Holo Lens device
and BIM for monitoring of bridges. In more recent work by Martins et al.
developed a mixed-reality framework for bridge inspection that in-
tegrates BIM models with parametric damage objects, enabling on-site
visualization and damage mapping through tablets or HoloLens de-
vices. Further, Liu et al. used drones in order to bridge accessibility is-
sues in inspection and use still AR [18]. Melek et al. developed a real-
time monitoring of cracks in concrete using AR, however, this study is
limited to crack and based on image recognition pattern, not in sensor
data. Despite all this work done being very advanced showing useful
integrations of BIM and AR, it is difficult to find practical solutions
where sensor data is brought real-time through a cloud computing
infrastructure to the structure, even less when related to DOFS sensors,
particularly suitable for long term monitoring of infrastructure [19]. In
this regard Minghao et al. [20] introduced a system integrating DOFS
and AR, however, its application is focus on pipelines and the DOFS
technology based on Brillouin.

In this study, ‘Digital Twin’ refers to a dynamic digital replica of a
physical structure, continuously updated with live sensor data DOFS and
visualized through AR, providing interactive feedback for inspection
and analysis. This paper introduces a simple but comprehensive digital
twin concept tailored for both local and remote monitoring and in-
spection of infrastructure. This innovative framework employs DOFS for
extensive data collection, utilizes edge computing for efficient data
processing, and incorporates a web-based application for streamlined
information retrieval and display. By integrating Augmented Reality
(AR) for real-time data visualization and coupling with Building Infor-
mation Modelling (BIM), inspectors can perform more precise, efficient,
and safer inspections. The system is designed to present data in near-real
time as well as historical records, providing inspectors with clear and
immediate insights into infrastructure health, thereby significantly
enhancing their ability to evaluate structural integrity. To demonstrate
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and assess the practical application of this system, we conducted two
case studies in a laboratory setting.

2. Research approach

This study adopts Design Science Research (DSR) as the overarching
methodological framework. DSR is a problem-solving paradigm centred
on the development of artifacts that address identified problems and
deliver utility within specific application contexts [21,22]. In this
approach, the artifact itself constitutes a primary outcome, along with
the knowledge gained about its design, implementation, and impact
within its intended environment.

The DSR process typically involves three interrelated and iterative
activities: Design, Build, and Evaluate. These form the design cycle, in
which alternative solutions are generated, refined, and assessed in a
systematic manner. This cycle is complemented by two supporting cy-
cles: the relevance cycle, which anchors the research in real-world needs
and application contexts, and the rigor cycle, which integrates relevant
theoretical and empirical knowledge from the scientific knowledge base.

In the context of this paper, the artifact developed and evaluated is a
“Digital Twin system and framework for on-site inspections using DOFS,
BIM and AR”, designed for visualizing sensor data for informed decision-
making during off-site and on-site inspections of infrastructures. In the
current state the artifact is demonstrated and validated in laboratory
setting. However, the developed technology and system aim to be
applied in the end in a real-world context. Furthermore, the research not
only aims to demonstrate the utility of the artifact but also to contribute
insights into how and why it improves inspectors understanding, but
also support more precise, efficient, and safer inspections. In the
following section the Design, Build, and Evaluate process for the
different system components for the Digital Twin system and framework
is described. The main components are the Monitoring Component
(Distributed Optical Fiber Sensors (DOFS)), the Analysis Component
(cloud computing for pre-processing and analysing sensor data into
“inspector datasets”), and the Interface Component (web-based appli-
cation supporting intuitive retrieval and display of information using
BIM and AR).

While DOFS for RC monitoring and AR for visualization have been
reported, our contribution is a closed-loop, inspection-oriented Digital
Twin that (i) ingests high-resolution DOFS in near real-time through a
cloud/edge pipeline, (ii) derives crack onset and develoment and warps
the visualization mesh using DOFS-based deflections to minimize AR
misalignment, (iii) employs a simple dual-marker anchoring strategy
suitable for mobile devices on site, and (iv) delivers a hardware-agnostic
WebXR experience, including time-history screening and threshold-
based controls. Table 1 contrasts our framework with representative
prior works.

3. Digital twin framework for on-site inspections using DOFS
and AR

A promising strategy to improve the understanding of the behaviour
and condition of structural elements is the use of digital twins. A digital
twin is a dynamic virtual replica of a physical asset that integrates nu-
merical models with continuously updated sensor data to simulate and
visualize the structure’s real-time response. In this study, we propose a
tailored digital twin concept specifically designed to enhance inspection
workflows and support more effective asset management. The frame-
work combines Distributed Optical Fiber Sensors (DOFS) for high-
resolution data acquisition, edge computing for efficient data process-
ing, and a web-based application for intuitive data retrieval and visu-
alization. The system provides both near-real-time updates and access to
historical records, giving inspectors clear and immediate insights into
structural health and thereby improving their ability to assess integrity
with greater accuracy.

The architectural framework is organized into three main
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Table 1

Positioning of this work against representative studies.
Study Sensor input Real-time AR alignment Mesh/deflection Hardware Focus
(example) loop warping
Park et al. [13] BIM + manual data No Marker-based No Tablet Defect management workflow
Chi et al. [14] Laser scan + AR Partial Model-based No Tablet Rebar inspection
Zhouetal. [15]  BIM overlay No Markers No Tablet Tunnel displacement inspection
Hlﬁlg etal. FE results No Model-based FE only HMD / PC Finite element results in AR
Ng[l?;e]:n etal. BIM + mixed reality Partial HoloLens (SLAM) No HoloLens Bridge inspection/maintenance
Li et al. [20] Brillouin DOFS Partial Not detailed No Mobile device Pipeline safety assessment
Martins et al. . . MR alignment (SLAM + BIM Tablet / Bridge inspection (damage mapping

[33] BIM -+ damage info Partial parametric objects) No HoloLens with BIM)
This work Rayleigh DOFS (mm- Yes (<10 s) Dual QR markers Yes (DOFS-based) WebX'R On-site inspection digital twin
scale) (mobile)

components: the Monitoring Component, the Analysis Component, and
the Interface Component. Their interconnections and distinct roles are
illustrated schematically in Fig. 1, offering an overview of how the
system operates as an integrated whole. Each component is described in
detail in the following sections.

3.1. Data monitoring

The infrastructure monitoring system includes all components
required to measure the physical response of the structure: the sensors,
the interrogator, and the devices enabling remote data access (gateway
or router and server). All monitoring hardware must be installed on site
at the structure being assessed. In this study, an Optical Distributed

Sensor Interrogator (ODiSI 6000 series, Luna Inc.) was used. The inter-
rogator was configured with a spatial resolution of 2.65 mm between
measurement points and a sampling rate of 1 Hz. For sensing, the
BRUsens V9 cable (Solifos) was employed in both case studies. This
cable, with its inner steel tube and rugged polyamide cladding, is me-
chanically robust, easy to handle, and well suited for embedding in
reinforced concrete elements without risk of rupture.

The monitoring module maintains a secure TCP/IP connection with
the ODiSI interrogator, enabling continuous data streaming at the
defined sampling rate. Sensor data are buffered locally to prevent loss
during slower retrieval periods, with the buffer cleared once the
connection is terminated. The retrieved data are then stored and passed
to the analysis module for post-processing.

MONITORING SYSTEM
MONITORING MODULE
Server Router Interrogator Sensor :
=+ TCP/IP server * 4G Router * BruSensV9 souros

Read measurement

CLOUD SERVICES I

ANALYSIS MODULE

FLLLLLL L

INTERFACE MODULE

PLATFORM AS A SERVICE |

+ Heroku (] HEROKU

+ File storage

Import 3D Geometry

[ Data analysis aigorithm | [ WEBAPPUCATION | | NoSQLDATABASE |
. II:re-:arcl)cessing [ Back-end I I User data I
L nalysis [

. y . Front-end | * Users
Post-processing S n‘de > P
A\ MATLAB *© HTMLS E * Sensors
* Express.js
* CCS3 E . mongoDB
Transfer | N <
processed | | Request data ° Threejs % . PUG e
data

| * Javascript

JS

update / delete database

DL T

User interaction

USER CLIENT

= Chrome G * Firefox Q

* Computer / Tablet / Phone

WEB BROWSER

= Safari ° . Edgee

Fig. 1. Schematic representation of the web-based asset inspection system’s architecture.
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3.2. Analysis of sensor data

This section details the specially developed algorithms for pre-
processing and analysing sensor data received through the API from
the monitoring component. Subsequently, both pre-processed and post-
processed data are transmitted to and stored in a database. From there,
data can be served to external clients on demand via a secondary API
described below.

It must be noted that the direct readings of the strain data acquired
through OFDR-based DOFS were filtered using spike removal routines,
with additional moving-window regularization beyond the 2.65 mm
spatial resolution to reduce noise while preserving strain gradients. The
armoured cable used (BRUsens V9, Solifos) further enhanced measure-
ment stability by limiting local distortions on the readings due to the
presence of aggregates and pores in the concrete.

3.2.1. Crack detection

Previous literature has highlighted that strain measurements from
Distributed Optical Fiber Sensors (DOFS) cables enables the detection of
crack initiation and propagation with significant accuracy. Additionally,
Berrocal et al. [6] have demonstrated that strain profiles closely align
with Digital Image Correlation (DIC) measurements, as illustrated in
Fig. 2. From these studies it can be concluded that DOFS facilitates the
detection of crack onset at a considerably earlier stage compared to
solutions based on DIC.

The analysis of strain measurements from the tensioned steel rein-
forcement bar served as input for a crack detection subroutine within the
analysis component, aimed at identifying crack initiation in real time. A
significant challenge in identifying potential crack candidates involves
establishing a threshold within the measurements that distinguishes
whether a detected peak indeed corresponds to a crack, as depicted in
Fig. 2. In relation to crack detection, several aspects should be consid-
ered. First, cracks may occasionally cause local data loss due to the sharp
strain gradients that develop at their location. This effect is mitigated by
the use of robust sensing cables, which laminates the strain transfer to
neighbouring measurement points. Second, the apparent smoothing
visible in the figures reflects as well, interpolation for visualization
purposes and does not represent a loss of physical detail in the under-
lying measurements. Finally, since the framework focuses on perfor-
mance indicators such as crack widths and deflections, both derived
from integrated strain fields over longer regions, the accuracy of these
indicators is not affected by such local smoothing or loss of data.

In this study, peak prominence was selected as the criterion for
identifying potential cracks, as illustrated in Fig. 2 — Detail 1. The
evaluation procedure was as follows.

1. A reference prominence value was defined, above which a peak was
considered indicative of a crack. For this work, a threshold of 8
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microstrains was adopted. While this value may vary slightly
depending on the geometry of the specimen, its variability is limited
to only a few microstrains across different structures. This threshold
is relevant mainly for the early detection of cracking and does not
affect the subsequent accuracy of crack width or crack location
measurements.

2. Based on the input data, a calculated prominence value was then
derived, equal to 5 % of the maximum strain recorded by the sensor.
Since prominence generally increases with load level, this ensured
sensitivity across the loading history.

3. If the calculated prominence fell between 2 and 8 microstrains, it was
used directly to identify crack candidates. For values below 2, a fixed
prominence of 2 was applied to reduce false positives, while for
values above 8, the threshold was capped at 8 to ensure incipient
cracks were not overlooked.

This adaptive approach highlights both the complexity of reliable
crack detection and the importance of a calibrated threshold that re-
sponds to varying conditions and structural geometries.

3.2.2. Crack width

In this study, the methodology for calculating the crack widths of
identified crack candidates follows the simplified approach outlined by
Fernandez et al. [5]. As detailed in their previous work, the contribution
of the concrete to the crack width calculation is disregarded, leading to
the determination of crack width through the integration of £?°™(x)
over the specified length, namely the distance between the preceding
and following valleys. This method presumes the strain measured cor-
responds directly to the strain in the steel, see Eq. 1.

£ (x)dx @

This simplification should yield reasonable results and an upper limit
of the crack width, being the actual crack width equal or smaller,
depending on the real contribution of the surrounding concrete.

3.2.3. Curvatures, rotations, and deflections

The methodology employed in this study to compute the beam de-
flections under a specific load level adopts the framework introduced by
Berrocal et al. [6], utilizing the principles of Euler-Bernoulli beam the-
ory. This theory presupposes that beam sections under load maintain
planarity within the deformation plane, meaning all strains across a
cross-section are orthogonal to it, and overlooks shear deformation
contributions. Accordingly, the beam deflection, v(x), is governed by the
Eq. 2.
M(x) d?v(x)

H = ae @

T T 1
2000 DOFS strain-50kN \4 H
Vv Crack candidates
A Crack dividers
— = Peak prominence |
1500 [~ | M
g 4
= 1 % 3 6 7[8 o A
c
'g 1000 - {K‘ Detail 1 7
(7]
500 — =
0 | | | | | | | |
0 300 600 900 1200 1500 1800 2100 2400 2700

Length, [mm)]

Fig. 2. Crack detection from DOFS sensors compared to DIC measurements [23].
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where M(x) is the bending moment distribution and EI is the flexural
stiffness of the section.

Several methods exist for reconstructing rotations and deflections
from strain data, including modal transformation methods and inverse
finite element methods. In this work, an integration-based approach was
chosen because it directly exploits the distributed nature of DOFS
measurements, requires no prior knowledge of modal properties or
detailed finite element models, and remains computationally light-
weight for near-real-time evaluations. While numerical integration may
accumulate errors along the measurement length, for service-state
conditions, where curvatures vary smoothly, this approach has been
shown to provide sufficiently accurate results for inspection purposes.
Furtehrmore, this is the most natural and simple approach for elements
where beam theory is applicable.

Assuming that section rotation is very small, the ratio M(x)/EI can be
expressed as the curvature of the beam y(x) at any point of the beam,
which can be determined as the change of normal strain per unit length
across the beam’s height. Consequently, the curvature is calculated
based on the difference between the strains measured by two DOFS
located at two different known heights, see Fig. 3, specifically at the top
and bottom rebars, see Eq. 3.

( ) o “«'bot(x) - etop(x)

== 3
x fom ®

where fgr denotes the vertical distance between the DOFS cables. By
determining the curvature distribution, both rotations and deflections
can be derived through direct integration of the curvatures once and
twice, respectively. Application of two known boundary conditions fa-
cilitates the determination of the integration constants.

Mlustrated in Fig. 4 is the curvature, rotation, and deflection distri-
bution along a beam subjected to a typical symmetric four-point bending
setup. This beam is simply supported at both ends. The curvature dis-
tribution’s profile closely mirrors the strain pattern, where curvature
peaks similarly denote crack locations, highlighting the localized
reduction in flexural stiffness at these cracked sections. The depicted
slopes and deflections conform to the antisymmetric and symmetric
distributions expected from the applied loads and boundary conditions,
respectively.

In the targeted service state, concrete and steel behave predomi-
nantly elastically and bond between steel and concrete is very good,
which means that plane-section remain a good approximation. At a
crack, the DOFS attached to the tension reinforcement provides a direct
approximation of the steel strain, while the compression-zone DOFS
tracks the concrete compressive strain. Hence, the curvature definition
in Eq. (3) remains valid at cracked sections because it is based on the
measured strain gradient across the depth rather than on an intact
bottom concrete fiber. Between cracks, tension stiffening reduces the
bottom strain; however, the strain difference over the known lever arm
still represents the effective curvature. Further, cracked section curva-
tures governs integrated rotations and deflections at service loads. This

strain plane\\
I =
y €10p - DOFS
2
W2
' 7z
\ebot -DOFS

Fig. 3. Euler-Bernoulli theory, plane deformation of the cross-section in beams
subjected to dominant bending.
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study therefore restricts deformation reconstruction to service-state
conditions.

3.3. Post-processing data for visualization

This section elaborates on the methodology employed for post-
processing Distributed Optical Fiber Sensor (DOFS) data for visualiza-
tion as contour plots overlaid on the beam geometry.

3.3.1. Geometry update

The beam’s spatial domain, shown in Fig. 5(a), was discretized into a
uniform grid covering the entire concrete surface Fig. 5(b). The strain
data obtained from the DOFS cables were then extrapolated onto these
grid points. To facilitate communication between the pre-processing,
post-processing, and visualization modules, the grid was transformed
into a mesh of interconnected elements. In the unloaded state, this mesh
was generated using the Delaunay triangulation method, producing a
uniform set of triangular elements Fig. 5(c). The procedure yields three
matrices that define the mesh: node identifiers, nodal coordinates, and
element connectivity.

The nodes from the interconnected elements facilitate the construc-
tion of various surface plots, with the node coordinates (X, Y, and Z)
indicating their spatial positions within the beam. The contour plots are
determined by the matrix C, which holds the data values to be visual-
ized. The visualization of the data is done by the interpolation of the
node’s values, and a color is assigned depending on the max and min
values within the C matrix, see Fig. 6. A notable challenge in overlaying
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Fig. 6. Interpolation of node values for the data visualization in contour plots.

surface plots onto the beam is the discrepancy caused by beam defor-
mation under load, making the contour plots and the deformed beam
increasingly divergent with rising load levels. To address this
misalignment and enhance data visualization accuracy, the mesh, as

| Xn,i

shown in Fig. 5(c), is adjusted to reflect the actual beam deflections.

As detailed previously, deflections are computed following Euler-
Bernoulli beam theory, which allows for the determination of each el-
ement’s coordinate changes assuming a plane deformation. Given the
rotation of a section under external load, both longitudinal and vertical
displacements for each point along the section’s height can be calcu-
lated, see Eq. (4) and (5) respectively.

Xn,i = Xni — Au = xp; — Sin(¢ (xn,i) )'yn,i (4)

Yii = V(Xni) + AV = ¥(Xn;) + €08(9 (Xni) ) Yni (5)

Where x,; and y,; are the original node coordinates, with v and ¢
representing deflection and rotation, respectively, derived from the
reference value at the neutral axis for the given position x,;, as shown in
Fig. 7.

After applying the described transformation to the nodes’ co-
ordinates a new representation of the mesh is obtained, which means
that the new mesh position matches the deformation of the beam, see
Fig. 5(d). It must be noted that this approach retains the original mesh
structure, including the connections and node identifiers, across all
loading steps. The later, significantly simplifies the post-processing

Fig. 7. Vertical and horizontal displacements obtained from the beam’s neutral axis deflection calculated by Euler-Bernoulli theory.
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process allowing contour plot values to be calculated using the original
mesh, with positions updated separately and independently.

3.3.2. Strains, crack pattern and deflections

The strain data obtained from the DOFS cables situated at the cor-
responding steel reinforcement bars, Fig. 8(a), are directly extrapolated
based on the hypothesis of plain deformation plane. This assumption is
valid for the beam specimens studied here, where plane deformation
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sections are preserved, and ensures accurate reconstruction of de-
formations. For structural elements where this assumption does not
hold, such as slabs with non-uniform strain distributions, alternative
methods are required. For example, Fernandez et al. [2] demonstrated
how DOFS measurements can be extrapolated to reconstruct principal
strain fields in slab elements.

Consistent with this hypothesis the neutral axis of the cross-section, i.
e. the point where a null value of the strain is obtained and the strain
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—_ bot
w
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Fig. 8. (a) DOFS strain data, (b) extrapolated strain field on the concrete surface from the DOFS data, (c) outcome of the crack detection module from DOFS
measurements and corresponding crack functions for data visualization, (d) crack visualization extrapolated from the crack function, (e) calculated beam deflection
from the DOFS data at the beam’s neutral axis, (f) and (g) Vertical and horizontal displacements computed from the beam deflection at the neutral axis.
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value at any height of the cross-section can be computed according to
Eq. (6).

&y (Xni) = ¥ (%ni) Yni (6)

Where y denotes the curvature calculated according to Eq. (3), and x
and y are the coordinates of the nodes. This data, once calculated at each
mesh node, facilitates visualization as a contour plot on the beam’s
deformed shape, as illustrated in Fig. 8(b).

Visualization of the crack pattern through contour plots leverages
the identified crack candidates. Following the detection of crack can-
didates, strain data undergo further post-processing to visualize both the
cracks and their respective widths. In order to obtain a better visuali-
zation of the cracks and a more robust algorithm to post-process the
data, the method presented by Berrocal et al. [6] is further developed.
The present algorithm utilizes the same approach to transform the strain
measured by the cables to crack values, i.e. crack functions are gener-
ated to create crack profiles that can be suitable for visualization pur-
poses. In this regard, the crack functions are generated for each crack
using a gaussian curve with a peak value equal to the computed crack
width and a width of 4 cm.

For a refined representation, each mesh node is initially assigned a
crack width of zero. Where a crack is identified by the detection algo-
rithm, linear extrapolation along the nodes within the cross-section
height is executed. This extrapolation process includes calculating
crack width at varying heights reinforcement level, one-third and two-
thirds of the crack height, the neutral axis (where the crack fully
closes), and the top reinforcement position assuming a linear closure
from the section’s bottom to its neutral axis, beyond which it remains
closed. A typical crack pattern using the developed algorithm is illus-
trated in Fig. 8(d).

Lastly the displacements are simply calculated as the difference be-
tween the new calculated vertical position of the mesh nodes, according
to Eq. (4) and (5), and the original vertical position of the node, as
described in the Eq. (7) and (8).

5:1' = Xn‘i — Xn,i (7)

5),,“' = Yn,i —Yni (8)

Where X,,; and Y,; are the new horizontal and vertical node’s coor-
dinate and x,; and y,; the original horizontal and vertical position of the
nodes, respectively. Fig. 8(f) and Fig. 8(g) display the horizontal and
vertical deflection visualization for a specified load step, illustrating the
method’s capacity to accurately represent structural deformations.

3.4. Data retrieving and uploading to cloud-services API

An application programming interface (API) was developed and in-
tegrated into the system architecture to act as a communication bridge
between the monitoring module, the analysis component, and the cloud
services. Implemented in Python, the API periodically queried the
monitoring module for new sensor data and then awaited a trigger from
the calculation module, activated once all processing tasks and data files
had been generated. Upon activation, the API uploaded the relevant
data—tagged with identifiers such as data type (e.g., deflections, cracks,
strains), measurement units, timestamp, and group identifier—to a
cloud-based, non-structured database hosted on the Azure® infrastruc-
ture. Although a structured database could have been employed for
time-series data, the selected setup proved effective for this study.

The frequency of API calls was defined by the minimum time
required for each system component to complete its tasks, including data
retrieval (influenced by data volume and internet speed), analysis
(conversion of strain data into inspection parameters), and post-
processing (preparation of results for AR visualization). In the pre-
sented applications, this workflow typically completed in less than 10 s,
allowing near real-time visualization of structural response. For larger
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structures, where data volume and computational demand are higher,
the API call interval may need to be extended. Furthermore, the reading
interval is dynamically adjusted based on the available on-site internet
connectivity.

3.5. Client communication API

The client communication API, hosted on the cloud-based service
servers, continuously listened for incoming requests, thereby establish-
ing direct connections between client devices and the servers storing the
post-processed data. Data retrieval requests relied on two identifiers: a
time value and a data type. If the exact timestamp was unavailable, the
system automatically returned the closest available time step.

This setup proved highly efficient and robust for time-history eval-
uations, where complete datasets must be accessed and reviewed.
However, it is less efficient for real-time evaluation, as the client sends
periodic requests regardless of whether new data are available. In such
cases, redundant transfers occur because the most recent time step is
repeatedly retrieved even when no new data exist.

To address this, two alternative communication strategies have been
considered:

1. An uncoupled channel (computational module — cloud storage —
client), well-suited for time-history analysis, as implemented in the
present framework.

2. A direct channel (computational module — client), better suited for
real-time monitoring, as it enables the client to update only when
new data become available.

The second approach has clear advantages for real-time inspection,
but it also raises security concerns, since mobile clients currently sup-
port only secure, certified connections. While this limitation poses a
challenge during the present development stage, it is not expected to
hinder future large-scale implementations, where certified secure con-
nections between modules and clients can be more readily ensured.

3.6. Data visualization through AR

Augmented Reality (AR) solutions have gathered significant interest
in recent years due to their adaptability in displaying sensor data from
extensively utilized Building Information Modelling (BIM) models. The
proliferation of these solutions is supported by specialized hardware and
the arrival of sophisticated AR frameworks for mobile devices, such as
ARKit (Apple) and ARCore (Google). These platforms leverage camera-
based Simultaneous Localization and Mapping (SLAM) algorithms to
construct a simplified internal 3D representation of the surroundings,
enabling the placement of virtual objects within it. A notable effort has
been made to democratize the application of this technology through the
introduction of WebXR, a web-based AR framework. WebXR facilitates
the development of software and hardware agnostic solutions with
unified source code, further supporting the use of ubiquitous open-
source web development libraries.

An essential challenge in AR tool development is the precise align-
ment between the real-world environment, captured by the device’s
cameras, and the superimposed virtual objects. Although various
methods exist, this project employs a marker-based approach, which
hinges on anchors, image and marker tracking, and alignment.

WebXR, like modern AR systems, employs SLAM to forge an internal
3D environmental representation, enhancing object positioning accu-
racy over time. This necessitates the anchoring of virtual objects to real-
world counterparts to maintain their relative positions despite global
spatial changes. Anchors allow virtual objects to update their positions
dynamically in relation to physical locations, significantly mitigating
discrepancies such as “floating” objects. Thus, the relation between
physical and virtual object is prioritized in front of absolute positions in
the space.
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Additionally, WebXR’s image tracking capabilities enable the
recognition of general images or specific markers, such as QR codes,
which are easily recognizable due to its unique patterns and high
contrast. Registered images, once detected within a session, are assigned
real-world coordinates, facilitating the alignment of virtual to real ob-
jects. The integration of anchoring with this tracking mechanism ensures
that virtual objects not only adopt the local coordinate system of the
markers but are also anchored to the physical environment, enhancing
alignment accuracy, as demonstrated in Fig. 9.

To refine the alignment of post-processed sensor data with the actual
beam, a dual-marker system is implemented. This approach minimizes
deviations in data overlay, especially for larger objects, by defining a
unique local coordinate system from the markers’ centers, anchored to
the beam. The sensor data’s rendering coordinate system is positioned
midway between the markers, independent of their rotations, as detailed
in Fig. 10.

Finally, a user interface (UI) is crucial for rendering the specific data
via WebXR. WebXR offers the capability to employ standard web
development tools such as Hypertext Markup Language (HTML) and
Cascading Style Sheets (CSS) for crafting and styling the web interface
and leverages the Three.js library for efficient contour plot visualization,
based on open-source graphic library OpenGL. By combining HTML-
based WebXR for AR with QR codes that serve both as spatial trackers
and link to a webpage (URL carriers), the framework enables identifi-
cation of the infrastructure under inspection. This user interface sup-
ports on-site inspections by detecting and spatial positioning the
relevant infrastructure and loading the corresponding AR scene auto-
matically. Furthermore, the interface facilitates data display (e.g.,
strains, cracks, deflections) and allows dynamic scaling of contour plots
based on user defined min and max values. A time-history module en-
ables data screening over time through a slider, adjusted for min and
max timestamp values. For real-time sensor data, an open database
connection updates the AR system with the latest data, considering the
operational time required for data fetching, processing, and storage. An
illustration of the interface, showcasing its functionalities, is presented
in Fig. 11.

4. Results: Case studies

In order to illustrate the capabilities of an AR solution for enhanced
inspection of infrastructure two case studies are presented in the
following.

4.1. Case study 1: Visualization of historical data

For the visualization of historical data, data retrieved from Distrib-
uted Optical Fiber Sensors (DOFS) during the pre-cracking test of a
large-scale reinforced concrete beam was utilized. Fig. 12 provides a
comprehensive overview of the beam’s geometry, the arrangement of
sensors, and the testing setup. The beam underwent testing within a
conventional four-point bending configuration, with the boundary
conditions being that of simple supports. The load was symmetrically
applied across the beam via a distribution beam, ensuring uniform
loading conditions. The loading process involved three cycles of
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monotonic ascending/descending ramps, regulated by the jack’s local
displacement.

Fig. 13(a-b) presents the measured strain at the bottom bar during
the initial loading phases. As depicted in Fig. 13(a), the implemented
crack detection algorithm successfully identified the first crack at an
early stage of loading. Subsequent load increments resulted in additional
cracks, which were also detected by the same algorithm. Fig. 13(c)
displays the calculated deflections, determined using the methodology
outlined in Section 3.2.3, corresponding to each load step. These
deflection values are subsequently utilized in further analyses to
compute mesh deformation, enabling representation of the beam’s
deformed shape and facilitating data visualization on the deformed
mesh. Further experimental measurements for case study 1 are pre-
sented in [6].

A dual-marker solution was implemented for alignment purposes,
entailing the attachment of two QR code markers to the beam’s surface
as depicted in Fig. 14. These markers, defined as anchors within the AR
system to the beam’s geometry, were strategically placed at the beam’s
ends to minimize potential rotation issues of the overlaid information.
Accordingly, the centre of each marker was positioned 125 mm from the
top and beam-end on both sides, with the data rendering’s local coor-
dinate system cantered on the beam.

Fig. 15 showcases an example of the data visualization. It is impor-
tant to note that within the time history module, the data is overlaid on
the structure in its unloaded form, as per the generated mesh displayed
in Fig. 5(c). This approach aims to avoid misalignment between the
overlaid data and the beam, which could potentially confuse or mislead
the user. Nevertheless, the implementation of a toggle feature could
allow users to choose between visualizing the data on deformed or un-
deformed meshes for enhanced flexibility. To provide a clearer under-
standing of the entire process, including the alignment through marker
tracking and data visualization, a comprehensive video encompassing
all steps is available at the provided link.

4.2. Case study 2: Real-time visualization of sensor data

To demonstrate the effectiveness of the real-time crack detection
module in practical scenarios, a second case study was conducted
through a live demonstration test, using a full-scale post-tensioned
reinforced concrete beam. The geometric details, sensor arrangement,
and testing setup are depicted in Fig. 16. This beam was subjected to the
same testing configuration as the previous case study, but with the load
monotonically increased until failure.

Fig. 17(a-b) presents the same results shown in Fig. 13, but for the
Posttensioned Reinforced beam instead. As seen in Fig. 17(a-b), the
implemented crack detection algorithm properly identifies the crack at a
very early stage. Subsequent load increments resulted in additional
cracks, which were also detected as well. The deflections of the beams
for the different load steps shown in the Fig. 17(a-b) are depicted in
Fig. 17(c). Further experimental measurements for case study 1 are
presented in [24].

For this experiment, a two-marker strategy was also utilized, with
markers positioned approximately 7.5 m apart. Markers were affixed to
the interior of the beam’s web, and the central point of the beam was

Fig. 9. Example of marker-based AR to aid positioning of virtual objects.
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Origin (0,0,0) of the beam 3D-model

Markers placed equal distance from the center-point

Fig. 10. Definition of the AR’s global coordinate systems based on markers for data visualization.

designated as the origin of the local coordinate system. Fig. 18(a) dis-
plays the location of the left marker.

Upon detection of both markers and successful establishment of the
new local coordinate system, the AR component presents an initial vir-
tual object, a BIM model of the beam. This model outlines the external
concrete geometry with a wireframe along the beam edges and provides
intricate details of the reinforcement bars and sensor cables, as shown in
Fig. 18(a-b). Visualizing the steel reinforcement overlaying the concrete
geometry offers valuable insights into the structural behaviour under

¥ Cracks

|Deformations

Time History

load, enhancing understanding beyond what traditional drawings can
provide. This model remains visible until the communication API is
activated, and sensor data begin to be received by the device.

With the first data request through the API, the BIM model is hidden,
activating the data visualization environment. Fig. 19(a) reveals the
crack pattern at an incipient stage, showcasing the crack detection
module’s ability to operate in real-time. Cracks identified by the AR
system, imperceptible to the naked eye due to their minuscule size,
underscore the effectiveness of DOFS in early crack detection and its

Fig. 11. Web based interface to interact with the backend and data analysis module, and data visualization.

Actuator

Load cell
Distribution beam
[
to the interrogator ) 450 | 450 )
\ I T 1 top
H bottom -top DOFS
= e
> W} |—bottom DOFS
i 900 900 900 |
lj ’ ' |
‘ 2700 ‘
—07 o

Longitudinal elevation

Cross Section

Fig. 12. Geometry, loading setup and DOFS installation configuration for the RC beam specimen.
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Fig. 13. Experimental measurements for the beam of case study 1. (a) Crack detection based on early strain distribution for different load levels. (b) Comparison of
crack detection at low and service load levels. (c) Calculated distribution of deflections for the different load steps.

Fig. 15. Data visualization on the beam through the AR environment after alignment.
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Fig. 16. Geometry, loading setup and DOFS installation configuration for the PRC beam specimen.

utility in visualizing on-site information during inspections. Figs. 19(b)
and 19(c) exhibit the strain fields derived from the DOFS sensors at early
and advanced load stages, respectively, relative to the failure load.
Initial load stages show excellent alignment between the beam and
virtual overlay, indicating that the geometry update subroutine effec-
tively adjusts the mesh geometry to convey accurate information to the
rendering component. However, at more advanced load stages, some
misalignment occurs, not due to inaccuracies in the geometry update
subroutine, but because the DOFS occasionally fails to capture viable
strain data due to significant local deformations, due to the large dis-
continuities that cracks represent, potentially leading to non-numeric
values (NaN) in the readings. Consequently, the geometry update sub-
routine, relying on deflection calculations to depict the mesh in its
deformed state, may incorporate incorrect data, misrepresenting the
actual deflections. This limitation underscores the applicability of DOFS
monitoring and AR-enhanced inspections primarily under service loads
or conditions not nearing the failure threshold, which aligns with typical
inspection protocols. A video demonstrating the system in action during
the test is available for further insight.

5. Results and discussion

The results from case study 1 and 2 showed that it was possible to
visualize both real-time and historical data through the presented digital
twin framework using DOFS, BIM, AR, and the web-based asset in-
spection system. The laboratory tests demonstrated that these technol-
ogies can be merged to support a digital twin framework capable of both
on-site and off-site infrastructure health inspections, enabling the
analysis and visualization of real-time and historical data. This frame-
work allows for more detailed insights into infrastructure condition and
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enhances decision-making through a more data-informed process. As
shown in the case studies, the digital twin framework successfully
identified and visualized cracks before they became visible to the naked
eye, demonstrating the effectiveness of integrating DOFS for early crack
detection in combination with AR visualization. This is consistent by
Ballor et al. [25] who demonstrated how AR combined with sensor-
based structural monitoring improves infrastructure inspection by
overlaying critical damage indicators directly onto visual models,
enhancing both accuracy and usability in field settings.

Furthermore, the framework enables remote inspection of structural
components located in hazardous or hard-to-access environments,
thereby reducing the need for on-site presence and improving safety and
operational efficiency. When on-site AR was used in the case studies,
results showed excellent alignment between the physical and virtual
beam overlays. However, the current study was conducted in a
controlled laboratory setting. Applying the system in real-world envi-
ronments with greater variability remains a critical next step. In the lab,
QR codes worked well for loading the web-based AR scene and identi-
fying the current location and infrastructure element, but in the field,
QR codes must be high-contrast and weather-resistant. While suitable
for initialization, they may not be sufficient for spatial tracking and
virtual scene anchoring.

In this context, AprilTags QR code-like markers developed for AR
tracking could provide more robust spatial tracking when combined
with SLAM. In our controlled lab setting, SLAM combined with standard
QR codes performed reliably. The performance of AR markers (e.g., QR
codes) is influenced by lighting, visibility, and weather. While markers
worked reliably indoors, field deployment will require high-contrast,
weather-resistant designs or alternatives such as AprilTags for more
stable tracking under challenging conditions. However, SLAM systems



L. Fernandez et al.

(a) Initial load steps
T T

Automation in Construction 181 (2026) 106602

200 T T T T T
30.1 kN
25.8 kN
150 - 21.6 kN |_|
—_ 17.1kN
9 12.6 kN
:_' 100 " 4.4 kKN
®
s
7]
50
0
1000
86.5 kN
800
W
= 600 - =
£
£ 00t .
[
200 =
0 | | | | | | |
0 (c) Beam deflections
E 2 1
E
- 0kN
S 4 44N |
B 12.6 kN
o 17.1kN
= 21.6 kN
o -6 258 kN ||
30.1 kN
86.5 kN
-8 | | | | | | 1

0 1000 2000 3000

4000

5000 6000 7000 8000

Beam length, [mm]

Fig. 17. Experimental measurements for the beam of case study 2. (a) Crack detection based on early strain distribution for different load levels. (b) Comparison of
crack detection at low and service load levels. (c) Calculated distribution of deflections for the different load steps.

often struggle in low-light, reflective, or textureless environments. Pre-
vious studies, including Cadena et al. [26] have shown that maintaining
reliable SLAM performance in large-scale or dynamic environments is a
significant challenge, reinforcing the need for complementary tracking
aids. AprilTags, when used alongside SLAM, have been found to improve
pose estimation and tracking efficiency [27]. Additionally, Pfrommer
and Daniilidis [28] demonstrated that integrating AprilTags into a SLAM
factor graph (TagSLAM) significantly improves pose stability, loop
closure, and environmental mapping. In more difficult field conditions

such as large-scale infrastructure with challenging visual features mul-
tiple temporary AprilTags or image trackers during inspection may be
necessary to accurately anchor and align the virtual and physical scenes.
External lighting may also be needed to support tracking in low-light
conditions.

In some scenarios, location-based tracking using Global Navigation
Satellite Systems (GNSS) may be required, particularly for large-scale
infrastructure observed from a distance. Wu et al. [29] showed that
combining AprilTag detection with Inertial Measurement Units (IMUs)

Fig. 18. (a) Marker position and detection, (b) visualization of the internal components of the beam, i.e. steel reinforcement bars and tendon, and DOFS cables.
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Fig. 19. Real time visualization of postprocessed data within the AR environment. (a) crack withs, (b) and (c) strain fields and early and late load stages respectively.

through visual-inertial fusion provides robust localization even in GNSS-
denied environments. The alignment of the AR scene and the validation
of marker placement in such real-world scenarios must be further
studied before drawing conclusions about the full scalability and
robustness of the system. Similar challenges were addressed by Nakaso
et al. [30], who developed a hybrid MR system that switches between
GNSS-based and marker-based tracking to ensure accurate visualization
in both open-sky and obstructed environments. Their findings support
the conclusion that real-world applications may require more adaptable
spatial anchoring methods such as AprilTags and GNSS beyond standard
QR codes and SLAM.

Looking ahead, the deployment of Unmanned Aerial Vehicles (UAVs)
in hard-to-access environments could be valuable, especially when
combined with DOFS for early-stage crack detection and AR visualiza-
tion. UAV-assisted crack detection has shown strong potential in field
environments. Phung et al. [31] developed an automated UAV inspec-
tion system that utilizes image-based crack identification, demon-
strating efficiency gains and safety improvements. This highlights the
opportunity of integrating UAV-based imaging with DOFS and AR in our
framework to identify critical areas for detailed inspection and
documentation.

Additionally, the system’s interactive interface facilitates real-time
visualization of structural parameters such as strain, crack develop-
ment, and deflections and supports dynamic contour scaling based on
user-defined thresholds. A built-in time-history module allows users to
examine data evolution through an adjustable time slider. Future
research should explore typical threshold values and performance
variability across different structural and environmental conditions.
Such investigations can provide deeper insight into structural behav-
iour, load cases, and bearing capacity, both for optimizing design and
evaluating the performance of existing structures.

Another practical application of the digital twin framework lies in
engineering education, particularly in laboratory settings where stu-
dents test structural elements such as beams. By integrating DOFS with
BIM and AR visualization, the system allows for real-time crack detec-
tion and visualization before cracks become visible [32]. This enables
students to gain a deeper understanding of material behaviour, struc-
tural loading, damage progression, and capacity limits, enhancing their
learning through immediate, data-driven feedback during experiments.

Practicality for large-scale civil structures. The proposed framework
relies on distributed strain measurements, and it is acknowledged that
fully distributed sensing is not feasible at all scales. Nonetheless, current
Rayleigh-based OFDR systems enable measurements up to ~100 m per
channel with standoff cables of about 200 m, which is already sufficient
for many structural elements such as beams, decks, and tunnels. For
larger infrastructures, Brillouin-based semi-distributed sensing can
extend the sensing range to the kilometer scale, albeit at lower spatial
resolution (~200 mm). This resolution remains sufficient to detect
cracks and provide representative strain and deflection fields for in-
spection purposes. Importantly, the post-processing and visualization
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algorithms developed in this work are adaptable across these technol-
ogies, ensuring the framework’s relevance and scalability to real
structures.

Limitations and scope. The proposed reconstruction assumes service-
state behaviour, sufficient bond for strain transfer, and validity of
Euler-Bernoulli theory. Near ultimate loads, with large localization,
severe slip, or sensor dropout, curvature estimation and mesh warping
can degrade; this is consistent with the misalignment observed at
advanced load levels in other experiments [5].

6. Conclusions

This paper presented a modular and scalable digital twin framework
that integrates Distributed Optical Fiber Sensors (DOFS), Building In-
formation Modelling (BIM), Augmented Reality (AR), and a web-based
platform to support infrastructure inspection and structural health
monitoring. Through two laboratory case studies, it was demonstrated
that the framework enables both real-time and historical visualization of
strain, deflection, and crack development offering early-stage damage
detection before visual signs are present.

By using cloud-based storage and optimized post-processing, the
system enables near real-time overlay of sensor data onto virtual models
with minimal latency and low data transfer requirements. The proposed
strategy for visualizing deformation using incremental node displace-
ment further reduced computational load, making it suitable for scalable
monitoring applications. The integration of AR provided spatially ac-
curate, intuitive visualization of structural performance, supporting
remote inspections in potentially hazardous or hard-to-access environ-
ments. Unlike traditional digital twin implementations that rely on
manual data input, static models, or isolated sensor feedback, the pro-
posed framework offers a real-time, closed-loop integration between
high-resolution DOFS data and immersive AR visualization. This syn-
ergy allows inspectors to intuitively view strain, crack evolution, and
deformation patterns spatially mapped onto actual structures bridging
the gap between abstract data interpretation and actionable field un-
derstanding. By using lightweight, web-based deployment and mini-
mizing data transmission overhead, the framework also represents a
practical and scalable step forward for real-world implementation of
sensor-integrated digital twins in construction and infrastructure
management.

In addition to field applications, the framework shows potential for
engineering education, offering students direct insight into the behav-
iour of materials and structures through real-time, data-driven experi-
ments. The use of interactive interfaces and time-history modules
enables targeted evaluation of the sectional response, steel stresses,
sectional curvature and other key parameters in the design process of
reinforced concrete structures.

Future research will focus on deploying the framework in large-scale
and operational infrastructure to validate performance under variable
environmental conditions. This includes the integration of advanced
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tracking techniques such as AprilTags, GNSS-based localization, and
visual-inertial fusion, as well as UAV-assisted inspections for inacces-
sible assets. Broader application scenarios such as predictive mainte-
nance, digital asset management, and digitally enhanced education will
also be explored. However, the authors consider that the framework is
practical for real-world applications: current Rayleigh-based DOFS al-
lows spans up to 100 m per channel, and Brillouin-based sensing extends
applicability to kilometer-scale infrastructure, albeit at reduced resolu-
tion. The developed algorithms are directly adaptable to both technol-
ogies, ensuring scalability from laboratory validation to large-scale civil
structures.

Overall, this work contributes to the growing body of research on
sensor-integrated digital twins and offers a practical pathway toward
more informed, safe, and efficient infrastructure inspection workflows
in construction and asset management.
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