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A B S T R A C T

Infrastructure inspections are still largely manual, episodic, and subjective, which delays damage detection and 
limits data-informed decision making. The paper introduces a Digital Twin framework designed to enhance 
infrastructure inspections using Distributed Optical Fiber Sensors (DOFS) and Augmented Reality (AR). The 
framework integrates advanced sensing technologies, edge computing, and web-based applications to provide 
real-time and historical data visualization during inspections. DOFS technology, known for its high spatial res
olution and sensitivity to strain and temperature variations, is utilized to capture high-resolution strain data for 
continuous structural health monitoring. The framework combines DOFS data with Building Information 
Modelling (BIM) and AR to create a virtual representation of the assets, enabling precise and efficient on-site 
inspections. Two case studies demonstrate the practical application of this system: one focusing on historical 
data visualization and the other on real-time sensor data visualization. The results highlight the framework’s 
ability to provide valuable insights into infrastructure health, improve inspection accuracy, and enhance 
decision-making processes.

1. Introduction

Most current infrastructure management strategies use time-based 
inspections, where an operator inspects the structure regardless of its 
condition and manually collects data [1]. These data are then analysed 
and entered in a database manually. This method has several significant 
drawbacks: 1) initial inspections rely purely on human visual assess
ment, limiting accuracy and depending heavily on the inspector’s 
experience; 2) documentation relies on journal records and photos, 
making the process tedious, especially in hard-to-reach areas or adverse 
weather conditions, leading to inefficient data processing; 3) inspections 
often require partial or full closure of the infrastructure for inspector 
safety, which is inconvenient for users.

To enhance and support inspection processes, the monitoring of 
infrastructure through advanced sensing technologies such as Digital 
Image Correlation (DIC) and optical fiber-based strain and temperature 
sensors has recently been adopted in structural engineering. Optical 
fiber sensors offer several advantages over traditional sensors, including 

their compact size, lightweight nature, and resistance to corrosion and 
electromagnetic interference. Among these technologies, Fiber Bragg 
Grating sensors are widely employed; however, their limitations in 
providing detailed spatial measurements render them less effective for 
applications such as detecting cracks in concrete. Recently, advance
ments in Distributed Optical Fiber Sensors (DOFS) have enabled high 
spatial resolution and introduced novel testing techniques. DOFS utilize 
light backscattering phenomena such as Raman, Brillouin, and Rayleigh 
scattering. The latter two are particularly pertinent to civil engineering 
applications due to their sensitivity to strain and temperature variations. 
While Brillouin-based DOFS can sense over extensive ranges of up to 
300 km, Rayleigh-based systems provide superior spatial resolution, 
making them well-suited for detailed structural monitoring.

Distributed Optical Fiber Sensing (DOFS) is an emerging technology 
in structural engineering, showing potential for geotechnical and 
infrastructure applications [2–5]. Research indicates its capability to 
assess key performance indicators and monitor crack widths without 
strain transfer models [5,6]. When combined with advancements in 
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Information and Communication Technology (ICT), such as the Internet 
of Things (IoT), 5G networks, and wireless connectivity, along with data 
visualization using Building Information Models (BIM), this forms an 
effective approach for developing innovative structural health moni
toring (SHM) systems. This integrated method is referred to as a Digital 
Twin (DT), which creates a virtual representation of a physical asset by 
merging sensor data and numerical models to simulate and visualize 
real-time behaviour of the asset. Typically, digital twins are used for 
remote monitoring; however, current infrastructure management phi
losophies consider on-site inspection data as crucial and complementary 
to sensor data [7]. Therefore, integrating the digital twin into the local 
environment to superimpose it onto its physical counterpart would 
enhance on-site inspections by providing additional practical value. 
Augmented Reality (AR) is identified as the most effective method to 
achieve this.

Augmented Reality (AR) is a technology that places computer- 
generated content, including graphics, text, audio, or video, onto a 
user’s view of the real world in real time. In contrast to Virtual Reality 
(VR), which creates an entirely digital environment, AR enhances the 
physical environment by adding digital layers or annotations without 
completely replacing the user’s surroundings [8]. The application of AR 
in civil engineering spans a large number of cases, from education to real 
life applications [9–12]. Therefore, the combination of BIM and AR re
sults very appealing to bring visualize and represent data on the physical 
counterpart. Some application in this direction can be found, such as 
Park et al. [13] that created a defect-management workflow for civil 
structures by linking BIM and AR, focus on a lot on production. Another 
work presented by Chi et al. [14] focuses on production enhancement in 
the construction processes of infrastructure by allowing AR based in
spection of steel reinforcement bar deployments. Zhou et al. [15] pro
posed an AR inspection tool for tunnels that overlays a BIM model onto 
the real structure using physical markers or Huang et al. [16] that built 
an AR visualization of finite-element results so users can see load effects 
in situ. More related to bridge management inspection solutions Nguyen 
et al. [17] implemented an integrated system based on Holo Lens device 
and BIM for monitoring of bridges. In more recent work by Martins et al. 
developed a mixed-reality framework for bridge inspection that in
tegrates BIM models with parametric damage objects, enabling on-site 
visualization and damage mapping through tablets or HoloLens de
vices. Further, Liu et al. used drones in order to bridge accessibility is
sues in inspection and use still AR [18]. Melek et al. developed a real- 
time monitoring of cracks in concrete using AR, however, this study is 
limited to crack and based on image recognition pattern, not in sensor 
data. Despite all this work done being very advanced showing useful 
integrations of BIM and AR, it is difficult to find practical solutions 
where sensor data is brought real-time through a cloud computing 
infrastructure to the structure, even less when related to DOFS sensors, 
particularly suitable for long term monitoring of infrastructure [19]. In 
this regard Minghao et al. [20] introduced a system integrating DOFS 
and AR, however, its application is focus on pipelines and the DOFS 
technology based on Brillouin.

In this study, ‘Digital Twin’ refers to a dynamic digital replica of a 
physical structure, continuously updated with live sensor data DOFS and 
visualized through AR, providing interactive feedback for inspection 
and analysis. This paper introduces a simple but comprehensive digital 
twin concept tailored for both local and remote monitoring and in
spection of infrastructure. This innovative framework employs DOFS for 
extensive data collection, utilizes edge computing for efficient data 
processing, and incorporates a web-based application for streamlined 
information retrieval and display. By integrating Augmented Reality 
(AR) for real-time data visualization and coupling with Building Infor
mation Modelling (BIM), inspectors can perform more precise, efficient, 
and safer inspections. The system is designed to present data in near-real 
time as well as historical records, providing inspectors with clear and 
immediate insights into infrastructure health, thereby significantly 
enhancing their ability to evaluate structural integrity. To demonstrate 

and assess the practical application of this system, we conducted two 
case studies in a laboratory setting.

2. Research approach

This study adopts Design Science Research (DSR) as the overarching 
methodological framework. DSR is a problem-solving paradigm centred 
on the development of artifacts that address identified problems and 
deliver utility within specific application contexts [21,22]. In this 
approach, the artifact itself constitutes a primary outcome, along with 
the knowledge gained about its design, implementation, and impact 
within its intended environment.

The DSR process typically involves three interrelated and iterative 
activities: Design, Build, and Evaluate. These form the design cycle, in 
which alternative solutions are generated, refined, and assessed in a 
systematic manner. This cycle is complemented by two supporting cy
cles: the relevance cycle, which anchors the research in real-world needs 
and application contexts, and the rigor cycle, which integrates relevant 
theoretical and empirical knowledge from the scientific knowledge base.

In the context of this paper, the artifact developed and evaluated is a 
“Digital Twin system and framework for on-site inspections using DOFS, 
BIM and AR”, designed for visualizing sensor data for informed decision- 
making during off-site and on-site inspections of infrastructures. In the 
current state the artifact is demonstrated and validated in laboratory 
setting. However, the developed technology and system aim to be 
applied in the end in a real-world context. Furthermore, the research not 
only aims to demonstrate the utility of the artifact but also to contribute 
insights into how and why it improves inspectors understanding, but 
also support more precise, efficient, and safer inspections. In the 
following section the Design, Build, and Evaluate process for the 
different system components for the Digital Twin system and framework 
is described. The main components are the Monitoring Component 
(Distributed Optical Fiber Sensors (DOFS)), the Analysis Component 
(cloud computing for pre-processing and analysing sensor data into 
“inspector datasets”), and the Interface Component (web-based appli
cation supporting intuitive retrieval and display of information using 
BIM and AR).

While DOFS for RC monitoring and AR for visualization have been 
reported, our contribution is a closed-loop, inspection-oriented Digital 
Twin that (i) ingests high-resolution DOFS in near real-time through a 
cloud/edge pipeline, (ii) derives crack onset and develoment and warps 
the visualization mesh using DOFS-based deflections to minimize AR 
misalignment, (iii) employs a simple dual-marker anchoring strategy 
suitable for mobile devices on site, and (iv) delivers a hardware-agnostic 
WebXR experience, including time-history screening and threshold- 
based controls. Table 1 contrasts our framework with representative 
prior works.

3. Digital twin framework for on-site inspections using DOFS 
and AR

A promising strategy to improve the understanding of the behaviour 
and condition of structural elements is the use of digital twins. A digital 
twin is a dynamic virtual replica of a physical asset that integrates nu
merical models with continuously updated sensor data to simulate and 
visualize the structure’s real-time response. In this study, we propose a 
tailored digital twin concept specifically designed to enhance inspection 
workflows and support more effective asset management. The frame
work combines Distributed Optical Fiber Sensors (DOFS) for high- 
resolution data acquisition, edge computing for efficient data process
ing, and a web-based application for intuitive data retrieval and visu
alization. The system provides both near-real-time updates and access to 
historical records, giving inspectors clear and immediate insights into 
structural health and thereby improving their ability to assess integrity 
with greater accuracy.

The architectural framework is organized into three main 
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components: the Monitoring Component, the Analysis Component, and 
the Interface Component. Their interconnections and distinct roles are 
illustrated schematically in Fig. 1, offering an overview of how the 
system operates as an integrated whole. Each component is described in 
detail in the following sections.

3.1. Data monitoring

The infrastructure monitoring system includes all components 
required to measure the physical response of the structure: the sensors, 
the interrogator, and the devices enabling remote data access (gateway 
or router and server). All monitoring hardware must be installed on site 
at the structure being assessed. In this study, an Optical Distributed 

Sensor Interrogator (ODiSI 6000 series, Luna Inc.) was used. The inter
rogator was configured with a spatial resolution of 2.65 mm between 
measurement points and a sampling rate of 1 Hz. For sensing, the 
BRUsens V9 cable (Solifos) was employed in both case studies. This 
cable, with its inner steel tube and rugged polyamide cladding, is me
chanically robust, easy to handle, and well suited for embedding in 
reinforced concrete elements without risk of rupture.

The monitoring module maintains a secure TCP/IP connection with 
the ODiSI interrogator, enabling continuous data streaming at the 
defined sampling rate. Sensor data are buffered locally to prevent loss 
during slower retrieval periods, with the buffer cleared once the 
connection is terminated. The retrieved data are then stored and passed 
to the analysis module for post-processing.

Table 1 
Positioning of this work against representative studies.

Study 
(example)

Sensor input Real-time 
loop

AR alignment Mesh/deflection 
warping

Hardware Focus

Park et al. [13] BIM + manual data No Marker-based No Tablet Defect management workflow
Chi et al. [14] Laser scan + AR Partial Model-based No Tablet Rebar inspection
Zhou et al. [15] BIM overlay No Markers No Tablet Tunnel displacement inspection
Huang et al. 

[16] FE results No Model-based FE only HMD / PC Finite element results in AR

Nguyen et al. 
[17]

BIM + mixed reality Partial HoloLens (SLAM) No HoloLens Bridge inspection/maintenance

Li et al. [20] Brillouin DOFS Partial Not detailed No Mobile device Pipeline safety assessment
Martins et al. 

[33]
BIM + damage info Partial MR alignment (SLAM + BIM 

parametric objects)
No Tablet / 

HoloLens
Bridge inspection (damage mapping 
with BIM)

This work
Rayleigh DOFS (mm- 
scale) Yes (<10 s) Dual QR markers Yes (DOFS-based)

WebXR 
(mobile) On-site inspection digital twin

Fig. 1. Schematic representation of the web-based asset inspection system’s architecture.
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3.2. Analysis of sensor data

This section details the specially developed algorithms for pre- 
processing and analysing sensor data received through the API from 
the monitoring component. Subsequently, both pre-processed and post- 
processed data are transmitted to and stored in a database. From there, 
data can be served to external clients on demand via a secondary API 
described below.

It must be noted that the direct readings of the strain data acquired 
through OFDR-based DOFS were filtered using spike removal routines, 
with additional moving-window regularization beyond the 2.65 mm 
spatial resolution to reduce noise while preserving strain gradients. The 
armoured cable used (BRUsens V9, Solifos) further enhanced measure
ment stability by limiting local distortions on the readings due to the 
presence of aggregates and pores in the concrete.

3.2.1. Crack detection
Previous literature has highlighted that strain measurements from 

Distributed Optical Fiber Sensors (DOFS) cables enables the detection of 
crack initiation and propagation with significant accuracy. Additionally, 
Berrocal et al. [6] have demonstrated that strain profiles closely align 
with Digital Image Correlation (DIC) measurements, as illustrated in 
Fig. 2. From these studies it can be concluded that DOFS facilitates the 
detection of crack onset at a considerably earlier stage compared to 
solutions based on DIC.

The analysis of strain measurements from the tensioned steel rein
forcement bar served as input for a crack detection subroutine within the 
analysis component, aimed at identifying crack initiation in real time. A 
significant challenge in identifying potential crack candidates involves 
establishing a threshold within the measurements that distinguishes 
whether a detected peak indeed corresponds to a crack, as depicted in 
Fig. 2. In relation to crack detection, several aspects should be consid
ered. First, cracks may occasionally cause local data loss due to the sharp 
strain gradients that develop at their location. This effect is mitigated by 
the use of robust sensing cables, which laminates the strain transfer to 
neighbouring measurement points. Second, the apparent smoothing 
visible in the figures reflects as well, interpolation for visualization 
purposes and does not represent a loss of physical detail in the under
lying measurements. Finally, since the framework focuses on perfor
mance indicators such as crack widths and deflections, both derived 
from integrated strain fields over longer regions, the accuracy of these 
indicators is not affected by such local smoothing or loss of data.

In this study, peak prominence was selected as the criterion for 
identifying potential cracks, as illustrated in Fig. 2 – Detail 1. The 
evaluation procedure was as follows. 

1. A reference prominence value was defined, above which a peak was 
considered indicative of a crack. For this work, a threshold of 8 

microstrains was adopted. While this value may vary slightly 
depending on the geometry of the specimen, its variability is limited 
to only a few microstrains across different structures. This threshold 
is relevant mainly for the early detection of cracking and does not 
affect the subsequent accuracy of crack width or crack location 
measurements.

2. Based on the input data, a calculated prominence value was then 
derived, equal to 5 % of the maximum strain recorded by the sensor. 
Since prominence generally increases with load level, this ensured 
sensitivity across the loading history.

3. If the calculated prominence fell between 2 and 8 microstrains, it was 
used directly to identify crack candidates. For values below 2, a fixed 
prominence of 2 was applied to reduce false positives, while for 
values above 8, the threshold was capped at 8 to ensure incipient 
cracks were not overlooked.

This adaptive approach highlights both the complexity of reliable 
crack detection and the importance of a calibrated threshold that re
sponds to varying conditions and structural geometries.

3.2.2. Crack width
In this study, the methodology for calculating the crack widths of 

identified crack candidates follows the simplified approach outlined by 
Fernandez et al. [5]. As detailed in their previous work, the contribution 
of the concrete to the crack width calculation is disregarded, leading to 
the determination of crack width through the integration of εDOFS(x) 
over the specified length, namely the distance between the preceding 
and following valleys. This method presumes the strain measured cor
responds directly to the strain in the steel, see Eq. 1. 

wcr,i =

∫ t+t,i

− l−t,i

εDOFS(x)dx (1) 

This simplification should yield reasonable results and an upper limit 
of the crack width, being the actual crack width equal or smaller, 
depending on the real contribution of the surrounding concrete.

3.2.3. Curvatures, rotations, and deflections
The methodology employed in this study to compute the beam de

flections under a specific load level adopts the framework introduced by 
Berrocal et al. [6], utilizing the principles of Euler-Bernoulli beam the
ory. This theory presupposes that beam sections under load maintain 
planarity within the deformation plane, meaning all strains across a 
cross-section are orthogonal to it, and overlooks shear deformation 
contributions. Accordingly, the beam deflection, v(x), is governed by the 
Eq. 2. 

M(x)
EI

= −
d2v(x)

dx2 (2) 

Fig. 2. Crack detection from DOFS sensors compared to DIC measurements [23].
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where M(x) is the bending moment distribution and EI is the flexural 
stiffness of the section.

Several methods exist for reconstructing rotations and deflections 
from strain data, including modal transformation methods and inverse 
finite element methods. In this work, an integration-based approach was 
chosen because it directly exploits the distributed nature of DOFS 
measurements, requires no prior knowledge of modal properties or 
detailed finite element models, and remains computationally light
weight for near-real-time evaluations. While numerical integration may 
accumulate errors along the measurement length, for service-state 
conditions, where curvatures vary smoothly, this approach has been 
shown to provide sufficiently accurate results for inspection purposes. 
Furtehrmore, this is the most natural and simple approach for elements 
where beam theory is applicable.

Assuming that section rotation is very small, the ratio M(x)/EI can be 
expressed as the curvature of the beam χ(x) at any point of the beam, 
which can be determined as the change of normal strain per unit length 
across the beam’s height. Consequently, the curvature is calculated 
based on the difference between the strains measured by two DOFS 
located at two different known heights, see Fig. 3, specifically at the top 
and bottom rebars, see Eq. 3. 

χ(x) = εbot(x) − εtop(x)
fdist

(3) 

where fdist denotes the vertical distance between the DOFS cables. By 
determining the curvature distribution, both rotations and deflections 
can be derived through direct integration of the curvatures once and 
twice, respectively. Application of two known boundary conditions fa
cilitates the determination of the integration constants.

Illustrated in Fig. 4 is the curvature, rotation, and deflection distri
bution along a beam subjected to a typical symmetric four-point bending 
setup. This beam is simply supported at both ends. The curvature dis
tribution’s profile closely mirrors the strain pattern, where curvature 
peaks similarly denote crack locations, highlighting the localized 
reduction in flexural stiffness at these cracked sections. The depicted 
slopes and deflections conform to the antisymmetric and symmetric 
distributions expected from the applied loads and boundary conditions, 
respectively.

In the targeted service state, concrete and steel behave predomi
nantly elastically and bond between steel and concrete is very good, 
which means that plane-section remain a good approximation. At a 
crack, the DOFS attached to the tension reinforcement provides a direct 
approximation of the steel strain, while the compression-zone DOFS 
tracks the concrete compressive strain. Hence, the curvature definition 
in Eq. (3) remains valid at cracked sections because it is based on the 
measured strain gradient across the depth rather than on an intact 
bottom concrete fiber. Between cracks, tension stiffening reduces the 
bottom strain; however, the strain difference over the known lever arm 
still represents the effective curvature. Further, cracked section curva
tures governs integrated rotations and deflections at service loads. This 

study therefore restricts deformation reconstruction to service-state 
conditions.

3.3. Post-processing data for visualization

This section elaborates on the methodology employed for post- 
processing Distributed Optical Fiber Sensor (DOFS) data for visualiza
tion as contour plots overlaid on the beam geometry.

3.3.1. Geometry update
The beam’s spatial domain, shown in Fig. 5(a), was discretized into a 

uniform grid covering the entire concrete surface Fig. 5(b). The strain 
data obtained from the DOFS cables were then extrapolated onto these 
grid points. To facilitate communication between the pre-processing, 
post-processing, and visualization modules, the grid was transformed 
into a mesh of interconnected elements. In the unloaded state, this mesh 
was generated using the Delaunay triangulation method, producing a 
uniform set of triangular elements Fig. 5(c). The procedure yields three 
matrices that define the mesh: node identifiers, nodal coordinates, and 
element connectivity.

The nodes from the interconnected elements facilitate the construc
tion of various surface plots, with the node coordinates (X, Y, and Z) 
indicating their spatial positions within the beam. The contour plots are 
determined by the matrix C, which holds the data values to be visual
ized. The visualization of the data is done by the interpolation of the 
node’s values, and a color is assigned depending on the max and min 
values within the C matrix, see Fig. 6. A notable challenge in overlaying 

Fig. 3. Euler-Bernoulli theory, plane deformation of the cross-section in beams 
subjected to dominant bending.
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surface plots onto the beam is the discrepancy caused by beam defor
mation under load, making the contour plots and the deformed beam 
increasingly divergent with rising load levels. To address this 
misalignment and enhance data visualization accuracy, the mesh, as 

shown in Fig. 5(c), is adjusted to reflect the actual beam deflections.
As detailed previously, deflections are computed following Euler- 

Bernoulli beam theory, which allows for the determination of each el
ement’s coordinate changes assuming a plane deformation. Given the 
rotation of a section under external load, both longitudinal and vertical 
displacements for each point along the section’s height can be calcu
lated, see Eq. (4) and (5) respectively. 

Xn,i = xn,i − Δu = xn,i − sin
(
φ
(
xn,i

) )
⋅yn,i (4) 

Yn,i = v(xn.i)+Δv = v(xn.i)+ cos
(
φ
(
xn,i

) )
⋅yn,i (5) 

Where xn,i and yn,i are the original node coordinates, with v and φ 
representing deflection and rotation, respectively, derived from the 
reference value at the neutral axis for the given position xn,i, as shown in 
Fig. 7.

After applying the described transformation to the nodes’ co
ordinates a new representation of the mesh is obtained, which means 
that the new mesh position matches the deformation of the beam, see 
Fig. 5(d). It must be noted that this approach retains the original mesh 
structure, including the connections and node identifiers, across all 
loading steps. The later, significantly simplifies the post-processing 
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cretization of the beam in a regular grid (plotting points), (c) mesh for data visualization based on the regular grid and (d) deformed shape of the mesh from 
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Fig. 7. Vertical and horizontal displacements obtained from the beam’s neutral axis deflection calculated by Euler-Bernoulli theory.
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process allowing contour plot values to be calculated using the original 
mesh, with positions updated separately and independently.

3.3.2. Strains, crack pattern and deflections
The strain data obtained from the DOFS cables situated at the cor

responding steel reinforcement bars, Fig. 8(a), are directly extrapolated 
based on the hypothesis of plain deformation plane. This assumption is 
valid for the beam specimens studied here, where plane deformation 

sections are preserved, and ensures accurate reconstruction of de
formations. For structural elements where this assumption does not 
hold, such as slabs with non-uniform strain distributions, alternative 
methods are required. For example, Fernández et al. [2] demonstrated 
how DOFS measurements can be extrapolated to reconstruct principal 
strain fields in slab elements.

Consistent with this hypothesis the neutral axis of the cross-section, i. 
e. the point where a null value of the strain is obtained and the strain 
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from the DOFS data at the beam’s neutral axis, (f) and (g) Vertical and horizontal displacements computed from the beam deflection at the neutral axis.
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value at any height of the cross-section can be computed according to 
Eq. (6). 

εy
(
xn,i

)
= χ

(
xn,i

)
⋅yn,i (6) 

Where χ denotes the curvature calculated according to Eq. (3), and x 
and y are the coordinates of the nodes. This data, once calculated at each 
mesh node, facilitates visualization as a contour plot on the beam’s 
deformed shape, as illustrated in Fig. 8(b).

Visualization of the crack pattern through contour plots leverages 
the identified crack candidates. Following the detection of crack can
didates, strain data undergo further post-processing to visualize both the 
cracks and their respective widths. In order to obtain a better visuali
zation of the cracks and a more robust algorithm to post-process the 
data, the method presented by Berrocal et al. [6] is further developed. 
The present algorithm utilizes the same approach to transform the strain 
measured by the cables to crack values, i.e. crack functions are gener
ated to create crack profiles that can be suitable for visualization pur
poses. In this regard, the crack functions are generated for each crack 
using a gaussian curve with a peak value equal to the computed crack 
width and a width of 4 cm.

For a refined representation, each mesh node is initially assigned a 
crack width of zero. Where a crack is identified by the detection algo
rithm, linear extrapolation along the nodes within the cross-section 
height is executed. This extrapolation process includes calculating 
crack width at varying heights reinforcement level, one-third and two- 
thirds of the crack height, the neutral axis (where the crack fully 
closes), and the top reinforcement position assuming a linear closure 
from the section’s bottom to its neutral axis, beyond which it remains 
closed. A typical crack pattern using the developed algorithm is illus
trated in Fig. 8(d).

Lastly the displacements are simply calculated as the difference be
tween the new calculated vertical position of the mesh nodes, according 
to Eq. (4) and (5), and the original vertical position of the node, as 
described in the Eq. (7) and (8). 

δx
n,i = Xn,i − xn,i (7) 

δy
n,i = Yn,i − yn,i (8) 

Where Xn,i and Yn,i are the new horizontal and vertical node’s coor
dinate and xn,i and yn,i the original horizontal and vertical position of the 
nodes, respectively. Fig. 8(f) and Fig. 8(g) display the horizontal and 
vertical deflection visualization for a specified load step, illustrating the 
method’s capacity to accurately represent structural deformations.

3.4. Data retrieving and uploading to cloud-services API

An application programming interface (API) was developed and in
tegrated into the system architecture to act as a communication bridge 
between the monitoring module, the analysis component, and the cloud 
services. Implemented in Python, the API periodically queried the 
monitoring module for new sensor data and then awaited a trigger from 
the calculation module, activated once all processing tasks and data files 
had been generated. Upon activation, the API uploaded the relevant 
data—tagged with identifiers such as data type (e.g., deflections, cracks, 
strains), measurement units, timestamp, and group identifier—to a 
cloud-based, non-structured database hosted on the Azure® infrastruc
ture. Although a structured database could have been employed for 
time-series data, the selected setup proved effective for this study.

The frequency of API calls was defined by the minimum time 
required for each system component to complete its tasks, including data 
retrieval (influenced by data volume and internet speed), analysis 
(conversion of strain data into inspection parameters), and post- 
processing (preparation of results for AR visualization). In the pre
sented applications, this workflow typically completed in less than 10 s, 
allowing near real-time visualization of structural response. For larger 

structures, where data volume and computational demand are higher, 
the API call interval may need to be extended. Furthermore, the reading 
interval is dynamically adjusted based on the available on-site internet 
connectivity.

3.5. Client communication API

The client communication API, hosted on the cloud-based service 
servers, continuously listened for incoming requests, thereby establish
ing direct connections between client devices and the servers storing the 
post-processed data. Data retrieval requests relied on two identifiers: a 
time value and a data type. If the exact timestamp was unavailable, the 
system automatically returned the closest available time step.

This setup proved highly efficient and robust for time-history eval
uations, where complete datasets must be accessed and reviewed. 
However, it is less efficient for real-time evaluation, as the client sends 
periodic requests regardless of whether new data are available. In such 
cases, redundant transfers occur because the most recent time step is 
repeatedly retrieved even when no new data exist.

To address this, two alternative communication strategies have been 
considered: 

1. An uncoupled channel (computational module → cloud storage → 
client), well-suited for time-history analysis, as implemented in the 
present framework.

2. A direct channel (computational module → client), better suited for 
real-time monitoring, as it enables the client to update only when 
new data become available.

The second approach has clear advantages for real-time inspection, 
but it also raises security concerns, since mobile clients currently sup
port only secure, certified connections. While this limitation poses a 
challenge during the present development stage, it is not expected to 
hinder future large-scale implementations, where certified secure con
nections between modules and clients can be more readily ensured.

3.6. Data visualization through AR

Augmented Reality (AR) solutions have gathered significant interest 
in recent years due to their adaptability in displaying sensor data from 
extensively utilized Building Information Modelling (BIM) models. The 
proliferation of these solutions is supported by specialized hardware and 
the arrival of sophisticated AR frameworks for mobile devices, such as 
ARKit (Apple) and ARCore (Google). These platforms leverage camera- 
based Simultaneous Localization and Mapping (SLAM) algorithms to 
construct a simplified internal 3D representation of the surroundings, 
enabling the placement of virtual objects within it. A notable effort has 
been made to democratize the application of this technology through the 
introduction of WebXR, a web-based AR framework. WebXR facilitates 
the development of software and hardware agnostic solutions with 
unified source code, further supporting the use of ubiquitous open- 
source web development libraries.

An essential challenge in AR tool development is the precise align
ment between the real-world environment, captured by the device’s 
cameras, and the superimposed virtual objects. Although various 
methods exist, this project employs a marker-based approach, which 
hinges on anchors, image and marker tracking, and alignment.

WebXR, like modern AR systems, employs SLAM to forge an internal 
3D environmental representation, enhancing object positioning accu
racy over time. This necessitates the anchoring of virtual objects to real- 
world counterparts to maintain their relative positions despite global 
spatial changes. Anchors allow virtual objects to update their positions 
dynamically in relation to physical locations, significantly mitigating 
discrepancies such as “floating” objects. Thus, the relation between 
physical and virtual object is prioritized in front of absolute positions in 
the space.
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Additionally, WebXR’s image tracking capabilities enable the 
recognition of general images or specific markers, such as QR codes, 
which are easily recognizable due to its unique patterns and high 
contrast. Registered images, once detected within a session, are assigned 
real-world coordinates, facilitating the alignment of virtual to real ob
jects. The integration of anchoring with this tracking mechanism ensures 
that virtual objects not only adopt the local coordinate system of the 
markers but are also anchored to the physical environment, enhancing 
alignment accuracy, as demonstrated in Fig. 9.

To refine the alignment of post-processed sensor data with the actual 
beam, a dual-marker system is implemented. This approach minimizes 
deviations in data overlay, especially for larger objects, by defining a 
unique local coordinate system from the markers’ centers, anchored to 
the beam. The sensor data’s rendering coordinate system is positioned 
midway between the markers, independent of their rotations, as detailed 
in Fig. 10.

Finally, a user interface (UI) is crucial for rendering the specific data 
via WebXR. WebXR offers the capability to employ standard web 
development tools such as Hypertext Markup Language (HTML) and 
Cascading Style Sheets (CSS) for crafting and styling the web interface 
and leverages the Three.js library for efficient contour plot visualization, 
based on open-source graphic library OpenGL. By combining HTML- 
based WebXR for AR with QR codes that serve both as spatial trackers 
and link to a webpage (URL carriers), the framework enables identifi
cation of the infrastructure under inspection. This user interface sup
ports on-site inspections by detecting and spatial positioning the 
relevant infrastructure and loading the corresponding AR scene auto
matically. Furthermore, the interface facilitates data display (e.g., 
strains, cracks, deflections) and allows dynamic scaling of contour plots 
based on user defined min and max values. A time-history module en
ables data screening over time through a slider, adjusted for min and 
max timestamp values. For real-time sensor data, an open database 
connection updates the AR system with the latest data, considering the 
operational time required for data fetching, processing, and storage. An 
illustration of the interface, showcasing its functionalities, is presented 
in Fig. 11.

4. Results: Case studies

In order to illustrate the capabilities of an AR solution for enhanced 
inspection of infrastructure two case studies are presented in the 
following.

4.1. Case study 1: Visualization of historical data

For the visualization of historical data, data retrieved from Distrib
uted Optical Fiber Sensors (DOFS) during the pre-cracking test of a 
large-scale reinforced concrete beam was utilized. Fig. 12 provides a 
comprehensive overview of the beam’s geometry, the arrangement of 
sensors, and the testing setup. The beam underwent testing within a 
conventional four-point bending configuration, with the boundary 
conditions being that of simple supports. The load was symmetrically 
applied across the beam via a distribution beam, ensuring uniform 
loading conditions. The loading process involved three cycles of 

monotonic ascending/descending ramps, regulated by the jack’s local 
displacement.

Fig. 13(a-b) presents the measured strain at the bottom bar during 
the initial loading phases. As depicted in Fig. 13(a), the implemented 
crack detection algorithm successfully identified the first crack at an 
early stage of loading. Subsequent load increments resulted in additional 
cracks, which were also detected by the same algorithm. Fig. 13(c) 
displays the calculated deflections, determined using the methodology 
outlined in Section 3.2.3, corresponding to each load step. These 
deflection values are subsequently utilized in further analyses to 
compute mesh deformation, enabling representation of the beam’s 
deformed shape and facilitating data visualization on the deformed 
mesh. Further experimental measurements for case study 1 are pre
sented in [6].

A dual-marker solution was implemented for alignment purposes, 
entailing the attachment of two QR code markers to the beam’s surface 
as depicted in Fig. 14. These markers, defined as anchors within the AR 
system to the beam’s geometry, were strategically placed at the beam’s 
ends to minimize potential rotation issues of the overlaid information. 
Accordingly, the centre of each marker was positioned 125 mm from the 
top and beam-end on both sides, with the data rendering’s local coor
dinate system cantered on the beam.

Fig. 15 showcases an example of the data visualization. It is impor
tant to note that within the time history module, the data is overlaid on 
the structure in its unloaded form, as per the generated mesh displayed 
in Fig. 5(c). This approach aims to avoid misalignment between the 
overlaid data and the beam, which could potentially confuse or mislead 
the user. Nevertheless, the implementation of a toggle feature could 
allow users to choose between visualizing the data on deformed or un
deformed meshes for enhanced flexibility. To provide a clearer under
standing of the entire process, including the alignment through marker 
tracking and data visualization, a comprehensive video encompassing 
all steps is available at the provided link.

4.2. Case study 2: Real-time visualization of sensor data

To demonstrate the effectiveness of the real-time crack detection 
module in practical scenarios, a second case study was conducted 
through a live demonstration test, using a full-scale post-tensioned 
reinforced concrete beam. The geometric details, sensor arrangement, 
and testing setup are depicted in Fig. 16. This beam was subjected to the 
same testing configuration as the previous case study, but with the load 
monotonically increased until failure.

Fig. 17(a-b) presents the same results shown in Fig. 13, but for the 
Posttensioned Reinforced beam instead. As seen in Fig. 17(a-b), the 
implemented crack detection algorithm properly identifies the crack at a 
very early stage. Subsequent load increments resulted in additional 
cracks, which were also detected as well. The deflections of the beams 
for the different load steps shown in the Fig. 17(a-b) are depicted in 
Fig. 17(c). Further experimental measurements for case study 1 are 
presented in [24].

For this experiment, a two-marker strategy was also utilized, with 
markers positioned approximately 7.5 m apart. Markers were affixed to 
the interior of the beam’s web, and the central point of the beam was 

Fig. 9. Example of marker-based AR to aid positioning of virtual objects.
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designated as the origin of the local coordinate system. Fig. 18(a) dis
plays the location of the left marker.

Upon detection of both markers and successful establishment of the 
new local coordinate system, the AR component presents an initial vir
tual object, a BIM model of the beam. This model outlines the external 
concrete geometry with a wireframe along the beam edges and provides 
intricate details of the reinforcement bars and sensor cables, as shown in 
Fig. 18(a-b). Visualizing the steel reinforcement overlaying the concrete 
geometry offers valuable insights into the structural behaviour under 

load, enhancing understanding beyond what traditional drawings can 
provide. This model remains visible until the communication API is 
activated, and sensor data begin to be received by the device.

With the first data request through the API, the BIM model is hidden, 
activating the data visualization environment. Fig. 19(a) reveals the 
crack pattern at an incipient stage, showcasing the crack detection 
module’s ability to operate in real-time. Cracks identified by the AR 
system, imperceptible to the naked eye due to their minuscule size, 
underscore the effectiveness of DOFS in early crack detection and its 

Fig. 10. Definition of the AR’s global coordinate systems based on markers for data visualization.

Fig. 11. Web based interface to interact with the backend and data analysis module, and data visualization.

Fig. 12. Geometry, loading setup and DOFS installation configuration for the RC beam specimen.
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Fig. 13. Experimental measurements for the beam of case study 1. (a) Crack detection based on early strain distribution for different load levels. (b) Comparison of 
crack detection at low and service load levels. (c) Calculated distribution of deflections for the different load steps.

Fig. 14. Procedure to align the real and virtual beams in the AR tool using two markers.

Fig. 15. Data visualization on the beam through the AR environment after alignment.
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utility in visualizing on-site information during inspections. Figs. 19(b) 
and 19(c) exhibit the strain fields derived from the DOFS sensors at early 
and advanced load stages, respectively, relative to the failure load. 
Initial load stages show excellent alignment between the beam and 
virtual overlay, indicating that the geometry update subroutine effec
tively adjusts the mesh geometry to convey accurate information to the 
rendering component. However, at more advanced load stages, some 
misalignment occurs, not due to inaccuracies in the geometry update 
subroutine, but because the DOFS occasionally fails to capture viable 
strain data due to significant local deformations, due to the large dis
continuities that cracks represent, potentially leading to non-numeric 
values (NaN) in the readings. Consequently, the geometry update sub
routine, relying on deflection calculations to depict the mesh in its 
deformed state, may incorporate incorrect data, misrepresenting the 
actual deflections. This limitation underscores the applicability of DOFS 
monitoring and AR-enhanced inspections primarily under service loads 
or conditions not nearing the failure threshold, which aligns with typical 
inspection protocols. A video demonstrating the system in action during 
the test is available for further insight.

5. Results and discussion

The results from case study 1 and 2 showed that it was possible to 
visualize both real-time and historical data through the presented digital 
twin framework using DOFS, BIM, AR, and the web-based asset in
spection system. The laboratory tests demonstrated that these technol
ogies can be merged to support a digital twin framework capable of both 
on-site and off-site infrastructure health inspections, enabling the 
analysis and visualization of real-time and historical data. This frame
work allows for more detailed insights into infrastructure condition and 

enhances decision-making through a more data-informed process. As 
shown in the case studies, the digital twin framework successfully 
identified and visualized cracks before they became visible to the naked 
eye, demonstrating the effectiveness of integrating DOFS for early crack 
detection in combination with AR visualization. This is consistent by 
Ballor et al. [25] who demonstrated how AR combined with sensor- 
based structural monitoring improves infrastructure inspection by 
overlaying critical damage indicators directly onto visual models, 
enhancing both accuracy and usability in field settings.

Furthermore, the framework enables remote inspection of structural 
components located in hazardous or hard-to-access environments, 
thereby reducing the need for on-site presence and improving safety and 
operational efficiency. When on-site AR was used in the case studies, 
results showed excellent alignment between the physical and virtual 
beam overlays. However, the current study was conducted in a 
controlled laboratory setting. Applying the system in real-world envi
ronments with greater variability remains a critical next step. In the lab, 
QR codes worked well for loading the web-based AR scene and identi
fying the current location and infrastructure element, but in the field, 
QR codes must be high-contrast and weather-resistant. While suitable 
for initialization, they may not be sufficient for spatial tracking and 
virtual scene anchoring.

In this context, AprilTags QR code-like markers developed for AR 
tracking could provide more robust spatial tracking when combined 
with SLAM. In our controlled lab setting, SLAM combined with standard 
QR codes performed reliably. The performance of AR markers (e.g., QR 
codes) is influenced by lighting, visibility, and weather. While markers 
worked reliably indoors, field deployment will require high-contrast, 
weather-resistant designs or alternatives such as AprilTags for more 
stable tracking under challenging conditions. However, SLAM systems 

Fig. 16. Geometry, loading setup and DOFS installation configuration for the PRC beam specimen.
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often struggle in low-light, reflective, or textureless environments. Pre
vious studies, including Cadena et al. [26] have shown that maintaining 
reliable SLAM performance in large-scale or dynamic environments is a 
significant challenge, reinforcing the need for complementary tracking 
aids. AprilTags, when used alongside SLAM, have been found to improve 
pose estimation and tracking efficiency [27]. Additionally, Pfrommer 
and Daniilidis [28] demonstrated that integrating AprilTags into a SLAM 
factor graph (TagSLAM) significantly improves pose stability, loop 
closure, and environmental mapping. In more difficult field conditions 

such as large-scale infrastructure with challenging visual features mul
tiple temporary AprilTags or image trackers during inspection may be 
necessary to accurately anchor and align the virtual and physical scenes. 
External lighting may also be needed to support tracking in low-light 
conditions.

In some scenarios, location-based tracking using Global Navigation 
Satellite Systems (GNSS) may be required, particularly for large-scale 
infrastructure observed from a distance. Wu et al. [29] showed that 
combining AprilTag detection with Inertial Measurement Units (IMUs) 
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Fig. 17. Experimental measurements for the beam of case study 2. (a) Crack detection based on early strain distribution for different load levels. (b) Comparison of 
crack detection at low and service load levels. (c) Calculated distribution of deflections for the different load steps.

Fig. 18. (a) Marker position and detection, (b) visualization of the internal components of the beam, i.e. steel reinforcement bars and tendon, and DOFS cables.
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through visual-inertial fusion provides robust localization even in GNSS- 
denied environments. The alignment of the AR scene and the validation 
of marker placement in such real-world scenarios must be further 
studied before drawing conclusions about the full scalability and 
robustness of the system. Similar challenges were addressed by Nakaso 
et al. [30], who developed a hybrid MR system that switches between 
GNSS-based and marker-based tracking to ensure accurate visualization 
in both open-sky and obstructed environments. Their findings support 
the conclusion that real-world applications may require more adaptable 
spatial anchoring methods such as AprilTags and GNSS beyond standard 
QR codes and SLAM.

Looking ahead, the deployment of Unmanned Aerial Vehicles (UAVs) 
in hard-to-access environments could be valuable, especially when 
combined with DOFS for early-stage crack detection and AR visualiza
tion. UAV-assisted crack detection has shown strong potential in field 
environments. Phung et al. [31] developed an automated UAV inspec
tion system that utilizes image-based crack identification, demon
strating efficiency gains and safety improvements. This highlights the 
opportunity of integrating UAV-based imaging with DOFS and AR in our 
framework to identify critical areas for detailed inspection and 
documentation.

Additionally, the system’s interactive interface facilitates real-time 
visualization of structural parameters such as strain, crack develop
ment, and deflections and supports dynamic contour scaling based on 
user-defined thresholds. A built-in time-history module allows users to 
examine data evolution through an adjustable time slider. Future 
research should explore typical threshold values and performance 
variability across different structural and environmental conditions. 
Such investigations can provide deeper insight into structural behav
iour, load cases, and bearing capacity, both for optimizing design and 
evaluating the performance of existing structures.

Another practical application of the digital twin framework lies in 
engineering education, particularly in laboratory settings where stu
dents test structural elements such as beams. By integrating DOFS with 
BIM and AR visualization, the system allows for real-time crack detec
tion and visualization before cracks become visible [32]. This enables 
students to gain a deeper understanding of material behaviour, struc
tural loading, damage progression, and capacity limits, enhancing their 
learning through immediate, data-driven feedback during experiments.

Practicality for large-scale civil structures. The proposed framework 
relies on distributed strain measurements, and it is acknowledged that 
fully distributed sensing is not feasible at all scales. Nonetheless, current 
Rayleigh-based OFDR systems enable measurements up to ~100 m per 
channel with standoff cables of about 200 m, which is already sufficient 
for many structural elements such as beams, decks, and tunnels. For 
larger infrastructures, Brillouin-based semi-distributed sensing can 
extend the sensing range to the kilometer scale, albeit at lower spatial 
resolution (≈200 mm). This resolution remains sufficient to detect 
cracks and provide representative strain and deflection fields for in
spection purposes. Importantly, the post-processing and visualization 

algorithms developed in this work are adaptable across these technol
ogies, ensuring the framework’s relevance and scalability to real 
structures.

Limitations and scope. The proposed reconstruction assumes service- 
state behaviour, sufficient bond for strain transfer, and validity of 
Euler–Bernoulli theory. Near ultimate loads, with large localization, 
severe slip, or sensor dropout, curvature estimation and mesh warping 
can degrade; this is consistent with the misalignment observed at 
advanced load levels in other experiments [5].

6. Conclusions

This paper presented a modular and scalable digital twin framework 
that integrates Distributed Optical Fiber Sensors (DOFS), Building In
formation Modelling (BIM), Augmented Reality (AR), and a web-based 
platform to support infrastructure inspection and structural health 
monitoring. Through two laboratory case studies, it was demonstrated 
that the framework enables both real-time and historical visualization of 
strain, deflection, and crack development offering early-stage damage 
detection before visual signs are present.

By using cloud-based storage and optimized post-processing, the 
system enables near real-time overlay of sensor data onto virtual models 
with minimal latency and low data transfer requirements. The proposed 
strategy for visualizing deformation using incremental node displace
ment further reduced computational load, making it suitable for scalable 
monitoring applications. The integration of AR provided spatially ac
curate, intuitive visualization of structural performance, supporting 
remote inspections in potentially hazardous or hard-to-access environ
ments. Unlike traditional digital twin implementations that rely on 
manual data input, static models, or isolated sensor feedback, the pro
posed framework offers a real-time, closed-loop integration between 
high-resolution DOFS data and immersive AR visualization. This syn
ergy allows inspectors to intuitively view strain, crack evolution, and 
deformation patterns spatially mapped onto actual structures bridging 
the gap between abstract data interpretation and actionable field un
derstanding. By using lightweight, web-based deployment and mini
mizing data transmission overhead, the framework also represents a 
practical and scalable step forward for real-world implementation of 
sensor-integrated digital twins in construction and infrastructure 
management.

In addition to field applications, the framework shows potential for 
engineering education, offering students direct insight into the behav
iour of materials and structures through real-time, data-driven experi
ments. The use of interactive interfaces and time-history modules 
enables targeted evaluation of the sectional response, steel stresses, 
sectional curvature and other key parameters in the design process of 
reinforced concrete structures.

Future research will focus on deploying the framework in large-scale 
and operational infrastructure to validate performance under variable 
environmental conditions. This includes the integration of advanced 

Fig. 19. Real time visualization of postprocessed data within the AR environment. (a) crack withs, (b) and (c) strain fields and early and late load stages respectively.
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tracking techniques such as AprilTags, GNSS-based localization, and 
visual-inertial fusion, as well as UAV-assisted inspections for inacces
sible assets. Broader application scenarios such as predictive mainte
nance, digital asset management, and digitally enhanced education will 
also be explored. However, the authors consider that the framework is 
practical for real-world applications: current Rayleigh-based DOFS al
lows spans up to 100 m per channel, and Brillouin-based sensing extends 
applicability to kilometer-scale infrastructure, albeit at reduced resolu
tion. The developed algorithms are directly adaptable to both technol
ogies, ensuring scalability from laboratory validation to large-scale civil 
structures.

Overall, this work contributes to the growing body of research on 
sensor-integrated digital twins and offers a practical pathway toward 
more informed, safe, and efficient infrastructure inspection workflows 
in construction and asset management.
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