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Parameter free consistent-exchange Biochemistry-lego model of base-pair organization in DNA

van der Waals densuty functional Experimental data from crystalline DNA has been used to understand the biochemistry

The van der Waals density functional (vdW-DF) model of the bés.e pair organization. The interaTction wijchin-the structure can be define-d
method is a non empirical approach to com- oy the competltlon.between the vdW interaction, sterlc. hindrance and c.)ther force_s in
bute the exchange and correlation energy for ef- aetween.the ba?c,e pairs. These.can be understood by staf:kmg of the base pairs as described
ficient first-principle theory calculations. Our re- ), th.e rise, twist, roIII, and. slide of the e!ementa.ry unit. On the other hand,. DNA also
cent consistent-exchange formulation vdW-DF-cx contains a backbone, mcludmg-phosphate linker units; the ba§kbone correlates with average
(1] uses the Dyson equation to balance the truly structural para}meters of stacking of D_NA. NanoDNA contalr]s opnly a few base pairs, a.nd
nonlocal component E(r;l with a specially designed the backbone.ls sho_rt. The.base pairs in DNA are. typically lying tlat and parallel., and with
sradient-corrected exchange choice E™ in the a 3 A separation (rise), a size that reveals a key importance of the vdW attraction.

functional specification [2]
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We trust the non empirical vdW-DF-cx as a
general-purpose materials theory, it performs bet-
ter than constraint-based GGAs for thermophysical
properties [3] and surface energies/workfunctions
2] of transitions metals, accurately for molecular
interactions [4, 2|, and has an unprecedented ac-
curacy for describing intermolecular vibrations in
organic/polymer crystals [4, 5].

\

NanoDNA

vdW-DF-cx implementation Base pair interactions Nano-DNA interactions

The vdW-DF-cx has excellent scaling even to bio-  Stacking interactions between the base pairs As a model we consider the self-
chemistry scale (10° atoms), e.g., by launching our  are important for defining the twist angle and organization of two-base-pair nanoDNA
library LIBVDWXC [6]. rise. vdW interactions|[1] dominate in the building blocks and allowing full relaxations
' stacking of base pairs. The spatially resolved in vdW-DF-cx (with an effective model of
binding contribution Ae(7), defined by the the backbone charging).
vdW-DF-cx nonlocal-correlation energy term
E™[n], enhance with parallel geometries.
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D Figure 2: Stacking energy of two guanine-cytosine
Tamiom | base pairs (GC:GC), without backbone. Shaded region
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Figure 1: Linear vdW-DF-cx scaling, via libvdwxc. Scaling the vdW stacking energy to an eV-level for DNA base stacked nanoDNA (AT:AT) with the rise. Fully re-

for organics-coated gold nano-particles (2500-10000 atoms). pairs. There is cohesion even without a backbone. laxed end-to-end binding of nanoDNA.
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