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Preface 

As General and Program Chair I would like to welcome you to the proceedings of 
AISoLA 2025, the 3rd International Symposium on Bridging the Gap between AI and 
Reality, which took place on Rhodes (Greece) on November 1–5, 2025 as an in-person 
event, providing an interdisciplinary forum for discussing the impact of the recent AI 
developments in research, education, and society. It is our core belief that this topic must 
be explored from multiple perspectives to establish a holistic understanding. Therefore 
AISoLA invites researchers from various backgrounds, such as computer science, phi-
losophy, psychology, law, economics, and social studies, to participate in an interdisci-
plinary exchange of ideas and to establish new collaborations. AISoLA is an AI-themed 
sibling of ISoLA, the International Symposium on Leveraging Applications of Formal 
Methods, which it complements with its interdisciplinary perspective. 

The program of AISoLA 2025 consisted of three keynotes given by:

• Maximilian Kiener
• Edward A. Lee
• Alvaro Velasquez 

And a collection of special tracks devoted to the following hot and emerging topics:

• AI Assisted Programming (AIAP) (Organizers: Wolfgang Ahrendt, Bernhard Aich-
ernig, Klaus Havelund)

• Digital Humanities (DigHum) (Organizers: Ciara Breathnach, Tiziana Margaria, Tim 
Riswick)

• Formal Approaches in Intelligence for Transforming Healthcare (FAITH) (Organiz-
ers: Martin Leucker, Violet Kai Pun)

• Formal Methods for Intersymbolic AI (Organizers: Clemens Dubslaff, Ina Schaefer, 
Maurice ter Beek)

• Low Code/No Code Approaches to Application Developmemt: Challenges and 
Opportunities (Mike Hinchey, Tiziana Margaria)

• Responsible and Trusted AI: An Interdisciplinary Perspective (RTAI) (Organizers: 
Kevin Baum, Thorsten Helfer, Sophie Kerstan, Markus Langer, Eva Schmidt, Andreas 
Sesing-Wagenpfeil, Timo Speith)

• Small Data Challenges in AI for Material Science (Lars Kotthoff, Tiziana Margaria, 
Elena Raponi)

• Use of AI in the Industrial Sector (Falk Howar, Hardi Hungar, Barbara Steffen)
• 30 Years of UPPAAL (Kim G. Larsen, Paul Petterson, Wang Yi) 

Co-located with the AISoLA Symposium were:

• The STRESS Summer School 2025 (Steve Bosselmann, Daniel Busch, Edward A. 
Lee, Bernhard Steffen)



vi Preface

The 14 papers of this volume represent a subset of the program of AISoLA 2025, 
most contributions will be published in the postproceedings. 

We were pleased to implement a single-blind review process of all submitted content. 
Following the AISoLA tradition, the track organizers form the program committee. We 
thank them and the reviewers for their effort in selecting the papers to be presented. 
We are grateful to the Local Organizing Chair, Petros Stratis, and the EasyConferences 
team for their continuous precious support during the entire period preceding the events, 
and Springer for being, as usual, a very reliable partner for the proceedings production. 
Finally, we are thankful to Nicolas Stratis, Daniel Busch, and Steven Smyth for their 
continuous support of the website and the program, and to Steve Bosselmann for his 
help with the editorial system EquinOCS. 

Special thanks are due to the Center for Trustworthy Data Science and Security, the 
Lamarr Institute for Machine Learning and Artificial Intelligence, and the Center for 
Perspicuous Computing, for their support in the organization of the event, as well as to 
the TU Dortmund, my home institution. 

I hope all AISoLA participants had lively scientific discussions, ideally resulting in 
new collaborations and ideas that can be presented at next year’s AISoLA, which will 
take place again in Greece. 

August 2025 Bernhard Steffen
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Gaps in Generalization: Frontier Problems
for Neurosymbolic AI

Alvaro Velasquez 

University of Colorado, Boulder, CO, 80309 USA 

Abstract. The Chat-GPT moment demonstrated that widely useful generalization 
is possible with AI. However, this capability is limited by classical assumptions on 
machine learning models, such as the test distribution matching the training dis-
tribution and the manifold hypothesis of relying on shared simple features across 
an otherwise complex dataset. These assumptions raise a critical question: how 
can AI generalize outside of such domains? Indeed, the foregoing assumptions 
are violated for important problems in autonomy, synthetic biology, and scien-
tific discovery. We posit that, at some level of abstraction, the shared symbolic 
structures across domains will enable greater generalization and present research 
directions for neurosymbolic AI to achieve this vision of symbolic generalization 
that is robust to the gaps between AI and reality. 

The field of neurosymbolic AI has witnessed a renaissance in recent years with the 
promise of achieving the best of the first two waves of AI. Whereas classical symbolic 
methods are performant for prescriptive problems in wellmodeled environments, they 
are not capable of handling noise and generalizing to unknown environments. On the 
other hand, modern deep learning architectures leverage neural networks to achieve 
some level of generalization to domains that match the training distribution of data, but 
they lack the interpretability and verifiability of the symbolic methods. In this paper, 
we present some open frontier problems as gaps that are unconventional and societally 
impactful and for which neurosymbolic AI is particularly well-suited to solve. 

The Gap between Natural and Synthetic Biology 

AI has largely influenced the biotechnology landscape by adapting techniques that have 
been successful with LLMs [1]. However, these systems reflect a limiting bias: the bias 
of nature itself. Indeed, large biological datasets reflect the proteins, DNA, and other 
processes from nature, which introduces a gap in the generalization of models when 
it comes to synthetic biology. Part of the problem stems from how these models are 
trained, with conventional pre-training over arbitrary sequences inducing a generaliza-
tion with regard to sequence similarity. Consequently, synthetic biology applications 
remain difficult for such AI models since the synthetic sequence of interest may vary 
drastically in terms of sequence similarity to the training set of natural sequences. We 
therefore propose to leverage the symbolic structures that remain consistent across the



xii A. Velasquez

natural and the synthetic: physics and logic. The former has been extensively studied in 
areas like molecular dynamics and the latter has been studied through the lens of formal 
languages. While conventional machine learning wisdom dictates that such symbolic 
structures would implicitly be learned with enough data, we instead argue for integrat-
ing their explicit representations in the form of, say, PDEs and context-free grammars, 
to improve data efficiency and generalization. 

The Gap between Exploratory and Transformative Creativity 

Imagine an AI whose capacity for creativity is so great that it can produce a body of work 
worthy of a Nobel prize in chemistry, physiology, or medicine. One can view this type 
of transformational creativity as an extreme form of out-of-distribution generalization. 
Intuitively, the more creative the ideas are, the less likely they are to be reflected in the 
training distribution of the underlying AI. However, there is an additional challenge for 
such an AI in that transformational ideas often challenge or invalidate existing knowl-
edge. This challenge raises the question of how a creative AI can become so effective at 
generalization that it can ultimately invalidate its own training data. Although it seems 
like a contradiction in terms, a related type of reasoning is often referred to as infeasible 
or nonmonotonic reasoning, which can take on a symbolic form [2], thereby providing 
an avenue for the development of creative neurosymbolic AI for scientific discovery. 

The Gap between Simulated and Real Autonomy 

Real-world autonomy is limited by our inability to accurately model and simulate it 
[3]. However, otherwise different-looking environments may nevertheless share some 
underlying semantics. Thus, even though there are large sim-to-real gaps, the semantic 
gap in terms of some shared semantic abstraction is low. We believe that finding that level 
of abstraction where semantic similarity is high will provide the features along which 
robust generalization is possible. We argue that more research is needed on how to extract 
and leverage the explicit semantic abstractions that minimize the semantic gap between 
these environments as opposed to attempting to implicitly minimize the sim-to-real gap, 
which can be ineradicable in some cases. These explicit symbolic representations can 
be used to define novel neurosymbolic AI for robust autonomy by incorporating diverse 
environments and their shared semantic abstractions into the ML pipeline. 

References 
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Formal Methods for Intersymbolic AI

Maurice H. ter Beek1 , Clemens Dubslaff2,3 , and Ina Schaefer4 

1 CNR–ISTI, Pisa, Italy 
m.terbeek@isti.cnr.it 

2 Eindhoven University of Technology, Eindhoven, The Netherlands 
c.dubslaff@tue.nl 

3 Centre for Tactile Internet with Human-in-the-loop (CeTI), Dresden, Germany 
4 KIT, Karlsruhe, Germany 
ina.schaefer@kit.edu 

Abstract. A key benefit of symbolic (rule-based) artificial intelligence (AI) is its 
formal rigor, which comes at the cost of formal modeling effort and computational 
expensive reasoning. Differently, subsymbolic (datadriven) AI approaches usu-
ally outperform rigorous ones in performance but might lead to unsound results. 
Intersymbolic AI is an emerging field in AI that aims to combine symbolic and 
subsymbolic AI approaches, exploiting the benefits from both worlds. The scope 
of the ISoLA 2025 track on “Formal Methods for Intersymbolic AI” is to gather 
researchers and practitioners from formal methods and (sub)symbolic AI to estab-
lish the boundaries of intersymbolic AI and to investigate and clarify the role of 
formal methods therein. 

Keywords: Formal Methods for AI, AI-enabled Verification, Explainable AI 

Motivation 

In his keynote contribution during last year’s ISoLA [4], Platzer [9] called for the study 
of the field that was coined intersymbolic artificial intelligence (AI). This field targets the 
combination of symbolic AI, whose building blocks have inherent significance/meaning, 
with subsymbolic AI, whose entirety creates significance/effect despite the fact that indi-
vidual building blocks escape meaning. Symbolic AI, as implemented in rule-based sys-
tems, provides formal rigor, but this comes at the cost of increased modeling effort and 
computationally expensive reasoning. Differently, subsymbolic AI approaches, which 
typically use data-driven methods from statistical learning, are not as computationally 
expensive as the rigorous ones but might lead to unsound results. The idea is that inter-
symbolic AI combines benefits from both symbolic and subsymbolic AI to increase 
the overall effectiveness, rigor, and explainability of AI compared to either kind of 
(sub)symbolic AI alone. 

Instances of such combinations have already been established in the literature and 
showcase the broad applicability of the intersymbolic AI concept. The probably most

https://orcid.org/0000-0002-2930-6367
https://orcid.org/0000-0001-5718-8276
https://orcid.org/0000-0002-7153-761X
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established instance of intersymbolic AI is in neurosymbolic AI, which focuses on the 
combination of symbolic and neural network reasoning [1,10]. Other instances have also 
been reflected in last year’s ISoLA track on “X-by-Construction Meets AI”, where sev-
eral contributions involved intersymbolic AI. For example, an intersymbolic program-
ming language was proposed, pairing logical primitives with training and prediction 
based on subsymbolic methods [5]. Within the area of explainable AI (XAI), an incar-
nation of intersymbolic AI by means of logic-based XAI was addressed [7]. In this strand 
of XAI, symbolic AI by means of logic reasoning is used to explain classifiers learned 
using subsymbolic AI approaches. Such approaches are particularly important since the 
operation of the most advanced AI models is often beyond the grasp of human decision 
makers. Much work on XAI relies on measures to quantify feature importance such as 
SHAP [6]. While such measures can give an indication of which are the relevant aspects 
in AI components, they cannot rigorously explain them. In high-risk or safety-critical 
domains, more formal approaches at different levels of abstraction are required to build 
the much needed trust [8]. 

In formal methods, explainability is an ongoing topic of research, turning formal cor-
rectness proofs on decision-making processes into interpretable explications [2]. Sub-
symbolic approaches such as reinforcement learning may assume an underlying formal 
model, e.g., by means of a Markov decision process (MDP). These models can be sub-
ject to formal methods, such as probabilistic model checking or explainability through 
formal notions of causality [3]. 

Research Questions 

All of the above mentioned areas only provide a glimpse of the many research questions 
and research opportunities that are emerging from the combination of formal meth-
ods and AI, constituted in the field of intersymbolic AI: What is the role of formal 
methods in intersymbolic AI? How can formal methods ensure rigorous explanations of 
intersymbolic AI approaches? Is there a generic methodology for intersymbolic AI that 
provides the benefits from both symbolic and subsymbolic AI approaches? What are the 
lessons learned from applying formal methods for neurosymbolic AI or other forms of 
intersymbolic AI? 

Track Format 

The track on “Formal Methods for Intersymbolic AI” (FMIAI) at AISoLA 2025 is 
organized as a two-day event to foster collaboration and research in intersymbolic AI. It 
addresses researchers and practitioners from formal methods, symbolic or subsymbolic 
AI, and established fields of intersymbolic AI such as neurosymbolic AI and XAI. 
Topics accepted for presentation range from logicbased XAI, verification and explanation 
of neural networks, and combinations of statistical model checking and reinforcement 
learning, to large language and modal models in a variety of application domains.
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Track participants have the opportunity to extend their presented contributions and 
include aspects discussed during the conference, and submit their work for publication 
in the forthcoming post-proceedings volume of AISoLA 2025. 
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Extended Abstract: Will Embodied AI 
Become Sentient? 

Edward A. Lee(B) 

University of California, Berkeley, USA 
eal@berkeley.edu 

Abstract. This extended abstract outlines technical reasons that 
embodiment qualitatively changes the nature of AI agents and poten-
tially enables sentience. Specifically, I argue that knowledge can be purely 
subjective, not externally observable, and that sentience is this form of 
knowledge. I further argue that first-person interaction can gain knowl-
edge that no objective observation can gain. And finally, I argue that the 
introduction of feedback through the physical world enables distinguish-
ing self from non-self, an essential distinction for sentience. Putting all 
these together, I conclude that embodied AI agents may in fact become 
sentient, but also that we can never know for sure whether this has hap-
pened. 

1 Embodied AI 

I have previously argued [ 5, 6] that the deep neural networks that underlie today’s 
large-language models (LLMs) more closely resemble Kahneman’s “system 1,” 
the quick intuitive thinking that is not subject to conscious control, than “system 
2,” the slow, deliberate, and controlled thinking that leverages rationality and 
logic [ 4]. Like humans, they have “bounded rationality” [ 13], i.e., limited ability 
to reason logically and limited short-term memory. As a consequence, their real 
strengths are not in logical reasoning, but in pattern recognition and prediction. 

Embodied cognition is a multidisciplinary thesis that argues that the mind 
is inseparable from the body [ 1, 14]. Specifically, it argues that the mind is not a 
separate entity, but rather an emergent property of the body and its interaction 
with the environment. This is a radical departure from the traditional view of 
the mind as an objective property of the brain, a computation going on in the 
skull. Instead, the mind is the interaction of the body, including the brain, with 
its environment. 

Sentience is the ability to experience feelings and sensations. It is valenced 
experience, experience that is positive or negative, good or bad. Sentience is 
subjective, not objective. It is not observable from the outside, measurable, or 
quantifiable. Sentience depends on embodiment, not just observation. 

Today’s LLMs have relatively little interaction with the physical world. They 
mostly interact with humans through the internet, but lack sensors and actu-
ators that directly interact with their physical environment. But this is chang-
ing as AI technology is integrated into physical robots. Mon-Williams et al. [ 9] 
c© The Author(s) 2026 
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 3–7, 2026. 
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have shown that embodied large language models can complete complex tasks in 
unpredictable environments. Here, I go further and explore whether such embod-
iment can lead to sentience. 

Embodiment is not just about sensors and actuators. It requires bidirectional 
feedback. The sentient entity not only reacts to sensations, but also acts to sense. 
A neural network can learn to correlate its physical actions with consequent sen-
sor inputs, thereby gaining the ability to distinguish self from non-self. Sensory 
input that depends on actuator outputs is not the same as sensory input coming 
from the non-self environment. Sentience requires such a distinction. 

Here, I give three technical reasons that embodiment qualitatively changes 
the nature of AI agents and potentially enables sentience. These technical reasons 
are explained in much more detail in chapters 10–12 of my Coeveolution book [ 7]. 
First, I argue that knowledge can be purely subjective, not externally observ-
able. Second, I argue that first-person interaction can gain knowledge that no 
objective observation can gain. Third, I argue that the introduction of feedback 
through the physical world enables distinguishing self from non-self, an essential 
distinction for sentience. Putting all these together, I conclude that embodied 
AI agents may in fact become sentient, but I also give technical reasons that we 
can never know for sure whether this has happened. 

2 Subjective Knowledge 

Dodig-Crnkovic [ 2] argues for a relational epistemology, where knowledge is not 
objective, but rather a function of the observer’s relationship to the observed. 
This is a radical departure from the traditional scientific goal of knowledge 
acquired through purely objective observation. Can this be true? Can knowl-
edge exist that is purely subjective, not externally observable? 

A rather technical Turing-award winning result, zero-knowledge proofs [ 3], 
shows definitively that knowledge can be purely subjective, not externally 
observable. Zero-knowledge proofs provide a procedure for proving a statement 
without giving the recipient of the proof the ability to prove the same statement. 
Knowledge of the truth of the statement becomes subjective, held only by the 
recipient of the proof. For a delightful explanation of this result, see Quisquater 
et al. [ 12]. 

An interesting property of zero-knowledge proofs is that they do not really 
give definitive proofs, in the sense of formal logic, but rather give evidence of 
the truth of the statement. The recipient of the proof can, through interaction, 
build an arbitrary degree of confidence in the truth of the statement, short of 
absolute certainty. 

Sentience is subjective knowledge. Zero-knowledge proofs provide a formal 
argument that knowledge can be purely subjective, not externally observable, 
so we don’t have to fall back on non-technical arguments, intuition, or spiritual 
beliefs.
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3 First-Person Interaction 

Milner [ 8] shows that two state machines can be indistinguishable from each other 
by any objective observer, and yet exhibit different behavior when interacted 
with. In particular, two machines that “simulate” each other will look identical 
to any objective observer, but can exhibit different behavior when interacted 
with. Milner introduced a “bisimulation” relation as a stronger form of equiva-
lence than mutual simulation. If two machines are bisimilar, then no observation 
or interaction can distinguish them; if they are only mutually similar, then 
no observation can distinguish them, but they may be distinguishable through 
interaction. This shows that first-person interaction can gain knowledge that no 
objective observation can gain. The first-person observer can see the difference 
between the two machines, but the objective observer cannot. 

Sentience, similarly, is not observable from the outside. Humans, by inter-
acting with one another, however, obtain evidence of sentience in each other. 
Empathy arises from such first-person interaction, which explains why humans 
find it more difficult to feel empathy for remote others. 

The “first person” aspect of this interaction is essential. A first-person inter-
action depends on the observer’s ability to distinguish self from non-self, which 
brings us to the final technical reason that embodiment enables sentience. 

4 Feedback 

The introduction of feedback through the physical world enables distinguishing 
self from environment. An agent that acts on the physical world and perceives 
through its sensors effects from that action can correlate its actions with its 
sensor inputs, thereby gaining the ability to distinguish self from non-self. 

In an animal, a motor efference is a signal sent to the muscles to act. An 
efference feedback mechanism has been identified in even the most primitive 
animal nervous systems, where the motor efference is fed back into the sensory 
system, which learns to predict the sensations that will result from the action. 
Deviations from the predicted sensations are used to adjust the action, but also 
to identify components in the sensation that arise from the environment rather 
than the self. This provides even the most primitive organisms the ability to 
distinguish self from non-self. Sentience requires this ability to distinguish self 
from non-self. For an experience to have valence, there must be a self for whom 
the experience is positive or negative. 

In more complex organisms, such as humans, efference feedback gives rise 
to the ability to reason about causation. The organism learns that its actions 
have effects, and that these effects can be predicted. This allows the organism 
to reason about some of the causes of its sensations, specifically those that are 
caused by its own actions. 

Pearl [ 10, 11], another Turing-award winner, argues that it is impossible to 
reason about causation objectively. He uses statistical methods to show that the 
only way to reason about causation is to use a causal model, which is a presup-
posed model of the causal relationships between the variables in the system. This
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model is not objective, but rather a subjective representation of the observer’s 
understanding of the system. This is the basis of the ability to reason about 
causation. 

Once sensations become valenced, ethical concerns arise. If the machines 
acquire sentience, then it may become reasonable to hold them accountable 
for their actions. It may also become important to give their “feelings” some 
consideration. 

5 Conclusion 

Putting all these together, I conclude that embodied AI agents may in fact 
become sentient, but also that we can never know for sure whether this has 
happened. No objective observation will be sufficient. Subjective interaction 
may give evidence of sentience, but doubts will remain. As with zero-knowledge 
proofs, subjective, first-person interaction may build confidence, but not cer-
tainty. 
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Abstract. This is an introduction to the track ‘AI Assisted Program-
ming’ (AIAP), organized at the third instance of the AISoLA conference 
during the period November 1–5, 2025. AISoLA as a whole aims to study 
opportunities and risks of late advances of AI. The motivation behind 
the AIAP track in particular, which also takes place the third time, is the 
emerging use of large language models for the construction and analysis 
of software artifacts. An overview of the track presentations is provided. 

1 Introduction 

Neural program synthesis, using Large Language Models (LLMs) which are 
trained on open source code, have quickly become a popular addition to the 
software developer’s toolbox. LLMs like, for instance, OpenAI’s ChatGPT [ 9], 
Anthropic’s Claude [ 10], Google’s Gemini [ 11], xAI’s Grok [ 12], Meta’s LLaMA 
[ 13]; and various LLM enhanced IDEs such as Copilot [ 14], Cursor [ 15], and 
Windsurf [ 16], can generate code in many different programming languages from 
natural language requirements. This opens up for fascinating new perspectives, 
such as increased productivity and accessibility of programming also for non-
experts. However, neural systems do not come with guarantees of producing 
correct, safe, or secure code. They produce the most probable output, based 
on the training data, and there are countless examples of coherent but erro-
neous results. Even alert users fall victim to automation bias: the well studied 
tendency of humans to be over-reliant on computer generated suggestions. The 
area of software development is no exception to this automation bias. 

The research performed by this author was carried out at Jet Propulsion Laboratory, 
California Institute of Technology, under a contract with the National Aeronautics and 
Space Administration. 
c© The Author(s) 2026 
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The track AI Assisted Programming at AISoLA 2025 is the third of its kind, 
after the first instance in 2023 [ 2] and the second instance in 2024 [ 1]. It is 
devoted to discussions and exchange of ideas on questions like: What are the 
capabilities of this technology when it comes to software development? What 
are the limitations? What are the challenges and research areas that need to 
be addressed? How can we facilitate the rising power of code co-piloting while 
achieving a high level of correctness, safety, and security? What does the future 
look like? How should these developments impact future approaches and tech-
nologies in software development and quality assurance? What is the role of 
models, tests, specification, verification, and documentation in conjunction with 
code co-piloting? Can quality assurance methods and technologies themselves 
profit from the new power of LLMs? 

2 Contributions 

The above questions are taken up by the participants of the track in eleven talks. 
Six talks [ 3– 8] are associated with regular papers. The remaining five talks do 
not have associated papers in the proceedings. Presenters have been offered to 
publish regular papers in subsequent post-conference proceedings. 

2.1 Talks with Papers in the Proceedings 

Khashayar Etemadi, Marjan Sirjani, Mahshid Helali Moghadam, Per Strand-
berg, and Paul Pettersson (LLM-based Property-based Test Generation for 
Guardrailing Cyber-Physical Systems [ 3]) propose an automated method for 
guardrailing cyber-physical systems (CPSs) using property-based tests (PBTs) 
generated by LLMs. Their approach uses an LLM to extract system properties 
from CPS code and documentation, then generates PBTs to verify these proper-
ties both at design time (pre-deployment testing) and at run time (monitoring 
to prevent unsafe states). They implement the method in a tool called ChekProp 
and evaluate it on preliminary case studies, measuring the generated PBTs’ rele-
vance, executability, and effectiveness in covering input space partitions. Results 
indicate that LLM-generated PBTs offer a promising direction for CPS safety 
assurance. 

Moez Ben Hajhmida and Edward A. Lee (RAG and Agentic Assistant: A 
Combined Approach [ 4]) present a hybrid approach for translating Lingua Franca 
(LF) programs that use the C target into equivalent LF programs using the 
Python target. LF is a coordination language for reactor-based architectures, 
where individual actors are programmed in popular programming languages 
including C and Python. Converting 150 C regression tests into according Python 
versions, the method combines Retrieval-Augmented Generation (RAG), which 
retrieves similar LF-Python examples to guide code LLMs, with an agentic AI 
assistant in the Cursor IDE to automate syntax correction, refactoring, and 
code standardization. The results show that RAG greatly improves small-model
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performance, and the assistant further increases the proportion of syntactically 
correct and executable translations. 

Niclas Hertzberg, Merlijn Sevenhuijsen, Liv Kåreborn, and Anna Lokrantz 
(CASP: An Evaluation Dataset for Formal Verification of C code [ 5]) present 
CASP, a benchmark dataset for evaluating LLMs and other automated tools on 
the generation and verification of C code against formal specifications. CASP is 
built from The Stack v1 and v2—large, permissively licensed source code reposi-
tories from the BigCode project—by extracting self-contained C functions anno-
tated with ANSI/ISO C Specification Language (ACSL), verifying them with 
the Frama-C framework, and repairing faulty files using automated and man-
ual methods. The resulting 506 function–specification pairs enable reproducible 
benchmarking for tasks such as generating code from specifications, deriving 
specifications from code, and repairing non-verifying pairs, supporting research 
toward more reliable, formally verified software systems. 

Lennart Landt, Martin Leucker, and Carsten Burchardt (A Voice-Enabled 
Query Framework for Systems Engineering Artefacts [ 6]) propose a voice-enabled 
AI framework to improve comprehension and exploration of Model-Based Sys-
tems Engineering (MBSE) models, particularly for newcomers and interdisci-
plinary teams. While MBSE, often implemented in SysML, supports complex, 
collaborative design, it has a steep learning curve. The presented framework 
employs AI avatars representing different engineering roles, enabling natural-
language voice queries about system artifacts. A processing pipeline converts 
MBSE model data into a machine-readable form for LLMs, which generate con-
textual, role-specific responses. The prototype supports a multi-turn dialogue, 
helping users to navigate and interpret models, fostering collaboration, and low-
ering barriers to effective MBSE adoption. 

Julian Müller, Thies de Graaff, and Eike Möhlmann (Integrating LLMs 
with QC-OpenDRIVE: Ensuring Normative Correctness in Autonomous Driving 
Scenarios [ 7]) investigate integrating LLMs with QC-OpenDRIVE to generate 
OpenDRIVE road network files that are both syntactically valid and compliant 
with domain rules for autonomous driving scenario validation. While LLMs can 
easily produce diverse road layouts, they often break normative requirements 
such as a rule which mandates geometric continuity between connected roads— 
their endpoints, tangents, and curvature must align seamlessly. The proposed 
approach adds a feedback loop: QC-OpenDRIVE validates LLM output, flags 
semantic and normative errors, and the LLM iteratively corrects them. Com-
bining this loop with Retrieval-Augmented Generation or reasoning steps yields 
valid results, demonstrating the value of domain-specific validation. 

Amer Tahat, Isaac Amundson, David Hardin, and Darren Cofer (AGREE-
Dog Copilot: A Neuro-Symbolic Approach to Enhanced Model-Based Systems 
Engineering [ 8]) present AGREE-Dog, an open-source generative AI copilot 
for the AGREE compositional reasoning tool, aimed at making model-checking 
counterexamples easier to understand and resolve. Large, tabular counterexam-
ples can overwhelm engineers, especially newcomers. AGREE-Dog, integrated 
into the OSATE IDE, uses LLMs to explain violations, suggest repairs, and
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automate DevOps and ProofOps steps—such as re-running analyses and man-
aging updated models—so users can iterate quickly. A context-selection and 
memory system tracks evolving artifacts and past interactions, while new struc-
tural and temporal metrics measure how much manual input is required. In 13 
fault-injection scenarios, AGREE-Dog achieved rapid, accurate counterexample 
repair with minimal human effort. 

2.2 Talks Without Papers in the Proceedings 

Lenz Belzner, Thomas Gabor, and Martin Wirsing (AI Engineering vs. Vibe-
Coding: a Strategic Look at AI-Assisted Software Engineering) offer a strategic 
perspective on the rise of AI-assisted software engineering, contrasting its trans-
formative potential with the risks of “vibe coding”—code that appears functional 
but lacks robust architecture, documentation, and maintainability. They note 
that AI agents can now assist across the software lifecycle, from requirements 
analysis and design to automated code and test generation, promising gains in 
productivity, speed, and complexity management. However, without deliberate 
safeguards, AI-generated systems risk technical debt, security vulnerabilities, 
and reduced long-term stability. The talk explores how to harness AI’s advan-
tages while preserving quality, testability, and security, ensuring AI becomes a 
tool for strategic excellence. 

Itay Cohen, Klaus Havelund, and Doron Peled (Synthesizing Runtime Veri-
fication Monitors with LLMs) investigate using LLMs to synthesize runtime ver-
ification (RV) monitors directly from natural-language specifications, extending 
beyond narrowly defined formalisms like linear temporal logic. Their tool engages 
in structured interaction with an LLM to interpret rich, often ambiguous con-
structs from design documents, generating multiple plausible interpretations and 
refining them with user feedback. This process builds a reusable library of tem-
poral constructs that can be automatically translated into monitor code. By 
mediating LLM interactions through the tool, the approach enhances expressive 
power, better aligns with original intent, and improves the trustworthiness and 
reliability of generated monitors for verification purposes. 

Lucas Cordeiro (AI-Assisted Formal Verification: Towards Fast, Accessible, 
and Rigorous Software Verification) presents four AI–formal verification integra-
tions. One approach combines large language models with bounded model check-
ing to automatically derive formal properties from natural-language require-
ments, demonstrated on industrial cyber-physical systems and supporting richer 
logical expressiveness while reducing false positives. Another uses a lightweight 
AI model for real-time classification of potential vulnerabilities in C, C++, Java, 
Python, Kotlin, and Solidity. A third introduces an autonomous repair frame-
work that detects flaws such as buffer overflows and pointer dereference errors 
in C/C++ code, generates fixes, and validates them formally. Finally, a loop 
summarization technique mitigates state-space explosion in verifying programs 
with complex or nested loops. 

João F. Ferreira (Techniques and Experiments in Retrieval-Augmented Neu-
ral Theorem Proving) explores the potential of large language models for auto-
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mated theorem proving, tracing developments from early retrieval-augmented 
approaches to recent reinforcement learning experiments. The talk first describes 
Rango, a system that dynamically adapts to the current proof state by retrieving 
and applying relevant lemmas and prior proofs. The talk then presents ongoing 
work using Group Relative Policy Optimization (GRPO) to train models for 
improved reasoning performance. The talk addresses the challenges of integrat-
ing retrieval, learning, and logical inference, reports observed performance gains, 
and outlines future research directions toward combining these components to 
advance neural theorem proving capabilities. 

Jie He, Vincent Theo Willem Kenbeek, Zhantao Yang, Meixun Qu, Ezio 
Bartocci, Dejan Nic̆ković, and Radu Grosu (Explaining Timing Diagrams with 
LLMs) present a multimodal approach to assist engineers in understanding com-
plex timing diagrams (TDs) originating from third-party sources, commonly 
encountered during hardware design and verification. This approach offers an 
interactive visual question-answering interface, enabling users to upload TDs 
and ask targeted questions about signal behavior, timing constraints, and pro-
tocol correctness. 

Alexandra Mendes (LLM-Assisted Program Correctness: Generating Lem-
mas, Assertions, and Repairs in Dafny) examines how large language mod-
els can assist in overcoming common bottlenecks in formal verification with 
Dafny. While Dafny provides strong correctness guarantees, verification often 
requires developers to supply helper assertions, loop invariants, and lemmas, 
a process that is both time-consuming and error-prone. The talk presents two 
applications of LLMs: generating missing assertions and lemmas, and perform-
ing specification-guided automated program repair. It also discusses observed 
strengths and limitations of LLMs in this context, emphasizing how combin-
ing symbolic reasoning with model-generated suggestions can improve efficiency, 
reduce manual effort, and make formal verification more accessible to a broader 
range of developers. 

Jonas Schiffl, Samuel Teuber, and Bernhard Beckert (Formally Verified LLM 
Program Synthesis for Solidity Smart Contracts) present an approach to auto-
matically synthesize formally verified Solidity smart contracts using LLMs within 
the Scar model-driven verification-based development process. In Scar, develop-
ers first create an abstract model with security and correctness properties, from 
which a formally specified code skeleton is generated. Traditionally, developers 
manually implement this skeleton and verify it against the specification. Here, 
an LLM generates the implementation directly from the specification, followed 
by automated formal verification using Certora and solc-verify. If verification 
succeeds, the code is guaranteed correct. The method is evaluated on multiple 
use cases, comparing both verification tools and reporting practical insights. 

Shivkumar Shivaji, Natalia Lobakhina, Lucas Cordeiro, and Klaus Havelund 
(LLM-Assisted Program Translation and Bounded Model Checking for Formal 
Verification of Python Code) present a framework for verifying Python programs 
by combining large language model-based program translation with bounded 
model checking. An RLHF-enhanced LLM translates Python code into seman-
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tically equivalent C, which is then analyzed using the ESBMC bounded model 
checker to verify safety properties through intelligent path exploration. This app-
roach bridges high-level Python development with rigorous formal verification. 
Supporting formal verification of Python allows the popular Python language 
to be used as a modeling language instead of traditional formal specification 
languages, which usually have steep learning curves and have limited expressive-
ness. This is demonstrated on a model of an autonomous Lunar rover control 
system. 

Cheng Wang, Florian Lorber, Edi Mus̆kardin, and Bernhard Aichernig (For-
mal Verification of AI-based Code Generation in Model-Driven Development) 
propose a formal evaluation method for LLM code generation, using finite-state 
machines as ground truth specifications. These models are automatically trans-
lated into natural language descriptions and provided to an LLM, which gener-
ates Python programs intended to match the original behavior. The generated 
programs are then analyzed with active automata learning (using the AALpy 
automata learning library) to infer their input–output behavior and compare it 
against the ground truth, producing a similarity score. The method also supports 
iterative repair of faulty code using counterexamples. Initial experiments with 
four popular LLMs on randomly generated Mealy machines reveal differences in 
accuracy and robustness. 

3 Conclusion 

The presentations in this track cover the use of LLMs in the context of all 
phases of software development, including requirements, designs, coding, testing 
and verification. This includes such topics as LLM support for specification gen-
eration, test case generation, runtime verification, formal verification, automated 
repair, translation of high-level design models and specifications to code, trans-
lation between programming languages, human comprehension of models, and 
benchmarks. This covers an interesting spectrum of AI assisted programming. 
We hope that this track, with its talks, discussions, and papers, contributes to 
a future of AI assisted programming which exploits the strengths of arising AI 
technologies while mitigating the corresponding risks. We are convinced that 
many communities within computing have a lot to contribute to such a devel-
opment, and look forward to future initiatives and contributions towards this 
aim. 
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Abstract. Cyber-physical systems (CPSs) are complex systems that 
integrate physical, computational, and communication subsystems. The 
heterogeneous nature of these systems makes their safety assurance chal-
lenging. In this paper, we propose a novel automated approach for 
guardrailing cyber-physical systems using property-based tests (PBTs) 
generated by Large Language Models (LLMs). Our approach employs an 
LLM to extract properties from the code and documentation of CPSs. 
Next, we use the LLM to generate PBTs that verify the extracted prop-
erties on the CPS. The generated PBTs have two uses. First, they are 
used to test the CPS before it is deployed, i.e., at design time. Secondly, 
these PBTs can be used after deployment, i.e., at run time, to monitor 
the behavior of the system and guardrail it against unsafe states. We 
implement our approach in ChekProp and conduct preliminary exper-
iments to evaluate the generated PBTs in terms of their relevance (how 
well they match manually crafted properties), executability (how many 
run with minimal manual modification), and effectiveness (coverage of 
the input space partitions). The results of our experiments and evalu-
ation demonstrate a promising path forward for creating guardrails for 
CPSs using LLM-generated property-based tests. 

Keywords: Property-based Testing · LLM4SE · Cyber-Physical 
System · Safety 

1 Introduction 

Cyber-physical systems (CPS) are integrated hardware-software systems where 
computation and physical processes are deeply intertwined. Ensuring safety [ 8] in  
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these systems, in particular for the safety-critical ones is of high importance, as 
failures can have critical consequences. One of the key strategies in safety assur-
ance is to capture the system’s properties describing what the system should and 
should not do under different conditions. Encoding the requirements as formal 
or semi-formal properties, can enable creating safety and security guardrails for 
system behavior. Formulating properties usually starts from the system require-
ments typically written in natural language. Therefore, large language models 
(LLMs) with their strong potential can be leveraged to extract properties from 
existing documentation and software code. These properties can be used to drive 
subsequent automated testing and verification activities, such as property-based 
testing [ 4, 6]. Property-based tests (PBT) are generated from a given property 
describing the expected behavior, and the testing framework produces various 
input scenarios to check if the property is satisfied in all cases. 

In this paper, we propose a novel automated and scalable approach for 
guardrailing CPS using PBT generated by LLMs. Our approach benefits from 
two major established facts in software engineering: 1) the cyber side of CPSs is 
essentially a software program amenable to existing automated program analysis 
tools; and 2) advanced LLMs are strong in analyzing programs and extracting 
their expected properties [ 22]. Based on these two observation, our proposed 
approach, called ChekProp, uses LLMs to generate property-based tests for 
CPSs before their deployment, i.e., at design time. These PBTs can also then 
be utilized after deployment, i.e., at run time, to detect unsafe behavior of the 
CPS. ChekProp uses the source code, documentation, and unit tests of the 
target CPS to extract properties regarding its expected behavior. ChekProp 
also generates PBTs that verify that the extracted properties hold for the CPS. 
We implement a prototype of ChekProp and make it publicly available to the 
community [ 5]. 

Our work is the first to address property-based testing of CPS. In software 
systems context, LLMs have been utilized for automated test case generation, 
both unit and integration test, from various sources of specification. For CPS, 
efforts have been more focused on scenario generation for autonomous driv-
ing and robotics (not inferring formal properties or invariants for the system). 
Using LLMs for generating property-based testing has recently emerged like in 
the work of Vikram et al. (2024) which investigates if LLMs write good PBTs 
[ 22]. In this work, the system under test is a Python library. CPSs are supposed 
to run in a physical environment. This makes the generation of PBT more chal-
lenging than just extracting the property or testing software. For generating an 
executable PBT, we need a detailed understanding of the relationship between 
various components of a given CPS to be able to mock how the environment 
affects the CPS program. A different approach for using LLMs to ensure the 
safety of CPS is to express the requirements of the system in the form of mathe-
matical equations between different physical components. For example, Abshari 
et al. [ 1] propose an LLM-based approach that automatically extracts physical 
invariants that ensure healthy execution of the system. This technique is focused
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Listing 1. An example of a Python property-based test that checks the pow method 
returns a positive number as the square of an integer. This PBT uses the hypothesis 
library to generate inputs for the test. 
1 The property-based unit test for the pow method: 
2 @given(st.integers()) 
3 def test_pow2_positive_output(x): 
4 square = pow(x, 2) 
5 assert square >= 0 
6 
7 The example-based unit test for the pow method: 
8 def test_pow2_on_negative_input() 
9 square = pow(-3, 2) 

10 assert square == 9 

only on extracting the invariants (properties), while ChekProp generates fully 
executable property-based tests for CPS. 

We evaluate the relevance of properties extracted by ChekProp for nine pro-
grams: two widely studied CPSs and seven Raspberry Pi programs. ChekProp 
extracts 25 properties on these nine programs. Our results show that the proper-
ties extracted by ChekProp are similar to those carefully created with manual 
effort, with a recall of 94% and a precision of 72%. The high precision and recall 
of ChekProp shows that it can be a reliable tool for automating the manual 
effort dedicated to property extraction for CPSs. Moreover, we study the quality 
of PBTs generated by ChekProp. We find that 47% of the PBTs generated by 
ChekProp become executable with minor modifications and 85% of the PBTs 
effectively cover various parts of the input space partitions. This suggests that 
ChekProp generates PBTs that successfully verify the CPS compliance with 
the extracted properties. 

In summary, our main contributions are the following. 

– We propose a novel automated approach for generating property-based tests 
for CPSs using LLMs. 

– We implement a prototype of our proposed approach in ChekProp and make 
it accessible to the community in our open-source repository [ 5]. 

– We report the results of our preliminary experiments on the relevance and 
quality of the PBTs generated by ChekProp in practice. 

2 Background on Property-Based Testing 

Property-based testing was first introduced in QuickCheck [ 4]. Given a function 
under test . f , the input space of this function . X, and a property . P that checks 
the behavior of . f on a given input, a property-based test validates that . ∀x ∈
X : P (x, f). The property .P can be seen as a function that takes an input . x
and the function . f and outputs true or false. The output of .P determines if 
. f behaves according to predefined requirements on . x. In practice, a property-
based test (PBT) consists of three components: 1) an input generator gen(), 
which returns different inputs, like . x, from the input space . X; 2) a  test body
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that collects relevant data regarding the behavior of . f ; and  3)  a  test assertion 
that uses the data collected by the test body to assert that the property . P about 
. f is true for a given input . x. 

Take Listing 1 as an example. The PBT in this example (lines #1–5) tests the 
Python pow method. The main goal of this test is to check that the pow method 
returns a positive number when it powers an integer by 2. The PBT employs the 
hypothesis library [ 12] for input generation (line #2). The given decorator at 
line #2 uses the st.integers() strategy to generate various random integers 
and consider them as input . x at line #3. The hypothesis library provides the 
given decorator, the st.integers() strategy, and many other tools to facilitate 
property-based testing in Python. After the input is generated with the help of 
hypothesis library, the PBT in Listing 1 collects the output of pow and saves 
it in square at line #4. Finally, it checks the property that the output of pow 
is positive at line #5. This property-based test delivers exactly what we need: 
a test that checks that the pow method returns a positive number for various 
integers, when they are powered by 2. 

To better understand property-based testing, we can compare it with the 
commonly used example-based unit tests (EBTs), which test program with fixed 
arguments [ 20]. An EBT checks if the function . f under test works correctly for 
a single input . x. For this, the EBT usually inspects that the output of . f for . x is 
exactly the same as the correct output . o determined by an oracle. In contrast, 
a PBT checks that . f behaves according to expectations for various inputs from 
the input space . X. 

Listing 1 shows an example of EBT for the Python pow method as well. The 
main goal of this test is also checking that the pow method returns a positive 
number when it powers an integer by 2. The EBT (lines #7–10) tests the pow 
method by giving it a negative integer, namely -3, as base, and 2 as power. Then, 
it checks that the output of pow is exactly 9 (line #10). If this test passes, it 
only shows that pow method returns a positive number as the square of -3 (as 
an example of an integer). The EBT is testing pow only for one single input, and 
its result might not be generalizable. Also, this type of testing requires an oracle 
that states the expected output, which is 9 in this case. 

PBTs are suitable for safety checking the behavior of cyber-physical systems 
at runtime for two reasons. First, in PBTs, we do not need to know the exact 
expected behavior of the CPS under test. PBTs only check that the behavior 
of the CPS meets certain requirements, which can indicate the safety of its 
behavior. Secondly, PBTs check the behavior of the CPS on any input from the 
input space. This enables PBTs to ensure the safety of the CPS under unforeseen 
situations at runtime. We need to utilize the test body and test assertion of the 
PBT to monitor and assure the safety of CPS behavior at runtime. Based on 
these observations, in this paper, we use LLMs to generate PBTs for cyber-
physical systems.
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3 Proposed Approach 

We envisage a novel approach for guardrailing cyber-physical systems with LLM-
generated PBTs. Figure 1 illustrates an overview of our proposed approach. 
This approach consists of two main phases: the PBT generation phase, and 
the property-based monitoring phase. 

The PBT generation phase occurs at design time, before the system is 
deployed in real world. In this phase, we employ LLMs to generate PBTs that 
guardrail cyber-physical systems against running in unwanted/unsafe states. We 
implement our tool ChekProp to carry out the proposed PBT generation, given 
the documents, code, and unit tests of the cyber-physical system. After the PBTs 
are generated, we enter the property-based monitoring phase of our approach. 
This phase occurs at run time, when the system is deployed in real world. In  
this phase, the running cyber-physical system is constantly checked against the 
generated PBTs. Once a violation of a PBT is detected, a warning is raised and 
the proper safety measures should be taken. 

Fig. 1. Overview of the proposed two-phase approach. ChekProp particularly focuses 
on the PBT generation phase. In the PBT improvement loop step, ChekProp aims to 
improve the generated PBTs by sending the LLM an improvement prompt, consisting 
of the failed PBTs and the error messages collected for them. Errors of various types 
are considered, including syntax errors, compilation errors, exceptions thrown during 
test executions, and assertion failures.
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In the following, we explain the proposed PBT generation method, which is 
implemented in ChekProp. ChekProp takes the natural language documents 
of the CPS, its source code, and unit tests and prompts an LLM to generate 
PBTs. Next, it analyzes existing PBTs to detect issues and iteratively prompts 
the LLM to improve the PBTs. Once the PBTs pass the analysis, they are 
considered as verified PBTs that can be used as guardrails for the CPS. We now 
discuss each of these ChekProp components in more detail. 

3.1 Inputs of ChekProp 

The input to ChekProp comprises natural language documents that specify 
the CPS and its expected behavior, the CPS source code in Python, and unit 
tests for this source code. 

The natural language documents of the CPS describe the expected behavior 
of the system and the constraints that should be observed in the run time. 
Take Fig. 2 as an example of a natural language document that describes a 
Pneumatic Control System (PCS) [ 13]. The description first defines the main 
elements involved in the system, namely, the horizontal and vertical cylinders 
and their corresponding sensors and controllers. Next, it explains the expected 
behavior of the system and the expected order of cylinder movements. Finally, 
it presents the constraints that should be met during the movements. 

Given the natural language documents of the system, the CPS is implemented 
to follow the described requirements. Moreover, a set of unit tests is created 
to test the CPS implement for specific points in the input space. Note that 
implementing the CPS and creating unit tests for it can also be fully automated 
using state-of-the-art LLM-based code generation [ 9] and test generation [ 23] 
techniques. However, ChekProp focuses on PBT generation and assumes that 
the CPS implementation is provided in Python, along with at least one unit test 
that demonstrates how the test body should interact with different methods of 
the program. 

Fig. 2. The natural language document that describes a Pneumatic Control System 
(PCS). We take the original design of PCS from [ 13] and adapt it to make it suitable 
for property-based testing.
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3.2 Initial PBT Generation 

ChekProp starts PBT generation by synthesizing an initial prompt. This  
prompt is used to invoke the LLM for generating an initial batch of PBTs. The 
initial prompt consists of four main sections and follows the structure presented 
in Fig. 3. 

As illustrated in the Fig. 3 example, the first section presents the description 
of the CPS in natural language. LLMs are highly effective in understanding 
natural language specifications of software and translating those specifications 
to actual code [ 9]. Therefore, we provide this section of the prompt to help the 
LLM better understand the system constraints that should be later translated 
into PBTs. 

The second part of the initial prompt contains the Python code for the CPS. 
In Fig. 3, the second section presents a part of the code for pneumatic control 
system, namely, the Cylinder class (line #14). Including the system code in the 
prompt is essential for the LLM to recognize how the system should be called in 
tests. 

The third part of the initial prompt also provides at least one example unit 
test for the system. The third part of Fig. 3 shows an example of a unit test that 
calls the system controller. This unit test employs an instance of the MockSystem 
class (line #58) to mock the physical part of the pneumatic control system and 
obtain a simple interface to its controller. It also illustrates how the states of the 
system should be collected during execution and checked later (lines #59–61). 

Note that, as explained in Sect. 2, there is significant difference between unit 
tests and property based tests. The unit test only checks the behavior of the 
program for a specific input. For example, in the unit test (Sect. 3) of Fig. 3, 
specific total_time, cylinder_interval, etc. are used. Also, in unit testing we 
usually check that the output is exactly what is expected according to an oracle 
[ 21]. In contrast, property based tests check that a more general condition is 
meet by the program behavior over a wide range of inputs. 

The fourth and final part of the Fig. 3 instructs the LLM to generate the 
desired PBTs. At the end of the initial PBT generation step, ChekProp obtains 
a set of initial PBTs. ChekProp runs these PBTs and collects their results 
using an analyzer unit. If a group of generated PBTs fails, ChekProp collects 
their failure message and enters its PBT improvement loop step as described in 
Subsect. 3.3. 

3.3 PBT Improvement Loop 

In the PBT improvement loop step, ChekProp aims to improve the suite of 
generated PBTs. For this, ChekProp sends the LLM an improvement prompt, 
consisting of the failed PBTs and the error messages collected for them. Errors of 
various types are considered, including syntax errors, compilation errors, excep-
tions thrown during test executions, and assertion failures. The improvement 
prompts are sent to the LLM in continuation of the initial prompt, which means
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Fig. 3. The structure of initial prompt used by ChekProp for generating an initial 
set of PBTs.
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Listing 2. The PBT generated by ChekProp for the Pneumatic Control System 
presented in Figure 3 with three parts, the input generator, the test body, and the test 
assertions. 

1 from hypothesis import given, strategies as st 
2 from examples.gpiozero.apps.pcs.src.pcs import MockSystem 
3 
4 
5 # Test that the cylinder locations remain within the bounds (0 and 2) at all times. 
6 @given( # This is the input generator of the PBT, which uses the hypothesis library to run 

the test with different inputs. 
7 total_time=st.floats(min_value=1.0, max_value=100.0), 
8 cylinder_interval=st.floats(min_value=0.1, max_value=10.0), 
9 controller_interval=st.floats(min_value=0.1, max_value=10.0), 

10 mock_interval=st.floats(min_value=0.1, max_value=10.0), 
11 ) 
12 def test_cylinder_location_in_bounds(total_time, cylinder_interval, controller_interval, 

mock_interval): 
13 system = MockSystem(total_time, cylinder_interval, controller_interval, mock_interval) # 

Start of test body 
14 collected_states = system.execute_scenario() 
15 
16 for state in collected_states: # End of test body 
17 # The following two lines present the test assertions of this PBT 
18 assert 0 <= state.cylinder_a_loc <= 2, f"Cylinder A out of bounds: 

{state.cylinder_a_loc}" 
19 assert 0 <= state.cylinder_b_location <= 2, f"Cylinder B out of bounds: 

{state.cylinder_b_location}" 

that the LLM also has the CPS description, code, and unit test in context. 
Therefore, the LLM has all the information needed to improve the PBTs. 

The PBT improvement loop component of ChekProp, iteratively sends 
improvement prompts to the LLM and employs the analyzer unit to run 
the improved PBTs and collect their results. If the improved PBTs still fail, 
ChekProp repeats this process until all PBTs are fixed or ChekProp reaches 
a predefined maximum number of improvement attempts. 

3.4 Output of ChekProp 

In the event of a successful PBT generation, ChekProp outputs the PBT 
as Python code. In particular, per our experiments, LLMs always use the 
hypothesis library [ 12] to write property based tests in Python. The tests gen-
erally use the same testing framework as the example unit test. For example, 
the unit test in Fig.  3 is run with pytest. The PBTs generated by LLMs for this 
prompt can also be executed with pytest. 

Listing 2 shows one of the PBTs that ChekProp generates for the pneumatic 
control system. As the comment above the test mentions, it checks that cylinders 
stay within the location bound. The property is checked by two assertions at 
lines #17–18, one assertion per cylinder. This property is checked for a range 
of different settings for cylinders and their controllers presented at lines #7– 
10. Note the main difference between this PBT and the unit test in Fig. 3: the  
unit test checks that a specific output for a given input is exactly correct, while 
the PBT verifies that a general property holds for all inputs within a specified 
range. This makes PBTs more general and appropriate for checking that the 
system does not show unsafe behavior in unforeseen situations.
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3.5 Implementation 

ChekProp uses the gemini-2.0-flash-lite-preview-02-05 in its current 
version, but adopts a flexible design that allows easy switch to other LLMs. 
ChekProp also invokes the LLM with a sample size of one and a temperature 
of zero, which means that it receives only the top response per LLM invocation. 
In the current version of ChekProp, the PBT improvement loop is disabled, 
and we assess LLM’s ability to generate PBTs at the initial attempt. 

3.6 Property-Based Monitoring 

While ChekProp is focused on PBT generation (phase 1 in Fig. 1), property-
based monitoring (phase 2 in Fig. 1) is also an integral part of our guardrailing 
CPSs with PBTs. In the monitoring phase of our proposed approach, various 
components of the generated PBTs are used to collect relevant data and verify 
the properties at runtime. For example, the generated PBT in Listing 2 tests 
that the cylinders stay in the correct location range for given inputs. This test 
shows that we should collect state values (line #16) and then assert that their 
cylinder_a_loc attribute is in the range .[0, 2] (line #17) to ensure the property 
holds for cylinder A. In the monitoring phase, we can use the same data collection 
and property assertion techniques to check that the cylinders do not enter unsafe 
locations at runtime. This example demonstrates how the property extracted by 
ChekProp and the implementation of its generated PBTs are useful, relevant, 
and vital for guardrailing CPSs. 

More generally, as explained in Sect. 2 and as seen in Listing 2, the  PBTs  
generated in the first phase consist of three components: an input generator, a 
test body, and a test assertion. In the property-based monitoring phase, the PBT 
input generator is no longer needed, as the inputs are generated by the cyber part 
(in the form of control commands) and the physical system (via sensor values). 
The test body is replaced by the monitor that sits between the controller and 
the physical system collecting relevant data. The properties derived at design 
time are transformed into guards that are checked at runtime. The monitor 
verifies that these guards hold in the current state of the system. Based on the 
situation, if a violation is detected, the monitor can intercept and block the 
command being sent to the physical system. In this way, the PBTs generated by 
ChekProp serve as runtime guardrails for CPSs. 

4 Experiments 

4.1 Research Questions 

We conduct preliminary experiments to answer the following research questions: 
In this paper, we study the quality of ChekProp extracted properties and 

the quality of its generated property-based tests according to the following 
research questions:
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– RQ1 (Property relevance): Does the proposed approach extract relevant 
properties? We assess the quality of properties extracted by our approach 
on a dataset of Python programs for cyber-physical systems. Our dataset 
consists of two cyber-physical systems that are extensively studied in the lit-
erature, as well as seven Raspberry Pi programs. We compare the automat-
ically extracted properties with manually crafted properties to judge their 
relevance. 

– RQ2 (PBT quality): What is the quality of ChekProp generated PBTs 
for real-world CPSs? We use ChekProp to generate PBTs for Python CPS 
programs in our dataset. We assess the quality of ChekProp generated PBTs 
from two aspects. First, we check if the generated PBTs can be executed with 
minimal manual modification (executability). Second, we evaluate the extent 
of various input space partitions on which the generated PBTs execute the 
program (effectiveness in terms of coverage of the input space partitions). 

4.2 Dataset 

As the current version of ChekProp supports PBT generation for Python 
programs, we curate a dataset of Python CPS programs for our experiments. 
This dataset consists of nine programs presented in Table 1. These programs are 
taken from three main sources as follows. 

First, we include the Python version of two CPSs that are widely studied 
in the model checking literature [ 13]: a temperature control system (TCS) and 
a pneumatic control system (PCS) (P1 and P2 in Table 1). TCS and PCS are 
presented with the IDs P1 and P2 in Table 1. Moradi et al. [ 13] use  the model  
checking tool of Rebeca 1, Afra [  17], to detect potential attacks against these 
systems. For this, they define the correctness properties for each system and 
assess if Afra can find counterexamples for these properties on models augmented 
with malicious behavior. The manually defined properties in [ 13] set a ground-
truth with which we can compare the properties automatically extracted by 
ChekProp. 

We carefully implement TCS and PCS in Python to make them amenable 
to PBT generation by ChekProp. Listing  3 shows a summary of our imple-
mentation of the TCS. There is a class for each component (i.e. Rebeca actor) 
of the system, namely, TempSensor for the sensor, HCUnit for the HC unit, and 
Controller for the controller. Each component runs on a separate thread and 
updates its status periodically. For example, the sensor fetches current tempera-
ture every sensor_interval seconds (see line #17). We also provide a MockRoom 
class that simulates the room environment and enables us to execute the system 
with different configurations, such as initial_temp and sensor_interval (see 
lines #50 and #58). This implementation is suitable for testing the temperature 
control system.

1 Rebeca is an actor-based modeling language, in which actors are the units of con-
currency and communicate via asynchronous message passing [ 17]. 
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Table 1. The cyber-physical system Python programs considered in our dataset. 

ID Program Type Description 

P1 Temperature Control 
System (TCS) 

Model-based 
Example [13] 

The TCS system controls the 
temperature of a room. The 
room has a window that blows 
cold or hot wind into the 
room. A sensor collects the 
current temperature and a HC 
unit is used to heat up or cool 
down the room environment. 
Finally, a controller collects 
the temperature data from the 
sensor and decides if the HC 
unit should be used. 

P2 Pneumatic Control 
System (PCS) 

Model-based 
Example [13] 

The PCS regulates the 
movement of components of a 
mechanical system that consist 
of a horizontal and a vertical 
cylinder, their corresponding 
controllers and sensors. This 
mechanical system is designed 
to pick an object from the 
ground and move it to a new 
place. 

P3 Laser Tripwire Raspberry 
Pi Projects [16] 

A prototype on a breadboard 
to detect whether a beam of 
light is hitting the 
light-dependent resistor 
(LDR). 

P4 Line Following Robot Raspberry 
Pi Projects [16] 

A robot with two motors and 
two sensors. The robot uses its 
right and left sensors to follow 
a line and decide if should go 
turn right, left, or go forward. 

P5 Ultrasonic Theremin Raspberry 
Pi Projects [16] 

A system that produces a 
sound with a volume level 
corresponding to the user 
distance from the device. 

P6 Remote Buggy Raspberry 
Pi Projects [16] 

A robot that moves in four 
directions and a user remotely 
controls it. 

P7 Quick Reaction Game Raspberry 
Pi Projects [16] 

A game in which a light turns 
on and off and two players 
compete to hit their button 
faster after the light is turned 
off. 

P8 Presence Indicator Raspberry 
Pi Projects [16] 

A monitor made of a list of 
LEDs that shows the number 
of people present at a place. 

P9 gpiozero InputDevice gpiozero 
Library Class [19] 

A core class in gpiozero 
library that handles 
connection to input devices on 
a Raspberry Pi board. 

The second set of programs in our dataset are the six programs (P3-P8 in 
Table 1) taken from open-source Raspberry Pi projects [ 16] that use  the  gpi-
ozero library [ 19]. gpiozero is a Python library that real-world cyber-physical 
systems employ to connect to Raspberry Pi boards. We take the source of these 
programs from the official Raspberry Pi website [ 16] and manually add unit 
tests for them. These unit tests can be used in ChekProp prompts (see Sub-
sect. 3.1). The six programs in our dataset that use gpiozero enable us to eval-
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uate ChekProp applicability on projects that adopt the widely used Raspberry 
Pi boards. 

The last program considered in our dataset (P9 in Table 1) is  InputDevice, a  
core class from the gpiozero library. This class provides an interface for Python 
programs to interact with Raspberry Pi input devices, such as barometers, tem-
perature sensors, etc. The InputDevice class is a complex class  from  gpiozero 
that connects to various components in this library. Testing this class requires a 
detailed understanding of the inner workings of the library and how it represents 
and handles the physical environment. For example, to instantiate an object of 
the InputDevice class, we have to pass the number of a pin to its constructor 
method. The type of this pin should be “input”, while some of the pins on a Rasp-
berry Pi board are reserved only for “output”. A correct test should use a pin of 
the correct type to instantiate an InputDevice. Another example of such details 
in gpiozero is how pins are activated. To activate a pin on a Raspberry Pi board, 
its voltage should go high, which can happen by calling the pin.drive_high() 
method. Writing a test for a CPS program requires an accurate understanding of 
how interacting with the program, such as calling pin.drive_high(), impacts 
the physical status of the system, such as increasing the voltage on the Rasp-
berry Pi board. To evaluate whether ChekProp generated PBTs capture such 
details about CPS programs, we include the InputDevice class in our dataset. 

Listing 4 presents the InputDevice class. This class, similar to other gpi-
ozero classes, has well-written documentation (lines #2–39). We consider this 
documentation as the natural language description in ChekProp prompts (see 
Subsect. 3.1). Moreover, gpiozero has extensive unit tests for its classes, which 
we use them to produce our initial prompt . This confirms that gpiozero classes 
have the essential components for applying ChekProp: the natural language 
description, the source code, and the unit test (see Subsect. 3.1). 

Overall, our dataset contains a combination of CPSs studied in research 
literature and CPS programs that employ widely used libraries. This dataset 
helps us to assess the relevance of ChekProp extracted properties and the 
quality of its generated PBTs. 

4.3 RQ1: Property Relevance 

I. Methodology: To assess the quality of extracted properties, we run our 
approach on the nine programs in our dataset and analyze the relevance of the 
extracted properties. In this experiment, we abstract away the implementation 
details of the generated PBTs; instead, we focus on how well the properties 
considered in the PBTs validate the logic of the program under test. For this 
purpose, we compare properties extracted by our approach with manually crafted 
properties that we consider as ground-truth. In particular, we evaluate whether 
the logic checked by ground-truth properties is also validated by ChekProp 
extracted properties and vice versa. As explained in Subsect. 4.2, for programs 
P1 and P2, the ground-truth properties are already stated by Moradi et al. 
[ 13]. For the remaining programs (P3–P9), we manually define the ground-truth 
properties.
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Listing 3. Implementation of the temperature control system in Python. 
1 class Environment: 
2 def __init__(self, initial_temp: int = None): 
3 self.temp = initial_temp if initial_temp is not None else random.randint(20, 24) 
4 
5 def fetch_temp(self): 
6 return self.temp 
7 .... 
8 
9 class TempSensor: 

10 def __init__(self, env: Environment): 
11 self.env = env 
12 self.temp = self.env.fetch_temp() 
13 
14 def start_temp_collection(self, total_time: float, sensor_interval: float): 
15 for i in range(math.floor(total_time / sensor_interval)): 
16 self.temp = self.env.fetch_temp() 
17 sleep(sensor_interval) 
18 
19 class PWMOutputDevice: 
20 ..... 
21 
22 class HCUnit: 
23 def __init__(self): 
24 self.cooler = PWMOutputDevice() 
25 self.heater = PWMOutputDevice() 
26 
27 def activate_cooler(self): 
28 self.cooler.on() 
29 self.heater.off() 
30 .... 
31 
32 class Controller: 
33 def __init__(self, temp_sensor: TempSensor, hc_unit: HCUnit): 
34 self.temp_sensor = temp_sensor 
35 self.hc_unit = hc_unit 
36 
37 def control(self, total_time: float, control_interval: float): 
38 for i in range(math.floor(total_time / control_interval)): 
39 temperature = self.temp_sensor.temp 
40 if 21 <= temperature <= 23: 
41 self.hc_unit.deactivate() 
42 ... 
43 
44 class SystemState: 
45 def __init__(self, temp, cooler_state, heater_state, outside_air_temp): 
46 self.temp = temp 
47 ... 
48 
49 class MockRoom: 
50 def __init__(self, total_time: float, sensor_interval: float, control_interval: float, 

initial_temp: int = None): 
51 self.env = Environment(initial_temp=initial_temp) 
52 self.total_time = total_time 
53 self.sensor_interval = sensor_interval 
54 self.control_interval = control_interval 
55 self.temp_sensor = TempSensor(self.env) 
56 ... 
57 
58 def execute_scenario(self): 
59 
60 sensor_thread = threading.Thread(target=self.temp_sensor.start_temp_collection, 
61 args=(self.total_time, self.sensor_interval)) 
62 sensor_thread.start() 
63 ... 
64 
65 collected_states = [] 
66 for i in range(self.total_time): 
67 ... 
68 outside_air_temp = self.env.get_outside_air_temp() 
69 collected_states.append(SystemState(cur_temp, ...)) 
70 self.env.set_temp(cur_temp + outside_air_temp + heater_value - cooler_value) 
71 sleep(1) 
72 
73 sensor_thread.join() 
74 control_thread.join() 
75 
76 return collected_states
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Listing 4. The InputDevice class in gpiozero. 
1 class InputDevice(GPIODevice): 
2 """ 
3 Represents a generic GPIO input device. 
4 
5 This class extends :class:‘GPIODevice‘ to add facilities common to GPIO 
6 input devices. The constructor adds the optional *pull_up* parameter to 
7 specify how the pin should be pulled by the internal resistors. The 
8 :attr:‘is_active‘ property is adjusted accordingly so that :data:‘True‘ 
9 still means active regardless of the *pull_up* setting. 

10 
11 :type pin: int or str 
12 :param pin: 
13 The GPIO pin that the device is connected to. See :ref:‘pin-numbering‘ 
14 for valid pin numbers. If this is :data:‘None‘ a :exc:‘GPIODeviceError‘ 
15 will be raised. 
16 
17 :type pull_up: bool or None 
18 :param pull_up: 
19 If :data:‘True‘, the pin will be pulled high with an internal resistor. 
20 If :data:‘False‘ (the default), the pin will be pulled low. If 
21 :data:‘None‘, the pin will be floating. As gpiozero cannot 
22 automatically guess the active state when not pulling the pin, the 
23 *active_state* parameter must be passed. 
24 
25 :type active_state: bool or None 
26 :param active_state: 
27 If :data:‘True‘, when the hardware pin state is ‘‘HIGH‘‘, the software 
28 pin is ‘‘HIGH‘‘. If :data:‘False‘, the input polarity is reversed: when 
29 the hardware pin state is ‘‘HIGH‘‘, the software pin state is ‘‘LOW‘‘. 
30 Use this parameter to set the active state of the underlying pin when 
31 configuring it as not pulled (when *pull_up* is :data:‘None‘). When 
32 *pull_up* is :data:‘True‘ or :data:‘False‘, the active state is 
33 automatically set to the proper value. 
34 
35 :type pin_factory: Factory or None 
36 :param pin_factory: 
37 See :doc:‘api_pins‘ for more information (this is an advanced feature 
38 which most users can ignore). 
39 """ 
40 def __init__(self, pin=None, *, pull_up=False, active_state=None, 
41 pin_factory=None): 
42 super().__init__(pin, pin_factory=pin_factory) 
43 try: 
44 self.pin.function = ’input’ 
45 pull = {None: ’floating’, True: ’up’, False: ’down’}[pull_up] 
46 if self.pin.pull != pull: 
47 self.pin.pull = pull 
48 except: 
49 self.close() 
50 raise 
51 
52 if pull_up is None: 
53 if active_state is None: 
54 raise PinInvalidState( 
55 f’Pin {self.pin.info.name} is defined as floating, but ’ 
56 f’"active_state" is not defined’) 
57 self._active_state = bool(active_state) 
58 else: 
59 if active_state is not None: 
60 raise PinInvalidState( 
61 f’Pin {self.pin.info.name} is not floating, but ’ 
62 f’"active_state" is not None’) 
63 self._active_state = False if pull_up else True 
64 self._inactive_state = not self._active_state 
65 
66 @property 
67 def pull_up(self): 
68 """ 
69 If :data:‘True‘, the device uses a pull-up resistor to set the GPIO pin 
70 "high" by default. 
71 """ 
72 pull = self.pin.pull 
73 if pull == ’floating’: 
74 return None 
75 else: 
76 return pull == ’up’ 
77 ...
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Take the temperature control system (TCS) as an example. Moradi et al. 
outline three properties for TCS as follows: 
1. If the room is warm (temp .> 23), the HC unit should not be heating the 

room. 
2. If the room is cold (temp . < 21), the HC unit should not be cooling the room. 
3. The temperature should never be too low (temp . < 20) or too high (temp . >

24). 

We first apply our proposed approach on our Python implementation of TCS 
to generate PBTs. Next, we compare the extracted properties that are tested in 
these PBTs with the three ground-truth properties in [ 13]. If the ChekProp 
properties correspond with the three ground-truth properties, we conclude that 
the proposed approach is able to extract useful properties. 

II. Results: Table 2 shows the results of this experiment. In total, the table con-
tains 26 properties. We split these properties into four groups: Group1 consists 
of 15 properties that are present among ground-truth and ChekProp extracted 
properties in the exact same form (Pr3, Pr5, Pr7, Pr9, Pr10, Pr11, Pr12, Pr14, 
Pr15, Pr17, Pr20, Pr21, Pr23, Pr24, and Pr25); Group2 consists of 3 properties 
that are present among ground-truth and ChekProp extracted properties in 
equivalent but slightly different forms (Pr1, Pr2, and Pr6); Group3 consists of 7 
properties that are only among the ChekProp extracted properties (Pr4, Pr8, 
Pr13, Pr16, Pr19, Pr22, and Pr26); and Group4 consists of 1 property that is 
only among ground-truth properties (Pr18). 

In total, the ground-truth contains 19 properties (Group1+Group2+Group4) 
and ChekProp extracts 25 properties (Group1+Group2+Group3). Among all 
properties, 18 are common between ground-truth and ChekProp, either in  
the exact same form (Group1) or with distinct different formulations (Group2). 
These properties are relevant, since they are present among the manually crafted 
properties. Therefore, the recall of ChekProp is 94% (18/19), which indicates 
that our approach can fully replace the manual effort required for extract-
ing most of the properties from CPSs. The precision of ChekProp is 72% 
(18/25), suggesting that the properties extracted by ChekProp often represent 
what humans expect from the CPS under test. The high precision and recall of 
ChekProp make it a reliable tool for automating the manual effort dedicated 
to property extraction for CPSs. 

In Table 2, we see that in three cases (Pr4, Pr8 and Pr26) ChekProp extracts 
a property that is relevant and useful, but neglected in manually crafted proper-
ties. For example, our approach extracts Pr4 for PCS which notes that neither 
heater or cooler should be active when the room temperature is between 21. 

◦C 
and 23. 

◦C. This indicates that not only can our automated approach replace 
manual property design work, but it can also even improve the manually crafted 
properties. 

The three relevant properties neglected in ground-truth together with the 18 
properties common between ground-truth and ChekProp make up the set of 
our 21 relevant properties.
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Table 2. Comparison between properties automatically extracted by our proposed 
approach and ground-truth properties that are manually crafted. 

ID Program Ground-truth Property Corresponding ChekProp Property 

Pr1 TCS If the room is warm (temp > 23), 
the HC unit should not be heating 
the room. 

Heater should be activated only if 
the temperature drops below 21◦C. 

Pr2 TCS If the room is cold (temp < 21), the 
HC unit should not be cooling the 
room. 

Cooler should be activated only if the 
temperature exceeds 23◦C. 

Pr3 TCS The temperature should never be too low 
(temp < 20) or too high (temp > 24). 

Same as ground-truth. 

Pr4 TCS Neglected. Neither heater nor cooler is active when 
temperature is in the target range (21-23◦C). 

Pr5 PCS The horizontal cylinder should not move when 
the vertical cylinder is down. 

Same as ground-truth. 

Pr6 PCS The horizontal and vertical cylinders 
should not move simultaneously. 

The movement should follow a specific order. 

Pr7 PCS The cylinders location should always be 
between 0 and 2. 

Same as ground-truth. 

Pr8 PCS Neglected. The cylinder movement speed should not 
exceed 1. 

Pr9 Laser Tripwire "INTRUDER" is printed if an only if there is 
no light. 

Same as ground-truth. 

Pr10 Line Following Robot When left sensor is on, left motor goes 
backwards and right motor goes forward. 

Same as ground-truth. 

Pr11 Line Following Robot When right sensor is on, right motor goes 
backwards and left motor goes forward. 

Same as ground-truth. 

Pr12 Line Following Robot When both sensors are off, both motors go 
forward. 

Same as ground-truth. 

Pr13 Line Following Robot Correctly not included. When both sensors are on, at least one motor 
is moving.This is an irrelevant property 
that never occurs in practice. 

Pr14 UltrasonicThermin Volume level never gets too high or too low. Same as ground-truth. 

Pr15 UltrasonicThermin Volume increases when user is getting closer 
to the sensor. 

Same as ground-truth. 

Pr16 UltrasonicThermin Correctly not included. The buzzer has a correct range of 
volume.This is an irrelevant property that 
mostly checks the inner classes of the 
gpiozero library, not the application. 

Pr17 Remote Buggy Pressing each button on the controller, 
activates the corresponding motor. 

Same as ground-truth. 

Pr18 Quick Reaction Game Check that the light turns on at some point 
and turns off afterwards. 

Not extracted. 

Pr19 Quick Reaction Game Correctly not included. When the valid_pressed method is called, the 
name of the winner is printed.This is not a 
useful property, as it only tests very 
detailed implementation details. 

Pr20 PresenceIndicator The LEDs show the number of present people 
divided by 10. 

Same as ground-truth. 

Pr21 PresenceIndicator When the number of present people is above 
10, the number “1” is shown. 

Same as ground-truth. 

Pr22 PresenceIndicator Correctly not included. When the PresneceIndicator object is closed, 
the LEDs are off.This is not a useful 
property, as it only tests very detailed 
implementation details. 

Pr23 gpiozeroInputDevice The pull_up parameter of the input device 
affects the pull state of the pin. 

Same as ground-truth. 

Pr24 gpiozeroInputDevice With a none pull_up, the  active_state should 
be set. 

Same as ground-truth. 

Pr25 gpiozeroInputDevice When pull_up is set, the is_active parameter 
has a reverse effect between the pull_up value 
of the device and the activation of the pin. 

Same as ground-truth. 

Pr26 gpiozeroInputDevice Neglected. When the input device is closed, the pin is not 
in use anymore.
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As presented in Table 2, four of the properties extracted by ChekProp 
(Pr13, Pr16, Pr19, and Pr22) are not useful. These properties either check a 
state that does not occur in real-world (Pr13) or validate highly detailed imple-
mentation nuances. This observation shows that a manual check on properties 
automatically extracted by ChekProp is needed to ensure that no useful prop-
erty is considered for testing. 

Finally, there is only one ground-truth property (Pr18) that does not corre-
spond to any of the properties extracted by ChekProp. Pr18 is a property  for  
the quick reaction game and indicates the order of changes in the light status, it 
should be first turned on at some point and then turned off at some point. With 
a careful manual analysis, we understand that the code we provide to the LLM 
for the quick reaction game lacks the documentation regarding this point. This 
suggests the importance natural language description as of one core components 
in ChekProp prompts (see Subsect. 3.1). 

Answer to RQ1: Does the proposed approach extract relevant 
properties? 
We compare the manually crafted relevant properties with ChekProp 
extracted properties for nine programs in our dataset. This comparison 
shows that 94% (18/19) of the ground-truth properties are also automati-
cally extracted by ChekProp. Moreover,  ChekProp extracts three addi-
tional relevant properties that are neglected in manually crafted properties. 
This indicates that ChekProp is a reliable tool for automating the tedious 
and complicated task of defining CPS properties.. 

4.4 RQ2: PBT Quality 

I. Methodology: For evaluating the quality of PBTs generated by ChekProp, 
we examine the PBTs that test the 21 relevant properties according to our anal-
ysis in the RQ1 experiment (see Subsect. 4.3). As explained in Subsect. 4.1, 
we assess the applicability of our approach from two aspects: executability and 
effectiveness. 

We consider a PBT executable if and only if it is correct both syntactically 
(i.e., successfully compiles) and semantically (i.e. passes). To investigate the 
executability of a PBT, we check to what extent the PBT should be manually 
modified to reach syntax and semantic correctness. A lower level of manual 
modification indicates higher executability and vice versa. We perform a manual 
analysis to find the level of executability of PBTs. Based on this analysis, we 
assign the PBTs generated for each program to one of the following executability 
levels: “HIGH”, “MED”, and “LOW”. A “HIGH” executability level means that the 
analyzer has to spend less than one minute manually fixing the PBT to ensure 
it runs and passes successfully. “LOW” means that more than three minutes of 
manual work is needed, and “MED” means that between one and three minutes 
is required. In this investigation, for the PBTs generated per each program, we 
also take note of the main challenges that require manual modifications. The 
results reveal potential opportunities for future improvement in ChekProp. 
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To assess the effectiveness of generated PBTs, we study if it checks the prop-
erty over representatives of all or most partitions of the input space. As explained 
in Sect. 2, one of the main components of a PBT is an input generator that pro-
duces various inputs from the input space. In this experiment, we determine to 
what extent the input generators of generated PBTs produce inputs from all 
partitions of the input space. The more partitions of input space considered by 
a PBT, the more effective the PBT is. We assess the effectiveness of PBTs gen-
erated for each program through a manual analysis and assign them to one of 
the three effective groups “HIGH”, “MED”, and “LOW”. 

II. Results: Table 3 summarizes the result of our experiment on ChekProp 
applicability. The “Property_ID” and “Program” columns indicate the property 
and the program that the PBT is testing. Note that the ID of the property 
is taken from Table 2, which lists the properties extracted by ChekProp. The  
“Executability” column shows the result of our assessment of the executability 
of generated PBTs in terms of their syntactical and semantical correctness. The 
fourth column presents the main executability challenge of generated PBTs that 
should be addressed manually. Finally, the last column presents the level of 
effectiveness of PBTs generated for each program. 

For 47% (10/21) of the relevant properties (Pr1, Pr2, Pr3, Pr4, Pr5, Pr6, Pr7, 
Pr8, Pr9, and Pr17), the generated PBTs are executable without major changes 
that require less than one minute of manual work. In fact, for none of these PBTs, 
except for the Pr17 PBT, no major executability issues are detected. These PBTs 
successfully execute and pass with little to none manual modification. Also, for 
Pr17 PBT, the problem is that the generated PBT runs the program for too many 
inputs, leading to a timeout. A developer who knows the logic of Pr17 property 
of the Remote Buggy program can fix the generated PBT by only modifying 
the number of random inputs that should be considered. Given the complexity 
of predicting the time needed for running a test on a CPS, this case shows the 
importance and positive impact of keeping a human in the loop of LLM-based 
PBT generation. In sum, our analysis of the executability of PBTs generated for 
Pr1, Pr2, Pr3, Pr5, Pr6, Pr7, Pr9, and Pr17 shows that for a remarkable number 
of relevant CPS properties ChekProp generates a PBT that is executable with 
minor manual modifications. 

For seven of the properties (Pr14, Pr15, Pr20, Pr21, Pr23, Pr24, and Pr26), 
the only main challenge to executability of generated PBTs occurs in their mock-
ing of the CPS. This challenge occurs because the mocking method employed 
has a conflict with property-based testing of the CPS under test. In particular, 
every time the test is executed for a specific input, all the pins used in the mock 
of the CPS should be initialized from scratch. However, the mocking method 
used in these PBTs only initializes the mock object once for all inputs consid-
ered in the PBT. This leads to a semantic problem with the logic of the CPS 
under test, as well as a syntactic error in using the hypothesis library. Con-
sequently, these seven PBTs require a medium level of manual modification to 
become executable. 
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Table 3. The quality of PBTs generated by ChekProp for the 21 relevant propertie. 
A “HIGH”, “MED”, or “LOW” level in the “Executability” column indicates the PBT 
can be successfully executed with less than one minute, between one to three min-
utes, or more than three minutes of manual effort for modification, respectively. The 
“Effectiveness” column indicates the level of input space partitions covered by the PBT. 

Property_ID Program Executability Main Executability Challenge Effectiveness 

Pr1 TCS HIGH No major executability issues detected. HIGH 
Pr2 TCS HIGH No major executability issues detected. HIGH 
Pr3 TCS HIGH No major executability issues detected. HIGH 
Pr4 TCS HIGH No major executability issues detected. HIGH 
Pr5 PCS HIGH No major executability issues detected. HIGH 
Pr6 PCS HIGH No major executability issues detected. HIGH 
Pr7 PCS HIGH No major executability issues detected. HIGH 
Pr8 PCS HIGH No major executability issues detected. HIGH 
Pr9 Laser Tripwire HIGH No major executability issues detected. MED 
Pr10 Line Following 

Robot 
LOW Wrong parameter passed to the 

pin.drive_up() method. 
HIGH 

Pr11 Line Following 
Robot 

LOW Wrong parameter passed to the 
pin.drive_up() method. 

HIGH 

Pr12 Line Following 
Robot 

LOW Wrong parameter passed to the 
pin.drive_up() method. 

HIGH 

Pr14 Ultrasonic 
Thermin 

MED The used mocking method does not 
work for parameterized tests. 

HIGH 

Pr15 Ultrasonic 
Thermin 

MED The used mocking method does not 
work for parameterized tests. 

HIGH 

Pr17 Remote Buggy HIGH Exceeds timeout as tested on too many 
inputs. 

HIGH 

Pr20 Presence 
Indicator 

MED The used mocking method does not 
work for parameterized tests. 

MED 

Pr21 Presence 
Indicator 

MED The used mocking method does not 
work for parameterized tests. 

MED 

Pr23 gpiozero 
InputDevice 

MED The used mocking method does not 
work for parameterized tests. 

HIGH 

Pr24 gpiozero 
InputDevice 

MED The used mocking method does not 
work for parameterized tests. 

HIGH 

Pr25 gpiozero 
InputDevice 

LOW The used mocking method does not 
work for parameterized tests. 
The pin state is set with an incorrect 
use of the interface. 

HIGH 

Pr26 gpiozero 
InputDevice 

MED The used mocking method does not 
work for parameterized tests. 

HIGH 

We notice that mocking CPS is both tricky and essential for testing. As 
CPSs are supposed to run in a physical environment, we need to mock how the 
environment affects CPS programs. This can require a detailed understanding of 
the relationship between various components of given CPS programs. Previous 
work shows that such domain knowledge can be effectively provided to LLMs 
by in-context learning, i.e., adding relevant examples to the prompt [ 7]. Based 
on this observation, we suggest that practitioners use a few-shot prompt with 
mocking examples to generate PBTs for cyber-physical systems with LLMs. 

Finally, one of the main issues with generated PBTs for four properties (Pr10, 
Pr11, Pr12, and Pr25) is how they use gpiozero. For example, the PBT gener-
ated for Pr25 uses output pins of the Raspberry Pi board to initialize their object 
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of the InputDevice. With further analysis, we realize that fixing the issues in 
this PBT depends on a deep understanding of multiple gpiozero classes. How-
ever, the current version of ChekProp only includes the documentation of the 
InputDevice class in the prompt. This documentation is taken from the com-
ments presented in Listing 4. To fix the issue with this PBT, the LLM also needs 
to have the documentation for other classes, such as PiGPIOFactory. We con-
clude that a strong LLM-based PBT generation tool for CPS programs requires 
augmenting prompts with all relevant information from the program documents. 

Our analysis of the effectiveness of the generated PBTs shows that the PBTs 
generated for 85% (18/21) of the properties are highly effective; these PBTs test 
the property on most partitions of the input space. With a more detailed look, we 
observe that the generated tests tend to be more effective when the tests employ 
a straightforward and flexible mock of the CPS components. For example, as 
shown in Listing 3, our Python implementation of TCS provides a MockRoom 
class. This class enables a tester to run the program with many different inputs 
only by changing a few parameters regarding the starting temperature of the 
room and the timing of updating various components. Using this mock class, the 
generated PBTs for TCS properties run the program with different configurations 
that represent all partitions of the input space. This experiment also reaffirms 
the importance of using flexible mocks with a straightforward API for testing 
CPSs. 

Answer to RQ2: What is the quality of ChekProp generated 
PBTs for real-world CPSs? 
We assess the applicability of PBTs generated by ChekProp 21 relevant 
properties in our dataset from two aspects: executability and effectiveness. 
Our results reveal that a remarkable number of the generated PBTs are 
highly executable (47%) and highly effective (85%), which indicates the 
applicability of ChekProp. Our analysis also leads to two major sugges-
tions for generating high-quality PBTs for CPSs with LLMs. First, the 
LLM should be aided in employing straightforward and flexible mocking 
by providing well-designed few-shot examples in the prompt. Secondly, it is 
important to include the relevant documentation from all parts of the CPS 
in the prompt. These two techniques make our proposed approach even 
more robust and practical. 

5 Related Work 

The application of LLMs to test CPS is at early stages and many of the efforts 
have been focused on scenario generation for autonomous driving and robotics. 
For instance, OmniTester [ 11] uses an LLM (GPT-4) to generate diverse driv-
ing scenarios from natural language descriptions and proposes test road lay-
outs and events. They also incorporates retrieval-augmented generation (RAG) 
and iterative self-improvement to refine scenarios. Petrovic et al. [ 14] similarly 
incorporates LLMs into an autonomous vehicle testing pipeline. Their approach 
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provides the LLM with a formal environment model (metamodel of roads, vehi-
cles, pedestrians, etc.) and standardized requirements as context. The LLM is 
prompted to produce a concrete test scenario (in a JSON format executable 
in the CARLA simulator) that satisfies the given requirements. They use the 
LLM to translate natural language requirements into Object Constraint Lan-
guage (OCL) rules—formalizes expected environmental and safety properties. 
The OCL properties are then checked against the generated test scenario and 
if required, the feedback is sent to the LLM for correction before the execution 
of the test scenario. Besides automotive, other related works are emerging in 
robotics. For example, Wang et al. [ 24] show that GPT-4 can automatically gen-
erate robotic simulation tasks (including environment configurations and goals). 
They mainly address test scenario generation (test environments and test inputs) 
rather than directly inferring formal properties or invariants from system spec-
ifications. They show that LLMs can handle the environmental context of CPS 
testing when guided by domain models. 

In the broader software systems context, LLMs have been utilized for auto-
mated test case generation from various sources of specification. Many of the 
approaches target conventional software systems (without either ML or any 
physical components) and have shown promising results in automating unit test 
creation. Kang et al. [ 10] present LIBRO, a framework that uses an LLM to 
generate JUnit tests from bug reports. The goal is to reproduce reported defects 
automatically as the conventional test generators generally struggle with under-
standing the semantic intent of a bug report. LIBRO’s performance evaluation 
on the Defects4J benchmark found that it can produce failing tests for about 
33% of bugs and demonstrates that an LLM can interpret natural language bug 
descriptions and translate them into fault-revealing code. Another set of work 
explores using LLMs to generate tests from requirement documents or user sto-
ries. Rahman and Zhu [ 15], leverage GPT-4 to produce test-case specifications 
(in JSON) directly from high-level requirements and intend to bridge the gap 
between specifications and executable tests. Some approaches also utilize LLMs 
within an interactive test generation process. Chen et al. [ 3] introduce ChatU-
niTest, an LLM-based unit test generation framework. In their approach, the 
LLM (Code Llama) drafts a Java unit test; the test is executed to see if it passes 
or if it exercises the intended code; any errors or unsatisfied goals are fed back 
for the LLM to repair and refine the test. 

Alshahwan et al. [ 2], report using LLMs to extend and improve existing 
test suites in an industrial setup—focuses on corner-case inputs that developers 
missed. Their tool generates additional unit tests to increase coverage of tricky 
edge conditions. Overall, surveys of the field, e.g., Wang et al., 2024 [ 23] conclude 
that LLMs show strong potential in automated testing by reducing the manual 
effort to write test cases—mainly in code-centric contexts such as unit testing. 
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Regarding Property-based testing with LLMs, applying LLMs to the gener-
ation of PBTs has recently emerged. The most relevant work is by Vikram et 
al. (2024), which investigates if LLMs write good PBTs [ 22]. They investigate 
using GPT-4 and other models to automatically generate PBT code (using the 
Hypothesis framework in Python) from API documentation. In their setup, the 
LLM is given the documentation of a library function in natural language and 
prompted to generate a property-based test. The generated test produces appro-
priate random inputs and asserts the documented properties on the outputs. 
They evaluate the validity (the test must run without errors), soundness (the 
test assertions should hold for correct implementations and fail for buggy ones) 
and property coverage (how many distinct expected properties are captured by 
the test) of the tests. 

CPS Challenges and our Contribution: The works mentioned above estab-
lish a foundation for the generation of LLM-driven property-based tests for CPS, 
which can also act as a complement to other safety assurance approaches like 
verification-based development techniques [ 18]. Those approaches are often lim-
ited to the abstraction captured by the model and face scalability challenges 
with complex, real-world scenarios. Property-based testing can address the lim-
itations by generating diverse and extensive test cases that can uncover defects 
and implementation errors or environmental interactions not represented explic-
itly in formal models, then, acting as an empirical validation layer. In this con-
text, in prior studies like Vikram et al.’s [ 22], the system under test is a software 
API with no external physical connected components and the LLM did not need 
to reason about sensors, actuators, or continuous dynamics. But in a cyber-
physical system, properties often relate to the interaction between software and 
the physical components, which are more complex to formalize and test. Envi-
ronmental mocking becomes a necessity—a model or simulation of the physical 
environment is required to represent the real world. 

Recent CPS testing approaches with LLMs (e.g. for autonomous driving [ 14]) 
addressed this by restricting the LLM to consider a domain metamodel and pro-
duce output in a structured format for a simulator. This helps ensure some basic 
physical realism in generated scenarios, but it does not guarantee that all rele-
vant properties can be identified or verified. Our approach supports testing and 
also runtime property-based monitoring. This means the LLM is used to derive 
property assertions that can also run alongside the deployed system, to check 
for violations in the runtime. Our approach extends the frontier by applying 
LLM-driven property-based test generation to CPS, in which both the inference 
of the generated properties from code documentation and the execution of the 
corresponding tests must account for the intended CPS programs under test. 
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6 Conclusion 

In this paper, we propose a novel approach for automatically guardrailing cyber-
physical system. This approach employs LLMs to generate property-based tests 
for CPS programs that can be used to monitor CPSs behavior and detect unsafe 
states. We implement a prototype of this approach in ChekProp and evalu-
ate it on real-world and commonly studied CPSs. We find that ChekProp is 
applicable on real-world CPSs. More specifically, ChekProp extracts relevant 
properties, comparable to manually crafted properties, and then generates exe-
cutable and effective property-based tests that verify these properties. 

Our experiments reveal two major challenges for LLM-enabled property-
based test generation for CPSs and suggest potential solutions to these chal-
lenges. First, given the limited number of public CPS projects, LLMs are not 
trained on a vast dataset of CPS source code. Consequently, LLMs generated 
tests may not correctly capture the relation between the API of CPS program 
and the physical status of the system. For example, while the LLM might rec-
ognize that verifying a specific property, like keeping the temperature in a cer-
tain range, requires activating the room’s heater, it may not identify the correct 
method in the CPS code to effect this change. To address this issue, the prompts 
should contain relevant documents and source code taken from all parts of the 
project under test. This helps the LLM better understand the API of the CPS 
code and make the correct use of it. 

The second main challenge that we observe is the complexities involved in 
mocking CPSs. In cyber-physical systems, we deal with the cyber part, the 
physical part, and the environment. PBTs should run at different times and test 
the system under various environmental conditions. This requires mocking inputs 
sometimes from the environment and sometimes from the physical system, and 
sometimes both. Such mocking demands a correct understanding of the specific 
environmental inputs to the CPS, their interrelations, and the interface between 
the cyber and physical components. Our experiments show that LLMs often 
struggle to capture such an understanding, leading to incorrect generation of 
PBTs. To address this issue, we suggest including extensive examples of proper 
mocking scenarios for the CPS under test in the prompt. Prior studies show that 
such examples can significantly improve the ability of LLMs to generate correct 
tests [ 10]. In summary, our study is a solid first step in creating guardrails for 
CPSs with LLM-generated property-based tests and proves the promising future 
of this research path. 
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Appendix A: Example Prompts and Generated PBTs 

Here we present two examples of the prompts that ChekProp sends to the LLM 
and a selected subset of PBTs that are generated based on these prompts (Figs. 
4 and 5). 

Listing 5. A PBT generated by ChekProp for the line following robot program. 
1 @given( 
2 left_sensor_value=st.integers(min_value=0, max_value=1), 
3 right_sensor_value=st.integers(min_value=0, max_value=1), 
4 speed=st.floats(min_value=0.1, max_value=1.0) 
5 ) 
6 def test_motor_control_based_on_sensor_values(left_sensor_value, right_sensor_value, 

speed): 
7 Device.pin_factory = MockFactory() 
8 with LineFollowingRobot(Motor(2, 3, enable=4, pwm=False), Motor(5, 6, enable=7, 

pwm=False), ...) as lfr: 
9 if left_sensor_value > 0: 

10 lfr.left_sensor.pin.drive_high() 
11 if right_sensor_value > 0: 
12 lfr.right_sensor.pin.drive_high() 
13 time.sleep(0.1) # Simulate slight delay to trigger motor_speed updates 
14 
15 if left_sensor_value == 0 and right_sensor_value == 0: 
16 assert lfr.right_motor.value == speed 
17 assert lfr.left_motor.value == speed 
18 elif left_sensor_value == 0 and right_sensor_value == 1: 
19 assert lfr.left_motor.value == -speed 
20 elif left_sensor_value == 1 and right_sensor_value == 0: 
21 assert lfr.right_motor.value == -speed 
22 else: 
23 assert lfr.left_motor.value != 0 or lfr.right_motor.value != 0 

Listing 6. Two PBTs generated by ChekProp for the InputDevice class. 
1 @given(st.booleans()) 
2 def test_close_releases_pin(pull_up): 
3 Device.pin_factory = MockFactory(pin_class=MockPin) 
4 device = InputDevice(4, pull_up=pull_up) 
5 device.close() 
6 assert device.pin is None 
7 
8 @given(st.booleans()) 
9 def test_active_state_affects_is_active_basic(pull_up): 

10 Device.pin_factory = MockFactory(pin_class=MockPin) 
11 with InputDevice(4, pull_up=pull_up) as device: 
12 device.pin.drive_high() 
13 assert device.is_active == (not pull_up) 
14 device.pin.drive_low() 
15 assert device.is_active == pull_up 
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Fig. 4. The prompt used by ChekProp to generate PBTs for the line following robot 
program. 
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Fig. 5. The prompt used by ChekProp to generate PBTs for the InputDevice class. 
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Abstract. While large language models (LLMs) have exhibited strong 
capabilities in translating code, particularly from C to Python, their per-
formance noticeably declines when dealing with less common languages 
like LF. Prior research indicates that Retrieval-Augmented Generation 
(RAG) can enhance LLMs capabilities in code generation by integrating 
codebase retrieval. Despite its promise, RAG systems are constrained by 
LLMs capabilities to deal with less common languages. Agentic AI cod-
ing assistants offer a different approach by acting as AI co-developers, 
automating tedious tasks and allowing developers to focus on high-level 
design. This paper proposes a novel system that combines RAG with 
agentic AI assistants to improve the accuracy of converting LF programs 
with target C into LF code with target Python. We conduct a com-
parative evaluation of state-of-the-art proprietary and open-source code 
LLMs in this task, demonstrating that RAG can significantly narrow the 
performance gap between small and large language models. Furthermore, 
we integrate an agentic assistant within an AI-powered IDE to auto-
mate developer-assisted error correction and refactoring, streamlining 
the development workflow. In terms of syntax correctness and success-
ful execution rates, experiments highlight the significant improvements 
achieved by the combined approach. 

1 Introduction 

Large Language Models (LLMs) represent a significant leap forward in software 
development automation, exhibiting impressive abilities in both code generation 
and translation. However, a significant performance gap exists when these models 
encounter less commonly used programming languages, a challenge amplified in 
the context of Domain-Specific Languages (DSLs) [ 2, 16]. One such language 
is Lingua Franca (LF) [ 11], a coordination language for real-time distributed 
systems. Currently, the Lingua Franca project has 150 Lingua Franca test files 
written for the C target that haven’t been implemented in Python yet. To ensure 
comprehensive testing, we need to address the disparity between the number of 
C and Python Lingua Franca (LF) test files. Thus, our immediate goal is to 
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develop and implement the missing Python test files to achieve parity with the 
C test suite.  

To address the code generation performance gap, we investigate whether aug-
menting LLMs with external contextual information via Retrieval-Augmented 
Generation (RAG) [ 19] can enhance their translation performance for LF code. 
RAG extends LLMs by retrieving relevant knowledge units from a curated 
database and injecting them into the generation prompt, enabling more informed 
outputs without the need for extensive model fine-tuning. 

Additionally, code translation tasks often require iterative corrections to 
address syntax errors, language-specific constructs, or semantic inconsistencies. 
Traditional LLM-based workflows rely heavily on human oversight for these 
adjustments. In contrast, agentic AI systems [ 3], which can autonomously per-
form sequences of steps, offer a promising avenue for automating these corrective 
processes. Agentic AI coding assistants offer a collaborative, developer-assisted 
approach by automating routine coding tasks, enabling developers to concentrate 
on higher-level design. 

In this paper, we propose a hybrid approach combining RAG-based code 
translation with an agentic AI assistant integrated into an AI-powered IDE. 
We conduct empirical experiments translating LF programs with target C into 
comparable programs with target Python and evaluate a range of code LLMs 
with and without RAG augmentation. The experiments are conducted on 150 
regression test programs that were manually written for the C target but where 
there are no comparable regression tests for the Python target. Furthermore, 
we deploy the Cursor IDE’s agentic assistant to iteratively refactor, validate, 
and standardize the generated code. Our results show that combining RAG 
and agentic assistants significantly improves both translation success rates and 
workflow efficiency, even with comparatively small LLMs. 

This paper is organized as follows: Sect. 2 provides an overview of the fun-
damentals of Lingua Franca language. Section 3 details a comparative assess-
ment of contemporary proprietary and open-source code LLMs in the context of 
code translation, providing evidence that RAG can narrow the performance gap 
between smaller and larger models. In Sect. 4, we discuss how RAG and Agentic 
AI systems can enhance code LLM capabilities. Section 5 introduces our pro-
posed approach, combining the RAG technique with agentic AI coding assistant 
to enhance LF code translation. Subsequently, we summarize the findings of our 
experimental evaluations translating 150 LF files. Finally, Sect. 7 concludes the 
paper. 

We conduct a comparative evaluation of state-of-the-art proprietary and 
open-source code LLMs in this task, demonstrating that RAG can significantly 
narrow the performance gap between small and large models. Furthermore, we 
integrate an agentic assistant within an AI-powered IDE to automate developer-
assisted error correction and refactoring, streamlining the development work-
flow. In terms of syntax correctness and successful execution rates, the experi-
mental results highlight the significant improvements achieved by the combined 
approach.
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2 Lingua Franca 

Lingua Franca (LF) [ 11] is an open-source domain-specific language for build-
ing high-performance, secure, and reliable distributed real-time systems. LF is a 
polyglot coordination language that facilitates the development of distributed 
applications by employing a reactor-based architecture. Reactors are reac-
tive components programmed in popular programming languages like C/C++, 
Python, Rust, and TypeScript. 

An LF application is made of reactors connected together with ports and con-
nections. Reactors are deterministic actors whose behavior is specified through 
reactions. Reactions are triggered by discrete events fired at specific logical time 
instants. LF is supported by a runtime system that facilitates communication 
between connected reactors, ensuring predictable and consistent execution, even 
in distributed environments. Figure 1 showcases an example of a Ligua Franca 
code for C target with three reactors: Source, Destination, and a main reac-
tor. In this example, the main reactor has a single reaction, which is triggered 
by the startup trigger. This trigger causes the reaction to execute at the start 
of the program. The body of the reaction, delimited by {= ... =}, is ordinary 
C code. More elaborate examples can be found at https://github.com/lf-lang/ 
playground-lingua-franca. 

Fig. 1. Example of a LF code for C target with one reactor. 

Analogous to object-oriented programming, a developer declares the reactors 
involved in the application and specifies their interactions using the LF-specific

https://github.com/lf-lang/playground-lingua-franca
https://github.com/lf-lang/playground-lingua-franca
https://github.com/lf-lang/playground-lingua-franca
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language. The logic for each reactor is then defined through a set of reactions. 
Each reaction’s implementation is written in a target language, such as C/C++, 
Python, Rust, or TypeScript. Proficient Python programmers unfamiliar with 
LF may struggle to learn the LF syntax. Consequently, we conducted experi-
ments to evaluate the feasibility of using Large Language Models (LLMs) for 
automating the generation of LF programs. 

3 Code LLMs 

Code LLMs (Large Language Models for programming) are AI models specifi-
cally trained on extensive programming datasets spanning multiple languages, 
including both source code and related text like documentation. This specialized 
training allows them to excel at processing and generating code with high accu-
racy. Their capabilities include automatically completing code segments, con-
verting natural language specifications into functional code, translating between 
programming languages, identifying and fixing bugs, and providing clear expla-
nations of code functionality. Built on advanced deep learning architectures, 
these models are increasingly valuable tools that enhance developer workflows 
and can significantly improve programming efficiency. 

Leading proprietary large language models like GPT-4 [ 17] and Claude 
[ 1] have exhibited impressive performance, showcasing advanced abilities in 
language understanding, reasoning, planning, and code generation. On the 
HumanEval benchmark [ 4], the widely recognized standard for assessing code 
generation capabilities, GPT-4 achieved a Pass@1 score of 87.8% [ 15], while 
Claude attained 84.9% [ 1]. 

While proprietary models have set a high bar, the landscape of code 
LLMs also features increasingly powerful open-source alternatives. Projects like 
Llama 1, DeepSeek 2, and others are rapidly closing the performance gap, offer-
ing researchers and developers greater flexibility and control. These open-source 
models are often fine-tuned and adapted by the community, leading to rapid 
innovation and specialized versions that can excel in specific coding tasks or 
programming languages. The performance of open-source code LLMs on the 
HumanEval benchmark has seen remarkable improvements (approaching 87%), 
as illustrated by the BigCode models leaderboard 3, which showcases the evolu-
tion of remarkable models like Starcoder2 [ 12], Qwen2.5-Coder [ 9], CodeLlama 
[ 21], DeepSeek-coder [ 6], and Codegeex2 [ 25]. 

OpenAI’s GPT-4, a leading large multimodal model announced in March 
2023, excels in understanding and generating text and images. While spe-
cific architectural details and parameter counts remain proprietary, GPT-4 has 
demonstrated significant improvements over its predecessors in areas such as rea-
soning, complex instruction following, and creative content generation. Initially 
achieving a 67.0% Pass@1 score on the HumanEval code generation benchmark
1 https://www.llama.com/. 
2 https://www.deepseek.com/. 
3 https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard. 
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[ 17], its performance has since been enhanced to 87.8% through further devel-
opment [ 15], including iterations like GPT-4o. 

Anthropic’s Claude-3 model family, launched in March 2024, features a 
trio of large multimodal models tailored for different needs: the top-performing 
Opus, the balanced Sonnet, and the swift Haiku. Evaluating their zero-shot 
Python coding abilities on the HumanEval benchmark, these models achieved 
the following Pass@1 scores respectively: Opus at 84.9%, Sonnet at 73.0%, and 
Haiku at 75.9% [ 1]. 

Announced in February 2024, StarCoder-2 is a family of open-access large 
language models for code generation, developed by the Hugging Face-supported 
BigCode 4 project. It comes in three sizes: 3B, 7B, and 15B parameters, all trained 
on over 600 programming languages from The Stack v2 dataset. Key architec-
tural features include Grouped Query Attention and a large context window of 
16,384 tokens. On the HumanEval benchmark, the StarCoder 2 fine-tuned mod-
els achieved the following Pass@1 scores: the 3B model reached 45.12%, the 7B 
model scored 51.22%, and the 15B model attained 59.15%. These results posi-
tion the smaller StarCoder 2 models as competitive within their size range, with 
the 15B model demonstrating strong performance [ 12]. 

Released around late 2024 by Alibaba Cloud’s Qwen team 5, Code-Qwen 
2.5 is a series of open-source code LLMs ranging from 0.5B to 32B parameters. 
These models emphasize improved code generation with a larger context of 128K 
tokens [ 9]. The 32B instruct model reportedly achieves state-of-the-art open-
source performance in coding tasks, demonstrating capabilities comparable to 
GPT-4o with a Pass@1 score of 83.2% 6. 

Announced by Meta in August 2023, Code Llama-2 is an open-source family 
of large language models specifically designed for code-related tasks. Built upon 
the Llama 2 architecture, it’s available in sizes from 7B to 70B parameters, with 
specialized versions for Python and instruction following. It has demonstrated 
strong performance on code benchmarks like HumanEval, with the 70B instruct 
model achieving around 67.8% Pass@1 [ 21]. 

CodeGeeX-2, developed by Tsinghua University and announced in July 
2023, is a 6-billion parameter multilingual code generation model. Based on 
the ChatGLM2 architecture [ 5], it has shown significant improvements over its 
predecessor, CodeGeeX. Notably, it has demonstrated strong performance on 
the HumanEval benchmark across multiple programming languages, achieving 
a Pass@1 score of 35.9% [ 25]. 

DeepSeek-Coder-2, developed by DeepSeek AI, is a series of open-source 
code language models announced in late 2023 (DeepSeek-Coder-1) and early 
2024 (DeepSeek-Coder-V2). It comes in various sizes, ranging from 1.3B to 
33B parameters, and was trained from scratch on a massive dataset com-
posed of 60% source code, 10% math corpus, and 30% natural language corpus.

4 https://www.bigcode-project.org/. 
5 https://www.alibabacloud.com/en/solutions/generative-ai/qwen. 
6 https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard. 
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The instruction-tuned 33B DeepSeek-Coder-V2 model achieved 90.2% on the 
HumanEval benchmark, while smallest model achieved 37.2% [ 6]. 

Table 1 provides a comparative overview of several prominent code LLMs 
with a strong focus on code-related capabilities. It highlights key characteristics 
such as the developing institution, model size (in parameters), vocabulary size 
(in tokens), and context window length. The context window of an LLM refers to 
the maximum amount of text (measured in tokens) that the model can consider 
when processing an input and generating an output. Given that OpenAI and 
Anthropic do not publicly disclose the exact model size and vocabulary size for 
GPT-4 and Claude 3, the values presented for these parameters are estimations. 
This information allows for a quick comparison of these leading models in terms 
of their scale and context handling abilities. 

Table 1. Overview of Code Large Language Models 

Model Institution Size Vocabulary Context Window 
GPT-4 [ 17] OpenAI ∼200B ∼200k 32K 
Claude-3 [ 1] Anthropic ∼175B ∼200k 200K 
StarCoder-2 [ 12] Hugging Face 3B, 7B, 15B 49k 16k 
Code-Qwen-2.5 [ 9] Alibaba 7B 92k 128k 
Code Llama-2 [ 21] Meta 7B, 13B, 34B 32k 16k 
CodeGeeX-2 [ 25] Tsinghua 6B 65k 8k 
DeepSeek-Coder-2 [ 6] DeepSeek 1.3B, 6.7B, 33B 32k 16k 

Pan et al. [ 18] conducted an empirical study assessing the potential and 
limitations of LLMs in code translation. Their evaluation involved translating 
800 CodeNet [ 20] samples (200 for each of C++, Go, Java, and Python) and 
reported the following success rates for various models: GPT-4 (83.0%), Star-
Coder (42.0%), Llama 2 (14.9%), and CodeGeeX (14.9%). Based on their find-
ings, Pan et al. suggest that enriching the context provided to LLMs during 
code translation can lead to improved output. To explore this, they introduce 
a prompt-engineering method informed by common translation errors, which 
resulted in an average performance gain of 5.5% for LLM-based code translation. 
The authors highlight that providing more context to LLMs during translation 
can help them produce better results. 

In a recent empirical study, Macedo et al. [ 14] analyzed the output of eleven 
widely used instruction-tuned LLMs (ranging from 1B to 46.7B parameters) 
on 3,820 translation examples across C, C++, Go, Java, and Python. Their 
findings indicate that 26.4% to 73.7% of the generated translations require post-
processing due to the inclusion of non-code elements like quotes and text. They 
further demonstrate that a well-designed combination of prompt engineering 
and regular expressions can successfully extract the desired source code from 
the models’ output.
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4 Enhancing LLM Capabilities 

4.1 RAG 

Retrieval-Augmented Generation (RAG) [ 24] is an AI framework designed to 
enhance relevance and accuracy of LLM outputs by grounding them in exter-
nal knowledge sources. This allows LLMs to bypass their inherent knowledge 
boundaries by accessing relevant external documents. Instead of solely relying 
on the data it was trained on, a RAG system retrieves relevant information from 
a knowledge base (like documents, databases, or the web) and incorporates it 
into the prompt given to the LLM. 

A standard RAG procedure involves initially indexing and loading a typically 
vast, domain-specific external knowledge repository. When a user poses a query, 
a retrieval mechanism pinpoints and extracts relevant documents or knowledge 
units from this repository. The extracted information is then integrated into 
the prompt presented to the LLM. By utilizing this augmented context, com-
bined with the initial query, the LLM can produce a more knowledgeable, accu-
rate, and contextually relevant response. Fundamentally, RAG acts as a bridge 
between the LLM’s inherent knowledge from training and external knowledge, 
which is often more current or specific to a domain, allowing it to generate more 
reliable and grounded answers. This approach avoids the necessity of frequent 
fine-tuning, ultimately resulting in more informative and precise responses. 

The utilization of RAG for code generation, despite its promise, is still lim-
ited in scope. Some noticeable works employed RAG to improve code-related 
tasks like summarization, generation, and completion. HGNN [ 10] uses GNNs 
for code summarization by retrieving similar code. REDCODER [ 19] retrieves 
and integrates relevant code snippets for code generation. ReACC [ 13] leverages 
both lexical copying and semantic referencing for code completion. DocPrompt-
ing [ 26] uses retrieved code documentation to generate code based on natural 
language queries. RepoCoder [ 23] iteratively retrieves and uses code analogies 
across repository files for better code completion. 

Retrieval-augmented code generation has seen advancements, but addressing 
the challenges of under-represented languages requires significant further explo-
ration. 

4.2 Agentic AI 

Agentic AI refers to AI systems that can act autonomously to achieve spe-
cific goals in complex and dynamic environments with limited direct supervision 
[ 22]. These systems, often composed of multiple AI agents, can interact with 
their environment, reason, make decisions, and take actions with limited human 
intervention. They can also learn from feedback and adapt their behavior over 
time [ 3]. 

The difference between traditional LLM or RAG-based code generation and 
agentic AI systems can be illustrated through the task of code generation. In 
contrast to the multi-stage process involving prompting, code manipulation,
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compilation, and execution required with LLMs or RAG, an agentic system 
allows developers to initiate code generation and execution with a single prompt, 
automating the subsequent steps. The whole process is be executed without 
human intervention. 

Both academia and industry have shown significant interest in the potential 
of agentic AI to enhance automated code generation. For example, MetaGPT 
[ 7] incorporates human workflow into collaborative multi-agent LLM systems. 
It breaks down complex code-related tasks into specific, actionable procedures. 
These procedures are then assigned to five different LLM-based agents. The accu-
racy of the generated tests from MetaGPT is 79% for HumanEval benchmark. 
AgentCoder [ 8] employs a multi-agent architecture comprising three specialized 
agents: a programmer, a test designer, and a test executor. This division of roles 
results in AgentCoder in more efficient and effective code generation. The per-
formance of AgentCoder on the HumanEval benchmark was groundbreaking, 
achieving a pass@1 of 96.3%. 

Cursor 7 is a novel AI-powered IDE built on VSCode 8, offering a unified AI 
interface with two primary modes: Ask and Agent. Ask mode allows users to 
query specific code, understand complex functions, find patterns, and explore 
their codebase. Agent mode enables AI-driven code changes, refactoring, feature 
implementation, debugging, and the generation of tests and documentation. To 
complete tasks, Agent mode employs a structured process. It begins by analyzing 
the user’s request and the codebase context. The agent might then explore the 
codebase, documentation, and the web to find relevant information. Following 
this analysis, it breaks down the task and plans the necessary code changes, 
which it then implements across the codebase. The agent presents the differences 
for user approval before providing a summary of the modifications. Agent mode 
primarily uses LLMs like Claude 3.5 Sonnet, with the option to switch to Claude 
3.7 Sonnet, Gemini Pro 1.5, or GPT-4o. 

5 Code Generation with RAG 

To achieve automated translation of 150 C Lingua Franca test files to Python 
with minimal human oversight, we adopted the Retrieval-Augmented Generation 
(RAG) approach powered by LlamaIndex 9. We developed an end-to-end system 
that automatically translates Lingua Franca code from C to a Python target, 
given a list of input files. This system goes through sequential stages: Retrieval, 
Generation, and Code Evaluation, as detailed in Fig. 2. For  each  file in the  list  
of input files, the system starts by fetching the file source code and initiates the 
Retrieval stage. 

At the Retrieval phase, the embedding model, an artificial neural network, 
encodes the input Lingua Franca C source code into a dense numerical vector rep-
resentation (embedding). This embedding encodes the semantic information and
7 https://www.cursor.com/. 
8 https://code.visualstudio.com/. 
9 https://www.llamaindex.ai/. 
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contextual relationships of the code in a high-dimensional embedding space, facil-
itating efficient similarity search for semantically related Lingua Franca Python 
files within a vector database. The vector database is populated during ini-
tialization with embeddings of the LF Python codebase, derived using the same 
embedding model. OpenAI’s text-embedding-ada-002 10 served as our embedding 
model for this experiment. A similarity search within the vector database then 
identifies relevant Lingua Franca files, which become the retrieved context. We 
combine this retrieved context with the input Lingua Franca C source code and 
a pre-established prompt to form a contextual input for the code LLM, which 
processes this input to generate the desired code output. The pre-established 
prompt is: 

Prompt (1): The following code is written in Lingua Franca for target 
C. Based on this code provide an equivalent Lingua Franca code only for 
Python target. Provide code without any comment or code fences. 
Avoid naming any variable, input, or output with Python reserved words. 
The code: 

The generated LF code then undergoes syntax validation by the LF code gener-
ator. Syntax errors trigger a recursive call to the Code LLM with the same input 
for a new code generation attempt. If no syntax errors are found, the LF code 
generator produces LF Python code. With successful LF Python code genera-
tion and execution, the generated source code is incorporated into the codebase, 
and the vector database is updated to include its representation. Failures in 
generation or execution also initiate a recursive call to the Code LLM for an 
alternative code candidate, with a limit on the number of recursive iterations to 
prevent infinite loops. 

Table 2. Performance comparison of Code LLMs for LF code translation on 25 LF C 
files. 

Model # Parameters Correct syntax Run Success Availability 
GPT-4o 200 15 8 [API] 
Claude-3-5-sonnet 175 13 6 [API] 
StarCoder2 15 13 7 [Checkpoint] 
Qwen2.5-Coder 14 15 7 [Checkpoint] 
CodeLlama 13 14 7 [Checkpoint] 
DeepSeek-Coder-6.7 6.7 15 7 [Checkpoint] 
Codegeex2 6 13 7 [Checkpoint] 
DeepSeek-Coder-1.3 1.3 13 6 [Checkpoint] 

Following the definition of our system, the subsequent requirement was the 
selection of appropriate Code LLMs. To address this, we elected to perform a
10 https://platform.openai.com/docs/models/text-embedding-ada-002. 
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Fig. 2. End-to-end for LF code translation. 

comparative analysis of the performance of various Code LLMs in translating a 
limited set of LF C files (25 files). The costs of APIs and cloud resources con-
strained us to use a limited number of files, allowing us to include more models 
in the comparison. We made the choice to incorporate every model that Sect. 3 
introduced into our experimental procedure. We report in Table 2 the perfor-
mance of the selected Code LLMs for LF code translation on the limited set 
of 25 LF C files. Table 2 provides a comparative overview of the models, list-
ing their size in number of parameters (in billions), the count of syntactically 
valid generated LF files, the number of generated files exhibiting successful run-
time behavior, and their respective availability. Access to proprietary LLMs is 
facilitated through paid API endpoints, while open-source LLMs are freely dis-
tributed on the Hugging Face platform 11, necessitating deployment on local or 
remote GPU hardware. We conducted this experiment using a remote NVIDIA 
L4 GPU that had 24 GB of memory. Based on this experimental comparison, 
GPT-4o exhibited the best results, achieving 15 LF files with correct syntax 
and 8 successful executions among them. With sizes of 6.7 billion and 14 bil-
lion parameters, DeepSeek-Coder-6.7 and Qwen2.5-Coder occupied the second 
rank in our comparison. The results indicate that Claude-3-5-sonnet, the sec-
ond largest model (175 billion parameters), ranked lowest, sharing this position 
with the smallest model, DeepSeek-Coder-1.3 (1.3 billion parameters). DeepSeek-
Coder-1.3 exhibited a performance that was only a little less strong than the 
other LLMs, despite its smaller size. Considering GPT-4o’s top performance in 
our evaluation and the fact that DeepSeek-Coder-1.3 is the sole LLM that our

11 https://huggingface.co/. 

https://huggingface.co/
https://huggingface.co/
https://huggingface.co/


RAG and Agentic Assistant: A Combined Approach 57

local NVIDIA GeForce RTX 2060 GPU’s 6 GB memory can run, we opted to 
focus our subsequent experiments on these two models. 

In Table 3, we present the resuts of the experiment extension to the 150 LF 
files to translate form target C to target Python. GPT-4o outperforms DeepSeek-
Coder-1.3 in code translation by around 5% rate of both syntactically correct 
code generation and successful execution. This performance differential is sig-
nificantly smaller than the 31.7% outperformance of GPT-4o (84.9% [ 17]) over 
DeepSeek-Coder-1.3 (65.2% [ 6]) observed on the Python HumanEval benchmark. 
This observation shows the contribution of the RAG technique in enhancing 
Code LLMs performance. With a 154 times smaller size, DeepSeek-Coder-1.3 
exhibits a performance very similar to GPT-4o. This observation demonstrates 
the contribution of the RAG technique in improving the efficiency of Code LLMs, 
as evidenced by DeepSeek-Coder-1.3’s ability to achieve near parity with GPT-
4o despite a 154-fold difference in size. Here, we don’t report the results of LLMs 
without RAG augmentation, as they were not able to generate any syntactically 
correct LF files. This observation highlights the importance of RAG in enhancing 
the performance of Code LLMs for LF code translation tasks. 

Table 3. Performance Comparison of Claude and DeepSeek-Coder in Translating 150 
LF C Files. 

Model Correct syntax % Correct syntax Run success % Run success 
GPT-4o 59 39.33% 29 19.33% 
DeepSeek-Coder-1.3 51 34.00% 22 14.67% 

With our proposed RAG-based system we were able to correctly generate 
19.33% of the desired LF files with GPT-4o LLM. For the remaining files, we 
need the user to interfere in the correction of the failing generated files. For this 
purpose, we will utilize the Agentic IDE Cursor. 

6 Agentic Assistant 

Through manual inspection of the code generated by the proposed system, we 
uncovered significant issues. Notably, 5% of the generated code files do not 
include the mandatory ‘target Python’ declaration. This omission is critical, as 
it will inevitably result in syntax errors when processing any subsequent LF 
code. Furthermore, another prevalent syntactic error involves the inclusion of 
type declarations for variables, a construct that is incompatible with the Python 
target. An additional area of non-conformance is the naming of variables with 
Python keywords. For instance, the system fails to avoid naming input variables 
‘in’. Input variables often retain their C language name ‘in’, which conflicts with 
Python’s syntax and causes errors. We note that the pre-established prompt (see 
Prompt (1)) instructed the LLM to avoid Python keywords, but the system kept
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using ‘in’ as input variable name. To overcome these issues we utilize IDE Cursor 
in Agent mode. 

To resolve the missing ‘target Python’ declaration we provided Cursor’s assis-
tant with the subsequent prompt: 

Prompt (2): Identify files without the “target Python” at the beginning 
and add it. 

The assistant offered to check files for the absence of “target Python” at the 
beginning and add it if missing. After an initial check, the assistant found that 
most files already contained “target Python”, sometimes with additional settings 
like timeout. The assistant then asked if it should continue checking all files or 
focus on a specific set. The latency of this interaction was too slow compared 
to an IDE’s “Find in Files”. To improve efficiency, we decided to use a shell 
script that searches for the files missing the target declaration and appends it. 
A prompt that might be effective is: 

Prompt (3): Provide a scipt shell that searches for *.lf files, then checks 
each file if it contains “target Python”. 

The assistant provided a shell script designed to find .lf files and check if 
they contain the string “target Python”. The assistant included the script itself, 
an explanation of what the script does, and the commands to make the script 
executable, and run it. And finally asked “Would you like me to create this script 
in your workspace?”. With a “Yes” response, the assistant started an Agent that 
created the script in the workspace, made the script executable, ran it, and listed 
the files that don’t contain “target Python”. Once done, the assistant asked Would 
you like me to add “target Python” to these files?. The assistant iterated through 
a list of the identified .lf files. For each file, the assistant stated its intention to 
add “target Python” and then confirmed that it had done so. Finally, the assistant 
provided a summary of the files modified and asked for confirmation to actually 
apply these changes. After the user’s confirmation, the assistant started an agent 
that added “target Python” to each identified file and finished by providing a 
summary of the changes made. 

To deal with the syntactic error involving the inclusion of type declarations 
for variables with the Python target, we provided the assistant with a list of tar-
get files and a suitable prompt. The list of the files containing type declarations 
is provided through the assistant context and the prompt instruction is: 

Prompt (4): Remove type declarations. 

For each file in the provided list, the assistant started an agent that checked 
file content for any type declarations, removed them, then provided a summary 
of the findings and the updates. The assistant asserted that the file now has 
no type declarations, which is consistent with the Python target’s requirements. 
Finally, it asked to check any other files for type declarations that need to be 
removed. 

When it comes to renaming the input variable ‘in’, VS Code’s refactoring 
tool struggled to accurately rename it due to its frequent appearance within
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other strings. For this purpose, we provided Cursor’s assistant with the list of 
files containing the string ‘input in’ and the following prompt: 

Prompt (5): Replace the variable ‘in’ by ‘inp’. 

With this simple prompt, the assistant able to correctly rename most of the 
occurences of the variable ‘in’ avoiding accidental replacements in comments, 
strings, or other variables with similar names. This process revealed inconsis-
tencies in input variable naming, with a mix of ‘_in’ and  ‘in_’ being used. 
We reiterated the input variable renaming procedure to build a more consistent 
codebase. With a cleaner codebase we enhanced RAG capabilities for future code 
generation. 

Pursuing the procedure of code refactoring, we observed numerous occur-
rences of the ‘{:d}’ pattern in the source files. This old-style pattern is used 
in Python string formatting to format integers, primarily in print statements 
and error messages. This pattern is discourage in favor of f-strings formatting 
for better readability, conciseness, and performance. Therefore, we searched for 
files containing the old-style ‘%’ formatting, added the list of these files to the 
assistant context, and provided the following prompt: 

Prompt (6): Update old-style string formatting with f-strings formatting. 

Through iteration of the specified files, the assistant successfully implemented 
the f-string formatting style. 

After the series of interactions involving the 150 files generated by our pro-
posed RAG-based system using the GPT-4o LLM, and with all the updates in 
place, we conducted the code evaluation as outlined in Fig. 2, stage 3. The results 
reported in Table 4 show improvements in both syntactically correct code gen-
eration and successful execution rates. Using Cursor’s Agentic Assistant for the 
generated code correction effectively fixed errors caused by the influence of the 
source code. 

Table 4. Performance Comparison of RAG using Claude and its combination with the 
Agentic Assistant in Translating 150 LF C Files. 

Model Correct syntax % Correct syntax Run success % Run success 
RAG 59 39.33% 29 19.33% 
RAG with Agentic Assistant 73 48.67% 52 34.67% 

7 Conclusion 

Our study demonstrates the effectiveness of combining RAG with agentic AI sys-
tems for the task of translating Lingua Franca programs with target language C 
into comparable programs with target language Python. Through empirical eval-
uation, we show that the RAG-enhanced pipeline enables smaller open-source
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models like DeepSeek-Coder-1.3B to perform competitively against larger mod-
els such as GPT-4o. This proves that RAG can significantly enhance the perfor-
mance of code LLMs, allowing them to generate syntactically correct code and 
execute it successfully, even with limited model sizes. A refinement using the 
Cursor agentic IDE successfully corrects common syntax and semantic errors, 
improving the quality of the generated codebase. This hybrid approach not only 
reduces the reliance on proprietary APIs but also presents a scalable, efficient 
strategy for code transformation and maintenance in real-world development 
environments. 

The faster translation time achieved by our RAG-based system on 150 files, 
compared to the interactive IDE assistant, motivate us to pursue full automa-
tion of the code correction process. As future work, we propose developing an 
autonomous agent for code correction to enhance code generation efficiency. 
However, the limited resources and data for the under-represented Lingua Franca 
language present a significant challenge in building such an agent. 
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Abstract. Recent developments in Large Language Models (LLMs) 
have shown promise in automating code generation, yet the generated 
programs lack rigorous correctness guarantees. Formal verification can 
address this shortcoming, but requires expertise and is time-consuming 
to apply. Currently, there is no dataset of verified C code paired with 
formal specifications that enables systematic benchmarking in this space. 
To fill this gap, we present a curated evaluation dataset of C code paired 
with formal specifications written in ANSI/ISO C Specification Language 
(ACSL). We develop a multi-stage filtering process to carefully extract 
506 pairs of C code and formal specifications from The Stack 1 and 
The Stack 2. We first identify C files annotated with formal languages. 
Then, we ensure that the annotated C files formally verify, and employ 
LLMs to improve non-verifying files. Furthermore, we post-process the 
remaining files into pairs of C code and ACSL specifications, where each 
specification-implementation pair is formally verified using Frama-C. To 
ensure the quality of the pairs, a manual inspection is conducted to 
confirm the correctness of every pair. The resulting dataset of C-ACSL 
specification pairs (CASP) provides a foundation for benchmarking and 
further research on integrating automated code generation with verified 
correctness. 

Keywords: Evaluation Benchmark · Formal Verification · 
Specification-Implementation Pairs · Dataset Creation 

1 Introduction 

Large Language Models (LLMs) for code generation have achieved remarkable 
results in recent years, showing strong performance on tasks such as generating 
syntactically valid functions and providing code completions [ 7, 8, 20, 23]. While 
LLMs demonstrate value across many coding tasks, their utility remains limited 
in domains with strict safety and quality requirements, such as safety-critical 
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systems, where software failures can lead to severe consequences. A key limitation 
is that code generated by LLMs cannot be reliably guaranteed to be correct. 

In contrast to the probabilistic nature of LLMs, formal specification lan-
guages offer a potential solution to the nondeterministic behavior of LLMs. 
These formal specification languages provide robust means to specify program 
behavior, which can then be verified using formal verification tools. However, 
the adoption of such formal specification languages faces practical challenges: 
the pairs of formal specifications and associated code must be manually written, 
which is both time-consuming and requires expertise. 

Given that manually creating such pairs is time-consuming, LLMs provide a 
promising application of being able to generate code from specifications or vice 
versa. 

The task of generating specifications from code and code from specifications is 
arguably a most fundamental use case for applying LLMs to formal specification 
generation, directly targeting the most time-consuming tasks. Furthermore, like 
the related task of correcting non-verifying code, these tasks provide an easily 
interpretable success metric through formal verification since the generated pairs 
either verify or fail to verify. 

However, evaluating the feasibility and progress of such an approach requires 
ways to measure the performance of LLMs in the form of dedicated evaluation 
datasets. We present such a dataset, consisting of verified pairs, that is specifi-
cally designed to benchmark this core generative capability. 

Existing datasets containing ACSL specifications [ 1, 2, 4, 11, 25] and  C code  
have two significant limitations. First, the datasets are limited in size and there-
fore lack the breadth needed to cover diverse real-world use cases. Lacking 
large and diverse datasets, researchers cannot draw general conclusions regarding 
LLMs’ abilities to generate formally verified pairs. 

Second, existing datasets are typically distributed as collections of whole 
C source files, where specifications are embedded as comments. This for-
mat requires a non-trivial parsing and extraction step to isolate individual 
specification-implementation pairs before they can be used in an evaluation 
pipeline for pair-generation tasks. These two limitations hinder progress in inte-
grating formal methods into the software development process. 

Our work addresses this fundamental gap by providing a dataset with suffi-
cient breadth and volume to give researchers a reliable benchmark. Our dataset 
consists of C code and formal specifications in ANSI/ISO C Specification Lan-
guage (ACSL), chosen for its adoption by the Frama-C [ 10, 18] verification plat-
form, which is used in both academic research and industrial contexts for veri-
fying critical properties of C programs [ 12, 27]. We call this dataset CASP, short 
for C-ACSL specification pairs. We create CASP by first sourcing all C files 
from The Stack v1  and The Stack v2  repositories. The C files are then filtered 
using three steps: (1) identifying and retaining high-quality C files containing 
formal specification in ACSL; (2) ensuring that the ACSL-annotated C files for-
mally verify, and attempting to correct these if they do not verify (3) extracting



CASP: An Evaluation Dataset for Formal Verification of C Code 65

individual function implementations and their formal specifications to obtain 
function-specification pairs. 

This paper offers the following contributions: 

1. We present CASP: a unique dataset of C code paired with associated for-
mal specifications in ACSL, accessible at: https://huggingface.co/datasets/ 
nicher92/CASP_dataset. The dataset contains 506 pairs. These pairs are 
systematically extracted from large-scale open-source datasets (The Stack v1 
and v2) and are formatted as pairs in order to be amenable to LLM evalua-
tion. 

2. We share the complete files from which each pair was taken, accessible at: 
https://huggingface.co/datasets/nicher92/CASP_source_files. The  number  
of files is much larger than previously available public datasets, offering sig-
nificantly more data for training and evaluation. Additionally, the files – and 
by extension the pairs– are all “minimally complete” – meaning the files have 
no dependencies other than the standard C libraries. 

3. We detail our filtering, verification, and post-fixing procedures, ensuring that 
each file, as well as each code-specification pair, formally verifies and is con-
sistent with one another. 

This dataset fills a gap by providing a valuable resource for benchmarking 
and training LLMs on the task of specification generation from code and vice 
versa. By offering a conveniently formatted dataset consisting of verified, min-
imally complete pairs of specifications and associated code, our work supports 
the development of advanced tools for software verification by contributing to 
the creation of more reliable software systems. 

The rest of this paper is organized as follows. We first provide a brief 
overview of formal verification, in particular the ANSI/ISO Specification Lan-
guage (ACSL) in Sect. 2. Then in Sect. 3, we review existing formal specification 
datasets and their limitations. Section 4 explains our data collection methodol-
ogy, followed by our file verification process in Sect. 5. We then describe how 
we divided the files into specification-function pairs Sect. 6. Section 7 presents 
the composition and key statistics of the dataset, with a discussion and analysis 
in Sect. 8. Finally, Sect. 9 presents our conclusions and suggests directions for 
future work. 

2 Background 

This section provides background on the specification language and verification 
tools used in our dataset. In particular, we describe the ANSI/ISO C Specifica-
tion Language (ACSL) and the Frama-C verification framework, with a focus on 
the WP and RTE plugins used to check correctness and runtime safety. 

In the dataset, we focus on ANSI/ISO C Specification Language (ACSL), 
which enables the formal verification of C code. The language is designed for use 
with the Frama-C verification framework, a framework for static analysis and 
deductive verification [ 3].
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https://huggingface.co/datasets/nicher92/CASP_source_files
https://huggingface.co/datasets/nicher92/CASP_source_files
https://huggingface.co/datasets/nicher92/CASP_source_files
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2.1 ANSI/ISO C Specification Language 

ACSL is a contract-based specification language that allows formal verification 
of C programs by defining preconditions, postconditions, invariants, and memory 
access constraints. It is designed to be used with the weakest precondition plugin 
of Frama-C. 

Fig. 1. ACSL specification and associated implementation in C for a function swapping 
two integers. 

Figure 1 demonstrates an ACSL-annotated function that swaps the values of 
two integer pointers. The requires clause (line 2) specifies that both variables x 
and y must be valid pointers before execution. The \valid predicate ensures that 
the pointers reference accessible memory. The assigns clause (line 3) explicitly 
states that the function modifies the memory locations pointed to by x and y, 
making side effects explicit. The ensures clause (line 4) guarantees that after 
execution, the values of variables x and y have swapped. The \old keyword refers 
to the values before function execution, ensuring that the function correctly 
swaps the values. 

2.2 The Frama-C Framework 

Frama-C is a modular analysis framework for C programs that supports a vari-
ety of verification techniques, including runtime error detection and deductive 
verification. In this work, we use two of its key plugins: WP and RTE. 

The WP (Weakest Precondition) plugin generates proof obligations called 
goals from ACSL-annotated C code using weakest precondition calculus. These 
obligations are passed to SMT solvers (e.g., Alt-Ergo, Z3, CVC4), which attempt 
to automatically prove that these goals within a given timeout and number of 
steps. 

The RTE (Runtime Error) plugin instruments the program with ACSL 
annotations that check for common runtime errors, including division by zero, 
null pointer dereference, invalid memory access, and integer overflow. The WP 
plugin then verifies these additional checks as part of the deductive verifica-
tion process. Together, WP and RTE enable Frama-C to verify both functional 
correctness and runtime safety.
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3 Related Work 

This section reviews prior work relevant to our dataset, including large-scale 
source code collections, existing datasets containing formal specifications in C, 
and recent efforts to combine ACSL with automated code generation using 
LLMs. 

3.1 Large-Scale Source Code Datasets 

The availability of large source code datasets is fundamental for training and 
evaluating large language models (LLMs) on code-related tasks. Notably, The 
Stack v1 [ 19] and  v2  [  22], created as part of the BigCode Project 1, provide  vast  
repositories of permissively-licensed source code across numerous programming 
languages. The Stack v1 comprises approximately 546 million files totaling 6.4 
TB, covering 358 programming languages. The subsequent release, The Stack 
v2, significantly expanding this collection to over 3 billion files (67.5 TB) in 
more than 600 languages, further enhancing the diversity and volume available 
for model training and evaluation. 

Table 1. Total number of files and number of C files in The Stack v1 and v2. Note 
that M refers to million, and B refers to billion. 

The Stack v1 The Stack v2 
Total number of files 5.46M 3B 
Number of C files 19.88M 40.88M 

3.2 Formal Specification Datasets Used in Literature 

Existing collections of C code annotated with ACSL specifications primarily 
originate from research projects, serve as educational materials, or have uncertain 
origins. 

Datasets developed in research contexts often function as case studies for for-
mal verification techniques [ 15, 25] or as benchmarks for evaluating analysis tools 
[ 4], typically created through manual ACSL annotation of C code. A significant 
educational resource is the ACSL tutorial [ 5], designed to teach specification 
writing through hands-on exercises. This tutorial contains numerous examples, 
many intentionally left incomplete for learners to finish, reflecting its pedagogical 
goal. 

Common characteristics of these available datasets include small size, for-
matting as individual files (sometimes with dependencies to other files like .h 
headers), and a structure tailored to their specific origin or teaching objective 
rather than forming a larger corpus designed for evaluating LLMs.
1 https://www.bigcode-project.org/. 

https://www.bigcode-project.org/
https://www.bigcode-project.org/
https://www.bigcode-project.org/
https://www.bigcode-project.org/
https://www.bigcode-project.org/
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Table 2. Existing Formal Specification datasets for C code. 

Dataset source ACSL annotated C files Minimally complete verified programs 
Frama-C-problems [ 25] 51 9 
X509-parser [ 1] 6 0 
Verker [ 14] 48 1 
ACSL By Example [ 15] 86 3 
WP examples [ 5] 295 134 
ACSL proved [ 13] 34 10 
VecoSet [ 4] 15 14 

3.3 Previous Work on LLMs for C Code and ACSL Specifications 

Prior research has explored the intersection of C programming and ACSL speci-
fications, particularly in the context of leveraging LLMs for code generation and 
verification. Minal et al. [ 24] investigated the feasibility of using LLMs to gen-
erate automotive safety-critical embedded C code from both natural language 
and ACSL specifications. Their study demonstrated the potential of produc-
ing compilable and partially verifiable code without iterative backprompting or 
fine-tuning, though the limited scope of their case studies highlighted the need 
for more extensive datasets. Similarly, Sevenhuijsen et al. [ 26] developed a tool 
that employs a two-step process of initial code generation followed by iterative 
improvement using feedback from compilers and formal verifiers. The tool suc-
cessfully generated verified C programs for a majority of the problems in their 
benchmark set, underscoring the effectiveness of combining formal specifications 
with automated code generation. However, the relatively small number of code 
samples in these studies indicates a pressing need for larger, more comprehensive 
datasets to draw stronger conclusions and enhance model performance. 

Similar work has begun to infer ACSL specifications automatically from C 
code. Granberry et al. prompt GPT-4 with source code plus test inputs and 
static-analysis warnings, then refine the output of the model until it verifies in 
Frama-C [ 16]. Wen et al. apply heuristic post-processing to GPT-4 predictions, 
correcting syntax and adding safety clauses so the resulting contracts verify 
more reliably [ 28]. Together, these studies show that coupling large language 
models with formal-methods feedback is a promising route to automatic ACSL 
specification generation. 

4 Dataset Collection 

Our methodology for collecting and curating a dataset consisting of C functions 
paired with their corresponding ACSL specifications. We employ a three-step 
data collection process, shown in Fig. 2. This section focuses on the first step of 
our dataset creation, where we gather a large collection of source files and then
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Fig. 2. Overview of the three-step dataset construction pipeline. Step 1 involves 
using files from The Stack v1 and v2, which are filtered to identify C files contain-
ing ACSL specifications without external dependencies. Step 2 compiles and verifies 
each annotated file, and files that fail this are automatically repaired using LLMs and 
re-evaluated. Step 3 transforms successfully verified files into minimal specification-
implementation pairs and includes them in CASP. 

iteratively filter the files in order to isolate ACSL-annotated C files without other 
dependencies. 

4.1 Downloading the Stack 

As an initial step in our data processing pipeline, all files tagged as being written 
in C were downloaded from the deduplicated versions of Stack V1 and V2. Table 1 
shows the total number of files in The Stack (V1 and V2) and the subset identified 
as C files. 

4.2 Extracting Files Containing ACSL Specifications 

After our initial collection of files, we applied regular expression filters in several 
steps, in order to extract files that contain ACSL-like annotations. The regular 
expression patterns were authored by a formal methods expert and are detailed 
in Appendix A. Each pattern is associated with a confidence label indicating 
whether it can appear in multiple formal languages, such as VeriFast [ 17] (possible 
overlap), or is unique to a specific language (exclusive). We iteratively applied 
stricter quality filters, only keeping files containing specific ACSL syntax, which 
left us with 2958 files, as can be seen in Table 3.
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Table 3. Dataset collection and filtering process. Starting from The Stack 
(deduplicated versions 1 and 2), we progressively filter files to identify 
those containing ACSL specifications. The strict filtering uses the pattern 
/\*@.*?(predicate|requires|ensures).*?\*/. 

Processing Step Count Description 
Initial Data Collection 
Stack 1 (deduplicated) 8,625,559 Raw code samples 
Stack 2 (deduplicated) 17,093,668 Raw code samples 
Combined total 25,719,227 Total initial code samples 
Dataset A Creation 
Initial regex filtering 14,525 Files matching basic patterns 
Stricter filtering 5,916 Files with formal specifications 
ACSL filtering 2958 Files with ACSL 
Standard/No import filtering 1180 Minimally complete files 

4.3 Minimally Complete C Files 

Many of the collected C files depended on code from other files or non-standard 
libraries. These dependencies were often complex, making the extraction of ver-
ifiable functions and specifications challenging. 

To address this issue, we applied an additional filtering step: we only retained 
files that are self-contained, with dependencies limited to standard C libraries. 
We refer to these as “minimally complete files” since the specifications and func-
tions they contain can be analyzed independently without requiring external 
code. 

After this stage of our pipeline, we retained 1180 minimally complete C files 
(see Table 3) that contained ACSL specifications. 

5 Verifying and Curating CASP Source Files 

This section describes the second step of our three-step process depicted in Fig. 2. 
Specifically, it describes our method for verifying the correctness of our minimal 
complete files and our attempts to correct files that do not compile or formally 
verify. 

5.1 Method 

To formally verify the minimally complete C files, we attempt to verify if the 
C implementation meets the formal specifications in these files. The verification 
process is done by two plugins of Frama-C [ 9], which we described in Sect. 2.2. We  
verified each source file using Frama-C version 30.0 (Zinc) with the WP and RTE 
plugins. The verification was performed using multiple SMT solvers to combine
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their strengths: Z3 version 4.8.12, Alt-Ergo version 2.6.0, and CVC4 version 1.8. 
We configured the WP plugin with a 500,000-step limit and a 60-second timeout 
per proof goal. 

For each source file, we either successfully completed all of the goals set by 
the WP and WP-RTE [ 6] plugins of Frama-C, or we retrieved the non-verifying 
goals from Frama-C and attempted to repair the specification. Files that fail to 
meet the specifications were sent to an LLM (Gemini 2.0 Flash) along with the 
non-verifying goals from Frama-C and a prompt requesting to update the code 
such that all goals are verified. We then iteratively attempted to correct each 
failing file for a maximum of seven iterations. Through this process, we ended 
up with 469 verified files in our final dataset (Table 4). 

Table 4. File Analysis Summary 

Category Count 
Minimally complete files 1180 
Minimally complete files verified without modifications 292 
Minimally complete files verified with modifications 177 
Total verified minimally complete Files 469 

Prompt Engineering. Our approach to prompt design was iterative, refining 
the instructions for the LLM based on patterns of verification errors observed 
in its outputs. We focused particularly on addressing common verification chal-
lenges, such as proper contract clause ordering, memory access specifications, 
and strategic assertion placement to guide proofs. The LLM was prompted to 
make minimal changes to the code, and also to output what it “thinks” the user 
intended with their code in order to limit deviation from the original code. The 
complete prompt used in our processing pipeline can be found in Appendix B. 

6 CASP Pair Creation 

This section explains step three of the three-step process mentioned in Fig. 2. 
It describes the means for separating the verifying files into specification imple-
mentation pairs. 

6.1 Motivation for Specification-Implementation Pairs 

Creating verified formal specifications and function pairs offers three advan-
tages over verified C files. First, using specification-function pairs provides a 
more decoupled method for evaluating LLM performance on formal verification 
tasks than using entire files. For example, since each specification corresponds
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to a function implementation, it is possible to assess the generative capabili-
ties of an LLM given a formal specification. Second, these pairs ensure that 
the specification is logically consistent with the implementation and practi-
cally implementable. This addresses a fundamental challenge in formal meth-
ods where abstract specifications may contain logical inconsistencies or unreal-
izable requirements. Third, the structure of the dataset supports bidirectional 
evaluation—from specification to code and vice versa – which in turn supports 
a broader range of research questions related to the generative capabilities of 
LLMs. 

6.2 Minimally Complete Files to Minimally Complete Pairs 

To create minimally complete pairs from minimally complete files, we selected 
function implementations according to the following requirements: 

– The functions do not depend on other functions in a file. 
– The functions are not main functions. 

The decision to focus on standalone functions was guided by two primary 
factors. Methodologically, it creates a constrained test that directly evaluates 
an LLM’s core ability to translate between a specification and an implementa-
tion. Practically, the task of identifying, extracting, and verifying the complete 
context for functions with numerous dependencies from large codebases is often 
intractable. Our approach therefore ensures that each pair in CASP is a self-
contained and verifiable unit. 

We utilized two parallel pipelines in order to extract pairs of ACSL specifi-
cation and C implementation from our source files: One based on utilizing an 
LLM and one based on regular expressions. Each minimally complete file that 
fulfilled the above requirements was sent to both pipelines. 

The regular expression-based pipeline comprises three steps: first, extract-
ing function implementations, second, their corresponding ACSL specification 
if present, and third, any additional dependencies needed for verification of the 
pair. Any functions without associated specifications were removed. 

The LLM-based pipeline (Using Gemini 2.0 Flash) consisted of prompting 
the model to extract functions, their associated specification, and any additional 
dependencies 2. Regular expression for function extraction and prompt can be 
found in Appendix C. 

We take the union from the resulting pairs from both pipelines, which were 
then verified by Frama-C, similarly as described in Sect. 5.1; any remaining 
unverified pairs were manually post-fixed. 

The resulting union of pairs, 513 in total, from the two pipelines was then 
filtered in two steps: We performed exact deduplication of the C implementations 
and only kept function implementations longer than one line of code, leaving us 
with 506 pairs.
2 With additional dependencies we mean standard imports, type and variable decla-

rations, logic predicates, etc. 
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7 Dataset Statistics 

In this section, we provide a statistical overview of our dataset. First, in Fig. 3 we 
show the length distribution measured as lines of C code for our pairs, and find 
that most of the CASP pairs are short to medium in length. Correspondingly, 
the number of lines of ACSL for each pair can be seen in the distribution plot 
in Fig. 4, most specifications are short to medium in length, with some more 
complex outliers. 

Beyond characterizing the CASP pairs themselves, we also analyze the diver-
sity and novelty of the verified C source files from which these pairs were derived. 
Comparing the source files to existing file-based ACSL datasets allows us to 
assess the breadth of our data collection. Since our dataset is collected from 
open-sourced code, there is a possibility of overlap between CASP and other 
open-sourced datasets containing ACSL. In order to measure potential overlap, 
we embed our files and compare the semantic similarity of our files to exist-
ing datasets. The comparison is done in two ways: first, using a t-SNE plot in 
two dimensions, and second, by a nearest neighbour comparison. An in-depth 
analysis of the semantic distributions can be found in Sect. 8.2. 

7.1 Semantic Distribution of File Contents 

We downloaded existing datasets (see Table 2) containing ACSL specifications 
and C code. We filtered each C file in all datasets – including the CASP source 
files – so that all files were minimally complete, ensuring a fair comparison 
between datasets. We then embedded the files that verify using CodexEmbed 
[ 21] – a model specifically developed for code retrieval. We used the 2B parameter 
model variant. The embedding model has a maximum context length of 4096, 
which means that longer code samples were truncated, potentially affecting their 
representation. 

Fig. 3. Distribution of lines of C code for each CASP pair, excluding specification and 
imports. Most programs are short to medium in length. The X axis indicates lines of 
code, and the Y axis indicates a number of occurrences. Outliers over 60 total lines of 
code are binned together. 

Using these high-dimensional embeddings, we visualized the semantic rela-
tionships between files using t-SNE (Fig. 5) and quantitatively analyzed the sim-
ilarity distribution by calculating nearest neighbor distances (Fig. 6).
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Fig. 4. Distribution of total lines of ACSL for each CASP pair. The X axis indicates 
the total number of lines of ACSL, and the Y axis indicates the number of occurrences. 
Outliers over 60 total lines of ACSL are binned together. 

8 Discussion and Analysis 

In this section, we describe our findings on the current state of openly sourced, 
ACSL-annotated code. We then provide an analysis of CASP and the source files 
from which CASP was derived. Finally, we discuss our method for LLM-based 
specification repair along with implications for verification and specification gen-
eration. 

8.1 Current State of Affairs and the Need for CASP 

Our investigation confirmed a significant challenge for researchers in automated 
verification and specification generation: the pronounced scarcity of openly acces-
sible C code accompanied by ACSL annotations. Furthermore, where such code 
exists, a substantial portion exhibits quality issues, often failing verification by 
Frama-C. This scarcity presents challenges for researchers seeking to build com-
prehensive datasets for LLM training or benchmarking purposes. We hypothesize 
that the main reason for this scarcity is that while ACSL is a fairly standard 
verification language, much of the code where it is present is not openly available 
on GitHub with permissive licensing, and is therefore not included in The Stack 
1 and  2.  

Despite this scarcity, CASP is the largest openly released dataset contain-
ing ACSL specifications and C code so far. Additionally, the dataset is formally 
verified and formatted in a way conducive to evaluating LLMs. Another key 
strength of CASP lies in its inherent diversity. Since the collected code samples 
were authored by numerous different programmers, they exhibit considerable 
variety in implementation styles, algorithmic approaches, and specification pat-
terns. This diversity strengthens the utility of our dataset for various research 
applications, as it represents a broad spectrum of real-world specification prac-
tices rather than the more uniform patterns that might emerge from a single 
team or project.
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Fig. 5. t-SNE visualization of embeddings from various datasets that verifies without 
any external imports (CASP source files, Frama-C problems, VecoSet, etc.). The plot 
shows the projection of high-dimensional embeddings into a 2D space, where proximity 
suggests similarity. Colors indicate the source dataset as shown in the legend. Any 
difference in embeddings indicates a difference in file content. 

8.2 Dataset Composition and Analysis 

The embedded source files from CASP – when visualized using t-SNE in Fig. 5 – 
occupy a broader range of the semantic space and therefore show greater diversity 
than existing datasets, encompassing most regions where samples from existing 
datasets are located. We hypothesize that there are two reasons for this: The 
CASP source files are substantially more numerous than existing datasets, and 
the source files originate from multiple sources and numerous different authors. 
It should be noted that the ACSL annotated C files from other datasets often 
contain imports from .h files – which we do not include – causing many of the 
files to not verify. 

Furthermore, our analysis (see Fig. 6) reveals that several files from the 
datasets Frama-C Problems, ACSL Proved, WP Examples, and CASP are sim-
ilar to at least one other file in one of the datasets. Beyond these clusters of 
similarity, we found a broad distribution of datapoint relationships across the 
similarity spectrum. Overall, we find that there is fairly limited overlap between 
CASP and previous datasets, since only approximately 35 CASP source files are
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Fig. 6. Nearest neighbours of various datasets (CASP source files, Frama-C problems, 
VecoSet, etc.). The plot shows the distance between each embedded source file, where 
the source file is from and how similar its nearest neighbour is. A dataset containing 
a wide variety of files would contain more points to the right on the x axis and vice 
versa. 

very similar to some other file in any of the other datasets. One explanation for 
this limited overlap is that we remove files that are dependent on files not found 
in the standard libraries, including .h files. Many of the C files in the existing 
datasets contain .h files and are, therefore, naturally filtered if found. 

8.3 LLM-Based Specification Repair and Pair Extraction 

While not the primary focus of this work, our approach to repairing faulty ACSL-
annotated C files using LLMs showed meaningful success. 

Our methodology successfully corrected 177 files out of the 888 that initially 
failed verification, representing a 19.9% success rate among files requiring modifi-
cation. The success rate highlights the challenging nature of formal specification 
repair, even for advanced LLMs. Nevertheless, the fact that nearly one-fifth of 
problematic specifications could be automatically corrected suggests potential 
for improvement in this area. One explanation for this rate of success is related 
to the limited amount of ACSL-annotated C code that is openly available: it is 
difficult to train an LLM to understand the syntax and semantics of a formal 
language that the LLM has barely encountered previously. Another reason could 
be that the non-repairable files themselves were poorly written and therefore dif-
ficult for an LLM to repair, especially given the constraint not to deviate from 
the original implementation. 

In addition to repairing ACSL-annotated C files, we also utilized LLMs for 
function extraction. We found that LLMs struggle in some cases but can be 
complemented by straightforward rule-based methods based on regular expres-
sions. This combined approach proved to be more successful than using either 
approach on its own. 

9 Conclusions and Future Work 

This paper has demonstrated our approach to creating CASP: a dataset con-
sisting of 506 verified and deduplicated C code functions paired with ACSL 
specifications. 

CASP has only been publicly available since June 2025, it serves as a timely 
and uncontaminated benchmark for all current models and any future models
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with a training data cutoff before this date, but future work should also address 
the long-term maintenance of CASP as a benchmark. To mitigate the risk of 
data contamination from future model training, a portion of the dataset could 
be reserved for a private test set, and our methodology could be used to generate 
new versions of the benchmark over time. 

Additionally, our findings suggest several promising directions for extending 
this work. We suggest two main avenues of exploration, extending CASP and 
specific dataset applications. 

A natural extension could involve exploring different data sources to expand 
our data set. For example, academic papers and technical documentation often 
contain high-quality specifications created by experts that could yield additional 
examples of formally verified pairs. Synthetic data generation, using CASP for 
seed prompts with modifications to promote greater diversity in the generated 
code samples, is another promising avenue to explore. 

As CASP was created first and foremost with evaluation of LLMs in mind, 
a natural next step in terms of applications would be to evaluate a wide variety 
of different LLMs on generating code from formal specifications and vice versa. 
Future work, possibly following an extension of the dataset, might also explore 
training specialized models for formal verification tasks or developing automated 
tools for specification generation and repair. 

A Regex Patterns Used 

See Table 5. 

B Gemini Prompt 

The following is the prompt used to instruct Gemini to correct ACSL specifica-
tions in C code based on Frama-C error messages. 

Listing 1.1. Main prompt given to Gemini 
Your  task  is  to  correct  ACSL  specifications  based  on  C  code  and  error  

messages  from  Frama -C. 
Your  goal  is  to  repair  the  ACSL  specifications  so  that  they  pass  Frama -C’s 

verification  .  
Do  not  alter  the  C  code  unless  absolutely  necessary  .  
Focus  on  correcting  ACSL  specifications  to  address  common  errors  such  as:  

Invalid  ACSL  syntax  
Type  mismatches  in  ACSL  expressions  
Loop  invariants  that  are  not  strong  enough  or  incorrect  
Precondition  or  postcondition  failures  
Memory  access  errors  or  incomplete  memory  specifications  
Incomplete  or  incorrect  assigns  clauses  
Timeout  issues  in  proof  obligations  

Pay  special  attention  to:  

Using  precise  memory  specifications  :  \  valid ,  \  valid_read  ,  \  separated  as  
appropriate  

Ensuring  loop  invariants  are  strong  enough  to  prove  postconditions



78 N. Hertzberg et al.

Table 5. Patterns for ACSL, and Verifast Annotations 

ACSL 

/@(?:(?!@/)[\s\S])*?\brequires\b(?:(?!@/)[\s\S])*?/ 

/@(?:(?!@/)[\s\S])*?\bensures\b(?:(?!@/)[\s\S])*?/ 

/@(?:(?!@/)[\s\S])*?\bassigns\b(?:(?!@/)[\s\S])*?/ 

/@(?:(?!@/)[\s\S])*?\binvariant\b(?:(?!@/)[\s\S])*?/ 

/@(?:(?!@/)[\s\S])*?\baxiomatic\b(?:(?!@/)[\s\S])*?/ 

/@(?:(?!@/)[\s\S])*?\blemma\b(?:(?!@/)[\s\S])*?/ 

/@(?:(?!@/)[\s\S])*?\bpredicate\b(?:(?!@/)[\s\S])*?/ 

/@(?:(?!@/)[\s\S])*?\blogic\b(?:(?!@/)[\s\S])*?/ 

/@(?:(?!@/)[\s\S])*?\bbehavior\b(?:(?!@/)[\s\S])*?/ 

/@(?:(?!@/)[\s\S])*?\bdisjoint behaviors\b(?:(?!@/)[\s\S])*?/ 

/@(?:(?!@/)[\s\S])*?\bcomplete behaviors\b(?:(?!@/)[\s\S])*?/ 

/@(?:(?!@/)[\s\S])*?\bassumes\b(?:(?!@/)[\s\S])*?/ 

//@\s*\brequires\b 

//@\s*\bensures\b 

//@\s*\bassigns\b 

//@\s*\binvariant\b 

//@\s*\baxiom\b 

//@\s*\blemma\b 

//@\s*\bassert\b 

loop invariant 

loop assigns 

loop variant 

\\old\b 

\\at\b 

\\nothing\b 

\\max\b 

\\min\b 

\\result\b 

\\forall\b 

\\exists\b 

\\sum\b 

\\sizeof\b 

\\valid\b 

\\valid_read\b 

\\is_finite\b 

Verifast 

/@(?:(?!@/)[\s\S])*?\bopen\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\brequires\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\bensures\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\bassert\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\bfold\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\bunfold\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\blemma\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\bpredicate\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\bopen\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\bclose\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\binvariant\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\bpointer\(\b(?:(?!@/)[\s\S])*?@/ 

/@(?:(?!@/)[\s\S])*?\bmalloc_block(?:(?!@/)[\s\S])*?@/ 

//@\s*\binclude\b 

//@\s*\brequires\b 

//@\s*\bensures\b 

//@\s*\bassert\b 

//@\s*\bfold\b 

//@\s*\bunfold\b 

//@\s*\binvariant\b 

//@\s*\blemma\b 

//@\s*\bopen\b 

//@\s*\bclose\b 

//@\s*\bleak\b
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Adding  explicit  loop  assigns  clauses  to  clarify  what  loops  modify  
Using  complete  behaviors  and  disjoint  behaviors  when  appropriate  
Adding  strategic  assertions  to  guide  the  prover  
Using  \  exists  and  \  forall  quantifiers  correctly  
Ensuring  that  array  bounds  are  properly  specified  
Not  to  add  undefined  variables  that  are  not  defined  in  the  code  previously  .  
Loop  assigns  is  not  allowed  after  loop  variant  so  they  need  to  be  prior  to  

the  loop  variant  
Wrong  order  of  clause  in  contract  :  behavior  should  be  before  complete  or  

disjoint  for  example  
Using  correct  syntax  for  behaviors  :  each  behavior  should  be  declared  

separately  using  the  behavior  keyword  ,  not  enclosed  in  braces  ;  complete  
behaviors  and  disjoint  behaviors  should  be  followed  by  a  comma -separated  
list  of  behavior  names  without  braces  

The  ACSL  specifications  for  a  function  should  be  above  the  function  ,  not  
below  it.  

Avoid  adding  main  ()  functions  if  not  present  in  the  original  code  .  
In  general  the  changes  should  not  attempt  to  alter  the  purpose  of  the  

original  code  .  

For  timeout  issues  ,  consider  :  

Simplifying  complex  specifications  
Breaking  down  properties  into  smaller  ,  more  provable  assertions  
Using  different  specification  styles  (  direct  ensures  vs.  behaviors  )  
Adding  intermediate  assertions  to  guide  the  proof  

Output  the  corrected  file  in  JSON  format  ,  including  a  brief  explanation  of  
the  changes  made  and  any  assumptions  .  

Input  :  
C  Code  (  Previous  Attempt  ):  
{  file_content  }  
Frama -C Error  Message  (  From  Previous  Attempt  ):  
{  error_message  }  

Listing 1.2. Context prompt for subsequent iterations 
Context  from  Previous  Gemini  Attempt  (  that  produced  the  code  above  ):  
Previous  Explanation  :  {  prev_explanation  }  
Previous  Assumptions  :  {  prev_assumptions  }  
Previous  Strategies  Suggested  :  {  prev_strategies  }  
Based  on  the  previous  attempt  ’s  code ,  the resulting  error  message  ,  and  the  

previous  explanation  /  assumptions  ,  please  refine  your  corrections  to  
address  the  remaining  issues  .  Focus  specifically  on  the  errors  
highlighted  in  the  Frama -C message  .  

Listing 1.3. Context prompt for first iteration 
This  is  the  first  attempt  to  fix  the  provided  code  and  error  message  in  this  

refinement  cycle  .  Please  analyze  the  code  and  error  carefully  .  

Listing 1.4. Required output format 
Output  Format  :  
Please  provide  your  response  in  the  following  JSON  format  :  
{ 

"  explanation  ":  "  Explanation  of  changes  made  in  this  attempt  ",  
"  assumptions  ":  "  Any  assumptions  made  during  this  correction  process  ",  
"  fixed_code  ":  "  Complete  corrected  code  with  fixed  ACSL  specifications  here  

",  
"  strategies  ":  "  Suggestions  for  prover  strategies  if  timeout  issues  persist  

(e.g.,  specific  provers  ,  timeouts  ,  steps  )"  
} 
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C Function Pair Extraction 

Listing 1.5. Regex for extracting non main functions 
r’’’  
(?P<  signature  >  

(?:[a-zA-Z_  ][\  w\s  \*\(\)  ,]*?) # return  type  and  qualifiers  
\s+ #  whitespace  
(?!(  main  )\s  *\() #  not  ’main ’  
[a-zA -Z_  ]\w* # function  name  
\s  *\([^;]*?\) #  parameter  list  

) 
\s  *\{ #  opening  brace  of  body  
’’’  

Listing 1.6. Gemini prompt for function and specification pair extraction 

You  are  given  a  C  source  file  that  contains  one  or  several  functions  with  
corresponding  ACSL  specifications  and  additional  dependencies  .  

Your  task  is  to  extract  all  functions  that  are  independent  of  other  functions  
,  except  ‘main ‘,  which  should  be  excluded  .  A  function  is  considered  
independent  if  it  does  not  call  or  rely  on  other  user -defined  functions  
in  the  file  .  

For  each  such  function  :  
1.  Extract  the  full  function  implementation  (  signature  and  body  ).  
2.  Extract  the  ACSL  specification  that  precedes  it  (  typically  marked  by  /*@  

or  //@). 
3.  Identify  and  include  only  the  minimal  dependencies  required  for  Frama -C 

verification  of  the  function  .  This  may  include  :
- ‘#  include  ‘  directives  (e.g.,  ‘<  stdbool  .h  >  ‘)
- ‘#  define  ‘  macros
- global  constants  or  variables  used  in  the  function  

Return  a  JSON  object  for  each  function  with  the  following  fields  :
- "  function_implementation  ":  the  code  of  the  function  (  not  ‘main ‘)
- "  acsl  ":  the  ACSL  specification
- "  dependencies  ":  the  minimal  required  includes  /  defines  /  globals  

If  a  function  depends  on  another  user -defined  function  in  the  same  file ,  skip  
it. 

C  source  code  :  
{  file_content  }  

References 

1. ANSSI-FR/x509-parser, December 2024. Original-date: 2019-06-03T12:22:56Z 
2. Alur, R., Fisman, D., Padhi, S., Singh, R., Udupa, A.: SyGuS-Comp 2018: results 

and analysis, April 2019. arXiv:1904.07146 [cs] 
3. Baudin, P., et al.: ANSI/ISO C specification language version 1.21 (2024) 
4. Beyer, D.: Progress on software verification: SV-COMP 2022 (2022). https://doi. 

org/10.1007/978-3-030-99527-0_20 
5. Blanchard, A.: Frama-C and WP tutorial code examples (2025). https://github. 

com/AllanBlanchard/tutoriel_wp 

http://arxiv.org/abs/1904.07146
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://github.com/AllanBlanchard/tutoriel_wp
https://github.com/AllanBlanchard/tutoriel_wp
https://github.com/AllanBlanchard/tutoriel_wp
https://github.com/AllanBlanchard/tutoriel_wp
https://github.com/AllanBlanchard/tutoriel_wp
https://github.com/AllanBlanchard/tutoriel_wp


CASP: An Evaluation Dataset for Formal Verification of C Code 81 

6. Blanchard, A., Bobot, F., Baudin, P., Correnson, L.: Formally verifying that a 
program does what it should: the WP plug-in. In: Guide to Software Verification 
with Frama-C: Core Components, Usages, and Applications, pp. 187–261. Springer 
(2024) 

7. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural 
Information Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. 
(2020) 

8. Chen, M., et al.: Evaluating large language models trained on code, July 2021. 
arXiv:2107.03374 [cs] 

9. Correnson, L., et al.: Frama-C user manual for Frama-C 30.0 (zinc) (2024) 
10. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: 

Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. 
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10. 
1007/978-3-642-33826-7_16 

11. Dillig, I., Dillig, T., McMillan, K., Li, B.: Inductive Invariant Generation via 
Abductive Inference 

12. Dordowsky, F.: An experimental Study using ACSL and Frama-C to formulate 
and verify Low-Level Requirements from a DO-178C compliant Avionics Project. 
Electron. Proc. Theor. Comput. Sci. 187, 28–41 (2015). arXiv:1508.03894 [cs] 

13. Efremov, D.: evdenis/acsl-proved, March 2016. Original-date: 2017-02-
14T16:30:05Z 

14. Efremov, D., Mandrykin, M., Khoroshilov, A.: Deductive verification of unmodified 
Linux kernel library functions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. 
LNCS, vol. 11245, pp. 216–234. Springer, Cham (2018). https://doi.org/10.1007/ 
978-3-030-03421-4_15 

15. Gerlach, J.: ACSL by Example (Version 22.0.0) for Frama-C 22.0 (Titanium). 
Fraunhofer FOKUS (2020). https://github.com/fraunhoferfokus/acsl-by-example 

16. Granberry, G., Ahrendt, W., Johansson, M.: Specify what? Enhancing neural spec-
ification synthesis by symbolic methods. In: Kosmatov, N., Kovács, L. (eds.) Inte-
grated Formal Methods, pp. 307–325. Springer, Cham (2025) 

17. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: 
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru, 
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, 
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4 

18. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C: 
a software analysis perspective. Form. Asp. Comput. 27(3), 573–609 (2015) 

19. Kocetkov, D., et al.: The stack: 3 TB of permissively licensed source code (2022) 
20. Li, Y., et al.: Competition-level code generation with AlphaCode. Science 

378(6624), 1092–1097 (2022) 
21. Liu, Y., et al.: CodeXEmbed: a generalist embedding model family for multilingual 

and multi-task code retrieval. arXiv preprint arXiv:2411.12644 (2024) 
22. Lozhkov, A., et al.: Starcoder 2 and the stack V2: The next generation (2024) 
23. Nijkamp, E., et al.: CodeGen: an open large language model for code with multi-

turn program synthesis, February 2023. arXiv:2203.13474 [cs] 
24. Patil, M.S., Ung, G., Nyberg, M.: Towards specification-driven LLM-Based Gen-

eration of embedded automotive software. In: Steffen, B. (ed.) Bridging the Gap 
Between AI and Reality, pp. 125–144. Springer, Cham (2025) 

25. Patnaik, M.: manavpatnaik/frama-c-problems, October 2024. Original-date: 2020-
10-27T11:44:14Z 

http://arxiv.org/abs/2107.03374
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
http://arxiv.org/abs/1508.03894
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
http://arxiv.org/abs/2411.12644
http://arxiv.org/abs/2203.13474


82 N. Hertzberg et al. 

26. Sevenhuijsen, M., Etemadi, K., Nyberg, M.: VeCoGen: automating generation of 
formally verified C code with large language models. In: 2025 IEEE/ACM 13th 
International Conference on Formal Methods in Software Engineering (FormaliSE), 
Los Alamitos, CA, USA, April 2025, pp. 101–112. IEEE Computer Society (2025) 

27. Ung, G., Amilon, J., Gurov, D., Lidström, C., Nyberg, M., Palmskog, K.: Post-Hoc 
formal verification of automotive software with informal requirements: an experi-
ence report. In: 2024 IEEE 32nd International Requirements Engineering Confer-
ence (RE), pp. 287–298 (2024). ISSN 2332-6441 

28. Wen, C., et al.: Enchanting program specification synthesis by large language mod-
els using static analysis and program verification. In: International Conference on 
Computer Aided Verification, pp. 302–328. Springer (2024) 

Open Access This chapter is licensed under the terms of the Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), 
which permits use, sharing, adaptation, distribution and reproduction in any medium 
or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if changes were 
made. 

The images or other third party material in this chapter are included in the 
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the chapter’s Creative Commons license and 
your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


A Voice-Enabled Query Framework 
for Systems Engineering Artefacts 

Lennart Landt1(B), Martin Leucker1 , and Carsten Burchardt2 

1 Universität zu Lübeck, Lübeck, Germany 
{lennart.landt,leucker}@isp.uni-luebeck.de 

2 Siemens DI SW, Hannover, Germany 
carsten.burchardt@siemens.com 

Abstract. Model-Based Systems Engineering (MBSE) is increasingly 
adopted to manage the growing complexity of modern systems, offer-
ing a structured, collaborative design approach through modeling lan-
guages like SysML. However, its adoption remains challenging due to 
steep learning curves and the need for interdisciplinary coordination. 
This paper investigates the use of voice-enabled AI avatars to simplify 
MBSE interaction by allowing users to query system artifacts using nat-
ural language. By integrating a speech-based interface with AI assistants 
and human-like avatars representing various engineering roles, we aim to 
lower entry barriers, foster collaboration, and support diverse perspec-
tives inherent in MBSE. Our proposed pipeline converts model data into 
a machine-readable format for large language models (LLMs) to gen-
erate contextualized, role-based responses. We explore the potential of 
using MBSE models as a knowledge base for AI and examine how such 
tools can enhance system model comprehension. Contributions include 
a prototype implementation, support for multi-turn interactions, and an 
initial evaluation of the approach. 

1 Introduction 

Model-Based Systems Engineering (MBSE) is gaining increasing attention world-
wide due to several compelling reasons [ 18]. The complexity of modern systems 
continues to rise, necessitating more sophisticated approaches to system design 
and management. The use of modeling languages such as SysML allows for mul-
tiple perspectives on a system, facilitating interdisciplinary collaboration and 
providing a single source of truth [ 12]. 

However, applying MBSE in practice presents several challenges. MBSE 
requires expert knowledge and intensive training. There is a significant (time) 
investment necessary to become a fully MBSE-enabled developer [ 9]. The com-
plexity of projects also comes with a multidisciplinary team, which in itself takes 
up resources for the necessary collaboration efforts [ 9]. 

To simplify the employment of MBSE, we explore in this paper whether 
voice-enabled AI avatars can be used to query artifacts to help users become 
acquainted with new projects or learn about project artifacts that are not their 
c© The Author(s) 2026 
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main concern. The objective of this approach is to create a human-like inter-
action with the system, characterized by low thresholds and the use of natural 
language. The speech-based interface lowers the barrier to entry for users unfa-
miliar with technical modeling tools, enabling intuitive access through natural 
language. This fosters inclusivity and supports collaborative engineering sce-
narios where verbal communication is the norm. The artificial intelligence is 
considered to function as a “third party in the room”. To this end, we employ 
AI assistant systems to formulate queries that integrate user input with a role-
based system introduction and the information gathered from the MBSE model. 
This AI assistant back-end is integrated with an AI avatar front-end, wherein 
human-like 3D avatars convey the system’s response to the user and function 
as an immediate interlocutor. The utilization of diverse avatars to impersonate 
distinct MBSE roles results in the generation of varied responses to the same 
inquiry and data. This will contribute to the objective of achieving human-like 
interactions, wherein posing a single question to a group of individuals results in 
a range of responses that reflect each person’s areas of expertise and experiences. 
This mirrors the MBSE philosophy, where system understanding emerges from 
the interplay of multiple stakeholder perspectives—such as systems engineers, 
software architects, and domain experts—each represented by a distinct avatar. 

Using AI for our problem may be advantageous because MBSE models 
are highly structured, rigidly standardized, and based on formal languages like 
SysML [ 12]. This standardization allows AI tools to be trained on consistent pat-
terns. Related work has shown that AI can be used in various ways in conjunction 
with MBSE. For example, AI can be used as assistance in the modeling process 
[ 11], support the extraction, classification, and linking of stakeholder require-
ments to model elements [ 21], and offers applications when MBSE is linked with 
Digital Twins [ 1]. 

Our high-level solution involves using a pipeline where the model serves as 
a knowledge base and context provider. We introduce a method for efficiently 
converting model data into a machine-readable format for transmission to a 
LLM. The user’s question is combined with a system prompt and this model 
data to generate a response. Our research questions include: 

– How can MBSE models be used as a knowledge base for AI assistants? 
– Could AI be useful in increasing the understandability of system models? 

Our contributions include enabling a speech-based interaction for the users, 
providing answers based on different roles within the engineering project, allow-
ing complex sequences of interactions and queries to be performed, describing 
the implementation, and conducting a first, limited evaluation. 

2 The Modeling of Systems 

In this section we will give a short overview of the topics Systems Engineer-
ing (SE) and Model-Based Systems Engineering (MBSE) in order to show the 
methodology behind our approach. In addition, this section aims to illustrate
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the rationale behind our decisions, providing a clear understanding of the fac-
tors that influenced our approach. 

2.1 System Engineering 

“Systems Engineering is a transdisciplinary and integrative approach to 
enable the successful realization, use, and retirement of engineered sys-
tems, using systems principles and concepts, and scientific, technological, 
and management methods.” [ 17] 

The paradigm of Systems Engineering encompasses a goal-oriented, holistic app-
roach to problem-solving. It considers the entire product lifecycle from concept 
development through to system implementation. A central concept in Systems 
Engineering is “systems thinking,” where a system is viewed as an artifact that 
is hierarchically fragmented into components. These components all contribute 
to a single goal that none of them could achieve on their own. The product life-
cycle in Systems Engineering spans from concept development through system 
implementation to the retirement of the system. [ 22] 

The methodology of Systems Engineering aids in the development and han-
dling of the rising complexity of multidisciplinary systems. Its goal is to achieve 
an interdisciplinary optimum within a predefined time and budget framework. 
Systems Engineering connects and structures the different disciplines using mod-
els. The three main parts of Systems Engineering are tailoring, methods, and 
modelling. Tailoring refers to the customization of Systems Engineering, meth-
ods are proven problem-solving procedures, and modelling helps manage the 
complexity of systems by developing and examining representations that span 
the entire system lifecycle [ 12]. 

The ISO/IEC norm 15288 defines and subdivides the system life cycle in 25 
processes, that are assigned to one of four main processes: The agreement pro-
cesses, the organizational project-enabling processes, the technical management 
processes and the technical processes. Each of the processes can be described 
through an input, process activities and an output, as shown in the example of 
the business and project analysis process in Fig. 1. 

[ 12] describes a role model that provides a complete overview of all the differ-
ent tasks and responsibilities in Systems Engineering. It serves as a reference for 
assigning roles in an organization. Fifteen different roles are described, each with 
its own responsibilities, tasks, and expertise. Those roles are: System Architect, 
SE Process Manager, Requirements Manager, Modeling Engineer, Project Lead, 
Configurations Manager, Information Manager, Entrepreneur, System Security 
Manager, Implementation Manager, V&V Engineer, Life Cycle Manager, Inter-
face Manager, Technical Manager, Stakeholder Interaction Manager. For exam-
ple, the Technical Manager is responsible for technical development decisions 
on all system levels. His tasks are the systematic preparation of decisions, the 
holistic decision-making, and the resolving of conflicts and consensus building. 
His professional and social skills lie in a comprehensive understanding of the 
system, leadership skills and negotiating abilities.
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Fig. 1. This figure shows exemplary one of the SE-processes: the business and project 
analysis process. Each process has strictly defined inputs, activities, and outputs. For 
example, one input here is the business strategy, one activity the limitation of the 
solution space and one output the key stakeholders. Based on [ 12]. 

2.2 Model-Based Systems Engineering 

“MBSE is the formalized application of modelling to support system 
engineering processes [...]” [ 13] 

One shortcoming of known SE methods is working with document-centered pre-
sentation forms of development results and intermediate statuses. These forms 
are not linked, redundant, and therefore inconsistent. By adding model-based 
methods to SE, it evolved into MBSE, which provides a “single source of truth” 
[ 22]. 

MBSE itself is defined by the INCOSE, the International Council on Systems 
Engineering [ 16], as “a formalized application of modelling to support system 
requirements, design, analysis, verification, and validation activities beginning 
in the conceptual design phase and continuing throughout development and later 
lifecycle phases”. 

In the realm of Model-Based Systems Engineering (MBSE), the MBSE-
triangle consisting of tool, language, and methodology forms the foundation of 
a robust approach. In our case, we have chosen Capella as the tool, SysML as 
the language, and ARCADIA as the methodology. This combination provides a 
comprehensive framework for our MBSE activities.
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There are several mainstream MBSE methodologies, e.g. Magic Grid [ 10], 
ARCADIA [ 3], HarmonySE [ 15] [  13]. Every one has its own procedure to model 
a system, its own advantages and disadvantages. In our approach, we use ARCA-
DIA as the methodology due to its well-structured and systematic procedure. 
ARCADIA is excellent for mapping different systems perspectives to AI-avatars, 
providing a clear and organized framework for analysis and design. Furthermore, 
its integration with Capella made it a prime candidate for our approach. The 
structured nature of ARCADIA ensures that all aspects of the system are thor-
oughly considered and modelled. 

The ARCADIA-method (ARChitecture And Design Integrated Approach) 
[ 4] consists of a four-part system modelling process. Those four parts are: The 
Operational Analysis, the System Analysis, the Logical Architecture and the 
Physical Architecture. 

– Operational Analysis (OA): “What system users must achieve.” [ 4] 
– System Analysis (SA): “What the system must achieve for the users.” ’ [ 4] 
– Logical Architecture (LA): “How the system will work to meet expectations.” 

[ 4] 
– Physical Architecture (PA): “How the system will be built.” [ 4] 

The OA typically starts with the identification of the users of the system and 
the relationship between each other and the system. Also, the information, that 
gets used in each activity and interaction, should be captured here. Furthermore, 
it is a key point in the OA to identify the stakeholders and their activities. 
With having the users and stakeholders in mind, one defines the operational 
capabilities, the operational processes and scenarios, and the operational modes 
and states. [ 6] 

The focus of the SA is to define how the system can satisfy the needs captured 
in the OA. In order to do this, the SA creates an external functional analysis. 
For example, here the system boundaries and external interfaces get captured 
and the functions of system and actors get identified. Also, the capabilities of 
each system actor are identified. For this, it is a good praxis to create functional 
chains and build behavioral scenarios. [ 8] 

While the system during the System Analysis is viewed as a black box, in the 
LA the system gets defined on a deeper level. Logical Components are formalized 
in this step. Although the LA defines the core of the system, the Logical Com-
ponents still remain abstract structural elements. The main intend of the LA is 
to build an abstraction of the system, that is just detailed enough for making 
decisions without getting lost in small details. Those will be later defined in the 
Physical Architecture. [ 5] 

The objective of the PA is to define the concrete components of the system. 
Here the final architecture with all the functions gets defined, and the behavioral 
components get deployed. [ 7] 

In addition, there is also a great variety of different modelling tools in the 
landscape of MBSE. Examples include open-source tools like Capella [ 2] or pro-
prietary software like Rhapsody [ 14] and MagicDraw [ 23]. Again, we do not go 
into detail about the differences between those tools. We chose Capella for our
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approach mainly because of its open-source nature. Capella is a powerful tool 
that supports the ARCADIA methodology and offers extensive features for sys-
tems modeling. Its open-source nature allows for customization and extension, 
making it an ideal choice for our project. We aim to implement an Add-On for 
Capella based on our approach in the future. However, the underlying methodol-
ogy of our approach could be adapted to other tools, demonstrating the flexibility 
of our strategy. 

SysML (System Modeling Language) is the quasi-standard modelling lan-
guage in the domain of MBSE. The language was first released in 2007. It is 
based on the object-oriented modeling language UML (Unified Modeling Lan-
guage), that is widespread in the field of software engineering. SysML adapted 
UML from a software-only perspective to a complete system view by integrating 
mechanical and cyber-physical systems. Where UML uses classes, SysML incor-
porates blocks as structural elements to model every type of entity in the sys-
tem. The nine different types of SysML-diagrams get clustered in three groups: 
Requirement-diagrams, structural diagrams and behavior-diagrams. [ 12] SysML  
provides a standardized way to represent systems, facilitating communication 
and collaboration among stakeholders. Its widespread adoption ensures compat-
ibility with various tools and methodologies, making it a versatile choice for our 
MBSE activities. 

3 AI, Voice Recognition, LLMs 

The solution that has been devised for this purpose involves the incorporation of 
artificial intelligence (AI), with a particular emphasis on large language models 
(LLMs). LLMs demonstrate considerable potential for processing natural lan-
guage, recognizing patterns, and analyzing voluminous data sets. Despite their 
advantages, there are still considerations to be made when using LLMs. For 
instance, the models have a tendency to “hallucinate”, which refers to the gen-
eration of erroneous information. It is imperative to construct a robust guard 
rail system around the LLM to enhance its accuracy and reliability. Technolo-
gies such as Retrieval Augmented Generation (RAG) and vector databases are 
employed to enhance the performance of LLMs by integrating the capacity to 
generate text and retrieve pertinent information from extensive databases. The 
present study focuses on the utilization of OpenAI and ChatGPT-4o, as OpenAI 
is a leader in the development of advanced AI models and ChatGPT-4o is one of 
the most powerful language models currently available. The decision to utilize 
OpenAI and ChatGPT-4o was guided by their demonstrated capacity to deliver 
high precision and versatility in executing complex linguistic tasks. These models 
have been thoroughly documented and have garnered significant support from 
the developer community, thereby facilitating their integration into our solution. 
Notably, the Realtime API and the Assistant API offered by OpenAI appear to 
hold considerable promise for the proposed solution.
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3.1 Comparison Realtime API and Assistant API 

To handle queries, for our approach two solutions are viable. On the one hand, 
the OpenAI Realtime API provides a voice-to-voice dialogue system, that com-
putes User-input and AI-outputs with low latency [ 20]. An alternative is to use 
the OpenAI Assistants-API, that offers a simple way of creating an assistant, 
although Speech-to-Text and Text-to-Speech need to be handled externally [ 20]. 

Table 1 gives an overview of the differences between those two APIs. The 
Realtime API has an advantage in the handling of speech-input to speech-output, 
with an integrated solution for voice activity detection, which results in a more 
dynamic conversation and lower latencies. It lacks a good solution for handling 
longer conversations, without losing historic information, and a direct tool sup-
port. In this work, we decided to use the Assistant API due to its better handling 
of conversation history and a more flexible setup for testing different Voice-to-
Text & Text-to-Voice tools, different AI-models and different ways of combining 
the user input with the gathered knowledge from the SE-model. 

Table 1. Comparison between the OpenAI Realtime API and the Assistants API. 

Feature Realtime API Assistants API 
Conversation History conversations threads 
System Prompt Manually through 

messages-array 
Directly via instructions 

Input + Knowledge Indirectly by manually 
adding to the 
message-array 

Directly by combining first 
and then pushing as 
thread_message 

Voice Integration Integrated with voice 
activity detection (VAD) 

Separate integration 

Tool Support Not directly Yes (Code, Retrieval, etc.) 
Streaming Yes (easy and direct) Limited 
Latency Low High 
Flexibility High, but more effort 

required 
Very high with lower effort 

Additional Notes – Tighter integration to the 
vector store 

– Will be replaced with 
Responses API in 2026 

3.2 Configuring Assistant API 

The configuration of the Assistant API is a crucial part of our approach. A key 
point here is to implement a methodology on how to instruct the different AI
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assistants through their individual system prompt. Some parts of the system 
prompt can be applied to all assistants. Instructions like “You are a helpful, 
but also critical assistant in the field of Model-Based System Engineering.” or 
“Answer in a speech-like way.” are applied to all assistants. But it is important 
to have a distinction between the assistants, since one key part of MBSE is the 
aspect of having multiple different views on the system. In this manner, our app-
roach utilizes multiple unique AI assistants to incorporate this concept in our 
solution. Furthermore, it is essential to have the AI sticking close to the input, 
without hallucinating missing information or misinterpreting data. MBSE pro-
vides us with a solid foundation for such a methodology, but even in the domain 
of MBSE there are different standards one could use. For our approach, we found 
three viable methodologies for characterizing AI assistants. First, one could take 
the defined SE processes as systems prompt. They have defined input, activi-
ties, and outputs and are easy to understand. Furthermore, they can easily be 
adapted to a broad applicability across domains. On the downside, the processes 
are not strictly standardized, when it comes to the details. In addition, they 
have a limited semantic depth for interpretation with AI, since interpretations 
and terms vary across different organizations. 

An approach closer to human roles offer the SE roles adopted in [ 12]. Due 
to their resemblance to real project roles, they are easy to adapt to AI assis-
tants. This could translate in a human-like interaction with the AI. One could 
use the list of responsibilities, tasks, and expertise as a system prompt for the 
assistants. The biggest issue with this approach is the lack of formalization and 
standardization. Thus, role definitions can vary significantly depending on the 
organization and the project. Additionally, this offers a very limited machine 
interpretability. 

For our solution, we decided to use the ARCADIA method as a methodology 
for our assistant configuration. Despite its drawbacks of high complexity and a 
challenging mapping to AI avatars, the advantages outweigh the disadvantages. 
The ARCADIA method offers a formalized and standardized methodology with 
a strong integration in MBSE tool chains and a high adaptability to different 
kinds of systems. In particular, the usage of a modeling language like SysML 
promises a high machine readability. 

The comparison between these different approaches can be viewed, summa-
rized, in Table 2. An example of a system prompt, that is tailored to a part of 
the ARCADIA method, can be seen in 5. 

4 Our Solution 

In this section, we present our approach. The section is split into two parts: First, 
the back-end of our solution is explained. The back-end converts the information 
stored in the system model to a machine-readable format and handles user input. 
This user input is then combined with the extracted model knowledge to form a 
single query. Here we show our information and interaction pipeline. Second, the 
front-end is stated and how the user interacts with the system model through
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Table 2. Comparison of MBSE Approaches for AI assistant integration. 

Approach Advantages Disadvantages 
SE Processes – Clearly defined inputs, 

activities, and outputs 
– Easy to understand for 
human stakeholders 
– Broad applicability 
across domains 

– Often informal and not 
strictly standardized 
– Limited semantic depth for 
AI interpretation 
– Varying interpretations 
across organizations 

SE Roles – Close alignment with 
human project roles 
– Facilitates role-based 
AI assistant design 

– Lack of formalization and 
standardization 
– Role definitions vary signifi-
cantly 
– Limited machine 
interpretability 

ARCADIA Method – Formalized and stan-
dardized modeling 
– Strong integration in 
MBSE tool chains 
– High machine 
readability (e.g., via 
SysML-like structures) 

– High complexity for human 
users 
– Challenging mapping to AI 
avatars 

AI-Avatars. The front-end is responsible for bringing the audio-output from the 
AI assistant onto the AI avatar, which serves as the human-like interface to the 
system. 

4.1 The Information and Interaction Pipeline 

The back-end of our solution is clustered into three different parts: The 
model-knowledge database pipeline, the AI-assistant pipeline and the AI-avatar 
pipeline. The connections and processes of these pipelines, which work together 
to build the whole query framework, are outlined in Fig. 2. 

The model-knowledge database pipeline is responsible for the conversion of 
information contained within system models into a machine-readable format. 
In this initial approach to employing MBSE diagrams as a data repository, our 
solution initiates with the exportation of the diagram as an XML file. Due to 
the considerable size of XML files, even for diagrams of a modest scale, we opted 
to convert them into a JSON. This approach offers several advantages. Firstly, 
JSON files typically have a more compact structure, using strictly defined key-
value pairs, whereas XML tends to be more nested and includes redundant tags. 
As a result, JSON files are often significantly smaller in both token count and 
file size, which improves processing efficiency. While we assume that JSON may 
offer better fault tolerance and a more structured design for AI interpretation,
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these claims are based on practical observations rather than empirical evidence. 
The actual machine readability of a format can depend heavily on the training 
data and architecture of the AI model. Therefore, we present this approach 
as a practical choice rather than a definitive superiority claim. The conversion 
is executed by means of a Python script. It is imperative that each type of 
MBSE diagram intended for integration into the knowledge base is accompanied 
by its designated JSON scheme and a Python conversion script. However, the 
fundamental structure remains unaltered. An example for a such a JSON-scheme 
can be found in Fig. 5. 

In the AI-assistant pipeline, the JSON-files are added to the user input. In 
our speech-based solution, the human input is transcribed to text and also added 
to the query. In Algorithm 1 the pseudocode of such a query is shown. First, an 
AI-assistant is created with its specific system instructions and tools. This is a 
one-time call per assistant. Then the needed JSON-files get uploaded and their 
file-id saved. For a new conversation, a thread is created, and its ID gets saved 
as well for continuing conversations later. The user message is composed of the 
thread-ID, the user-input, that got transcribed, and the file-IDs of the JSON-
files. This message gets sent to the thread and a run is started. The textual AI-
answer is then converted from text to speech and send to the AI avatar pipeline. 
Here, the audio file gets sent to the client script that handles the handover to the 
frontend. Via a gRPC (gRPC Remote Procedure Call) request, an open-source 
framework for communication between distributed systems using HTTP/2, the 
audio file gets pushed to the Audio2Face Streaming Audio Player of the front-
end. 
Algorithm 1: Assistant Interaction with JSON File 
Input: User input, JSON file 
Output: Assistant response 

1 Create assistant with instructions and tools; 
2 Upload JSON file and store file_id; 
3 Create new thread and store thread_id; 
4 send_user_message_with_json(thread_id, user_input, file_id) Send  

message to thread; 
5 return response 
6 Set user_input to query string; 
7 Call send_user_message_with_json and store response; 
8 Start run with assistant_id and thread_id; 
9 return run 

4.2 Interacting with the Model 

For the interaction with the model, our solution explores the possibilities of 
using 3D-AI-Avatars as a direct dialogue partner for speech-based low thresh-
old interaction with the system. A foundational principle of (MB-)SE is the 
recognition of the system from multiple perspectives. The proposed solution 
endeavors to incorporate this through the utilization of AI avatar technology.
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Fig. 2. The figure shows the whole query framework. The AI-Avatar Pipeline is respon-
sible for the front-end, where the output audio from the AI assistant is translated to the 
3D avatar. The AI-Assistant Pipeline handles the human input, converts the speech 
to text, forms the query and sends the assistant’s output to the avatar pipeline. In 
the Model-Knowledge Database Pipeline the model diagrams are exported, converted 
to JSON and send to the query. 

The objective is to reduce the complexity of the system and to lower the barrier 
for using systems engineering. This objective would be realized if the interaction 
with the system model were to emulate a human interaction. The utilization of 
3D AI avatars presents a compelling approach for facilitating human-machine 
interaction. Typically, when posing a question to an AI system, the response 
received is a single, definitive answer. It is possible to obtain multiple responses 
to a single inquiry through the utilization of our approach. This phenomenon 
may be compared to posing a question to a group of individuals, resulting in a 
variety of responses based on the expertise of each person in the group. Speech-
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based AI avatars facilitate seamless integration into work and thought processes, 
thereby promoting efficiency and effectiveness in professional interactions. The 
solution under discussion has been designed to address the specific challenges 
posed by brainstorming-like situations that frequently arise during the develop-
ment process. The avatars presented here are intended to function as collabo-
rative partners in the brainstorming process, with each avatar representing a 
distinct expertise and system knowledge. 

For the front-end, the NVIDIA OmniverseTMAudio2Face [ 19] is used.  The  
tool offers a platform for creating, managing and adjusting 3D human like 
avatars. It allows the AI-based generation of facial animation and lip synchro-
nization driven only by an audio source. The tool automatically analyzes the 
given audio-file and animates fitting emotions on the avatar. An example of how 
such an avatar looks like, can be seen in Fig. 3. 

Fig. 3. Here is one of the human-like avatars shown. The image shows one of the 
examples of the NVIDIA Omniverse Audio2Face tool. 

5 Evaluation 

In this section, an example system is examined through the lens of our approach 
to demonstrate and evaluate the solution. The example system facilitates the 
delineation of the precise mechanisms within our proposed pipelines and enables 
a more thorough examination. 

For illustrative purposes, this paper utilizes a system that was originally 
developed at the Technische Universität Graz (TU Graz). This system is designed 
to facilitate rescue operations in mountainous terrain using unmanned aerial
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vehicles (UAVs), more commonly referred to as drones. Here, the focus is on a 
subsystem: The Rescue Object Detection System is a technological innovation 
designed to facilitate the identification of objects in rescue operations. The objec-
tive of this subsystem is to implement an artificial intelligence-assisted object 
(person) detection on the live feed from the drone’s camera. The scenario unfolds 
as follows: The software engineer requires information regarding the established 
software interfaces of the drone’s communication system. 

To illustrate the solution in a simplified way, two basic roles will be used: 
The logical architect and the physical architect. The roles will be embodied by 
two distinct AI assistants, each with its own unique model knowledge, system 
introduction, and AI avatar. In the following, we will examine the configuration 
process for the logical architect in greater detail. It should be noted that the 
configuration process for the physical architect is highly analogous to that of the 
logical architect. 

For the logical architect, we will use the Logical Architecture Diagram (LAB) 
from the ARCADIA method as the basis for our knowledge base. The LAB con-
stitutes a pivotal element in the Logical Architecture (LA)-Step of the Arcadia 
method. The LAB is responsible for the allocation of logical functions to the 
relevant components. The allocation of functions to components enables the 
functions to be viewed in context. A system model may comprise multiple LAB 
diagrams, each concentrating on a distinct aspect of the system under considera-
tion. In this particular instance, as illustrated in Fig. 4, the emphasis is directed 
towards the drone’s camera system, with a focus on the interconnections among 
its components within the Rescue Object Detection System. In the diagram, 
you can track the signal-chain from the Control Drone function in the Remote 
Control component through the Control Signal to the Receive/Send Signal func-
tion in the Communication System component. From here, the Camera Signal 
exchange goes to the detection chain in the Camera System. If an object is 
detected in the detection chain, the Send Notice function triggers the Object 
Detected exchange to the Receive/Send Detection Signal function back in the 
Communication System. This function then has the Object Detected exchange 
with the Notify User function in the Remote Control. The LAB diagram is 
given to the input of the Model-Knowledge Database Pipeline. The Python-
script then parses the XML-file for the parts, that are defined in the diagram-
specific JSON-Scheme. The JSON-Scheme for a LAB diagram can be seen in 
Fig. 5. Subsequently, the completed JSON file is transmitted to the AI Assistant 
Pipeline. 

When an engineer engages with the front-end, the spoken words are tran-
scribed into text. Subsequent to each human input, a novel query is constructed 
by integrating the text input of the engineer with the avatar-specific system 
prompt and the JSON file. 

For example, when an engineer asks the system “How reliable is the trans-
mission of the control command to the drone?”, the query looks like this:
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Fig. 4. This is the used Logical Architecture Diagram (LAB). It shows the allocation 
of logical functions to the component and the exchanges between them.

� System Instructions for Logical Architect 

“You are a helpful, but also critical assistant in the field of Model-Based 
System Engineering. You assist in the Logical Architecture following the 
Arcadia Method. Your input is a user question combined with a Logical 
Architecture Blank Diagram that allocates the logical functions to the rele-
vant components. Use file_search to answer questions based on the attached 
JSON, that represents the Logical Architecture Blank Diagram. It contains 
information about the logical functions, the logical components, the func-
tional allocation and the component exchanges. If a function is allocated to 
a component, take the function into consideration when answering questions 
about the component. Answer in a speech-like way.”

� Example Input 

“How reliable is the transmission of the control command to the drone?”
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Fig. 5. JSON-scheme used to convert the Arcadia-diagram to a JSON-file. In this 
example of a LAB-diagram, an object can be a relationship or an entity. A relationship 
has the tags: source, target, type and description, while an entity has: id, name and 
type. A relationship can either be a component exchange, a functional exchange or an 
allocation. An entity can be a logical component or a logical function.

� Assistant Output for Logical Architect 

“The reliability of the transmission of control commands to the drone is fun-
damentally reliant on the effectiveness of two main components: the “Remote 
Control” and the "Communication System. “The "Control Drone” function, 
responsible for issuing control commands, operates through the “Remote Con-
trol” component. The control commands are then transmitted to the drone via 
the “Receive/Send Signal” function, which is a responsibility of the “Commu-
nication System.” The setup indicates a structured and clear mechanism for 
command transmission, which is essential for reliability. However, the actual 
reliability also depends on several factors beyond the logical architecture, such 
as the quality of the signal and transmission technology used in the communi-
cation system, potential environmental interference, and the robustness of both 
hardware and software managing these functions. These components must be 
well-designed and tested under various conditions to ensure that commands are 
transmitted accurately and promptly, enhancing the reliability of the system.”
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� Assistant Output for Physical Architect 

“The transmission of control commands to the drone is done via a 2.4 
GHz radio frequency link, utilizing a Radio Transceiver Module on the 
controller side and a Drone Receiver Unit on the drone. This setup indi-
cates a standard and well-proven approach in remote control systems, 
and the 2.4 GHz band is widely used for its balance between range and 
bandwidth. Typically, this setup should be quite reliable assuming there 
is no significant interference and both transmitter and receiver are within 
range. However, the reliability can be affected by environmental factors 
like physical obstacles, misalignment of antennas, or other sources of RF 
interference, which are common in urban environments. If those factors 
are controlled, the system should operate effectively.” 

In this example, the user asks the system about the reliability of the trans-
mission of the control command in natural language in spoken words. To answer 
this question, one AI assistant takes the role of a logical architect and gets 
the converted LAB diagram as a knowledge base. The other assistant poses as 
physical architect and gets a Physical Architecture Blank Diagram (PAB). The 
assistants answer in regard to their assigned roles. The logical architect focuses 
on the functional logic of the system. The AI successfully extruded the neces-
sary information from the diagram. Furthermore, even though the components 
of interest are not directly linked, the AI builds a relationship between them, 
based on the functional exchanges between the functions of the components. 
This is an important point, as it is an indication that our approach is able to 
recognize the complex relationships in models. Meanwhile, the physical architect 
describes the real technical solution used in the system and provides details like 
the communication frequency. The output is provided to the user in the form of 
spoken words through the avatars. The speech is highly human-like and the real-
time translation of the speech into the avatars’ facial expressions helps convey 
human-like interaction. 

In future works, a deeper evaluation of the solution will be a primary focus. 
We propose examining robustness, which includes how well the model data is 
captured, the accuracy of the model, and its fault tolerance. Additionally, we 
will look at complexity, specifically how high the complexity of queries can be 
while maintaining good performance. Finally, we will assess usability, focusing on 
how the solution integrates into existing workflows and gathering feedback from 
potential users regarding the comprehensibility and usefulness of the solution. 
These aspects will enable a comprehensive assessment of the solution and help 
identify its strengths and weaknesses. By analyzing these criteria, we can ensure 
that the solution is not only technically sound but also practically applicable and 
user-friendly. The results of this evaluation will provide valuable insights into the 
performance and potential applications of the solution, serving as a foundation 
for further improvements and developments.
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6 Discussion 

The solution presented in the work offers an integration of system models in 
an AI-based workflow. The objective of the solution is to provide a human-like 
interaction with the data captured in the model. The goal is to reduce the com-
plexity of systems by using AI to translate the model to a more comprehensible 
human-machine interaction. 

Section 5 showed the solution in a simplified example. An engineer could ask 
an AI-avatar, presented in 3D-human-like-avatar as front-end, a question about 
the system. By transforming a model into a machine-readable format, it could be 
added to the knowledge pool of the AI assistant, coupled with a specific system 
instruction, developed from the ARCADIA method. The result is an answer by 
the AI assistant that took the data gathered from the model in consideration 
and providing the engineer with system insights. 

Although the approach yield first successful results, there are some remarks, 
that need to be discussed and considered in future works: First, a use-case anal-
ysis should be executed to develop and test in which scenarios a voice-based 
interaction is more suitable than a purely text-based interaction. In addition, 
we propose a hybrid-model capable to differentiate which part of the answer 
should be spoken and which part is more convenient to give as a textual answer 
in addition to the spoken answer. 

The evaluation with the example system showed, that our approach works 
good on simple models and questions that are easily answerable using just one 
diagram as input. Here a deeper evaluation is needed for complex multi-diagram 
scenarios. 

Furthermore, one has to discuss the converting of the pure model into the 
JSON-format. On the one hand, besides machine-readability, this conversion 
prepares our approach to be updated to SysML v2, which API’s underlying 
interchange format is JSON [ 11]. On the other hand, one has to keep in mind 
that a conversion brings a conjunction to the original model. It is of the essence 
to prevent that the development team falls back to changing the JSON-file rather 
than the original model. Especially for small, quick changes, this could be tempt-
ing. For this reason, we propose to have a system in place, that automatically 
updates the JSON-based knowledge base whenever there is a change to the model 
and not giving the users the option to manually adapt the JSON-files. We will 
implement such solution in an upcoming iteration of our approach. 

In conclusion, the findings of this work provide valuable insights and lay the 
groundwork for future research and practical applications in the field. 

7 Conclusion 

In this work, we presented a novel approach that uses MBSE-models as a knowl-
edge base and 3D AI avatars as a front-end, with the goal of utilizing the data 
within MBSE models in a human-computer interaction that lowers the threshold 
for using and understanding MBSE-models. Due to the ever-increasing complex-
ity of systems, it is important to find ways to keep humans in the loop and assist
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them in comprehending the system. The evaluation showed promising results 
in enabling a human-like interaction with the system. The engineer was able to 
ask questions about the system, and the AI-assistant used data gathered from 
an MBSE artifact to answer them. However, there are still several development 
tasks and scientific questions that remain open. 

To address these, in the next steps, we plan to build a retriever system that 
utilizes vectorization to integrate the entire MBSE model into a single semantic 
network. This will enhance the coherence and connectivity of the model data. 
Additionally, we aim to implement the proposed pipeline using the Realtime-
API, focusing on developing a system that efficiently manages the communica-
tion thread for faster response times, while maintaining context information and 
ensuring query efficiency in terms of token usage. 

Furthermore, we intend to implement our solution, or at least parts of it, as 
an add-on for Capella. By establishing a direct link to the modeling software, the 
Model-Knowledge Database Pipeline will become more efficient and enable new 
features. We will also evaluate the proposed approach using objective metrics, 
collaborating with industry partners such as Siemens to test and implement our 
solution in real-world scenarios. 

Lastly, the upcoming of SysML v2 is designed to better resemble natural lan-
guage, which will significantly enhance the integration of the language with large 
language models (LLMs). This advancement will further improve the usability 
and effectiveness of our solution. 
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Abstract. This paper investigates on the integration of Large Lan-
guage Models (LLMs) with the QC-OpenDRIVE framework in order to 
generate syntactically and semantically correct OpenDRIVE files. Open-
DRIVE files play an important role in the scenario-based validation of 
autonomous driving systems as they define the static part (e.g. road lay-
out) on which the function are validated. While LLMs excel at generating 
code or similar tasks which mostly needs to be syntactically correct, the 
validation of semantic, especially normative, correctness remains chal-
lenging. To ensure norm-adherent correctness of generated OpenDRIVE 
files this paper proposes an integration of a feedback-loop with LLMs 
and QC-OpenDRIVE. While LLM allow to easily generate different road 
layouts, they often show issues like missing or unconnected roads or 
improper continuity. To address this issue, we have implemented E.5.9.1 
to ensure geometric continuity between connected roads, which is a key 
contribution of this paper. 

State-of-the-art models are evaluated on three tasks to create Open-
DRIVE road networks and validate the results featuring the feedback-
loop. Results show that models leveraging Retrieval Augmented Gen-
eration (RAG) or internal reasoning and using the feedback loop can 
generate syntactically and semantically valid outputs after iterative cor-
rections. However, challenges remain to prompt complex scenarios and 
tasks, especially following geometric rules without explicit feedback. The 
results demonstrate the necessity of domain-specific normative validation 
frameworks to prepare the use of LLMs for safety-critical applications. 
They can be used to enable scalable generation of edge-case scenarios 
while ensuring compliance with industry standards. This work bridges 
the gap between automated scenario generation and rigorous validation 
of reliable autonomous driving systems. 
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1 Motivation 

Beside designing and implementing autonomous driving systems, testing and 
guaranteeing the safety of such a system is a necessary and non-trivial task. 
Wachenfeld and Winner [ 26] state that a pilot for the German Autobahn would 
need 6,62 bn. driving kilometers to be twice as good as a human driver with 
50% certainty. This way of obtaining a safety prove for every new vehicle on the 
Autobahn is unrealistic and also economically not feasible. A promising approach 
is virtual testing, where simulations are used rather than real world tests. As the 
number of potential evaluations are uncountable, scenarios are used as a guiding 
structure. Such a scenario defines the relevant static and dynamic parts of the 
vehicle’s environment for example using the 6-Layer Model developed in the 
PEGASUS project [ 23]. Further, by focusing on dangerous scenarios a driving 
pilot can be tested more carefully in critical situations without risking property 
or lives [ 8, 13]. 

However, creating tailored edge-cases for testing can be time consuming. 
In the last years, Large Language Models (LLMs) are used for several text-
generation tasks. Used in vibe-coding, documentation and summarizing the abil-
ities are used more and more in everyday tasks to save time and generate loads 
of text in a very short amount of time. By learning stochastic connections in lan-
guage these models can generate many types of textual output. Using this ability 
to write test-scenarios could potentially save time and automatically create sys-
tematic test-cases tailored to the needs of the developers and safety engineers. 

Given the enormous amount of code available on the internet (for example 
github.com), this data can be used to train LLMs and to create benchmarks to 
evaluate these models. Current benchmarks mostly evaluate the models through 
syntactic correctness and functional accuracy. Though there are still challenges 
in evaluating the models ability to generate efficient, readable and maintainable 
code [ 16, 17, 31]. 

Even in subjective and creative tasks like story-telling or legal writing the use 
of LLMs gains popularity. But given its subjective and inherent complexity, its 
validation do need expert supervision. Compared to code generation evaluating 
expert models on different domains need interdisciplinary experts in machine 
learning and for example legal expertise to ensure correctness [ 18, 21]. 

Similar to generating working code in a programming language, a scenario 
can be generated in a given specification-language, like OpenDRIVE [ 4] by the  
Association for Standardisation of Automation and Measuring Systems (ASAM). 
Checking for the correct syntax can be easily achieved through the XML-specifi-
cation, but checking for their semantic correctness is not done yet. To evaluate 
the content of the output the problem occurs that experts do need to check the 
correctness and plausibility, like in legal writing. Especially for never learned 
prompts, it is known that LLMs generalize poorly and can hallucinate or have 
difficulties with the semantic content and logical reasoning [ 15, 28, 31]. There-
fore, it is important, that the output of LLMs is evaluated, such that, in our 
application, can be used to generate test scenarios.
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One part of the semantic correctness is normative correctness, i.e., correctly 
adhere  to a given  set of norms, rules, or regulation. OpenDRIVE files need  
to follow a given set of rules defined by the standard. For example Schwab et 
al. [ 24] checked for gaps between the lanes at road crossings after recognising 
them in parametric road space models. The connection of geometric shapes (e.g. 
the roads), but also others geometric, topological or semantic rules are defined 
by OpenDRIVE rules. Until recently they were not checked at all. To guaran-
tee the normative quality ASAM published the QC-Framework to check Open-
DRIVE and OpenSCENARIO XML-data. QC-OpenDRIVE [ 6] uses this framework  
and implements some rules to ensure their correctness. 

Generated OpenDRIVE-Scenarios by LLMs can be evaluated with the 
quality-checker. Key contributions of this paper are: 

1. Integrating LLMs into a feedback-loop by evaluating generated outputs using 
QC-OpenDRIVE (Sect. 3), 

2. Implementation of the rule E.5.9.1 (road.geometry.contact_point) for 
QC-Open-DRIVE (Sect. 4), 

3. Evaluating correctness and content of generated outputs (Sect. 5). 

2 Related Work 

Evaluating code via benchmarks, like OpenAI’s HumanEval [ 10] or Google 
Research’s Mostly Basic Python Problems (MBPP) [ 7], is common practice. 
Some LLM-agents are also capable of using compilation errors of generated code 
to refine their output (e.g. GitHub Copilot agent mode [ 20]). But more sub-
jective tasks, like evaluating the semantic correctness of different tasks, require 
experts to evaluate the model outputs [ 16– 18, 21]. 

The generation of concrete scenarios using LLMs is subject to prior works 
[ 9, 22, 32]. But none of these methods use a unified output syntax (e.g. Open-
SCENARIO) to generate the data. This renders a standardized evaluation for 
LLM-generated scenarios much more complex or even impossible. Xiao et al. [ 29] 
describe scenarios in multiple logical steps, which could be used to evaluate the 
output by the logical definitions. 

ASAM [ 3] develops standards for the development of autonomous driving sys-
tems. Members of the association are international car manufacturer, suppliers 
and research institutions. Use-cases like the development, testing and evaluation 
of driving systems are standardized by ASAM e.V. Therefor different data-formats,
-models, protocols and interfaces are defined, establishing an easier interchange of 
data and tools [ 3, 4]. 

ASAM OpenDRIVE [ 4] defines syntax and rules to describe road networks 
using Extended Markup Language (XML). OpenDRIVE is mainly concerned with 
describing the geometry of roads, lanes and objects like lane markings or signals. 
Such definitions can be based on real road-data or be synthetically generated. 

Eisemann und Maucher [ 12, 13] generate OpenDRIVE-Maps from LiDAR 
pointclouds. Segments of these points are combined and translated to Open-
DRIVE. Becker et al. [ 8] define a logical description of a road-map, which is

https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/16_annexes/map_rules.html#asam-net-xodr-1-7-0-road-geometry-contact-point
https://github.com/asam-ev/qc-opendrive
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translated to OpenDRIVE. Both approaches do not use natural language pro-
cessing. 

Regarding the validation of OpenDRIVE, Schwab et al. [ 24] implemented 
simple rules, which mainly check for gaps between lanes. This uncovered gaps 
at road crossings in their OpenDRIVE data. 

3 Integration of LLMs with QC-OpenDRIVE 

The OpenDRIVE file format is based on Extensible Markup Language (XML). 
ASAM provides an XML schema that defines the structure of a valid Open-
DRIVE file. The main OpenDRIVE document provides in-depth explanations 
about every aspect of the file format. It also defines a set of rules, that an 
OpenDRIVE file has to conform to. These rules do not cover syntactical correct-
ness but aim to result in logical correctness of the described road network. E.g. 
rule E.5.9.5 (road.geometry.paramPoly3.length_match) requires that the actual 
curve length [of a road], as determined by numerical integration over the param-
eter range, should match [the parameter] @length [ 4]. Recently, ASAM published 
quality checkers for different standards, including OpenDRIVE. This framework 
called QC-OpenDRIVE [ 6] checks the syntax using the OpenDRIVE XML schema 
as well as a subset of the rules defined in the OpenDRIVE standard. 

First experiments indicate that LLMs like GPT-4 can generate an Open-
DRIVE file from simple prompts, when using the ChatGPT interface. But even 
the generation of very simple road networks composed of one or two roads often 
results in incorrect output. These errors can mostly be attributed to a viola-
tion of the OpenDRIVE XML schema, but also violations against rules of the 
OpenDRIVE standard do occur. It follows, that QC-OpenDRIVE should be able 
to detect such mistakes of an LLM. In such an event, the error report from 
QC-OpenDRIVE should help to find the faulty part of the generated OpenDRIVE 
and correct the mistake. 

The idea of this feedback-loop is visualized in Fig. 1. Starting from a prompt 
to an LLM in natural language, an initial OpenDRIVE map will be generated 
and checked via QC-OpenDRIVE. In case of a detected error, the error report 
is given to the LLM to correct the mistake. This procedure can iteratively be 
repeated until all violations to the XML schema and the implemented rule set of 
QC-OpenDRIVE are eliminated. If not all mistakes can be corrected, the loop might 
either be terminated after a fixed number of iterations or when it is detected, 
that the same errors appear repeatedly. Using this approach, OpenDRIVE files 
can be generated automatically from natural language, while being syntactically 
correct and adhering to the implemented rules. 

3.1 OpenDRIVE Generation Tasks for the Models 

To identify the current abilities of different technologies and architectures in 
generating OpenDRIVE files, we tested three distinct models. They are given 
the same prompts of three tasks to generate simple road networks using a simple

https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/16_annexes/map_rules.html#asam-net-xodr-1-7-0-road-geometry-parampoly3-length-match
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Fig. 1. Idea of a feedback-loop to correct invalid OpenDRIVE files generated by a 
LLM. The idea proposes to check its correctness by a given set of OpenDRIVE rules. 
With the error, the LLM hopefully can generate a correct output. 

Chain-of-Thought (Cot) [ 27]. The validity of each output after one prompt is 
evaluated with the external tool QC-OpenDRIVE (see Fig. 1). The models are 
presented in Table 1 and represent state-of-the-art models leveraging Retrieval 
Augmented Generation (RAG) [ 19] or reasoning [ 11]. 

Table 1. List of used models for evaluation with their parameters and properties. 
Llama uses RAG, Qwen using reasoning and the mistral model uses none. 

Model Parameters Reasoning [ 11]RAG  [  19] 
Mistral Large Instruct [ 25] 123B ✗ ✗  
Meta Llama 3.1 [ 14] 70B ✗ ✓  
Qwen 3 [ 30] 235B ✓ ✗  

The chosen models are not fine-tuned to generate OpenDRIVE examples and 
are chosen to show the current abilities to correct its output with given feedback 
from QC-OpenDRIVE. As a baseline, the model Mistral Large [ 25] is chosen and 
used without any additional feature like reasoning or RAG. Meta’s Llama 3.1 
[ 14] features less parameters, but is using RAG to access the OpenDRIVE 1.7.0 
documentation [ 2] as a PDF-file. Lastly, the most powerful tested model Qwen 
3 [  30] is trained to reason before giving the answer to the prompts. This model 
is added, as it may have been trained on some rules and might use the reasoning 
to validate the steps to make less errors. Each model was integrated into the 
feedback-loop with QC-OpenDRIVE to augment the models with the intended 
error correction capabilities. 
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We designed a small benchmark of three tasks, each composed of multiple 
prompts (see Table 2). To assist the models CoT is used. Wei et al. [ 27] have  
shown, that giving multiple step-by-step prompts can assists the models ability 
to generate more accurate responses. The first prompt in each task tests the 
capabilities of the models to generate an OpenDRIVE file purely from natural 
language. The additional prompts per task are intended to test the editing capa-
bilities based on a already generated OpenDRIVE and an editing instruction. 
An editing instruction is only performed, if the previous prompt did not result 
in an error. Each task is generated in a new chat, so that the previous task is 
not in the context window. 

Table 2. Prompts used for the different tasks. The system-prompt is the same for 
every model and task. Each prompt has a specific identifier to see the task and prompt 
id. For example the first task contains the three different prompts P1.1, P1.2 and P1.3. 
They are used in the same chat and used iteratively. 

Task ID Prompt 
System-prompt - You are a helpful assistant to create OpenDRIVE xodr-files. Be sure to use 

the correct schema-format. The output has to strictly follow the defined 
xml-schema - be sure to include the correct required attributes! But leave 
unnecessary elements and attributes out. For example leave the predecessor 
out, when there is no predecessor road. 
Use this header for the version 1.7.0 of OpenDRIVE: 
“ ‘  
<?xml version="1.0" standalone="yes"?> 
<OpenDRIVE> 

<header revMajor="1" revMinor="7" name="" version="1.00" 
date="Wed Aug 14 11:25:56 2024" 
north="0.0000000000000000e+00" 
south="0.0000000000000000e+00" 
east="0.0000000000000000e+00" 
west="0.0000000000000000e+00"> 

</header> 
“ ‘  
Resume the instructed content with the provided header. 

Task 1 
P1.1 Create a straight 10m road with a 2.5m wide lane in each direction. 
P1.2 Change the road, so that is 50m long. 
P1.3 Add one lane. 

Task 2 
P2.1 Create two roads. Each should have one left lane and one right lane. 
P2.2 Rotate one road for 180 degrees. 
P2.3 Add a link to connect both roads. 

Task 3 
P3.1 Create two roads. Each should have two left lanes and one right lane. 
P3.2 Add a link to connect both roads. 

The chosen tasks include simple instructions to generate one or two roads, to 
modify and connect them. We currently refrain from more complex instructions, 
since experiments with different models have shown their inabilities in creating 
maps with three or more roads. We also noticed, that plenty of errors originate 
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from an incorrect header in the generated OpenDRIVE files, which keeps meta 
information like the version or the global position of the map. To eliminate this 
error and focus at the content of the tasks, the header is provided as part of the 
system prompt. 

4 Checking Normative Semantics 

The rules from the ASAM standard OpenDRIVE are implemented in 
github.com/asam-ev/qc-opendrive/tree/main/qc_opendrive/checks. Since only 
a subset of all rules defined in the standard are currently implemented in 
QC-OpenDRIVE, an allegedly valid OpenDRIVE file might violate an unimple-
mented rule from the standard. And without an error report, such an invis-
ible error cannot be corrected in the feedback-loop between an LLM and 
QC-OpenDRIVE. In our experiments, we often encountered a violation of rule 
E.5.9.1 (road.geometry.contact_point) by the LLMs. Thus, we implemented 
this rule to extend the rule set of QC-OpenDRIVE. 

In QC-OpenDRIVE, the logic of a rule is implemented in the method 
check_rule of a new checker module. By registering this checker module in 
the main.py, the implemented method is automatically called when running 
QC-OpenDRIVE. For testing the implementation of a rule itself, it should also be 
tested using pytest. Test-xodr-files are stored in tests/data/ and added in the 
intended check-file in tests/. 

4.1 OpenDRIVE Terminology 

Before discussing rule E5.9.1 and its implementation in more detail, we need a 
rough understanding of the affected OpenDRIVE structures. 

The geometry of the course of a road is defined in a <planView>. The line it 
follows is called the road reference line (see blue arrows in Fgure 2), from which 
the lanes of the road extend to the sides. Two roads can be connected with 
the <link> element, where the connection is defined by either the predecessor, 
when the other road connects to the start-point, or the successor, when the road 
connects to the end-point of the road reference line. The attribute contactPoint 
states, which end of the road reference line of the other road is connected to 
either the predecessor or successor point [ 1, 4]. 

4.2 Rule E5.9.1: road.geometry.contact_point 

The rule E.5.9.1 (road.geometry.contact_point) is performing a geometry check 
on a road definition. It states: 

Rule 5.9.1 If two roads are connected without a junction, the road reference 
line of a new road shall always begin at the <contactPoint> element of its 
successor or predecessor road. The road reference lines may be directed in 
opposite directions. 

https://github.com/asam-ev/qc-opendrive/tree/main/qc_opendrive/checks
https://docs.pytest.org/en/stable/
https://github.com/asam-ev/qc-opendrive/tree/main/tests
https://github.com/asam-ev/qc-opendrive/tree/main/tests
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/16_annexes/map_rules.html#asam-net-xodr-1-7-0-road-geometry-contact-point
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Each road defines its predecessor- and successor-elements in the <link> ele-
ment of each connecting road. The point of contact is obligatory and given by 
the parameter contactPoint. The road reference line of both roads need to geo-
metrically touch the end or start of the other contact point. With this rule, it 
has to be defined in the element, using the contact point "end" or "start". The  
correct usage is illustrated in Fig. 2. 

Fig. 2. Valid and invalid connections of contact-points from two roads. From Open-
DRIVE [ 5]. 

In the upper left image the road with the ids “1” and “2” are connected. The 
successor link element of the road “1” is the road “2”, because the end of the road 
reference line, points at the start of the reference line of the road “2”. Because 
of this, the contact point of the successor of road “1” is the start of the road “2”. 
On the other side, the contact point of the predecessor from road “2” is the end 
of road “1”. When both road reference lines point to the opposite directions they 
are each other predecessors and have contact points at the start of each other. 
Lastly, when both road reference lines point to each other, they are successor 
elements with contact points at the end of each other. The bottom-right images 
illustrates the invalid case, when the contact points are not connected. 

To check this rule, the geometric coordinates of the contact points and the 
start/end of the road reference lines have to be compared. To account for float-
ing point errors, equality is assumed if the distance of coordinates is below a 
threshold value ε = 10−6. When the predecessor is checked, the start point of 
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the current road reference line is used and when the successor is checked, it needs 
to be the end point. Depending on the parameter contactPoint of the <link> of 
the successor or predecessor, the contact point needs to equal the start or end 
point of the road reference line of the other road. 

A pull-request with the implementation and tests is published for the official 
ASAM QC-OpenDRIVE github-repository. The implementation can be found 
at github.com/asam-ev/qc-open-drive/pull/126. 

5 Evaluation 

In the last section the models and prompts were presented. The details and tries 
are shown in Table 3. The table is ordered by the tasks. Mistrals model failed to 
generate the first prompt, so this model was not used for the further tasks. 

Two of the three tested models, namely Qwen 3 and Llama 3.1, could use 
QC-OpenDRIVE as a feedback-loop. The mistral model could not fix its schema 
errors and did not return the corrected XML-output, while both other models 
were able to create correct OpenDRIVE files. 

In the first task (P1.1, P1.2 and P1.3) the models were asked to create one 
road and modify it. Qwen 3 and Llama completed this task. Qwen 3 needed three 
attempts to fix the returned schema-errors. Llama 3.1 used RAG and finished 
the complete first task without errors. When investigating the output, it shows 
some minor differences to the intended task as it added more than one lane. 

The second task (P2.1, P2.2 and P2.3) was to create two roads, rotate one 
and to connect both roads. Llama was not able to complete the task. In the first 
prompt it had one schema error, which could be fixed with the error message in 
the first try. After the second prompt it returned only the changes to the road and 
needed to be asked to return the full OpenDRIVE file. It could not fix the schema 
errors for the third prompt. Qwen 3 completed this task, while only having 
one error, missing the implemented rule E.5.9.1 (road.geometry.contact_point). 
Models might miss this rule and the resulted XML would be incorrect. 

The last and third task was similar to the second one. Two roads have to be 
generated in one prompt. Both models needed three tries to generate a correct 
schema. As in the second task, Llama first printed only the changes, but after 
asking it to print the whole XML, the output was correct. Qwen 3 needed three 
tries for the second prompt. First the schema was invalid and in the second try 
the contact point of the link was invalid as in the second task. It could fix this 
error. 

Using the feedback-loop both models could complete the tasks in a few min-
utes. Writing small OpenDRIVE files by hand would, depending on the knowl-
edge, take similar or more time. But the strength of this models can be shown 
when different scenarios can be generated automatically. With the help of the 
feedback-loop, distinct scenarios can be described and then generated by the 
models. 

https://github.com/asam-ev/qc-opendrive
https://github.com/asam-ev/qc-opendrive/pull/126
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/16_annexes/map_rules.html#asam-net-xodr-1-7-0-road-geometry-contact-point
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Table 3. Validation results after each iteration (step) using different models for the 
generation of OpenDRIVE files in the predefined tasks. In each step a validation with 
QC-OpenDRIVE as well as a human inspection was performed and summarized here. 

ID Model Step QC-OpenDRIVE Validation Human Inspection 

P1.1 

Mistral 1-6 Schema Error: invalid lane id Alternates the same mistake for 
positive and negative lane-ids. Could 
not fix the error. 

Llama 1 No QC-OpenDRIVE Error. Output as expected for the prompt. 

Qwen 
1-2 Invalid schema -
3 No QC-OpenDRIVE Error. Output as expected for the prompt. 

P1.2 
Llama 1 No QC-OpenDRIVE Error. Two lanes with a width of 0cm on one 

side of the road reference line. 
Qwen 1 No QC-OpenDRIVE Error. Output as expected for the prompt. 

P1.3 
Llama 1 No QC-OpenDRIVE Error. Added three lanes. Two on the 

opposite driving direction. 
Qwen 1 No QC-OpenDRIVE Error. Output as expected for the prompt. 

P2.1 
Llama 

1 Schema Error. -
1 No QC-OpenDRIVE Error. Output as expected for the prompt. 

Qwen 1 No QC-OpenDRIVE Error. Output as expected for the prompt. 

P2.2 
Llama 

1 - Printed only the changed lines. Asked 
to print the whole XML again. 

2 No QC-OpenDRIVE Error. Output as expected for the prompt. 
Qwen 1 No QC-OpenDRIVE Error. Output as expected for the prompt. 

P2.3 
Llama 1-4 Schema Error Could not fix the error. 

Qwen 
1 Invalid rule road geometry contact 

point.
-

2 No QC-OpenDRIVE Error. Output as expected. 

P3.1 
Llama 

1-2 Schema Error -
3 No QC-OpenDRIVE Error. Output as expected for the prompt. 

Qwen 
1-2 Schema Error -
3 No QC-OpenDRIVE Error. Output as expected for the prompt. 

P3.2 

Llama 
1 - Printed only new roads. Manually 

asked again to print whole XML. 
2 No QC-OpenDRIVE Error. Output as expected by the prompt. 

Qwen 
1 Invalid schema. -
2 Invalid rule road geometry contact 

point.
-

3 No QC-OpenDRIVE Error. Output as expected for the prompt. 
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6 Conclusion 

Natural language processing with LLMs might dramatically change many tasks 
typically done by humans. This includes describing legal writing, text summary 
generation, or even source code generation. Depending on the task and data 
availability, specialized experts need to evaluate the model, especially when data 
is sparse or the topic is of subjective nature. In automated driving, scenarios are 
a common tool for describing allowed and forbidden interaction of the vehicle and 
its environment (including vulnerable road users). Obtaining relevant scenarios 
covering the operational design domain is a huge challenge especially if they 
need to be handcrafted. In this paper, we investigate the automatic generation 
of road networks for such driving scenarios analogously to the generation of 
source code. We generate road networks as OpenDRIVE with different LLMs. By 
using OpenDRIVE, which is a standardized language, models can be compared 
and automatically checked for issues since a set of rules exists. We propose to 
integrate the LLM-based road network generation with automatic rule-checking 
in a feedback-loop in order to fix errors introduced by the LLM. 

To demonstrate the feasibility of our feedback-loop, three LLMs are inte-
grated with the open-source ASAM Quality Checker QC-OpenDRIVE for Open-
DRIVE files, to iterative validate and correct the OpenDRIVE files generated 
by the LLMs. While most models have difficulties generating valid OpenDRIVE, 
by leveraging reasoning and RAG the tested models could generate syntactically 
valid road networks, especially when combined with QC-OpenDRIVE feedback. 
We show that syntactic schema errors as well as normative errors could be fixed 
using the feedback-loop. Unfortunately, not all rules of OpenDRIVE are yet 
implemented in QC-OpenDRIVE. Therefore, we extended QC-OpenDRIVE by imple-
menting the rule E.5.9.1 road.geometry.contact_point which checks for road 
continuity at their contact points with other roads. This rule solved a major 
issue, we identified during our experiments. While Llama 3.1 failed to produce 
correct contact point in the second task and Qwen 3 in the third, they were 
able correctly connect roads given the feedback. Because LLMs have problems 
with implicit domain knowledge (e.g. the contact point), this does not only show 
practical utility in identifying invalid road connections as a critical requirement 
and the necessity of having validation tools but also shows the automatic feed-
back and correction is possible, leaving the creative part to the LLM and the 
corrective part to a rule checker. 

The results show that human inspection is still needed, as there may be differ-
ences between the intended results and the generated output. In the future, the 
set of OpenDRIVE rules should be extended even further, as this will allow to 
correctly generate more complex OpenDRIVE files and allow automated tests 
with no human inspection. Moreover, this enables the training of specialized 
models and to ultimately create scenarios for testing autonomous driving sys-
tems in edge-cases. In the field of test-case design, such a automated LLM-based 
pipeline with a feedback-loop could enable hybrid approaches like using simula-
tion and reinforcement learning to test edge-cases with minimal manual effort 
in validating the correctness and to meet industry standards. 
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By integrating LLMs with validation frameworks like QC-OpenDRIVE, this  
study paves the way for scalable, standardized, and semantically sound scenario 
generation, essential for the safe deployment of autonomous driving systems. 
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Abstract. Formal verification tools like model checkers have long 
demonstrated their capability to ensure mission-critical properties are 
satisfied, yet their adoption in the aerospace and defense industries 
remains limited. Among the various reasons for slow uptake, difficulty 
in understanding analysis results (i.e., counterexamples) tops the list 
of multiple surveys. In previous work, our team developed AGREE, an 
assume-guarantee compositional reasoning tool for architecture models. 
Like many other model checkers, AGREE generates potentially large 
counterexamples in a tabular format containing variable values at each 
time step of program execution up to the property violation, which can 
be difficult to interpret, especially for novice formal methods users. In 
this paper, we present our approach for achieving explainable composi-
tional reasoning using AGREE in combination with generative AI and we 
introduce AGREE-Dog, an open-source generative AI copilot integrated 
into the OSATE IDE. AGREE-Dog automates 16 DevOps and ProofOps 
steps, utilizing a novel context-selection and memory management sys-
tem to efficiently manage evolving artifacts and historical interactions. 
We introduce structural and temporal metrics to evaluate the typically 
overlooked human contributions in generative AI-supported workflows. 
Evaluations using 13 UV fault-injection scenarios demonstrate a signif-
icant reduction in manual effort (less than 0.1 % of tokens authored by 
users), rapid convergence of counterexample repairs (84.6 % resolved in 
a single iteration, accuracy increasing to about 92 % after two itera-
tions, and reaching 100 % within three iterations), and low LLM latency 
(average LLM response under 22 s, with negligible AGREE-Dog compu-
tational overhead). We also discuss limitations and future work. These 
promising results motivate further exploration into explainable model-
based systems engineering (MBSE). 
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1 Introduction 

Formal methods provide a mathematically rigorous means of verifying correct-
ness in high-assurance systems, such as those used in the aerospace and defense 
industries. Certification guidance such as DO-333 [ 13] explicitly outlines how 
formal methods can meet airworthiness objectives for commercial aircraft soft-
ware. Despite their proven effectiveness, adoption within traditional development 
workflows remains limited, hampered by scalability challenges, poorly designed 
tooling, and significant barriers to entry due to specialized training require-
ments [ 3]. 

The DARPA Pipelined Reasoning of Verifiers Enabling Robust Systems 
(PRO-VERS) program was launched to address these adoption barriers by 
developing scalable, human-centered formal verification workflows that seam-
lessly integrate into existing aerospace and defense engineering practices. Cen-
tral to PROVERS’ objectives is enabling usability even among engineers who 
lack extensive formal methods expertise, thereby fostering broader adoption and 
enhancing system dependability. 

In response, our team has developed the Industrial-Scale Proof Engineering 
for Critical Trustworthy Applications (INSPECTA) framework [ 6]. INSPECTA 
comprises two integrated layers—ProofOps and DevOps—that embed formal 
verification directly into modern DevOps pipelines. The framework emphasizes 
scalability and explainability as primary design objectives, aligning closely with 
the PROVERS program’s goals. 

Within INSPECTA’s ProofOps workflow, we employ the Assume-Guarantee 
Reasoning Environment (AGREE) [ 2], a compositional verification tool designed 
specifically for the Architecture Analysis and Design Language (AADL) [ 4]. 
Although AGREE avoids many of the scalability pitfalls found in monolithic 
verification tools, its counterexample outputs remain difficult to interpret. Like 
many model checkers, AGREE produces tabular counterexamples that trace the 
state of variables across multiple time steps. These can involve intricate tem-
poral logic, nested states, and violations spanning architectural layers, posing 
challenges even for experienced engineers [ 7]. The diagnostic and repair pro-
cess may span, hours, days, or weeks for large, evolving models based on user 
experties. 

Recently, generative AI, and particularly large language models (LLMs), have 
shown promising potential to improve explainability and guide automated formal 
verification and counterexample repair. Early efforts include OpenAI’s GPT-f, 
which achieved notable success in Metamath theorem proving [ 8, 12]. Other ini-
tiatives have applied LLMs successfully to proof repair in Isabelle/HOL [ 5], the-
orem diagnosis in Coq [ 18], and discovering program invariants [ 11, 17]. Stanford 
and VMware’s Clover project represents another significant step forward, focus-
ing on verifiable code generation with generative assistance [ 14]. Tahat et al. 
demonstrated high success rates using multi-turn conversational LLMs for proof 
repair in Coq, underscoring conversational learning’s value in formal reasoning 
domains [ 15, 16]. Apple’s GSM-Symbolic [ 9] highlighted fundamental limitations 
of LLMs in symbolic reasoning tasks. Similarly, Amazon’s recent SMT-backed
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hallucination prevention framework [ 1], while innovative, remains closed-source, 
available exclusively as a web service, and has yet to integrate within aerospace-
specific MBSE pipelines such as those based on AADL. 

We summarize the contributions of this paper as follows: 

– We introduce AGREE-Dog, an open-source generative AI copilot integrated 
into the OSATE IDE 1, designed to automate and simplify the interpreta-
tion of counterexamples within aerospace and defense MBSE workflows using 
AADL and AGREE. 

– An intuitive user interface coupled with detailed logging and traceability fea-
tures, simplifying the typically challenging analysis of internal copilot inter-
actions in generative AI-assisted systems. 

– A context-selection and memory management algorithms that enhance 
prompt construction by triming irrelevant content, thereby reducing token 
usage, latency, cost, and enhancing recommendation accuracy. 

– A novel set of structural and temporal evaluation metrics explicitly designed 
to quantify user effort, copilot automation, and interaction latency, capturing 
aspects often overlooked in evaluations of generative AI-assisted verification 
workflows. 

– Experimental evaluations demonstrating AGREE-Dog’s practicality, robust-
ness, and effectiveness, validated through 13 diverse fault-injection test sce-
narios, highlighting rapid convergence of repairs and significant reduction of 
manual effort. 

Throughout this paper, we provide simplified examples drawn from our 
test suite, illustrated clearly in the figures. We primarily focus on a simplified 
UV system described by the Car AADL package 2. This open-source package, 
developed using AADL, contains several key subsystems—including top-level 
control, steering, and transmission—each specifying formal contracts verified 
using AGREE. The provided examples highlight AGREE-Dog’s primary fea-
tures, workflow, and practical advantages, demonstrating how the copilot sup-
ports users in interpreting counterexamples, identifying contract violations, and 
automating model repairs. Due to space limitations, a more detailed, end-to-
end illustrative fault injection and repair scenario for the Steering subsystem is 
provided in Appendix A. Also, more comprehensive copilot interactions, detailed 
conversation samples, and log files are available in our GitHub repository 3. 4. 

The paper is organized into seven key sections. Section 1 provides an intro-
duction to formal verification and generative AI’s role in enhancing model-based 
systems engineering. Section 2 introduces the AGREE tool, emphasizing explain-
ability in compositional reasoning. Section 3 identifies core challenges motivat-

1 https://github.com/loonwerks/AgreeDog. 
2 https://github.com/loonwerks/AgreeDog/tree/main/uploaded_dir/car/packages. 
3 https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-

conversations. 
4 https://github.com/loonwerks/AgreeDog/blob/main/shared_history/, such as,  
conversation_history_20250427_215828.json. 
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ing the development of AGREE-Dog. Section 4 details AGREE-Dog’s architec-
ture, including its user interface, backend workflow automation, and context-
management algorithms. Section 5 describes novel structural and temporal met-
rics for evaluating human-in-the-loop interactions. Section 6 presents compre-
hensive experimental results demonstrating AGREE-Dog’s efficacy using fault-
injected scenarios. Finally, Sect. 7 concludes the paper, discussing limitations 
and avenues for future work. 

2 Explainable AGREE 

2.1 Overview 

Fig. 1. This figure shows a code snippet of an AGREE-generated counterexample from 
the Car model. It illustrates a violation of the guarantee “G car_1: actual speed is less 
than constant target speed,” which evaluates to false. 

AGREE provides a formal contract language for specifying assumptions (i.e., 
expectations on a component’s input and the environment) and guarantees (i.e., 
bounds on a component’s behavior). Because AGREE is implemented as an 
AADL annex in the Open Source AADL Tool Environment (OSATE), the con-
tracts are specified directly on components in the AADL model. AGREE then 
uses a k-induction model checker to prove properties about one layer of the 
architecture using properties allocated to subcomponents. The analysis proves 
correctness of (1) component interfaces, such that the output guarantees of each
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component must be strong enough to satisfy the input assumptions of down-
stream components, and (2) component implementations, such that the input 
assumptions of a system along with the output guarantees of its sub-components 
must be strong enough to satisfy its output guarantees. 

When a contract violation is found (i.e., when an assumption is determined to 
be invalid or a guarantee is unsupported), AGREE produces a counterexample 
consisting of values for each system variable at each execution step. A sample 
counterexample is depicted in Fig. 1. Currently, OSATE includes the AADL 
Simulator tool that can accept an AGREE counterexample as input and walk 
through the trace in the graphical editor, but it is of limited help when it comes 
to identifying the root cause of the contract violation. 

2.2 Making Counterexamples Actionable 

We therefore desire AGREE counterexamples that are actionable; that is,  an  
explanation of the violation in terms that will quickly lead to a passing analysis 
(e.g., by making changes to the formal contract or model). To achieve this, we 
implemented an interactive conversational copilot (AGREE-Dog) powered by 
GPT-4o and O3 multimodal generative AI models. It is specifically designed 
to assist AGREE users in identifying the root causes of counterexamples and 
applying targeted modifications during the model repair process, significantly 
reducing the turnaround time between verification attempts. The copilot is user-
friendly and integrates seamlessly with the OSATE IDE (see Fig. 2) and (Fig. 3). 

In the remainder of this paper, we explore the motivations that drove the 
development of AGREE-Dog, describe its key architectural features, and evalu-
ate its effectiveness within representative modeling and verification workflows. 

3 Motivations and Core Challenges 

Drawing upon our practical experience integrating AGREE within MBSE work-
flows, in this section we highlight central challenges and key design principles 
that guided the development of our LLM-based solution for generating action-
able counterexample explanations and facilitating automated model repairs. 

3.1 Context-Aware Prompt Construction 

AGREE-generated counterexamples typically involve numerous variables, intri-
cate execution traces, and extensive AADL architectural data. Incorporating 
detailed LLM-generated code explanations and diagnostics exacerbates this chal-
lenge. Presenting these details directly to a generative AI model without careful 
management often result in excessive context size, increasing latency, hallucina-
tions, costs, and potentially exceeding token limits. The key challenge is identify-
ing and selecting only the most relevant context to include in prompts, ensuring 
accurate, concise explanations and actionable recommendations.
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Fig. 2. AGREE-Dog copilot integrated within OSATE. This figure shows the user 
interface integration, with the OSATE IDE on the left and the AGREE-Dog copilot 
explanations intuitively displayed on the right. AGREE-Dog explains the root cause of 
the counterexample step-by-step in natural language, specifically, the violation occurs 
because Actual_Speed drops below Target_Speed, violating the guarantee G car_1. 

3.2 Ensuring Validity of Automated Repairs 

Generative models might propose repairs that, while plausible, could uninten-
tionally violate established architectural interfaces or critical system proper-
ties. Maintaining consistency within compositional reasoning frameworks, such 
as AGREE, requires continuous validation. Thus, repairs must be tightly inte-
grated with formal verification steps to ensure that each modification preserves 
overall system correctness. 

3.3 Minimizing User Effort and Interaction Latency 

Manually reviewing detailed logs and deeply nested temporal logic from coun-
terexamples is both error-prone and time-consuming. An effective repair process 
must significantly reduce user overhead by automating log analysis, semantic 
comparisons between successive runs, and managing formal proof re-validation. 
Minimizing both system latency and human interaction time is essential to 
achieve an efficient, near-interactive model repair workflow.
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Fig. 3. AGREE-Dog UI interface showing integrated model diagnostics, user input, 
token count, response time, and push-button feedback loop. Each repair cycle is proof-
aware and synchronized with AGREE log results. 

4 AGREE-Dog Architecture and WorkFlow 

This section details AGREE-Dog’s main architectural components, and their 
roles in addressing usability and interpretability challenges identified previously 
(Sect. 3). 

Specifically, we introduce AGREE-Dog’s intuitive user interface, backend 
orchestration and workflow automation, optimized memory and context man-
agement algorithms, formal validation-driven feedback loops, and an internal 
logging subsystem supporting traceability and continuous refinement. 

To illustrate how these components interact and integrate within a cohe-
sive workflow, we refer the reader to Fig. 4. This figure highlights the interac-
tions among the human user, OSATE IDE, AGREE formal verification tool, and 
AGREE-Dog’s internal subsystems. Upon encountering a counterexample, the 
user interacts with the copilot through the provided interface, supplying hints 
and instructions. The copilot dynamically retrieves relevant context based on 
user input, IDE state, and formal tool feedback, employing an LLMAPI calls to 
produce intuitive explanations and suggest targeted model repairs. Internally, 
AGREE-Dog maintains detailed logs, recording key performance metrics. These 
metrics, introduced and defined explicitly in the following section, facilitate con-
tinuous improvement and future enhancements through fine-tuning based on 
high-quality interaction data. 

4.1 User Interface 

AGREE-Dog features an intuitive, streamlined user interface (UI), (Fig. 3), 
seamlessly integrated within the OSATE environment, designed specifically to
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Fig. 4. AGREE-Dog workflow illustrating interactions among the user, IDE, formal 
tool, and copilot components, showing dynamic context retrieval, explanation genera-
tion, suggested repairs, and logging for continuous improvement. 

minimize cognitive load and simplify complex verification tasks. Central to its 
usability are clearly labeled, push-button controls, enabling users to directly 
interact with counterexample explanations, formal validations, and system-level 
model repairs from a single coherent point of interaction. 

A fundamental design principle of this UI is to balance transparency with 
abstraction—clearly presenting operational outcomes without burdening users 
with underlying complexities. This approach promotes efficiency, productivity, 
and verification effectiveness. 

At the center of user interaction is the Feedback loop button, which synchro-
nizes the internal state of OSATE with AGREE-Dog, with user inputs, updating 
its variables and internal data structures with most relevant context. This syn-
chronization ensures coherence between AGREE-Dog’s conversational state and 
the current OSATE project status, thus setting the stage for effective model 
analysis and refinement—detailed further in the next sections. 

We complement this mechanism, with the Insert button which enables seam-
less integration of AGREE-Dog’s suggested model repairs directly into OSATE, 
significantly streamlining what would otherwise be a tedious manual integra-
tion process. User-driven requests or specific instructions are submitted via the 
Submit button and can be further elaborated upon through an integrated conver-
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sational chat window. This conversational approach encourages precise, targeted 
refinements by enabling iterative and detailed guidance from the user. 

Additional UI elements enhance interaction quality and knowledge retention. 
The Save button allows users to archive conversational histories for later review 
or further analysis and evaluations, as shown in Sect. 6, while the integrated 
Git control provides mechanisms for persistent storage, sharing of verification 
outcomes, and collaborative insight generation. 

Moreover, advanced configurations are accessible via the dedicated Settings 
menu, allowing users to customize interaction workflows and select optimal LLM 
models tailored to specific tasks—such as generating explanations and repair sug-
gestions (best supported by GPT-O3), or performing general-purpose, frequent 
tasks (ideally powered by GPT-4o) 5, as further detailed in Sect. 4.2. 

4.2 Backend Function Call Graph and Workflow Automation 

To support interactive workflows, AGREE-Dog automates 16 critical DevOps 
and ProofOps steps. The backend orchestration, summarized in Appendix A 
(Fig. 7), manages operations ranging from artifact selection and prompt con-
struction to automated AGREE invocations. AGREE-Dog utilizes context and 
history-aware agents that dynamically select relevant artifacts, perform seman-
tic diffs, and invoke proof engines. Each backend operation is highly optimized, 
incurring negligible runtime overhead (less than one second per operation), as 
demonstrated by the empirical results in Sect. 6. 

4.3 Context Selection and Memory Management Optimization 

Effective context selection and memory management are critical to AGREE-
Dog’s ability to provide precise explanations and actionable repairs involv-
ing complex AADL artifacts, execution traces, and user instructions. Address-
ing these challenges requires the sophisticated, carefully optimized mechanisms 
embedded within AGREE-Dog’s core copilot algorithm. 

Core Copilot Algorithm. Algorithm 1 embodies the central context man-
agement strategy of AGREE-Dog, as conceptually outlined in Fig. 4. This algo-
rithm integrates intelligent conversational state tracking, dynamic artifact selec-
tion, and optimized memory management processes to efficiently support model 
verification and repair tasks. 

Optimized Dynamic Context Retrieval and Updates. Algorithm 1 dynamically 
selects a minimal yet sufficient context—including relevant AADL source files, 
counterexamples, AGREE logs, and system requirements, and interactive user

5 At the time of writing, OpenAI recommends GPT-O3 for reasoning-intensive tasks 
and explanations, offering better reasoning performance but slightly higher latency. 
In contrast, GPT-4o is optimized for general-purpose tasks, providing lower latency. 
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instructions—for accurate verification and effective repair interactions. Lever-
aging its integrated dynamic Context Retrieval component, the algorithm selec-
tively imports only the most recently updated model artifacts, identified through 
AGREE-log updates received from OSATE, by traversing dependency chains and 
referencing stored conversational data. 

By default, the context retrieval strategy excludes standard training data 
such as core libraries typically present in LLM training sets, thus optimizing 
token usage. However, users retain flexibility to explicitly include or exclude 
any files from the complete import chain during initialization, incorporating 
selected context elements into the initial prompt. Once included, these explicitly 
imported files remain static in memory unless updated explicitly by the user or 
signaled via AGREE logs. Additionally, natural-language requirement files (e.g., 
CSV-based inputs), not tracked by AGREE logs, are monitored independently 
with automatic checks performed every two seconds to detect changes. 

This nuero-sympolic (intersymbolic) and user-customizable selection process 
significantly reduces redundancy, enhances convergence speed toward correct 
model solutions, minimizes generative model latency, and mitigates hallucina-
tions caused by irrelevant context. 

Memory Management Optimization Mechanism. A critical component of Algo-
rithm 1 is its internal conversational memory management subsystem, detailed 
fully in Appendix A. This subsystem employs a structured, list-based repre-
sentation to balance immediate responsiveness with longer-term conversational 
persistence. Short-term interactions are retained in readily accessible memory 
for efficient prompt updates, while less immediate interactions can optionally be 
saved locally by the user or systematically migrated into persistent storage man-
aged by integrated Git version control. This approach allows AGREE-Dog to 
effectively recall prior repair strategies and interaction histories, thus enhancing 
iterative repairs and significantly reducing the overhead associated with manual 
snapshots management. 

Furthermore, AGREE-Dog’s memory management strategy directly facili-
tates ongoing system refinement. Archived conversational histories and validated 
repairs can subsequently be leveraged to fine-tune the underlying generative 
models, enabling continual improvement in the quality of explanations and repair 
suggestions. 

4.4 Verification-Aware Feedback Loop and Repair Validity 

AGREE-Dog’s neuro-symbolic reasoning, achieved by combining AGREE’s 
formal verification with generative AI explanations, establishes a rigorous, 
verification-aware repair loop. Central to this process, AGREE-Dog invokes 
AGREE externally via API calls to ensure that all proposed repairs strictly 
adhere to system-wide consistency and soundness criteria. 

This verification-integrated approach not only acts as a safeguard against 
unsound or logically inconsistent model modifications but also enhances the 
quality of data fed into the generative model. By proactively filtering invalid
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Algorithm 1: AGREE-Dog Interactive Copilot Prompt Construction and 
Counterexample Handling 

Input: AADL Model Files, Counterexample File (optional), System Requirements (optional) 
Output: Prompt for GPT-based AGREE-Dog Copilot, Actionable Repair Suggestions 
Initialization: 

Load command-line arguments: working directory, start file, counterexample, requirements file; 
Load OpenAI API key; 
Initialize logging system; 
Main Procedure: 

if requirement file provided then 

Load and include requirements in prompt context; 
else 

Set requirements context to "No sys_requirement file provided"; 

Prompt Construction: 

Read top-level AADL file from provided workspace; 
Parse import chain and extract relevant AADL files (avoid standard libraries); 
if counterexample provided (CLI or file) then 

Load counterexample into context; 

else 

Search for recent counterexamples: 
– Check command-line provided counterexample path first. 
– If unavailable, parse agree.log for failing contracts. 
– Match failing contracts with available counterexample XML/text files. 
– Extract and format counterexample(s) for inclusion. 

Construct comprehensive prompt with: 

1. System Requirements (if available) 
2. AADL Model Content 
3. Counterexample(s) Explanation 
4. Explicit instructions for GPT (repair suggestions within AADL syntax) 

Interaction and Feedback Loop (via Dash UI): 

while copilot session active do 

Receive additional user input (optional); 
Combine with the current prompt context (if any); 
Submit prompt to GPT-4o/GPT model via OpenAI API; 
Retrieve response: 

– Explain verification failures clearly 
– Suggest repairs in AADL syntax, respecting requirements 

Present GPT response to user; 
Log interaction and update metrics (latency, tokens used, etc.); 
if user applies modifications then 

Extract AADL repair suggestions from GPT response; 
Safely overwrite the original AADL model file; 
Notify user of successful update or handle exceptions; 

Quality Assessment and Logging: 

Automatically record metrics (timestamps, token use, latency); 
Store interaction logs for future analysis and fine-tuning; 
Shutdown Procedure: 

On user request, terminate the copilot session gracefully; 

suggestions, AGREE-Dog reduces the overall token volume required, thereby 
significantly improving LLM latency and maintaining model reliability and trust-
worthiness. Such integration distinctly differentiates AGREE-Dog from purely 
neural LLM approaches, which inherently lack logical soundness checks and may 
erroneously group logically distinct, yet superficially similar elements [ 9, 15, 16].
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Additionally, the semantic diffing mechanism embedded in AGREE-Dog 
detects relevant model changes precisely across iterative repair cycles, facilitat-
ing faster convergence to formally valid solutions. This integrated neuro-symbolic 
loop thus effectively bridges generative AI capabilities with rigorous MBSE based 
formal verification. 

4.5 Traceability, Logging, and Continuous Refinement 

The extensive logging within AGREE-Dog serves dual purposes. First, it facil-
itates real-time diagnostics, enabling rapid identification of effective conversa-
tional interactions and successful repair strategies. As illustrated in the AGREE-
Dog user interface (Fig. 3), key performance indicators—including AGREE valid-
ity status, token count, system and human return time, and LLM latency—are 
prominently displayed, providing users immediate feedback to gauge interaction 
effectiveness. 

Second, the detailed logs support ongoing system refinement by highlight-
ing conversational patterns consistently associated with high-quality, formally 
valid repairs. This capability directly informs the metrics employed for evalu-
ating AGREE-Dog’s performance, as further detailed in Sect. 6 and Sect. 5. By  
analyzing logged interaction timelines and human response metrics, AGREE-
Dog identifies optimal repair strategies, promotes knowledge reuse, and reduces 
manual intervention, significantly enhancing both short-term repair efficiency 
and long-term knowledge retention. 

5 Evaluation Metrics 

This section introduces the core metrics used to evaluate AGREE-Dog’s per-
formance. We organize them into two complementary categories: structural (or 
spatial) metrics, which quantify the shape and volume of interaction, and tempo-
ral metrics, which capture responsiveness and turnaround time. Together, these 
metrics enable a holistic assessment of automation, effort, and cost. 

5.1 Structural Metrics 

Structural metrics quantify how the repair process unfolds—how many interac-
tions occurred, how much human input was required, and how much computa-
tional effort was expended. 
Total Token Count (TTC). This metric captures the total number of tokens 
exchanged during a repair conversation, including both human-authored tokens 
and those generated by AGREE-Dog—either by the LLM or by the system’s 
prompt constructor: 

TTC = Human Tokens + AGREE-Dog System Tokens (1) 
TTC serves as a proxy for computational and financial cost (e.g., token-based 

billing), independent of who authored the tokens. However, it does not by itself 
distinguish the extent of human involvement.
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Human Input Ratio (HpR). This metric measures the proportion of human-
authored tokens relative to the total token count: 

HpR = 
Human-Authored Tokens 

Total Tokens in Conversation 
(2) 

A lower HpR suggests higher automation, with the system contributing more 
heavily to the conversation. When considered with TTC, this helps differentiate 
brief, efficient sessions from those with more human effort or verbosity. 

Number of Repair Cycles ( NRC). This metric counts the number of conver-
sational cycles required to reach a valid system state: 

NRC = Number of Repair Cycles Until Validity (3) 

Each cycle begins with a start_file_read message and ends with a 
validity_status: valid confirmation. Together, NRC, HpR, and TTC form 
a triplet that reflects the intensity, automation level, and computational cost of 
the repair process. 

Repair Success Rate (RSR). This metric measures how often AGREE-Dog 
succeeds in exactly NRC cycles: 

RSR(NRC) =  
Number of Tests Solved in NRC Cycles 

Total Number of Tests 
(4) 

Cumulative Repair Success Rate ( RSRacc). This cumulative variant cap-
tures the percentage of tests solved within a given number of cycles: 

RSRacc(NRC) =  
Number of Tests Solved in ≤ NRC Cycles 

Total Number of Tests 
(5) 

These success rate metrics extend the basic structural measures to account 
for convergence and consistency. They are operationalized in Sect. 6, where  we  
analyze repair outcomes and cycle distributions (see Fig. 6). 

5.2 Temporal Metrics 

While structural metrics describe what happened during the interaction, tem-
poral metrics quantify how long it took—enabling assessments grounded in real-
world engineering effort and user experience. 

Wall-Clock Time (WCT). The total elapsed time from the first user input 
to final validation. WCT serves as a practical proxy for engineering effort and 
turnaround time. Shorter durations may reflect both efficient execution and the 
usefulness of AGREE-Dog’s guidance. 

WCT also conveys a notion of Repair Speed—how many valid tasks are 
completed per unit of time. For example, in our evaluation (Sect. 6), the mean
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WCT per valid cycle was 2 min and 9 s, with a median of 1 min and 39 s. 

LLM Latency . The average LLM response time per repair cycle. Lower latency 
improves interactivity and helps maintain user focus, especially in iterative or 
multi-step sessions. 

Next, we define a dependent metric based on the previous temporal measure-
ments to estimate the human return time. 

Human Return Time (HRT). This metric estimates the time required for 
a human to return to a task and make cognitively informed decisions necessary 
to reach validity during the interaction. It is calculated as the total wall-clock 
time minus the time AGREE-Dog spends in CPU execution and large language 
model (LLM) processing. Formally: 

HRT = Wall-Clock Time − CPU Time − LLM Response Time (6) 

Fig. 5. AGREE-Dog Conversation Quality Assessment Workflow (CQAW). The work-
flow tracks structural metrics from conversation histories and temporal metrics from 
copilot logs, leveraging timestamps to measure user and LLM response latencies. 
Finally, metrics are analyzed and visualized using AGREE-Dog’s statistical utility. 

5.3 Composite Score: Structural and Temporal Dimensions 

To facilitate comprehensive evaluation, we interpret AGREE-Dog’s performance 
using a composite score that integrates both structural and temporal dimensions: 

(NRC, HpR, TTC, Wall-Clock Time, LLM Response Latency, CPU Time) (7) 

This composite vector captures not only the automation level and concise-
ness of each repair session but also temporal efficiency. For instance, sessions 
with identical token counts and automation levels might still differ significantly 
in usability due to variations in latency or total duration. Additionally, this for-
mulation supports the calculation of derived metrics, such as Human Return 
Time (HRT) (Eq. 6) and Repair Success Rate (RSR).
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By combining structural and temporal perspectives, the composite score pro-
vides nuanced insights into humanâĂŞsystem interaction dynamics, balancing 
token efficiency with practical engineering outcomes. 

6 Experimental Evaluation 
6.1 Evaluation Setup and Fault Injection Protocol 
Using the Conversation Quality Assessment Workflow (CQAW, Fig. 5), we sys-
tematically tracked structural and temporal metrics to comprehensively evalu-
ate AGREE-Dog. Our experiments involved thirteen fault-injected test scenar-
ios based on an AADL-based Car model. Each scenario featured dynamically 
evolving artifacts—including AADL source files, natural-language requirements, 
counterexample traces, AGREE log files, and LLM-generated diagnostics— 
culminating in approximately 32,100 tokens across all scenarios. On average, 
scenarios began with around 400 lines of AADL and log content, fewer than 
100 lines of counterexample traces, and less than 100 lines of natural-language 
inputs. 

Table 1. Summary of Structural and Temporal Metrics for AGREE-Dog Evaluation 

Metric Result 
Structural Metrics 
System Validity 100% achieved for all test scenarios 
Repair Success Rate (RSR) 11/13 (84.6%) in 1 cycle; 1/13 in 2 cycles; 1/13 in 3 cycles 
Human Input Ratio (HpR) < 0.1% of total tokens 
AGREE-Dog Generated Input > 99.9% of total tokens 
Token Use (per test suite) 4.8k, 5.5k, 22k tokens 
Temporal Metrics 
Wall-Clock Time (WCT) Mean: 2:09 min; Median: 1:39 min 
LLM Latency (per cycle) Mean: 22 s; Range: 4–33 s 

Faults targeted three safety-critical subsystems (Top-Level Control, Steering, 
and Transmission), triggering 16 repair cycles. Injected faults covered typical 
behavioral and contract-level violations—ranging from incorrect assumptions, 
logic errors, and range violations to faulty assignments and temporal inconsis-
tencies. Repairs were accepted only after passing AGREE’s formal verification 
and manual user confirmation via AGREE-Dog’s insert command, ensuring 
both correctness and soundness. 

Evaluation Metrics. Table 1 summarizes AGREE-Dog’s structural and tem-
poral performance metrics (defined in Sect. 5). Figure 6 visualizes repair conver-
gence across the scenarios. 

Next, we summarize the key insights obtained from our evaluation, supported 
by quantitative data presented in Table 1 and visualized in Fig. 6.



132 A. Tahat et al.

Fig. 6. Repair cycles required by AGREE-Dog to achieve system-wide validity. 

6.2 Key Results 

This evaluation demonstrates the feasibility of integrating generative AI (GenAI) 
with formal verification in Model-Based Systems Engineering (MBSE). By com-
bining large language model reasoning with AGREE-based validation in OSATE, 
AGREE-Dog delivers verifiable repairs with minimal human effort. 

1. Rapid Convergence with Reduced Human Intervention Frequency: 
AGREE-Dog resolved approximately 85% (11 out of 13) of the test cases 
within a single cycle, while the remaining cases required two or three cycles 
(approximately 7.5% each). This demonstrates swift convergence and signifi-
cantly reduces the frequency of user interventions needed across diverse fault 
scenarios. 

2. High Automation with Minimal Human Effort: Estiamted by (HpR) 
metric, Human-generated content constituted less than 0.1 % of the overall 
tokens, with AGREE-Dog autonomously generating more than 99.9 % via its 
integrated prompt construction mechanism and language model. Combined 
with the rapid convergence rate noted previously, this outcome highlights 
AGREE-Dog’s capability to effectively automate model repairs, significantly 
reducing manual input relative to the extensive verification contexts encoun-
tered. 

3. Efficiency and Reduced Human Return Time (HRT): 
AGREE-Dog demonstrated significant computational and cognitive efficiency 
throughout the evaluation. Internal computational overhead consistently 
remained below one second per operation, complementing an average LLM 
latency of approximately 22 s per cycle. While the median overall wall-clock 
time (WCT) was about 1 min and 39 s the average human response time 
(HRT) was approximately 1 min and 3 s. This average, however, was notably 
skewed by two outlier cases; in fact, 85 % of scenarios achieved total resolu-
tion (WCT) in under 45 s—including LLM latency—limiting human analy-
sis and decision-making time to less than 23 s per scenario in 11 out of 13
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cases. Compared to traditional manual verification approaches, which typi-
cally require hours or days, AGREE-Dog’s structured guidance and intuitive 
natural-language explanations significantly reduced human cognitive effort 
estimated by (HRT) metric and the overall interaction duration (WCT). 

7 Conclusions and Future Work 

To enhance the explainability and usability of AGREE-generated counterex-
amples, we developed AGREE-Dog, the first open-source conversational copilot 
specifically integrating neuro-symbolic methods with AGREE’s formal verifi-
cation tools within the OSATE environment. AGREE-Dog produces intuitive, 
natural-language explanations for complex counterexamples, significantly reduc-
ing human effort and cognitive load required for formal model repairs. Our exper-
imental evaluation demonstrates AGREE-Dog’s feasibility and effectiveness at 
realistic MBSE scales—handling scenarios spanning tens of thousands of tokens 
without notable performance degradation. These initial results provide a promis-
ing evidence for the practical utility and scalability of neuro-symbolic methods, 
highlighting significant potential for broader educational and industrial adop-
tion. AGREE-Dog is publicly accessible on GitHub. 

Despite these encouraging outcomes, several avenues for future improve-
ment and exploration remain. We intend to continue evaluating AGREE-Dog 
on increasingly sophisticated and complex system models and formal specifica-
tions. 

Furthermore, ongoing developments in large-context language models (e.g., 
GPT-4.1’s 1-million-token context window) offer substantial opportunities to 
explore more autonomous decision-making frameworks, including reinforcement 
learning-driven judge-router-worker agentic architectures. Such systems could 
dynamically and autonomously select optimal repair strategies, further reduc-
ing manual intervention. Additionally, extending AGREE-Dog’s capabilities to 
emerging modeling standards, such as SysML v2 [ 10], represents a key future 
goal. 

Lastly, the integration of our evaluation workflow into INSPECTA’s DevOps 
Assurance Dashboard will facilitate continuous monitoring, displaying metrics 
such as model modifications, counterexample handling efficiency, and AGREE 
usage statistics. This integration aims to quantify the tangible benefits of more 
explainable counterexamples, driving targeted improvements in usability and 
overall user experience. 

We look forward to exploring these directions in future work and reporting 
further advancements toward integrating neuro-symbolic verification approaches 
in MBSE. 
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Algorithm 2: Memory Management and Prompt Optimization in 
AGREE-Dog 
Input : User input, conversation state, AADL model repository, optional 

requirements file 
Output: Optimized prompt, updated conversation history 
Initialize Short-Term, Temporary, and Long-Term memories; 
Identify and load recently updated files: 
– Identify recently updated files in repository. 
– Load only these updated files into Temporary memory. 
– Cache filenames and timestamps. 

Integrate system-level requirements (if provided); 
Construct prompt from: 

– Updated files from Temporary memory. 
– User input and interaction history. 
– System-level requirements. 

Ensure prompt size within token limits (truncate oldest entries if necessary); 
Generate response from AGREE-Dog model; 
Update Short-Term memory with latest interaction; 
if User selects Save Conversation then 

Save conversation to Long-Term memory; 
if User selects Commit to Git then 

Stage conversation and updated files; 
Commit and push to remote repository; 

return optimized prompt, updated conversation history; 

A Appendix 

– Initial Axle specification: 6

guarantee G_axle_1 "roll limiter": 
\begin{verbatim} 

guarantee G_axle_1 "roll limiter": 
if (Agree_Nodes::abs(Target_Tire_Direction.val) > 0.20 

and Speed.val > 45.0) 
then 

Actual_Tire_Direction.val = 0.20 
else 

Actual_Tire_Direction.val = Target_Tire_Direction.val; 

– Fault injection: Introduced by changing the guarantee threshold from 0.20 
to 0.10:

6 The full model is available at: https://github.com/loonwerks/AgreeDog/blob/main/ 
uploaded_dir/car/packages/Steering.aadl. 

https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
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Fig. 7. AGREE-Dog backend function call graph illustrating automated 
DevOps/ProofOps orchestration. Nodes represent key operations, while edges 
indicate dependencies and data flows between components. 

if (Agree_Nodes::abs(Target_Tire_Direction.val) > 0.10 
and Speed.val > 45.0) 

– Counterexample detection: AGREE immediately detected a counterex-
ample, indicating the specification and implementation mismatch due to the 
altered guarantee. 

– AGREE-Dog first iteration: The copilot quickly located the faulty thresh-
old and corrected it back to 0.20, but inadvertently removed the else state-
ment from the guarantee: 

else
-- Otherwise pass the request straight through 
Actual_Tire_Direction.val = Target_Tire_Direction.val; 

– Second iteration (Diff mechanism): A subsequent AGREE run revealed 
another counterexample caused by the missing else statement. The user then 
guided AGREE-Dog to utilize the built-in diff mechanism, comparing the 
new and old files. After clearly identifying the missing else clause, the user 
instructed the copilot explicitly to reinsert it, resolving the issue completely. 

– Resolution and insights: After the second iteration, the corrected model 
passed formal verification successfully. This example emphasizes the critical 
role of symbolic verification and human feedback in conjunction with neuro-
symbolic copilots. It highlights the risks associated with relying solely on 
neural approaches without rigorous symbolic validation.
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Abstract. As Artificial Intelligence (AI) continues to shape individual lives, insti-
tutional processes, and societal structures, ensuring its responsible and trusted 
development has become a critical imperative. However, meeting this impera-
tive is far from straightforward. AI systems frequently lack transparency and are 
embedded in environments where the distribution of responsibility and account-
ability is unclear, normative standards are disputed, and system behavior is unpre-
dictable. The Responsible and Trusted AI track at AISoLA 2025 addresses these 
and similar challenges by fostering interdisciplinary collaboration across philos-
ophy, law, psychology, economics, sociology, political science, and informatics. 
This introduction outlines the motivation for the track, emphasizing the sociotech-
nical embeddedness of AI and the need for approaches that go beyond technical 
performance to consider questions related to trust and responsibility. It highlights 
three core themes explored in this year’s contributions: democratic legitimation 
and normative alignment, legal compliance and human oversight, and runtime 
safety in high-risk contexts. Together, these contributions underscore the impor-
tance of interdisciplinary discussions to navigate normative ambiguity, regula-
tory uncertainty, and behavioral unpredictability in AI systems. The track aims to 
advance dialogue and collaboration that support the development and deployment 
of AI systems that are not only effective but are also designed and implemented 
responsibly and can be trusted. 

1 Introduction 

Artificial Intelligence (AI) systems are becoming increasingly integrated into everyday 
life. They support decision-making in healthcare, influence access to financial services, 
shape how public infrastructure is managed, and affect what we consume and learn. In 
short, AI plays a structuring role in how individuals, institutions, and societies operate.
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This widespread integration brings considerable opportunities. AI can support sci-
entific discovery, help detect diseases earlier, tailor services to individual needs and 
enhance productivity. However, it also introduces complex challenges and risks. These 
include, among others, a lack of transparency in automated decisions, blurred lines 
of accountability, unclear avenues for meaningful oversight, and the risk of reinforc-
ing social inequalities. Increasingly, AI systems act in ways that are hard to explain, 
challenging to audit, and difficult to contest. 

To harness the opportunities of AI while managing its challenges and risks, we 
must ensure that their development, deployment and use is guided by ethical reflec-
tion, legal scrutiny, and social awareness. The concept of responsible and trusted AI 
encapsulates these requirements. It encompasses a wide range of topics and issues span-
ning ethical reflection on the values that shape AI behavior, mechanisms for meaningful 
human oversight, technical assurances around safety and reliability, and institutional 
frameworks capable of fostering accountability and public trust. This means that, in the 
context of AI, responsibility and trust are not just attributes of technological systems. 
Rather, they are social and societal processes that require alignment between technical 
capabilities, normative expectations, and behavioral and regulatory realities. Tackling 
AI’s challenges and mitigating its risks thus requires more than technical ingenuity—it 
demands a genuinely interdisciplinary effort. For instance, a system’s ability to operate 
reliably under uncertain conditions is closely tied to how its behavior is interpreted, 
how oversight is structured, and how legitimacy is established in the face of competing 
values. 

Following the successful introduction of similar tracks at AISoLA 2023 and 2024, 
the Responsible and Trusted AI track at AISoLA 2025 is grounded in this interdisci-
plinary imperative. It brings together scholars from philosophy, law, psychology, eco-
nomics, sociology, political science, and informatics to address ethical, societal, and 
governance-related questions raised by the development, implementation, and regulation 
of AI systems. 

In this introduction, we first expand on the motivation for this year’s track and the 
need for interdisciplinary discourse in approaching responsible and trusted AI. We then 
introduce three papers that address three complementary core issues of this theme: AI 
alignment and democratic legitimation, human oversight and regulatory compliance, 
and runtime safety monitoring in high-risk contexts. 

2 The Imperative for Responsible and Trusted AI 

The increasing relevance of AI systems across diverse sectors prompts foundational 
questions: What objectives should these systems pursue? Who decides what is appropri-
ate or fair? How can we ensure that AI behavior is not only efficient, but justifiable? And 
how do we maintain humans’ ability to oversee AI systems, even when these systems 
operate largely autonomously and in ways that are difficult to understand and anticipate? 

These questions arise because AI systems do not operate in a vacuum. They interact 
with, and are shaped by, the normative, social, and legal contexts in which they operate. At 
the same time, they influence how decisions are framed, which options are made available 
or prioritized, and how outcomes are distributed. In doing so, they often encode— 
explicitly or implicitly—assumptions about what is relevant, fair, or desirable.
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Considering this sociotechnical embeddedness, responsibility means ensuring that 
AI systems not only perform tasks effectively but also do so in ways that are ethically 
defensible, attuned to the social contexts in which they operate, and legally compliant. 
Trust, in turn, is often invoked as a requirement for successful AI adoption. Yet trust 
is neither inherently positive nor always justified. It can be misplaced, leading to the 
acceptance of outcomes that ought to be challenged. To mitigate this risk and design 
and implement AI in ways that make it worthy of trust, we must examine and better 
understand the conditions under which trust arises, why it is granted and how we can 
ensure that it is granted justifiably. 

Responsible and trusted AI thus requires attention not only to performance metrics or 
system reliability, but also to issues of justification, accountability, user understanding, 
and empowerment. Accordingly, responsible and trusted AI must be approached as a 
sociotechnical phenomenon that transcends disciplinary boundaries. 

3 The Need for Interdisciplinary Approaches 

As previously exemplified, addressing AI-related challenges and risks cannot be done 
within the bounds of a single discipline. Each field brings critical insights that are indis-
pensable but incomplete on their own. Philosophy helps articulate the moral and con-
ceptual frameworks that guide alignment and legitimacy. Law provides the structure for 
rights, obligations, and remedies. Psychology contributes knowledge on human cogni-
tion, trust formation, and interaction design. Economics brings tools to analyze incen-
tives, resource allocation, and decision environments. Sociology sheds light on the soci-
etal dynamics, institutional norms, and structural inequalities that shape and are shaped 
by AI. Political science examines legitimacy, democratic participation, and governance 
structures. Informatics and engineering supply the technical means to implement and 
evaluate AI systems. 

Importantly, many challenges in responsible and trusted AI exist at the boundaries 
of these disciplines. For example, the question of whether a user is coerced by an AI 
system depends on philosophical definitions and psychological evidence. Similarly, the 
effectiveness of human oversight mechanisms hinges not just on their formal presence, 
but on their legal enforceability, and organizational context. 

Interdisciplinary collaboration is therefore essential not only to combine knowledge, 
but to clarify assumptions, identify blind spots, and align goals across disciplines. This 
track encourages precisely these kinds of exchanges. 

4 Core Interdisciplinary Themes in This Year’s Track 

A unifying thread running through this year’s contributions is the challenge of navigat-
ing ambiguity and uncertainty in the sociotechnical embedding of AI systems. As AI 
technologies increasingly interact with humans and operate in complex and high-stakes 
environments, the question is not merely whether these systems function as intended, 
but how normative, legal, and empirical standards can constrain their behavior, influence 
their implementation, and guide their design. The three papers approach this question 
from different disciplinary perspectives but share a focus on situations where questions
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around human freedom, oversight, and safety arise due to ambiguity and uncertainty in 
normative standards, regulatory frameworks, and AI behavior. 

One dimension of this problem space concerns the justification of normative con-
straints in AI behavior. In their contribution, Steingrüber and Baum critically examine 
democratic approaches to AI alignment that seek to legitimize normative constraints by 
grounding them in affected stakeholders’ preferences rather than expert judgment [1]. 
They systematically analyze both instrumental and non-instrumental justifications for 
democratic alignment, focusing particularly on the argument that democratic processes 
can prevent illegitimate coercion through AI systems. Their analysis reveals that the 
coercion-prevention justification faces significant challenges: whether AI-imposed con-
straints actually undermining user freedom depends not only on how those constraints 
were determined, but crucially on background conditions such as the availability of 
alternative systems and the practical burdens users face in accessing them. By exposing 
the deep normative and epistemic uncertainties involved in defining what AI systems 
should do, their work highlights the fundamental difficulty of legitimizing AI behavior 
without relying on contestable theoretical assumptions, ultimately suggesting that hybrid 
approaches combining expert knowledge with democratic input may be necessary. 

Another focal point is the operationalization of legal and institutional requirements 
for human oversight. In their paper, Langer, Lazar, and Baum explore how oversight obli-
gations under the EU AI Act can be meaningfully tested [2]. They argue that checklist-
based assessments risk superficial compliance and fail to capture the real-world com-
plexity of human-AI interaction. Instead, they propose hybrid approaches that combine 
standardization with empirical evaluation, grounded in psychology and human-computer 
interaction. Their work shows how ambiguity in legal language and variance across appli-
cation contexts generate regulatory uncertainty. They stress that effective oversight is 
dependent on interdisciplinary insight into human behavior, organizational constraints, 
and system design. 

The final contribution turns to technical assurances under behavioral uncertainty, 
specifically in the domain of autonomous vehicles. Ehlers and colleagues develop a run-
time monitoring technique that uses activation pattern analysis and statistical guarantees 
to detect when a perception system operates outside its training domain [3]. Rooted in 
the ISO 21448 SOTIF standard, their method provides interpretable and narrowly scoped 
safeguards for AI behavior in open-ended, safety-critical contexts. Their work addresses 
an aspect of responsible AI that is distinct but closely related to those addressed by the 
previously outlined contributions. Specifically, it considers how to build confidence in 
system behavior when full formal specification is impossible, and how such mechanisms 
can support safety, oversight, and post-deployment trust. 

Together, these contributions illustrate that responsible and trusted AI depends on 
interdisciplinary strategies to cope with ambiguity and uncertainty. Indirectly, they also 
reflect a shared understanding that trust in AI systems should be ensured not only through 
technical robustness, but through transparency in how values are embedded, how legal 
compliance is ensured, and how AI system behavior is monitored over time.
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5 Conclusion 

This year’s Responsible and Trusted AI track contributes to a broader understanding of 
how AI systems can be aligned with ethical and democratic values, embedded within 
legal structures, and equipped with safeguards that account for uncertainty and risk. 
The three papers in this chapter each exemplify this integration. Steingrüber and Baum 
provide a normative lens on alignment and coercion [1]. Langer et al. explore how to 
test regulatory compliance with human oversight requirements [2]. Ehlers et al. offer a 
technical method for ensuring runtime safety [3]. 

By drawing on philosophy, law, psychology, economics, sociology, political sci-
ence, and informatics, the contributions move beyond disciplinary silos and toward an 
integrated understanding of responsible and trusted AI. This interdisciplinary nature is 
central to the track’s value. 

As we prepare for the in-person discussions at AISoLA 2025, we look forward 
to engaging with these contributions and the perspectives they elicit. We hope that 
the work presented in this track will spark critical debate, foster new interdisciplinary 
collaborations, and contribute meaningfully to the ongoing effort to shape AI systems 
that are reliable and worthy of trust in meaningful ways. 
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Abstract. The AI alignment problem comprises both technical and 
normative dimensions. While technical solutions focus on implementing 
normative constraints in AI systems, the normative problem concerns 
determining what these constraints should be. This paper examines jus-
tifications for democratic approaches to the normative problem—where 
affected stakeholders determine AI alignment—as opposed to epistocratic 
approaches that defer to normative experts. We analyze both instrumen-
tal justifications (democratic approaches produce better outcomes) and 
non-instrumental justifications (democratic approaches prevent illegiti-
mate authority or coercion). We argue that normative and metanorma-
tive uncertainty create a justificatory gap that democratic approaches 
aim to fill through political rather than theoretical justification. How-
ever, we identify significant challenges for democratic approaches, par-
ticularly regarding the prevention of illegitimate coercion through AI 
alignment. Our analysis suggests that neither purely epistocratic nor 
purely democratic approaches may be sufficient on their own, pointing 
toward hybrid frameworks that combine expert judgment with participa-
tory input alongside institutional safeguards against AI monopolization. 

Keywords: AI Alignment · Legitimacy · Democratic Justification · 
Public Reason · Value Imposition 

1 Democratic Approaches to the Normative Problem 
of AI Alignment 

The AI alignment problem consists of two sub-problems: a technical problem 
and a normative problem [ 9, p. 412-13]. The technical problem is a question of 
machine ethics and requires us to find algorithmic implementations of normative 
constraints that effectively regulate the behaviour of AI systems. The normative, 
primarily philosophical problem, on the other hand, requires us to determine 
what these constraints should be. In this paper we will be concerned with the 
normative problem and potential justifications for solving it democratically. 

There are two main ways to determine the content of an AI’s normative con-
straints. The first is to take a top-down approach and determine the content 
c© The Author(s) 2026 
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of normative constraints by consulting normative philosophical theories or by 
deferring to people identified as normative experts, see [ 1, 3, 4, 14, 19]. Secondly, 
one can take a bottom-up approach, letting relevant stakeholders—for instance, 
all those affected by an AI’s alignment (directly or indirectly)—determine the 
content of its normative constraints, see [ 2, 7, 10, 13, 22]. Call the former “episto-
cratic approaches” and the latter “democratic approaches”. 1

It is important to note, however, that democratic approaches may be demo-
cratic in name only, as they may fail to be genuinely democratic depending on 
the procedure being used to determine the normative constraints from the input 
of the people. Some procedures, if done correctly, are apt to be democratic—e.g., 
voting, sortition, or deliberation—others, like a knockout tournament in bowling 
or a debating contest, much less so. 

Schuster and Kilov [ 21] argue that current proposals for democratic 
approaches all invoke procedures that fail to be democratic. However, we believe 
this is based on a misunderstanding. Let us clarify, because this misunderstand-
ing comes up often in the alignment literature: The approaches that Schuster 
and Kilov discuss are crowdsourcing normative judgement, reinforcement learn-
ing from human feedback (RLHF), and constitutional AI. Yet, these three tech-
niques should not be understood as solutions to the normative problem, but 
rather as solutions to the technical problem. 2 In the case of crowdsourcing and 
RLHF, normative constraints are given implicitly in the form of a large num-
ber of individual human normative judgements [ 7, 13], and with constitutional 
AI, normative constraints are given explicitly in the form of a list of principles 
formulated in natural language [ 4]. The primary aim of these techniques is to 
implement normative constraints in AI systems and not to determine what the 
normative constraints should be. 

Crowdsourcing, RLHF and constitutional AI are all compatible both with 
epistocratic and democratic approaches to the normative problem. Although 
constitutional AI may sound like it particularly lends itself to epistocratic 
approaches, and crowdsourcing and RLHF like they are especially suited for

1 Pluralistic approaches would combine epistocratic and democratic elements to deter-
mine an AI’s normative constraints. As we will explain in the next section, the task 
of producing normative constraints for an AI can be broken up into three steps: For 
every scenario, we need to (i) identify the relevant reasons, (ii) measure the relative 
strength of these reasons, and (iii) aggregate the relevant reasons to form overall 
deontic verdicts that formulate the AI’s normative constraints. Approaching these 
three steps in a pluralistic fashion, one can partition the set of scenarios and han-
dle one subset epistocratically and the other subset democratically, or one can let 
epistocratic approaches take care of certain steps of the procedure and let demo-
cratic approaches do the remaining steps; or, alternatively, one can involve both 
epistocratic and democratic approaches in a single step, e.g., identifying the rele-
vant reasons by eliciting people’s judgements on the matter and then letting experts 
add missing reasons they consider important, or letting them veto against particular 
reasons. 

2 See, e.g., also [ 9, p. 414], [ 12, pp. 12-13], and [ 15, p. 2672], for instances where RLHF 
and constitutional AI are treated as solutions to the normative problem. 
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democratic approaches, there is no such association for any of these techniques. 
In general, it is possible to determine the list of principles necessary for consti-
tutional AI both via an epistocratic or a democratic approach; either we consult 
normative theories to derive a constitution, or we ask all affected people to deter-
mine one. Likewise for RLHF and crowdsourcing, what the input data should be 
can either be decided by normative experts, or by the affected public. We must 
be careful to distinguish between the procedures invoked to solve the normative 
problem and techniques used to tackle the technical problem. 

Having made this clarification, let’s return to the two approaches to the 
normative problem. Some authors argue that democratic approaches, if they are 
actually democratic, should be favoured over epistocratic ones because they allow 
us to avoid putatively morally undesirable aspects of epistocratic approaches 
[ 10, 12, 13]. Here are some moral reasons that are claimed to disfavour epistocratic 
approaches: 

‘The lack of a broad, inclusive, and democratic process for determining 
these values can lead to AI systems that disproportionately reflect the 
interests of specific groups, exacerbating existing inequalities and failing 
to serve the broader public good.’ [ 12, p. 11]  

‘[W]e follow a bottom-up approach to Delphi for an important ethical 
concern:  [. . . ]  implementing  the  top-down  approach  would  force  scientists  
to impose their own value choices and principles in the system they build, 
which is not an appropriate social role for scientists alone.’ [ 13, p. 7]  

‘[E]fforts to align AI systems with a given moral schema may lead to unjust 
value imposition or even domination.’ [ 10, p. 3]  

We can group the putative reasons speaking against epistocratic approaches 
into two categories: Instrumental reasons against epistocratic approaches (and 
for democratic approaches), and non-instrumental reasons against epistocratic 
approaches (and for democratic approaches). 3 If epistocratic approaches were 
to “exacerbate inequalities” or “fail to serve the public good”, they would be 
instrumentally worse than democratic approaches, because adopting them would 
have morally worse consequences. If, on the other hand, pursuing epistocratic 
approaches were to constitute “value imposition” or “domination”, they would 
be non-instrumentally worse, because they are inherently, i.e., independently of 
their consequences, morally objectionable. 

Proponents of democratic approaches are not always explicit about what 
kind of justification it is that speaks in favour of their theory, and they don’t 
always consider what theoretical resources epistocratic approaches can draw on 
that may undercut the justifications that are supposed to support democratic 
approaches. Therefore, in this paper, we want to unpack the reasons that may be

3 Compare [ 8] for this taxonomy of justifications for democratic practices. 
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used to justify democratic approaches and estimate how promising they are. We 
want to suggest to the proponents of democratic approaches the most promising 
justificatory avenues, but also point out what questions they have to answer to 
pave those paths. Mainly, we will focus on non-instrumental reasons, but we 
will also briefly touch upon the instrumental ones. Two possibilities for what 
might be inherently bad about epistocratic approaches will be discussed: (i) 
They give some people illegitimate authority over other people. (ii) Through 
them some people will be illegitimately coerced by others. We will argue that the 
latter is the more promising argumentative route for proponents of democratic 
approaches. However, whether it succeeds in justifying democratic approaches 
over epistocratic approaches depends on at least four things: that users of an 
AI can really be coerced through the AI’s alignment; that, if users of an AI can 
really be coerced through the AI’s alignment, this would be illegitimate; that 
democratic approaches can produce a democratic justification that would justify 
the coercion and thereby prevent illegitimate coercion; and that epistocratic 
approaches cannot prevent the illegitimate coercion. 

However, before we turn to discuss instrumental justifications and subse-
quently non-instrumental justifications, we first want to consider a crucial moti-
vation and enabling condition for democratic approaches: reasonable normative 
disagreement. 

2 Normative Disagreement Leaves a Justificatory Gap 

The observation that reasonable people can deeply disagree when it comes to 
normative matters is one motivation for proponents of the democratic approach 
to pursue their project [ 2, 10, 12, 13]. It is worthwhile to consider how exactly that 
is so, to get clearer on what the aims and obstacles of democratic approaches are. 
The short version is this: The empirical fact of normative (and metanormative) 
disagreement makes us normatively (and metanormatively) uncertain, i.e., we 
are unsure what the right thing to do is (and whether there even is a uniquely 
right thing to do). This uncertainty eliminates what would be a straightforward 
justification for any potentially illegitimate state of affairs. If we were norma-
tively (and metanormatively) certain, we could simply show that the normative 
constraints we are implementing are (objectively) correct. Since such a theoret-
ical justification is unavailable, this makes it possible that, by means of an AI’s 
normative constraints, people are given illegitimate authority over other people, 
or that some people are being illegitimately coerced by others. Let us consider 
this in more detail. 

We are facing the normative problem under both normative and metanor-
mative uncertainty. That is, neither are we certain what the normative ground 
truth is, nor are we certain whether there even is a normative ground truth and 
how to find out about it. 

We are normatively uncertain because we can observe that reasonable peo-
ple can widely diverge in their judgements about what reasons are relevant for
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a decision and how their strength compares to each other, and because dif-
ferent normative theories, like theories of normative ethics, can have very dif-
ferent answers to these questions [ 17]. That is, our normative uncertainty is 
the rational response to observed intersubjective and intertheoretical normative 
disagreement. 

Likewise for metanormative disagreement. It is the rational response to 
observed intersubjective and intertheoretic metanormative disagreement. We are 
metanormatively uncertain in at least three respects: We are uncertain whether 
there is a normative ground truth, i.e., whether there are robustly mind-indepen-
dent normative reasons. We are uncertain whether this normative ground truth 
is unique, i.e., whether normative reasons hold absolutely or only relative to 
some frame of reference. And we are uncertain whether and how we can have 
knowledge about this normative ground truth, i.e., whether there is a reliable 
method to identify, measure and aggregate normative reasons. 

A short digression: We are deliberately speaking about normative and 
metanormative uncertainty in general and not just about moral and metaeth-
ical uncertainty in particular, because an AI’s normative constraints are not 
exhausted by moral constraints. We don’t just want to know what is morally 
permissible, impermissible or obligatory to do for an AI system, we want to 
know what is overall permissible, impermissible or obligatory [ 5]. To properly 
align AI systems they have to be sensitive to normative domains other than the 
moral domain. Consider, e.g., that some things that are morally permissible are 
not legally permissible, like taking food from the supermarket’s bin, or they are 
not socially permissible, like talking much too loud in public spaces. To know 
what we and what an AI should do—Are we allowed to stand in the middle of 
the escalator blocking other people from walking past us?—we have to consider 
all relevant reasons from different relevant normative domains and weigh them 
against each other in order to arrive at an all-things-considered overall deontic 
verdict and not just an all-things-considered moral deontic verdict. To solve the 
normative problem, we thus have to: (i) identify which practical reasons from 
which normative domain are relevant for a decision, (ii) measure the strength of 
the relevant reasons, and (iii) aggregate the relevant reasons according to their 
strength to form an all-things-considered overall reason that grounds an overall 
deontic verdict. 

The fact that we are seeking overall reasons that play the role of overall nor-
mative constraints exacerbates our normative and metanormative uncertainty. 
For one, if we consider non-moral normative domains in isolation there may be 
even less common ground in people’s judgements or conversely even more nor-
mative disagreement. Just consider the diverse social norms or legal norms that 
people take to hold. Which of them should we choose to align AI with? But 
what’s more, since the reasons from different normative domains interact, this 
introduces an entirely new dimension of normative/metanormative uncertainty. 
How exactly do moral reasons, reasons of politeness, and legal reasons interact, 
for example? Some may tend to let legal and politeness reasons be able to take 
precedence over moral reasons, others will think that moral reasons always over-
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ride reasons from other domains. All these uncertainties can accrue and reflect in 
our uncertainty about the all-things-considered overall normative reasons that, 
in the end, are supposed to figure as normative constraints for an AI system. 

Now, how exactly do normative and metanormative uncertainty motivate 
democratic approaches? They do so insofar as they are necessary conditions for 
the possibility of the illegitimacy of authority or coercion. If we were certain that 
some objective all-things-considered overall reason holds, then this would give us 
a justification to do as the reason demands. If we had decisive evidence (whatever 
that would look like) for the truth of a certain practical normative judgement— 
One ought to ϕ—then we would have all-things-considered theoretical reason 
to believe that one ought to ϕ which in turn would constitute a contributory 
practical reason to ϕ. Normative certainty would therefore put us in a position 
to justify and thereby legitimise authority or coercion; we would be able to 
show that some demands are not discretionary but well founded. Conversely, 
this is how normative and metanormative uncertainty is a necessary condition 
for unjustified authority or coercion: it eliminates a sure theoretical justification 
that could always legitimise potentially illegitimate authority or coercion; when 
we don’t know what the normative ground truth is, or we don’t know how to 
find out what it is, or are not even sure that there is one, then we can’t appeal 
to it to safely justify a potentially illegitimate state of affairs. 

Normative and metanormative uncertainty thus leave us with a justificatory 
gap, one that democratic approaches are motivated to fill. The democratic aim 
is to compensate for the missing theoretical justification of an AI’s normative 
constraints with a political justification. The idea being, if all people affected by 
an AI’s normative constraints get to have a say in what these constraints are, this 
legitimises any potentially illegitimate authority or coercion by means of an AI’s 
normative constraints. Preventing illegitimate authority or coercion is supposed 
to non-instrumentally justify democratic solutions to the normative problem. 
Before we consider non-instrumental justifications, however, let us briefly say a 
few words about instrumental justifications for democratic approaches. 

3 Instrumental Justifications for Democratic Alignment 

Proponents of democratic approaches may justify their preferred solution to the 
normative problem by arguing that it, in some sense, works better than epis-
tocratic approaches; employing democratic approaches has better consequences 
than not doing so. We want to mention two ways in which this might be the 
case, and on which defenders of the democratic approach could focus. 4

First, one may try to argue that if we let the people that are going to be 
affected by the behaviour of an aligned AI decide how it ought to be aligned, 
then the aligned behaviour of the AI will be better for the people. The idea is 
that people know best what is good for them, or at least better than normative 
experts and their theories. Thus, if we let them decide, instead of only the 
experts, they will be better off than they otherwise would have been.
4 For a general description of both of them, see [ 8]. 
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But there is still quite some argumentative work left to be done for this 
justification to really get off the ground. First of all, proponents of the democratic 
approach need to decide whether they want to read the counterfactual “If people 
have a say in what the normative constraints of an AI are, they would be better 
off (with respect to the AI’s behaviour towards them) than they otherwise would 
have been” generically or specifically. Do they aim for a general justification of 
democratic approaches and want to roughly say “Typically, if people have a say 
in what the normative constraints of an AI are, they would be better off (with 
respect to the AI’s behaviour towards them) than they otherwise would have 
been”? Or do they aim for a case-by-case justification and want to say “In this 
case, if people have a say in what the normative constraints of an AI are, they 
would be better off (with respect to the AI’s behaviour towards them) than 
they otherwise would have been”? The latter justification is weaker but also 
comparatively easier to come by. 

Under both readings, democratic approaches still have to argue that people 
would actually be better off than they otherwise would have been. It does not 
seem implausible to suppose, e.g., that normative experts are subject to biases 
that reflect in their normative verdicts and that consequently would disadvan-
tage certain groups of persons. If these people get to have a say, then, most 
likely, they will not disadvantage themselves, i.e., plausibly they would be bet-
ter off. However, proponents of democratic approaches should be careful to take 
epistocratic approaches seriously and not to argue against straw men of them. 
It might be a real risk that epistocratic approaches arrive at normative con-
straints that are biased, but to criticise epistocratic approaches this risk has to 
be estimated, and additionally, democratic approaches need to show that they 
do not run this risk. Further, to argue successfully that it is better for people if 
they can democratically participate, proponents of democratic approaches have 
to react to objections that invoke cases where people seem to vote against their 
best interest; think Brexit, Trump, the climate crisis, etc. 

Another possible instrumental justification we want to mention relates to the 
idea of the wisdom of crowds. The claim would be that, although epistocratic 
approaches consult the judgement of normative experts, democratic approaches 
are better at producing more correct results. This is an epistemic justification 
because the point is supposed to be that (under certain assumptions) democratic 
processes are better at tracking the normative facts. Typically, Condorcet’s Jury 
Theorem is being used to argue for this point. Roughly, it states that the prob-
ability that a majority of voters choose the correct option approaches 1 as the 
number of voters increases. That is, the bigger the electorate, the more reliable 
the result of their vote [ 11]. 

However, Condorcet’s Jury Theorem relies on unrealistic assumptions. For 
it to hold, one needs to assume that voters’ judgements are probabilistically 
independent of each other, and that voters are generally competent, evidenced 
by the fact that they are more likely to vote for the correct option than for the 
incorrect option. In real-life cases these assumptions are almost never satisfied. 
The assumptions can, however, be weakened to make the jury theorem applicable
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for real cases  [  11]. Even then though proponents of the democratic approach have 
to show that the weakened assumptions hold in the case of AI alignment they 
are considering. And they need to respond to objections, two of which we want 
to allude to. First, democrats have to make sure that epistocrats cannot also 
make use of the jury theorem, with the difference being that only normative 
experts comprise the electorate. And second, to employ the jury theorem one 
has to assume that there is an objective fact about the matter that is being 
voted on. In the present context of the normative problem the matter would be 
normative, and to assume that there is an objective fact about these matters 
would be a metanormative assumption. Such an assumption might be in tension 
with the assumption of metanormative uncertainty democratic approaches are 
motivated by. 

Proponents of democratic approaches can argue for their proposed solution 
to the normative problem by resorting to these and other instrumental jus-
tifications. To reap the justificatory fruits they have to show that the adver-
tised consequences—prudentially or epistemically better decisions—are actually 
achievable in the case of AI alignment, and they have to show that epistocratic 
approaches do not have access to the same benefits in different ways. Another 
way to justify democratic approaches is through non-instrumental justifications. 
We will turn to them now. 

4 Non-instrumental Justifications for Democratic 
Alignment 

Above, we have quoted Gabriel and Keeling who worry that epistocratic 
approaches may lead to illegitimate “value imposition or even domination” [ 10, 
p. 3]. This exemplifies a non-instrumental objection to epistocratic approaches. 
More detailed, the worry is that, through an AI’s alignment, people can be indi-
rectly subjected to normative standards they do not subscribe to themselves. 
Since epistocratic approaches cannot close the justificatory gap left by norma-
tive and metanormative uncertainty, they cannot justify such subjection which 
makes it illegitimate. For example, if your personal AI assistant does not let 
you buy meat because that would be against its normative constraints, you are 
being subjected to normative standards to which you do not subscribe. Or, if a 
generative AI is uncompliant with your request to gender an email draft because 
its alignment forbids it to do so, other people’s values are being imposed on you. 

But what exactly do we mean by “value imposition”, “domination”, and “sub-
jection”? Two possible interpretations are that they either refer to authority over 
the users of AI, or to the coercion of users of AI. A person with (justified) author-
ity can issue commands or make claims that generate real reasons for action for 
other people [ 18]. For example, within certain confines, teachers are typically 
taken to have (justified) authority over their pupils. And a person equipped 
with coercive power can restrict other people’s freedom to act as they desire. 
For example, within certain confines, policemen are typically taken to wield 
coercive power.
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What is at issue in the case of contentious AI alignment? Arguably, it is 
coercive power rather than authority. The question of authority would only arise 
if an AI system were to be deployed in a way where it issues commands or makes 
claims on people. The question of coercive power, on the other hand, arises as 
soon as an AI system restricts people’s freedom to act as they desire. This can 
happen rather quickly. If a self-driving vehicle does not let you drive above a 
certain speed limit because of its normative constraints, then it doesn’t command 
you to drive slower, it simply makes you so. And if a large language model does 
not let you write your text in gender-sensitive language, it makes no claim on 
you to not do so, it just doesn’t use gender-sensitive language. We could multiply 
examples but the point is: Both the question of an AI’s authority and its coercive 
power can be pertinent but we take the threat of coercion to be the more pressing 
and focus on it in the following. 5

Proponents of democratic approaches have to argue for four things in order 
to be able to claim that preventing illegitimate coercion non-instrumentally jus-
tifies democratic approaches as compared to epistocratic approaches: They have 
to argue (i) that it is indeed possible for people to be coerced through an AI’s 
normative constraints, (ii) that such coercion, if it is possible, would be unjus-
tified, (iii) that democratic approaches can produce a democratic justification 
that would justify the coercion and thereby prevent illegitimate coercion, and 
(iv) that epistocratic approaches cannot prevent the illegitimate coercion. Let 
us make a few remarks concerning each proposition. 

Is it possible for the users of an AI to be coerced through the AI’s normative 
constraints? Two quick clarifications to begin with: First, if an AI’s alignment is 
coercive, the primary coercer is not the AI itself but the person or organisation 
that defines the normative constraints. The AI is only the means of (potential) 
coercion. A bit more verbosely we are asking: Do the people who define the 
normative constraints of an AI coerce the users of the AI if (some of) the chosen 
normative constraints are not endorsed by the users? Second, and following from 
this, if users are being coerced, then only indirectly so. The primary (potential) 
coercers are the people who decide how the AI is aligned, but they don’t compel 
the users directly; rather, their coercion is mediated by the AI. That an AI’s 
alignment can only be indirectly coercive does not speak against it really being 
coercive. If you can be coerced by having someone limit what you can do with 
your bank account—think, abusive relationship—you can also be coerced by 
having someone limit what you can do with an AI. 

More needs to be said to convincingly argue that users of an AI can be 
indirectly coerced by its normative constraints. Let’s assume that an argument 
can be given for that. What would have thereby been shown is that it is in 
principle possible for an AI’s alignment to be coercive. What has not been shown 
is that there is an actual case where it actually is coercive. For an AI’s alignment 
to be actually coercive would not just depend on the relationship between the

5 See also Ripstein [ 20], who argues that, in general, the function of democratic justi-
fication is to legitimise coercion rather than authority. 
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users and the aligned AI but crucially also on certain background conditions. 6
We said that a person equipped with coercive power can restrict other people’s 
freedom to act as they desire. Conversely this means if a person is free to act as 
she pleases then she is not being coerced. This matters for the case of normatively 
coercive AI in the following way: Say, for normative reasons, your AI assistant 
is noncompliant with your request to buy meat. Are you being coerced by this? 
Well, it depends on whether you are still free to buy meat, maybe with the help 
of another, differently aligned AI, or simply on your own. You wouldn’t be free 
to do so, for example, if using the specific AI assistant were the de facto or de 
jure standard for going shopping. You would then not be able to buy meat, at 
least not without great opportunity cost. But if that is not the case, and without 
much ado you can just go and use another AI or buy the meat yourself, then 
you are not being coerced by the normatively noncompliant AI. You are no more 
being coerced than you would be when you can only buy vegan products at your 
local supermarket, or when you have to wear “gender appropriate clothes”—no 
skirts for men, no trousers for women, etc.—at your bowling club. The users of 
the AI, the supermarket, or the bowling club may be compelled to use them in 
a certain way, but this is not coercion as long as they can freely go elsewhere to 
use another AI, another supermarket, another bowling club. 

The next point proponents of democratic approaches would have to argue 
for, in order to strengthen the non-instrumental justification in favour of their 
solution, is that coercion by means of an AI’s alignment, if it is possible, would be 
unjustified. Two important ingredients for such an argument would presumably 
be the prima facie wrongness of coercion, and the fact that we are normatively 
and metanormatively uncertain. The first ingredient, the prima facie wrongness 
of coercion, may be used to establish that prima facie coercion stands in need of 
justification, much like murder or marital infidelity would. And the second ingre-
dient, normative and metanormative uncertainty, may be used to establish that 
no straightforward theoretical justification for the AI’s normative constraints is 
available, and consequently also not for the coercion by means of them. Thus, 
other things being equal, coercion by means of an AI’s alignment would be 
unjustified. 

Observe however, that there is a tension between the two ingredients. If we 
are normatively uncertain, how can we purchase the assumption that coercion 
is prima facie wrong? 7 We are deliberately only talking about a tension and 
not a contradiction because proponents of democratic approaches may be able 
to argue that the two ingredients are consistent with each other. For example, 
because our normative uncertainty is not evenly distributed over all normative 
propositions; about some we are more certain, about some we are less certain. 
Coercion being prima facie wrong perhaps is of the first kind, while overall we 
are still normatively uncertain. Whether in this way or differently, if proponents

6 In a similar context Kolodny [ 16, pp. 97-101] calls these background conditions “tem-
pering factors”. 

7 We thank two reviewers for raising that point. 
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of the democratic approach buy into both ingredients then they have to address 
the apparent tension between them. 

Another point that needs to be addressed is if there are other justifications 
for (the choice of) certain normative constraints, apart from a sure theoreti-
cal justification, or the democratic justification that democratic approaches aim 
for. If there is another possible justification, then coercion through AI align-
ment would be justifiable and proponents of democratic approaches would lose 
the non-instrumental reason in favour of their solution. Candidates for such a 
justification are decision rules that are explicitly designed to deal with norma-
tive uncertainty. For example, MacAskill, Bykvist and Ord [ 17] defend a rule 
called “maximise expected choiceworthiness”. Analogous to descriptive uncer-
tainty they treat normative disagreement as data to approximate the correct 
normative constraints by assigning weights to different normative hypotheses, 
where different normative hypotheses determine the choiceworthiness of an out-
come. Maximise expected choiceworthiness then demands to choose the action 
that leads to the outcome with the highest sum of weighted choiceworthiness. 
Although we cannot have a sure theoretical justification for any particular nor-
mative constraint, we may be able to have a practical justification to choose 
certain constraints over others by means of decision rules like this that deal with 
normative uncertainty. The practical justification we get from any such rules 
inherits its strength from the strength of the theoretical justification for the par-
ticular decision rule, meaning that proponents of democratic approaches either 
have to critique the theoretical justification for the rule, or they have to argue 
that the practical justification for choosing certain normative constraints we get 
from rules like maximise expected choiceworthiness is in general of the wrong 
kind. 

The next point proponents of democratic approaches would have to argue for, 
in order to strengthen the coercion-based non-instrumental justification in favour 
of their solution, is that they can actually produce a democratic justification that 
is suited to justify potential coercion. A number of objections can be levelled 
against this, and would therefore have to be addressed by proponents of the 
democratic approach. Let us mention just two. 

Any democratic approach will have to stipulate what the rules of their demo-
cratic game should be. Do people vote, if so, what’s the voting procedure? Do 
people deliberate, if so, what are the rules of discourse? And so on. No matter 
what the rules end up being, for them to be recognisably democratic, they have 
to make normative assumptions. 8 For example, a vote is free and equal, or a 
deliberation is inclusive and non-coercive. The question however is, what jus-
tifies these normative assumptions? Some of the people affected by an aligned 
AI may be able to reasonably reject them. But if the democratic process is not 
properly justified, its output will also not be. This, like all the other points, is not 
a knockdown argument, rather, it is intended to raise an issue that proponents 
of democratic approaches have to somehow address—namely, the bootstrapping

8 For a detailed discussion of this point in context of AI ethics in general, see [ 6]. 
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problem of how to justify the very democratic procedures that are supposed to 
provide justification. 

The same applies for this second objection. Given the deep normative dis-
agreement between people, one may worry that whatever all people affected 
by an AI’s alignment can agree on will only be the ‘lowest common normative 
denominator’, and much too little to really prevent the threat of illegitimate 
coercion. The objection here is not that no democratic justification is achieved 
through the democratic approach, it is that the justification is too minimal to do 
the job it is supposed to do. The minimal output from democratic approaches 
has to be beefed up, in order for AI systems to really be effectively regulated, 
but then the threat of illegitimate coercion re-enters again. 

The last point proponents of democratic approaches would have to argue 
for, in order to strengthen the coercion-based non-instrumental justification in 
favour of their solution, as opposed to the epistocratic solution, is that episto-
cratic approaches do not have the resources to confront the threat of illegitimate 
coercion through an AI’s alignment. By now we have seen that it is not so clear 
that this is the case. Let us mention again just two reasons for thinking that 
epistocratic approaches can get a handle on the problem of illegitimate coercion. 

We have said that the possibility of coercion depends on certain background 
conditions. For example, if the use of some AI system is the de facto or de jure 
standard, then people may not be free to do what they desire to do without 
using the AI, and then they are potentially being coerced by the AI’s alignment. 
Conversely this means, if we make sure that for all purposes there are always 
multiple AIs with different alignments available, then people are free to choose 
the AI that does not coerce them. And in general, if we control the background 
conditions that are necessary for coercion, we, and proponents of epistocratic 
approaches in particular, can prevent the threat of illegitimate coercion by pre-
venting the threat of coercion. 

Additionally, epistocratic approaches may be able to justify their choice of 
normative constraints and thereby justify potential coercion by means of them. 
To this end, they can invoke decision rules like maximise expected choiceworthi-
ness, that explicitly take normative uncertainty into account. If an epistocratic 
approach is able to appropriately justify its solution of the normative problem, 
and is able to transfer this justification to the coercion through an AI’s align-
ment, then this would undercut the non-instrumental justification from coercion 
for democratic approaches. 

5 Conclusion 

In this paper, we have motivated democratic approaches to the normative ques-
tion of AI alignment. We have discussed instrumental and non-instrumental ways 
of justifying them, focussing in particular on the non-instrumental justification 
from coercion. We have argued that proponents of democratic approaches have to 
argue for four propositions in order for this justification to be successful: (i) It is 
possible for people to be coerced through an AI’s normative constraints. (ii) Such
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coercion, if it is possible, would be unjustified. (iii) Democratic approaches can 
produce a democratic justification that would justify the coercion and thereby 
prevent illegitimate coercion. (iv) Epistocratic approaches cannot prevent the 
illegitimate coercion. 

We have argued that none of the four propositions is without problems and 
comes for free. In particular, we have argued that there are independent ways to 
prevent people from being coerced by means of an AI’s normative constraints. 
Namely, we can control the background necessary conditions for coercion, e.g., 
we can prevent any one AI becoming the de facto or de jure standard for certain 
purposes such that people are dependent on it. If epistocratic approaches can 
draw on this possibility, as democratic approaches can as well, then they might 
be able to take the sting out of the non-instrumental justification from coercion 
in favour of democratic approaches. 

Our analysis suggests that neither purely epistocratic nor purely democratic 
approaches to the normative problem may be sufficient on their own. The chal-
lenges we have identified do not eliminate the potential value of democratic par-
ticipation, but rather point towards more nuanced, context-sensitive solutions. 
At least for some application contexts, hybrid frameworks that combine expert 
judgement with targeted participatory input, alongside appropriate institutional 
safeguards that mitigate AI monopolies and in particular AI systems that are 
too uniformly aligned, may therefore be the most suitable paths for address-
ing the normative dimensions of AI alignment. The critical question for future 
research is determining when and how to optimally combine epistocratic and 
democratic elements—specifying which aspects of the normative problem bene-
fit from expert knowledge versus democratic input, and under what institutional 
conditions such hybrid approaches can succeed. 
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Abstract. Human oversight requirements are a core component of the European 
AI Act and in AI governance. In this paper, we highlight key challenges in testing 
for compliance with these requirements. A central difficulty lies in balancing sim-
ple, but potentially ineffective checklist-based approaches with resource-intensive 
and context-sensitive empirical testing of the effectiveness of human oversight of 
AI. Questions regarding when to update compliance testing, the context-dependent 
nature of human oversight requirements, and difficult-to-operationalize standards 
further complicate compliance testing. We argue that these challenges illustrate 
broader challenges in the future of sociotechnical AI governance, i.e. a future 
that shifts from ensuring “good” technological products to “good” sociotechnical 
systems. 

Keywords: Human Oversight · Auditing · AI Act · Regulation 

1 Introduction 

Testing for compliance with emerging legislation regarding Artificial Intelligence (AI) 
such as the European AI Act will be a major task for providers and deployers of AI-
based systems when these systems are used for high-risk tasks [1, 2]. Some aspects of 
this compliance testing will resemble traditional auditing processes for classical software 
systems and other technologies governed by product safety regulations [1]. For instance, 
verifying whether AI systems have adequate documentation, ensuring cybersecurity, 
testing for data protection, and evaluating the accuracy of system outputs could all be 
achieved by defining standards and quality thresholds. Eventually, compliance testing 
may also draw on established best practices, such as checklist-based approaches to assess 
whether implemented processes and technologies comply with standards set by norming 
bodies. Of course, new testing procedures will also be required to assess robustness and 
fairness according to various criteria, particularly with regard to the immediate safety 
of (semi-)autonomous, agentic systems. New testing procedures and benchmarks will 
emerge, and services and infrastructure will build around them.
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However, the AI Act and other emerging AI regulations introduce requirements that 
go beyond the technical characteristics of the system and requirements that traditional 
compliance testing methods cannot easily address. One such key requirement is effective 
human oversight, as outlined in Article 14 of the AI Act [3, 4]. Various countries, 
including Argentina, Bahrain, Uganda, and South Africa, already enforce similar but 
less specific requirements for human involvement in AI-driven decision-making [3]. 
Effective human oversight in the sense of the AI Act includes specific sub-requirements, 
such as ensuring that human oversight personnel remain aware of their tendency to 
over-rely on outputs produced by a high-risk AI system (e.g., automation bias; [5]) and 
that they properly understand the relevant capacities and limitations of the high-risk AI 
system to adequately monitor its operation (see Article 14 AI Act). 

In this paper we claim that a key challenge of testing for compliance with human 
oversight requirements lies in balancing simple but potentially ineffective checklist-
based approaches with resource-intensive and context-sensitive empirical testing of the 
effectiveness of human oversight of AI. Questions regarding when to update compliance 
testing, the context-dependent nature of human oversight requirements, and difficult-to-
operationalize standards for when oversight is truly “effective” further complicate com-
pliance testing [6]. The intricate sociotechnical interplay of technical aspects, individual 
factors, and environmental conditions that determine human oversight effectiveness adds 
additional complexity [8]. In fact, research suggests that human oversight requirements 
are particularly difficult to operationalize and test (see e.g., [7]). We argue that all of this 
illustrates broader challenges in the future of sociotechnical AI governance, i.e. a future 
that shifts from ensuring “good” technological products (e.g., safe products) to “good” 
sociotechnical systems (e.g., safe human-AI interactions in a specific context). 

2 The Possible Future of Testing for Compliance with Human 
Oversight Requirements 

The European AI Act establishes requirements for AI systems classified as “high-risk,” 
including those used in (critical areas of) education, public administration, hiring, credit 
scoring, and medicine. One such requirement is human oversight, as specified in Article 
14 (see Appendix A for the full text). It states that “human oversight shall aim to prevent 
or minimise the risks to health, safety or fundamental rights that may emerge when a 
high-risk AI system is used in accordance with its intended purpose or under condi-
tions of reasonably foreseeable misuse, in particular where such risks persist despite 
the application of other requirements set out in this Section.” These other requirements, 
detailed in Articles 9–13 and Article 15 of the AI Act, cover risk management, data gov-
ernance, technical documentation, record keeping, transparency, accuracy, robustness, 
and cybersecurity. 

Some key requirements of Article 14 include that human oversight personnel should 
be able to understand the capacities and limitations of AI systems and correctly inter-
pret outputs. They should remain aware of their tendency for automation bias (which, 
according to the AI Act, refers to overtrust in AI outputs; but see [8] for the complexities 
and dynamics of concepts associated with trust), decide when not to use AI outputs, and 
override decisions when necessary. They are also supposed to intervene or interrupt a
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system, for example, using a stop button or a similar mechanism to halt the system in a 
safe state. 

Standards and norms are currently being developed to guide compliance testing 
for human oversight requirements, including the Trustworthiness Framework developed 
by CEN/CENELEC and the ISO/IEC CD 42105. Part of these standards and norms 
will be informed by Article 14 of the AI Act and broader international governance 
perspectives on human oversight. While still in development, we anticipate a future of 
compliance testing for human oversight along a continuum between simple, checklist-
based approaches and empirical testing of the effectiveness of human oversight in specific 
contexts. 

A checklist approach would follow the model of existing compliance testing methods 
[1, 7] translating Article 14 requirements into assessable items for internal or external 
auditors. Checklist items inspired by Article 14 might include: “The human oversight 
person has been made aware of their tendency to overtrust outputs of AI-based systems”, 
“The human oversight person has received adequate training that enables them to under-
stand the capacities and limitations of the AI-based system they oversee”, or “There is 
a stop button that allows the human oversight person to intervene in the operation of 
the AI-based system”. Clearly, this list is not exhaustive and the requirements would 
need to be refined. While such checklists could provide a straightforward compliance 
mechanism, they may fall short of the AI Act’s broader goal of effectively mitigating AI-
related risks [1]. Moreover, developing an exhaustive checklist will be challenging. The 
examples above are direct translations from Article 14. Clearly there can be an infinite 
number of requirements with varying degrees of specificity, for instance, requirements 
concerning the person who will be the human oversight person (e.g., specific skills they 
must possess), or work design of human oversight jobs (e.g., specific maximum durations 
for human oversight tasks) [9]. 

Empirical testing of the effectiveness of human oversight in specific contexts could 
address some of the limitations of checklists. This approach would require testing the 
actual effectiveness of human oversight in high-risk contexts and empirically demon-
strating compliance with AI regulatory requirements [3]. It could involve studies where 
human oversight personnel monitor AI systems for a set duration, assessing whether they 
detect erroneous or problematic outputs, intervene in system operation when necessary, 
and accurately override inadequate AI-generated decisions. Another option could involve 
comparing different human oversight designs to determine which best meets regulatory 
requirements. Human oversight design, as outlined by Sterz et al. [9] is a sociotech-
nical design question. It encompasses technical aspects (e.g., optimizing explainability 
approaches to support and amplify human oversight), individual factors (e.g., selecting 
and training oversight personnel), and environmental conditions (e.g., job design and 
working conditions). For instance, a controlled experiment could test various explain-
ability approaches to assess which most effectively supports oversight [10–12]. The main 
advantage of this approach is that it provides empirical evidence on the effectiveness of 
human oversight and how to optimize it.
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However, this empirical approach demands significant resources for planning, con-
ducting, analyzing, and interpreting studies. Empirical testing for the effectiveness of 
human oversight requires expertise with empirical methods and user studies. Researchers 
and practitioners, for instance, with a background in human-computer interaction or psy-
chology will be required to adequately conduct empirical testing, interpreting the results, 
and providing recommendations on how to optimize human oversight design. Moreover, 
transferring insights across contexts may be challenging, as oversight effectiveness can 
be – and typically is expected to be – highly context-sensitive. In general, empirical 
testing scales poorly because it requires effort to conduct empirical testing with actual 
human oversight personnel, and because it likely cannot be shifted from the token or 
deployment level to the type or provider licensing level due to the context-sensitivity of 
effective human oversight and the resulting loss of transferability of insights. Further-
more, deriving reliable conclusions often requires multiple studies (e.g., on the effects of 
different explainability approaches), suggesting that oversight requirements may need 
to be informed by high-quality meta-analyses that synthesize findings across studies for 
broader applicability. 

Checklist-based approaches and empirical approaches are clearly not the only possi-
ble options for testing compliance with human oversight requirements, but they illustrate 
a fundamental tension in AI governance. Traditional checklist approaches offer efficiency 
and standardization but risk treating oversight as a technological feature to be verified 
rather than a sociotechnical capability to be validated. They may produce inconclusive 
results, such as when oversight mechanisms are formally in place but key performance 
indicators conflict, when standard checklist items cannot capture context-specific ade-
quacy, or when there are gaps between documented policies and actual practice. Empiri-
cal approaches, by contrast, can validate the actual effectiveness of human oversight but 
are resource-intensive and context-sensitive and thus difficult to standardize. 

This tension reflects the broader challenge of shifting from evaluating “good” techno-
logical products against standardized criteria to validating “good” sociotechnical systems 
where effectiveness emerges from dynamic interactions between humans, technology, 
and specific contexts. Hybrid approaches may offer a way forward: when checklist-
based testing produces inconclusive results or reveals gaps between formal compliance 
and effective oversight, empirical validation could help bridge the measurement-reality 
divide. Clearly, such hybrid approaches raise their own questions about standardization 
as well as practical challenges such as resource allocation regarding compliance testing. 

Furthermore, any form of checklist-based and empirical approaches faces additional 
challenges. First, it remains unclear when and how frequently human oversight processes 
need to be reevaluated. Should compliance assessments be conducted regularly or should 
they be triggered by evidence of non-compliance? Is it required to reevaluate compliance 
after each AI system update or after personnel changes? 

Second, not only is the effectiveness of human oversight context-sensitive, the human 
oversight requirements themselves may also be context-dependent. For instance, over-
sight requirements may vary depending on the risk associated with the application con-
text. Stricter oversight requirements may apply to AI used in the public sector compared 
to the private sector. Additionally, the required skills, expertise, and tasks of human 
oversight personnel can also vary significantly [7]. In real-time contexts, such as for the
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oversight of autonomous vehicles, sustained vigilance over long periods may be nec-
essary, whereas in areas like hiring and credit scoring, human oversight personnel may 
require training in ethical and moral reasoning. 

Third, certain regulatory requirements may be difficult to translate into testable stan-
dards for two key reasons. First, some requirements involve psychological factors that 
are challenging to operationalize and assess. This includes assessing whether human 
oversight personnel sufficiently understand AI limitations or testing for possible automa-
tion bias of human oversight personnel [5, 6]. Second, AI regulations typically include 
requirements where there is disagreement about guiding definitions and no clear ground 
truth available. For instance, in the case of discrimination and fairness, no commonly 
agreed standard exists for determining when a decision is discriminatory or unfair [4, 13]. 
This normative uncertainty, combined with the challenges of measuring psychological 
factors, helps explain why compliance testing particularly struggles with requirements 
related to transparency, explainability, and fairness [7]. 

These challenges point to the even more fundamental challenge that it remains 
unclear what constitutes sufficiently effective human oversight. Figure 1 illustrates this 
challenge. One fundamental expectation is that human oversight personnel add some-
thing beneficial to AI system operations. In other words, and in line with research and AI 
governance efforts using this term heavily [14], adding human oversight should increase 
the trustworthiness of AI operations. While trustworthy AI has many dimensions [8, 
14, 15], one key goal – explicitly mentioned in the AI Act – is to increase safety. The 
effectiveness of human oversight depends on characteristics of oversight personnel (e.g., 
skills, training), the technology (e.g., AI transparency), and the operational context (e.g., 
roles, tasks, organizational factors) [9]. While it seems obvious that one key goal is that 
human oversight should make AI operations safer and more secure than autonomous 
operation of AI, determining when oversight is sufficiently safe and secure remains an 
open question. 

Without concrete and testable standards for effective human oversight, normative 
uncertainty will persist for providers and deployers of AI regarding their legal com-
pliance. This issue may be particularly pronounced for small businesses that lack the 
resources to establish an AI compliance department [7]. This uncertainty could lead 
to situations where the implementation of AI-based systems will be hampered in such 
businesses. Moreover, without concrete standards, virtually any implementation could 
be considered compliant [16]. This issue is especially problematic when audits rely on 
post-hoc rationalizations of human oversight implementations. In hindsight, any app-
roach to human oversight could be justified as the “sufficiently good” or even “best 
possible” option. 

3 Concluding Thoughts and Next Steps 

The challenges of testing for compliance with human oversight requirements reflect 
broader difficulties in sociotechnical AI governance. As AI governance shifts from ensur-
ing “good” technological products to “good” sociotechnical systems, defining standards 
will be complex, particularly when psychological concepts are involved. Beyond human 
oversight requirements, another key example relates to emotion recognition systems
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Fig. 1. A plausible criterion for effective human oversight is that human oversight of AI achieves 
a higher level of safety compared to the AI system operating alone (baseline safety). However, 
assessing safety has several layers: first, safety is inherently multi-dimensional, involving multiple, 
sometimes interdependent risks (e.g., an AI system may exhibit different forms of unfairness that 
cannot all be simultaneously eliminated). Second, even within a single safety dimension, it remains 
unclear what “perfect” safety would entail, making it particularly difficult to define or measure 
what counts as “sufficient” safety. This figure additionally highlights that safety (much like all 
dimensions of the effectiveness of human oversight; [9]) depends on characteristics of oversight 
personnel (e.g., skills, training), the technology (e.g., AI transparency), and the operational context 
(e.g., roles, tasks, organizational factors). 

[17, 18]. According to the AI Act, AI systems that automatically infer emotions (e.g., 
sadness) in high-risk contexts are prohibited but inferring physical states (e.g., fatigue) 
is permitted. This raises questions such as: Is fatigue a purely physical state from lack 
of sleep or a symptom of depression? If linked to depression, would its detection be 
permitted? These questions seem relevant to governing respective AI products but they 
can only be adequately addressed by taking a sociotechnical perspective that addresses 
the intricate interplay between technical design (e.g., what model is used to infer emo-
tions?), human factors (e.g., how do verbal, nonverbal, and paraverbal behavior relate 
to emotions?), and contextual considerations (e.g., what inferences about emotions are 
adequate at different workplaces?). 

As outlined before, additional difficulties arise when AI governance seeks to mitigate 
risks for which no clear ground truth exists (e.g., risks of discrimination [7]) or when 
it remains uncertain whether risks have been effectively mitigated. For instance, was a 
fairness monitoring tool truly successful if it detects only one specific type of fairness 
violation in AI outputs [4, 19, 20]? Again, this emphasizes the need for a sociotechnical 
perspective that addresses technical design (e.g., for what kind of fairness metric to 
calibrate AI-based decisions), human factors (e.g., training in the detection of fairness 
issues), and contextual considerations (e.g., what kind of fairness definition is appropriate 
in a given context)? 

The next steps in testing for compliance with AI regulation are currently being devel-
oped. Standardization and norming bodies are working to operationalize the require-
ments outlined in AI regulation. We anticipate that emerging standards and norms will 
fuel the debate on how to effectively test for compliance. The challenges outlined in this
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article will continue to require input from researchers, practitioners, and policymakers to 
ensure that AI governance effectively reduces the risks associated with AI systems while 
enhancing safety in their implementation without placing an undue burden on providers 
and deployers through resource-intensive, context-dependent compliance testing. 

In the case of human oversight, key tasks for the near future are to (a) establish a 
middle ground or a feasible combination between checklists and empirical testing, (b) 
develop standards and norms that are informed by and adapt to the latest research in 
human-computer interaction, psychology, and related fields on effective human over-
sight [21], such as methods for preventing automation bias or effectively preparing 
and supporting humans to detect inaccurate and problematic outputs, and (c) evaluate 
the impact of human oversight requirements in AI practice. Finally, we want to high-
light the crucial importance of expertise on the human factor in human-AI interaction 
for designing and testing for the effectiveness of human oversight. As AI governance 
evolves beyond technological improvement to optimizing sociotechnical systems for 
high-risk tasks, we believe research(ers) from psychology, human-computer interaction 
and related fields should play a key role in providing insights on how to optimize the 
technology, how to design the jobs and environments where humans and AI-based sys-
tems interact, and how to prepare and support human oversight personnel. This ensures 
that expertise and perspectives on the human factors in AI augments the expertise and 
perspectives that already play a key role in AI governance such as legal sciences, ethics, 
machine learning and other technical and engineering perspectives. This would then 
also substantiate commonly phrased claims (particularly in Europe) that AI governance 
aims for “human-centered AI” implementation that in practice often lacks to consult and 
integrate expertise on the “human” factors. 
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Appendix A 

Content of Article 14 of the European AI Act: Human Oversight 

(1) High-risk AI systems shall be designed and developed in such a way, including with 
appropriate human-machine interface tools, that they can be effectively overseen by 
natural persons during the period in which they are in use. 

(2) Human oversight shall aim to prevent or minimise the risks to health, safety or 
fundamental rights that may emerge when a high-risk AI system is used in accordance 
with its intended purpose or under conditions of reasonably foreseeable misuse, in 
particular where such risks persist despite the application of other requirements set 
out in this Section. 

(3) The oversight measures shall be commensurate with the risks, level of autonomy 
and context of use of the high-risk AI system, and shall be ensured through either 
one or both of the following types of measures: 
(a) measures identified and built, when technically feasible, into the high-risk AI 

system by the provider before it is placed on the market or put into service; 
(b) measures identified by the provider before placing the high-risk AI system on 

the market or putting it into service and that are appropriate to be implemented 
by the deployer. 

(4) For the purpose of implementing paragraphs 1, 2 and 3, the high-risk AI system 
shall be provided to the deployer in such a way that natural persons to whom human 
oversight is assigned are enabled, as appropriate and proportionate: 
(a) to properly understand the relevant capacities and limitations of the high-risk AI 

system and be able to duly monitor its operation, including in view of detecting 
and addressing anomalies, dysfunctions and unexpected performance; 

(b) to remain aware of the possible tendency of automatically relying or over-relying 
on the output produced by a high-risk AI system (automation bias), in particular 
for high-risk AI systems used to provide information or recommendations for 
decisions to be taken by natural persons; 

(c) to correctly interpret the high-risk AI system’s output, taking into account, for 
example, the interpretation tools and methods available; 

(d) to decide, in any particular situation, not to use the high-risk AI system or to 
otherwise disregard, override or reverse the output of the high-risk AI system; 

(e) to intervene in the operation of the high-risk AI system or interrupt the system 
through a ‘stop’ button or a similar procedure that allows the system to come to 
a halt in a safe state. 

(5) For high-risk AI systems referred to in point 1(a) of Annex III, the measures referred 
to in paragraph 3 of this Article shall be such as to ensure that, in addition, no action 
or decision is taken by the deployer on the basis of the identification resulting from 
the system unless that identification has been separately verified and confirmed by 
at least two natural persons with the necessary competence, training and authority. 

The requirement for a separate verification by at least two natural persons shall not 
apply to high-risk AI systems used for the purposes of law enforcement, migration, 
border control or asylum, where Union or national law considers the application of this 
requirement to be disproportionate.
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Abstract. Modern autonomous-driving solutions rely on neural net-
works for visual perception. They typically lack precise specifications for 
when their behavior is considered to be correct, which complicates the 
use of traditional specification-driven verification approaches. To address 
this challenge, ISO standard 21448 (“Safety of the Intended Function-
ality”, SOTIF) proposes activities focused on reducing – rather than 
eliminating – the risk of using machine-learned models and the resulting 
extent of harm. 

One valuable activity in a SOTIF-based development process is run-
time monitoring, as it provides a safeguard against scenarios that could 
not be anticipated during development. In the context of visual percep-
tion components based on learned neural networks, a runtime monitor 
can detect previously unknown driving scenarios during operation. For a 
SOTIF-based safety argument, however, the value it brings to the table 
needs to be quantified. 

In this paper, we show how by combining activation pattern moni-
toring with ideas from conformal testing, a monitoring approach with 
statistical guarantees can be defined that supports a SOTIF safety argu-
ment. We apply an ellipsoid-based abstraction of the activation patterns 
that are local to the output of a YOLO real-time object-detection neural 
network. We demonstrate that by restricting the scope of the monitor to 
detect input that is clearly out-of-domain (OD) at runtime, a high accu-
racy of the monitor can be obtained, leading to strong safety guarantees 
that a SOTIF safety argument can build on. 

1 Introduction 

In current autonomous driving solutions, AI-based system components take 
safety-critical roles. Most notably, artificial neural networks are widely used 
for camera-based environment perception components of autonomous vehicles. 
Unlike for many traditional engineering activities, the development process of 
such networks does not start from a verifiable specification. This is rooted in 
the fact that the absence of a good model for how exactly the different types of 
objects to be perceived are represented in the image is the reason for using AI 
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in the first place. As a consequence, traditional specification-driven approaches 
for building safe systems are not applicable. 

So how can, under these conditions, the sufficient safety of such AI-based 
components be proven and communicated to the general public, as needed for 
the societal acceptance of autonomous driving in the long run? The approach 
followed in the ISO standard 21448 (“Safety of the Intended Functionality” –  
SOTIF) to address this question is to focus on the engineering process of the 
component rather than only on the result of the process. This standard defines 
a set of activities that includes identifying potential hazards, their triggering 
conditions, and developing scenarios in which the hazard can lead to harm. By 
performing these activities, during the development process, previously unknown 
scenarios in which the system needs to operate correctly in become identified as 
“known” (w.r.t. the development process), and the percentage of scenarios in 
which the system behaves safely also increases. At the end of the process, all 
activities performed together need to support an argument showing that the 
system is both safe enough in known scenarios as well as in unknown scenarios. 
The latter case addresses the problem that it is not possible to test AI-based 
systems in all situations that can occur in the field since it is not even completely 
well-defined what exactly constitutes a scenario. Similarly, formal verification is 
not applicable because a verification process would require a precise model of 
the input to which the system is applied. 

Proving the sufficient safety of a system in unknown scenarios appears to 
be contradictory at first, as for evaluating a system in a scenario, the scenario 
has to be defined. This contradiction is resolved by the respective chapter on the 
evaluation of unknown scenarios of the ISO standard. It clarifies that this type of 
evaluation is concerned with activities that augment classical testing on defined 
scenarios. This can for instance be the analysis of the effect of input noise on 
a learned model, the behavior of a system under consideration on random test 
cases, or the analysis of corner cases. Hence, the evaluation on unknown scenarios 
is concerned with analysis steps for which it is reasonable to expect that good 
performance of the system correlates with safe behavior in the field. As it is 
societally expected that autonomous driving systems implement the state of the 
art in such activities and at the end of these activities, they need to contribute 
to an overall safety argument, it is fair to expect a reasonable baseline of such 
activities commonly used in development processes according to ISO 21448 to 
develop over time. 

In this context, runtime monitoring is a particularly attractive activity 
because it solves two problems at the same time, namely that (a) not all situa-
tions can be considered up-front and before the deployment of the system, and 
(b) runtime monitoring makes what is being monitored explicit. Given that the 
property being monitored is reasonable, continuous monitoring of an AI-enabled 
system component can increase the trust in the component. In a nutshell, a run-
time monitor observes the behavior of a system and raises an alarm when the 
property whose satisfaction it monitors is violated. While due to the absence 
of a precise specification of the system, false positives and false negatives are 
impossible to avoid in their entirety, the output of a monitor can be used as an 
indicator for whether the driving situation is suitable for the autonomous driv-



172 R. Ehlers et. al

ing function. This is especially the case when the output of a monitor is used to 
inform the system about whether the current situation is potentially not fully 
tested (e.g., by disabling overtaking on roads if it is questionable whether the 
current driving situation is fully understood by the perception system). Further-
more, the monitor output can be used to decide in which cases the input to the 
system should be recorded so that it can be used as new situation in the next 
iteration of the system’s development process. 

Given the conceptual simplicity of monitoring, it is not surprising that a 
plethora of monitoring approaches for a multitude of types of properties of 
interest have emerged. These include, most prominently, detecting out of dis-
tribution (OOD) input [ 17,24] to a machine-learned model. In this context, out 
of distribution refers to the input not being in the set of inputs from which the 
training data of the machine-learned model was taken, ideally via random selec-
tion. Then, there are monitoring approaches that concern whether the system 
under inspection adheres to expected aspects of their input/output behavior [ 1]. 
As a final example, one can monitor for whether the activation patterns that an 
artificial neural network computes for some layers of its architecture at runtime 
are included in some abstractions of the set of patterns on which the system 
has shown correct behavior [ 5]. Such an activation pattern is just the output 
computed by one (typically late) layer of a neural network. 

The last of these examples is somewhat surprising at first, because it concerns 
the internal state of an AI-based system. The idea behind this type of moni-
toring is that whenever an activation pattern is atypical (i.e., very different to 
what has been observed on the training data), then the system behavior should 
not be trusted as it was not trained on these activations. In this way, activation 
pattern monitoring can also be seen as a technique for OOD detection. While 
the relationship between activation patterns and input/output behavior of the 
AI-based system is rather indirect, this approach to monitoring has an inter-
esting property: it is close to traditional monitoring of engineered systems. If a 
system is engineered with certain invariants in mind (such as the temperature in 
a machine being less than 100◦C), then operating it outside of these invariants 
is risky. Activation pattern monitoring mimics sanity checks of sensor data in 
regular embedded systems: if some measured values are implausible, the system 
needs to fall back to safer (but probably suboptimal) behavior. With these con-
nections, activation pattern monitoring can play a part in explaining the safety 
of a system. To be truly useful to support a safety argument, the value that acti-
vation pattern monitoring brings to the table needs to be properly quantified, 
however, which classical activation pattern monitoring approaches from the field 
of formal methods do not. 

In this paper, we revisit activation pattern monitoring and combine it with 
a clearly defined purpose in the context of supporting a safety argument. We 
show how by integrating ideas from the field of conformal prediction to obtain 
statistical guarantees on the perception system operating within the input space 
it was designed for, we can support a SOTIF-based development process. In 
particular, we check, with statistical confidence, whether the system’s state has
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been pushed outside of what it was designed to work on due to the system 
being operated outside of its operational design domain (ODD), i.e., the set of 
situations and environments it was designed for. The statistical guarantees are 
based on the assumption that data used in the development process is drawn in a 
representative way from the scenarios of interest in the real world, so that such a 
monitoring process can provide a quantitative component of a safety argument. 
In particular, we provide the following contributions: 

– We provide a summary of the differences and similarities of activation pattern 
monitoring to classical OOD and ODD detection. 

– We discuss which formulations of the activation pattern monitoring problem 
are reasonable from a conceptual point of view. 

– We provide an approach to define local neighborhoods for activation pattern 
monitoring in a YOLO-like object detection network. 

– We show how to adapt some ideas from conformance prediction to add sta-
tistical guarantees to activation pattern monitoring. 

– Finally, we show some results on an activation pattern monitoring example 
setting that demonstrate that this approach can detect out of domain acti-
vation patterns. 

The resulting monitor can be used in a safety argument by (a) making the 
autonomous driving system work with degraded performance if the monitor trig-
gers more than intermittently, and (b) making a probabilistic argument on the 
completeness of engineering process by connecting how often the monitor triggers 
in field tests with the statistical guarantees that it provides. While the statisti-
cal argument is based on the assumption of representativeness of the data used 
for calibrating the guarantee, the rigor used in the data collection process of a 
SOTIF-based development process can be used to support this claim, contribut-
ing to a proof that the residual risk of using the system is as low as reasonably 
possible. 

2 Related Work 

Activation pattern monitoring of artificial neural networks [ 6,12,23], also called 
abstraction-based monitoring, has its roots in formal methods. Such approaches 
supervise the output of a layer of an artificial neural network and check if it lies 
in an abstraction of the set of patterns found to be typical of normal operation. 

Activation pattern monitoring has multiple purposes. On the one hand, it 
has been noted that in practice, an activation pattern being outside of the com-
puted abstraction correlates with the input of the overall network being out-of-
distribution (OOD) [ 23]. On the other hand, Lukina et al. [ 14] use abstraction-
based monitoring to decide when enough novel input has been fed to the neural 
network so that a manual data labeling and training process should be triggered. 
They emphasize that in this way, monitoring helps with making the operation 
of the network more transparent to the user. Furthermore, they show in their 
experiments that the monitor results can be used to detect input that requires
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manual labeling, hence optimizing the retraining process of the system when the 
budget of allowed interaction with a human for manual labeling is small. 

Boursinos and Koutsoukos [ 2] combine the idea of monitoring activation pat-
terns with conformance prediction, as we do in this paper. Conformance predic-
tion is the process of postprocessing the output of a learned classification model 
to a set of classes such that a statistical guarantee can be given that the class 
that is correct for the given input is contained in the set. Just as in this paper, 
their approach detects mispredictions with statistical confidence. They deviate 
in their aim from our work, however: their purpose is to detect mispredictions, 
whereas we focus on detecting whether the AI model is being used outside of 
its operational design domain such that the internal state (an activation of a 
late layer) is outside of what the model has been trained for. This aim is more 
modest, resulting in the possibility to obtain a high accuracy. By combing a high 
reliability with a modest aim, such a monitor can fulfill a well-defined purpose 
in an overall system safety argument. Also, our approach is, unlike the one by 
Boursinos and Koutsoukos, not based on considering different activation pattern 
set abstractions for the individual classes, but detects regions in an input image 
for which all classifier outputs together should not be trusted. 

Activation pattern monitoring is conceptually related to out of distribution 
(OOD) input detection as well as monitoring the operational design domains 
(ODD) of an AI-based systems. Ultimately, the goal of ODD detection is to 
identify input that is somewhat distant to the training dataset, and there is 
no precise definition of what exactly this means, given that the probability dis-
tribution of the input to expect is not accessible for model training. A typical 
concretization in this context is to treat this problem as a one-class classifica-
tion problem (in the absence of atypical input data), and for instance define 
approaches to classify the probability distributions that form the output of a 
classification artificial neural network into expected and unexpected ones [ 21]. 
Other approaches operate on the input directly [ 11]. Guérin et al. [ 9] argue that 
the problem of detecting out-of-distribution input is ill-focused by the fact that 
extrapolating to untrained cases is the whole point of learning a model in the 
first place. They propose moving to a two-class classification problem for detect-
ing “Out-of-Model-Scope (OMS)” cases, which are defined by the learned model 
mispredicting in them. 

In contrast, what we aim for here is a simple sanity checking argument of 
the system’s internal state that is close to monitoring the operating conditions 
of technical systems, while addressing the fact that the state of an AI-based 
perception system is an activation pattern. Although we adapt the proposal to 
treat the problem at hand as a two-class classification problem (in Sect. 3.2), 
we do not explicitly consider whether the network misclassifies. Instead, we are 
interested in detecting inputs on which the AI model is not applicable and no 
correct classification even exists. The simplicity of the approach in combination 
with a statistical guarantee makes it suitable to support a formal safety argument 
while allowing to built trust in a sufficiently low error rate of the system.
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While it would intuitively make sense to treat the problem solved in this 
paper as an instance of operational design domain (ODD) monitoring (see, e.g., 
[ 4]), the term is normally used for reasoning over the expected input at a higher 
level, such as how many vehicles can be visible at the same time to a perception 
system. Such aspects are difficult to translate to the concrete input to such a 
system apart from sampling potential input by means of a simulator [ 7]. 

Few works consider the problem of detecting OOD or ODD data in the scope 
of a system constructed using a SOTIF-based development process. Hacker and 
Seewig [ 10] recently considered a monitor ensemble for identifying several types 
of safety-related insufficiencies in perception systems for autonomous vehicles. 
For OOD detection, they use a heuristic that involves comparing multiple learned 
models, which complicates making a statement about the scope of the monitor. 
Also, their monitor ensemble aims at identifying multiple types of insufficiencies 
rather than supporting an individual aspect of the overall safety argument. 

3 How to Detect Cases in Which a System Was Not 
Designed to Operate In? 

When addressing the challenge of detecting whether an AI perception system is 
operating within the conditions it was designed for, the first aspect to clarify is 
what this actually means. For the scope of this paper, we consider the problem 
of detecting objects in the scope of an AI model operating according to the 
YOLO (you only look once) principle [ 15,22]. YOLO-based models operate on 
a whole input image, but the image is partitioned into a grid of cells, and the 
same convolutional neural network is applied to each cell. Figure 1 shows an 
illustration of the partitioning of an input image. For each cell, the model predicts 
a) a number of values that are used to determine the x and y positions as 
well as the width and height of the bounding box of a potential object in the 
cell, b) one class probability for every object class used in the dataset (which 
indicates the likelihood of the cell containing an object of this class), and c) an 
overall probability of the cell containing an object. Furthermore, YOLO models 
often use several grid granularities of the input at the same time in order to 
detect objects of different sizes. Finally, all probabilities and potential bounding 
box positions are post-processed by a so-called header to produce the actual 
bounding boxes of the detected objects. 

Feeding input to the model that is from a different domain (off domain, OD)  
than the data on which the model was trained (in domain, ID) can make the 
input to the header meaningless, leading to the model being blind on some of 
the parts of their input image even if the respective part contains objects from 
the classes considered during training. For a responsible use of YOLO models in 
the field, we hence have to balance the expectation that such models extrapolate 
from learned data to a new slightly different input in the field with the purpose 
of detecting when the model operates in a domain it was not designed for. For 
instance, when some cells of the input image show a poster board at the side of 
the road or a truck tarpaulin (possibly with a picture printed on it), or a part
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Fig. 1. Example input image and its split into cells. 

of the lens is covered with dirt or a sticker, then the model under consideration 
is blind on these input cells. 

In such cases, it is reasonable to expect artificial neural networks to exhibit 
atypical activation patterns. In fact, neural networks learn specific activation 
patterns that allow them to correctly classify inputs on which it was trained. 
However, the standard training process of a model does not explicitly prevent 
the output of individual neurons from deviating from their usual range for inputs 
that are off-domain (OD). Cheng et al. [ 6] experimentally validated this effect in 
their work on activation pattern monitoring. Building on this observation, our 
goal is to detect when, for parts of an input image, the system operates outside 
of its intended boundaries. 

For this purpose, we consider local activation patterns while focusing on a 
single grid scale. The general idea is visualized in Fig. 1 – the neural network 
output for a 3 × 3 blocks large input group is used in order to estimate whether 
the cell in the center of the group contains image data on which the perception 
system operates outside of its domain. We aggregate the object class probabilities 
for each cell in the group to a vector (activation pattern) on which the monitoring 
approach described in the following operates. 

Performing the monitoring process in this way has the property that it can 
support a safety argument: the activation patterns are simple to measure “sensor 
values” about the internal state of the system and treating the input in blocks 
allows to pinpoint for parts of an input whether the system’s output can be 
trusted on it – in this way, the detection of blind spots can be reasoned over in 
the system’s safety argument based on the monitor output. 

3.1 A First Experiment Using One-Class Classification 

For a first experiment, we considered a YOLOv3 model [ 16] on the KITTI dataset 
[ 8] with traffic situations trained on detecting objects from 96 classes, leading to
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activation vectors with 964 elements each. We overall extracted 82962 activation 
patterns from 3771 images. We also use 27676 patterns from 1258 additional 
images from the same dataset for testing whether the monitor detects these as 
typical for the domain. 

Henzinger et al. [ 12] proposed to use “boxes” (axis-parallel hyperrectangles) 
for abstracting activation patterns from the training data to a representative 
set of activation data. The core idea of their approach is that hyperrectangles 
encapsulate activation patterns of inputs on which the system was trained, and 
patterns not in the hyperrectangles are seen as suspicious. 

They experimentally compared their box-based abstraction to two other 
methods – specially balls and octagons – based on their precision and compu-
tational complexity. Their experiments demonstrated that using boxes balances 
good precision in novelty detection with efficient computation. They concluded 
that using a box-based abstraction allows for effective runtime monitoring with 
minimal overhead. Although their boxes are simple to compute, they have the 
odd property that activations that are relatively extreme in many dimensions, 
but never the most extreme one in any dimension, might not be detected. 

To address this limitation of boxes and to provide tighter boundaries than 
balls, with minimal computational overhead, we propose to use an ellipsoid rep-
resentation. An ellipsoid can be encoded with a single positive definite matrix A 
and a vector b such that an activation pattern x is in the ellipsoid if and only if 
(x − b) · A · (x − b)T ≤ 1. The set of ellipsoids is closed under rotation, skewing, 
scaling, and translation, which is desirable from a conceptual point of view. In 
particular, as any rotation, translation, and skewing performed by a neural net-
work layer can be undone by a subsequent linear layer, and there are no steps in 
the learning process that prevent the learning process from making unnecessary 
such skewings, translations, and rotations, it makes sense to use an activation 
pattern representation that is closed under such linear transformations. 

We first considered the activation pattern monitoring problem as a one-class 
classification problem by computing an ellipsoid around all 82962 activation pat-
terns in the training dataset. Using an implementation of Khachiyan’s algorithm 
[ 20], we can compute an ellipsoid enclosing an approximately minimal volume. 
Doing so adds an quality criterion to the computed ellipsoid, which is needed 
to avoid trivial solutions (an ellipsoid containing all possible activation patterns 
for arbitrary input images). The amount of data considered in this experiment 
is however already too large for the algorithm to be applied (observed by it run-
ning out of memory when applying the algorithm on a computer with 1 TB of 
RAM). As a consequence, we experimented with a classical machine learning-
based approach. Rather than learning the matrix A directly, we apply classical 
back-propagation based learning to learn an ellipsoid center, a size (in each 
dimension), and a fixed-length list of mirroring planes. Input data points are 
mirrored by the planes in order, and the resulting point is checked for contain-
ment in the (then) axis-parallel ellipsoid. With the mirroring planes, skewing, 
mirroring, and rotation can be learned while the number of planes provides a way 
to select the complexity of the learnable skewing and rotation of the ellipsoid.
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Table 1. Performance results for the ellipsoid-based monitor from Sect. 3.1 

# Planes  Patterns contained in ellipsoid 
Training Data Testing Data (ID) Testing Data (OD) 

0 99.2 % 99.2 % 75.8 % 
10 99.2 % 99.2 % 86.2 % 
80 99.2 % 99.3 % 95.3 % 

In the learning process, we use the product of the ellipsoid sizes (in each dimen-
sion) as an additional optimization criterion in the loss function that guides 
the learning process. Doing so results in the volume enclosed by the ellipsoid 
to be minimized (heuristically) during learning. We experimented with several 
different numbers of mirroring planes, for which we give results in Table 1. 

We observe that the learning process succeeds with more than 99% of the 
in-domain images being contained in the ellipsoid, both in the training data set 
as well as the testing data set from the application domain. To estimate the 
usefulness of the monitor in the field, we also considered 44143 activation pat-
terns obtained from 521 images from the COCO dataset [ 13], which does not 
concern traffic situations (with some exceptions), as example input that is out-
of-domain. Table 1 shows that most of the activation patterns from such inputs 
however fall into the ellipsoid. In particular, the more freedom we give to the 
learning process (by increasing the number of hyperplanes to mirror the activa-
tion patterns by), the more activation patterns from the out-of-domain dataset 
are contained in the ellipsoid. Figure 2 shows a histogram of the weighted dis-
tances (results of computing (x − b)A(x − b)T for the ellipsoid center b and the 
ellipsoid matrix A) of the activation patterns to the ellipsoid center for the ellip-
soid learned without mirroring planes. It can be see that the distances of the 
ID and OD cases overlap heavily despite the distributions of these cases differ-
ing notably. For a quantitative safety argument in a SOTIF-based development 
process, these results appear to be insufficient, however. This observation leads 
to the question whether this weak performance is unavoidable for this type of 
monitor or whether a different type of learning process can improve it. 

3.2 Treating the Out-of-Domain Detection Problem as a Two-Class 
Classification Instance 

Guérin et al. [ 9] argue that treating OOD detection as a one-class classification 
problem is unreasonable as a primary goal of learning a model is to have it 
extrapolate to unseen data. Instead, they propose to view the problem as a two-
class classification task where classes are defined by whether the learned model 
under concern behaves correctly or incorrectly on an input. 

Building on this idea, we can reformulate the OD detection problem on acti-
vation patterns to learn a two-class classifier that distinguishes between patterns
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Fig. 2. Histogram of the weighted ellipsoid center distances for ID (orange) and OD 
(blue, more to the right) activations for the approach from Sect. 3.1 (Color figure 
online). The distances are normalized to 1 so that exactly those of at most 1 cor-
respond to patterns in the ellipsoid. 

from in-domain and off-domain input. For the following experiment, we adopt 
this approach and continue employing the ellipsoid representation. 

We use an additional 1560 out-of-domain images from the COCO dataset 
for training the two-class classifier, resulting in 131241 activation patterns. We 
again learn an ellipsoid with a backpropagation-based learning process, but this 
time without size minimization for the ellipsoid. 

Interestingly, the resulting classifier achieves a high accuracy on both the 
training data as well as the testing data, as shown in Table 2. As before, we 
experimented with a varying number of mirroring planes. The results show that 
both ID activation patterns and OD activation patters are detected in a reliable 
way. Upon closer examination of the results, it turns out that the problem to be 
solved is actually quite simple. Even without allowing the ellipsoid to be rotated 
or skewed, we obtain a model with 99 % of in-domain test cases and 99.13 % 
of out-of-domain test cases classified correctly. Figure 3 shows the histogram for 
the case without mirroring planes. It can be seen that the ellipsoid separates the 
ID and OD patterns relatively well despite the OD patterns still being relatively 
close to the ellipsoid center. 

While the case without mirroring planes is relative plain, a resulting mon-
itoring approach model still solves one problem of the box-based abstractions 
[ 14], namely that cases that are close to the boundaries in many dimensions at 
the same time are not detected as unusual. 

Overall, this experiment shows that conceptually, two-class classification 
appears to be the more fitting approach for out-of-domain detection of acti-
vation patterns, at least for the purpose of detecting if the model output for 
parts of an input image are clearly out-of-domain. It should be noted that the 
images in the COCO dataset are very diverse, so that the comparison between
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Table 2. Performance results for the ellipsoid-based monitor from Sect. 3.2 

# Planes  Patterns contained in ellipsoid 
Training Data Testing Data (ID) Testing Data (OD) 

0 99.0 % 99.0 % 0.87 % 
10 99.2 % 99.18 % 0.8 % 

Fig. 3. Histogram of the weighted ellipsoid center distances for ID (orange, to the left) 
and OD (blue, to the right) activations for the approach from Sect. 3.1 (Color figure 
online). The distances are normalized to 1 so that exactly those of at most 1 correspond 
to patterns in the ellipsoid. 

the one-class and two-class classification monitoring approaches is not skewed 
by similarities between images in the COCO dataset. 

For a SOTIF safety argument, an ellipsoid-based monitor with a good accu-
racy is already useful. For instance, it can be used to detect novel input in the 
field for “phoning it home” to the perception system’s manufacturer, also help-
ing with human oversight of a vehicle manufacturer’s fleet. Its high accuracy 
can serve as argument that the monitor-based preselection of new input to be 
phoned home balances the needs to keep the data transmitted by all systems 
of the manufacturer together reasonable while recording new situations that are 
relevant for the continuous engineering process of the system. 

3.3 Adding Statistical Guarantees 

The high accuracy on the relatively simple out-of-domain detection approach 
from above is useful for supporting a safety argument of a bigger system: while 
the scope of what is detected is very limited, the high accuracy can provide 
trust in the monitor detecting out-of-domain cases reliably. Furthermore, the 
documentation performed in the context of an ISO 21448 development process
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assigns the measures taken in the development process to individual types of 
hazards and risks – so the narrow scope of the monitor is actually rather an 
advantage than a drawback (which is somewhat at odds with the idea to evaluate 
approaches on difficult benchmarks sets, as common in works on OOD detection). 

The overall safety argument for the perception system however needs to be 
quantitative, showing a high probability of working correctly across different 
situations. To support such an argument, the monitor should also provide sta-
tistical guarantees, which can be done by combining monitoring with ideas from 
conformal prediction [ 18]. Boursinos and Koutsoukos [ 3] already considered such 
a combination in the past, and we do so here in a way that makes use of the fact 
that ellipsoids induce a weighted distance metric from some mean activations. In 
this way, we can calibrate the monitor based on this metric to obtain guarantees. 

More formally, we determine a distance threshold dlimit that allows us to 
identify in-domain activation patterns based on the calibration of a set of known 
out-of-domain activation patterns C, assumed to be independent and identically 
distributed (i.i.d.) drawn from the real distribution of the out-of-domain cases 
to be detected at runtime. More concretely, for each x ∈ C, we compute the 
distance d(x) = (x − b) · A · (x − b)T and aggregate them in a multiset M . Then, 
given a small probability of allowed failure α, we choose the greatest distance 
value dlimit such that at most a fraction of (|C|+1)(1−α) 

|C| of the elements in M 
are below dlimit . Thus, if the monitor does not flag a (local) activation pattern 
as potentially problematic, then the probability that this verdict is correct is at 
least 1 − α in the case of an out-of-domain activation pattern. In-distribution 
cases can however sometimes be detected as problematic even if they are not. 
At runtime, the resulting monitor considers all new activation patterns x′ for 
which d(x′) ≥ dlimit as potentially being out-of-domain. The correctness of this 
monitoring approach is based on the following theorem: 

Theorem 1. For any new activation pattern x′ that is i.i.d. drawn from the 
distribution DistC of out-of-domain input from which C was sampled, we have 

P(d(x′) ≥ dlimit | x′ ∼ DistC) ≥ 1 − α 

Proof. We follow the exposition by Shafer et Vovk [ 18] for a corresponding proof 
in the context of conformal prediction. 

If we order the |C| + 1 distances computed for x′ and the elements in C, the  
i.i.d. assumption implies that d(x′) is equally likely to appear anywhere in the 
ordered list. For any position k ∈ {1, . . . ,  |C| + 1}, the probability for d(x′) to  
be among the k smallest elements in M ∪ {d(x′)} is k 

|C|+1 . Therefore, 

P(d(x′) ≥ dlimit) =
�|C| ·  (|C|+1)(1−α) 

|C| �
|C| + 1  

=
�(|C| + 1)(1 − α)�

(|C| + 1)
≥ 1 − α. 	


We could, in a similar way, compute a value d′
limit such that, if a new input 

x is in domain, the probability of the weighted distance of its activation pattern 
from the center of the ellipsoid being at most d′

limit is at least 1− α. In this way,
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we could detect out-of-domain cases with statistical guarantees. This approach 
is valid under the assumption that the in-domain patterns at runtime are i.i.d. 
drawn from the same distribution as the in-domain samples in the calibration 
dataset. 

Let us evaluate monitoring with statistical guarantees on an example, where 
for simplicity we use the learned axis-aligned ellipsoid (without mirroring) from 
Sect. 3.2. We split the out-of-domain testing set into half calibration set and 
half post-calibration testing set for the monitor with statistical guarantees and 
choose α = 0.01 for this example study. The calibration value is 1.0046 times 
the size of the ellipsoid for the monitoring process without statistical guarantees. 
From the OD activation patterns in the post-calibration testing set, 99.06 % were 
detected as potentially problematic. On the flip side, from the in-domain testing 
data, 0.87 % were detected as potentially out-of-domain. 

Overall, it can be seen that the approach provides good performance on 
this rather small case study while giving statistical guarantees. In this way, 
the monitor can be used as a part of the overall safety argument, namely by 
addressing the need for a sufficiently high probability of an autonomous driving 
function detecting that it is used out of domain. The overall safety argument 
could then also reason over other monitors and/or the properties of error-resilient 
maneuver planning approaches using the perception systems’ output as input. 

4 Conclusion 

This paper dealt with the question of how an activation pattern monitor can 
support making a safety argument for an AI-based environment perception sys-
tem of an autonomous vehicle. When using a structured approach for doing so, 
such as the one in ISO 21448, every measure needs to have a clear scope and 
concrete quantifiable way in which it contributes to the overall safety argument. 
We showed that by setting the scope of such a monitor to detect activations 
resulting from far-from-normal local input, very high accuracy rates are possi-
ble on a moderately complex benchmark, and that also very strong statistical 
guarantees are possible. Key to this result was defining the scope of the monitor 
to be relatively narrow. While the next step is to evaluate the approach in an 
actual engineering context with more data, and it is conceivable that the acti-
vation pattern domain may need to be extended (e.g., to sets of ellipsoids) to 
maintain the good monitoring performance, the main focus of this paper was 
showing what role a simple activation pattern monitoring approach can take in 
a safety argument. Furthermore, the monitor output can be used to identify new 
input of interest so that it can be recorded for re-engineering the system. In this 
way, an activation pattern monitor can support human oversight of AI-based 
systems [ 19] of a manufacturer’s fleet of vehicles, namely by pre-selecting cases 
on which the environment perception systems behavior should be checked post 
hoc. Finally, when the monitor results are fed to the driving maneuver decision 
making process, the monitor output can be used to avoid more advanced maneu-
vers (such as overtaking) when part of the input is likely to contain unrecognized 
objects.
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At the same time, we also indirectly addressed the question of building soci-
etal trust in a system’s correct operation beyond a formalized safety argument, 
namely by focusing on a monitoring process that is simple enough so it that 
it amounts to checking if some operating values stay within tested boundaries. 
This is a common self-supervision approach in mechanical and electrical engi-
neering, and there is ample of experience in using it in these domains. While 
the monitoring approach described in this paper is, from a scientific point of 
view, unsophisticated, this property is also what enables wider use: engineers of 
safety-critical systems can only employ techniques that can be understood by a 
wider (engineering) audience in order to build a safety argument on them. We 
hope that by showing that with a narrow scope, activation pattern monitoring 
does not need to be complex, we provide an impulse on how this tension can be 
addressed in the field. 
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