CHAL

UNIVERSITY OF TECHNOLOGY

Al Assisted Programming (AISoLA 2025 Track Introduction)

Downloaded from: https://research.chalmers.se, 2025-11-10 09:16 UTC

Citation for the original published paper (version of record):

Ahrendt, W., Aichernig, B., Havelund, K. (2026). Al Assisted Programming (AISoLA 2025 Track
Introduction). Lecture Notes in Computer Science, 16220 LNCS: 11-17.
http://dx.doi.org/10.1007/978-3-032-07132-3 2

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Bernhard Steffen (Ed.)

Bridging the Gap
Between Al and Reality

Third International Conference
on Bridging the Gap between Al and Reality, AISoLA 2025
Rhodes, Greece, November 1-5, 2025, Selected Papers

o
N
oN
O
—
w
O
=
—l

@ Springer

Lecture Notes in Computer Science 16220

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, Purdue University, West Lafayette, IN, USA

Wen Gao, Peking University, Beijing, China

Bernhard Steffen@®, TU Dortmund University, Dortmund, Germany
Moti Yung®, Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series counts many renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
and workshop proceedings and postproceedings. LNCS commenced publication in 1973.

Bernhard Steffen
Editor

Bridging the Gap
Between Al and Reality

Third International Conference

on Bridging the Gap between Al and Reality, AISoLA 2025
Rhodes, Greece, November 1-5, 2025

Selected Papers

@ Springer

Editor

Bernhard Steffen

TU Dortmund University
Dortmund, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-032-07131-6 ISBN 978-3-032-07132-3 (eBook)

https://doi.org/10.1007/978-3-032-07132-3
© The Editor(s) (if applicable) and The Author(s) 2026. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0001-9619-1558
https://doi.org/10.1007/978-3-032-07132-3
http://creativecommons.org/licenses/by/4.0/

Preface

As General and Program Chair I would like to welcome you to the proceedings of
AISoLA 2025, the 3rd International Symposium on Bridging the Gap between Al and
Reality, which took place on Rhodes (Greece) on November 1-5, 2025 as an in-person
event, providing an interdisciplinary forum for discussing the impact of the recent Al
developments in research, education, and society. It is our core belief that this topic must
be explored from multiple perspectives to establish a holistic understanding. Therefore
AISoLA invites researchers from various backgrounds, such as computer science, phi-
losophy, psychology, law, economics, and social studies, to participate in an interdisci-
plinary exchange of ideas and to establish new collaborations. AISoLA is an Al-themed
sibling of ISoLA, the International Symposium on Leveraging Applications of Formal
Methods, which it complements with its interdisciplinary perspective.
The program of AISoLA 2025 consisted of three keynotes given by:

e Maximilian Kiener
e Edward A. Lee
e Alvaro Velasquez

And a collection of special tracks devoted to the following hot and emerging topics:

e Al Assisted Programming (AIAP) (Organizers: Wolfgang Ahrendt, Bernhard Aich-
ernig, Klaus Havelund)

e Digital Humanities (DigHum) (Organizers: Ciara Breathnach, Tiziana Margaria, Tim
Riswick)

e Formal Approaches in Intelligence for Transforming Healthcare (FAITH) (Organiz-
ers: Martin Leucker, Violet Kai Pun)

e Formal Methods for Intersymbolic Al (Organizers: Clemens Dubslaff, Ina Schaefer,
Maurice ter Beek)

e Low Code/No Code Approaches to Application Developmemt: Challenges and
Opportunities (Mike Hinchey, Tiziana Margaria)

e Responsible and Trusted Al: An Interdisciplinary Perspective (RTAI) (Organizers:
Kevin Baum, Thorsten Helfer, Sophie Kerstan, Markus Langer, Eva Schmidt, Andreas
Sesing-Wagenpfeil, Timo Speith)

e Small Data Challenges in Al for Material Science (Lars Kotthoff, Tiziana Margaria,
Elena Raponi)

e Use of Al in the Industrial Sector (Falk Howar, Hardi Hungar, Barbara Steffen)

e 30 Years of UPPAAL (Kim G. Larsen, Paul Petterson, Wang Yi)

Co-located with the AISOLA Symposium were:

e The STRESS Summer School 2025 (Steve Bosselmann, Daniel Busch, Edward A.
Lee, Bernhard Steffen)

vi Preface

The 14 papers of this volume represent a subset of the program of AISoLA 2025,
most contributions will be published in the postproceedings.

We were pleased to implement a single-blind review process of all submitted content.
Following the AISoLA tradition, the track organizers form the program committee. We
thank them and the reviewers for their effort in selecting the papers to be presented.
We are grateful to the Local Organizing Chair, Petros Stratis, and the EasyConferences
team for their continuous precious support during the entire period preceding the events,
and Springer for being, as usual, a very reliable partner for the proceedings production.
Finally, we are thankful to Nicolas Stratis, Daniel Busch, and Steven Smyth for their
continuous support of the website and the program, and to Steve Bosselmann for his
help with the editorial system EquinOCS.

Special thanks are due to the Center for Trustworthy Data Science and Security, the
Lamarr Institute for Machine Learning and Artificial Intelligence, and the Center for
Perspicuous Computing, for their support in the organization of the event, as well as to
the TU Dortmund, my home institution.

I hope all AISoLA participants had lively scientific discussions, ideally resulting in
new collaborations and ideas that can be presented at next year’s AISoLA, which will
take place again in Greece.

August 2025 Bernhard Steffen

Organization

General Chair, Program Chair

Bernhard Steffen

TU Dortmund, Germany

Track Organizers/Program Committee

Wolfgang Ahrendt
Bernhard Aichernig
Kevin Baum

Maurice ter Beek
Ciara Breathnach
Clemens Dubslaff

Klaus Havelund
Thorsten Helfer

Mike Hinchey
Falk Howar
Hardi Hungar

Sophie Kerstan
Lars Kotthoff
Markus Langer
Kim G. Larsen
Martin Leucker
Tiziana Margaria
Paul Petterson
Violet Kai Pun

Elena Raponi

Tim Riswick

Eva Schmidt

Ina Schaefer

Andreas Sesing-Wagenpfeil
Timo Speith

Chalmers University of Technology, Sweden

TU Graz, Austria

German Research Center for Artificial
Intelligence, Germany

CNR, ISTI, Italy

University of Limerick, Ireland

Eindhoven University of Technology, The
Netherlands

NASA Jet Propulsion Laboratory, USA

CISPA Helmbholtz Center for Information
Security, Germany

University of Limerick, Ireland

TU Dortmund, Germany

German Aerospace Center and Carl von
Ossietzky University Oldenburg, Germany

University of Freiburg, Germany

University of Wyoming, USA

University of Freiburg, Germany

Aalborg University, Denmark

University of Liibeck, Germany

University of Limerick and Lero, Ireland

Milardalen University, Sweden

Western Norway University of Applied Sciences,

Norway
Leiden University, The Netherlands
Radboud University, The Netherlands
TU Dortmund, Germany
Karlsruhe Institute of Technology, Germany
Saarland University, Germany
University of Bayreuth, Germany

viii Organization

Barbara Steffen Janitza Electronics, Germany
Wang Yi University of Uppsala, Sweden
Reviewers

Jonas Baumann Nadine Schlicker
Thies de Graaff Lena Schneider

Moe.z Ben Halhmlda Marjan Sirjani

David Hardin Sarah Sterz

Nicolas Hertzberg

Lennart Landt Per Strandberg

Sara Mann Jannik Zeiser

Julian Miiller Thies de Graaff

Invited Keynote

Gaps in Generalization: Frontier Problems
for Neurosymbolic Al

Alvaro Velasquez

University of Colorado, Boulder, CO, 80309 USA

Abstract. The Chat-GPT moment demonstrated that widely useful generalization
is possible with Al. However, this capability is limited by classical assumptions on
machine learning models, such as the test distribution matching the training dis-
tribution and the manifold hypothesis of relying on shared simple features across
an otherwise complex dataset. These assumptions raise a critical question: how
can Al generalize outside of such domains? Indeed, the foregoing assumptions
are violated for important problems in autonomy, synthetic biology, and scien-
tific discovery. We posit that, at some level of abstraction, the shared symbolic
structures across domains will enable greater generalization and present research
directions for neurosymbolic Al to achieve this vision of symbolic generalization
that is robust to the gaps between Al and reality.

The field of neurosymbolic Al has witnessed a renaissance in recent years with the
promise of achieving the best of the first two waves of Al. Whereas classical symbolic
methods are performant for prescriptive problems in wellmodeled environments, they
are not capable of handling noise and generalizing to unknown environments. On the
other hand, modern deep learning architectures leverage neural networks to achieve
some level of generalization to domains that match the training distribution of data, but
they lack the interpretability and verifiability of the symbolic methods. In this paper,
we present some open frontier problems as gaps that are unconventional and societally
impactful and for which neurosymbolic Al is particularly well-suited to solve.

The Gap between Natural and Synthetic Biology

Al has largely influenced the biotechnology landscape by adapting techniques that have
been successful with LLMs [1]. However, these systems reflect a limiting bias: the bias
of nature itself. Indeed, large biological datasets reflect the proteins, DNA, and other
processes from nature, which introduces a gap in the generalization of models when
it comes to synthetic biology. Part of the problem stems from how these models are
trained, with conventional pre-training over arbitrary sequences inducing a generaliza-
tion with regard to sequence similarity. Consequently, synthetic biology applications
remain difficult for such Al models since the synthetic sequence of interest may vary
drastically in terms of sequence similarity to the training set of natural sequences. We
therefore propose to leverage the symbolic structures that remain consistent across the

xii A. Velasquez

natural and the synthetic: physics and logic. The former has been extensively studied in
areas like molecular dynamics and the latter has been studied through the lens of formal
languages. While conventional machine learning wisdom dictates that such symbolic
structures would implicitly be learned with enough data, we instead argue for integrat-
ing their explicit representations in the form of, say, PDEs and context-free grammars,
to improve data efficiency and generalization.

The Gap between Exploratory and Transformative Creativity

Imagine an Al whose capacity for creativity is so great that it can produce a body of work
worthy of a Nobel prize in chemistry, physiology, or medicine. One can view this type
of transformational creativity as an extreme form of out-of-distribution generalization.
Intuitively, the more creative the ideas are, the less likely they are to be reflected in the
training distribution of the underlying Al. However, there is an additional challenge for
such an Al in that transformational ideas often challenge or invalidate existing knowl-
edge. This challenge raises the question of how a creative Al can become so effective at
generalization that it can ultimately invalidate its own training data. Although it seems
like a contradiction in terms, a related type of reasoning is often referred to as infeasible
or nonmonotonic reasoning, which can take on a symbolic form [2], thereby providing
an avenue for the development of creative neurosymbolic Al for scientific discovery.

The Gap between Simulated and Real Autonomy

Real-world autonomy is limited by our inability to accurately model and simulate it
[3]. However, otherwise different-looking environments may nevertheless share some
underlying semantics. Thus, even though there are large sim-to-real gaps, the semantic
gap in terms of some shared semantic abstraction is low. We believe that finding that level
of abstraction where semantic similarity is high will provide the features along which
robust generalization is possible. We argue that more research is needed on how to extract
and leverage the explicit semantic abstractions that minimize the semantic gap between
these environments as opposed to attempting to implicitly minimize the sim-to-real gap,
which can be ineradicable in some cases. These explicit symbolic representations can
be used to define novel neurosymbolic Al for robust autonomy by incorporating diverse
environments and their shared semantic abstractions into the ML pipeline.

References

1. Wang, M., Zhang, Z., Bedi, A.S., Velasquez, A., et al.: A call for built-in biosecurity
safeguards for generative ai tools. Nat. Biotechnol. 43(6), 845-847 (2025)

2. Schapiro, S., Black, J., Varshney, L.R.: Transformational creativity in science: a
graphical theory. arXiv preprint arXiv:2504.18687 (2025)

https://arxiv.org/abs/2504.18687

Gaps in Generalization: Frontier Problems for Neurosymbolic Al xiii

3. Noorani, E., Serlin, Z., Price, B., Velasque, A.: From abstraction to reality: Darpa’s
vision for robust sim-to-real autonomy. AI Mag. 46(2) (2025)

Introduction to Section Formal Methods
for Intersymbolic Al

Formal Methods for Intersymbolic AI

Maurice H. ter Beek! @, Clemens Dubslaff>3 @, and Ina Schaefer?

I CNR-ISTI, Pisa, Italy
m.terbeek@isti.cnr.it
2 Eindhoven University of Technology, Eindhoven, The Netherlands
c.dubslaff@tue.nl
3 Centre for Tactile Internet with Human-in-the-loop (CeTI), Dresden, Germany
4 KIT, Karlsruhe, Germany
ina.schaefer@kit.edu

Abstract. A key benefit of symbolic (rule-based) artificial intelligence (Al) is its
formal rigor, which comes at the cost of formal modeling effort and computational
expensive reasoning. Differently, subsymbolic (datadriven) Al approaches usu-
ally outperform rigorous ones in performance but might lead to unsound results.
Intersymbolic Al is an emerging field in Al that aims to combine symbolic and
subsymbolic Al approaches, exploiting the benefits from both worlds. The scope
of the ISoLA 2025 track on “Formal Methods for Intersymbolic AI” is to gather
researchers and practitioners from formal methods and (sub)symbolic Al to estab-
lish the boundaries of intersymbolic Al and to investigate and clarify the role of
formal methods therein.

Keywords: Formal Methods for Al, Al-enabled Verification, Explainable Al

Motivation

In his keynote contribution during last year’s ISOLA [4], Platzer [9] called for the study
of the field that was coined intersymbolic artificial intelligence (Al). This field targets the
combination of symbolic Al, whose building blocks have inherent significance/meaning,
with subsymbolic AI, whose entirety creates significance/effect despite the fact that indi-
vidual building blocks escape meaning. Symbolic Al as implemented in rule-based sys-
tems, provides formal rigor, but this comes at the cost of increased modeling effort and
computationally expensive reasoning. Differently, subsymbolic Al approaches, which
typically use data-driven methods from statistical learning, are not as computationally
expensive as the rigorous ones but might lead to unsound results. The idea is that inter-
symbolic Al combines benefits from both symbolic and subsymbolic Al to increase
the overall effectiveness, rigor, and explainability of AI compared to either kind of
(sub)symbolic Al alone.

Instances of such combinations have already been established in the literature and
showcase the broad applicability of the intersymbolic Al concept. The probably most

https://orcid.org/0000-0002-2930-6367
https://orcid.org/0000-0001-5718-8276
https://orcid.org/0000-0002-7153-761X

Xviil M. H. ter Beek et al.

established instance of intersymbolic Al is in neurosymbolic Al, which focuses on the
combination of symbolic and neural network reasoning [1,10]. Other instances have also
been reflected in last year’s ISOLA track on “X-by-Construction Meets AI”, where sev-
eral contributions involved intersymbolic Al. For example, an intersymbolic program-
ming language was proposed, pairing logical primitives with training and prediction
based on subsymbolic methods [5]. Within the area of explainable AI (XAl), an incar-
nation of intersymbolic Al by means of logic-based XAI was addressed [7]. In this strand
of XAI, symbolic Al by means of logic reasoning is used to explain classifiers learned
using subsymbolic Al approaches. Such approaches are particularly important since the
operation of the most advanced Al models is often beyond the grasp of human decision
makers. Much work on XAl relies on measures to quantify feature importance such as
SHAP [6]. While such measures can give an indication of which are the relevant aspects
in Al components, they cannot rigorously explain them. In high-risk or safety-critical
domains, more formal approaches at different levels of abstraction are required to build
the much needed trust [8].

In formal methods, explainability is an ongoing topic of research, turning formal cor-
rectness proofs on decision-making processes into interpretable explications [2]. Sub-
symbolic approaches such as reinforcement learning may assume an underlying formal
model, e.g., by means of a Markov decision process (MDP). These models can be sub-
ject to formal methods, such as probabilistic model checking or explainability through
formal notions of causality [3].

Research Questions

All of the above mentioned areas only provide a glimpse of the many research questions
and research opportunities that are emerging from the combination of formal meth-
ods and Al, constituted in the field of intersymbolic AI: What is the role of formal
methods in intersymbolic AI? How can formal methods ensure rigorous explanations of
intersymbolic Al approaches? Is there a generic methodology for intersymbolic Al that
provides the benefits from both symbolic and subsymbolic Al approaches? What are the
lessons learned from applying formal methods for neurosymbolic Al or other forms of
intersymbolic AI?

Track Format

The track on “Formal Methods for Intersymbolic AI” (FMIAI) at AISoLA 2025 is
organized as a two-day event to foster collaboration and research in intersymbolic AL It
addresses researchers and practitioners from formal methods, symbolic or subsymbolic
Al, and established fields of intersymbolic Al such as neurosymbolic Al and XAI.
Topics accepted for presentation range from logicbased X Al, verification and explanation
of neural networks, and combinations of statistical model checking and reinforcement
learning, to large language and modal models in a variety of application domains.

Formal Methods for Intersymbolic Al Xix

Track participants have the opportunity to extend their presented contributions and
include aspects discussed during the conference, and submit their work for publication
in the forthcoming post-proceedings volume of AISoLA 2025.

References

1. Bader, S., Hitzler, P.: Dimensions of Neural-symbolic Integration - A Struc-
tured Survey. arXiv:cs/0511042 [cs.Al] (2005).https://doi.org/10.48550/arXiv.cs/
0511042

2. Baier, C., et al.: From verification to causality-based explications. In: Bansal, N.,
Merelli, E., Worrell, J. (eds.) Proceedings of the 48th International Colloquium on
Automata, Languages, and Programming (ICALP’21). LIPIcs, vol. 198, pp. 1:1-
1:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2021). https://doi.org/10.
4230/LIPICS.ICALP.2021.1

3. Baier, C., Piribauer, J., Ziemek, R.: Foundations of probability-raising causality in
Markov decision processes. Log. Methods Comput. Sci. 20(1), 4:1-4:66 (2024).
https://doi.org/10.46298/LMCS-20(1:4)2024

4. ter Beek, M.H., Cleophas, L., Dubslaff, C., Schaefer, I.: X-by-construction meets
Al In: Margaria, T., Steffen, B. (eds.) Proceedings of the 12th International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Validation:
Software Engineering Methodologies (ISoLA’24). LNCS, vol. 15222, pp. 155-161.
Springer (2024). https://doi.org/10.1007/978-3-031-75387-9

5. Belmonte, G., Bussi, L., Ciancia, V., Latella, D., Massink, M.: Towards hybrid-Al
in imaging using VoxLogicA. In: Margaria, T., Steffen, B. (eds.) Proceedings of the
12th International Symposium on Leveraging Applications of Formal Methods, Ver-
ification and Validation: Software Engineering Methodologies (ISoOLA’24). LNCS,
vol. 15222, pp. 205-221. Springer (2024). https://doi.org/10.1007/978-3-031-753
87-9

6. Lundberg, S.M., Lee, S.: A Unified approach to interpreting model predictions. In:
Guyon, I., et al. (eds.) Proceedings of the 31st International Conference on Neu-
ral Information Processing Systems (NIPS’17). pp. 4768-4777. Curran Associates
Inc. (2017). https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76
c43dfd28b67767-Abstract.html

7. Marques-Silva, J.: Logic-based explainability: past, present & future. In: Margaria,
T., Steffen, B. (eds.) Proceedings of the 12th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation: Software Engineer-
ing Methodologies (ISoLA’24). LNCS, vol. 15222, pp. 181-204. Springer (2024).
https://doi.org/10.1007/978-3-031-75387-9 12

8. Mienye, I.D., et al.: A survey of explainable artificial intelligence in healthcare:
Concepts, applications, and challenges. Inform. Med. Unlocked 51, 101587 (2024).
https://doi.org/10.1016/j.imu.2024.101587

9. Platzer, A.: Intersymbolic Al: Interlinking symbolic AI and subsymbolic Al. In:
Margaria, T., Steffen, B. (eds.) Proceedings of the 12th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation: Software

https://arxiv.org/abs/cs/0511042
https://doi.org/10.48550/arXiv.cs/0511042
https://doi.org/10.48550/arXiv.cs/0511042
https://doi.org/10.4230/LIPICS.ICALP.2021.1
https://doi.org/10.4230/LIPICS.ICALP.2021.1
https://doi.org/10.46298/LMCS-20(1:4)2024
https://doi.org/10.1007/978-3-031-75387-9
https://doi.org/10.1007/978-3-031-75387-9
https://doi.org/10.1007/978-3-031-75387-9
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1007/978-3-031-75387-9
https://doi.org/10.1016/j.imu.2024.101587

XX Maurice H. ter Beek et al.

Engineering Methodologies (ISoLA’24). LNCS, vol. 15222, pp. 162—180. Springer
(2024). https://doi.org/10.1007/978-3-031-75387-9

10. Sheth, A.P., Roy, K., Gaur, M.: Neurosymbolic artificial intelligence (why, what, and
how). IEEE Intell. Syst. 38(3), 56—62 (2023). https://doi.org/10.1109/MIS.2023.326
8724

https://doi.org/10.1007/978-3-031-75387-9
https://doi.org/10.1109/MIS.2023.3268724
https://doi.org/10.1109/MIS.2023.3268724

Contents

Invited Keynotes

Extended Abstract: Will Embodied AI Become Sentient? 3
Edward A. Lee

AT Assisted Programming

Al Assisted Programming (AISoLA 2025 Track Introduction) 11
Wolfgang Ahrendt, Bernhard K. Aichernig, and Klaus Havelund

LLM-Based Property-Based Test Generation for Guardrailing

Cyber-Physical Systems 18
Khashayar Etemadi, Marjan Sirjani, Mahshid Helali Moghadam,
Per Strandberg, and Paul Pettersson

RAG and Agentic Assistant: A Combined Approach 47
Moez Ben Hajhmida and Edward A. Lee

CASP: An Evaluation Dataset for Formal Verification of CCode 63
Niclas Hertzberg, Merlijn Sevenhuijsen, Liv Kdareborn, and Anna Lokrantz

A Voice-Enabled Query Framework for Systems Engineering Artefacts 83
Lennart Landt, Martin Leucker, and Carsten Burchardt

Integrating LLMs with QC-OpenDRIVE: Ensuring Normative Correctness
in Autonomous Driving Scenariosiiiiiiiiii 103
Julian Miiller, Thies de Graaff, and Eike Mohlmann

AGREE-Dog Copilot: A Neuro-Symbolic Approach to Enhanced
Model-Based Systems Engineeringc.oooiiiiiiiiiiiiii... 117
Amer Tahat, Isaac Amundson, David Hardin, and Darren Cofer

Responsible and Trusted AI: An Interdisciplinary Perspective

Responsible and Trusted Al: An Interdisciplinary Perspective (2025) 141
Sophie Kerstan, Kevin Baum, Thorsten Helfer, Markus Langer,
Eva Schmidt, Andreas Sesing-Wagenpfeil, and Timo Speith

xxii Contents

Justifications for Democratizing Al Alignment and Their Prospects 146
Andpre Steingriiber and Kevin Baum

On the Complexities of Testing for Compliance with Human Oversight
Requirements in Al Regulationooiiiiiiiiiiiiiiiiina... 160
Markus Langer, Veronika Lazar, and Kevin Baum

Supporting a SOTIF Safety Argument by Activation Pattern Monitoring

with Statistical GUaranteesottt 170
Riidiger Ehlers, Loich Kamdoum Deameni, and Nikita Maslov

Author Index 187

Invited Keynotes

®

Check for
updates

Extended Abstract: Will Embodied Al
Become Sentient?

Edward A. Lee®

University of California, Berkeley, USA
eal@berkeley.edu

Abstract. This extended abstract outlines technical reasons that
embodiment qualitatively changes the nature of AI agents and poten-
tially enables sentience. Specifically, I argue that knowledge can be purely
subjective, not externally observable, and that sentience is this form of
knowledge. I further argue that first-person interaction can gain knowl-
edge that no objective observation can gain. And finally, I argue that the
introduction of feedback through the physical world enables distinguish-
ing self from non-self, an essential distinction for sentience. Putting all
these together, I conclude that embodied AI agents may in fact become
sentient, but also that we can never know for sure whether this has hap-
pened.

1 Embodied Al

T have previously argued [5,6] that the deep neural networks that underlie today’s
large-language models (LLMs) more closely resemble Kahneman’s “system 1,
the quick intuitive thinking that is not subject to conscious control, than “system
2,7 the slow, deliberate, and controlled thinking that leverages rationality and
logic [4]. Like humans, they have “bounded rationality” [13], i.e., limited ability
to reason logically and limited short-term memory. As a consequence, their real
strengths are not in logical reasoning, but in pattern recognition and prediction.

Embodied cognition is a multidisciplinary thesis that argues that the mind
is inseparable from the body [1,14]. Specifically, it argues that the mind is not a
separate entity, but rather an emergent property of the body and its interaction
with the environment. This is a radical departure from the traditional view of
the mind as an objective property of the brain, a computation going on in the
skull. Instead, the mind is the interaction of the body, including the brain, with
its environment.

Sentience is the ability to experience feelings and sensations. It is valenced
experience, experience that is positive or negative, good or bad. Sentience is
subjective, not objective. It is not observable from the outside, measurable, or
quantifiable. Sentience depends on embodiment, not just observation.

Today’s LLMs have relatively little interaction with the physical world. They
mostly interact with humans through the internet, but lack sensors and actu-
ators that directly interact with their physical environment. But this is chang-
ing as Al technology is integrated into physical robots. Mon-Williams et al. [9]

© The Author(s) 2026
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 3-7, 2026.
https://doi.org/10.1007 /978-3-032-07132-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_1&domain=pdf
https://doi.org/10.1007/978-3-032-07132-3_1

4 E. A. Lee

have shown that embodied large language models can complete complex tasks in
unpredictable environments. Here, I go further and explore whether such embod-
iment can lead to sentience.

Embodiment is not just about sensors and actuators. It requires bidirectional
feedback. The sentient entity not only reacts to sensations, but also acts to sense.
A neural network can learn to correlate its physical actions with consequent sen-
sor inputs, thereby gaining the ability to distinguish self from non-self. Sensory
input that depends on actuator outputs is not the same as sensory input coming
from the non-self environment. Sentience requires such a distinction.

Here, I give three technical reasons that embodiment qualitatively changes
the nature of Al agents and potentially enables sentience. These technical reasons
are explained in much more detail in chapters 10-12 of my Coeveolution book [7].
First, I argue that knowledge can be purely subjective, not externally observ-
able. Second, I argue that first-person interaction can gain knowledge that no
objective observation can gain. Third, I argue that the introduction of feedback
through the physical world enables distinguishing self from non-self, an essential
distinction for sentience. Putting all these together, I conclude that embodied
Al agents may in fact become sentient, but I also give technical reasons that we
can never know for sure whether this has happened.

2 Subjective Knowledge

Dodig-Crnkovic [2] argues for a relational epistemology, where knowledge is not
objective, but rather a function of the observer’s relationship to the observed.
This is a radical departure from the traditional scientific goal of knowledge
acquired through purely objective observation. Can this be true? Can knowl-
edge exist that is purely subjective, not externally observable?

A rather technical Turing-award winning result, zero-knowledge proofs [3],
shows definitively that knowledge can be purely subjective, not externally
observable. Zero-knowledge proofs provide a procedure for proving a statement
without giving the recipient of the proof the ability to prove the same statement.
Knowledge of the truth of the statement becomes subjective, held only by the
recipient of the proof. For a delightful explanation of this result, see Quisquater
et al. [12].

An interesting property of zero-knowledge proofs is that they do not really
give definitive proofs, in the sense of formal logic, but rather give evidence of
the truth of the statement. The recipient of the proof can, through interaction,
build an arbitrary degree of confidence in the truth of the statement, short of
absolute certainty.

Sentience is subjective knowledge. Zero-knowledge proofs provide a formal
argument that knowledge can be purely subjective, not externally observable,
so we don’t have to fall back on non-technical arguments, intuition, or spiritual
beliefs.

Will Embodied AI Become Sentient? 5

3 First-Person Interaction

Milner [8] shows that two state machines can be indistinguishable from each other
by any objective observer, and yet exhibit different behavior when interacted
with. In particular, two machines that “simulate” each other will look identical
to any objective observer, but can exhibit different behavior when interacted
with. Milner introduced a “bisimulation” relation as a stronger form of equiva-
lence than mutual simulation. If two machines are bisimilar, then no observation
or interaction can distinguish them; if they are only mutually similar, then
no observation can distinguish them, but they may be distinguishable through
interaction. This shows that first-person interaction can gain knowledge that no
objective observation can gain. The first-person observer can see the difference
between the two machines, but the objective observer cannot.

Sentience, similarly, is not observable from the outside. Humans, by inter-
acting with one another, however, obtain evidence of sentience in each other.
Empathy arises from such first-person interaction, which explains why humans
find it more difficult to feel empathy for remote others.

The “first person” aspect of this interaction is essential. A first-person inter-
action depends on the observer’s ability to distinguish self from non-self, which
brings us to the final technical reason that embodiment enables sentience.

4 Feedback

The introduction of feedback through the physical world enables distinguishing
self from environment. An agent that acts on the physical world and perceives
through its sensors effects from that action can correlate its actions with its
sensor inputs, thereby gaining the ability to distinguish self from non-self.

In an animal, a motor efference is a signal sent to the muscles to act. An
efference feedback mechanism has been identified in even the most primitive
animal nervous systems, where the motor efference is fed back into the sensory
system, which learns to predict the sensations that will result from the action.
Deviations from the predicted sensations are used to adjust the action, but also
to identify components in the sensation that arise from the environment rather
than the self. This provides even the most primitive organisms the ability to
distinguish self from non-self. Sentience requires this ability to distinguish self
from non-self. For an experience to have valence, there must be a self for whom
the experience is positive or negative.

In more complex organisms, such as humans, efference feedback gives rise
to the ability to reason about causation. The organism learns that its actions
have effects, and that these effects can be predicted. This allows the organism
to reason about some of the causes of its sensations, specifically those that are
caused by its own actions.

Pearl [10,11], another Turing-award winner, argues that it is impossible to
reason about causation objectively. He uses statistical methods to show that the
only way to reason about causation is to use a causal model, which is a presup-
posed model of the causal relationships between the variables in the system. This

6 E. A. Lee

model is not objective, but rather a subjective representation of the observer’s
understanding of the system. This is the basis of the ability to reason about
causation.

Once sensations become valenced, ethical concerns arise. If the machines
acquire sentience, then it may become reasonable to hold them accountable
for their actions. It may also become important to give their “feelings” some
consideration.

5 Conclusion

Putting all these together, I conclude that embodied AI agents may in fact
become sentient, but also that we can never know for sure whether this has
happened. No objective observation will be sufficient. Subjective interaction
may give evidence of sentience, but doubts will remain. As with zero-knowledge
proofs, subjective, first-person interaction may build confidence, but not cer-
tainty.

References

1. Clark, A.: Supersizing the Mind: Embodiment, Action, and Cognitive Extension.
Oxford University Press, Oxford (2008)

2. Dodig-Crnkovic, G.: Observers as agents: Relational epistemology from physics to
ecology. Qeios (2025). https://doi.org/10.32388/TLFZ3V

3. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186—208 (1989). https://doi.org/10.1137/
0218012

4. Kahneman, D.: Thinking Fast and Slow. Farrar, Straus and Giroux, New York
(2011)

5. Lee, E.A.: What can deep neural networks teach us about embodied bounded
rationality. Front. Psychol. 25 (2022). https://doi.org/10.3389/fpsyg.2022.761808

6. Lee, E.A.: Certainty vs. intelligence. In: AISoLA: Bridging the Gap Between Al
and Reality. LNCS, vol. 15217. Springer (2024). https://doi.org/10.1007/978-3-
031-75434-0_2

7. Lee, E.A.: The Coevolution: The Entwined Futures of Humans and
Machines. MIT Press, Cambridge (2020). https://ptolemy.berkeley.edu/ eal/
books/TheCoevolution.pdf

8. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

9. Mon-Williams, R., Li, G., Long, R., Du, W., Lucas, C.G.: Embodied large lan-
guage models enable robots to complete complex tasks in unpredictable environ-
ments. Nature Mach. Intell. 7, 592-601 (2025). https://doi.org/10.1038 /542256~
025-01005-x

10. Pearl, J.: Causality: Models, Reasoning, and Inference, 2nd edn. Cambridge Uni-
versity Press, Cambridge (2009)

11. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect.
Basic Books, New York (2018)

https://doi.org/10.32388/TLFZ3V
https://doi.org/10.32388/TLFZ3V
https://doi.org/10.32388/TLFZ3V
https://doi.org/10.32388/TLFZ3V
https://doi.org/10.32388/TLFZ3V
https://doi.org/10.32388/TLFZ3V
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.3389/fpsyg.2022.761808
https://doi.org/10.3389/fpsyg.2022.761808
https://doi.org/10.3389/fpsyg.2022.761808
https://doi.org/10.3389/fpsyg.2022.761808
https://doi.org/10.3389/fpsyg.2022.761808
https://doi.org/10.3389/fpsyg.2022.761808
https://doi.org/10.3389/fpsyg.2022.761808
https://doi.org/10.3389/fpsyg.2022.761808
https://doi.org/10.1007/978-3-031-75434-0_2
https://doi.org/10.1007/978-3-031-75434-0_2
https://doi.org/10.1007/978-3-031-75434-0_2
https://doi.org/10.1007/978-3-031-75434-0_2
https://doi.org/10.1007/978-3-031-75434-0_2
https://doi.org/10.1007/978-3-031-75434-0_2
https://doi.org/10.1007/978-3-031-75434-0_2
https://doi.org/10.1007/978-3-031-75434-0_2
https://doi.org/10.1007/978-3-031-75434-0_2
https://doi.org/10.1007/978-3-031-75434-0_2
https://ptolemy.berkeley.edu/~eal/books/TheCoevolution.pdf
https://ptolemy.berkeley.edu/~eal/books/TheCoevolution.pdf
https://ptolemy.berkeley.edu/~eal/books/TheCoevolution.pdf
https://ptolemy.berkeley.edu/~eal/books/TheCoevolution.pdf
https://ptolemy.berkeley.edu/~eal/books/TheCoevolution.pdf
https://ptolemy.berkeley.edu/~eal/books/TheCoevolution.pdf
https://ptolemy.berkeley.edu/~eal/books/TheCoevolution.pdf
https://ptolemy.berkeley.edu/~eal/books/TheCoevolution.pdf
https://doi.org/10.1038/s42256-025-01005-x
https://doi.org/10.1038/s42256-025-01005-x
https://doi.org/10.1038/s42256-025-01005-x
https://doi.org/10.1038/s42256-025-01005-x
https://doi.org/10.1038/s42256-025-01005-x
https://doi.org/10.1038/s42256-025-01005-x
https://doi.org/10.1038/s42256-025-01005-x
https://doi.org/10.1038/s42256-025-01005-x
https://doi.org/10.1038/s42256-025-01005-x

Will Embodied AI Become Sentient? 7

12. Quisquater, J.-J., et al.: How to explain zero-knowledge protocols to your children.
In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 628-631. Springer, New
York (1990). https://doi.org/10.1007/0-387-34805-0 60

13. Simon, H.A.: Bounded rationality in social science: today and tomorrow. Mind
Soc. 1, 25-39 (2000)

14. Thelen, E.: Grounded in the world: developmental origins of the embodied mind.
Infancy 1(1), 3-28 (2000)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/0-387-34805-0_60
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

AI Assisted Programming

®

Check for
updates

Al Assisted Programming (AISoLA 2025
Track Introduction)

Wolfgang Ahrendt!?, Bernhard K. Aichernig®, and Klaus Havelund*®)

! Chalmers University of Technology, Gothenburg, Sweden
ahrendt@chalmers.se
2 University of Gothenburg, Gothenburg, Sweden
3 Institute for Formal Models and Verification, Johannes Kepler University Linz,
Linz, Austria
bernhard.aichernig@jku.at
4 NASA Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, USA

klaus.havelund@jpl.nasa.gov

Abstract. This is an introduction to the track ‘Al Assisted Program-
ming’ (AIAP), organized at the third instance of the AISoLA conference
during the period November 1-5, 2025. AISoLA as a whole aims to study
opportunities and risks of late advances of AI. The motivation behind
the ATAP track in particular, which also takes place the third time, is the
emerging use of large language models for the construction and analysis
of software artifacts. An overview of the track presentations is provided.

1 Introduction

Neural program synthesis, using Large Language Models (LLMs) which are
trained on open source code, have quickly become a popular addition to the
software developer’s toolbox. LLMs like, for instance, OpenAI’s ChatGPT [9],
Anthropic’s Claude [10], Google’s Gemini [11], xAT’s Grok [12]|, Meta’s LLaMA
[13]; and various LLM enhanced IDEs such as Copilot [14], Cursor [15], and
Windsurf [16], can generate code in many different programming languages from
natural language requirements. This opens up for fascinating new perspectives,
such as increased productivity and accessibility of programming also for non-
experts. However, neural systems do not come with guarantees of producing
correct, safe, or secure code. They produce the most probable output, based
on the training data, and there are countless examples of coherent but erro-
neous results. Even alert users fall victim to automation bias: the well studied
tendency of humans to be over-reliant on computer generated suggestions. The
area of software development is no exception to this automation bias.

The research performed by this author was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

© The Author(s) 2026

B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 11-17, 2026.
https://doi.org/10.1007/978-3-032-07132-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_2&domain=pdf
https://doi.org/10.1007/978-3-032-07132-3_2

12 W. Ahrendt et al.

The track Al Assisted Programming at AISoLA 2025 is the third of its kind,
after the first instance in 2023 [2] and the second instance in 2024 [1]. It is
devoted to discussions and exchange of ideas on questions like: What are the
capabilities of this technology when it comes to software development? What
are the limitations? What are the challenges and research areas that need to
be addressed? How can we facilitate the rising power of code co-piloting while
achieving a high level of correctness, safety, and security? What does the future
look like? How should these developments impact future approaches and tech-
nologies in software development and quality assurance? What is the role of
models, tests, specification, verification, and documentation in conjunction with
code co-piloting? Can quality assurance methods and technologies themselves
profit from the new power of LLMs?

2 Contributions

The above questions are taken up by the participants of the track in eleven talks.
Six talks [3-8] are associated with regular papers. The remaining five talks do
not have associated papers in the proceedings. Presenters have been offered to
publish regular papers in subsequent post-conference proceedings.

2.1 Talks with Papers in the Proceedings

Khashayar Etemadi, Marjan Sirjani, Mahshid Helali Moghadam, Per Strand-
berg, and Paul Pettersson (LLM-based Property-based Test Generation for
Guardrailing Cyber-Physical Systems [3]) propose an automated method for
guardrailing cyber-physical systems (CPSs) using property-based tests (PBTs)
generated by LLMs. Their approach uses an LLM to extract system properties
from CPS code and documentation, then generates PBTs to verify these proper-
ties both at design time (pre-deployment testing) and at run time (monitoring
to prevent unsafe states). They implement the method in a tool called ChekProp
and evaluate it on preliminary case studies, measuring the generated PBTs’ rele-
vance, executability, and effectiveness in covering input space partitions. Results
indicate that LLM-generated PBTs offer a promising direction for CPS safety
assurance.

Moez Ben Hajhmida and Edward A. Lee (RAG and Agentic Assistant: A
Combined Approach [4]) present a hybrid approach for translating Lingua Franca
(LF) programs that use the C target into equivalent LF programs using the
Python target. LF is a coordination language for reactor-based architectures,
where individual actors are programmed in popular programming languages
including C and Python. Converting 150 C regression tests into according Python
versions, the method combines Retrieval-Augmented Generation (RAG), which
retrieves similar LF-Python examples to guide code LLMs, with an agentic Al
assistant in the Cursor IDE to automate syntax correction, refactoring, and
code standardization. The results show that RAG greatly improves small-model

AT Assisted Programming 13

performance, and the assistant further increases the proportion of syntactically
correct and executable translations.

Niclas Hertzberg, Merlijn Sevenhuijsen, Liv Kareborn, and Anna Lokrantz
(CASP: An FEvaluation Dataset for Formal Verification of C code [5]) present
CASP, a benchmark dataset for evaluating LLMs and other automated tools on
the generation and verification of C code against formal specifications. CASP is
built from The Stack v1 and v2—large, permissively licensed source code reposi-
tories from the BigCode project—by extracting self-contained C functions anno-
tated with ANSI/ISO C Specification Language (ACSL), verifying them with
the Frama-C framework, and repairing faulty files using automated and man-
ual methods. The resulting 506 function—specification pairs enable reproducible
benchmarking for tasks such as generating code from specifications, deriving
specifications from code, and repairing non-verifying pairs, supporting research
toward more reliable, formally verified software systems.

Lennart Landt, Martin Leucker, and Carsten Burchardt (A Voice-Enabled
Query Framework for Systems Engineering Artefacts [6]) propose a voice-enabled
Al framework to improve comprehension and exploration of Model-Based Sys-
tems Engineering (MBSE) models, particularly for newcomers and interdisci-
plinary teams. While MBSE, often implemented in SysML, supports complex,
collaborative design, it has a steep learning curve. The presented framework
employs Al avatars representing different engineering roles, enabling natural-
language voice queries about system artifacts. A processing pipeline converts
MBSE model data into a machine-readable form for LLMs, which generate con-
textual, role-specific responses. The prototype supports a multi-turn dialogue,
helping users to navigate and interpret models, fostering collaboration, and low-
ering barriers to effective MBSE adoption.

Julian Miiller, Thies de Graaff, and Eike Mohlmann (Integrating LLMs
with QC-OpenDRIVE: Ensuring Normative Correctness in Autonomous Driving
Scenarios [7]) investigate integrating LLMs with QC-OpenDRIVE to generate
OpenDRIVE road network files that are both syntactically valid and compliant
with domain rules for autonomous driving scenario validation. While LLMs can
easily produce diverse road layouts, they often break normative requirements
such as a rule which mandates geometric continuity between connected roads—
their endpoints, tangents, and curvature must align seamlessly. The proposed
approach adds a feedback loop: QC-OpenDRIVE validates LLM output, flags
semantic and normative errors, and the LLM iteratively corrects them. Com-
bining this loop with Retrieval-Augmented Generation or reasoning steps yields
valid results, demonstrating the value of domain-specific validation.

Amer Tahat, Isaac Amundson, David Hardin, and Darren Cofer (AGREE-
Dog Copilot: A Neuro-Symbolic Approach to Enhanced Model-Based Systems
Engineering [8]) present AGREE-Dog, an open-source generative Al copilot
for the AGREE compositional reasoning tool, aimed at making model-checking
counterexamples easier to understand and resolve. Large, tabular counterexam-
ples can overwhelm engineers, especially newcomers. AGREE-Dog, integrated
into the OSATE IDE, uses LLMs to explain violations, suggest repairs, and

14 W. Ahrendt et al.

automate DevOps and ProofOps steps—such as re-running analyses and man-
aging updated models—so users can iterate quickly. A context-selection and
memory system tracks evolving artifacts and past interactions, while new struc-
tural and temporal metrics measure how much manual input is required. In 13
fault-injection scenarios, AGREE-Dog achieved rapid, accurate counterexample
repair with minimal human effort.

2.2 Talks Without Papers in the Proceedings

Lenz Belzner, Thomas Gabor, and Martin Wirsing (AI Engineering vs. Vibe-
Coding: a Strategic Look at AI-Assisted Software Engineering) offer a strategic
perspective on the rise of Al-assisted software engineering, contrasting its trans-
formative potential with the risks of “vibe coding”—code that appears functional
but lacks robust architecture, documentation, and maintainability. They note
that Al agents can now assist across the software lifecycle, from requirements
analysis and design to automated code and test generation, promising gains in
productivity, speed, and complexity management. However, without deliberate
safeguards, Al-generated systems risk technical debt, security vulnerabilities,
and reduced long-term stability. The talk explores how to harness AI’s advan-
tages while preserving quality, testability, and security, ensuring AI becomes a
tool for strategic excellence.

Itay Cohen, Klaus Havelund, and Doron Peled (Synthesizing Runtime Veri-
fication Monitors with LLMs) investigate using LLMs to synthesize runtime ver-
ification (RV) monitors directly from natural-language specifications, extending
beyond narrowly defined formalisms like linear temporal logic. Their tool engages
in structured interaction with an LLM to interpret rich, often ambiguous con-
structs from design documents, generating multiple plausible interpretations and
refining them with user feedback. This process builds a reusable library of tem-
poral constructs that can be automatically translated into monitor code. By
mediating LLM interactions through the tool, the approach enhances expressive
power, better aligns with original intent, and improves the trustworthiness and
reliability of generated monitors for verification purposes.

Lucas Cordeiro (AI-Assisted Formal Verification: Towards Fast, Accessible,
and Rigorous Software Verification) presents four Al-formal verification integra-
tions. One approach combines large language models with bounded model check-
ing to automatically derive formal properties from natural-language require-
ments, demonstrated on industrial cyber-physical systems and supporting richer
logical expressiveness while reducing false positives. Another uses a lightweight
AT model for real-time classification of potential vulnerabilities in C, C++, Java,
Python, Kotlin, and Solidity. A third introduces an autonomous repair frame-
work that detects flaws such as buffer overflows and pointer dereference errors
in C/C++ code, generates fixes, and validates them formally. Finally, a loop
summarization technique mitigates state-space explosion in verifying programs
with complex or nested loops.

Joao F. Ferreira (Techniques and Experiments in Retrieval-Augmented Neu-
ral Theorem Proving) explores the potential of large language models for auto-

AT Assisted Programming 15

mated theorem proving, tracing developments from early retrieval-augmented
approaches to recent reinforcement learning experiments. The talk first describes
Rango, a system that dynamically adapts to the current proof state by retrieving
and applying relevant lemmas and prior proofs. The talk then presents ongoing
work using Group Relative Policy Optimization (GRPO) to train models for
improved reasoning performance. The talk addresses the challenges of integrat-
ing retrieval, learning, and logical inference, reports observed performance gains,
and outlines future research directions toward combining these components to
advance neural theorem proving capabilities.

Jie He, Vincent Theo Willem Kenbeek, Zhantao Yang, Meixun Qu, Ezio
Bartocci, Dejan Nickovié, and Radu Grosu (Explaining Timing Diagrams with
LLMs) present a multimodal approach to assist engineers in understanding com-
plex timing diagrams (TDs) originating from third-party sources, commonly
encountered during hardware design and verification. This approach offers an
interactive visual question-answering interface, enabling users to upload TDs
and ask targeted questions about signal behavior, timing constraints, and pro-
tocol correctness.

Alexandra Mendes (LLM-Assisted Program Correctness: Generating Lem-
mas, Assertions, and Repairs in Dafny) examines how large language mod-
els can assist in overcoming common bottlenecks in formal verification with
Dafny. While Dafny provides strong correctness guarantees, verification often
requires developers to supply helper assertions, loop invariants, and lemmas,
a process that is both time-consuming and error-prone. The talk presents two
applications of LLMs: generating missing assertions and lemmas, and perform-
ing specification-guided automated program repair. It also discusses observed
strengths and limitations of LLMs in this context, emphasizing how combin-
ing symbolic reasoning with model-generated suggestions can improve efficiency,
reduce manual effort, and make formal verification more accessible to a broader
range of developers.

Jonas Schiffl, Samuel Teuber, and Bernhard Beckert (Formally Verified LLM
Program Synthesis for Solidity Smart Contracts) present an approach to auto-
matically synthesize formally verified Solidity smart contracts using LLMs within
the Scar model-driven verification-based development process. In Scar, develop-
ers first create an abstract model with security and correctness properties, from
which a formally specified code skeleton is generated. Traditionally, developers
manually implement this skeleton and verify it against the specification. Here,
an LLM generates the implementation directly from the specification, followed
by automated formal verification using Certora and solc-verify. If verification
succeeds, the code is guaranteed correct. The method is evaluated on multiple
use cases, comparing both verification tools and reporting practical insights.

Shivkumar Shivaji, Natalia Lobakhina, Lucas Cordeiro, and Klaus Havelund
(LLM-Assisted Program Translation and Bounded Model Checking for Formal
Verification of Python Code) present a framework for verifying Python programs
by combining large language model-based program translation with bounded
model checking. An RLHF-enhanced LLM translates Python code into seman-

16 W. Ahrendt et al.

tically equivalent C, which is then analyzed using the ESBMC bounded model
checker to verify safety properties through intelligent path exploration. This app-
roach bridges high-level Python development with rigorous formal verification.
Supporting formal verification of Python allows the popular Python language
to be used as a modeling language instead of traditional formal specification
languages, which usually have steep learning curves and have limited expressive-
ness. This is demonstrated on a model of an autonomous Lunar rover control
system.

Cheng Wang, Florian Lorber, Edi Muskardin, and Bernhard Aichernig (For-
mal Verification of Al-based Code Generation in Model-Driven Development)
propose a formal evaluation method for LLM code generation, using finite-state
machines as ground truth specifications. These models are automatically trans-
lated into natural language descriptions and provided to an LLM, which gener-
ates Python programs intended to match the original behavior. The generated
programs are then analyzed with active automata learning (using the AALpy
automata learning library) to infer their input—output behavior and compare it
against the ground truth, producing a similarity score. The method also supports
iterative repair of faulty code using counterexamples. Initial experiments with
four popular LLMs on randomly generated Mealy machines reveal differences in
accuracy and robustness.

3 Conclusion

The presentations in this track cover the use of LLMs in the context of all
phases of software development, including requirements, designs, coding, testing
and verification. This includes such topics as LLM support for specification gen-
eration, test case generation, runtime verification, formal verification, automated
repair, translation of high-level design models and specifications to code, trans-
lation between programming languages, human comprehension of models, and
benchmarks. This covers an interesting spectrum of Al assisted programming.
We hope that this track, with its talks, discussions, and papers, contributes to
a future of Al assisted programming which exploits the strengths of arising Al
technologies while mitigating the corresponding risks. We are convinced that
many communities within computing have a lot to contribute to such a devel-
opment, and look forward to future initiatives and contributions towards this
aim.

References

1. Ahrendt, W., Aichernig, B., Havelund, K.: ATl assisted programming. In: Steffen,
B. (ed.) AISoLA 2024 - Bridging the Gap Between AI and Reality. LNCS, vol.
15217, pp. 101-106. Springer (2025)

2. Ahrendt, W., Havelund, K.: AT assisted programming. In: Steffen, B. (ed.) AISoLA
2023 - Bridging the Gap Between AI and Reality, vol. 14380, pp. 351-354. LNCS.
Springer (2024)

10.
11.
12.
13.
14.
15.
16.

AT Assisted Programming 17

Etemadi, K., Sirjani, M., Moghadam, M.H., Strandberg, P., Pettersson, P.: LLM-
based property-based test generation for guardrailing cyber-physical systems. In:
Steffen, B. (ed.) AISoLA 2025. LNCS, vol. 16220, pp. xx—yy. Springer, Cham (2025)
Hajhmida, M.B., Lee, E.A.: RAg and agentic assistant: a combined approach. In:
Steffen, B. (ed.) AISoLA 2025. LNCS, vol. 16220, pp. xx—yy. Springer, Cham (2025)
Hertzberg, N., Sevenhuijsen, M., Kareborn, L., Lokrantz, A.: CASP: an evaluation
dataset for formal verification of C code. In: Steffen, B. (ed.) AISoLA 2025. LNCS,
vol. 16220, pp. xx—yy. Springer, Cham (2025)

Landt, L., Leucker, M., Burchardt, C.: A voice-enabled query framework for sys-
tems engineering artefacts. In: Steffen, B. (ed.) AISoLA 2025. LNCS, vol. 16220,
pp. xx—yy. Springer, Cham (2025)

Miiller, J., de Graaff, T., MOhlmann, E.: Integrating LLMs with QC-OpenDRIVE:
ensuring normative correctness in autonomous driving scenarios. In: Steffen, B.
(ed.) AISoLA 2025. LNCS, vol. 16220, pp. xx—yy. Springer, Cham (2025)

Tahat, A., Amundson, 1., Hardin, D., Cofer, D.: AGREE-Dog Copilot: a neuro-
symbolic approach to enhanced model-based systems engineering. In: Steffen, B.
(ed.) AISoLA 2025. LNCS, vol. 16220, pp. xx—yy. Springer, Cham (2025)
ChatGPT LLMs (OpenAl). https://chat.openai.com

Claude LLMs (Anthropic). https://claude.ai

Gemini LLMs (Google). https://gemini.google.com

Grok LLMs (xAI). https://grok.com

LLaMA LLMs (Meta). https://www.llama.com

Copilot IDE. https://copilot.github.com

Cursor IDE. https://cursor.com

Windsurf IDE. https://windsurf.com

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://chat.openai.com
https://chat.openai.com
https://chat.openai.com
https://chat.openai.com
https://claude.ai
https://claude.ai
https://claude.ai
https://gemini.google.com
https://gemini.google.com
https://gemini.google.com
https://gemini.google.com
https://grok.com
https://grok.com
https://grok.com
https://www.llama.com
https://www.llama.com
https://www.llama.com
https://www.llama.com
https://copilot.github.com
https://copilot.github.com
https://copilot.github.com
https://copilot.github.com
https://cursor.com
https://cursor.com
https://cursor.com
https://windsurf.com
https://windsurf.com
https://windsurf.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

LLM-Based Property-Based Test
Generation for Guardrailing
Cyber-Physical Systems

Khashayar Etemadi'>®) @, Marjan Sirjani'®, Mahshid Helali Moghadam?®®,
Per Strandberg?®, and Paul Pettersson!

! Maélardalens University, Vésteras, Sweden
{marjan.sirjani,paul.pettersson}@mdu.se
2 ETH Zurich, Zurich, Switzerland
ketemadi@ethz.ch
3 (Cloud and Embedded Platform, Traton AB, S6dertilje, Sweden
mahshid.helali.moghadam@scania.com
1 Westermo Network Technologies AB, Visteras, Sweden
per.strandberg@westermo.com

Abstract. Cyber-physical systems (CPSs) are complex systems that
integrate physical, computational, and communication subsystems. The
heterogeneous nature of these systems makes their safety assurance chal-
lenging. In this paper, we propose a novel automated approach for
guardrailing cyber-physical systems using property-based tests (PBTs)
generated by Large Language Models (LLMs). Our approach employs an
LLM to extract properties from the code and documentation of CPSs.
Next, we use the LLM to generate PBTs that verify the extracted prop-
erties on the CPS. The generated PBTs have two uses. First, they are
used to test the CPS before it is deployed, i.e., at design time. Secondly,
these PBTs can be used after deployment, i.e., at run time, to monitor
the behavior of the system and guardrail it against unsafe states. We
implement our approach in CHEKPROP and conduct preliminary exper-
iments to evaluate the generated PBTs in terms of their relevance (how
well they match manually crafted properties), executability (how many
run with minimal manual modification), and effectiveness (coverage of
the input space partitions). The results of our experiments and evalu-
ation demonstrate a promising path forward for creating guardrails for
CPSs using LLM-generated property-based tests.

Keywords: Property-based Testing - LLM4SE - Cyber-Physical
System - Safety

1 Introduction

Cyber-physical systems (CPS) are integrated hardware-software systems where
computation and physical processes are deeply intertwined. Ensuring safety [8] in
© The Author(s) 2026

B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 18-46, 2026.
https://doi.org/10.1007/978-3-032-07132-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_3&domain=pdf
http://orcid.org/0000-0003-2183-9633
http://orcid.org/0000-0001-5478-0987
http://orcid.org/0000-0003-3354-1463
http://orcid.org/0000-0003-1688-6937
http://orcid.org/0000-0003-4040-3480
https://doi.org/10.1007/978-3-032-07132-3_3

LLM-Based Property-Based Test Generation 19

these systems, in particular for the safety-critical ones is of high importance, as
failures can have critical consequences. One of the key strategies in safety assur-
ance is to capture the system’s properties describing what the system should and
should not do under different conditions. Encoding the requirements as formal
or semi-formal properties, can enable creating safety and security guardrails for
system behavior. Formulating properties usually starts from the system require-
ments typically written in natural language. Therefore, large language models
(LLMs) with their strong potential can be leveraged to extract properties from
existing documentation and software code. These properties can be used to drive
subsequent automated testing and verification activities, such as property-based
testing [4,6]. Property-based tests (PBT) are generated from a given property
describing the expected behavior, and the testing framework produces various
input scenarios to check if the property is satisfied in all cases.

In this paper, we propose a novel automated and scalable approach for
guardrailing CPS using PBT generated by LLMs. Our approach benefits from
two major established facts in software engineering: 1) the cyber side of CPSs is
essentially a software program amenable to existing automated program analysis
tools; and 2) advanced LLMs are strong in analyzing programs and extracting
their expected properties [22]. Based on these two observation, our proposed
approach, called CHEKPROP, uses LLMs to generate property-based tests for
CPSs before their deployment, i.e., at design time. These PBTs can also then
be utilized after deployment, i.e., at run time, to detect unsafe behavior of the
CPS. CHEKPROP uses the source code, documentation, and unit tests of the
target CPS to extract properties regarding its expected behavior. CHEKPROP
also generates PBTs that verify that the extracted properties hold for the CPS.
We implement a prototype of CHEKPROP and make it publicly available to the
community [5].

Our work is the first to address property-based testing of CPS. In software
systems context, LLMs have been utilized for automated test case generation,
both unit and integration test, from various sources of specification. For CPS,
efforts have been more focused on scenario generation for autonomous driv-
ing and robotics (not inferring formal properties or invariants for the system).
Using LLMs for generating property-based testing has recently emerged like in
the work of Vikram et al. (2024) which investigates if LLMs write good PBTs
[22]. In this work, the system under test is a Python library. CPSs are supposed
to run in a physical environment. This makes the generation of PBT more chal-
lenging than just extracting the property or testing software. For generating an
executable PBT, we need a detailed understanding of the relationship between
various components of a given CPS to be able to mock how the environment
affects the CPS program. A different approach for using LLMs to ensure the
safety of CPS is to express the requirements of the system in the form of mathe-
matical equations between different physical components. For example, Abshari
et al. [1] propose an LLM-based approach that automatically extracts physical
invariants that ensure healthy execution of the system. This technique is focused

20 K. Etemadi et al.

Listing 1. An example of a Python property-based test that checks the pow method
returns a positive number as the square of an integer. This PBT uses the hypothesis
library to generate inputs for the test.

1 The property-based unit test for the pow method:
2 Q@given(st.integers())
3 def test_pow2_positive_output(x):
4 square = pow(x, 2)
assert square >= 0
6
7 The example-based unit test for the pow method:
& def test_pow2_on_negative_input()
9 square = pow(-3, 2)
10 assert square == 9

only on extracting the invariants (properties), while CHEKPROP generates fully
executable property-based tests for CPS.

We evaluate the relevance of properties extracted by CHEKPROP for nine pro-
grams: two widely studied CPSs and seven Raspberry Pi programs. CHEKPROP
extracts 25 properties on these nine programs. Our results show that the proper-
ties extracted by CHEKPROP are similar to those carefully created with manual
effort, with a recall of 94% and a precision of 72%. The high precision and recall
of CHEKPROP shows that it can be a reliable tool for automating the manual
effort dedicated to property extraction for CPSs. Moreover, we study the quality
of PBTs generated by CHEKPROP. We find that 47% of the PBTs generated by
CHEKPROP become executable with minor modifications and 85% of the PBTs
effectively cover various parts of the input space partitions. This suggests that
CHEKPROP generates PBTs that successfully verify the CPS compliance with
the extracted properties.

In summary, our main contributions are the following.

— We propose a novel automated approach for generating property-based tests
for CPSs using LLMs.

— We implement a prototype of our proposed approach in CHEKPROP and make
it accessible to the community in our open-source repository [5].

— We report the results of our preliminary experiments on the relevance and
quality of the PBTs generated by CHEKPROP in practice.

2 Background on Property-Based Testing

Property-based testing was first introduced in QuickCheck [4]. Given a function
under test f, the input space of this function X, and a property P that checks
the behavior of f on a given input, a property-based test validates that Vz €
X : P(x, f). The property P can be seen as a function that takes an input x
and the function f and outputs true or false. The output of P determines if
f behaves according to predefined requirements on z. In practice, a property-
based test (PBT) consists of three components: 1) an input generator gen(),
which returns different inputs, like x, from the input space X; 2) a test body

LLM-Based Property-Based Test Generation 21

that collects relevant data regarding the behavior of f; and 3) a test assertion
that uses the data collected by the test body to assert that the property P about
f is true for a given input x.

Take Listing 1 as an example. The PBT in this example (lines #1-5) tests the
Python pow method. The main goal of this test is to check that the pow method
returns a positive number when it powers an integer by 2. The PBT employs the
hypothesis library [12] for input generation (line #2). The given decorator at
line #2 uses the st.integers() strategy to generate various random integers
and consider them as input x at line #3. The hypothesis library provides the
given decorator, the st.integers() strategy, and many other tools to facilitate
property-based testing in Python. After the input is generated with the help of
hypothesis library, the PBT in Listing 1 collects the output of pow and saves
it in square at line #4. Finally, it checks the property that the output of pow
is positive at line #5. This property-based test delivers exactly what we need:
a test that checks that the pow method returns a positive number for various
integers, when they are powered by 2.

To better understand property-based testing, we can compare it with the
commonly used example-based unit tests (EBTS), which test program with fixed
arguments [20]. An EBT checks if the function f under test works correctly for
a single input x. For this, the EBT usually inspects that the output of f for x is
exactly the same as the correct output o determined by an oracle. In contrast,
a PBT checks that f behaves according to expectations for various inputs from
the input space X.

Listing 1 shows an example of EBT for the Python pow method as well. The
main goal of this test is also checking that the pow method returns a positive
number when it powers an integer by 2. The EBT (lines #7-10) tests the pow
method by giving it a negative integer, namely -3, as base, and 2 as power. Then,
it checks that the output of pow is exactly 9 (line #10). If this test passes, it
only shows that pow method returns a positive number as the square of -3 (as
an example of an integer). The EBT is testing pow only for one single input, and
its result might not be generalizable. Also, this type of testing requires an oracle
that states the expected output, which is 9 in this case.

PBTs are suitable for safety checking the behavior of cyber-physical systems
at runtime for two reasons. First, in PBTs, we do not need to know the exact
expected behavior of the CPS under test. PBTs only check that the behavior
of the CPS meets certain requirements, which can indicate the safety of its
behavior. Secondly, PBTs check the behavior of the CPS on any input from the
input space. This enables PBTs to ensure the safety of the CPS under unforeseen
situations at runtime. We need to utilize the test body and test assertion of the
PBT to monitor and assure the safety of CPS behavior at runtime. Based on
these observations, in this paper, we use LLMs to generate PBTs for cyber-
physical systems.

22 K. Etemadi et al.

3 Proposed Approach

We envisage a novel approach for guardrailing cyber-physical systems with LLM-
generated PBTs. Figurel illustrates an overview of our proposed approach.
This approach consists of two main phases: the PBT generation phase, and
the property-based monitoring phase.

The PBT generation phase occurs at design time, before the system is
deployed in real world. In this phase, we employ LLMs to generate PBTs that
guardrail cyber-physical systems against running in unwanted /unsafe states. We
implement our tool CHEKPROP to carry out the proposed PBT generation, given
the documents, code, and unit tests of the cyber-physical system. After the PBTs
are generated, we enter the property-based monitoring phase of our approach.
This phase occurs at run time, when the system is deployed in real world. In
this phase, the running cyber-physical system is constantly checked against the
generated PBTs. Once a violation of a PBT is detected, a warning is raised and
the proper safety measures should be taken.

Phase 1:
PBT Generation

Design
Time

Phase 2:
Property-based Monitoring

‘ Run Time

Improvement

—

issues detected

CHEKPROP -

(warnings)

Guardrail Violations}

Fig. 1. Overview of the proposed two-phase approach. CHEKPROP particularly focuses
on the PBT generation phase. In the PBT improvement loop step, CHEKPROP aims to
improve the generated PBTs by sending the LLM an improvement prompt, consisting
of the failed PBTs and the error messages collected for them. Errors of various types
are considered, including syntax errors, compilation errors, exceptions thrown during
test executions, and assertion failures.

LLM-Based Property-Based Test Generation 23

In the following, we explain the proposed PBT generation method, which is
implemented in CHEKPROP. CHEKPROP takes the natural language documents
of the CPS, its source code, and unit tests and prompts an LLM to generate
PBTs. Next, it analyzes existing PBTs to detect issues and iteratively prompts
the LLM to improve the PBTs. Once the PBTs pass the analysis, they are
considered as verified PBTs that can be used as guardrails for the CPS. We now
discuss each of these CHEKPROP components in more detail.

3.1 Inputs of CHEKPROP

The input to CHEKPROP comprises natural language documents that specify
the CPS and its expected behavior, the CPS source code in Python, and unit
tests for this source code.

The natural language documents of the CPS describe the expected behavior
of the system and the constraints that should be observed in the run time.
Take Fig.2 as an example of a natural language document that describes a
Pneumatic Control System (PCS) [13]. The description first defines the main
elements involved in the system, namely, the horizontal and vertical cylinders
and their corresponding sensors and controllers. Next, it explains the expected
behavior of the system and the expected order of cylinder movements. Finally,
it presents the constraints that should be met during the movements.

Given the natural language documents of the system, the CPS is implemented
to follow the described requirements. Moreover, a set of unit tests is created
to test the CPS implement for specific points in the input space. Note that
implementing the CPS and creating unit tests for it can also be fully automated
using state-of-the-art LLM-based code generation [9] and test generation [23]
techniques. However, CHEKPROP focuses on PBT generation and assumes that
the CPS implementation is provided in Python, along with at least one unit test
that demonstrates how the test body should interact with different methods of
the program.

This module contains the implementation of a Pneumatic Control System (PCS) system. The PCS system consists of two
cylinders, each with a sensor attached to it. The system has two controllers, one for each cylinder. One of the cylinders is
vertical and the other is horizontal.

The vertical cylinder can move up and down, while the horizontal cylinder can move left and right. Each cylinder should
move between locations () and 2. Controller A is responsible for controlling the horizontal cylinder, while Controller B is
responsible for controlling the vertical cylinder. Location 0 is the starting location for both cylinders, which is top-left in
the system. The movement should follow this pattern: vertical cylinder moves down, vertical cylinder moves up, horizontal
cylinder moves right, vertical cylinder moves down, vertical cylinder moves up, horizontal cylinder moves left.

When the vertical cylinder is at bottom, the horizontal cylinder should not move. Also, going beyond the 0 to 2 location
interval will break the cylinder.

Fig. 2. The natural language document that describes a Pneumatic Control System
(PCS). We take the original design of PCS from [13] and adapt it to make it suitable
for property-based testing.

24 K. Etemadi et al.

3.2 Initial PBT Generation

CHEKPROP starts PBT generation by synthesizing an initial prompt. This
prompt is used to invoke the LLM for generating an initial batch of PBTs. The
initial prompt consists of four main sections and follows the structure presented
in Fig. 3.

As illustrated in the Fig. 3 example, the first section presents the description
of the CPS in natural language. LLMs are highly effective in understanding
natural language specifications of software and translating those specifications
to actual code [9]. Therefore, we provide this section of the prompt to help the
LLM better understand the system constraints that should be later translated
into PBTs.

The second part of the initial prompt contains the Python code for the CPS.
In Fig. 3, the second section presents a part of the code for pneumatic control
system, namely, the Cylinder class (line #14). Including the system code in the
prompt is essential for the LLM to recognize how the system should be called in
tests.

The third part of the initial prompt also provides at least one example unit
test for the system. The third part of Fig. 3 shows an example of a unit test that
calls the system controller. This unit test employs an instance of the MockSystem
class (line #58) to mock the physical part of the pneumatic control system and
obtain a simple interface to its controller. It also illustrates how the states of the
system should be collected during execution and checked later (lines #59-61).

Note that, as explained in Sect. 2, there is significant difference between unit
tests and property based tests. The unit test only checks the behavior of the
program for a specific input. For example, in the unit test (Sect.3) of Fig.3,
specific total_time, cylinder_interval, etc. are used. Also, in unit testing we
usually check that the output is exactly what is expected according to an oracle
[21]. In contrast, property based tests check that a more general condition is
meet by the program behavior over a wide range of inputs.

The fourth and final part of the Fig.3 instructs the LLM to generate the
desired PBTs. At the end of the initial PBT generation step, CHEKPROP obtains
a set of initial PBTs. CHEKPROP runs these PBTs and collects their results
using an analyzer unit. If a group of generated PBTs fails, CHEKPROP collects
their failure message and enters its PBT improvement loop step as described in
Subsect. 3.3.

3.3 PBT Improvement Loop

In the PBT improvement loop step, CHEKPROP aims to improve the suite of
generated PBTs. For this, CHEKPROP sends the LLM an improvement prompt,
consisting of the failed PBTs and the error messages collected for them. Errors of
various types are considered, including syntax errors, compilation errors, excep-
tions thrown during test executions, and assertion failures. The improvement
prompts are sent to the LLM in continuation of the initial prompt, which means

64.

LLM-Based Property-Based Test Generation

Section 1:
Natural Language Description

The following is a description of a pneumatic control system.

{Natural Language Description}

The following code implements this pneumatic control system. You should generate property based
tests for this code.

* " python

. import math

import threading

from time import sleep

Section 2:
..... Cyber Physical System Code

. class Cylinder:

def __init_ (self, sensor: Sensor):
self.motion = @
self.sensor = sensor
self.just_stopped = False

def trigger_motion(self):
if self.is_at_start():

self.motion = 1
elif self.is_at_end():
self.motion = -1
def move(self):

self.sensor.location = self.sensor.location + self.motion
self.just_stopped = False

def start_working(self, total_time: float, cylinder_interval: float):
for i in range(math.floor(total_time / cylinder_interval)):
if self.motion != 0:
self.move()
if self.is_on_border():
self.motion = @ # Stop movement
self.just_stopped = True
sleep(cylinder_interval)

def is_on_border(self):
return self.is_at_end() or self.is_at_start()

def is_at_end(self):
return self.sensor.location == 2
def is_at_start(self):
return self.sensor.location == @
. The following is a unit test for this system class: Section 3:

Unit Test for the CPS Code

“python
. from examples.gpiozero.apps.pcs.src.pcs import MockSystem

. def test_starting_motion():
mock_system = MockSystem(total_time=1, cylinder_interval=1,
controller_interval=1, mock_interval=1)
collected_states = mock_system.execute_scenario()
assert collected_states[0].cylinder_a_motion ==
assert collected_states[@].cylinder_b_motion == 1

Generate property based tests for this system following the steps below:
1. Based on the given description and code, extract the properties of the system.
2. Use the unit tests to understand the behavior and interface of the code.
3. Based on the extracted properties and your understanding of the code, use the hypothesis
library to generate property based tests.

Section 4:
Instruction for PBT Generation

25

Fig. 3. The structure of initial prompt used by CHEKPROP for generating an initial

set of PBTs.

26 K. Etemadi et al.

Listing 2. The PBT generated by CHEKPROP for the Pneumatic Control System
presented in Figure 3 with three parts, the input generator, the test body, and the test
assertions.

from hypothesis import given, strategies as st
from examples.gpiozero.apps.pcs.src.pcs import MockSystem

Test that the cylinder locations remain within the bounds (0 and 2) at all times.
@given(# This is the input generator of the PBT, which uses the hypothesis library to run
the test with different inputs.
total_time=st.floats(min_value=1.0, max_value=100.0),
cylinder_interva1=st.floats(min_value=0.1, max_value=10.0),
controller_interval=st.floats(min_value=0.1, max_value=10.0),
mock_interval=st.floats(min_value=0.1, max_value=10.0),

2 def test_cylinder_location_in_bounds(total_time, cylinder_interval, controller_interval,

mock_interval) :

system = MockSystem(total_time, cylinder_interval, controller_interval, mock_interval) #
Start of test body

collected_states = system.execute_scenario()

for state in collected_states: # End of test body
The following two lines present the test assertions of this PBT
assert 0 <= state.cylinder_a_loc <= 2, f"Cylinder A out of bounds:
{state.cylinder_a_loc}"
assert 0 <= state.cylinder_b_location <= 2, f"Cylinder B out of bounds:
{state.cylinder_b_location}"

that the LLM also has the CPS description, code, and unit test in context.
Therefore, the LLM has all the information needed to improve the PBTs.

The PBT improvement loop component of CHEKPROP, iteratively sends
improvement prompts to the LLM and employs the analyzer unit to run
the improved PBTs and collect their results. If the improved PBTs still fail,
CHEKPROP repeats this process until all PBTs are fixed or CHEKPROP reaches
a predefined maximum number of improvement attempts.

3.4 Output of CHEKPROP

In the event of a successful PBT generation, CHEKPROP outputs the PBT
as Python code. In particular, per our experiments, LLMs always use the
hypothesis library [12] to write property based tests in Python. The tests gen-
erally use the same testing framework as the example unit test. For example,
the unit test in Fig. 3 is run with pytest. The PBTs generated by LLMs for this
prompt can also be executed with pytest.

Listing 2 shows one of the PBTs that CHEKPROP generates for the pneumatic
control system. As the comment above the test mentions, it checks that cylinders
stay within the location bound. The property is checked by two assertions at
lines #17-18, one assertion per cylinder. This property is checked for a range
of different settings for cylinders and their controllers presented at lines #7-
10. Note the main difference between this PBT and the unit test in Fig. 3: the
unit test checks that a specific output for a given input is exactly correct, while
the PBT verifies that a general property holds for all inputs within a specified
range. This makes PBTs more general and appropriate for checking that the
system does not show unsafe behavior in unforeseen situations.

LLM-Based Property-Based Test Generation 27

3.5 Implementation

CHEKPROP uses the gemini-2.0-flash-lite-preview-02-05 in its current
version, but adopts a flexible design that allows easy switch to other LLMs.
CHEKPROP also invokes the LLM with a sample size of one and a temperature
of zero, which means that it receives only the top response per LLM invocation.
In the current version of CHEKPROP, the PBT improvement loop is disabled,
and we assess LLM’s ability to generate PBTs at the initial attempt.

3.6 Property-Based Monitoring

While CHEKPROP is focused on PBT generation (phase 1 in Fig. 1), property-
based monitoring (phase 2 in Fig. 1) is also an integral part of our guardrailing
CPSs with PBTs. In the monitoring phase of our proposed approach, various
components of the generated PBTs are used to collect relevant data and verify
the properties at runtime. For example, the generated PBT in Listing 2 tests
that the cylinders stay in the correct location range for given inputs. This test
shows that we should collect state values (line #16) and then assert that their
cylinder_a_loc attribute is in the range [0, 2] (line #17) to ensure the property
holds for cylinder A. In the monitoring phase, we can use the same data collection
and property assertion techniques to check that the cylinders do not enter unsafe
locations at runtime. This example demonstrates how the property extracted by
CHEKPROP and the implementation of its generated PBTs are useful, relevant,
and vital for guardrailing CPSs.

More generally, as explained in Sect.2 and as seen in Listing 2, the PBTs
generated in the first phase consist of three components: an input generator, a
test body, and a test assertion. In the property-based monitoring phase, the PBT
input generator is no longer needed, as the inputs are generated by the cyber part
(in the form of control commands) and the physical system (via sensor values).
The test body is replaced by the monitor that sits between the controller and
the physical system collecting relevant data. The properties derived at design
time are transformed into guards that are checked at runtime. The monitor
verifies that these guards hold in the current state of the system. Based on the
situation, if a violation is detected, the monitor can intercept and block the
command being sent to the physical system. In this way, the PBTs generated by
CHEKPROP serve as runtime guardrails for CPSs.

4 Experiments
4.1 Research Questions

We conduct preliminary experiments to answer the following research questions:

In this paper, we study the quality of CHEKPROP extracted properties and
the quality of its generated property-based tests according to the following
research questions:

28 K. Etemadi et al.

- RQ1 (Property relevance): Does the proposed approach extract relevant
properties? We assess the quality of properties extracted by our approach
on a dataset of Python programs for cyber-physical systems. Our dataset
consists of two cyber-physical systems that are extensively studied in the lit-
erature, as well as seven Raspberry Pi programs. We compare the automat-
ically extracted properties with manually crafted properties to judge their
relevance.

- RQ2 (PBT quality): What is the quality of CHEKPROP generated PBTs
for real-world CPSs? We use CHEKPROP to generate PBTs for Python CPS
programs in our dataset. We assess the quality of CHEKPROP generated PBTs
from two aspects. First, we check if the generated PBTs can be executed with
minimal manual modification (executability). Second, we evaluate the extent
of various input space partitions on which the generated PBTs execute the
program (effectiveness in terms of coverage of the input space partitions).

4.2 Dataset

As the current version of CHEKPROP supports PBT generation for Python
programs, we curate a dataset of Python CPS programs for our experiments.
This dataset consists of nine programs presented in Table 1. These programs are
taken from three main sources as follows.

First, we include the Python version of two CPSs that are widely studied
in the model checking literature [13]: a temperature control system (TCS) and
a pneumatic control system (PCS) (P1 and P2 in Table1). TCS and PCS are
presented with the IDs P1 and P2 in Table 1. Moradi et al. [13] use the model
checking tool of Rebeca!, Afra [17], to detect potential attacks against these
systems. For this, they define the correctness properties for each system and
assess if Afra can find counterexamples for these properties on models augmented
with malicious behavior. The manually defined properties in [13] set a ground-
truth with which we can compare the properties automatically extracted by
CHEKPROP.

We carefully implement TCS and PCS in Python to make them amenable
to PBT generation by CHEKPROP. Listing 3 shows a summary of our imple-
mentation of the TCS. There is a class for each component (i.e. Rebeca actor)
of the system, namely, TempSensor for the sensor, HCUnit for the HC unit, and
Controller for the controller. Each component runs on a separate thread and
updates its status periodically. For example, the sensor fetches current tempera-
ture every sensor_interval seconds (see line #17). We also provide a MockRoom
class that simulates the room environment and enables us to execute the system
with different configurations, such as initial_temp and sensor_interval (see
lines #50 and #58). This implementation is suitable for testing the temperature
control system.

! Rebeca is an actor-based modeling language, in which actors are the units of con-
currency and communicate via asynchronous message passing [17].

LLM-Based Property-Based Test Generation 29

Table 1. The cyber-physical system Python programs considered in our dataset.

ID Program Type Description
P1 Temperature Control Model-based The TCS system controls the
System (TCS) Example [13] temperature of a room. The

room has a window that blows
cold or hot wind into the
room. A sensor collects the
current temperature and a HC
unit is used to heat up or cool
down the room environment.
Finally, a controller collects
the temperature data from the
sensor and decides if the HC

unit should be used.

P2 Pneumatic Control Model-based ‘The PCS regulates the

System (PCS) Example [13] movement of components of a
mechanical system that consist
of a horizontal and a vertical
cylinder, their corresponding
controllers and sensors. This
mechanical system is designed
to pick an object from the
ground and move it to a new

place.
P3 Laser Tripwire Raspberry A prototype on a breadboard
Pi Projects [16] to detect whether a beam of

light is hitting the
light-dependent resistor

(LDR).
P4 Line Following Robot Raspberry A robot with two motors and
Pi Projects [16] two sensors. The robot uses its

right and left sensors to follow
a line and decide if should go
turn right, left, or go forward.

P5 Ultrasonic Theremin Raspberry A system that produces a
Pi Projects [16] sound with a volume level
corresponding to the user

distance from the device.

P6 Remote Buggy Raspberry A robot that moves in four
Pi Projects [16] directions and a user remotely
controls it.

pP7 Quick Reaction Game Raspberry A game in which a light turns
Pi Projects [16] on and off and two players
compete to hit their button
faster after the light is turned

off.
P8 Presence Indicator Raspberry A monitor made of a list of
Pi Projects [16] LEDs that shows the number
of people present at a place.
P9 GPIOZERO InputDevice GPIOZERO A core class in GPIOZERO
Library Class [19] library that handles

connection to input devices on

a Raspberry Pi board.

The second set of programs in our dataset are the six programs (P3-P8 in
Table 1) taken from open-source Raspberry Pi projects [16] that use the GPI-
OZERO library [19]. GPIOZERO is a Python library that real-world cyber-physical
systems employ to connect to Raspberry Pi boards. We take the source of these
programs from the official Raspberry Pi website [16] and manually add unit
tests for them. These unit tests can be used in CHEKPROP prompts (see Sub-
sect. 3.1). The six programs in our dataset that use GPIOZERO enable us to eval-

30 K. Etemadi et al.

uate CHEKPROP applicability on projects that adopt the widely used Raspberry
Pi boards.

The last program considered in our dataset (P9 in Table 1) is InputDevice, a
core class from the GPIOZERO library. This class provides an interface for Python
programs to interact with Raspberry Pi input devices, such as barometers, tem-
perature sensors, etc. The InputDevice class is a complex class from GPIOZERO
that connects to various components in this library. Testing this class requires a
detailed understanding of the inner workings of the library and how it represents
and handles the physical environment. For example, to instantiate an object of
the InputDevice class, we have to pass the number of a pin to its constructor
method. The type of this pin should be “input”, while some of the pins on a Rasp-
berry Pi board are reserved only for “output”. A correct test should use a pin of
the correct type to instantiate an InputDevice. Another example of such details
in GPIOZERO is how pins are activated. To activate a pin on a Raspberry Pi board,
its voltage should go high, which can happen by calling the pin.drive_high()
method. Writing a test for a CPS program requires an accurate understanding of
how interacting with the program, such as calling pin.drive_high(), impacts
the physical status of the system, such as increasing the voltage on the Rasp-
berry Pi board. To evaluate whether CHEKPROP generated PBTs capture such
details about CPS programs, we include the InputDevice class in our dataset.

Listing 4 presents the InputDevice class. This class, similar to other GpI-
OZERO classes, has well-written documentation (lines #2-39). We consider this
documentation as the natural language description in CHEKPROP prompts (see
Subsect. 3.1). Moreover, GPIOZERO has extensive unit tests for its classes, which
we use them to produce our initial prompt . This confirms that GPIOZERO classes
have the essential components for applying CHEKPROP: the natural language
description, the source code, and the unit test (see Subsect. 3.1).

Overall, our dataset contains a combination of CPSs studied in research
literature and CPS programs that employ widely used libraries. This dataset
helps us to assess the relevance of CHEKPROP extracted properties and the
quality of its generated PBTs.

4.3 RQ1: Property Relevance

I. Methodology: To assess the quality of extracted properties, we run our
approach on the nine programs in our dataset and analyze the relevance of the
extracted properties. In this experiment, we abstract away the implementation
details of the generated PBTs; instead, we focus on how well the properties
considered in the PBTs validate the logic of the program under test. For this
purpose, we compare properties extracted by our approach with manually crafted
properties that we consider as ground-truth. In particular, we evaluate whether
the logic checked by ground-truth properties is also validated by CHEKPROP
extracted properties and vice versa. As explained in Subsect. 4.2, for programs
P1 and P2, the ground-truth properties are already stated by Moradi et al.
[13]. For the remaining programs (P3-P9), we manually define the ground-truth
properties.

LLM-Based Property-Based Test Generation 31

Listing 3. Implementation of the temperature control system in Python.

1 class Environment:

2 def __init__(self, initial_temp: int = None) :

3 self.temp = initial_temp if initial_temp is not None else random.randint(20, 24)
1

Q.
1]
=3

fetch_temp(self):
6 return self.temp

9 class TempSensor:

0 def __init__(self, env: Environment):
self.env = env

self.temp = self.env.fetch_temp()

def start_temp_collection(self, total_time: float, sensor_interval: float):
5 for i in range(math.floor(total_time / sensor_interval)):

16 self.temp = self.env.fetch_temp()

sleep(sensor_interval)

19 class PWMOutputDevice:

21
22
23
24
25

class HCUnit:
def __init__(self):
self.cooler = PWMOutputDevice()
self.heater = PWMOutputDevice()

def activate_cooler(self):
self.cooler.on()
self.heater.off ()

class Controller:
def __init__(self, temp_sensor: TempSensor, hc_unit: HCUnit):
self.temp_sensor = temp_sensor

35 self.hc_unit = hc_unit

36

37 def control(self, total_time: float, control_interval: float):
38 for i in range(math.floor(total_time / control_interval)):
39 temperature = self.temp_sensor.temp

40 if 21 <= temperature <= 23:

11 self.hc_unit.deactivate()

42

43

44 class SystemState:

45 def __init__(self, temp, cooler_state, heater_state, outside_air_temp):
46 self.temp = temp

19 class MockRoom:
50 def __init__(self, total_time: float, sensor_interval: float, control_interval: float,
initial_temp: int = None):

self.env = Environment(initial_temp=initial_temp)

self.total_time = total_time

self.sensor_interval = sensor_interval

self.control_interval = control_interval

self.temp_sensor = TempSensor (self.env)

def execute_scenario(self):
sensor_thread = threadingAThread(target=se1f.temp_sensorAstart_temp_collection,

args=(self.total_time, self.sensor_interval))
sensor_thread.start ()

collected_states = []
for i in range(self.total_time):

outside_air_temp = self.env.get_outside_air_temp()

collected_states.append(SystemState (cur_temp, ...))
self.env.set_temp(cur_temp + outside_air_temp + heater_value - cooler_value)
sleep(1)

sensor_thread. join()
control_thread. join()

return collected_states

32

1
2
3
4
5

75
76

77

K. Etemadi et al.

Listing 4. The InputDevice class in GPIOZERO.

class InputDevice(GPIODevice):

Represents a generic GPIO input device.

This class extends :class:‘GPIODevice‘ to add facilities common to GPIO
input devices. The constructor adds the optional *pull_up* parameter to
specify how the pin should be pulled by the internal resistors. The
rattr: ‘is_active‘ property is adjusted accordingly so that :data:‘True‘
still means active regardless of the *pull_up* setting.

:type pin: int or str

:param pin:
The GPIO pin that the device is connected to. See :ref:‘pin-numbering®
for valid pin numbers. If this is :data:‘None‘ a :exc:‘GPIODeviceError¢
will be raised.

:type pull_up: bool or None

:param pull_up:
If :data:‘True‘, the pin will be pulled high with an internal resistor.
If :data:‘False‘ (the default), the pin will be pulled low. If
:data: ‘None‘, the pin will be floating. As gpiozero cannot
automatically guess the active state when not pulling the pin, the
active_state parameter must be passed.

:type active_state: bool or None

:param active_state:
If :data:‘True‘, when the hardware pin state is ‘‘HIGH‘‘, the software
pin is ¢‘HIGH‘¢. If :data:‘False‘, the input polarity is reversed: when
the hardware pin state is ‘¢ ‘HIGH®‘, the software pin state is ‘‘LOW‘‘.
Use this parameter to set the active state of the underlying pin when
configuring it as not pulled (when *pull_up* is :data:‘None‘). When
pull_up is :data:‘True‘ or :data:‘False‘, the active state is
automatically set to the proper value.

:type pin_factory: Factory or None
:param pin_factory:
See :doc:‘api_pins¢ for more information (this is an advanced feature
which most users can ignore).
def __init__(self, pin=None, *, pull_up=False, active_state=None,
pin_factory=None) :
super().__init__(pin, pin_factory=pin_factory)
try:
self.pin.function = ’input’
pull = {None: ’floating’, True: ’up’, False: ’down’}[pull_up]
if self.pin.pull != pull:
self.pin.pull = pull
except:
self.close()
raise

if pull_up is None:
if active_state is None:
raise PinInvalidState(
f’Pin {self.pin.info.name} is defined as floating, but °’
f’"active_state" is not defined’)
self._active_state = bool(active_state)
else:
if active_state is not None:
raise PinInvalidState(
f’Pin {self.pin.info.name} is not floating, but ’
f’"active_state" is not None’)
self._active_state = False if pull_up else True
self._inactive_state = not self._active_state

Qproperty
def pull_up(self):

If :data:‘True‘, the device uses a pull-up resistor to set the GPIO pin
"high" by default.
pull = self.pin.pull
if pull == ’floating’:
return None
else:
return pull == ’up’

LLM-Based Property-Based Test Generation 33

Take the temperature control system (TCS) as an example. Moradi et al.
outline three properties for TCS as follows:

1. If the room is warm (temp > 23), the HC unit should not be heating the
room.

2. If the room is cold (temp < 21), the HC unit should not be cooling the room.

3. The temperature should never be too low (temp < 20) or too high (temp >
24).

We first apply our proposed approach on our Python implementation of TCS
to generate PBTs. Next, we compare the extracted properties that are tested in
these PBTs with the three ground-truth properties in [13]. If the CHEKPROP
properties correspond with the three ground-truth properties, we conclude that
the proposed approach is able to extract useful properties.

II. Results: Table 2 shows the results of this experiment. In total, the table con-
tains 26 properties. We split these properties into four groups: Groupl consists
of 15 properties that are present among ground-truth and CHEKPROP extracted
properties in the exact same form (Pr3, Pr5, Pr7, Pr9, Pr10, Pr11, Pr12, Prl4,
Pr15, Prl7, Pr20, Pr21, Pr23, Pr24, and Pr25); Group2 counsists of 3 properties
that are present among ground-truth and CHEKPROP extracted properties in
equivalent but slightly different forms (Prl, Pr2, and Pr6); (Gréup3 consists of 7
properties that are only among the CHEKPROP extracted properties (Pr4}iPr8;
PFIBYPFI6)PrI9)PT2208id P26); and [BESHPE consists of 1 property that is
only among ground-truth properties (Eil§).

In total, the ground-truth contains 19 properties (Groupl+Group2+ [Sioupd)
and CHEKPROP extracts 25 properties (Groupl+Group2-+GToup3). Among all
properties, 18 are common between ground-truth and CHEKPROP, either in
the exact same form (Groupl) or with distinct different formulations (Group2).
These properties are relevant, since they are present among the manually crafted
properties. Therefore, the recall of CHEKPROP is 94% (18/19), which indicates
that our approach can fully replace the manual effort required for extract-
ing most of the properties from CPSs. The precision of CHEKPROP is 72%
(18/25), suggesting that the properties extracted by CHEKPROP often represent
what humans expect from the CPS under test. The high precision and recall of
CHEKPROP make it a reliable tool for automating the manual effort dedicated
to property extraction for CPSs.

In Table 2, we see that in three cases (Pr4, Pr8 and Pr26) CHEKPROP extracts
a property that is relevant and useful, but neglected in manually crafted proper-
ties. For example, our approach extracts Pr4 for PCS which notes that neither
heater or cooler should be active when the room temperature is between 21 °C
and 23 °C. This indicates that not only can our automated approach replace
manual property design work, but it can also even improve the manually crafted
properties.

The three relevant properties neglected in ground-truth together with the 18
properties common between ground-truth and CHEKPROP make up the set of
our 21 relevant properties.

34

K. Etemadi et al.

Table 2. Comparison between properties automatically extracted by our proposed
approach and ground-truth properties that are manually crafted.

ID |Program Ground-truth Property Corresponding CHEKPROP Property

Prl rcs If the room is warm (temp > 23), |Heater should be activated only if
the HC unit should not be heating |the temperature drops below 21°C.
the room.

Pr2 tcs If the room is cold (temp < 21), the Cooler should be activated only if the
HC unit should not be cooling the temperature exceeds 23°C.
room.

Pr3 |TCS The temperature should never be too low Same as ground-truth.

(temp < 20) or too high (temp > 24).

Pr5 PCS The horizontal cylinder should not move when/Same as ground-truth.
the vertical cylinder is down.

Pr6 PCS The horizontal and vertical cylinders The movement should follow a specific order.
should not move simultaneously.

Pr7 PCS The cylinders location should always be Same as ground-truth.

between 0 and 2

Pr9 Laser Tripwire "INTRUDER" is printed if an only if there is |Same as ground-truth.
no light.

Pr10 Line Following Robot [When left sensor is on, left motor goes Same as ground-truth.
backwards and right motor goes forward.

Prl1l Line Following Robot [When right sensor is on, right motor goes Same as ground-truth.
backwards and left motor goes forward.

Pr12 Line Following Robot [When both sensors are off, both motors go Same as ground-truth.

Pril4

UltrasonicThermin

forward.

Volume level never gets too high or too low.

Same as ground-truth.

Prls

Pr17

UltrasonicThermin

Volume increases when user is getting closer

to the sensor.

Remote Buggy Pressing each button on the controller,
activates the corresponding motor.

Same as ground-truth.

as ground-truth.

Pr20 Presencelndicator The LEDs show the number of present people [Same as ground-truth.
divided by 10.
Pr21 Presencelndicator ‘When the number of present people is above |Same as ground-truth.

Pr23

cpPlozEROInputDevice

10, the number “1” is shown.

The pull_up parameter of the input device
affects the pull state of the pin.

Same as ground-truth.

Pr24

cpPlozEROInputDevice

‘With a none pull_up, the active_state should
be set.

Same as ground-truth.

Pr25

cpPlozEROInputDevice

‘When pull_up is set, the is_active parameter
has a reverse effect between the pull_up value
of the device and the activation of the pin.

Same as ground-truth.

LLM-Based Property-Based Test Generation 35

As presented in Table?2, four of the properties extracted by CHEKPROP
(Pr13, Pr16, Prl19, and Pr22) are not useful. These properties either check a
state that does not occur in real-world (Pr13) or validate highly detailed imple-
mentation nuances. This observation shows that a manual check on properties
automatically extracted by CHEKPROP is needed to ensure that no useful prop-
erty is considered for testing.

Finally, there is only one ground-truth property (Pr18) that does not corre-
spond to any of the properties extracted by CHEKPROP. Prl8 is a property for
the quick reaction game and indicates the order of changes in the light status, it
should be first turned on at some point and then turned off at some point. With
a careful manual analysis, we understand that the code we provide to the LLM
for the quick reaction game lacks the documentation regarding this point. This
suggests the importance natural language description as of one core components
in CHEKPROP prompts (see Subsect. 3.1).

Answer to RQ1: Does the proposed approach extract relevant
properties?

We compare the manually crafted relevant properties with CHEKPROP
extracted properties for nine programs in our dataset. This comparison
shows that 94% (18/19) of the ground-truth properties are also automati-
cally extracted by CHEKPROP. Moreover, CHEKPROP extracts three addi-
tional relevant properties that are neglected in manually crafted properties.
This indicates that CHEKPROP is a reliable tool for automating the tedious
and complicated task of defining CPS properties..

4.4 RQ2: PBT Quality

I. Methodology: For evaluating the quality of PBTs generated by CHEKPROP,
we examine the PBTs that test the 21 relevant properties according to our anal-
ysis in the RQI experiment (see Subsect. 4.3). As explained in Subsect. 4.1,
we assess the applicability of our approach from two aspects: executability and
effectiveness.

We consider a PBT executable if and only if it is correct both syntactically
(i.e., successfully compiles) and semantically (i.e. passes). To investigate the
executability of a PBT, we check to what extent the PBT should be manually
modified to reach syntax and semantic correctness. A lower level of manual
modification indicates higher executability and vice versa. We perform a manual
analysis to find the level of executability of PBTs. Based on this analysis, we
assign the PBTs generated for each program to one of the following executability
levels: “HIGH”, “MED”, and “LOW”. A “HIGH” executability level means that the
analyzer has to spend less than one minute manually fixing the PBT to ensure
it runs and passes successfully. “LOW” means that more than three minutes of
manual work is needed, and “MED” means that between one and three minutes
is required. In this investigation, for the PBTs generated per each program, we
also take note of the main challenges that require manual modifications. The
results reveal potential opportunities for future improvement in CHEKPROP.

36 K. Etemadi et al.

To assess the effectiveness of generated PBTs, we study if it checks the prop-
erty over representatives of all or most partitions of the input space. As explained
in Sect. 2, one of the main components of a PBT is an input generator that pro-
duces various inputs from the input space. In this experiment, we determine to
what extent the input generators of generated PBTs produce inputs from all
partitions of the input space. The more partitions of input space considered by
a PBT, the more effective the PBT is. We assess the effectiveness of PBTs gen-
erated for each program through a manual analysis and assign them to one of
the three effective groups “HIGH”, “MED”, and “LOW”.

I1I. Results: Table3 summarizes the result of our experiment on CHEKPROP
applicability. The “Property ID” and “Program” columns indicate the property
and the program that the PBT is testing. Note that the ID of the property
is taken from Table 2, which lists the properties extracted by CHEKPROP. The
“Executability” column shows the result of our assessment of the executability
of generated PBTs in terms of their syntactical and semantical correctness. The
fourth column presents the main executability challenge of generated PBTs that
should be addressed manually. Finally, the last column presents the level of
effectiveness of PBTs generated for each program.

For 47% (10/21) of the relevant properties (Prl, Pr2, Pr3, Pr4, Pr5, Pr6, Pr7,
Pr8, Pr9, and Pr17), the generated PBTs are executable without major changes
that require less than one minute of manual work. In fact, for none of these PBTs,
except for the Pr17 PBT, no major executability issues are detected. These PBTs
successfully execute and pass with little to none manual modification. Also, for
Pr17 PBT, the problem is that the generated PBT runs the program for too many
inputs, leading to a timeout. A developer who knows the logic of Pr17 property
of the Remote Buggy program can fix the generated PBT by only modifying
the number of random inputs that should be considered. Given the complexity
of predicting the time needed for running a test on a CPS, this case shows the
importance and positive impact of keeping a human in the loop of LLM-based
PBT generation. In sum, our analysis of the executability of PBTs generated for
Prl, Pr2, Pr3, Pr5, Pr6, Pr7, Pr9, and Pr17 shows that for a remarkable number
of relevant CPS properties CHEKPROP generates a PBT that is executable with
minor manual modifications.

For seven of the properties (Prl4, Pr15, Pr20, Pr21, Pr23, Pr24, and Pr26),
the only main challenge to executability of generated PBTs occurs in their mock-
ing of the CPS. This challenge occurs because the mocking method employed
has a conflict with property-based testing of the CPS under test. In particular,
every time the test is executed for a specific input, all the pins used in the mock
of the CPS should be initialized from scratch. However, the mocking method
used in these PBTs only initializes the mock object once for all inputs consid-
ered in the PBT. This leads to a semantic problem with the logic of the CPS
under test, as well as a syntactic error in using the hypothesis library. Con-
sequently, these seven PBTs require a medium level of manual modification to
become executable.

LLM-Based Property-Based Test Generation 37

Table 3. The quality of PBTs generated by CHEKPROP for the 21 relevant propertie.
A “HIGH”, “MED”, or “LOW” level in the “Executability” column indicates the PBT
can be successfully executed with less than one minute, between one to three min-
utes, or more than three minutes of manual effort for modification, respectively. The
“Effectiveness” column indicates the level of input space partitions covered by the PBT.

Property ID Program Executability Main Executability Challenge Effectiveness
Pr1 TCS HIGH No major executability issues detected. HIGH
Pr2 TCS HIGH No major executability issues detected. HIGH
Pr3 TCS HIGH ‘No major executability issues detected. HIGH
Pr4 TCS HIGH No major executability issues detected. HIGH
Pr5 PCS HIGH ‘No major executability issues detected. HIGH
Pr6 PCS HIGH No major executability issues detected. HIGH
Pr7 PCS HIGH ‘No major executability issues detected. HIGH
Pr8 PCS HIGH No major executability issues detected. HIGH
Pr9 Laser Tripwire |HIGH ‘No major executability issues detected. MED
Pr10 Line Following LOW Wrong parameter passed to theHIGH
Robot pin.drive_up() method.
Prill Line Following LOW Wrong parameter passed to theHIGH
Robot pin.drive_up() method.
Pri2 Line Following LOW Wrong parameter passed to theHIGH
Robot pin.drive_up() method.
Pri4 Ultrasonic MED The used mocking method does not HIGH
Thermin work for parameterized tests.
Prl5 Ultrasonic MED The used mocking method does not HIGH
Thermin work for parameterized tests.
Pri17 Remote Buggy |HIGH Exceeds timeout as tested on too many HIGH
inputs.
Pr20 Presence MED The used mocking method does not MED
Indicator work for parameterized tests.
Pr21 Presence MED The used mocking method does notMED
Indicator work for parameterized tests.
Pr23 GPIOZERO MED The used mocking method does not HIGH
InputDevice work for parameterized tests.
Pr24 GPIOZERO MED The used mocking method does not HIGH
InputDevice work for parameterized tests.
Pr25 GPIOZERO LOW The used mocking method does not HIGH
InputDevice work for parameterized tests.
The pin state is set with an incorrect
use of the interface.
Pr26 GPIOZERO MED The used mocking method does notHIGH
InputDevice work for parameterized tests.

We notice that mocking CPS is both tricky and essential for testing. As
CPSs are supposed to run in a physical environment, we need to mock how the
environment affects CPS programs. This can require a detailed understanding of
the relationship between various components of given CPS programs. Previous
work shows that such domain knowledge can be effectively provided to LLMs
by in-context learning, i.e., adding relevant examples to the prompt [7]. Based
on this observation, we suggest that practitioners use a few-shot prompt with
mocking examples to generate PBTs for cyber-physical systems with LLMs.

Finally, one of the main issues with generated PBTs for four properties (Pr10,
Pr11, Pr12, and Pr25) is how they use GPIOZERO. For example, the PBT gener-
ated for Pr25 uses output pins of the Raspberry Pi board to initialize their object

38 K. Etemadi et al.

of the InputDevice. With further analysis, we realize that fixing the issues in
this PBT depends on a deep understanding of multiple GPIOZERO classes. How-
ever, the current version of CHEKPROP only includes the documentation of the
InputDevice class in the prompt. This documentation is taken from the com-
ments presented in Listing 4. To fix the issue with this PBT, the LLM also needs
to have the documentation for other classes, such as PiGPIOFactory. We con-
clude that a strong LLM-based PBT generation tool for CPS programs requires
augmenting prompts with all relevant information from the program documents.
Our analysis of the effectiveness of the generated PBTs shows that the PBTs
generated for 85% (18/21) of the properties are highly effective; these PBTs test
the property on most partitions of the input space. With a more detailed look, we
observe that the generated tests tend to be more effective when the tests employ
a straightforward and flexible mock of the CPS components. For example, as
shown in Listing 3, our Python implementation of TCS provides a MockRoom
class. This class enables a tester to run the program with many different inputs
only by changing a few parameters regarding the starting temperature of the
room and the timing of updating various components. Using this mock class, the
generated PBTs for TCS properties run the program with different configurations
that represent all partitions of the input space. This experiment also reaffirms
the importance of using flexible mocks with a straightforward API for testing
CPSs.
Answer to RQ2: What is the quality of CHEKPROP generated
PBTs for real-world CPSs?
We assess the applicability of PBTs generated by CHEKPROP 21 relevant
properties in our dataset from two aspects: executability and effectiveness.
Our results reveal that a remarkable number of the generated PBTs are
highly executable (47%) and highly effective (85%), which indicates the
applicability of CHEKPROP. Our analysis also leads to two major sugges-
tions for generating high-quality PBTs for CPSs with LLMs. First, the
LLM should be aided in employing straightforward and flexible mocking
by providing well-designed few-shot examples in the prompt. Secondly, it is
important to include the relevant documentation from all parts of the CPS
in the prompt. These two techniques make our proposed approach even
more robust and practical.

5 Related Work

The application of LLMs to test CPS is at early stages and many of the efforts
have been focused on scenario generation for autonomous driving and robotics.
For instance, OmniTester [11] uses an LLM (GPT-4) to generate diverse driv-
ing scenarios from natural language descriptions and proposes test road lay-
outs and events. They also incorporates retrieval-augmented generation (RAG)
and iterative self-improvement to refine scenarios. Petrovic et al. [14] similarly
incorporates LLMs into an autonomous vehicle testing pipeline. Their approach

LLM-Based Property-Based Test Generation 39

provides the LLM with a formal environment model (metamodel of roads, vehi-
cles, pedestrians, etc.) and standardized requirements as context. The LLM is
prompted to produce a concrete test scenario (in a JSON format executable
in the CARLA simulator) that satisfies the given requirements. They use the
LLM to translate natural language requirements into Object Constraint Lan-
guage (OCL) rules—formalizes expected environmental and safety properties.
The OCL properties are then checked against the generated test scenario and
if required, the feedback is sent to the LLM for correction before the execution
of the test scenario. Besides automotive, other related works are emerging in
robotics. For example, Wang et al. [24] show that GPT-4 can automatically gen-
erate robotic simulation tasks (including environment configurations and goals).
They mainly address test scenario generation (test environments and test inputs)
rather than directly inferring formal properties or invariants from system spec-
ifications. They show that LLMs can handle the environmental context of CPS
testing when guided by domain models.

In the broader software systems context, LLMs have been utilized for auto-
mated test case generation from various sources of specification. Many of the
approaches target conventional software systems (without either ML or any
physical components) and have shown promising results in automating unit test
creation. Kang et al. [10] present LIBRO, a framework that uses an LLM to
generate JUnit tests from bug reports. The goal is to reproduce reported defects
automatically as the conventional test generators generally struggle with under-
standing the semantic intent of a bug report. LIBRO’s performance evaluation
on the Defects4J benchmark found that it can produce failing tests for about
33% of bugs and demonstrates that an LLM can interpret natural language bug
descriptions and translate them into fault-revealing code. Another set of work
explores using LLMs to generate tests from requirement documents or user sto-
ries. Rahman and Zhu [15], leverage GPT-4 to produce test-case specifications
(in JSON) directly from high-level requirements and intend to bridge the gap
between specifications and executable tests. Some approaches also utilize LLMs
within an interactive test generation process. Chen et al. [3] introduce ChatU-
niTest, an LLM-based unit test generation framework. In their approach, the
LLM (Code Llama) drafts a Java unit test; the test is executed to see if it passes
or if it exercises the intended code; any errors or unsatisfied goals are fed back
for the LLM to repair and refine the test.

Alshahwan et al. [2], report using LLMs to extend and improve existing
test suites in an industrial setup—focuses on corner-case inputs that developers
missed. Their tool generates additional unit tests to increase coverage of tricky
edge conditions. Overall, surveys of the field, e.g., Wang et al., 2024 [23] conclude
that LLMs show strong potential in automated testing by reducing the manual
effort to write test cases—mainly in code-centric contexts such as unit testing.

40 K. Etemadi et al.

Regarding Property-based testing with LLMs, applying LLMs to the gener-
ation of PBTs has recently emerged. The most relevant work is by Vikram et
al. (2024), which investigates if LLMs write good PBTs [22]. They investigate
using GPT-4 and other models to automatically generate PBT code (using the
Hypothesis framework in Python) from API documentation. In their setup, the
LLM is given the documentation of a library function in natural language and
prompted to generate a property-based test. The generated test produces appro-
priate random inputs and asserts the documented properties on the outputs.
They evaluate the validity (the test must run without errors), soundness (the
test assertions should hold for correct implementations and fail for buggy ones)
and property coverage (how many distinct expected properties are captured by
the test) of the tests.

CPS Challenges and our Contribution: The works mentioned above estab-
lish a foundation for the generation of LLM-driven property-based tests for CPS,
which can also act as a complement to other safety assurance approaches like
verification-based development techniques [18]. Those approaches are often lim-
ited to the abstraction captured by the model and face scalability challenges
with complex, real-world scenarios. Property-based testing can address the lim-
itations by generating diverse and extensive test cases that can uncover defects
and implementation errors or environmental interactions not represented explic-
itly in formal models, then, acting as an empirical validation layer. In this con-
text, in prior studies like Vikram et al.’s [22], the system under test is a software
API with no external physical connected components and the LLM did not need
to reason about sensors, actuators, or continuous dynamics. But in a cyber-
physical system, properties often relate to the interaction between software and
the physical components, which are more complex to formalize and test. Envi-
ronmental mocking becomes a necessity—a model or simulation of the physical
environment is required to represent the real world.

Recent CPS testing approaches with LLMs (e.g. for autonomous driving [14])
addressed this by restricting the LLM to consider a domain metamodel and pro-
duce output in a structured format for a simulator. This helps ensure some basic
physical realism in generated scenarios, but it does not guarantee that all rele-
vant properties can be identified or verified. Our approach supports testing and
also runtime property-based monitoring. This means the LLM is used to derive
property assertions that can also run alongside the deployed system, to check
for violations in the runtime. Our approach extends the frontier by applying
LLM-driven property-based test generation to CPS, in which both the inference
of the generated properties from code documentation and the execution of the
corresponding tests must account for the intended CPS programs under test.

LLM-Based Property-Based Test Generation 41

6 Conclusion

In this paper, we propose a novel approach for automatically guardrailing cyber-
physical system. This approach employs LLMs to generate property-based tests
for CPS programs that can be used to monitor CPSs behavior and detect unsafe
states. We implement a prototype of this approach in CHEKPROP and evalu-
ate it on real-world and commonly studied CPSs. We find that CHEKPROP is
applicable on real-world CPSs. More specifically, CHEKPROP extracts relevant
properties, comparable to manually crafted properties, and then generates exe-
cutable and effective property-based tests that verify these properties.

Our experiments reveal two major challenges for LLM-enabled property-
based test generation for CPSs and suggest potential solutions to these chal-
lenges. First, given the limited number of public CPS projects, LLMs are not
trained on a vast dataset of CPS source code. Consequently, LLMs generated
tests may not correctly capture the relation between the API of CPS program
and the physical status of the system. For example, while the LLM might rec-
ognize that verifying a specific property, like keeping the temperature in a cer-
tain range, requires activating the room’s heater, it may not identify the correct
method in the CPS code to effect this change. To address this issue, the prompts
should contain relevant documents and source code taken from all parts of the
project under test. This helps the LLM better understand the API of the CPS
code and make the correct use of it.

The second main challenge that we observe is the complexities involved in
mocking CPSs. In cyber-physical systems, we deal with the cyber part, the
physical part, and the environment. PBTs should run at different times and test
the system under various environmental conditions. This requires mocking inputs
sometimes from the environment and sometimes from the physical system, and
sometimes both. Such mocking demands a correct understanding of the specific
environmental inputs to the CPS, their interrelations, and the interface between
the cyber and physical components. Our experiments show that LLMs often
struggle to capture such an understanding, leading to incorrect generation of
PBTs. To address this issue, we suggest including extensive examples of proper
mocking scenarios for the CPS under test in the prompt. Prior studies show that
such examples can significantly improve the ability of LLMs to generate correct
tests [10]. In summary, our study is a solid first step in creating guardrails for
CPSs with LLM-generated property-based tests and proves the promising future
of this research path.

Acknowledgment. This work is supported by the Trusted Smart Systems pre-study
grant at Mélardalen University, as well as Sweden’s Innovation Agency Vinnova through
the INTelligent sEcuRity SoluTIons for Connected vEhicles (INTERSTICE) project
with grant number 2024-00661 and the Flexible and Secure Modular Automation
(FLEXATION) project with grant number 2024-01731.

42 K. Etemadi et al.

Appendix A: Example Prompts and Generated PBTs

Here we present two examples of the prompts that CHEKPROP sends to the LLM
and a selected subset of PBTs that are generated based on these prompts (Figs.
4 and 5).

Listing 5. A PBT generated by CHEKPROP for the line following robot program.

1 @given(

2 left_sensor_value=st.integers(min_value=0, max_value=1),
3 right_sensor_value=st.integers(min_value=0, max_value=1),
A speed=st.floats(min_value=0.1, max_value=1.0)

5)

6 def test_motor_control_based_on_sensor_values(left_sensor_value, right_sensor_value,
speed) :

7 Device.pin_factory = MockFactory()

8 with LineFollowingRobot(Motor(2, 3, enable=4, pwm=False), Motor(5, 6, enable=7,
pwm=False), ...) as 1lfr:

9 if left_sensor_value > O:

10 1fr.left_sensor.pin.drive_high()

11 if right_sensor_value > O0:

12 1fr.right_sensor.pin.drive_high()

13 time.sleep(0.1) # Simulate slight delay to trigger motor_speed updates

15 if left_sensor_value == 0 and right_sensor_value ==

16 assert lfr.right_motor.value == speed

17 assert lfr.left_motor.value == speed

18 elif left_sensor_value == 0 and right_sensor_value ==

19 assert lfr.left_motor.value == -speed

20 elif left_sensor_value == 1 and right_sensor_value == O:

21 assert 1lfr.right_motor.value == -speed

22 else:

23 assert 1lfr.left_motor.value != 0 or lfr.right_motor.value != 0

Listing 6. Two PBTs generated by CHEKPROP for the InputDevice class.

1 @given(st.booleans())

2 def test_close_releases_pin(pull_up):

3 Device.pin_factory = MockFactory(pin_class=MockPin)
4 device = InputDevice(4, pull_up=pull_up)

5 device.close()

6 assert device.pin is None

8 Q@given(st.booleans())

o def test_active_state_affects_is_active_basic(pull_up):
10 Device.pin_factory = MockFactory(pin_class=MockPin)
11 with InputDevice(4, pull_up=pull_up) as device:

12 device.pin.drive_high()

13 assert device.is_active == (not pull_up)

14 device.pin.drive_low()

15 assert device.is_active == pull_up

LLM-Based Property-Based Test Generation

1. The following is a description of a line following robot.

3. {Natural Language Description}
4.

5. The following code implements this line following robot using the gpiozero library for Raspberry Pi
programs. You should generate property based tests for this code.

6.

7.7 " python

8. class LineFollowingRobot(Robot):

9 def __init_ (self, left, right, left_seonsor_pin=17, right_sensor_pin=27,
speed=0.65):

10. super().__init__ (left, right)

11. self.left_sensor = LineSensor(left_seonsor_pin)

12. self.right_sensor = LineSensor(right_sensor_pin)

13. self.speed = speed

14. self.source = self.motor_speed()

15.

16. def motor_speed(self):

17. left_mot = @

18. right_mot = @

19. while True:

20. left_detect = int(self.left_sensor.value)

21. right_detect = int(self.right_sensor.value)

22. # Stage 1

23. if left_detect 0 and right_detect ==

24. left_mot = 1

25. right_mot = 1

26. # Stage 2

27. if left_detect == @ and right_detect ==

28. left_mot =

29. if left_detect 1 and right_detect ==

30. right_mot = -1

31. print(right_mot, left_mot)

32. yield right_mot * self.speed, left_mot * self.speed

33.

34. def stop(self):

&5, self.robot.stop()

36. self.left_sensor.close()

37. self.right_sensor.close()

38. super().stop()

39.

40.°

41.

42. The following is a unit test for this system class:

43.

44. """ python

45.

46. def test_left_sensor_activation_moves_right_motor():

47. # Create a MockFactory and use it as pin_factory on Device

48. Device.pin_factory = MockFactory()

49.

50. with LineFollowingRobot(Motor(2, 3, enable=4, pwm=False),

51. Motor(5, 6, enable=7, pwm=False),

52. left_seonsor_pin=8, right_sensor_pin=9,

speed=1) as 1lfr:

53.

54. time.sleep(1)

55. 1fr.left_sensor.pin.drive_high()

56. time.sleep(1l)

57. assert 1lfr.right_motor.value == 1

58.° "

59.

60. Generate property based tests for this system following the steps below:
1. Based on the given description and code, extract the properties of the system.
2. Use the unit tests to understand the behavior and interface of the code.
3. Based on the extracted properties and your understanding of the code, use the hypothesis
library to generate property based tests.

43

Fig. 4. The prompt used by CHEKPROP to generate PBTs for the line following robot

program.

44

K. Etemadi et al.

The following is the description of the InputDevice class in the gpiozero library.

PR e

InputDevice class represents a generic GPIO input device.This class extends :class: GPIODevice to add
facilities common to GPIO input devices. The constructor adds the optional *pull_up* parameter to specify how
the pin should be pulled by the internal resistors. The :attr:"is_active’ property is adjusted accordingly so that :data: True" still means
active regardless of the *pull_up* setting.

5.

6. :type pin: int or str

7. :param pin:

8. The GPIO pin that the device is connected to. See :ref:'pin-numbering for valid pin
numbers. If this is :data:'None™ a :exc: GPIODeviceError® will be raised. :type pull_up:
bool or None :param pull up: If :data: True', the pin will be pulled high with an internal
resistor. If :data: False' (the default), the pin will be pulled low. If :data: None', the
pin will be floating. As gpiozero cannot automatically guess the active state when not
pulling the pin, the *active_state* parameter must be passed.

9.

10. :type active_state: bool or None

11. :param active_state:

12 If :data: True’, when the hardware pin state is ~“HIGH °, the software pin is " “HIGH ~. If
:data: False’, the input polarity is reversed: when the hardware pin state is "“HIGH °, the
software pin state is ""LOW . Use this parameter to set the active state of the underlying
pin when configuring it as not pulled (when *pull_up* is :data: None'). When *pull_up* is
:data: True' or :data: False', the active state is automatically set to the proper value.

14. :type pin_factory: Factory or None

15. :param pin_factory

16. See :doc: api_pins® for more information (this is an advanced feature
17. which most users can ignore).

18. """

19.

20. The following code is the implemention of the InputDevice class of the gpiozero library.
21.

22, python

23.

24. class InputDevice(GPIODevice):

25. def __init_ (self, pin=None, *, pull_up=False, active_state=None,
26. pin_factory=None):

27 super().__init_ (pin, pin_factory=pin_factory)

28. try:

29. self.pin.function = 'input’

30. pull = {None: 'floating', True: 'up', False: 'down'}[pull_up]
31. if self.pin.pull != pull:

32. self.pin.pull = pull

33. except:

34. self.close()

35. raise

36.

37. if pull_up is None:

38. if active_state is None:

39, raise PinInvalidState(

40. £'Pin {self.pin.info.name} is defined as floating, but '
4. f'"active_state" is not defined')

42. self._active_state = bool(active_state)

43. else:

44, if active_state is not None:

45. raise PinInvalidState(

46. £'Pin {self.pin.info.name} is not floating, but '
47. f'"active_state” is not None')

48. self._active_state = False if pull_up else True

49. self._inactive_state = not self._ active_state

50.

51. @property

52. def pull_up(self):

53. "

54 If :data: True', the device uses a pull-up resistor to set the GPIO pin
55. "high" by default.

56. -

57. pull = self.pin.pull

58 if pull == 'floating':

59. return None

60. else:

61. return pull == 'up'

62.

63.°°

64.

65. The following is a unit test for this class:

66.

67. " python

68.

69. def test_input_initial_values():
Create a MockFactory and use it as pin_factory on Device
Device.pin_factory = MockFactory()
with InputDevice(4, pull_up=True) as device:
assert repr(device).startswith('<gpiozero.InputDevice object')
assert device.pin.function == 'input’
assert device.pin.pull =
assert device.pull_up
assert repr(device) == '<gpiozero.InputDevice object closed>"
with InputDevice(4, pull_up=False) as device:
assert device.pin.pull == 'down’
assert not device.pull_up

2.
83. Generate property based tests for this system following the steps below:
1. Based on the given description and code, extract the properties of the system.
2. Use the unit tests to understand the behavior and interface of the code.
3. Based on the extracted properties and your understanding of the code, use the hypothesis library to generate property based
tests.

Fig. 5. The prompt used by CHEKPROP to generate PBTs for the InputDevice

class.

LLM-Based Property-Based Test Generation 45

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Abshari, D., Fu, C., Sridhar, M.: LLM-assisted physical invariant extraction for
cyber-physical systems anomaly detection. arXiv preprint arXiv:2411.10918 (2024)
Alshahwan, N.; et al.: Automated unit test improvement using large language mod-
els at meta. In: Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering, pp. 185-196 (2024)

Chen, Y., Hu, Z., Zhi, C., Han, J., Deng, S., Yin, J.: ChatUniTest: a framework for
LLM-based test generation. In: Companion Proceedings of the 32nd ACM Interna-
tional Conference on the Foundations of Software Engineering, pp. 572-576 (2024)
Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming, pp. 268-279 (2000)

Etemadi, K., et al.: Chekprop (2025). https://github.com/khesoem/ChekProp
Fink, G., Bishop, M.: Property-based testing: a new approach to testing for assur-
ance. ACM SIGSOFT Softw. Eng. Notes 22(4), 74-80 (1997)

Giagnorio, A., Martin-Lopez, A., Bavota, G.: Enhancing code generation for low-
resource languages: no silver bullet. arXiv preprint arXiv:2501.19085 (2025)

ISO 25000: ISO/IEC 25010 - System and software quality models (2019). https://
18025000.com /index.php/en /iso-25000-standards /iso-25010

Jiang, J., Wang, F., Shen, J., Kim, S., Kim, S.: A survey on large language models
for code generation. arXiv preprint arXiv:2406.00515 (2024)

Kang, S., Yoon, J., Yoo, S.: Large language models are few-shot testers: Explor-
ing LLM-based general bug reproduction. In: 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), pp. 2312-2323. IEEE (2023)

Lu, Q., Wang, X., Jiang, Y., Zhao, G., Ma, M., Feng, S.: Multimodal large
language model driven scenario testing for autonomous vehicles. arXiv preprint
arXiv:2409.06450 (2024)

Maclver, D.R., Hatfield-Dodds, Z., et al.: Hypothesis: a new approach to property-
based testing. J. Open Source Softw. 4(43), 1891 (2019)

Moradi, F., Asadollah, S.A., Pourvatan, B., Moezkarimi, Z., Sirjani, M.: Crystal
framework: cybersecurity assurance for cyber-physical systems. J. Log. Algebr.
Methods Program. 139, 100965 (2024)

Petrovic, N., et al.: LLM-driven testing for autonomous driving scenarios. In: 2024
2nd International Conference on Foundation and Large Language Models (FLLM),
pp. 173-178. IEEE (2024)

Rahman, T., Zhu, Y.: Automated user story generation with test case specification
using large language model. arXiv preprint arXiv:2404.01558 (2024)

Raspberry Pi Team: Raspberry Pi Project Selector (2025). https://projects.
raspberrypi.org/en/projects

Sirjani, M., Khamespanah, E.: On time actors. Theory and Practice of Formal
Methods: Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday,
pp. 373-392 (2016)

Sirjani, M., Provenzano, L., Asadollah, S.A., Moghadam, M.H., Saadatmand, M.:
Towards a verification-driven iterative development of software for safety-critical
cyber-physical systems. J. Internet Serv. Appl. 12(1), 2 (2021)

gpiozero Team: A simple interface to gpio devices with Raspberry Pi (2025).
https://github.com/gpiozero/gpiozero

Tillmann, N., Schulte, W.: Parameterized unit tests. ACM SIGSOFT Softw. Eng.
Notes 30(5), 253-262 (2005)

http://arxiv.org/abs/2411.10918
https://github.com/khesoem/ChekProp
https://github.com/khesoem/ChekProp
https://github.com/khesoem/ChekProp
https://github.com/khesoem/ChekProp
https://github.com/khesoem/ChekProp
http://arxiv.org/abs/2501.19085
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://arxiv.org/abs/2406.00515
http://arxiv.org/abs/2409.06450
http://arxiv.org/abs/2404.01558
https://projects.raspberrypi.org/en/projects
https://projects.raspberrypi.org/en/projects
https://projects.raspberrypi.org/en/projects
https://projects.raspberrypi.org/en/projects
https://projects.raspberrypi.org/en/projects
https://projects.raspberrypi.org/en/projects
https://github.com/gpiozero/gpiozero
https://github.com/gpiozero/gpiozero
https://github.com/gpiozero/gpiozero
https://github.com/gpiozero/gpiozero
https://github.com/gpiozero/gpiozero

46

21.

22.

23.

24.

K. Etemadi et al.

Tiwari, D., Gamage, Y., Monperrus, M., Baudry, B.: Proze: generating parameter-
ized unit tests informed by runtime data. In: 2024 IEEE International Conference
on Source Code Analysis and Manipulation (SCAM), pp. 166-176. IEEE (2024)
Vikram, V., Lemieux, C., Sunshine, J., Padhye, R.: Can large language models
write good property-based tests? arXiv preprint arXiv:2307.04346 (2023)

Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., Wang, Q.: Software testing with
large language models: survey, landscape, and vision. IEEE Trans. Softw. Eng.
(2024)

Wang, L., et al.: GenSim: generating robotic simulation tasks via large language
models. arXiv preprint arXiv:2310.01361 (2023)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2307.04346
http://arxiv.org/abs/2310.01361
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

RAG and Agentic Assistant: A Combined
Approach

Moez Ben Hajhmida!®™) and Edward A. Lee?

L University of Tunis El Manar, Tunis, Tunisia
moez.benhajhmida@enit.utm.tn
2 University of California, Berkeley, Berkeley, USA
eal@berkeley.edu

Abstract. While large language models (LLMs) have exhibited strong
capabilities in translating code, particularly from C to Python, their per-
formance noticeably declines when dealing with less common languages
like LF. Prior research indicates that Retrieval-Augmented Generation
(RAG) can enhance LLMs capabilities in code generation by integrating
codebase retrieval. Despite its promise, RAG systems are constrained by
LLMs capabilities to deal with less common languages. Agentic Al cod-
ing assistants offer a different approach by acting as Al co-developers,
automating tedious tasks and allowing developers to focus on high-level
design. This paper proposes a novel system that combines RAG with
agentic Al assistants to improve the accuracy of converting LF programs
with target C into LF code with target Python. We conduct a com-
parative evaluation of state-of-the-art proprietary and open-source code
LLMs in this task, demonstrating that RAG can significantly narrow the
performance gap between small and large language models. Furthermore,
we integrate an agentic assistant within an Al-powered IDE to auto-
mate developer-assisted error correction and refactoring, streamlining
the development workflow. In terms of syntax correctness and success-
ful execution rates, experiments highlight the significant improvements
achieved by the combined approach.

1 Introduction

Large Language Models (LLMs) represent a significant leap forward in software
development automation, exhibiting impressive abilities in both code generation
and translation. However, a significant performance gap exists when these models
encounter less commonly used programming languages, a challenge amplified in
the context of Domain-Specific Languages (DSLs) [2,16]. One such language
is Lingua Franca (LF) [11], a coordination language for real-time distributed
systems. Currently, the Lingua Franca project has 150 Lingua Franca test files
written for the C target that haven’t been implemented in Python yet. To ensure
comprehensive testing, we need to address the disparity between the number of
C and Python Lingua Franca (LF) test files. Thus, our immediate goal is to

© The Author(s) 2026
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 47-62, 2026.
https://doi.org/10.1007/978-3-032-07132-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_4&domain=pdf
https://doi.org/10.1007/978-3-032-07132-3_4

48 M. Ben Hajhmida and E. A. Lee

develop and implement the missing Python test files to achieve parity with the
C test suite.

To address the code generation performance gap, we investigate whether aug-
menting LLMs with external contextual information via Retrieval-Augmented
Generation (RAG) [19] can enhance their translation performance for LF code.
RAG extends LLMs by retrieving relevant knowledge units from a curated
database and injecting them into the generation prompt, enabling more informed
outputs without the need for extensive model fine-tuning.

Additionally, code translation tasks often require iterative corrections to
address syntax errors, language-specific constructs, or semantic inconsistencies.
Traditional LLM-based workflows rely heavily on human oversight for these
adjustments. In contrast, agentic Al systems [3], which can autonomously per-
form sequences of steps, offer a promising avenue for automating these corrective
processes. Agentic Al coding assistants offer a collaborative, developer-assisted
approach by automating routine coding tasks, enabling developers to concentrate
on higher-level design.

In this paper, we propose a hybrid approach combining RAG-based code
translation with an agentic Al assistant integrated into an Al-powered IDE.
We conduct empirical experiments translating LF programs with target C into
comparable programs with target Python and evaluate a range of code LLMs
with and without RAG augmentation. The experiments are conducted on 150
regression test programs that were manually written for the C target but where
there are no comparable regression tests for the Python target. Furthermore,
we deploy the Cursor IDE’s agentic assistant to iteratively refactor, validate,
and standardize the generated code. Our results show that combining RAG
and agentic assistants significantly improves both translation success rates and
workflow efficiency, even with comparatively small LLMs.

This paper is organized as follows: Sect.2 provides an overview of the fun-
damentals of Lingua Franca language. Section 3 details a comparative assess-
ment of contemporary proprietary and open-source code LLMs in the context of
code translation, providing evidence that RAG can narrow the performance gap
between smaller and larger models. In Sect. 4, we discuss how RAG and Agentic
AT systems can enhance code LLM capabilities. Section5 introduces our pro-
posed approach, combining the RAG technique with agentic Al coding assistant
to enhance LF code translation. Subsequently, we summarize the findings of our
experimental evaluations translating 150 LF files. Finally, Sect.7 concludes the
paper.

We conduct a comparative evaluation of state-of-the-art proprietary and
open-source code LLMs in this task, demonstrating that RAG can significantly
narrow the performance gap between small and large models. Furthermore, we
integrate an agentic assistant within an Al-powered IDE to automate developer-
assisted error correction and refactoring, streamlining the development work-
flow. In terms of syntax correctness and successful execution rates, the experi-
mental results highlight the significant improvements achieved by the combined
approach.

RAG and Agentic Assistant: A Combined Approach 49

2 Lingua Franca

Lingua Franca (LF) [11] is an open-source domain-specific language for build-
ing high-performance, secure, and reliable distributed real-time systems. LF is a
polyglot coordination language that facilitates the development of distributed
applications by employing a reactor-based architecture. Reactors are reac-
tive components programmed in popular programming languages like C/C++,
Python, Rust, and TypeScript.

An LF application is made of reactors connected together with ports and con-
nections. Reactors are deterministic actors whose behavior is specified through
reactions. Reactions are triggered by discrete events fired at specific logical time
instants. LF is supported by a runtime system that facilitates communication
between connected reactors, ensuring predictable and consistent execution, even
in distributed environments. Figure 1 showcases an example of a Ligua Franca
code for C target with three reactors: Source, Destination, and a main reac-
tor. In this example, the main reactor has a single reaction, which is triggered
by the startup trigger. This trigger causes the reaction to execute at the start
of the program. The body of the reaction, delimited by {= ... =}, is ordinary
C code. More elaborate examples can be found at https://github.com/1f-lang/
playground-lingua-franca.

1 target C

2

3 reactor Source {

4 output out: int

5

6 reaction (startup) -> out {=

7 1f_set (out, 42);

8 =}

9 }

10

11 reactor Destination {

12 input in: int

13

14 reaction (in) {=

15 interval_t time = 1f_time_logical_elapsed();

16 printf ("Received %d at logical time " PRINTF_TIME ".\n", in->value, time
)

17 if (time <= OLL) {

18 fprintf (stderr, "ERROR: Logical time should have been greater than

zero.\n");

19 exit (1);

20 }

21 =}

22 }

23

24 main reactor {

25 source = new Source ()

26 destination = new Destination ()

27 source.out -> destination.in

28 }

Fig. 1. Example of a LF code for C target with one reactor.

Analogous to object-oriented programming, a developer declares the reactors
involved in the application and specifies their interactions using the LF-specific

https://github.com/lf-lang/playground-lingua-franca
https://github.com/lf-lang/playground-lingua-franca
https://github.com/lf-lang/playground-lingua-franca
https://github.com/lf-lang/playground-lingua-franca
https://github.com/lf-lang/playground-lingua-franca
https://github.com/lf-lang/playground-lingua-franca
https://github.com/lf-lang/playground-lingua-franca
https://github.com/lf-lang/playground-lingua-franca

50 M. Ben Hajhmida and E. A. Lee

language. The logic for each reactor is then defined through a set of reactions.
Each reaction’s implementation is written in a target language, such as C/C++,
Python, Rust, or TypeScript. Proficient Python programmers unfamiliar with
LF may struggle to learn the LF syntax. Consequently, we conducted experi-
ments to evaluate the feasibility of using Large Language Models (LLMs) for
automating the generation of LF programs.

3 Code LLMs

Code LLMs (Large Language Models for programming) are AI models specifi-
cally trained on extensive programming datasets spanning multiple languages,
including both source code and related text like documentation. This specialized
training allows them to excel at processing and generating code with high accu-
racy. Their capabilities include automatically completing code segments, con-
verting natural language specifications into functional code, translating between
programming languages, identifying and fixing bugs, and providing clear expla-
nations of code functionality. Built on advanced deep learning architectures,
these models are increasingly valuable tools that enhance developer workflows
and can significantly improve programming efficiency.

Leading proprietary large language models like GPT-4 [17] and Claude
[1] have exhibited impressive performance, showcasing advanced abilities in
language understanding, reasoning, planning, and code generation. On the
HumanEval benchmark [4], the widely recognized standard for assessing code
generation capabilities, GPT-4 achieved a Pass@Ql score of 87.8% [15], while
Claude attained 84.9% [1].

While proprietary models have set a high bar, the landscape of code
LLMs also features increasingly powerful open-source alternatives. Projects like
Llama!, DeepSeek?, and others are rapidly closing the performance gap, offer-
ing researchers and developers greater flexibility and control. These open-source
models are often fine-tuned and adapted by the community, leading to rapid
innovation and specialized versions that can excel in specific coding tasks or
programming languages. The performance of open-source code LLMs on the
HumanEval benchmark has seen remarkable improvements (approaching 87%),
as illustrated by the BigCode models leaderboard®, which showcases the evolu-
tion of remarkable models like Starcoder2 [12], Qwen2.5-Coder [9], CodeLlama
[21], DeepSeek-coder [6], and Codegeex2 [25].

OpenAl's GPT-4, a leading large multimodal model announced in March
2023, excels in understanding and generating text and images. While spe-
cific architectural details and parameter counts remain proprietary, GPT-4 has
demonstrated significant improvements over its predecessors in areas such as rea-
soning, complex instruction following, and creative content generation. Initially
achieving a 67.0% Pass@1 score on the HumanEval code generation benchmark

! https://www.llama.com/.
2 https://www.deepseek.com/.
3 https:/ /huggingface.co/spaces,/bigcode/bigcode-models-leaderboard.

https://www.llama.com/
https://www.llama.com/
https://www.llama.com/
https://www.llama.com/
https://www.deepseek.com/
https://www.deepseek.com/
https://www.deepseek.com/
https://www.deepseek.com/
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

RAG and Agentic Assistant: A Combined Approach 51

[17], its performance has since been enhanced to 87.8% through further devel-
opment [15], including iterations like GPT-4o.

Anthropic’s Claude-3 model family, launched in March 2024, features a
trio of large multimodal models tailored for different needs: the top-performing
Opus, the balanced Sonnet, and the swift Haiku. Evaluating their zero-shot
Python coding abilities on the HumanEval benchmark, these models achieved
the following Pass@1 scores respectively: Opus at 84.9%, Sonnet at 73.0%, and
Haiku at 75.9% [1].

Announced in February 2024, StarCoder-2 is a family of open-access large
language models for code generation, developed by the Hugging Face-supported
BigCode* project. It comes in three sizes: 3B, 7B, and 15B parameters, all trained
on over 600 programming languages from The Stack v2 dataset. Key architec-
tural features include Grouped Query Attention and a large context window of
16,384 tokens. On the HumanEval benchmark, the StarCoder 2 fine-tuned mod-
els achieved the following Pass@1 scores: the 3B model reached 45.12%, the 7B
model scored 51.22%, and the 15B model attained 59.15%. These results posi-
tion the smaller StarCoder 2 models as competitive within their size range, with
the 15B model demonstrating strong performance [12].

Released around late 2024 by Alibaba Cloud’s Qwen team®, Code-Qwen
2.5 is a series of open-source code LLMs ranging from 0.5B to 32B parameters.
These models emphasize improved code generation with a larger context of 128K
tokens [9]. The 32B instruct model reportedly achieves state-of-the-art open-
source performance in coding tasks, demonstrating capabilities comparable to
GPT-40 with a Pass@1 score of 83.2%°.

Announced by Meta in August 2023, Code Llama-2 is an open-source family
of large language models specifically designed for code-related tasks. Built upon
the Llama 2 architecture, it’s available in sizes from 7B to 70B parameters, with
specialized versions for Python and instruction following. It has demonstrated
strong performance on code benchmarks like HumanEval, with the 70B instruct
model achieving around 67.8% Pass@1 [21].

CodeGeeX-2, developed by Tsinghua University and announced in July
2023, is a 6-billion parameter multilingual code generation model. Based on
the ChatGLM?2 architecture [5], it has shown significant improvements over its
predecessor, CodeGeeX. Notably, it has demonstrated strong performance on
the HumanEval benchmark across multiple programming languages, achieving
a Pass@1 score of 35.9% [25].

DeepSeek-Coder-2, developed by DeepSeek Al is a series of open-source
code language models announced in late 2023 (DeepSeek-Coder-1) and early
2024 (DeepSeek-Coder-V2). It comes in various sizes, ranging from 1.3B to
33B parameters, and was trained from scratch on a massive dataset com-
posed of 60% source code, 10% math corpus, and 30% natural language corpus.

* https://www.bigcode-project.org/.
5 https://www.alibabacloud.com/en/solutions/generative-ai/qwen.
5 https:/ /huggingface.co/spaces,/bigcode/bigcode-models-leaderboard.

https://www.bigcode-project.org/
https://www.bigcode-project.org/
https://www.bigcode-project.org/
https://www.bigcode-project.org/
https://www.bigcode-project.org/
https://www.alibabacloud.com/en/solutions/generative-ai/qwen
https://www.alibabacloud.com/en/solutions/generative-ai/qwen
https://www.alibabacloud.com/en/solutions/generative-ai/qwen
https://www.alibabacloud.com/en/solutions/generative-ai/qwen
https://www.alibabacloud.com/en/solutions/generative-ai/qwen
https://www.alibabacloud.com/en/solutions/generative-ai/qwen
https://www.alibabacloud.com/en/solutions/generative-ai/qwen
https://www.alibabacloud.com/en/solutions/generative-ai/qwen
https://www.alibabacloud.com/en/solutions/generative-ai/qwen
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

52 M. Ben Hajhmida and E. A. Lee

The instruction-tuned 33B DeepSeek-Coder-V2 model achieved 90.2% on the
HumanEval benchmark, while smallest model achieved 37.2% [6].

Table1 provides a comparative overview of several prominent code LLMs
with a strong focus on code-related capabilities. It highlights key characteristics
such as the developing institution, model size (in parameters), vocabulary size
(in tokens), and context window length. The context window of an LLM refers to
the maximum amount of text (measured in tokens) that the model can consider
when processing an input and generating an output. Given that OpenAl and
Anthropic do not publicly disclose the exact model size and vocabulary size for
GPT-4 and Claude 3, the values presented for these parameters are estimations.
This information allows for a quick comparison of these leading models in terms
of their scale and context handling abilities.

Table 1. Overview of Code Large Language Models

Model Institution |Size Vocabulary|Context Window
GPT-4 [17] OpenAl ~200B ~200k 32K

Claude-3 [1] Anthropic ~ |~175B ~200k 200K
StarCoder-2 [12] Hugging Face/3B, 7B, 15B |49k 16k
Code-Qwen-2.5 [9] |Alibaba 7B 92k 128k

Code Llama-2 [21] Meta 7B, 13B, 34B 32k 16k
CodeGeeX-2 [25] Tsinghua 6B 65k 8k
DeepSeek-Coder-2 [6] DeepSeek 1.3B, 6.7B, 33B|32k 16k

Pan et al. [18] conducted an empirical study assessing the potential and
limitations of LLMs in code translation. Their evaluation involved translating
800 CodeNet [20] samples (200 for each of C++, Go, Java, and Python) and
reported the following success rates for various models: GPT-4 (83.0%), Star-
Coder (42.0%), Llama 2 (14.9%), and CodeGeeX (14.9%). Based on their find-
ings, Pan et al. suggest that enriching the context provided to LLMs during
code translation can lead to improved output. To explore this, they introduce
a prompt-engineering method informed by common translation errors, which
resulted in an average performance gain of 5.5% for LLM-based code translation.
The authors highlight that providing more context to LLMs during translation
can help them produce better results.

In a recent empirical study, Macedo et al. [14] analyzed the output of eleven
widely used instruction-tuned LLMs (ranging from 1B to 46.7B parameters)
on 3,820 translation examples across C, C++, Go, Java, and Python. Their
findings indicate that 26.4% to 73.7% of the generated translations require post-
processing due to the inclusion of non-code elements like quotes and text. They
further demonstrate that a well-designed combination of prompt engineering
and regular expressions can successfully extract the desired source code from
the models’ output.

RAG and Agentic Assistant: A Combined Approach 53

4 Enhancing LLM Capabilities
4.1 RAG

Retrieval-Augmented Generation (RAG) [24] is an Al framework designed to
enhance relevance and accuracy of LLM outputs by grounding them in exter-
nal knowledge sources. This allows LLMs to bypass their inherent knowledge
boundaries by accessing relevant external documents. Instead of solely relying
on the data it was trained on, a RAG system retrieves relevant information from
a knowledge base (like documents, databases, or the web) and incorporates it
into the prompt given to the LLM.

A standard RAG procedure involves initially indexing and loading a typically
vast, domain-specific external knowledge repository. When a user poses a query,
a retrieval mechanism pinpoints and extracts relevant documents or knowledge
units from this repository. The extracted information is then integrated into
the prompt presented to the LLM. By utilizing this augmented context, com-
bined with the initial query, the LLM can produce a more knowledgeable, accu-
rate, and contextually relevant response. Fundamentally, RAG acts as a bridge
between the LLM’s inherent knowledge from training and external knowledge,
which is often more current or specific to a domain, allowing it to generate more
reliable and grounded answers. This approach avoids the necessity of frequent
fine-tuning, ultimately resulting in more informative and precise responses.

The utilization of RAG for code generation, despite its promise, is still lim-
ited in scope. Some noticeable works employed RAG to improve code-related
tasks like summarization, generation, and completion. HGNN [10] uses GNNs
for code summarization by retrieving similar code. REDCODER [19] retrieves
and integrates relevant code snippets for code generation. ReACC [13] leverages
both lexical copying and semantic referencing for code completion. DocPrompt-
ing [26] uses retrieved code documentation to generate code based on natural
language queries. RepoCoder [23] iteratively retrieves and uses code analogies
across repository files for better code completion.

Retrieval-augmented code generation has seen advancements, but addressing
the challenges of under-represented languages requires significant further explo-
ration.

4.2 Agentic Al

Agentic Al refers to Al systems that can act autonomously to achieve spe-
cific goals in complex and dynamic environments with limited direct supervision
[22]. These systems, often composed of multiple Al agents, can interact with
their environment, reason, make decisions, and take actions with limited human
intervention. They can also learn from feedback and adapt their behavior over
time [3].

The difference between traditional LLM or RAG-based code generation and
agentic Al systems can be illustrated through the task of code generation. In
contrast to the multi-stage process involving prompting, code manipulation,

54 M. Ben Hajhmida and E. A. Lee

compilation, and execution required with LLMs or RAG, an agentic system
allows developers to initiate code generation and execution with a single prompt,
automating the subsequent steps. The whole process is be executed without
human intervention.

Both academia and industry have shown significant interest in the potential
of agentic Al to enhance automated code generation. For example, MetaGPT
[7] incorporates human workflow into collaborative multi-agent LLM systems.
It breaks down complex code-related tasks into specific, actionable procedures.
These procedures are then assigned to five different LLM-based agents. The accu-
racy of the generated tests from MetaGPT is 79% for HumanEval benchmark.
AgentCoder [8] employs a multi-agent architecture comprising three specialized
agents: a programmer, a test designer, and a test executor. This division of roles
results in AgentCoder in more efficient and effective code generation. The per-
formance of AgentCoder on the HumanFEval benchmark was groundbreaking,
achieving a pass@1 of 96.3%.

Cursor” is a novel Al-powered IDE built on VSCode®, offering a unified Al
interface with two primary modes: Ask and Agent. Ask mode allows users to
query specific code, understand complex functions, find patterns, and explore
their codebase. Agent mode enables Al-driven code changes, refactoring, feature
implementation, debugging, and the generation of tests and documentation. To
complete tasks, Agent mode employs a structured process. It begins by analyzing
the user’s request and the codebase context. The agent might then explore the
codebase, documentation, and the web to find relevant information. Following
this analysis, it breaks down the task and plans the necessary code changes,
which it then implements across the codebase. The agent presents the differences
for user approval before providing a summary of the modifications. Agent mode
primarily uses LLMs like Claude 3.5 Sonnet, with the option to switch to Claude
3.7 Sonnet, Gemini Pro 1.5, or GPT-4o.

5 Code Generation with RAG

To achieve automated translation of 150 C Lingua Franca test files to Python
with minimal human oversight, we adopted the Retrieval-Augmented Generation
(RAG) approach powered by Llamalndex”. We developed an end-to-end system
that automatically translates Lingua Franca code from C to a Python target,
given a list of input files. This system goes through sequential stages: Retrieval,
Generation, and Code Evaluation, as detailed in Fig. 2. For each file in the list
of input files, the system starts by fetching the file source code and initiates the
Retrieval stage.

At the Retrieval phase, the embedding model, an artificial neural network,
encodes the input Lingua Franca C source code into a dense numerical vector rep-
resentation (embedding). This embedding encodes the semantic information and

" https:/ /www.cursor.com,/.
8 https://code.visualstudio.com/.
9 https://www.llamaindex.ai/.

https://www.cursor.com/
https://www.cursor.com/
https://www.cursor.com/
https://www.cursor.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.llamaindex.ai/
https://www.llamaindex.ai/
https://www.llamaindex.ai/
https://www.llamaindex.ai/

RAG and Agentic Assistant: A Combined Approach 55

contextual relationships of the code in a high-dimensional embedding space, facil-
itating efficient similarity search for semantically related Lingua Franca Python
files within a vector database. The vector database is populated during ini-
tialization with embeddings of the LF Python codebase, derived using the same
embedding model. OpenAl’s text-embedding-ada-002'° served as our embedding
model for this experiment. A similarity search within the vector database then
identifies relevant Lingua Franca files, which become the retrieved context. We
combine this retrieved context with the input Lingua Franca C source code and
a pre-established prompt to form a contextual input for the code LLM, which
processes this input to generate the desired code output. The pre-established
prompt is:

Prompt (1): The following code is written in Lingua Franca for target
C. Based on this code provide an equivalent Lingua Franca code only for
Python target. Provide code without any comment or code fences.

Avoid naming any variable, input, or output with Python reserved words.
The code:

The generated LF code then undergoes syntax validation by the LF code gener-
ator. Syntax errors trigger a recursive call to the Code LLM with the same input
for a new code generation attempt. If no syntax errors are found, the LF code
generator produces LF Python code. With successful LF Python code genera-
tion and execution, the generated source code is incorporated into the codebase,
and the vector database is updated to include its representation. Failures in
generation or execution also initiate a recursive call to the Code LLM for an
alternative code candidate, with a limit on the number of recursive iterations to
prevent infinite loops.

Table 2. Performance comparison of Code LLMs for LF code translation on 25 LF C
files.

Model # Parameters Correct syntax Run Success|Availability
GPT-4o 200 15 8 [AP]]
Claude-3-5-sonnet (175 13 6 [APT]
StarCoder2 15 13 7 [Checkpoint]
Qwen2.5-Coder 14 15 7 [Checkpoint]
CodeLlama 13 14 7 [Checkpoint]
DeepSeek-Coder-6.7/6.7 15 7 [Checkpoint]
Codegeex?2 6 13 7 [Checkpoint]
DeepSeek-Coder-1.3(1.3 13 6 [Checkpoint]

Following the definition of our system, the subsequent requirement was the
selection of appropriate Code LLMs. To address this, we elected to perform a

10 https://platform.openai.com /docs/models/text-embedding-ada-002.

https://platform.openai.com/docs/models/gpt-4.1
https://console.anthropic.com/dashboard
https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1
https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct-AWQ
https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/THUDM/codegeex2-6b
https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct
https://platform.openai.com/docs/models/text-embedding-ada-002
https://platform.openai.com/docs/models/text-embedding-ada-002
https://platform.openai.com/docs/models/text-embedding-ada-002
https://platform.openai.com/docs/models/text-embedding-ada-002
https://platform.openai.com/docs/models/text-embedding-ada-002
https://platform.openai.com/docs/models/text-embedding-ada-002
https://platform.openai.com/docs/models/text-embedding-ada-002
https://platform.openai.com/docs/models/text-embedding-ada-002
https://platform.openai.com/docs/models/text-embedding-ada-002
https://platform.openai.com/docs/models/text-embedding-ada-002

56

File name

M. Ben Hajhmida and E. A. Lee

| Stage 1: Retrieval

fetch file]
™ | LF/test/C/src/ ; Fetched file |[——

Embedding| |
Model

Vector
database

Itarget C |
\reactor foo {...} |
| main reactor { |
1 f=new foo()

H

i
,,,,,,,,,,,,,,,,,,, B

Based on this code
provide an equivalent |
lingua franca code for |
Python target. !
The code:

target Python
reactor count {.
main reactor {..

Embedding
Model

Stage 3:

LF Python target| |
Files {codebase)

Add LF file to
codebase

failure

success

target Python 9
|

class __foo:
reactor foo {...} i
main reactor {

([
f = new fool) ide! main{argv):

3 i

Fig. 2. End-to-end for LF code translation.

comparative analysis of the performance of various Code LLMs in translating a
limited set of LF C files (25 files). The costs of APIs and cloud resources con-
strained us to use a limited number of files, allowing us to include more models
in the comparison. We made the choice to incorporate every model that Sect. 3
introduced into our experimental procedure. We report in Table2 the perfor-
mance of the selected Code LLMs for LF code translation on the limited set
of 25 LF C files. Table2 provides a comparative overview of the models, list-
ing their size in number of parameters (in billions), the count of syntactically
valid generated LF files, the number of generated files exhibiting successful run-
time behavior, and their respective availability. Access to proprietary LLMs is
facilitated through paid API endpoints, while open-source LLMs are freely dis-
tributed on the Hugging Face platform!!, necessitating deployment on local or
remote GPU hardware. We conducted this experiment using a remote NVIDIA
L4 GPU that had 24 GB of memory. Based on this experimental comparison,
GPT-40 exhibited the best results, achieving 15 LF files with correct syntax
and 8 successful executions among them. With sizes of 6.7 billion and 14 bil-
lion parameters, DeepSeek-Coder-6.7 and Qwen2.5-Coder occupied the second
rank in our comparison. The results indicate that Claude-3-5-sonnet, the sec-
ond largest model (175 billion parameters), ranked lowest, sharing this position
with the smallest model, DeepSeek-Coder-1.3 (1.3 billion parameters). DeepSeek-
Coder-1.3 exhibited a performance that was only a little less strong than the
other LLMs, despite its smaller size. Considering GPT-40’s top performance in
our evaluation and the fact that DeepSeek-Coder-1.3 is the sole LLM that our

1 https:/ /huggingface.co/.

https://huggingface.co/
https://huggingface.co/
https://huggingface.co/

RAG and Agentic Assistant: A Combined Approach 57

local NVIDIA GeForce RTX 2060 GPU’s 6 GB memory can run, we opted to
focus our subsequent experiments on these two models.

In Table 3, we present the resuts of the experiment extension to the 150 LF
files to translate form target C to target Python. GPT-40 outperforms DeepSeek-
Coder-1.3 in code translation by around 5% rate of both syntactically correct
code generation and successful execution. This performance differential is sig-
nificantly smaller than the 31.7% outperformance of GPT-40 (84.9% [17]) over
DeepSeek-Coder-1.3 (65.2% [6]) observed on the Python HumanEval benchmark.
This observation shows the contribution of the RAG technique in enhancing
Code LLMs performance. With a 154 times smaller size, DeepSeek-Coder-1.3
exhibits a performance very similar to GPT-40. This observation demonstrates
the contribution of the RAG technique in improving the efficiency of Code LLMs,
as evidenced by DeepSeek-Coder-1.3’s ability to achieve near parity with GPT-
4o despite a 154-fold difference in size. Here, we don’t report the results of LLMs
without RAG augmentation, as they were not able to generate any syntactically
correct LF files. This observation highlights the importance of RAG in enhancing
the performance of Code LLMs for LF code translation tasks.

Table 3. Performance Comparison of Claude and DeepSeek-Coder in Translating 150
LF C Files.

Model Correct syntax|% Correct syntaxRun success|% Run success
GPT-40 59 39.33% 29 19.33%
DeepSeek-Coder-1.3/51 34.00% 22 14.67%

With our proposed RAG-based system we were able to correctly generate
19.33% of the desired LF files with GPT-40 LLM. For the remaining files, we
need the user to interfere in the correction of the failing generated files. For this
purpose, we will utilize the Agentic IDE Cursor.

6 Agentic Assistant

Through manual inspection of the code generated by the proposed system, we
uncovered significant issues. Notably, 5% of the generated code files do not
include the mandatory ‘target Python’ declaration. This omission is critical, as
it will inevitably result in syntax errors when processing any subsequent LF
code. Furthermore, another prevalent syntactic error involves the inclusion of
type declarations for variables, a construct that is incompatible with the Python
target. An additional area of non-conformance is the naming of variables with
Python keywords. For instance, the system fails to avoid naming input variables
‘in’. Input variables often retain their C language name ‘in’, which conflicts with
Python’s syntax and causes errors. We note that the pre-established prompt (see
Prompt (1)) instructed the LLM to avoid Python keywords, but the system kept

58 M. Ben Hajhmida and E. A. Lee

using ‘in’ as input variable name. To overcome these issues we utilize IDE Cursor
in Agent mode.

To resolve the missing ‘target Python’ declaration we provided Cursor’s assis-
tant with the subsequent prompt:

Prompt (2): Identify files without the “target Python” at the beginning
and add it.

The assistant offered to check files for the absence of “target Python” at the
beginning and add it if missing. After an initial check, the assistant found that
most files already contained “target Python”, sometimes with additional settings
like timeout. The assistant then asked if it should continue checking all files or
focus on a specific set. The latency of this interaction was too slow compared
to an IDE’s “Find in Files”. To improve efficiency, we decided to use a shell
script that searches for the files missing the target declaration and appends it.
A prompt that might be effective is:

Prompt (3): Provide a scipt shell that searches for *.If files, then checks
each file if it contains “target Python”.

The assistant provided a shell script designed to find .[f files and check if
they contain the string “target Python”. The assistant included the script itself,
an explanation of what the script does, and the commands to make the script
executable, and run it. And finally asked “Would you like me to create this script
in your workspace?”. With a “Yes” response, the assistant started an Agent that
created the script in the workspace, made the script executable, ran it, and listed
the files that don’t contain “target Python”. Once done, the assistant asked Would
you like me to add “target Python” to these files?. The assistant iterated through
a list of the identified .If files. For each file, the assistant stated its intention to
add “target Python” and then confirmed that it had done so. Finally, the assistant
provided a summary of the files modified and asked for confirmation to actually
apply these changes. After the user’s confirmation, the assistant started an agent
that added “target Python” to each identified file and finished by providing a
summary of the changes made.

To deal with the syntactic error involving the inclusion of type declarations
for variables with the Python target, we provided the assistant with a list of tar-
get files and a suitable prompt. The list of the files containing type declarations
is provided through the assistant context and the prompt instruction is:

Prompt (4): Remove type declarations.

For each file in the provided list, the assistant started an agent that checked
file content for any type declarations, removed them, then provided a summary
of the findings and the updates. The assistant asserted that the file now has
no type declarations, which is consistent with the Python target’s requirements.
Finally, it asked to check any other files for type declarations that need to be
removed.

When it comes to renaming the input variable ‘in’, VS Code’s refactoring
tool struggled to accurately rename it due to its frequent appearance within

RAG and Agentic Assistant: A Combined Approach 59

other strings. For this purpose, we provided Cursor’s assistant with the list of
files containing the string ‘“nput in’ and the following prompt:

Prompt (5): Replace the variable ‘in’ by ‘inp’.

With this simple prompt, the assistant able to correctly rename most of the
occurences of the variable ‘in’ avoiding accidental replacements in comments,
strings, or other variables with similar names. This process revealed inconsis-
tencies in input variable naming, with a mix of * n’ and ‘in_’ being used.
We reiterated the input variable renaming procedure to build a more consistent
codebase. With a cleaner codebase we enhanced RAG capabilities for future code
generation.

Pursuing the procedure of code refactoring, we observed numerous occur-
rences of the ‘{:d}’ pattern in the source files. This old-style pattern is used
in Python string formatting to format integers, primarily in print statements
and error messages. This pattern is discourage in favor of f-strings formatting
for better readability, conciseness, and performance. Therefore, we searched for
files containing the old-style ‘%’ formatting, added the list of these files to the
assistant context, and provided the following prompt:

Prompt (6): Update old-style string formatting with f-strings formatting.

Through iteration of the specified files, the assistant successfully implemented
the f-string formatting style.

After the series of interactions involving the 150 files generated by our pro-
posed RAG-based system using the GPT-40 LLM, and with all the updates in
place, we conducted the code evaluation as outlined in Fig. 2, stage 3. The results
reported in Table 4 show improvements in both syntactically correct code gen-
eration and successful execution rates. Using Cursor’s Agentic Assistant for the
generated code correction effectively fixed errors caused by the influence of the
source code.

Table 4. Performance Comparison of RAG using Claude and its combination with the
Agentic Assistant in Translating 150 LF C Files.

Model Correct syntax|% Correct syntax Run success % Run success
RAG 59 39.33% 29 19.33%
RAG with Agentic Assistant 73 48.67% 52 34.67%

7 Conclusion

Our study demonstrates the effectiveness of combining RAG with agentic Al sys-
tems for the task of translating Lingua Franca programs with target language C
into comparable programs with target language Python. Through empirical eval-
uation, we show that the RAG-enhanced pipeline enables smaller open-source

60 M. Ben Hajhmida and E. A. Lee

models like DeepSeek-Coder-1.3B to perform competitively against larger mod-
els such as GPT-40. This proves that RAG can significantly enhance the perfor-
mance of code LLMs, allowing them to generate syntactically correct code and
execute it successfully, even with limited model sizes. A refinement using the
Cursor agentic IDE successfully corrects common syntax and semantic errors,
improving the quality of the generated codebase. This hybrid approach not only
reduces the reliance on proprietary APIs but also presents a scalable, efficient
strategy for code transformation and maintenance in real-world development
environments.

The faster translation time achieved by our RAG-based system on 150 files,
compared to the interactive IDE assistant, motivate us to pursue full automa-
tion of the code correction process. As future work, we propose developing an
autonomous agent for code correction to enhance code generation efficiency.
However, the limited resources and data for the under-represented Lingua Franca
language present a significant challenge in building such an agent.

References

1. Anthropic: The Claude 3 Model Family: Opus, Sonnet, Haiku. https://www-
cdn.anthropic.com/de8ba9b01c9ab7cbabf5¢33b80b7bbc618857627/Model Card
Claude 3.pdf

2. Cassano, F., et al.: MultiPL-E: a scalable and polyglot approach to benchmarking
neural code generation. IEEE Trans. Softw. Eng. 49(7), 3675-3691 (2023). https://
doi.org/10.1109/TSE.2023.3267446

3. Chan, A., et al.: Harms from increasingly agentic algorithmic systems. In: Proceed-
ings of the 2023 ACM Conference on Fairness, Accountability, and Transparency,
FAccT 2023, pp. 651-666. Association for Computing Machinery, New York (2023).
https://doi.org/10.1145/3593013.3594033

4. Chen, M., et al.: Evaluating large language models trained on code. ArXiv
abs/2107.03374 (2021)

5. GLM, T., et al.: ChatGLM: A Family of Large Language Models from GLM-130B
to GLM-4 All Tools (2024)

6. Guo, D., et al.: DeepSeek-coder: when the large language model meets program-
ming - the rise of code intelligence. ArXiv abs/2401.14196 (2024). https://arxiv.
org/abs/2401.14196

7. Hong, S., et al.: MetaGPT: meta programming for multi-agent collaborative frame-
work. arXiv preprint arXiv:2308.00352 (2023). 3(4), 6

8. Huang, D., Zhang, J.M., Luck, M., Bu, Q., Qing, Y., Cui, H.: Agentcoder: multi-
agent-based code generation with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010 (2023)

9. Hui, B., et al.: Qwen2.5-Coder Technical Report (2024)

10. Liu, S., Chen, Y., Xie, X., Siow, J., Liu, Y.: Retrieval-augmented generation for
code summarization via hybrid GNN. arXiv preprint arXiv:2006.05405 (2020)

11. Lohstroh, M., Menard, C., Bateni, S., Lee, E.A.: Toward a Lingua Franca for deter-
ministic concurrent systems. ACM Trans. Embed. Comput. Syst. 20(4) (2021).
https://doi.org/10.1145/3448128

12. Lozhkov, A., et al.: StarCoder 2 and The Stack v2: the next generation. ArXiv
abs/2402.19173 (2024). https://arxiv.org/pdf/2402.19173

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1145/3593013.3594033
https://doi.org/10.1145/3593013.3594033
https://doi.org/10.1145/3593013.3594033
https://doi.org/10.1145/3593013.3594033
https://doi.org/10.1145/3593013.3594033
https://doi.org/10.1145/3593013.3594033
https://doi.org/10.1145/3593013.3594033
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2312.13010
http://arxiv.org/abs/2006.05405
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://arxiv.org/pdf/2402.19173
https://arxiv.org/pdf/2402.19173
https://arxiv.org/pdf/2402.19173
https://arxiv.org/pdf/2402.19173
https://arxiv.org/pdf/2402.19173
https://arxiv.org/pdf/2402.19173

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

RAG and Agentic Assistant: A Combined Approach 61

Lu, S., Duan, N., Han, H., Guo, D., Hwang, S.w., Svyatkovskiy, A.: ReACC: a
retrieval-augmented code completion framework. arXiv preprint arXiv:2203.07722
(2022)

Macedo, M., Tian, Y., Cogo, F., Adams, B.: Exploring the impact of the output
format on the evaluation of large language models for code translation. In: Pro-
ceedings of the 2024 IEEE/ACM First International Conference on Al Foundation
Models and Software Engineering, FORGE 2024, pp. 57-68. Association for Com-
puting Machinery, New York (2024). https://doi.org/10.1145/3650105.3652301
Microsoft: promptbase (2023). https://github.com/microsoft/promptbase.
Accessed 22 Apr 2025

Murali, V., et al.: Al-assisted code authoring at scale: fine-tuning, deploying, and
mixed methods evaluation. Proc. ACM Softw. Eng. 1(FSE) (2024). https://doi.
org/10.1145/3643774

OpenAl, et al.: GPT-4 Technical Report (2024). https://arxiv.org/abs/2303.08774
Pan, R., et al.: Lost in translation: a study of bugs introduced by large language
models while translating code. In: Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering, ICSE 2024, pp. 1-13. ACM (2024).
https://doi.org/10.1145/3597503.3639226

Parvez, M.R., Ahmad, W., Chakraborty, S., Ray, B., Chang, K.W.: Retrieval aug-
mented code generation and summarization. In: Moens, M.F., Huang, X., Specia,
L., Yih, S.W.t. (eds.) Findings of the Association for Computational Linguistics:
EMNLP 2021, pp. 2719-2734. Association for Computational Linguistics, Punta
Cana, Dominican Republic (2021)

Puri, R., et al.: CodeNet: a large-scale Al for code dataset for learning
a diversity of coding tasks. In: Vanschoren, J., Yeung, S. (eds.) Proceed-
ings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021,
virtual (2021). https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/a5bfc9e07964{8dddeb95fc584cd965d- Abstract-round2.html

Rozi re, B., et al.: Code Llama: open foundation models for code. arXiv preprint
arXiv:2308.12950 (2023)

Shavit, Y., et al.: Practices for governing agentic Al systems. Research Paper,
OpenAl (2023)

Zhang, F., et al.: RepoCoder: repository-level code completion through iterative
retrieval and generation. arXiv preprint arXiv:2303.12570 (2023)

Zhao, P., et al.: Retrieval-augmented generation for Al-generated content: a survey.
arXiv preprint arXiv:2402.19473 (2024)

Zheng, Q., et al.: CodeGeeX: a pre-trained model for code generation with mul-
tilingual evaluations on HumanEval-X. ArXiv abs/2303.17568 (2023). https://
arxiv.org/abs,/2303.17568

Zhou, S., Alon, U., Xu, F.F., Wang, Z., Jiang, Z., Neubig, G.: DocPrompting:
generating code by retrieving the docs. arXiv preprint arXiv: 2207.05987 (2022)

http://arxiv.org/abs/2203.07722
https://doi.org/10.1145/3650105.3652301
https://doi.org/10.1145/3650105.3652301
https://doi.org/10.1145/3650105.3652301
https://doi.org/10.1145/3650105.3652301
https://doi.org/10.1145/3650105.3652301
https://doi.org/10.1145/3650105.3652301
https://doi.org/10.1145/3650105.3652301
https://github.com/microsoft/promptbase
https://github.com/microsoft/promptbase
https://github.com/microsoft/promptbase
https://github.com/microsoft/promptbase
https://github.com/microsoft/promptbase
https://doi.org/10.1145/3643774
https://doi.org/10.1145/3643774
https://doi.org/10.1145/3643774
https://doi.org/10.1145/3643774
https://doi.org/10.1145/3643774
https://doi.org/10.1145/3643774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a5bfc9e07964f8dddeb95fc584cd965d-Abstract-round2.html
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2303.12570
http://arxiv.org/abs/2402.19473
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
http://arxiv.org/abs/2207.05987

62 M. Ben Hajhmida and E. A. Lee

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by,/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

CASP: An Evaluation Dataset for Formal
Verification of C Code

1(X) 3

, Merlijn Sevenhuijsen?3@®, Liv Kareborn!'®,

and Anna Lokrantz!

Niclas Hertzberg

1 AI Sweden, Stockholm, Sweden
{niclas.hertzberg,liv.kareborn,anna.lokrantz}@ai.se
2 Scania, Sddertilje, Sweden
merlijn.sevenhuijsen@scania.com
3 KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. Recent developments in Large Language Models (LLMs)
have shown promise in automating code generation, yet the generated
programs lack rigorous correctness guarantees. Formal verification can
address this shortcoming, but requires expertise and is time-consuming
to apply. Currently, there is no dataset of verified C code paired with
formal specifications that enables systematic benchmarking in this space.
To fill this gap, we present a curated evaluation dataset of C code paired
with formal specifications written in ANSI/ISO C Specification Language
(ACSL). We develop a multi-stage filtering process to carefully extract
506 pairs of C code and formal specifications from The Stack 1 and
The Stack 2. We first identify C files annotated with formal languages.
Then, we ensure that the annotated C files formally verify, and employ
LLMs to improve non-verifying files. Furthermore, we post-process the
remaining files into pairs of C code and ACSL specifications, where each
specification-implementation pair is formally verified using Frama-C. To
ensure the quality of the pairs, a manual inspection is conducted to
confirm the correctness of every pair. The resulting dataset of C-ACSL
specification pairs (CASP) provides a foundation for benchmarking and
further research on integrating automated code generation with verified
correctness.

Keywords: Evaluation Benchmark - Formal Verification -
Specification-Implementation Pairs + Dataset Creation

1 Introduction

Large Language Models (LLMs) for code generation have achieved remarkable
results in recent years, showing strong performance on tasks such as generating
syntactically valid functions and providing code completions [7,8,20,23]. While
LLMs demonstrate value across many coding tasks, their utility remains limited
in domains with strict safety and quality requirements, such as safety-critical

© The Author(s) 2026
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 63-82, 2026.
https://doi.org/10.1007/978-3-032-07132-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_5&domain=pdf
http://orcid.org/0009-0002-6048-7132
http://orcid.org/0009-0002-1114-4395
http://orcid.org/0009-0004-8576-337X
http://orcid.org/0009-0005-5826-1398
https://doi.org/10.1007/978-3-032-07132-3_5

64 N. Hertzberg et al.

systems, where software failures can lead to severe consequences. A key limitation
is that code generated by LLMs cannot be reliably guaranteed to be correct.

In contrast to the probabilistic nature of LLMs, formal specification lan-
guages offer a potential solution to the nondeterministic behavior of LLMs.
These formal specification languages provide robust means to specify program
behavior, which can then be verified using formal verification tools. However,
the adoption of such formal specification languages faces practical challenges:
the pairs of formal specifications and associated code must be manually written,
which is both time-consuming and requires expertise.

Given that manually creating such pairs is time-consuming, LLMs provide a
promising application of being able to generate code from specifications or vice
versa.

The task of generating specifications from code and code from specifications is
arguably a most fundamental use case for applying LLMs to formal specification
generation, directly targeting the most time-consuming tasks. Furthermore, like
the related task of correcting non-verifying code, these tasks provide an easily
interpretable success metric through formal verification since the generated pairs
either verify or fail to verify.

However, evaluating the feasibility and progress of such an approach requires
ways to measure the performance of LLMs in the form of dedicated evaluation
datasets. We present such a dataset, consisting of verified pairs, that is specifi-
cally designed to benchmark this core generative capability.

Existing datasets containing ACSL specifications [1,2,4,11,25] and C code
have two significant limitations. First, the datasets are limited in size and there-
fore lack the breadth needed to cover diverse real-world use cases. Lacking
large and diverse datasets, researchers cannot draw general conclusions regarding
LLMs’ abilities to generate formally verified pairs.

Second, existing datasets are typically distributed as collections of whole
C source files, where specifications are embedded as comments. This for-
mat requires a non-trivial parsing and extraction step to isolate individual
specification-implementation pairs before they can be used in an evaluation
pipeline for pair-generation tasks. These two limitations hinder progress in inte-
grating formal methods into the software development process.

Our work addresses this fundamental gap by providing a dataset with suffi-
cient breadth and volume to give researchers a reliable benchmark. Our dataset
consists of C code and formal specifications in ANSI/ISO C Specification Lan-
guage (ACSL), chosen for its adoption by the Frama-C [10, 18] verification plat-
form, which is used in both academic research and industrial contexts for veri-
fying critical properties of C programs [12,27]. We call this dataset CASP, short
for C-ACSL specification pairs. We create CASP by first sourcing all C files
from The Stack v1 and The Stack v2 repositories. The C files are then filtered
using three steps: (1) identifying and retaining high-quality C files containing
formal specification in ACSL; (2) ensuring that the ACSL-annotated C files for-
mally verify, and attempting to correct these if they do not verify (3) extracting

CASP: An Evaluation Dataset for Formal Verification of C Code 65

individual function implementations and their formal specifications to obtain
function-specification pairs.
This paper offers the following contributions:

1. We present CASP: a unique dataset of C code paired with associated for-
mal specifications in ACSL, accessible at: https://huggingface.co/datasets/
nicher92/CASP dataset. The dataset contains 506 pairs. These pairs are
systematically extracted from large-scale open-source datasets (The Stack v1
and v2) and are formatted as pairs in order to be amenable to LLM evalua-
tion.

2. We share the complete files from which each pair was taken, accessible at:
https://huggingface.co/datasets/nicher92/CASP source files. The number
of files is much larger than previously available public datasets, offering sig-
nificantly more data for training and evaluation. Additionally, the files — and
by extension the pairs— are all “minimally complete” — meaning the files have
no dependencies other than the standard C libraries.

3. We detail our filtering, verification, and post-fixing procedures, ensuring that
each file, as well as each code-specification pair, formally verifies and is con-
sistent with one another.

This dataset fills a gap by providing a valuable resource for benchmarking
and training LLMs on the task of specification generation from code and vice
versa. By offering a conveniently formatted dataset consisting of verified, min-
imally complete pairs of specifications and associated code, our work supports
the development of advanced tools for software verification by contributing to
the creation of more reliable software systems.

The rest of this paper is organized as follows. We first provide a brief
overview of formal verification, in particular the ANSI/ISO Specification Lan-
guage (ACSL) in Sect. 2. Then in Sect. 3, we review existing formal specification
datasets and their limitations. Section4 explains our data collection methodol-
ogy, followed by our file verification process in Sect.5. We then describe how
we divided the files into specification-function pairs Sect.6. Section 7 presents
the composition and key statistics of the dataset, with a discussion and analysis
in Sect. 8. Finally, Sect.9 presents our conclusions and suggests directions for
future work.

2 Background

This section provides background on the specification language and verification
tools used in our dataset. In particular, we describe the ANSI/ISO C Specifica-
tion Language (ACSL) and the Frama-C verification framework, with a focus on
the WP and RTE plugins used to check correctness and runtime safety.

In the dataset, we focus on ANSI/ISO C Specification Language (ACSL),
which enables the formal verification of C code. The language is designed for use
with the Frama-C verification framework, a framework for static analysis and
deductive verification [3].

https://huggingface.co/datasets/nicher92/CASP_dataset
https://huggingface.co/datasets/nicher92/CASP_dataset
https://huggingface.co/datasets/nicher92/CASP_dataset
https://huggingface.co/datasets/nicher92/CASP_dataset
https://huggingface.co/datasets/nicher92/CASP_dataset
https://huggingface.co/datasets/nicher92/CASP_dataset
https://huggingface.co/datasets/nicher92/CASP_dataset
https://huggingface.co/datasets/nicher92/CASP_source_files
https://huggingface.co/datasets/nicher92/CASP_source_files
https://huggingface.co/datasets/nicher92/CASP_source_files
https://huggingface.co/datasets/nicher92/CASP_source_files
https://huggingface.co/datasets/nicher92/CASP_source_files
https://huggingface.co/datasets/nicher92/CASP_source_files
https://huggingface.co/datasets/nicher92/CASP_source_files
https://huggingface.co/datasets/nicher92/CASP_source_files

66 N. Hertzberg et al.

2.1 ANSI/ISO C Specification Language

ACSL is a contract-based specification language that allows formal verification
of C programs by defining preconditions, postconditions, invariants, and memory
access constraints. It is designed to be used with the weakest precondition plugin
of Frama-C.

1 /*@

requires \valid(x) && \valid(y);

assigns *x, *y;

ensures *x == \old(*y) && *y == \old(*x);
5 %/

6 void swap(int* x, int* y) {

int temp = *x;
*X = xy;
*y = temp;

)}

Fig. 1. ACSL specification and associated implementation in C for a function swapping
two integers.

Figure 1 demonstrates an ACSL-annotated function that swaps the values of
two integer pointers. The requires clause (line 2) specifies that both variables x
and y must be valid pointers before execution. The \valid predicate ensures that
the pointers reference accessible memory. The assigns clause (line 3) explicitly
states that the function modifies the memory locations pointed to by x and y,
making side effects explicit. The ensures clause (line 4) guarantees that after
execution, the values of variables x and y have swapped. The \old keyword refers
to the values before function execution, ensuring that the function correctly
swaps the values.

2.2 The Frama-C Framework

Frama-C is a modular analysis framework for C programs that supports a vari-
ety of verification techniques, including runtime error detection and deductive
verification. In this work, we use two of its key plugins: WP and RTE.

The WP (Weakest Precondition) plugin generates proof obligations called
goals from ACSL-annotated C code using weakest precondition calculus. These
obligations are passed to SMT solvers (e.g., Alt-Ergo, Z3, CVC4), which attempt
to automatically prove that these goals within a given timeout and number of
steps.

The RTE (Runtime Error) plugin instruments the program with ACSL
annotations that check for common runtime errors, including division by zero,
null pointer dereference, invalid memory access, and integer overflow. The WP
plugin then verifies these additional checks as part of the deductive verifica-
tion process. Together, WP and RTE enable Frama-C to verify both functional
correctness and runtime safety.

CASP: An Evaluation Dataset for Formal Verification of C Code 67

3 Related Work

This section reviews prior work relevant to our dataset, including large-scale
source code collections, existing datasets containing formal specifications in C,
and recent efforts to combine ACSL with automated code generation using
LLMs.

3.1 Large-Scale Source Code Datasets

The availability of large source code datasets is fundamental for training and
evaluating large language models (LLMs) on code-related tasks. Notably, The
Stack v1 [19] and v2 [22], created as part of the BigCode Project!, provide vast
repositories of permissively-licensed source code across numerous programming
languages. The Stack vl comprises approximately 546 million files totaling 6.4
TB, covering 358 programming languages. The subsequent release, The Stack
v2, significantly expanding this collection to over 3 billion files (67.5 TB) in
more than 600 languages, further enhancing the diversity and volume available
for model training and evaluation.

Table 1. Total number of files and number of C files in The Stack vl and v2. Note
that M refers to million, and B refers to billion.

The Stack v1|The Stack v2
Total number of files|5.46M 3B
Number of C files [19.88M 40.88M

3.2 Formal Specification Datasets Used in Literature

Existing collections of C code annotated with ACSL specifications primarily
originate from research projects, serve as educational materials, or have uncertain
origins.

Datasets developed in research contexts often function as case studies for for-
mal verification techniques [15,25] or as benchmarks for evaluating analysis tools
[4], typically created through manual ACSL annotation of C code. A significant
educational resource is the ACSL tutorial [5], designed to teach specification
writing through hands-on exercises. This tutorial contains numerous examples,
many intentionally left incomplete for learners to finish, reflecting its pedagogical
goal.

Common characteristics of these available datasets include small size, for-
matting as individual files (sometimes with dependencies to other files like .h
headers), and a structure tailored to their specific origin or teaching objective
rather than forming a larger corpus designed for evaluating LLMs.

! https://www.bigcode-project.org)/.

https://www.bigcode-project.org/
https://www.bigcode-project.org/
https://www.bigcode-project.org/
https://www.bigcode-project.org/
https://www.bigcode-project.org/

68 N. Hertzberg et al.

Table 2. Existing Formal Specification datasets for C code.

Dataset source ACSL annotated C filesMinimally complete verified programs
Frama-C-problems [25] |51 9

X509-parser [1] 6 0

Verker [14] 48 1

ACSL By Example [15] 86 3

WP examples [5] 295 134

ACSL proved [13] 34 10

VecoSet [4] 15 14

3.3 Previous Work on LLMs for C Code and ACSL Specifications

Prior research has explored the intersection of C programming and ACSL speci-
fications, particularly in the context of leveraging LLMs for code generation and
verification. Minal et al. [24] investigated the feasibility of using LLMs to gen-
erate automotive safety-critical embedded C code from both natural language
and ACSL specifications. Their study demonstrated the potential of produc-
ing compilable and partially verifiable code without iterative backprompting or
fine-tuning, though the limited scope of their case studies highlighted the need
for more extensive datasets. Similarly, Sevenhuijsen et al. [26] developed a tool
that employs a two-step process of initial code generation followed by iterative
improvement using feedback from compilers and formal verifiers. The tool suc-
cessfully generated verified C programs for a majority of the problems in their
benchmark set, underscoring the effectiveness of combining formal specifications
with automated code generation. However, the relatively small number of code
samples in these studies indicates a pressing need for larger, more comprehensive
datasets to draw stronger conclusions and enhance model performance.

Similar work has begun to infer ACSL specifications automatically from C
code. Granberry et al. prompt GPT-4 with source code plus test inputs and
static-analysis warnings, then refine the output of the model until it verifies in
Frama-C [16]. Wen et al. apply heuristic post-processing to GPT-4 predictions,
correcting syntax and adding safety clauses so the resulting contracts verify
more reliably [28]. Together, these studies show that coupling large language
models with formal-methods feedback is a promising route to automatic ACSL
specification generation.

4 Dataset Collection

Our methodology for collecting and curating a dataset consisting of C functions
paired with their corresponding ACSL specifications. We employ a three-step
data collection process, shown in Fig. 2. This section focuses on the first step of
our dataset creation, where we gather a large collection of source files and then

CASP: An Evaluation Dataset for Formal Verification of C Code 69

Step 1: Extract ACSL Code Pairs Step 2: Verify and Repair Files

Repair Files

ACSL
Annotated C
files

‘rror: expected 7, - or) before n
15 | intall_zeros(int t] int) {

Compiles

Gepend on
another
function?

Function
of File?

[wp] [Timeout] typed_all
all

i\ Parallel Filtering | Verifies

Formally
/ Verified ACSL

Regular Expression Annotated C
Similar to Step 2) Repair Extraction Files

and Verify Functions g [SE——
%

LLM-based Seperation

Fig. 2. Overview of the three-step dataset construction pipeline. Step 1 involves
using files from The Stack vl and v2, which are filtered to identify C files contain-
ing ACSL specifications without external dependencies. Step 2 compiles and verifies
each annotated file, and files that fail this are automatically repaired using LLMs and
re-evaluated. Step 3 transforms successfully verified files into minimal specification-
implementation pairs and includes them in CASP.

iteratively filter the files in order to isolate ACSL-annotated C files without other
dependencies.

4.1 Downloading the Stack

As an initial step in our data processing pipeline, all files tagged as being written
in C were downloaded from the deduplicated versions of Stack V1 and V2. Table 1
shows the total number of files in The Stack (V1 and V2) and the subset identified
as C files.

4.2 Extracting Files Containing ACSL Specifications

After our initial collection of files, we applied regular expression filters in several
steps, in order to extract files that contain ACSL-like annotations. The regular
expression patterns were authored by a formal methods expert and are detailed
in Appendix A. Each pattern is associated with a confidence label indicating
whether it can appear in multiple formal languages, such as VeriFast [17] (possible
overlap), or is unique to a specific language (exclusive). We iteratively applied
stricter quality filters, only keeping files containing specific ACSL syntax, which
left us with 2958 files, as can be seen in Table 3.

70 N. Hertzberg et al.

Table 3. Dataset collection and filtering process. Starting from The Stack
(deduplicated versions 1 and 2), we progressively filter files to identify
those containing ACSL specifications. The strict filtering uses the pattern
/*@.*7(predicate|requires|ensures) . *7*/.

Processing Step ‘Count ‘ Description

Initial Data Collection

Stack 1 (deduplicated) 8,625,559 Raw code samples

Stack 2 (deduplicated) 17,093,668 Raw code samples

Combined total 25,719,227 Total initial code samples
Dataset A Creation

Initial regex filtering 14,525 Files matching basic patterns
Stricter filtering 5,916 Files with formal specifications
ACSL filtering 2958 Files with ACSL

Standard/No import filtering|1180 Minimally complete files

4.3 Minimally Complete C Files

Many of the collected C files depended on code from other files or non-standard
libraries. These dependencies were often complex, making the extraction of ver-
ifiable functions and specifications challenging.

To address this issue, we applied an additional filtering step: we only retained
files that are self-contained, with dependencies limited to standard C libraries.
We refer to these as “minimally complete files” since the specifications and func-
tions they contain can be analyzed independently without requiring external
code.

After this stage of our pipeline, we retained 1180 minimally complete C files
(see Table 3) that contained ACSL specifications.

5 Verifying and Curating CASP Source Files

This section describes the second step of our three-step process depicted in Fig. 2.
Specifically, it describes our method for verifying the correctness of our minimal
complete files and our attempts to correct files that do not compile or formally
verify.

5.1 Method

To formally verify the minimally complete C files, we attempt to verify if the
C implementation meets the formal specifications in these files. The verification
process is done by two plugins of Frama-C [9], which we described in Sect. 2.2. We
verified each source file using Frama-C version 30.0 (Zinc) with the WP and RTE
plugins. The verification was performed using multiple SMT solvers to combine

CASP: An Evaluation Dataset for Formal Verification of C Code 71

their strengths: Z3 version 4.8.12, Alt-Ergo version 2.6.0, and CVC4 version 1.8.
We configured the WP plugin with a 500,000-step limit and a 60-second timeout
per proof goal.

For each source file, we either successfully completed all of the goals set by
the WP and WP-RTE |[6] plugins of Frama-C, or we retrieved the non-verifying
goals from Frama-C and attempted to repair the specification. Files that fail to
meet the specifications were sent to an LLM (Gemini 2.0 Flash) along with the
non-verifying goals from Frama-C and a prompt requesting to update the code
such that all goals are verified. We then iteratively attempted to correct each
failing file for a maximum of seven iterations. Through this process, we ended
up with 469 verified files in our final dataset (Table4).

Table 4. File Analysis Summary

Category Count

Minimally complete files 1180
Minimally complete files verified without modifications292

Minimally complete files verified with modifications 177

Total verified minimally complete Files 469

Prompt Engineering. Our approach to prompt design was iterative, refining
the instructions for the LLM based on patterns of verification errors observed
in its outputs. We focused particularly on addressing common verification chal-
lenges, such as proper contract clause ordering, memory access specifications,
and strategic assertion placement to guide proofs. The LLM was prompted to
make minimal changes to the code, and also to output what it “thinks” the user
intended with their code in order to limit deviation from the original code. The
complete prompt used in our processing pipeline can be found in Appendix B.

6 CASP Pair Creation

This section explains step three of the three-step process mentioned in Fig. 2.
It describes the means for separating the verifying files into specification imple-
mentation pairs.

6.1 Motivation for Specification-Implementation Pairs

Creating verified formal specifications and function pairs offers three advan-
tages over verified C files. First, using specification-function pairs provides a
more decoupled method for evaluating LLM performance on formal verification
tasks than using entire files. For example, since each specification corresponds

72 N. Hertzberg et al.

to a function implementation, it is possible to assess the generative capabili-
ties of an LLM given a formal specification. Second, these pairs ensure that
the specification is logically consistent with the implementation and practi-
cally implementable. This addresses a fundamental challenge in formal meth-
ods where abstract specifications may contain logical inconsistencies or unreal-
izable requirements. Third, the structure of the dataset supports bidirectional
evaluation—from specification to code and vice versa — which in turn supports
a broader range of research questions related to the generative capabilities of
LLMs.

6.2 Minimally Complete Files to Minimally Complete Pairs

To create minimally complete pairs from minimally complete files, we selected
function implementations according to the following requirements:

— The functions do not depend on other functions in a file.
— The functions are not main functions.

The decision to focus on standalone functions was guided by two primary
factors. Methodologically, it creates a constrained test that directly evaluates
an LLM’s core ability to translate between a specification and an implementa-
tion. Practically, the task of identifying, extracting, and verifying the complete
context for functions with numerous dependencies from large codebases is often
intractable. Our approach therefore ensures that each pair in CASP is a self-
contained and verifiable unit.

We utilized two parallel pipelines in order to extract pairs of ACSL specifi-
cation and C implementation from our source files: One based on utilizing an
LLM and one based on regular expressions. Each minimally complete file that
fulfilled the above requirements was sent to both pipelines.

The regular expression-based pipeline comprises three steps: first, extract-
ing function implementations, second, their corresponding ACSL specification
if present, and third, any additional dependencies needed for verification of the
pair. Any functions without associated specifications were removed.

The LLM-based pipeline (Using Gemini 2.0 Flash) consisted of prompting
the model to extract functions, their associated specification, and any additional
dependencies?. Regular expression for function extraction and prompt can be
found in Appendix C.

We take the union from the resulting pairs from both pipelines, which were
then verified by Frama-C, similarly as described in Sect. 5.1; any remaining
unverified pairs were manually post-fixed.

The resulting union of pairs, 513 in total, from the two pipelines was then
filtered in two steps: We performed exact deduplication of the C implementations
and only kept function implementations longer than one line of code, leaving us
with 506 pairs.

2 With additional dependencies we mean standard imports, type and variable decla-
rations, logic predicates, etc.

CASP: An Evaluation Dataset for Formal Verification of C Code 73

7 Dataset Statistics

In this section, we provide a statistical overview of our dataset. First, in Fig. 3 we
show the length distribution measured as lines of C code for our pairs, and find
that most of the CASP pairs are short to medium in length. Correspondingly,
the number of lines of ACSL for each pair can be seen in the distribution plot
in Fig.4, most specifications are short to medium in length, with some more
complex outliers.

Beyond characterizing the CASP pairs themselves, we also analyze the diver-
sity and novelty of the verified C source files from which these pairs were derived.
Comparing the source files to existing file-based ACSL datasets allows us to
assess the breadth of our data collection. Since our dataset is collected from
open-sourced code, there is a possibility of overlap between CASP and other
open-sourced datasets containing ACSL. In order to measure potential overlap,
we embed our files and compare the semantic similarity of our files to exist-
ing datasets. The comparison is done in two ways: first, using a t-SNE plot in
two dimensions, and second, by a nearest neighbour comparison. An in-depth
analysis of the semantic distributions can be found in Sect. 8.2.

7.1 Semantic Distribution of File Contents

We downloaded existing datasets (see Table2) containing ACSL specifications
and C code. We filtered each C file in all datasets — including the CASP source
files — so that all files were minimally complete, ensuring a fair comparison
between datasets. We then embedded the files that verify using CodexEmbed
[21] — a model specifically developed for code retrieval. We used the 2B parameter
model variant. The embedding model has a maximum context length of 4096,
which means that longer code samples were truncated, potentially affecting their
representation.

]
g

S
8

8

Frequency (Count)
3

8

=Y

30-40 40-50 50-60 60+
Number of Lines in Final Code

Fig. 3. Distribution of lines of C code for each CASP pair, excluding specification and
imports. Most programs are short to medium in length. The X axis indicates lines of
code, and the Y axis indicates a number of occurrences. Outliers over 60 total lines of
code are binned together.

Using these high-dimensional embeddings, we visualized the semantic rela-
tionships between files using t-SNE (Fig. 5) and quantitatively analyzed the sim-
ilarity distribution by calculating nearest neighbor distances (Fig. 6).

74 N. Hertzberg et al.

200

150

100

50.
0

Frequency (Count)

I
5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60+
Number of ACSL lines in Final Code

0-5

Fig. 4. Distribution of total lines of ACSL for each CASP pair. The X axis indicates
the total number of lines of ACSL, and the Y axis indicates the number of occurrences.
Outliers over 60 total lines of ACSL are binned together.

8 Discussion and Analysis

In this section, we describe our findings on the current state of openly sourced,
ACSL-annotated code. We then provide an analysis of CASP and the source files
from which CASP was derived. Finally, we discuss our method for LLM-based
specification repair along with implications for verification and specification gen-
eration.

8.1 Current State of Affairs and the Need for CASP

Our investigation confirmed a significant challenge for researchers in automated
verification and specification generation: the pronounced scarcity of openly acces-
sible C code accompanied by ACSL annotations. Furthermore, where such code
exists, a substantial portion exhibits quality issues, often failing verification by
Frama-C. This scarcity presents challenges for researchers seeking to build com-
prehensive datasets for LLM training or benchmarking purposes. We hypothesize
that the main reason for this scarcity is that while ACSL is a fairly standard
verification language, much of the code where it is present is not openly available
on GitHub with permissive licensing, and is therefore not included in The Stack
1 and 2.

Despite this scarcity, CASP is the largest openly released dataset contain-
ing ACSL specifications and C code so far. Additionally, the dataset is formally
verified and formatted in a way conducive to evaluating LLMs. Another key
strength of CASP lies in its inherent diversity. Since the collected code samples
were authored by numerous different programmers, they exhibit considerable
variety in implementation styles, algorithmic approaches, and specification pat-
terns. This diversity strengthens the utility of our dataset for various research
applications, as it represents a broad spectrum of real-world specification prac-
tices rather than the more uniform patterns that might emerge from a single
team or project.

CASP: An Evaluation Dataset for Formal Verification of C Code 75

Labels
40 CASP source files
Frama-C problems
WP examples
30 * VecoSet
Verker
Acsl Proved
20 - Acs| By Example

t-SNE Dimension 2

-40

—40 -20 0 20 40
t-SNE Dimension 1

Fig. 5. t-SNE visualization of embeddings from various datasets that verifies without
any external imports (CASP source files, Frama-C problems, VecoSet, etc.). The plot
shows the projection of high-dimensional embeddings into a 2D space, where proximity
suggests similarity. Colors indicate the source dataset as shown in the legend. Any
difference in embeddings indicates a difference in file content.

8.2 Dataset Composition and Analysis

The embedded source files from CASP — when visualized using t-SNE in Fig. 5 -
occupy a broader range of the semantic space and therefore show greater diversity
than existing datasets, encompassing most regions where samples from existing
datasets are located. We hypothesize that there are two reasons for this: The
CASP source files are substantially more numerous than existing datasets, and
the source files originate from multiple sources and numerous different authors.
It should be noted that the ACSL annotated C files from other datasets often
contain imports from .h files — which we do not include — causing many of the
files to not verify.

Furthermore, our analysis (see Fig.6) reveals that several files from the
datasets Frama-C Problems, ACSL Proved, WP Examples, and CASP are sim-
ilar to at least one other file in one of the datasets. Beyond these clusters of
similarity, we found a broad distribution of datapoint relationships across the
similarity spectrum. Overall, we find that there is fairly limited overlap between
CASP and previous datasets, since only approximately 35 CASP source files are

76 N. Hertzberg et al.

Labels
2 Acs| By Example
3 25 Acs| Proved
20 CASP source files
g Frama-C problems
VecoSet
Verker
WP examples

2% ak 6k 8k 10k 12k 14k 16k
Minimum Distance

Fig. 6. Nearest neighbours of various datasets (CASP source files, Frama-C problems,
VecoSet, etc.). The plot shows the distance between each embedded source file, where
the source file is from and how similar its nearest neighbour is. A dataset containing
a wide variety of files would contain more points to the right on the x axis and vice
versa.

very similar to some other file in any of the other datasets. One explanation for
this limited overlap is that we remove files that are dependent on files not found
in the standard libraries, including .h files. Many of the C files in the existing
datasets contain .h files and are, therefore, naturally filtered if found.

8.3 LLM-Based Specification Repair and Pair Extraction

While not the primary focus of this work, our approach to repairing faulty ACSL-
annotated C files using LLMs showed meaningful success.

Our methodology successfully corrected 177 files out of the 888 that initially
failed verification, representing a 19.9% success rate among files requiring modifi-
cation. The success rate highlights the challenging nature of formal specification
repair, even for advanced LLMs. Nevertheless, the fact that nearly one-fifth of
problematic specifications could be automatically corrected suggests potential
for improvement in this area. One explanation for this rate of success is related
to the limited amount of ACSL-annotated C code that is openly available: it is
difficult to train an LLM to understand the syntax and semantics of a formal
language that the LLM has barely encountered previously. Another reason could
be that the non-repairable files themselves were poorly written and therefore dif-
ficult for an LLM to repair, especially given the constraint not to deviate from
the original implementation.

In addition to repairing ACSL-annotated C files, we also utilized LLMs for
function extraction. We found that LLMs struggle in some cases but can be
complemented by straightforward rule-based methods based on regular expres-
sions. This combined approach proved to be more successful than using either
approach on its own.

9 Conclusions and Future Work

This paper has demonstrated our approach to creating CASP: a dataset con-
sisting of 506 verified and deduplicated C code functions paired with ACSL
specifications.

CASP has only been publicly available since June 2025, it serves as a timely
and uncontaminated benchmark for all current models and any future models

CASP: An Evaluation Dataset for Formal Verification of C Code s

with a training data cutoff before this date, but future work should also address
the long-term maintenance of CASP as a benchmark. To mitigate the risk of
data contamination from future model training, a portion of the dataset could
be reserved for a private test set, and our methodology could be used to generate
new versions of the benchmark over time.

Additionally, our findings suggest several promising directions for extending
this work. We suggest two main avenues of exploration, extending CASP and
specific dataset applications.

A natural extension could involve exploring different data sources to expand
our data set. For example, academic papers and technical documentation often
contain high-quality specifications created by experts that could yield additional
examples of formally verified pairs. Synthetic data generation, using CASP for
seed prompts with modifications to promote greater diversity in the generated
code samples, is another promising avenue to explore.

As CASP was created first and foremost with evaluation of LLMs in mind,
a natural next step in terms of applications would be to evaluate a wide variety
of different LLMs on generating code from formal specifications and vice versa.
Future work, possibly following an extension of the dataset, might also explore
training specialized models for formal verification tasks or developing automated
tools for specification generation and repair.

A Regex Patterns Used

See Table 5.

B Gemini Prompt

The following is the prompt used to instruct Gemini to correct ACSL specifica-
tions in C code based on Frama-C error messages.

Listing 1.1. Main prompt given to Gemini

Your task is to correct ACSL specifications based on C code and error
messages from Frama-C.

Your goal is to repair the ACSL specifications so that they pass Frama-C’s
verification.

Do not alter the C code unless absolutely necessary.

Focus on correcting ACSL specifications to address common errors such as:

Invalid ACSL syntax

Type mismatches in ACSL expressions

Loop invariants that are not strong enough or incorrect
Precondition or postcondition failures

Memory access errors or incomplete memory specifications
Incomplete or incorrect assigns clauses

Timeout issues in proof obligations

Pay special attention to:
Using precise memory specifications: \valid, \valid_read, \separated as

appropriate
Ensuring loop invariants are strong enough to prove postconditions

78 N. Hertzberg et al.

Table 5. Patterns for ACSL, and Verifast Annotations

ACSL

/@(7:(71@/) [\s\8])*?\brequires\b(?: (?7!@/) [\s\S]) *?/
/@(?7:(71@/) [\s\S])*7?\bensures\b(?: (7!1@/) [\s\S1)*?/
/@(7:(71@/) [\s\8])*?\bassigns\b(?: (7!@/) [\s\81)*?/
/@(7:(71@/) [\s\S])*7\binvariant\b(?: (?!1@/) [\s\S])*?/
/@(7:(71@/) [\s\S])*?\baxiomatic\b(?: (?!@/) [\s\S])*?/
/@(7:(71@/) [\s\S])*7\blemma\b(?: (7!@/) [\s\S])*?/

/@(?:(71@/) [\s\S])*?\bpredicate\b(?: (?!1@/) [\s\S1) *?/
/@(7:(71@/) [\s\S])*7\blogic\b(?: (7!1@/) [\s\S1)*?/

/@(?:(71@/) [\s\S])*?\bbehavior\b(?: (7!@/) [\s\S])*?/

/@(?:(71@/) [\s\S1)*7\bdisjoint behaviors\b(?:(7!@/) [\s\S1)*?/
/@(7:(71@/) [\s\S])*7\bcomplete behaviors\b(?:(?!1@/) [\s\S])*?/
/@(7:(71@/) [\s\S])*?\bassumes\b(?: (7!@/) [\s\8])*?/
//@\s*\brequires\b

//@\s*\bensures\b
//@\s*\bassigns\b
//@\s*\binvariant\b
//@\s*\baxiom\b
//@\s*\blemma\b
//@\s*\bassert\b
loop invariant
loop assigns

loop variant
\\old\b

\\at\b
\\nothing\b
\\max\b

\\min\b
\\result\b
\\forall\b
\\exists\b
\\sum\b
\\sizeof\b
\\valid\b
\\valid_read\b
\\is_finite\b

Verifast

/@(7:(71@/) [\s\S1)*?\bopen\b(?: (?16/) [\s\S1) *7¢/
/@(7:(71@/) [\s\S])*?\brequires\b(?: (?7!@/) [\s\S]) 70/
/@(?7:(71@/) [\s\S])*7?\bensures\b(?: (?1@/) [\s\S1)*7@/
/@(7:(71@/) [\s\8])*?\bassert\b(?: (?!0/) [\s\S])*7e/
/@(?:(71@/) [\s\S1)*?\bfold\b(?: (?10/) [\s\S])*7Q/
/@(7:(71@/) [\s\81)*?\bunfold\b(?: (?!@/) [\s\S])*7e/
/@(?:(71@/) [\s\S])*?\blemma\b(?: (?!@/) [\s\S])*7@/
/@(?7:(71@/) [\s\S])*7\bpredicate\b(?: (?10/) [\s\S1)*7@/
/@(7:(71@/) [\s\S])*7\bopen\b(7: (?!1¢/) [\s\S]) 70/
/@(?7:(71@/) [\s\S1)*?\bclose\b(?: (?!1@/) [\s\S1)*7@/
/0(?:(71@/) [\s\S])*?\binvariant\b(?: (?!@/) [\s\S])*7@/
/@(7:(71@/) [\s\S1)*?\bpointer\ (\b(?: (?!@/) [\s\S]1)*7e/
/@(?:(71@/) [\s\S]1)*?\bmalloc_block(?: (7!@/) [\s\S])*70/
//@\s*\binclude\b

//@\s*\brequires\b

//@\s*\bensures\b

//@\s*\bassert\b
//@\s*\bfold\b
//@\s*\bunfold\b
//@\s*\binvariant\b
//@\s*\blemma\b
//@\s*\bopen\b
//@\s*\bclose\b
//@\s*\bleak\b

CASP: An Evaluation Dataset for Formal Verification of C Code 79

Adding explicit loop assigns clauses to clarify what loops modify

Using complete behaviors and disjoint behaviors when appropriate

Adding strategic assertions to guide the prover

Using \exists and \forall quantifiers correctly

Ensuring that array bounds are properly specified

Not to add undefined variables that are not defined in the code previously.

Loop assigns is not allowed after loop variant so they need to be prior to
the loop variant

Wrong order of clause in contract: behavior should be before complete or
disjoint for example

Using correct syntax for behaviors: each behavior should be declared
separately using the behavior keyword, not enclosed in braces; complete
behaviors and disjoint behaviors should be followed by a comma-separated
list of behavior names without braces

The ACSL specifications for a function should be above the function, not
below it.

Avoid adding main() functions if not present in the original code.

In general the changes should not attempt to alter the purpose of the
original code.

For timeout issues, consider:

Simplifying complex specifications

Breaking down properties into smaller, more provable assertions
Using different specification styles (direct ensures vs. behaviors)
Adding intermediate assertions to guide the proof

Output the corrected file in JSON format, including a brief explanation of
the changes made and any assumptions.

Input:

C Code (Previous Attempt):

{file_content}

Frama-C Error Message (From Previous Attempt):
{error_message}

Listing 1.2. Context prompt for subsequent iterations

Context from Previous Gemini Attempt (that produced the code above):

Previous Explanation: {prev_explanation}

Previous Assumptions: {prev_assumptions}

Previous Strategies Suggested: {prev_strategies}

Based on the previous attempt’s code, the resulting error message, and the
previous explanation/assumptions, please refine your corrections to
address the remaining issues. Focus specifically on the errors
highlighted in the Frama-C message.

Listing 1.3. Context prompt for first iteration

This is the first attempt to fix the provided code and error message in this
refinement cycle. Please analyze the code and error carefully.

Listing 1.4. Required output format

Output Format:
Please provide your response in the following JSON format:

{
"explanation": "Explanation of changes made in this attempt",
"assumptions": "Any assumptions made during this correction process",
"fixed_code": "Complete corrected code with fixed ACSL specifications here
"
s
"strategies": "Suggestions for prover strategies if timeout issues persist
(e.g., specific provers, timeouts, steps)"

80 N. Hertzberg et al.

C Function Pair Extraction

Listing 1.5. Regex for extracting non main functions

r’))
(?P<signature>

(?7:[a-zA-Z_1[\w\s*\(\) ,]1%7) # return type and qualifiers
\s+ # whitespace
(?! (main)\s*\ () # not ’main’
[a-zA-Z_]\wx # function name
\s*\([~;1*7\) # parameter list

)

\s*\{ # opening brace of body

39

Listing 1.6. Gemini prompt for function and specification pair extraction

You are given a C source file that contains one or several functions with
corresponding ACSL specifications and additional dependencies.

Your task is to extract all functions that are independent of other functions
, except ‘main‘, which should be excluded. A function is considered
independent if it does not call or rely on other user-defined functions
in the file.

For each such function:
1. Extract the full function implementation (signature and body).
2. Extract the ACSL specification that precedes it (typically marked by /*@
or //@).
3. Identify and include only the minimal dependencies required for Frama-C
verification of the function. This may include:
- ‘#include ¢ directives (e.g., ‘<stdbool.h>¢)
- ‘#define ‘ macros
- global constants or variables used in the function

Return a JSON object for each function with the following fields:

- "function_implementation": the code of the function (not ‘main‘)
- "acsl": the ACSL specification
- "dependencies": the minimal required includes/defines/globals

If a function depends on another user-defined function in the same file, skip
it.

C source code:
{file_content}

References

1. ANSSI-FR/x509-parser, December 2024. Original-date: 2019-06-03T12:22:56Z

Alur, R., Fisman, D., Padhi, S., Singh, R., Udupa, A.: SyGuS-Comp 2018: results

and analysis, April 2019. arXiv:1904.07146 |cs]

Baudin, P., et al.: ANSI/ISO C specification language version 1.21 (2024)

4. Beyer, D.: Progress on software verification: SV-COMP 2022 (2022). https://doi.
org/10.1007/978-3-030-99527-0 20

5. Blanchard, A.: Frama-C and WP tutorial code examples (2025). https://github.
com/AllanBlanchard /tutoriel _wp

w

http://arxiv.org/abs/1904.07146
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://github.com/AllanBlanchard/tutoriel_wp
https://github.com/AllanBlanchard/tutoriel_wp
https://github.com/AllanBlanchard/tutoriel_wp
https://github.com/AllanBlanchard/tutoriel_wp
https://github.com/AllanBlanchard/tutoriel_wp
https://github.com/AllanBlanchard/tutoriel_wp

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.
23.

24.

25.

CASP: An Evaluation Dataset for Formal Verification of C Code 81

Blanchard, A., Bobot, F., Baudin, P., Correnson, L.: Formally verifying that a
program does what it should: the WP plug-in. In: Guide to Software Verification
with Frama-C: Core Components, Usages, and Applications, pp. 187—261. Springer
(2024)

Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural
Information Processing Systems, vol. 33, pp. 1877-1901. Curran Associates, Inc.
(2020)

Chen, M., et al.: Evaluating large language models trained on code, July 2021.
arXiv:2107.03374 [cs]

Correnson, L., et al.: Frama-C user manual for Frama-C 30.0 (zinc) (2024)

. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:

Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233-247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

Dillig, I., Dillig, T., McMillan, K., Li, B.: Inductive Invariant Generation via
Abductive Inference

Dordowsky, F.: An experimental Study using ACSL and Frama-C to formulate
and verify Low-Level Requirements from a DO-178C compliant Avionics Project.
Electron. Proc. Theor. Comput. Sci. 187, 28-41 (2015). arXiv:1508.03894 [cs]
Efremov, D.: evdenis/acsl-proved, March 2016. Original-date: 2017-02-
14T16:30:05Z

Efremov, D., Mandrykin, M., Khoroshilov, A.: Deductive verification of unmodified
Linux kernel library functions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018.
LNCS, vol. 11245, pp. 216-234. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03421-4 15

Gerlach, J.: ACSL by Example (Version 22.0.0) for Frama-C 22.0 (Titanium).
Fraunhofer FOKUS (2020). https://github.com/fraunhoferfokus/acsl-by-example
Granberry, G., Ahrendt, W., Johansson, M.: Specify what? Enhancing neural spec-
ification synthesis by symbolic methods. In: Kosmatov, N., Kovéacs, L. (eds.) Inte-
grated Formal Methods, pp. 307-325. Springer, Cham (2025)

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp- 41-55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Form. Asp. Comput. 27(3), 573-609 (2015)
Kocetkov, D., et al.: The stack: 3 TB of permissively licensed source code (2022)
Li, Y., et al.. Competition-level code generation with AlphaCode. Science
378(6624), 1092-1097 (2022)

Liu, Y., et al.: CodeXEmbed: a generalist embedding model family for multilingual
and multi-task code retrieval. arXiv preprint arXiv:2411.12644 (2024)

Lozhkov, A., et al.: Starcoder 2 and the stack V2: The next generation (2024)
Nijkamp, E., et al.: CodeGen: an open large language model for code with multi-
turn program synthesis, February 2023. arXiv:2203.13474 [cs]

Patil, M.S., Ung, G., Nyberg, M.: Towards specification-driven LLM-Based Gen-
eration of embedded automotive software. In: Steffen, B. (ed.) Bridging the Gap
Between AI and Reality, pp. 125-144. Springer, Cham (2025)

Patnaik, M.: manavpatnaik/frama-c-problems, October 2024. Original-date: 2020-
10-27T111:44:147

http://arxiv.org/abs/2107.03374
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
http://arxiv.org/abs/1508.03894
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-03421-4_15
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
http://arxiv.org/abs/2411.12644
http://arxiv.org/abs/2203.13474

82

26.

27.

28.

N. Hertzberg et al.

Sevenhuijsen, M., Etemadi, K., Nyberg, M.: VeCoGen: automating generation of
formally verified C code with large language models. In: 2025 IEEE/ACM 13th
International Conference on Formal Methods in Software Engineering (FormaliSE),
Los Alamitos, CA, USA, April 2025, pp. 101-112. IEEE Computer Society (2025)
Ung, G., Amilon, J., Gurov, D., Lidstréom, C., Nyberg, M., Palmskog, K.: Post-Hoc
formal verification of automotive software with informal requirements: an experi-
ence report. In: 2024 IEEE 32nd International Requirements Engineering Confer-
ence (RE), pp. 287-298 (2024). ISSN 2332-6441

Wen, C., et al.: Enchanting program specification synthesis by large language mod-
els using static analysis and program verification. In: International Conference on
Computer Aided Verification, pp. 302-328. Springer (2024)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

A Voice-Enabled Query Framework
for Systems Engineering Artefacts

Lennart Landt'®) | Martin Leucker'@®, and Carsten Burchardt?

L Universitit zu Liibeck, Liibeck, Germany
{lennart.landt,leucker}@isp.uni-luebeck.de
2 Siemens DI SW, Hannover, Germany
carsten.burchardt@siemens.com

Abstract. Model-Based Systems Engineering (MBSE) is increasingly
adopted to manage the growing complexity of modern systems, offer-
ing a structured, collaborative design approach through modeling lan-
guages like SysML. However, its adoption remains challenging due to
steep learning curves and the need for interdisciplinary coordination.
This paper investigates the use of voice-enabled Al avatars to simplify
MBSE interaction by allowing users to query system artifacts using nat-
ural language. By integrating a speech-based interface with Al assistants
and human-like avatars representing various engineering roles, we aim to
lower entry barriers, foster collaboration, and support diverse perspec-
tives inherent in MBSE. Our proposed pipeline converts model data into
a machine-readable format for large language models (LLMs) to gen-
erate contextualized, role-based responses. We explore the potential of
using MBSE models as a knowledge base for Al and examine how such
tools can enhance system model comprehension. Contributions include
a prototype implementation, support for multi-turn interactions, and an
initial evaluation of the approach.

1 Introduction

Model-Based Systems Engineering (MBSE) is gaining increasing attention world-
wide due to several compelling reasons [18]. The complexity of modern systems
continues to rise, necessitating more sophisticated approaches to system design
and management. The use of modeling languages such as SysML allows for mul-
tiple perspectives on a system, facilitating interdisciplinary collaboration and
providing a single source of truth [12].

However, applying MBSE in practice presents several challenges. MBSE
requires expert knowledge and intensive training. There is a significant (time)
investment necessary to become a fully MBSE-enabled developer [9]. The com-
plexity of projects also comes with a multidisciplinary team, which in itself takes
up resources for the necessary collaboration efforts [9].

To simplify the employment of MBSE, we explore in this paper whether
voice-enabled Al avatars can be used to query artifacts to help users become
acquainted with new projects or learn about project artifacts that are not their

© The Author(s) 2026
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 83-102, 2026.
https://doi.org/10.1007/978-3-032-07132-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_6&domain=pdf
http://orcid.org/0000-0002-3696-9222
https://doi.org/10.1007/978-3-032-07132-3_6

84 L. Landt et al.

main concern. The objective of this approach is to create a human-like inter-
action with the system, characterized by low thresholds and the use of natural
language. The speech-based interface lowers the barrier to entry for users unfa-
miliar with technical modeling tools, enabling intuitive access through natural
language. This fosters inclusivity and supports collaborative engineering sce-
narios where verbal communication is the norm. The artificial intelligence is
considered to function as a “third party in the room”. To this end, we employ
Al assistant systems to formulate queries that integrate user input with a role-
based system introduction and the information gathered from the MBSE model.
This AI assistant back-end is integrated with an Al avatar front-end, wherein
human-like 3D avatars convey the system’s response to the user and function
as an immediate interlocutor. The utilization of diverse avatars to impersonate
distinct MBSE roles results in the generation of varied responses to the same
inquiry and data. This will contribute to the objective of achieving human-like
interactions, wherein posing a single question to a group of individuals results in
a range of responses that reflect each person’s areas of expertise and experiences.
This mirrors the MBSE philosophy, where system understanding emerges from
the interplay of multiple stakeholder perspectives—such as systems engineers,
software architects, and domain experts—each represented by a distinct avatar.

Using Al for our problem may be advantageous because MBSE models
are highly structured, rigidly standardized, and based on formal languages like
SysML [12]. This standardization allows AI tools to be trained on consistent pat-
terns. Related work has shown that Al can be used in various ways in conjunction
with MBSE. For example, Al can be used as assistance in the modeling process
[11], support the extraction, classification, and linking of stakeholder require-
ments to model elements [21], and offers applications when MBSE is linked with
Digital Twins [1].

Our high-level solution involves using a pipeline where the model serves as
a knowledge base and context provider. We introduce a method for efficiently
converting model data into a machine-readable format for transmission to a
LLM. The user’s question is combined with a system prompt and this model
data to generate a response. Our research questions include:

— How can MBSE models be used as a knowledge base for Al assistants?
— Could AI be useful in increasing the understandability of system models?

Our contributions include enabling a speech-based interaction for the users,
providing answers based on different roles within the engineering project, allow-
ing complex sequences of interactions and queries to be performed, describing
the implementation, and conducting a first, limited evaluation.

2 The Modeling of Systems

In this section we will give a short overview of the topics Systems Engineer-
ing (SE) and Model-Based Systems Engineering (MBSE) in order to show the
methodology behind our approach. In addition, this section aims to illustrate

A Voice-Enabled Query Framework for Systems Engineering Artefacts 85

the rationale behind our decisions, providing a clear understanding of the fac-
tors that influenced our approach.

2.1 System Engineering

“Systems Engineering is a transdisciplinary and integrative approach to
enable the successful realization, use, and retirement of engineered sys-
tems, using systems principles and concepts, and scientific, technological,
and management methods.” [17]

The paradigm of Systems Engineering encompasses a goal-oriented, holistic app-
roach to problem-solving. It considers the entire product lifecycle from concept
development through to system implementation. A central concept in Systems
Engineering is “systems thinking,” where a system is viewed as an artifact that
is hierarchically fragmented into components. These components all contribute
to a single goal that none of them could achieve on their own. The product life-
cycle in Systems Engineering spans from concept development through system
implementation to the retirement of the system. [22]

The methodology of Systems Engineering aids in the development and han-
dling of the rising complexity of multidisciplinary systems. Its goal is to achieve
an interdisciplinary optimum within a predefined time and budget framework.
Systems Engineering connects and structures the different disciplines using mod-
els. The three main parts of Systems Engineering are tailoring, methods, and
modelling. Tailoring refers to the customization of Systems Engineering, meth-
ods are proven problem-solving procedures, and modelling helps manage the
complexity of systems by developing and examining representations that span
the entire system lifecycle [12].

The ISO/IEC norm 15288 defines and subdivides the system life cycle in 25
processes, that are assigned to one of four main processes: The agreement pro-
cesses, the organizational project-enabling processes, the technical management
processes and the technical processes. Each of the processes can be described
through an input, process activities and an output, as shown in the example of
the business and project analysis process in Fig. 1.

[12] describes a role model that provides a complete overview of all the differ-
ent tasks and responsibilities in Systems Engineering. It serves as a reference for
assigning roles in an organization. Fifteen different roles are described, each with
its own responsibilities, tasks, and expertise. Those roles are: System Architect,
SE Process Manager, Requirements Manager, Modeling Engineer, Project Lead,
Configurations Manager, Information Manager, Entrepreneur, System Security
Manager, Implementation Manager, V&V Engineer, Life Cycle Manager, Inter-
face Manager, Technical Manager, Stakeholder Interaction Manager. For exam-
ple, the Technical Manager is responsible for technical development decisions
on all system levels. His tasks are the systematic preparation of decisions, the
holistic decision-making, and the resolving of conflicts and consensus building.
His professional and social skills lie in a comprehensive understanding of the
system, leadership skills and negotiating abilities.

86 L. Landt et al.

Description of opportunities or problems
Reasoned selection of a solution approach

Preliminary validation criteria
Preliminary life cycle concepts

Alternative solution classes

Key Stakeholder

)
@
.g

s
=]
12
=
5]
o
=
Q
O
5
-
~

Definition of the addressed
opportunity or problem

< Documents for project initiation
< Life cycle constraints

< Business strategy

Limitation of the solution space

Development and selection of
possible solutions

Fig. 1. This figure shows exemplary one of the SE-processes: the business and project
analysis process. Each process has strictly defined inputs, activities, and outputs. For
example, one input here is the business strategy, one activity the limitation of the
solution space and one output the key stakeholders. Based on [12].

2.2 Model-Based Systems Engineering

“MBSE is the formalized application of modelling to support system
engineering processes |[...]” [13]

One shortcoming of known SE methods is working with document-centered pre-
sentation forms of development results and intermediate statuses. These forms
are not linked, redundant, and therefore inconsistent. By adding model-based
methods to SE, it evolved into MBSE, which provides a “single source of truth”
[22].

MBSE itself is defined by the INCOSE, the International Council on Systems
Engineering [16], as “a formalized application of modelling to support system
requirements, design, analysis, verification, and validation activities beginning
in the conceptual design phase and continuing throughout development and later
lifecycle phases”.

In the realm of Model-Based Systems Engineering (MBSE), the MBSE-
triangle consisting of tool, language, and methodology forms the foundation of
a robust approach. In our case, we have chosen Capella as the tool, SysML as
the language, and ARCADIA as the methodology. This combination provides a
comprehensive framework for our MBSE activities.

A Voice-Enabled Query Framework for Systems Engineering Artefacts 87

There are several mainstream MBSE methodologies, e.g. Magic Grid [10],
ARCADIA [3], HarmonySE [15] [13]. Every one has its own procedure to model
a system, its own advantages and disadvantages. In our approach, we use ARCA-
DIA as the methodology due to its well-structured and systematic procedure.
ARCADIA is excellent for mapping different systems perspectives to Al-avatars,
providing a clear and organized framework for analysis and design. Furthermore,
its integration with Capella made it a prime candidate for our approach. The
structured nature of ARCADIA ensures that all aspects of the system are thor-
oughly considered and modelled.

The ARCADIA-method (ARChitecture And Design Integrated Approach)
[4] consists of a four-part system modelling process. Those four parts are: The
Operational Analysis, the System Analysis, the Logical Architecture and the
Physical Architecture.

Operational Analysis (OA): “What system users must achieve.” [4]

System Analysis (SA): “What the system must achieve for the users.”” [4]
Logical Architecture (LA): “How the system will work to meet expectations.”
4]

— Physical Architecture (PA): “How the system will be built.” [4]

The OA typically starts with the identification of the users of the system and
the relationship between each other and the system. Also, the information, that
gets used in each activity and interaction, should be captured here. Furthermore,
it is a key point in the OA to identify the stakeholders and their activities.
With having the users and stakeholders in mind, one defines the operational
capabilities, the operational processes and scenarios, and the operational modes
and states. [6]

The focus of the SA is to define how the system can satisfy the needs captured
in the OA. In order to do this, the SA creates an external functional analysis.
For example, here the system boundaries and external interfaces get captured
and the functions of system and actors get identified. Also, the capabilities of
each system actor are identified. For this, it is a good praxis to create functional
chains and build behavioral scenarios. [§]

While the system during the System Analysis is viewed as a black box, in the
LA the system gets defined on a deeper level. Logical Components are formalized
in this step. Although the LA defines the core of the system, the Logical Com-
ponents still remain abstract structural elements. The main intend of the LA is
to build an abstraction of the system, that is just detailed enough for making
decisions without getting lost in small details. Those will be later defined in the
Physical Architecture. [5]

The objective of the PA is to define the concrete components of the system.
Here the final architecture with all the functions gets defined, and the behavioral
components get deployed. [7]

In addition, there is also a great variety of different modelling tools in the
landscape of MBSE. Examples include open-source tools like Capella [2] or pro-
prietary software like Rhapsody [14] and MagicDraw [23]. Again, we do not go
into detail about the differences between those tools. We chose Capella for our

88 L. Landt et al.

approach mainly because of its open-source nature. Capella is a powerful tool
that supports the ARCADIA methodology and offers extensive features for sys-
tems modeling. Its open-source nature allows for customization and extension,
making it an ideal choice for our project. We aim to implement an Add-On for
Capella based on our approach in the future. However, the underlying methodol-
ogy of our approach could be adapted to other tools, demonstrating the flexibility
of our strategy.

SysML (System Modeling Language) is the quasi-standard modelling lan-
guage in the domain of MBSE. The language was first released in 2007. It is
based on the object-oriented modeling language UML (Unified Modeling Lan-
guage), that is widespread in the field of software engineering. SysML adapted
UML from a software-only perspective to a complete system view by integrating
mechanical and cyber-physical systems. Where UML uses classes, SysML incor-
porates blocks as structural elements to model every type of entity in the sys-
tem. The nine different types of SysML-diagrams get clustered in three groups:
Requirement-diagrams, structural diagrams and behavior-diagrams. [12] SysML
provides a standardized way to represent systems, facilitating communication
and collaboration among stakeholders. Its widespread adoption ensures compat-
ibility with various tools and methodologies, making it a versatile choice for our
MBSE activities.

3 Al, Voice Recognition, LLMs

The solution that has been devised for this purpose involves the incorporation of
artificial intelligence (AI), with a particular emphasis on large language models
(LLMs). LLMs demounstrate considerable potential for processing natural lan-
guage, recognizing patterns, and analyzing voluminous data sets. Despite their
advantages, there are still considerations to be made when using LLMs. For
instance, the models have a tendency to “hallucinate”, which refers to the gen-
eration of erroneous information. It is imperative to construct a robust guard
rail system around the LLM to enhance its accuracy and reliability. Technolo-
gies such as Retrieval Augmented Generation (RAG) and vector databases are
employed to enhance the performance of LLMs by integrating the capacity to
generate text and retrieve pertinent information from extensive databases. The
present study focuses on the utilization of OpenAl and ChatGPT-40, as OpenAl
is a leader in the development of advanced Al models and ChatGPT-4o is one of
the most powerful language models currently available. The decision to utilize
OpenAl and ChatGPT-40 was guided by their demonstrated capacity to deliver
high precision and versatility in executing complex linguistic tasks. These models
have been thoroughly documented and have garnered significant support from
the developer community, thereby facilitating their integration into our solution.
Notably, the Realtime API and the Assistant API offered by OpenAl appear to
hold considerable promise for the proposed solution.

A Voice-Enabled Query Framework for Systems Engineering Artefacts 89

3.1 Comparison Realtime API and Assistant API

To handle queries, for our approach two solutions are viable. On the one hand,
the OpenAlI Realtime API provides a voice-to-voice dialogue system, that com-
putes User-input and Al-outputs with low latency [20]. An alternative is to use
the OpenAl Assistants-API, that offers a simple way of creating an assistant,
although Speech-to-Text and Text-to-Speech need to be handled externally [20].

Table 1 gives an overview of the differences between those two APIs. The
Realtime API has an advantage in the handling of speech-input to speech-output,
with an integrated solution for voice activity detection, which results in a more
dynamic conversation and lower latencies. It lacks a good solution for handling
longer conversations, without losing historic information, and a direct tool sup-
port. In this work, we decided to use the Assistant API due to its better handling
of conversation history and a more flexible setup for testing different Voice-to-
Text & Text-to-Voice tools, different Al-models and different ways of combining
the user input with the gathered knowledge from the SE-model.

Table 1. Comparison between the OpenAl Realtime API and the Assistants API.

Feature Realtime API Assistants API
Conversation History|conversations threads
System Prompt Manually through Directly via instructions

messages-array

Input + Knowledge |Indirectly by manually Directly by combining first

adding to the and then pushing as
message-array thread_message

Voice Integration Integrated with voice Separate integration
activity detection (VAD)

Tool Support Not directly Yes (Code, Retrieval, etc.)

Streaming Yes (easy and direct) [Limited

Latency Low High

Flexibility High, but more effort Very high with lower effort
required

Additional Notes — Tighter integration to the

vector store

— Will be replaced with
Responses API in 2026

3.2 Configuring Assistant API

The configuration of the Assistant API is a crucial part of our approach. A key
point here is to implement a methodology on how to instruct the different Al

90 L. Landt et al.

assistants through their individual system prompt. Some parts of the system
prompt can be applied to all assistants. Instructions like “You are a helpful,
but also critical assistant in the field of Model-Based System Engineering.” or
“Answer in a speech-like way.” are applied to all assistants. But it is important
to have a distinction between the assistants, since one key part of MBSE is the
aspect of having multiple different views on the system. In this manner, our app-
roach utilizes multiple unique Al assistants to incorporate this concept in our
solution. Furthermore, it is essential to have the Al sticking close to the input,
without hallucinating missing information or misinterpreting data. MBSE pro-
vides us with a solid foundation for such a methodology, but even in the domain
of MBSE there are different standards one could use. For our approach, we found
three viable methodologies for characterizing Al assistants. First, one could take
the defined SE processes as systems prompt. They have defined input, activi-
ties, and outputs and are easy to understand. Furthermore, they can easily be
adapted to a broad applicability across domains. On the downside, the processes
are not strictly standardized, when it comes to the details. In addition, they
have a limited semantic depth for interpretation with Al, since interpretations
and terms vary across different organizations.

An approach closer to human roles offer the SE roles adopted in [12]. Due
to their resemblance to real project roles, they are easy to adapt to Al assis-
tants. This could translate in a human-like interaction with the AI. One could
use the list of responsibilities, tasks, and expertise as a system prompt for the
assistants. The biggest issue with this approach is the lack of formalization and
standardization. Thus, role definitions can vary significantly depending on the
organization and the project. Additionally, this offers a very limited machine
interpretability.

For our solution, we decided to use the ARCADIA method as a methodology
for our assistant configuration. Despite its drawbacks of high complexity and a
challenging mapping to Al avatars, the advantages outweigh the disadvantages.
The ARCADIA method offers a formalized and standardized methodology with
a strong integration in MBSE tool chains and a high adaptability to different
kinds of systems. In particular, the usage of a modeling language like SysML
promises a high machine readability.

The comparison between these different approaches can be viewed, summa-
rized, in Table2. An example of a system prompt, that is tailored to a part of
the ARCADIA method, can be seen in 5.

4 QOwur Solution

In this section, we present our approach. The section is split into two parts: First,
the back-end of our solution is explained. The back-end converts the information
stored in the system model to a machine-readable format and handles user input.
This user input is then combined with the extracted model knowledge to form a
single query. Here we show our information and interaction pipeline. Second, the
front-end is stated and how the user interacts with the system model through

A Voice-Enabled Query Framework for Systems Engineering Artefacts 91

Table 2. Comparison of MBSE Approaches for Al assistant integration.

Approach Advantages Disadvantages

SE Processes — Clearly defined inputs,— Often informal and not
activities, and outputs |strictly standardized
— Easy to understand for— Limited semantic depth for
human stakeholders AT interpretation
— Broad applicability — Varying interpretations
across domains across organizations

SE Roles — Close alignment with— Lack of formalization and
human project roles standardization
— Facilitates role-based |- Role definitions vary signifi-
AT assistant design cantly

— Limited machine
interpretability

ARCADIA Method— Formalized and stan-— High complexity for human
dardized modeling users
— Strong integration in|— Challenging mapping to Al
MBSE tool chains avatars
— High machine
readability (e.g., via
SysML-like structures)

Al-Avatars. The front-end is responsible for bringing the audio-output from the
AT assistant onto the AI avatar, which serves as the human-like interface to the
system.

4.1 The Information and Interaction Pipeline

The back-end of our solution is clustered into three different parts: The
model-knowledge database pipeline, the Al-assistant pipeline and the Al-avatar
pipeline. The connections and processes of these pipelines, which work together
to build the whole query framework, are outlined in Fig. 2.

The model-knowledge database pipeline is responsible for the conversion of
information contained within system models into a machine-readable format.
In this initial approach to employing MBSE diagrams as a data repository, our
solution initiates with the exportation of the diagram as an XML file. Due to
the considerable size of XML files, even for diagrams of a modest scale, we opted
to convert them into a JSON. This approach offers several advantages. Firstly,
JSON files typically have a more compact structure, using strictly defined key-
value pairs, whereas XML tends to be more nested and includes redundant tags.
As a result, JSON files are often significantly smaller in both token count and
file size, which improves processing efficiency. While we assume that JSON may
offer better fault tolerance and a more structured design for Al interpretation,

92 L. Landt et al.

these claims are based on practical observations rather than empirical evidence.
The actual machine readability of a format can depend heavily on the training
data and architecture of the AI model. Therefore, we present this approach
as a practical choice rather than a definitive superiority claim. The conversion
is executed by means of a Python script. It is imperative that each type of
MBSE diagram intended for integration into the knowledge base is accompanied
by its designated JSON scheme and a Python conversion script. However, the
fundamental structure remains unaltered. An example for a such a JSON-scheme
can be found in Fig. 5.

In the Al-assistant pipeline, the JSON-files are added to the user input. In
our speech-based solution, the human input is transcribed to text and also added
to the query. In Algorithm 1 the pseudocode of such a query is shown. First, an
Al-assistant is created with its specific system instructions and tools. This is a
one-time call per assistant. Then the needed JSON-files get uploaded and their
file-id saved. For a new conversation, a thread is created, and its ID gets saved
as well for continuing conversations later. The user message is composed of the
thread-ID, the user-input, that got transcribed, and the file-IDs of the JSON-
files. This message gets sent to the thread and a run is started. The textual Al-
answer is then converted from text to speech and send to the Al avatar pipeline.
Here, the audio file gets sent to the client script that handles the handover to the
frontend. Via a gRPC (gRPC Remote Procedure Call) request, an open-source
framework for communication between distributed systems using HTTP /2, the
audio file gets pushed to the Audio2Face Streaming Audio Player of the front-
end.

Algorithm 1: Assistant Interaction with JSON File
Input: User input, JSON file
Output: Assistant response
Create assistant with instructions and tools;
Upload JSON file and store file_id;
Create new thread and store thread_id;
send user message with json(thread_id, user_input, file_id) Send
message to thread;
return response
Set user_input to query string;
Call send_user_message_with_json and store response;
Start run with assistant_id and thread_id;
return run

W N =

© 0w N o w»

4.2 Interacting with the Model

For the interaction with the model, our solution explores the possibilities of
using 3D-Al-Avatars as a direct dialogue partner for speech-based low thresh-
old interaction with the system. A foundational principle of (MB-)SE is the
recognition of the system from multiple perspectives. The proposed solution
endeavors to incorporate this through the utilization of AI avatar technology.

A Voice-Enabled Query Framework for Systems Engineering Artefacts 93

~
~

| 1
\ ,’ “
~ N Model Export |
odel Export
N \\‘ ',' i p l|
I \/ \]
/ ¥ XML !
1 1 H
1 . | H
," AudiOHuman]:l Python based |
' A Speech-to- it A Conversion ’,'
H Text o
i il 4 1 !
! " JSON K
I|| Text-to- TeXtHuman : \‘ I’
! Speech ! \‘\ /I
: P ;
\
1
1
\

7’
7’

[Query = Textyyyman + System Prompt + Model Knowledge] /

\ l’ So P
\ ~——
1
\ 2 Il Model-Knowledge
\ ! ..
\ / Database Pipeline
7/
\ Textag Al ,
\ |/
\\ ,‘
\ /
\ /
\ 4
\ 7/
N 7/
~ 4
~ 4
~ e
N ’
So -7

Al-Assistant Pipeline

Fig. 2. The figure shows the whole query framework. The AI-Avatar Pipeline is respon-
sible for the front-end, where the output audio from the AI assistant is translated to the
3D avatar. The Al-Assistant Pipeline handles the human input, converts the speech
to text, forms the query and sends the assistant’s output to the avatar pipeline. In
the Model-Knowledge Database Pipeline the model diagrams are exported, converted
to JSON and send to the query.

The objective is to reduce the complexity of the system and to lower the barrier
for using systems engineering. This objective would be realized if the interaction
with the system model were to emulate a human interaction. The utilization of
3D AI avatars presents a compelling approach for facilitating human-machine
interaction. Typically, when posing a question to an Al system, the response
received is a single, definitive answer. It is possible to obtain multiple responses
to a single inquiry through the utilization of our approach. This phenomenon
may be compared to posing a question to a group of individuals, resulting in a
variety of responses based on the expertise of each person in the group. Speech-

94 L. Landt et al.

based Al avatars facilitate seamless integration into work and thought processes,
thereby promoting efficiency and effectiveness in professional interactions. The
solution under discussion has been designed to address the specific challenges
posed by brainstorming-like situations that frequently arise during the develop-
ment process. The avatars presented here are intended to function as collabo-
rative partners in the brainstorming process, with each avatar representing a
distinct expertise and system knowledge.

For the front-end, the NVIDIA Omniverse™ Audio2Face [19] is used. The
tool offers a platform for creating, managing and adjusting 3D human like
avatars. It allows the Al-based generation of facial animation and lip synchro-
nization driven only by an audio source. The tool automatically analyzes the
given audio-file and animates fitting emotions on the avatar. An example of how
such an avatar looks like, can be seen in Fig. 3.

Fig. 3. Here is one of the human-like avatars shown. The image shows one of the
examples of the NVIDIA Omniverse Audio2Face tool.

5 Evaluation

In this section, an example system is examined through the lens of our approach
to demonstrate and evaluate the solution. The example system facilitates the
delineation of the precise mechanisms within our proposed pipelines and enables
a more thorough examination.

For illustrative purposes, this paper utilizes a system that was originally
developed at the Technische Universitéit Graz (TU Graz). This system is designed
to facilitate rescue operations in mountainous terrain using unmanned aerial

A Voice-Enabled Query Framework for Systems Engineering Artefacts 95

vehicles (UAVs), more commonly referred to as drones. Here, the focus is on a
subsystem: The Rescue Object Detection System is a technological innovation
designed to facilitate the identification of objects in rescue operations. The objec-
tive of this subsystem is to implement an artificial intelligence-assisted object
(person) detection on the live feed from the drone’s camera. The scenario unfolds
as follows: The software engineer requires information regarding the established
software interfaces of the drone’s communication system.

To illustrate the solution in a simplified way, two basic roles will be used:
The logical architect and the physical architect. The roles will be embodied by
two distinct AT assistants, each with its own unique model knowledge, system
introduction, and Al avatar. In the following, we will examine the configuration
process for the logical architect in greater detail. It should be noted that the
configuration process for the physical architect is highly analogous to that of the
logical architect.

For the logical architect, we will use the Logical Architecture Diagram (LAB)
from the ARCADIA method as the basis for our knowledge base. The LAB con-
stitutes a pivotal element in the Logical Architecture (LA)-Step of the Arcadia
method. The LAB is responsible for the allocation of logical functions to the
relevant components. The allocation of functions to components enables the
functions to be viewed in context. A system model may comprise multiple LAB
diagrams, each concentrating on a distinct aspect of the system under considera-
tion. In this particular instance, as illustrated in Fig. 4, the emphasis is directed
towards the drone’s camera system, with a focus on the interconnections among
its components within the Rescue Object Detection System. In the diagram,
you can track the signal-chain from the Control Drone function in the Remote
Control component through the Control Signal to the Receive/Send Signal func-
tion in the Communication System component. From here, the Camera Signal
exchange goes to the detection chain in the Camera System. If an object is
detected in the detection chain, the Send Notice function triggers the Object
Detected exchange to the Receive/Send Detection Signal function back in the
Communication System. This function then has the Object Detected exchange
with the Notify User function in the Remote Control. The LAB diagram is
given to the input of the Model-Knowledge Database Pipeline. The Python-
script then parses the XML-file for the parts, that are defined in the diagram-
specific JSON-Scheme. The JSON-Scheme for a LAB diagram can be seen in
Fig. 5. Subsequently, the completed JSON file is transmitted to the Al Assistant
Pipeline.

When an engineer engages with the front-end, the spoken words are tran-
scribed into text. Subsequent to each human input, a novel query is constructed
by integrating the text input of the engineer with the avatar-specific system
prompt and the JSON file.

For example, when an engineer asks the system “How reliable is the trans-
mission of the control command to the drone?”, the query looks like this:

96 L. Landt et al.

Rescue Drone

Remote Control

ey spen

D=1 Contol Signal

@ Control Drone

@ Notify User

E P Object Detected

o
Ima Power Supply

v
] Camera ystem

D) Control Sigral

Propulsion System

@ Generate Thrust

D Object Detfee

03] Control ignal

Fig. 4. This is the used Logical Architecture Diagram (LAB). It shows the allocation
of logical functions to the component and the exchanges between them.

“You are a helpful, but also critical assistant in the field of Model-Based
System Engineering. You assist in the Logical Architecture following the
Arcadia Method. Your input is a user question combined with a Logical
Architecture Blank Diagram that allocates the logical functions to the rele-
vant components. Use file search to answer questions based on the attached
JSON, that represents the Logical Architecture Blank Diagram. It contains
information about the logical functions, the logical components, the func-
tional allocation and the component exchanges. If a function is allocated to
a component, take the function into consideration when answering questions
about the component. Answer in a speech-like way.”

& Example Input

“How reliable is the transmission of the control command to the drone?”

A Voice-Enabled Query Framework for Systems Engineering Artefacts 97

LAB Diagram Scheme
properties
relationships entites
properties properties
\ 4 Y Y \ 4 \ 4 Y
source target type description id name type
enum enum

¢ \ 2 ¢ ¢ ¢

component functional
exchange exchange

allocates logical component logical function

Fig. 5. JSON-scheme used to convert the Arcadia-diagram to a JSON-file. In this
example of a LAB-diagram, an object can be a relationship or an entity. A relationship
has the tags: source, target, type and description, while an entity has: id, name and
type. A relationship can either be a component exchange, a functional exchange or an
allocation. An entity can be a logical component or a logical function.

“The reliability of the transmission of control commands to the drone is fun-
damentally reliant on the effectiveness of two main components: the “Remote
Control” and the "Communication System. “The "Control Drone” function,
responsible for issuing control commands, operates through the “Remote Con-
trol” component. The control commands are then transmitted to the drone via
the “Receive/Send Signal” function, which is a responsibility of the “Commu-
nication System.” The setup indicates a structured and clear mechanism for
command transmission, which is essential for reliability. However, the actual
reliability also depends on several factors beyond the logical architecture, such
as the quality of the signal and transmission technology used in the communi-
cation system, potential environmental interference, and the robustness of both
hardware and software managing these functions. These components must be
well-designed and tested under various conditions to ensure that commands are
transmitted accurately and promptly, enhancing the reliability of the system.”

98 L. Landt et al.

@ Assistant Output for Physical Architect

“The transmission of control commands to the drone is done via a 2.4
GHz radio frequency link, utilizing a Radio Transceiver Module on the
controller side and a Drone Receiver Unit on the drone. This setup indi-
cates a standard and well-proven approach in remote control systems,
and the 2.4 GHz band is widely used for its balance between range and
bandwidth. Typically, this setup should be quite reliable assuming there
is no significant interference and both transmitter and receiver are within
range. However, the reliability can be affected by environmental factors
like physical obstacles, misalignment of antennas, or other sources of RF
interference, which are common in urban environments. If those factors
are controlled, the system should operate effectively.”

In this example, the user asks the system about the reliability of the trans-
mission of the control command in natural language in spoken words. To answer
this question, one Al assistant takes the role of a logical architect and gets
the converted LAB diagram as a knowledge base. The other assistant poses as
physical architect and gets a Physical Architecture Blank Diagram (PAB). The
assistants answer in regard to their assigned roles. The logical architect focuses
on the functional logic of the system. The Al successfully extruded the neces-
sary information from the diagram. Furthermore, even though the components
of interest are not directly linked, the Al builds a relationship between them,
based on the functional exchanges between the functions of the components.
This is an important point, as it is an indication that our approach is able to
recognize the complex relationships in models. Meanwhile, the physical architect
describes the real technical solution used in the system and provides details like
the communication frequency. The output is provided to the user in the form of
spoken words through the avatars. The speech is highly human-like and the real-
time translation of the speech into the avatars’ facial expressions helps convey
human-like interaction.

In future works, a deeper evaluation of the solution will be a primary focus.
We propose examining robustness, which includes how well the model data is
captured, the accuracy of the model, and its fault tolerance. Additionally, we
will look at complexity, specifically how high the complexity of queries can be
while maintaining good performance. Finally, we will assess usability, focusing on
how the solution integrates into existing workflows and gathering feedback from
potential users regarding the comprehensibility and usefulness of the solution.
These aspects will enable a comprehensive assessment of the solution and help
identify its strengths and weaknesses. By analyzing these criteria, we can ensure
that the solution is not only technically sound but also practically applicable and
user-friendly. The results of this evaluation will provide valuable insights into the
performance and potential applications of the solution, serving as a foundation
for further improvements and developments.

A Voice-Enabled Query Framework for Systems Engineering Artefacts 99

6 Discussion

The solution presented in the work offers an integration of system models in
an Al-based workflow. The objective of the solution is to provide a human-like
interaction with the data captured in the model. The goal is to reduce the com-
plexity of systems by using Al to translate the model to a more comprehensible
human-machine interaction.

Section 5 showed the solution in a simplified example. An engineer could ask
an Al-avatar, presented in 3D-human-like-avatar as front-end, a question about
the system. By transforming a model into a machine-readable format, it could be
added to the knowledge pool of the Al assistant, coupled with a specific system
instruction, developed from the ARCADIA method. The result is an answer by
the Al assistant that took the data gathered from the model in consideration
and providing the engineer with system insights.

Although the approach yield first successful results, there are some remarks,
that need to be discussed and considered in future works: First, a use-case anal-
ysis should be executed to develop and test in which scenarios a voice-based
interaction is more suitable than a purely text-based interaction. In addition,
we propose a hybrid-model capable to differentiate which part of the answer
should be spoken and which part is more convenient to give as a textual answer
in addition to the spoken answer.

The evaluation with the example system showed, that our approach works
good on simple models and questions that are easily answerable using just one
diagram as input. Here a deeper evaluation is needed for complex multi-diagram
scenarios.

Furthermore, one has to discuss the converting of the pure model into the
JSON-format. On the one hand, besides machine-readability, this conversion
prepares our approach to be updated to SysML v2, which API’s underlying
interchange format is JSON [11]. On the other hand, one has to keep in mind
that a conversion brings a conjunction to the original model. It is of the essence
to prevent that the development team falls back to changing the JSON-file rather
than the original model. Especially for small, quick changes, this could be tempt-
ing. For this reason, we propose to have a system in place, that automatically
updates the JSON-based knowledge base whenever there is a change to the model
and not giving the users the option to manually adapt the JSON-files. We will
implement such solution in an upcoming iteration of our approach.

In conclusion, the findings of this work provide valuable insights and lay the
groundwork for future research and practical applications in the field.

7 Conclusion

In this work, we presented a novel approach that uses MBSE-models as a knowl-
edge base and 3D Al avatars as a front-end, with the goal of utilizing the data
within MBSE models in a human-computer interaction that lowers the threshold
for using and understanding MBSE-models. Due to the ever-increasing complex-
ity of systems, it is important to find ways to keep humans in the loop and assist

100 L. Landt et al.

them in comprehending the system. The evaluation showed promising results
in enabling a human-like interaction with the system. The engineer was able to
ask questions about the system, and the Al-assistant used data gathered from
an MBSE artifact to answer them. However, there are still several development
tasks and scientific questions that remain open.

To address these, in the next steps, we plan to build a retriever system that
utilizes vectorization to integrate the entire MBSE model into a single semantic
network. This will enhance the coherence and connectivity of the model data.
Additionally, we aim to implement the proposed pipeline using the Realtime-
API, focusing on developing a system that efficiently manages the communica-
tion thread for faster response times, while maintaining context information and
ensuring query efficiency in terms of token usage.

Furthermore, we intend to implement our solution, or at least parts of it, as
an add-on for Capella. By establishing a direct link to the modeling software, the
Model-Knowledge Database Pipeline will become more efficient and enable new
features. We will also evaluate the proposed approach using objective metrics,
collaborating with industry partners such as Siemens to test and implement our
solution in real-world scenarios.

Lastly, the upcoming of SysML v2 is designed to better resemble natural lan-
guage, which will significantly enhance the integration of the language with large
language models (LLMs). This advancement will further improve the usability
and effectiveness of our solution.

References

1. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, char-
acteristics, applications, and design implications. IEEE Access 7, 167653-167671
(2019)

2. Capella: MBSE capella (2025), https://mbse-capella.org/, Accessed 27 May 2025

3. Capella MBSE: arcadia method. https://mbse-capella.org/arcadia.html (nd),
Accessed 27 May 2025

4. Castro, H.: MBSE arcadia method: ontology elements and traceability. LinkedIn
Pulse (2023), https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-
elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse _little-text-
block, Accessed 28 May 2025

5. Castro, H.: MBSE arcadia method step-by-step: Logical architecture. LinkedIn
Pulse (2023), https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-
step-logical-architecture-helder-castro, Accessed 28 May 2025

6. Castro, H.: MBSE arcadia method step-by-step: Operational analysis. LinkedIn
Pulse (2023), https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-
step-helder-castro/?trackingld=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&
trk=article-ssr-frontend-pulse little-text-block, Accessed 28 May 2025

7. Castro, H.: MBSE arcadia method step-by-step: physical architecture. LinkedIn
Pulse (2023), https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-
step-physical-helder-castro?trk=article-ssr-frontend-pulse _little-text-block,
Accessed 28 May 2025

https://mbse-capella.org/
https://mbse-capella.org/
https://mbse-capella.org/
https://mbse-capella.org/
https://mbse-capella.org/arcadia.html
https://mbse-capella.org/arcadia.html
https://mbse-capella.org/arcadia.html
https://mbse-capella.org/arcadia.html
https://mbse-capella.org/arcadia.html
https://mbse-capella.org/arcadia.html
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-ontology-elements-traceability-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-logical-architecture-helder-castro
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-helder-castro/?trackingId=P53d%2FO7w9kmURcPB5XxMOQ%3D%3D&trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-physical-helder-castro?trk=article-ssr-frontend-pulse_little-text-block

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A Voice-Enabled Query Framework for Systems Engineering Artefacts 101

Castro, H.: MBSE arcadia method step-by-step: system analysis. LinkedIn Pulse
(2023), https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-
system-analysis-helder-castro/?trk=article-ssr-frontend-pulse _little-text-block,
Accessed 28 May 2025

Chami, M., Bruel, J.M.: A survey on MBSE adoption challenges. In: INCOSE
EMEA Sector Systems Engineering Conference (INCOSE EMEASEC 2018), pp.
1-16 (2018)

Dassault Syst mes: Magicgrid book of knowledge. https://discover.3ds.com/
magicgrid-book-of-knowledge (nd), Accessed 27 May 2025

DeHart, J.K.: Leveraging large language models for direct interaction with sysml
v2. In: INCOSE International Symposium, vol. 34, pp. 2168-2185. Wiley Online
Library (2024)

Grakler, I., Oleff, C.: Systems engineering. Springer (2022)

Guo, Y., Zhao, H., Qi, K., Guo, J.: Analysis of the mainstream MBSE method-
ologies from the modeling practice view. In: Proceedings of CECNet 2022, pp.
146-154. TOS Press (2022)

IBM: IBM engineering systems design rhapsody (2025), https://www.ibm.com/
de-de/products/systems-design-rhapsody, Accessed 27 May 2025

IBM corporation: model-based systems engineering with rational rhapsody and
rational harmony for systems engineering — deskbook 3.1.2. https://www.ibm.
com/support/pages/model-based-systems-engineering-rational-rhapsody-and-
rational-harmony-systems-engineering-deskbook-312 (2010), Accessed 27 May
2025

INCOSE: MBSE initiative. https://www.incose.org/communities /working-groups-
initiatives/mbse-initiative (nd), Accessed 27 May 2025

INCOSE: systems engineering definition. https://www.incose.org/about-systems-
engineering/system-and-se-definitions/systems-engineering-definition (nd),
Accessed 27 May 2025

Lawrence, J.-M., Hossain, N.U.I., Rinaudo, C.H., Buchanan, R.K., Jaradat, R.:
An approach to improve hurricane disaster logistics using system dynamics and
information systems. In: Madni, A.M., Boehm, B., Erwin, D., Moghaddam, M.,
Sievers, M., Wheaton, M. (eds.) Recent Trends and Advances in Model Based Sys-
tems Engineering, pp. 699-712. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-82083-1 59

NVIDIA: Audio2face overview (2023), https://docs.omniverse.nvidia.com/
audio2face/latest /overview.html, Accessed 28 May 2025

OpenAl: introducing the realtime api (2024), https://openai.com/index/
introducing-the-realtime-api, Accessed 28 May 2025

Schleifer, S., Lungu, A., Kruse, B., Putten, S., Goetz, S., Wartzack, S.: Automatic
derivation of use case diagrams from interrelated natural language requirements.
Proc. Des. Soc. 4, 2725-2734 (2024)

Sinnwell, C.: Methode zur produktionssystemkonzipierung auf basis friither pro-
duktinformationen. Produktionstechnische berichte aus de FBK, Hrsg, Aurich, J
2 (2020)

Systémes, D.: Magicdraw (2025), https://www.3ds.com/products/catia/no-magic/
magicdraw, Accessed 27 May 2025

https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://www.linkedin.com/pulse/mbse-arcadia-method-step-by-step-system-analysis-helder-castro/?trk=article-ssr-frontend-pulse_little-text-block
https://discover.3ds.com/magicgrid-book-of-knowledge
https://discover.3ds.com/magicgrid-book-of-knowledge
https://discover.3ds.com/magicgrid-book-of-knowledge
https://discover.3ds.com/magicgrid-book-of-knowledge
https://discover.3ds.com/magicgrid-book-of-knowledge
https://discover.3ds.com/magicgrid-book-of-knowledge
https://discover.3ds.com/magicgrid-book-of-knowledge
https://discover.3ds.com/magicgrid-book-of-knowledge
https://www.ibm.com/de-de/products/systems-design-rhapsody
https://www.ibm.com/de-de/products/systems-design-rhapsody
https://www.ibm.com/de-de/products/systems-design-rhapsody
https://www.ibm.com/de-de/products/systems-design-rhapsody
https://www.ibm.com/de-de/products/systems-design-rhapsody
https://www.ibm.com/de-de/products/systems-design-rhapsody
https://www.ibm.com/de-de/products/systems-design-rhapsody
https://www.ibm.com/de-de/products/systems-design-rhapsody
https://www.ibm.com/de-de/products/systems-design-rhapsody
https://www.ibm.com/de-de/products/systems-design-rhapsody
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.ibm.com/support/pages/model-based-systems-engineering-rational-rhapsody-and-rational-harmony-systems-engineering-deskbook-312
https://www.incose.org/communities/working-groups-initiatives/mbse-initiative
https://www.incose.org/communities/working-groups-initiatives/mbse-initiative
https://www.incose.org/communities/working-groups-initiatives/mbse-initiative
https://www.incose.org/communities/working-groups-initiatives/mbse-initiative
https://www.incose.org/communities/working-groups-initiatives/mbse-initiative
https://www.incose.org/communities/working-groups-initiatives/mbse-initiative
https://www.incose.org/communities/working-groups-initiatives/mbse-initiative
https://www.incose.org/communities/working-groups-initiatives/mbse-initiative
https://www.incose.org/communities/working-groups-initiatives/mbse-initiative
https://www.incose.org/communities/working-groups-initiatives/mbse-initiative
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://www.incose.org/about-systems-engineering/system-and-se-definitions/systems-engineering-definition
https://doi.org/10.1007/978-3-030-82083-1_59
https://doi.org/10.1007/978-3-030-82083-1_59
https://doi.org/10.1007/978-3-030-82083-1_59
https://doi.org/10.1007/978-3-030-82083-1_59
https://doi.org/10.1007/978-3-030-82083-1_59
https://doi.org/10.1007/978-3-030-82083-1_59
https://doi.org/10.1007/978-3-030-82083-1_59
https://doi.org/10.1007/978-3-030-82083-1_59
https://doi.org/10.1007/978-3-030-82083-1_59
https://doi.org/10.1007/978-3-030-82083-1_59
https://docs.omniverse.nvidia.com/audio2face/latest/overview.html
https://docs.omniverse.nvidia.com/audio2face/latest/overview.html
https://docs.omniverse.nvidia.com/audio2face/latest/overview.html
https://docs.omniverse.nvidia.com/audio2face/latest/overview.html
https://docs.omniverse.nvidia.com/audio2face/latest/overview.html
https://docs.omniverse.nvidia.com/audio2face/latest/overview.html
https://docs.omniverse.nvidia.com/audio2face/latest/overview.html
https://docs.omniverse.nvidia.com/audio2face/latest/overview.html
https://docs.omniverse.nvidia.com/audio2face/latest/overview.html
https://openai.com/index/introducing-the-realtime-api
https://openai.com/index/introducing-the-realtime-api
https://openai.com/index/introducing-the-realtime-api
https://openai.com/index/introducing-the-realtime-api
https://openai.com/index/introducing-the-realtime-api
https://openai.com/index/introducing-the-realtime-api
https://openai.com/index/introducing-the-realtime-api
https://openai.com/index/introducing-the-realtime-api
https://www.3ds.com/products/catia/no-magic/magicdraw
https://www.3ds.com/products/catia/no-magic/magicdraw
https://www.3ds.com/products/catia/no-magic/magicdraw
https://www.3ds.com/products/catia/no-magic/magicdraw
https://www.3ds.com/products/catia/no-magic/magicdraw
https://www.3ds.com/products/catia/no-magic/magicdraw
https://www.3ds.com/products/catia/no-magic/magicdraw
https://www.3ds.com/products/catia/no-magic/magicdraw
https://www.3ds.com/products/catia/no-magic/magicdraw

102 L. Landt et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by,/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Integrating LLMs with QC-OpenDRIVE:
Ensuring Normative Correctness
in Autonomous Driving Scenarios

Julian Miiller®™) | Thies de Graaff, and Eike Mohlmann

German Aerospace Center, Institute of Systems Engineering for Future Mobility,
Oldenburg, Germany
{julian.mueller,thies.degraaff,eike.moehlmann}@dlr.de

Abstract. This paper investigates on the integration of Large Lan-
guage Models (LLMs) with the QC-OpenDRIVE framework in order to
generate syntactically and semantically correct OpenDRIVE files. Open-
DRIVE files play an important role in the scenario-based validation of
autonomous driving systems as they define the static part (e.g. road lay-
out) on which the function are validated. While LLMs excel at generating
code or similar tasks which mostly needs to be syntactically correct, the
validation of semantic, especially normative, correctness remains chal-
lenging. To ensure norm-adherent correctness of generated OpenDRIVE
files this paper proposes an integration of a feedback-loop with LLMs
and QC-OpenDRIVE. While LLM allow to easily generate different road
layouts, they often show issues like missing or unconnected roads or
improper continuity. To address this issue, we have implemented E.5.9.1
to ensure geometric continuity between connected roads, which is a key
contribution of this paper.

State-of-the-art models are evaluated on three tasks to create Open-
DRIVE road networks and validate the results featuring the feedback-
loop. Results show that models leveraging Retrieval Augmented Gen-
eration (RAG) or internal reasoning and using the feedback loop can
generate syntactically and semantically valid outputs after iterative cor-
rections. However, challenges remain to prompt complex scenarios and
tasks, especially following geometric rules without explicit feedback. The
results demonstrate the necessity of domain-specific normative validation
frameworks to prepare the use of LLMs for safety-critical applications.
They can be used to enable scalable generation of edge-case scenarios
while ensuring compliance with industry standards. This work bridges
the gap between automated scenario generation and rigorous validation
of reliable autonomous driving systems.

Keywords: Large Language Models -+ OpenDRIVE -
QC-OpenDRIVE - Scenario Generation + Semantic Validation -
Autonomous Driving

© The Author(s) 2026
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 103-116, 2026.
https://doi.org/10.1007/978-3-032-07132-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_7&domain=pdf
https://doi.org/10.1007/978-3-032-07132-3_7

104 J. Miiller et al.

1 Motivation

Beside designing and implementing autonomous driving systems, testing and
guaranteeing the safety of such a system is a necessary and non-trivial task.
Wachenfeld and Winner [26] state that a pilot for the German Autobahn would
need 6,62 bn. driving kilometers to be twice as good as a human driver with
50% certainty. This way of obtaining a safety prove for every new vehicle on the
Autobahn is unrealistic and also economically not feasible. A promising approach
is virtual testing, where simulations are used rather than real world tests. As the
number of potential evaluations are uncountable, scenarios are used as a guiding
structure. Such a scenario defines the relevant static and dynamic parts of the
vehicle’s environment for example using the 6-Layer Model developed in the
PEGASUS project [23]. Further, by focusing on dangerous scenarios a driving
pilot can be tested more carefully in critical situations without risking property
or lives [8,13].

However, creating tailored edge-cases for testing can be time consuming.
In the last years, Large Language Models (LLMs) are used for several text-
generation tasks. Used in vibe-coding, documentation and summarizing the abil-
ities are used more and more in everyday tasks to save time and generate loads
of text in a very short amount of time. By learning stochastic connections in lan-
guage these models can generate many types of textual output. Using this ability
to write test-scenarios could potentially save time and automatically create sys-
tematic test-cases tailored to the needs of the developers and safety engineers.

Given the enormous amount of code available on the internet (for example
github.com), this data can be used to train LLMs and to create benchmarks to
evaluate these models. Current benchmarks mostly evaluate the models through
syntactic correctness and functional accuracy. Though there are still challenges
in evaluating the models ability to generate efficient, readable and maintainable
code [16,17,31].

Even in subjective and creative tasks like story-telling or legal writing the use
of LLMs gains popularity. But given its subjective and inherent complexity, its
validation do need expert supervision. Compared to code generation evaluating
expert models on different domains need interdisciplinary experts in machine
learning and for example legal expertise to ensure correctness [18,21].

Similar to generating working code in a programming language, a scenario
can be generated in a given specification-language, like OpenDRIVE [4] by the
Association for Standardisation of Automation and Measuring Systems (ASAM).
Checking for the correct syntax can be easily achieved through the XML-specifi-
cation, but checking for their semantic correctness is not done yet. To evaluate
the content of the output the problem occurs that experts do need to check the
correctness and plausibility, like in legal writing. Especially for never learned
prompts, it is known that LLMs generalize poorly and can hallucinate or have
difficulties with the semantic content and logical reasoning [15,28,31]. There-
fore, it is important, that the output of LLMs is evaluated, such that, in our
application, can be used to generate test scenarios.

Integrating LLMs with QC-OpenDRIVE 105

One part of the semantic correctness is normative correctness, i.e., correctly
adhere to a given set of norms, rules, or regulation. OpenDRIVE files need
to follow a given set of rules defined by the standard. For example Schwab et
al. [24] checked for gaps between the lanes at road crossings after recognising
them in parametric road space models. The connection of geometric shapes (e.g.
the roads), but also others geometric, topological or semantic rules are defined
by OpenDRIVE rules. Until recently they were not checked at all. To guaran-
tee the normative quality ASAM published the QC-Framework to check Open-
DRIVE and OpenSCENARIO XML-data. QC-OpenDRIVE [6] uses this framework
and implements some rules to ensure their correctness.

Generated OpenDRIVE-Scenarios by LLMs can be evaluated with the
quality-checker. Key contributions of this paper are:

1. Integrating LLMs into a feedback-loop by evaluating generated outputs using
QC-OpenDRIVE (Sect. 3),

2. Implementation of the rule E.5.9.1 (road.geometry.contact point) for
QC-Open-DRIVE (Sect. 4),

3. Evaluating correctness and content of generated outputs (Sect.5).

2 Related Work

Evaluating code via benchmarks, like OpenAI’s HumanEval [10] or Google
Research’s Mostly Basic Python Problems (MBPP) [7], is common practice.
Some LLM-agents are also capable of using compilation errors of generated code
to refine their output (e.g. GitHub Copilot agent mode [20]). But more sub-
jective tasks, like evaluating the semantic correctness of different tasks, require
experts to evaluate the model outputs [16-18,21].

The generation of concrete scenarios using LLMs is subject to prior works
[9,22,32]. But none of these methods use a unified output syntax (e.g. Open-
SCENARIO) to generate the data. This renders a standardized evaluation for
LLM-generated scenarios much more complex or even impossible. Xiao et al. [29]
describe scenarios in multiple logical steps, which could be used to evaluate the
output by the logical definitions.

ASAM [3] develops standards for the development of autonomous driving sys-
tems. Members of the association are international car manufacturer, suppliers
and research institutions. Use-cases like the development, testing and evaluation
of driving systems are standardized by ASAM e.V. Therefor different data-formats,
-models, protocols and interfaces are defined, establishing an easier interchange of
data and tools [3,4].

ASAM OpenDRIVE [4] defines syntax and rules to describe road networks
using Extended Markup Language (XML). OpenDRIVE is mainly concerned with
describing the geometry of roads, lanes and objects like lane markings or signals.
Such definitions can be based on real road-data or be synthetically generated.

Eisemann und Maucher [12,13] generate OpenDRIVE-Maps from LiDAR
pointclouds. Segments of these points are combined and translated to Open-
DRIVE. Becker et al. [8] define a logical description of a road-map, which is

https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/16_annexes/map_rules.html#asam-net-xodr-1-7-0-road-geometry-contact-point
https://github.com/asam-ev/qc-opendrive

106 J. Miiller et al.

translated to OpenDRIVE. Both approaches do not use natural language pro-
cessing.

Regarding the validation of OpenDRIVE, Schwab et al. [24] implemented
simple rules, which mainly check for gaps between lanes. This uncovered gaps
at road crossings in their OpenDRIVE data.

3 Integration of LLMs with QC-OpenDRIVE

The OpenDRIVE file format is based on Extensible Markup Language (XML).
ASAM provides an XML schema that defines the structure of a valid Open-
DRIVE file. The main OpenDRIVE document provides in-depth explanations
about every aspect of the file format. It also defines a set of rules, that an
OpenDRIVE file has to conform to. These rules do not cover syntactical correct-
ness but aim to result in logical correctness of the described road network. E.g.
rule E.5.9.5 (road.geometry.paramPoly3.length match) requires that the actual
curve length [of a road|, as determined by numerical integration over the param-
eter range, should match [the parameter| @length [4]. Recently, ASAM published
quality checkers for different standards, including OpenDRIVE. This framework
called QC-0penDRIVE [6] checks the syntax using the OpenDRIVE XML schema
as well as a subset of the rules defined in the OpenDRIVE standard.

First experiments indicate that LLMs like GPT-4 can generate an Open-
DRIVE file from simple prompts, when using the ChatGPT interface. But even
the generation of very simple road networks composed of one or two roads often
results in incorrect output. These errors can mostly be attributed to a viola-
tion of the OpenDRIVE XML schema, but also violations against rules of the
OpenDRIVE standard do occur. It follows, that QC-OpenDRIVE should be able
to detect such mistakes of an LLM. In such an event, the error report from
QC-0penDRIVE should help to find the faulty part of the generated OpenDRIVE
and correct the mistake.

The idea of this feedback-loop is visualized in Fig. 1. Starting from a prompt
to an LLM in natural language, an initial OpenDRIVE map will be generated
and checked via QC-OpenDRIVE. In case of a detected error, the error report
is given to the LLM to correct the mistake. This procedure can iteratively be
repeated until all violations to the XML schema and the implemented rule set of
QC-0penDRIVE are eliminated. If not all mistakes can be corrected, the loop might
either be terminated after a fixed number of iterations or when it is detected,
that the same errors appear repeatedly. Using this approach, OpenDRIVE files
can be generated automatically from natural language, while being syntactically
correct and adhering to the implemented rules.

3.1 OpenDRIVE Generation Tasks for the Models

To identify the current abilities of different technologies and architectures in
generating OpenDRIVE files, we tested three distinct models. They are given
the same prompts of three tasks to generate simple road networks using a simple

https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/16_annexes/map_rules.html#asam-net-xodr-1-7-0-road-geometry-parampoly3-length-match

Integrating LLMs with QC-OpenDRIVE 107

Natural Language

,3-lane-crossing”

Large Language Model
Map-description
QC-OpenDRIVE
Set of Rules

C

Fig. 1. Idea of a feedback-loop to correct invalid OpenDRIVE files generated by a
LLM. The idea proposes to check its correctness by a given set of OpenDRIVE rules.
With the error, the LLM hopefully can generate a correct output.

Chain-of-Thought (Cot) [27]. The validity of each output after one prompt is
evaluated with the external tool QC-OpenDRIVE (see Fig. 1). The models are
presented in Table1 and represent state-of-the-art models leveraging Retrieval
Augmented Generation (RAG) [19] or reasoning [11].

Table 1. List of used models for evaluation with their parameters and properties.
Llama uses RAG, Qwen using reasoning and the mistral model uses none.

Model Parameters Reasoning [11] RAG [19]
Mistral Large Instruct [25] 123B X X
Meta Llama 3.1 [14] 70B X v
Qwen 3 [30] 235B v X

The chosen models are not fine-tuned to generate OpenDRIVE examples and
are chosen to show the current abilities to correct its output with given feedback
from QC-OpenDRIVE. As a baseline, the model Mistral Large [25] is chosen and
used without any additional feature like reasoning or RAG. Meta’s Llama 3.1
[14] features less parameters, but is using RAG to access the OpenDRIVE 1.7.0
documentation [2] as a PDF-file. Lastly, the most powerful tested model Qwen
3 [30] is trained to reason before giving the answer to the prompts. This model
is added, as it may have been trained on some rules and might use the reasoning
to validate the steps to make less errors. Each model was integrated into the
feedback-loop with QC-OpenDRIVE to augment the models with the intended
error correction capabilities.

108 J. Miiller et al.

We designed a small benchmark of three tasks, each composed of multiple
prompts (see Table2). To assist the models CoT is used. Wei et al. [27] have
shown, that giving multiple step-by-step prompts can assists the models ability
to generate more accurate responses. The first prompt in each task tests the
capabilities of the models to generate an OpenDRIVE file purely from natural
language. The additional prompts per task are intended to test the editing capa-
bilities based on a already generated OpenDRIVE and an editing instruction.
An editing instruction is only performed, if the previous prompt did not result
in an error. Each task is generated in a new chat, so that the previous task is
not in the context window.

Table 2. Prompts used for the different tasks. The system-prompt is the same for
every model and task. Each prompt has a specific identifier to see the task and prompt
id. For example the first task contains the three different prompts P1.1, P1.2 and P1.3.
They are used in the same chat and used iteratively.

Task ID Prompt

System-prompt- You are a helpful assistant to create OpenDRIVE xodr-files. Be sure to use
the correct schema-format. The output has to strictly follow the defined
xml-schema - be sure to include the correct required attributes! But leave
unnecessary elements and attributes out. For example leave the predecessor
out, when there is no predecessor road.

Use this header for the version 1.7.0 of OpenDRIVE:

“e

<?xml version="1.0" standalone="yes"?>
<OpenDRIVE >
<header revMajor="1" revMinor="7" name=
date="Wed Aug 14 11:25:56 2024"
north="0.0000000000000000e+00"
south="0.0000000000000000e+00"
east="0.0000000000000000e-+00"
west="0.0000000000000000e-+00" >
< /header>

“e

"" version="1.00"

Resume the instructed content with the provided header.

P1.1Create a straight 10m road with a 2.5m wide lane in each direction.
Task 1 P1.2 Change the road, so that is 50m long.

P1.3 Add one lane.

P2.1 Create two roads. Each should have one left lane and one right lane.
Task 2 P2.2Rotate one road for 180 degrees.
P2.3 Add a link to connect both roads.
P3.1Create two roads. Each should have two left lanes and one right lane.
P3.2Add a link to connect both roads.

Task 3

The chosen tasks include simple instructions to generate one or two roads, to
modify and connect them. We currently refrain from more complex instructions,
since experiments with different models have shown their inabilities in creating
maps with three or more roads. We also noticed, that plenty of errors originate

Integrating LLMs with QC-OpenDRIVE 109

from an incorrect header in the generated OpenDRIVE files, which keeps meta
information like the version or the global position of the map. To eliminate this
error and focus at the content of the tasks, the header is provided as part of the
system prompt.

4 Checking Normative Semantics

The rules from the ASAM standard OpenDRIVE are implemented in
github.com/asam-ev/qc-opendrive/tree/main/qc_opendrive/checks. Since only
a subset of all rules defined in the standard are currently implemented in
QC-0OpenDRIVE, an allegedly valid OpenDRIVE file might violate an unimple-
mented rule from the standard. And without an error report, such an invis-
ible error cannot be corrected in the feedback-loop between an LLM and
QC-0penDRIVE. In our experiments, we often encountered a violation of rule
E.5.9.1 (road.geometry.contact_point) by the LLMs. Thus, we implemented
this rule to extend the rule set of QC-OpenDRIVE.

In QC-OpenDRIVE, the logic of a rule is implemented in the method
check_rule of a new checker module. By registering this checker module in
the main.py, the implemented method is automatically called when running
QC-0penDRIVE. For testing the implementation of a rule itself, it should also be
tested using pytest. Test-xodr-files are stored in tests/data/ and added in the
intended check-file in tests/.

4.1 OpenDRIVE Terminology

Before discussing rule E5.9.1 and its implementation in more detail, we need a
rough understanding of the affected OpenDRIVE structures.

The geometry of the course of a road is defined in a <planView>. The line it
follows is called the road reference line (see blue arrows in Fgure 2), from which
the lanes of the road extend to the sides. Two roads can be connected with
the <link> element, where the connection is defined by either the predecessor,
when the other road connects to the start-point, or the successor, when the road
connects to the end-point of the road reference line. The attribute contactPoint
states, which end of the road reference line of the other road is connected to
either the predecessor or successor point [1,4].

4.2 Rule E5.9.1: road.geometry.contact_point

The rule E.5.9.1 (road.geometry.contact _point) is performing a geometry check
on a road definition. It states:

Rule 5.9.1 If two roads are connected without a junction, the road reference
line of a new road shall always begin at the <contactPoint> element of its
successor or predecessor road. The road reference lines may be directed in
opposite directions.

https://github.com/asam-ev/qc-opendrive/tree/main/qc_opendrive/checks
https://docs.pytest.org/en/stable/
https://github.com/asam-ev/qc-opendrive/tree/main/tests
https://github.com/asam-ev/qc-opendrive/tree/main/tests
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/16_annexes/map_rules.html#asam-net-xodr-1-7-0-road-geometry-contact-point

110 J. Miiller et al.

Each road defines its predecessor- and successor-elements in the <1ink> ele-
ment of each connecting road. The point of contact is obligatory and given by
the parameter contactPoint. The road reference line of both roads need to geo-
metrically touch the end or start of the other contact point. With this rule, it
has to be defined in the element, using the contact point "end" or "start". The
correct usage is illustrated in Fig. 2.

road @id="1" road @id="2" | road @id="1" road @id="2"

1 B 1 - < -1 1 -
1 i -1 g b 1 -1 i
road only, no junctions road only, no junctions

[= e RN = =

successor 2 - start n/a successor n/a n/a

predecessor n/a 1-end predecessor 2 - start 1 - start

road @id="1" road @id="2"

1 -1 2
>
> < —_—>
-1 1 1
_
road only, no junctions -1 -
[EEN = road only, no Junctions
successor 2-end 1-end x
predecessor n/a nfa

Fig. 2. Valid and invalid connections of contact-points from two roads. From Open-
DRIVE [5].

In the upper left image the road with the ids “1” and “2” are connected. The
successor link element of the road “1” is the road “2”, because the end of the road
reference line, points at the start of the reference line of the road “2”. Because
of this, the contact point of the successor of road “1” is the start of the road “2”.
On the other side, the contact point of the predecessor from road “2” is the end
of road “1”. When both road reference lines point to the opposite directions they
are each other predecessors and have contact points at the start of each other.
Lastly, when both road reference lines point to each other, they are successor
elements with contact points at the end of each other. The bottom-right images
illustrates the invalid case, when the contact points are not connected.

To check this rule, the geometric coordinates of the contact points and the
start /end of the road reference lines have to be compared. To account for float-
ing point errors, equality is assumed if the distance of coordinates is below a
threshold value € = 107%. When the predecessor is checked, the start point of

Integrating LLMs with QC-OpenDRIVE 111

the current road reference line is used and when the successor is checked, it needs
to be the end point. Depending on the parameter contactPoint of the <link> of
the successor or predecessor, the contact point needs to equal the start or end
point of the road reference line of the other road.

A pull-request with the implementation and tests is published for the official
ASAM QC-OpenDRIVE github-repository. The implementation can be found
at github.com/asam-ev/qc-open-drive/pull /126.

5 Evaluation

In the last section the models and prompts were presented. The details and tries
are shown in Table 3. The table is ordered by the tasks. Mistrals model failed to
generate the first prompt, so this model was not used for the further tasks.

Two of the three tested models, namely Qwen 3 and Llama 3.1, could use
QC-0penDRIVE as a feedback-loop. The mistral model could not fix its schema
errors and did not return the corrected XML-output, while both other models
were able to create correct OpenDRIVE files.

In the first task (P1.1, P1.2 and P1.3) the models were asked to create one
road and modify it. Qwen 3 and Llama completed this task. Qwen 3 needed three
attempts to fix the returned schema-errors. Llama 3.1 used RAG and finished
the complete first task without errors. When investigating the output, it shows
some minor differences to the intended task as it added more than one lane.

The second task (P2.1, P2.2 and P2.3) was to create two roads, rotate one
and to connect both roads. Llama was not able to complete the task. In the first
prompt it had one schema error, which could be fixed with the error message in
the first try. After the second prompt it returned only the changes to the road and
needed to be asked to return the full OpenDRIVE file. It could not fix the schema
errors for the third prompt. Qwen 3 completed this task, while only having
one error, missing the implemented rule E.5.9.1 (road.geometry.contact _point).
Models might miss this rule and the resulted XML would be incorrect.

The last and third task was similar to the second one. Two roads have to be
generated in one prompt. Both models needed three tries to generate a correct
schema. As in the second task, Llama first printed only the changes, but after
asking it to print the whole XML, the output was correct. Qwen 3 needed three
tries for the second prompt. First the schema was invalid and in the second try
the contact point of the link was invalid as in the second task. It could fix this
error.

Using the feedback-loop both models could complete the tasks in a few min-
utes. Writing small OpenDRIVE files by hand would, depending on the knowl-
edge, take similar or more time. But the strength of this models can be shown
when different scenarios can be generated automatically. With the help of the
feedback-loop, distinct scenarios can be described and then generated by the
models.

https://github.com/asam-ev/qc-opendrive
https://github.com/asam-ev/qc-opendrive/pull/126
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/16_annexes/map_rules.html#asam-net-xodr-1-7-0-road-geometry-contact-point

112 J. Miiller et al.

Table 3. Validation results after each iteration (step) using different models for the
generation of OpenDRIVE files in the predefined tasks. In each step a validation with

QC-OpenDRIVE as well as a human inspection was performed and summarized here.

ID Model Step QC-OpenDRIVE Validation

Human Inspection

Mistral 1-6 Schema Error: invalid lane id Alternates the same mistake for
positive and negative lane-ids. Could
P11 not fix the error.
Llama 1 No QC-OpenDRIVE Error. Output as expected for the prompt.
1-2 Invalid schema -
Qwen
3 No QC-OpenDRIVE Error. Output as expected for the prompt.
Llama 1 No QC-OpenDRIVE Error. Two lanes with a width of Ocm on one
P1.2 . .
side of the road reference line.
Qwen 1 No QC-OpenDRIVE Error. Output as expected for the prompt.
P13 Llama 1 No QC-OpenDRIVE Error. Added three lanes. Two on the
: opposite driving direction.
Qwen 1 No QC-OpenDRIVE Error. Output as expected for the prompt.
1 Schema Error. -
Llama
P2.1 1 No QC-OpenDRIVE Error. Output as expected for the prompt.
Qwen 1 No QC-OpenDRIVE Error. Output as expected for the prompt.
L 1 - Printed only the changed lines. Asked
P2.2 ama to print the whole XML again.
2 No QC-OpenDRIVE Error. Output as expected for the prompt.
Qwen 1 No QC-OpenDRIVE Error. Output as expected for the prompt.
Llama 1-4 Schema Error Could not fix the error.
P2.3 1 Invalid rule road geometry contact -
Qwen .
point.
2 No QC-OpenDRIVE Error. Output as expected.
1-2 Schema Error -
Llama
P31 3 No QC-OpenDRIVE Error. Output as expected for the prompt.
’ 1-2 Schema Error -
Qwen
3 No QC-OpenDRIVE Error. Output as expected for the prompt.
1 - Printed only new roads. Manually
Llama . .
asked again to print whole XML.
P3.2 2 No QC-OpenDRIVE Error. Output as expected by the prompt.
1 Invalid schema. -
Qwen 2 Invalid rule road geometry contact -
point.
3 No QC-OpenDRIVE Error. Output as expected for the prompt.

Integrating LLMs with QC-OpenDRIVE 113

6 Conclusion

Natural language processing with LLMs might dramatically change many tasks
typically done by humans. This includes describing legal writing, text summary
generation, or even source code generation. Depending on the task and data
availability, specialized experts need to evaluate the model, especially when data
is sparse or the topic is of subjective nature. In automated driving, scenarios are
a common tool for describing allowed and forbidden interaction of the vehicle and
its environment (including vulnerable road users). Obtaining relevant scenarios
covering the operational design domain is a huge challenge especially if they
need to be handcrafted. In this paper, we investigate the automatic generation
of road networks for such driving scenarios analogously to the generation of
source code. We generate road networks as OpenDRIVE with different LLMs. By
using OpenDRIVE, which is a standardized language, models can be compared
and automatically checked for issues since a set of rules exists. We propose to
integrate the LLM-based road network generation with automatic rule-checking
in a feedback-loop in order to fix errors introduced by the LLM.

To demonstrate the feasibility of our feedback-loop, three LLMs are inte-
grated with the open-source ASAM Quality Checker QC-OpenDRIVE for Open-
DRIVE files, to iterative validate and correct the OpenDRIVE files generated
by the LLMs. While most models have difficulties generating valid OpenDRIVE,
by leveraging reasoning and RAG the tested models could generate syntactically
valid road networks, especially when combined with QC-OpenDRIVE feedback.
We show that syntactic schema errors as well as normative errors could be fixed
using the feedback-loop. Unfortunately, not all rules of OpenDRIVE are yet
implemented in QC-0penDRIVE. Therefore, we extended QC-0penDRIVE by imple-
menting the rule E.5.9.1 road.geometry.contact_point which checks for road
continuity at their contact points with other roads. This rule solved a major
issue, we identified during our experiments. While Llama 3.1 failed to produce
correct contact point in the second task and Qwen 3 in the third, they were
able correctly connect roads given the feedback. Because LLMs have problems
with implicit domain knowledge (e.g. the contact point), this does not only show
practical utility in identifying invalid road connections as a critical requirement
and the necessity of having validation tools but also shows the automatic feed-
back and correction is possible, leaving the creative part to the LLM and the
corrective part to a rule checker.

The results show that human inspection is still needed, as there may be differ-
ences between the intended results and the generated output. In the future, the
set of OpenDRIVE rules should be extended even further, as this will allow to
correctly generate more complex OpenDRIVE files and allow automated tests
with no human inspection. Moreover, this enables the training of specialized
models and to ultimately create scenarios for testing autonomous driving sys-
tems in edge-cases. In the field of test-case design, such a automated LLM-based
pipeline with a feedback-loop could enable hybrid approaches like using simula-
tion and reinforcement learning to test edge-cases with minimal manual effort
in validating the correctness and to meet industry standards.

114 J. Miiller et al.

By integrating LLMs with validation frameworks like QC-OpenDRIVE, this
study paves the way for scalable, standardized, and semantically sound scenario
generation, essential for the safe deployment of autonomous driving systems.

Acknowledgements. The research leading to these results is funded by the German
Federal Ministry for Economic Affairs and Energy within the project “NXT GEN Al
METHODS 4AS Generative Methoden fiir Perzeption, Pridiktion und Planung”. The
authors would like to thank the consortium for the successful cooperation.

References

1. ASAM: OpenDRIVE V1.8.1 (2024). https://www.asam.net/standards/detail/
opendrive, https://publications.pages.asam.net /standards/ASAM _OpenDRIVE/
ASAM _OpenDRIVE Specification/latest /specification/03 _terms and
definitions/03 terms and_definitions.html. Accessed 28 Apr 2025

2. ASAM eV.: ASAM OpenDRIVE Version 1.7.0. https://
www.asam.net /index.php?elD=dumpFile&t={&f=4422&
token=e590561f3c39aa2260e5442¢29€93{6693d1cccd (2021).
https://www.asam.net/index.php?eID=dumpFile& t=f&{=4422&
token=e590561{3c39aa2260e5442e¢29€93f6693d1cccd. Accessed 27 May 2025

3. ASAM e.V.: ASAM Standards (2024). https://www.asam.net/. Accessed 28 Apr
2025

4. ASAM e.V.: OpenDRIVE V1.8.1 (2024). https://www.asam.net/standards/detail /
opendrive. Accessed 28 Apr 2025

5. ASAM e.V.: OpenDRIVE V1.8.1/10 Roads/10.3 Road linkage/Figure 39 (2024).
https://publications.pages.asam.net /standards/ASAM _OpenDRIVE/ASAM
OpenDRIVE Specification/latest /specification/10 roads/10 03 road linkage.
html. Accessed 15 May 2025

6. ASAM e.V.: QC OpenDRIVE. https://github.com/asam-ev/qc-opendrive (2024),
gitHub repository

7. Austin, J., et al.: Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021)

8. Becker, D., Ru , F., Geller, C., Eckstein, L.: Generation of complex road networks
using a simplified logical description for the validation of automated vehicles. In:
2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC), pp. 1-7 (2020). https://doi.org/10.1109/TTSC45102.2020.9294664

9. Chang, C., Wang, S., Zhang, J., Ge, J., Li, L.: LLMScenario: large language model
driven scenario generation. IEEE Trans. Syst. Man Cybern. Syst. (2024). https://
doi.org/10.1109/TSMC.2024.3392930

10. Chen, M., et al.: Evaluating large language models trained on code. CoRR
abs/2107.03374 (2021)

11. Guo, D., et al.: DeepSeek-R1: incentivizing reasoning capability in LLMs via rein-
forcement learning (2025). DeepSeek-Al. https://arxiv.org/abs/2501.12948

12. Eisemann, L., Maucher, J.: Automatic odometry-less opendrive generation from
sparse point clouds. In: 2023 IEEE 26th International Conference on Intelligent
Transportation Systems (ITSC), pp. 681-688. IEEE (2023). https://doi.org/10.
1109/itsch57777.2023.10421842

https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/03_terms_and_definitions/03_terms_and_definitions.html
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/
https://www.asam.net/
https://www.asam.net/
https://www.asam.net/
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://www.asam.net/standards/detail/opendrive
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/10_roads/10_03_road_linkage.html
https://github.com/asam-ev/qc-opendrive
https://github.com/asam-ev/qc-opendrive
https://github.com/asam-ev/qc-opendrive
https://github.com/asam-ev/qc-opendrive
https://github.com/asam-ev/qc-opendrive
https://github.com/asam-ev/qc-opendrive
https://github.com/asam-ev/qc-opendrive
http://arxiv.org/abs/2108.07732
https://doi.org/10.1109/ITSC45102.2020.9294664
https://doi.org/10.1109/ITSC45102.2020.9294664
https://doi.org/10.1109/ITSC45102.2020.9294664
https://doi.org/10.1109/ITSC45102.2020.9294664
https://doi.org/10.1109/ITSC45102.2020.9294664
https://doi.org/10.1109/ITSC45102.2020.9294664
https://doi.org/10.1109/ITSC45102.2020.9294664
https://doi.org/10.1109/ITSC45102.2020.9294664
https://doi.org/10.1109/TSMC.2024.3392930
https://doi.org/10.1109/TSMC.2024.3392930
https://doi.org/10.1109/TSMC.2024.3392930
https://doi.org/10.1109/TSMC.2024.3392930
https://doi.org/10.1109/TSMC.2024.3392930
https://doi.org/10.1109/TSMC.2024.3392930
https://doi.org/10.1109/TSMC.2024.3392930
https://doi.org/10.1109/TSMC.2024.3392930
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.1109/itsc57777.2023.10421842
https://doi.org/10.1109/itsc57777.2023.10421842
https://doi.org/10.1109/itsc57777.2023.10421842
https://doi.org/10.1109/itsc57777.2023.10421842
https://doi.org/10.1109/itsc57777.2023.10421842
https://doi.org/10.1109/itsc57777.2023.10421842
https://doi.org/10.1109/itsc57777.2023.10421842
https://doi.org/10.1109/itsc57777.2023.10421842

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

Integrating LLMs with QC-OpenDRIVE 115

Eisemann, L., Maucher, J.: Divide and Conquer: a systematic approach for indus-
trial scale high-definition opendrive generation from sparse point clouds. In: 2024
IEEE Intelligent Vehicles Symposium (IV), pp. 2443-2450. IEEE (2024). https://
doi.org/10.1109/1V55156.2024.10588602

Grattafiori, A., et al.: The llama 3 herd of models (2024). https://arxiv.org/abs/
2407.21783

Huang, L., et al.: A survey on hallucination in large language models: princi-
ples, taxonomy, challenges, and open questions. ACM Trans. Inf. Syst. 43(2), 1-55
(2025). https://doi.org/10.1145/3703155

Huynh, N., Lin, B.: Large language models for code generation: a comprehensive
survey of challenges, techniques, evaluation, and applications (2025). https://arxiv.
org/abs/2503.01245

Jiang, J., Wang, F., Shen, J., Kim, S., Kim, S.: A survey on large language models
for code generation (2024). https://arxiv.org/abs,/2406.00515

Lai, J., Gan, W., Wu, J., Qi, Z., Yu, P.S.: Large language models in law: a survey
(2023). https://arxiv.org/abs/2312.03718

Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP
tasks (2021). https://arxiv.org/abs/2005.11401

Microsoft Corporation: Introducing Copilot Agent Mode (2025). https://code.
visualstudio.com/blogs/2025/02/24 /introducing-copilot-agent-mode

Pires, R., Junior, R.M., Nogueira, R.: Automatic legal writing evaluation of LLMs
(2025). https://arxiv.org/abs/2504.21202

Ruan, B.K., Tsui, H.T., Li, Y.H., Shuai, H.H.: Traffic scene generation from natural
language description for autonomous vehicles with large language model (2025).
https://arxiv.org/abs/2409.09575

Scholtes, M., et al.: 6-layer model for a structured description and categorization
of urban traffic and environment (2021). https://arxiv.org/abs/2012.06319
Schwab, B., Kolbe, T.: Validation of parametric opendrive road space models. Ann.
Photogrammetry, Remote Sens. Spatial Inf. Sci. X-4-W2-2022 (2022). https://doi.
org/10.5194 /isprs-annals- X-4-W2-2022-257-2022

Team, M.A.: Mistral large. https://mistral.ai/news/mistral-large-2407 (2024).
https://mistral.ai/news/mistral-large-2407. Accessed 26 May 2025

Wachenfeld, W., Winner, H.: The Release of Autonomous Vehicles, pp. 425-449.
Springer, Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48847-
8 21

Wei, J., et al.: Chain-of-thought prompting elicits reasoning in large language mod-
els (2023). https://arxiv.org/abs/2201.11903

Williams, S., Huckle, J.: Easy problems that LLMs get wrong (2024). https://
arxiv.org/abs/2405.19616

Xiao, Y., Sun, Y., Lin, Y.: ML-SceGen: a multi-level scenario generation framework
(2025). https://arxiv.org/abs/2501.10782

Yang, A., et al.: Qwen3 technical report (2025). https://arxiv.org/abs/2505.09388
Yang, J., et al.: Harnessing the power of LLMs in practice: a survey on chatgpt
and beyond (2023). https://arxiv.org/abs/2304.13712

Zhang, J., Xu, C., Li, B.: ChatScene: knowledge-enabled safety-critical scenario
generation for autonomous vehicles (2024). https://arxiv.org/abs/2405.14062

https://doi.org/10.1109/IV55156.2024.10588602
https://doi.org/10.1109/IV55156.2024.10588602
https://doi.org/10.1109/IV55156.2024.10588602
https://doi.org/10.1109/IV55156.2024.10588602
https://doi.org/10.1109/IV55156.2024.10588602
https://doi.org/10.1109/IV55156.2024.10588602
https://doi.org/10.1109/IV55156.2024.10588602
https://doi.org/10.1109/IV55156.2024.10588602
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://arxiv.org/abs/2503.01245
https://arxiv.org/abs/2503.01245
https://arxiv.org/abs/2503.01245
https://arxiv.org/abs/2503.01245
https://arxiv.org/abs/2503.01245
https://arxiv.org/abs/2503.01245
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2312.03718
https://arxiv.org/abs/2312.03718
https://arxiv.org/abs/2312.03718
https://arxiv.org/abs/2312.03718
https://arxiv.org/abs/2312.03718
https://arxiv.org/abs/2312.03718
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
https://arxiv.org/abs/2504.21202
https://arxiv.org/abs/2504.21202
https://arxiv.org/abs/2504.21202
https://arxiv.org/abs/2504.21202
https://arxiv.org/abs/2504.21202
https://arxiv.org/abs/2504.21202
https://arxiv.org/abs/2409.09575
https://arxiv.org/abs/2409.09575
https://arxiv.org/abs/2409.09575
https://arxiv.org/abs/2409.09575
https://arxiv.org/abs/2409.09575
https://arxiv.org/abs/2409.09575
https://arxiv.org/abs/2012.06319
https://arxiv.org/abs/2012.06319
https://arxiv.org/abs/2012.06319
https://arxiv.org/abs/2012.06319
https://arxiv.org/abs/2012.06319
https://arxiv.org/abs/2012.06319
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://doi.org/10.5194/isprs-annals-X-4-W2-2022-257-2022
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://doi.org/10.1007/978-3-662-48847-8_21
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2405.19616
https://arxiv.org/abs/2405.19616
https://arxiv.org/abs/2405.19616
https://arxiv.org/abs/2405.19616
https://arxiv.org/abs/2405.19616
https://arxiv.org/abs/2405.19616
https://arxiv.org/abs/2501.10782
https://arxiv.org/abs/2501.10782
https://arxiv.org/abs/2501.10782
https://arxiv.org/abs/2501.10782
https://arxiv.org/abs/2501.10782
https://arxiv.org/abs/2501.10782
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2304.13712
https://arxiv.org/abs/2304.13712
https://arxiv.org/abs/2304.13712
https://arxiv.org/abs/2304.13712
https://arxiv.org/abs/2304.13712
https://arxiv.org/abs/2304.13712
https://arxiv.org/abs/2405.14062
https://arxiv.org/abs/2405.14062
https://arxiv.org/abs/2405.14062
https://arxiv.org/abs/2405.14062
https://arxiv.org/abs/2405.14062
https://arxiv.org/abs/2405.14062

116 J. Miiller et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by,/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

AGREE-Dog Copilot: A Neuro-Symbolic
Approach to Enhanced Model-Based
Systems Engineering

Amer Tahat®™) | Isaac Amundson, David Hardin, and Darren Cofer

Collins Aerospace, Cedar Rapids, IA 52498, USA

{amer.tahat,isaac.amundson,david.hardin,darren.cofer}@collins.com

Abstract. Formal verification tools like model checkers have long
demonstrated their capability to ensure mission-critical properties are
satisfied, yet their adoption in the aerospace and defense industries
remains limited. Among the various reasons for slow uptake, difficulty
in understanding analysis results (i.e., counterexamples) tops the list
of multiple surveys. In previous work, our team developed AGREE, an
assume-guarantee compositional reasoning tool for architecture models.
Like many other model checkers, AGREE generates potentially large
counterexamples in a tabular format containing variable values at each
time step of program execution up to the property violation, which can
be difficult to interpret, especially for novice formal methods users. In
this paper, we present our approach for achieving explainable composi-
tional reasoning using AGREE in combination with generative Al and we
introduce AGREE-Dog, an open-source generative Al copilot integrated
into the OSATE IDE. AGREE-Dog automates 16 DevOps and ProofOps
steps, utilizing a novel context-selection and memory management sys-
tem to efficiently manage evolving artifacts and historical interactions.
We introduce structural and temporal metrics to evaluate the typically
overlooked human contributions in generative Al-supported workflows.
Evaluations using 13 UV fault-injection scenarios demonstrate a signif-
icant reduction in manual effort (less than 0.1 % of tokens authored by
users), rapid convergence of counterexample repairs (84.6 % resolved in
a single iteration, accuracy increasing to about 92 % after two itera-
tions, and reaching 100 % within three iterations), and low LLM latency
(average LLM response under 22 s, with negligible AGREE-Dog compu-
tational overhead). We also discuss limitations and future work. These
promising results motivate further exploration into explainable model-
based systems engineering (MBSE).

Keywords: LLM - Formal verification - MBSE - AGREE - AADL -
Compositional reasoning

DISTRIBUTION STATEMENT A. Approved for public release: distribution
unlimited.

© The Author(s) 2026
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 117-137, 2026.
https://doi.org/10.1007/978-3-032-07132-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_8&domain=pdf
https://doi.org/10.1007/978-3-032-07132-3_8

118 A. Tahat et al.

1 Introduction

Formal methods provide a mathematically rigorous means of verifying correct-
ness in high-assurance systems, such as those used in the aerospace and defense
industries. Certification guidance such as D0O-333 [13] explicitly outlines how
formal methods can meet airworthiness objectives for commercial aircraft soft-
ware. Despite their proven effectiveness, adoption within traditional development
workflows remains limited, hampered by scalability challenges, poorly designed
tooling, and significant barriers to entry due to specialized training require-
ments [3].

The DARPA Pipelined Reasoning of Verifiers Enabling Robust Systems
(PRO-VERS) program was launched to address these adoption barriers by
developing scalable, human-centered formal verification workflows that seam-
lessly integrate into existing aerospace and defense engineering practices. Cen-
tral to PROVERS’ objectives is enabling usability even among engineers who
lack extensive formal methods expertise, thereby fostering broader adoption and
enhancing system dependability.

In response, our team has developed the Industrial-Scale Proof Engineering
for Critical Trustworthy Applications (INSPECTA) framework [6]. INSPECTA
comprises two integrated layers—ProofOps and DevOps—that embed formal
verification directly into modern DevOps pipelines. The framework emphasizes
scalability and explainability as primary design objectives, aligning closely with
the PROVERS program’s goals.

Within INSPECTA’s ProofOps workflow, we employ the Assume-Guarantee
Reasoning Environment (AGREE) [2], a compositional verification tool designed
specifically for the Architecture Analysis and Design Language (AADL) [4].
Although AGREE avoids many of the scalability pitfalls found in monolithic
verification tools, its counterexample outputs remain difficult to interpret. Like
many model checkers, AGREE produces tabular counterexamples that trace the
state of variables across multiple time steps. These can involve intricate tem-
poral logic, nested states, and violations spanning architectural layers, posing
challenges even for experienced engineers [7]. The diagnostic and repair pro-
cess may span, hours, days, or weeks for large, evolving models based on user
experties.

Recently, generative Al, and particularly large language models (LLMs), have
shown promising potential to improve explainability and guide automated formal
verification and counterexample repair. Early efforts include OpenATl’s GPT-f,
which achieved notable success in Metamath theorem proving [8,12]. Other ini-
tiatives have applied LLMs successfully to proof repair in Isabelle/HOL [5], the-
orem diagnosis in Coq [18], and discovering program invariants [11,17]. Stanford
and VMware’s Clover project represents another significant step forward, focus-
ing on verifiable code generation with generative assistance [14]. Tahat et al.
demonstrated high success rates using multi-turn conversational LLMs for proof
repair in Coq, underscoring conversational learning’s value in formal reasoning
domains [15,16]. Apple’s GSM-Symbolic [9] highlighted fundamental limitations
of LLMs in symbolic reasoning tasks. Similarly, Amazon’s recent SMT-backed

AGREE-Dog Copilot 119

hallucination prevention framework [1], while innovative, remains closed-source,
available exclusively as a web service, and has yet to integrate within aerospace-
specific MBSE pipelines such as those based on AADL.

We summarize the contributions of this paper as follows:

— We introduce AGREE-Dog, an open-source generative Al copilot integrated
into the OSATE IDE!, designed to automate and simplify the interpreta-
tion of counterexamples within aerospace and defense MBSE workflows using
AADL and AGREE.

— An intuitive user interface coupled with detailed logging and traceability fea-
tures, simplifying the typically challenging analysis of internal copilot inter-
actions in generative Al-assisted systems.

— A context-selection and memory management algorithms that enhance
prompt construction by triming irrelevant content, thereby reducing token
usage, latency, cost, and enhancing recommendation accuracy.

— A novel set of structural and temporal evaluation metrics explicitly designed
to quantify user effort, copilot automation, and interaction latency, capturing
aspects often overlooked in evaluations of generative Al-assisted verification
workflows.

— Experimental evaluations demonstrating AGREE-Dog’s practicality, robust-
ness, and effectiveness, validated through 13 diverse fault-injection test sce-
narios, highlighting rapid convergence of repairs and significant reduction of
manual effort.

Throughout this paper, we provide simplified examples drawn from our
test suite, illustrated clearly in the figures. We primarily focus on a simplified
UV system described by the Car AADL package?. This open-source package,
developed using AADL, contains several key subsystems—including top-level
control, steering, and transmission—each specifying formal contracts verified
using AGREE. The provided examples highlight AGREE-Dog’s primary fea-
tures, workflow, and practical advantages, demonstrating how the copilot sup-
ports users in interpreting counterexamples, identifying contract violations, and
automating model repairs. Due to space limitations, a more detailed, end-to-
end illustrative fault injection and repair scenario for the Steering subsystem is
provided in Appendix A. Also, more comprehensive copilot interactions, detailed
conversation samples, and log files are available in our GitHub repository>..

The paper is organized into seven key sections. Section 1 provides an intro-
duction to formal verification and generative AI’s role in enhancing model-based
systems engineering. Section 2 introduces the AGREE tool, emphasizing explain-
ability in compositional reasoning. Section 3 identifies core challenges motivat-

! https://github.com /loonwerks/AgreeDog.

2 https://github.com/loonwerks/AgreeDog/tree/main/uploaded _dir/car/packages.

3 https://github.com/loonwerks/AgreeDog /tree/main /logfiles-human-readble-
conversations.

* https://github.com/loonwerks/AgreeDog/blob/main/shared _history/, such as,
conversation_history_20250427_215828. json.

https://github.com/loonwerks/AgreeDog
https://github.com/loonwerks/AgreeDog
https://github.com/loonwerks/AgreeDog
https://github.com/loonwerks/AgreeDog
https://github.com/loonwerks/AgreeDog
https://github.com/loonwerks/AgreeDog/tree/main/uploaded_dir/car/packages
https://github.com/loonwerks/AgreeDog/tree/main/uploaded_dir/car/packages
https://github.com/loonwerks/AgreeDog/tree/main/uploaded_dir/car/packages
https://github.com/loonwerks/AgreeDog/tree/main/uploaded_dir/car/packages
https://github.com/loonwerks/AgreeDog/tree/main/uploaded_dir/car/packages
https://github.com/loonwerks/AgreeDog/tree/main/uploaded_dir/car/packages
https://github.com/loonwerks/AgreeDog/tree/main/uploaded_dir/car/packages
https://github.com/loonwerks/AgreeDog/tree/main/uploaded_dir/car/packages
https://github.com/loonwerks/AgreeDog/tree/main/uploaded_dir/car/packages
https://github.com/loonwerks/AgreeDog/tree/main/uploaded_dir/car/packages
https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-conversations
https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-conversations
https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-conversations
https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-conversations
https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-conversations
https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-conversations
https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-conversations
https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-conversations
https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-conversations
https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-conversations
https://github.com/loonwerks/AgreeDog/tree/main/logfiles-human-readble-conversations
https://github.com/loonwerks/AgreeDog/blob/main/shared_history/
https://github.com/loonwerks/AgreeDog/blob/main/shared_history/
https://github.com/loonwerks/AgreeDog/blob/main/shared_history/
https://github.com/loonwerks/AgreeDog/blob/main/shared_history/
https://github.com/loonwerks/AgreeDog/blob/main/shared_history/
https://github.com/loonwerks/AgreeDog/blob/main/shared_history/
https://github.com/loonwerks/AgreeDog/blob/main/shared_history/
https://github.com/loonwerks/AgreeDog/blob/main/shared_history/
https://github.com/loonwerks/AgreeDog/blob/main/shared_history/

120 A. Tahat et al.

ing the development of AGREE-Dog. Section4 details AGREE-Dog’s architec-
ture, including its user interface, backend workflow automation, and context-
management algorithms. Section 5 describes novel structural and temporal met-
rics for evaluating human-in-the-loop interactions. Section 6 presents compre-
hensive experimental results demonstrating AGREE-Dog’s efficacy using fault-
injected scenarios. Finally, Sect.7 concludes the paper, discussing limitations
and avenues for future work.

2 Explainable AGREE

2.1 Overview

Counterexample

Variable Name] 1 2
Inputs:

{Target Speed.val} 121 2] 2]
{Target Tire Pitch.val}] 1/5]
State:

{[G car 1] actual speed is less than constant target speed} true true false
{_TOP.AXL..ASSUME.HIST} true true true
{_TOP.CNTRL. .ASSUME.HIST} true true true
{_TOP.SM. .ASSUME.HIST} true true true
{_TOP.THROT. .ASSUME .HIST} true true true
{const tar speed} true false true
Outputs:

{Actual Speed.val} 11 10 108/11
{Actual Tire Pitch.val}] 1/5]
{State Signal.val}] (=] 2
variables for AXL

Variable Name] 1 2
Inputs:

{AXL.Speed.val} 46 465 45
{AXL.Target Tire Direction.val} @ 1/5 =]
State:

{AXL..ASSUME.HIST} true true true
Outputs:

{AXL.Actual Tire Direction.val} a 1/5)

Fig. 1. This figure shows a code snippet of an AGREE-generated counterexample from
the Car model. It illustrates a violation of the guarantee “G car_1: actual speed is less
than constant target speed,” which evaluates to false.

AGREE provides a formal contract language for specifying assumptions (i.e.,
expectations on a component’s input and the environment) and guarantees (i.e.,
bounds on a component’s behavior). Because AGREE is implemented as an
AADL annez in the Open Source AADL Tool Environment (OSATE), the con-
tracts are specified directly on components in the AADL model. AGREE then
uses a k-induction model checker to prove properties about one layer of the
architecture using properties allocated to subcomponents. The analysis proves
correctness of (1) component interfaces, such that the output guarantees of each

AGREE-Dog Copilot 121

component must be strong enough to satisfy the input assumptions of down-
stream components, and (2) component implementations, such that the input
assumptions of a system along with the output guarantees of its sub-components
must be strong enough to satisfy its output guarantees.

When a contract violation is found (i.e., when an assumption is determined to
be invalid or a guarantee is unsupported), AGREE produces a counterexample
consisting of values for each system variable at each execution step. A sample
counterexample is depicted in Fig.1. Currently, OSATE includes the AADL
Simulator tool that can accept an AGREE counterexample as input and walk
through the trace in the graphical editor, but it is of limited help when it comes
to identifying the root cause of the contract violation.

2.2 Making Counterexamples Actionable

We therefore desire AGREE counterexamples that are actionable; that is, an
explanation of the violation in terms that will quickly lead to a passing analysis
(e.g., by making changes to the formal contract or model). To achieve this, we
implemented an interactive conversational copilot (AGREE-Dog) powered by
GPT-40 and O3 multimodal generative Al models. It is specifically designed
to assist AGREE users in identifying the root causes of counterexamples and
applying targeted modifications during the model repair process, significantly
reducing the turnaround time between verification attempts. The copilot is user-
friendly and integrates seamlessly with the OSATE IDE (see Fig. 2) and (Fig. 3).
In the remainder of this paper, we explore the motivations that drove the
development of AGREE-Dog, describe its key architectural features, and evalu-
ate its effectiveness within representative modeling and verification workflows.

3 DMotivations and Core Challenges

Drawing upon our practical experience integrating AGREE within MBSE work-
flows, in this section we highlight central challenges and key design principles
that guided the development of our LLM-based solution for generating action-
able counterexample explanations and facilitating automated model repairs.

3.1 Context-Aware Prompt Construction

AGREE-generated counterexamples typically involve numerous variables, intri-
cate execution traces, and extensive AADL architectural data. Incorporating
detailed LLM-generated code explanations and diagnostics exacerbates this chal-
lenge. Presenting these details directly to a generative AI model without careful
management often result in excessive context size, increasing latency, hallucina-
tions, costs, and potentially exceeding token limits. The key challenge is identify-
ing and selecting only the most relevant context to include in prompts, ensuring
accurate, concise explanations and actionable recommendations.

122 A. Tahat et al.

workspace - Car/packages/Caraad| - OSATE2 o ®
BExIBEEN? 7 Y- pAB0 ABBUSG #is seawid
R AL B TR 4 Qim

& Integer_Toyaadl & Caraadl x - =
o Property consi_tar_spees =
trite - Target_Speed.val = pre(Target_Speed.val);
guarantee G_car 1 "actual speed is less than constant target speed” :
const_tar_speed => (Actual Speed.val <= Target_Speed.val);
guarantee G_car 2 "acceleration is limited”
Agree_Nodes: :abs (Actual_Speed.val - prev(Actual_Speed.val, 0.0)) < max_accel;
el

end Car;

systen implementation Car.Car_Inpl
subcomponents
THROT: systen Transnission::Throttle.Throttle Inpl;
CNTRL: system Transmission::Speed Control.Speed_Control_Impl;
AXL: system Steering: :Axle.Axle Inpl;
SM: system Transmission: :State Machine.Inpl;

connections
SpeedToThrat: port CNTRL_Actuator Input > THROT.Actuator_Input {
Communication Properties::Timing => inmedia
AcSpeedToTop: port THROT.Actual -> Actual Speed TG ammniation Prayertiens fYising = duesiinte
AcSpeedToCntrl: port THROT.Actual -> CNTRL.Actual {Communication Properties::Timing => immedia
TgSpeedToCntrl: port Target Speed -> CNTRL.Target {Communication Properties::Timing => immediate;
TgPtichToAxL: port Target Tire Pitch -> AXL.Target Tire Direction {
Communication_Properties::Timing => inmediate;};
AcPtichToCar: port AXL.Actual Tire Direction -> Actual Tire Pitch {

C O & oooo T 90450 e =

THROT Actualval 1110 9.09090909090909
THROT Actuator_Input 110-10-9.09090909090909
it

INSPECTA-Dog: The counter-example provided by AGREE indicates that
the guarantee 'G_car_1" (‘actual speed s less than constant target
speed’) has been violated. Let's analyze the counter-example step by
step:

#itt Counter-example Analysis:

1. #*Variable Values:**

- Actual_Speed.val': 11, 10,9.09090909090909
- Target _Speedyal':121,0,0

2.**Guarantees and Properties:**

-“const_tar_speed': ‘true -> Target_Speed.val = pre(Target_Speed.val)"
-"G_car_1": "const_tar_speed => (Actual_Speed.val <=
Target_Speed.val)®

#itt Key Points:

1. ¥Intial State:*

-Attime 0, Actual_Speedal'is 11.and Target_Speed.val s 121. The
guarantee 'G_car_1" holds true because "1 <= 121",

Communication Properties::Timing => inmediate;

SSToSM: port SM.State Out -> State Signal {Communication Properties::Tining => immediate;}; 2. “*Time Step 1+
- Actual_Speed.val'is 10 and ‘Target_Speed.val is . Here, the
guarantee *G_car_1" i violated because 10> 0’

end Car.Car_Inpl;

end Car;

Stop-Here it ssue:
The violation occurs because the ‘Target_Speed is changing to 0in the
next time step, which makes the guarantee *G_car_1" invalid as the
‘Actual_Speed' s not allowed to catch up immedately to the new
Target_Speed’

1 Problems [Properties (% AADL PropertyVal I e @ pe @ AGREEResults x =3 Progress = O

Bl contract Guarantees. 1imvalid, 2valid

¥/ subcomponent Assumptions valid 05) #it# Solution:
M [G_car_1] actual speed s less than constant target speed invald (05) Tofix the problem, we need to ensure that the ‘Target_Speed" remain;
/[6_car 2] accelerationis limited Valid (05) constant for the duration over which the Actual_Speed' s being
/This component consistent 1valid compared. This can be done by introducing a delay or ensuring that
/THROT consistant +valid
T et o3 1067 Target_Speed” does not change abruptly. We can modify the property

“const tar speed" to accommodate a scenario where the

Fig.2. AGREE-Dog copilot integrated within OSATE. This figure shows the user
interface integration, with the OSATE IDE on the left and the AGREE-Dog copilot
explanations intuitively displayed on the right. AGREE-Dog explains the root cause of
the counterexample step-by-step in natural language, specifically, the violation occurs
because Actual Speed drops below Target Speed, violating the guarantee G car 1.

3.2 Ensuring Validity of Automated Repairs

Generative models might propose repairs that, while plausible, could uninten-
tionally violate established architectural interfaces or critical system proper-
ties. Maintaining consistency within compositional reasoning frameworks, such
as AGREE, requires continuous validation. Thus, repairs must be tightly inte-
grated with formal verification steps to ensure that each modification preserves
overall system correctness.

3.3 Minimizing User Effort and Interaction Latency

Manually reviewing detailed logs and deeply nested temporal logic from coun-
terexamples is both error-prone and time-consuming. An effective repair process
must significantly reduce user overhead by automating log analysis, semantic
comparisons between successive runs, and managing formal proof re-validation.
Minimizing both system latency and human interaction time is essential to
achieve an efficient, near-interactive model repair workflow.

AGREE-Dog Copilot 123

. a AGREE-Dog

assume A3 "targe
Agree Nodes::

.val, Target Speed.val)):

assume “initial actual Speed is below target spee
Prev(Actual Specd.-val. Actual Speed.val) s Target Speed.val:
ent

1= guarantee ctual er exceeds target speed”
Aetoaspecd.val <o Targer speed.vats

+. “magnitude of the
Aoree_Nodes: abs(Actual speed.val
prev(Actual Speed.val, 0.0)) <= max_accel;

ration is limited" :

© Git Commit and Push

Fig. 3. AGREE-Dog UI interface showing integrated model diagnostics, user input,
token count, response time, and push-button feedback loop. Each repair cycle is proof-
aware and synchronized with AGREE log results.

4 AGREE-Dog Architecture and WorkFlow

This section details AGREE-Dog’s main architectural components, and their
roles in addressing usability and interpretability challenges identified previously
(Sect. 3).

Specifically, we introduce AGREE-Dog’s intuitive user interface, backend
orchestration and workflow automation, optimized memory and context man-
agement algorithms, formal validation-driven feedback loops, and an internal
logging subsystem supporting traceability and continuous refinement.

To illustrate how these components interact and integrate within a cohe-
sive workflow, we refer the reader to Fig.4. This figure highlights the interac-
tions among the human user, OSATE IDE, AGREE formal verification tool, and
AGREE-Dog’s internal subsystems. Upon encountering a counterexample, the
user interacts with the copilot through the provided interface, supplying hints
and instructions. The copilot dynamically retrieves relevant context based on
user input, IDE state, and formal tool feedback, employing an LLMAPI calls to
produce intuitive explanations and suggest targeted model repairs. Internally,
AGREE-Dog maintains detailed logs, recording key performance metrics. These
metrics, introduced and defined explicitly in the following section, facilitate con-
tinuous improvement and future enhancements through fine-tuning based on
high-quality interaction data.

4.1 TUser Interface

AGREE-Dog features an intuitive, streamlined user interface (UI), (Fig.3),
seamlessly integrated within the OSATE environment, designed specifically to

124 A. Tahat et al.

Proof
Complete

No

Counter-
Run AGREE example?
Valid?

Upload model,

i [Open AGREE- counter-
Dog interface example,

instructions

Mine saved mod-
els/conversations

Evaluate con-
versation quality

Update E | Fine-tune with
model /contracts 4----~ hi ty
(repair) ! conversations

AGREE-Dog

Fig. 4. AGREE-Dog workflow illustrating interactions among the user, IDE, formal
tool, and copilot components, showing dynamic context retrieval, explanation genera-
tion, suggested repairs, and logging for continuous improvement.

minimize cognitive load and simplify complex verification tasks. Central to its
usability are clearly labeled, push-button controls, enabling users to directly
interact with counterexample explanations, formal validations, and system-level
model repairs from a single coherent point of interaction.

A fundamental design principle of this Ul is to balance transparency with
abstraction—clearly presenting operational outcomes without burdening users
with underlying complexities. This approach promotes efficiency, productivity,
and verification effectiveness.

At the center of user interaction is the Feedback loop button, which synchro-
nizes the internal state of OSATE with AGREE-Dog, with user inputs, updating
its variables and internal data structures with most relevant context. This syn-
chronization ensures coherence between AGREE-Dog’s conversational state and
the current OSATE project status, thus setting the stage for effective model
analysis and refinement—detailed further in the next sections.

We complement this mechanism, with the Insert button which enables seam-
less integration of AGREE-Dog’s suggested model repairs directly into OSATE,
significantly streamlining what would otherwise be a tedious manual integra-
tion process. User-driven requests or specific instructions are submitted via the
Submit button and can be further elaborated upon through an integrated conver-

AGREE-Dog Copilot 125

sational chat window. This conversational approach encourages precise, targeted
refinements by enabling iterative and detailed guidance from the user.

Additional UI elements enhance interaction quality and knowledge retention.
The Save button allows users to archive conversational histories for later review
or further analysis and evaluations, as shown in Sect.6, while the integrated
Git control provides mechanisms for persistent storage, sharing of verification
outcomes, and collaborative insight generation.

Moreover, advanced configurations are accessible via the dedicated Settings
menu, allowing users to customize interaction workflows and select optimal LLM
models tailored to specific tasks—such as generating explanations and repair sug-
gestions (best supported by GPT-03), or performing general-purpose, frequent
tasks (ideally powered by GPT-40)°, as further detailed in Sect. 4.2.

4.2 Backend Function Call Graph and Workflow Automation

To support interactive workflows, AGREE-Dog automates 16 critical DevOps
and ProofOps steps. The backend orchestration, summarized in Appendix A
(Fig.7), manages operations ranging from artifact selection and prompt con-
struction to automated AGREE invocations. AGREE-Dog utilizes context and
history-aware agents that dynamically select relevant artifacts, perform seman-
tic diffs, and invoke proof engines. Each backend operation is highly optimized,
incurring negligible runtime overhead (less than one second per operation), as
demonstrated by the empirical results in Sect. 6.

4.3 Context Selection and Memory Management Optimization

Effective context selection and memory management are critical to AGREE-
Dog’s ability to provide precise explanations and actionable repairs involv-
ing complex AADL artifacts, execution traces, and user instructions. Address-
ing these challenges requires the sophisticated, carefully optimized mechanisms
embedded within AGREE-Dog’s core copilot algorithm.

Core Copilot Algorithm. Algorithm 1 embodies the central context man-
agement strategy of AGREE-Dog, as conceptually outlined in Fig. 4. This algo-
rithm integrates intelligent conversational state tracking, dynamic artifact selec-
tion, and optimized memory management processes to efficiently support model
verification and repair tasks.

Optimized Dynamic Context Retrieval and Updates. Algorithm 1 dynamically
selects a minimal yet sufficient context—including relevant AADL source files,
counterexamples, AGREE logs, and system requirements, and interactive user

5 At the time of writing, OpenAl recommends GPT-O3 for reasoning-intensive tasks
and explanations, offering better reasoning performance but slightly higher latency.
In contrast, GPT-40 is optimized for general-purpose tasks, providing lower latency.

126 A. Tahat et al.

instructions—for accurate verification and effective repair interactions. Lever-
aging its integrated dynamic Context Retrieval component, the algorithm selec-
tively imports only the most recently updated model artifacts, identified through
AGREE-log updates received from OSATE, by traversing dependency chains and
referencing stored conversational data.

By default, the context retrieval strategy excludes standard training data
such as core libraries typically present in LLM training sets, thus optimizing
token usage. However, users retain flexibility to explicitly include or exclude
any files from the complete import chain during initialization, incorporating
selected context elements into the initial prompt. Once included, these explicitly
imported files remain static in memory unless updated explicitly by the user or
signaled via AGREE logs. Additionally, natural-language requirement files (e.g.,
CSV-based inputs), not tracked by AGREE logs, are monitored independently
with automatic checks performed every two seconds to detect changes.

This nuero-sympolic (intersymbolic) and user-customizable selection process
significantly reduces redundancy, enhances convergence speed toward correct
model solutions, minimizes generative model latency, and mitigates hallucina-
tions caused by irrelevant context.

Memory Management Optimization Mechanism. A critical component of Algo-
rithm 1 is its internal conversational memory management subsystem, detailed
fully in Appendix A. This subsystem employs a structured, list-based repre-
sentation to balance immediate responsiveness with longer-term conversational
persistence. Short-term interactions are retained in readily accessible memory
for efficient prompt updates, while less immediate interactions can optionally be
saved locally by the user or systematically migrated into persistent storage man-
aged by integrated Git version control. This approach allows AGREE-Dog to
effectively recall prior repair strategies and interaction histories, thus enhancing
iterative repairs and significantly reducing the overhead associated with manual
snapshots management.

Furthermore, AGREE-Dog’s memory management strategy directly facili-
tates ongoing system refinement. Archived conversational histories and validated
repairs can subsequently be leveraged to fine-tune the underlying generative
models, enabling continual improvement in the quality of explanations and repair
suggestions.

4.4 Verification-Aware Feedback Loop and Repair Validity

AGREE-Dog’s neuro-symbolic reasoning, achieved by combining AGREE’s
formal verification with generative Al explanations, establishes a rigorous,
verification-aware repair loop. Central to this process, AGREE-Dog invokes
AGREE externally via API calls to ensure that all proposed repairs strictly
adhere to system-wide consistency and soundness criteria.

This verification-integrated approach not only acts as a safeguard against
unsound or logically inconsistent model modifications but also enhances the
quality of data fed into the generative model. By proactively filtering invalid

AGREE-Dog Copilot 127

Algorithm 1: AGREE-Dog Interactive Copilot Prompt Construction and
Counterexample Handling

Input: AADL Model Files, Counterexample File (optional), System Requirements (optional)
Output: Prompt for GPT-based AGREE-Dog Copilot, Actionable Repair Suggestions
Initialization:
Load command-line arguments: working directory, start file, counterexample, requirements file;
Load OpenAI API key;
Initialize logging system;
Main Procedure:
if requirement file provided then

‘ Load and include requirements in prompt context;
else

L Set requirements context to "No sys_ requirement file provided";

Prompt Construction:
Read top-level AADL file from provided workspace;
Parse import chain and extract relevant AADL files (avoid standard libraries);
if counterexzample provided (CLI or file) then
L Load counterexample into context;

else
Search for recent counterexamples:
— Check command-line provided counterexample path first.
— If unavailable, parse agree.log for failing contracts.
— Match failing contracts with available counterexample XML /text files.
— Extract and format counterexample(s) for inclusion.

Construct comprehensive prompt with:

System Requirements (if available)

AADL Model Content

Counterexample(s) Explanation

Explicit instructions for GPT (repair suggestions within AADL syntax)

hwN e

Interaction and Feedback Loop (via Dash UI):

while copilot session active do

Receive additional user input (optional);

Combine with the current prompt context (if any);
Submit prompt to GPT-40/GPT model via OpenAl API;
Retrieve response:

— Explain verification failures clearly
— Suggest repairs in AADL syntax, respecting requirements

Present GPT response to user;
Log interaction and update metrics (latency, tokens used, etc.);
if user applies modifications then
Extract AADL repair suggestions from GPT response;
Safely overwrite the original AADL model file;
Notify user of successful update or handle exceptions;

Quality Assessment and Logging:

Automatically record metrics (timestamps, token use, latency);
Store interaction logs for future analysis and fine-tuning;
Shutdown Procedure:

On user request, terminate the copilot session gracefully;

suggestions, AGREE-Dog reduces the overall token volume required, thereby
significantly improving LLM latency and maintaining model reliability and trust-
worthiness. Such integration distinctly differentiates AGREE-Dog from purely
neural LLM approaches, which inherently lack logical soundness checks and may
erroneously group logically distinct, yet superficially similar elements [9,15,16].

128 A. Tahat et al.

Additionally, the semantic diffing mechanism embedded in AGREE-Dog
detects relevant model changes precisely across iterative repair cycles, facilitat-
ing faster convergence to formally valid solutions. This integrated neuro-symbolic
loop thus effectively bridges generative Al capabilities with rigorous MBSE based
formal verification.

4.5 Traceability, Logging, and Continuous Refinement

The extensive logging within AGREE-Dog serves dual purposes. First, it facil-
itates real-time diagnostics, enabling rapid identification of effective conversa-
tional interactions and successful repair strategies. As illustrated in the AGREE-
Dog user interface (Fig. 3), key performance indicators—including AGREE valid-
ity status, token count, system and human return time, and LLM latency—are
prominently displayed, providing users immediate feedback to gauge interaction
effectiveness.

Second, the detailed logs support ongoing system refinement by highlight-
ing conversational patterns consistently associated with high-quality, formally
valid repairs. This capability directly informs the metrics employed for evalu-
ating AGREE-Dog’s performance, as further detailed in Sect.6 and Sect.5. By
analyzing logged interaction timelines and human response metrics, AGREE-
Dog identifies optimal repair strategies, promotes knowledge reuse, and reduces
manual intervention, significantly enhancing both short-term repair efficiency
and long-term knowledge retention.

5 Evaluation Metrics

This section introduces the core metrics used to evaluate AGREE-Dog’s per-
formance. We organize them into two complementary categories: structural (or
spatial) metrics, which quantify the shape and volume of interaction, and tempo-
ral metrics, which capture responsiveness and turnaround time. Together, these
metrics enable a holistic assessment of automation, effort, and cost.

5.1 Structural Metrics

Structural metrics quantify how the repair process unfolds—how many interac-
tions occurred, how much human input was required, and how much computa-
tional effort was expended.

Total Token Count (TTC). This metric captures the total number of tokens
exchanged during a repair conversation, including both human-authored tokens
and those generated by AGREE-Dog—either by the LLM or by the system’s
prompt constructor:

TTC = Human Tokens + AGREE-Dog System Tokens (1)

TTC serves as a proxy for computational and financial cost (e.g., token-based
billing), independent of who authored the tokens. However, it does not by itself
distinguish the extent of human involvement.

AGREE-Dog Copilot 129
Human Input Ratio (HpR). This metric measures the proportion of human-
authored tokens relative to the total token count:

_ Human-Authored Tokens
" Total Tokens in Conversation

HpR (2)

A lower HpR suggests higher automation, with the system contributing more
heavily to the conversation. When considered with TTC, this helps differentiate
brief, efficient sessions from those with more human effort or verbosity.

Number of Repair Cycles (Nyc). This metric counts the number of conver-
sational cycles required to reach a valid system state:

Ngrc = Number of Repair Cycles Until Validity (3)

Each cycle begins with a start_file_read message and ends with a
validity_status: valid confirmation. Together, Nrc, HpR, and TTC form
a triplet that reflects the intensity, automation level, and computational cost of
the repair process.

Repair Success Rate (RSR). This metric measures how often AGREE-Dog
succeeds in exactly Nrc cycles:

Number of Tests Solved in Ngg Cycles @)
Total Number of Tests

Cumulative Repair Success Rate (RSRac.). This cumulative variant cap-
tures the percentage of tests solved within a given number of cycles:

RSR(Ngrc) =

Number of Tests Solved in < Ngrc Cycles (5)
Total Number of Tests

These success rate metrics extend the basic structural measures to account

for convergence and consistency. They are operationalized in Sect. 6, where we
analyze repair outcomes and cycle distributions (see Fig. 6).

RSRaCC (NRC) =

5.2 Temporal Metrics

While structural metrics describe what happened during the interaction, tem-
poral metrics quantify how long it took—enabling assessments grounded in real-
world engineering effort and user experience.

Wall-Clock Time (WCT). The total elapsed time from the first user input
to final validation. WCT serves as a practical proxy for engineering effort and
turnaround time. Shorter durations may reflect both efficient execution and the
usefulness of AGREE-Dog’s guidance.

WCT also conveys a notion of Repair Speed—how many valid tasks are
completed per unit of time. For example, in our evaluation (Sect.6), the mean

130 A. Tahat et al.

WCT per valid cycle was 2min and 9s, with a median of 1 min and 39s.

LLM Latency. The average LLM response time per repair cycle. Lower latency
improves interactivity and helps maintain user focus, especially in iterative or
multi-step sessions.

Next, we define a dependent metric based on the previous temporal measure-
ments to estimate the human return time.

Human Return Time (HRT). This metric estimates the time required for
a human to return to a task and make cognitively informed decisions necessary
to reach validity during the interaction. It is calculated as the total wall-clock
time minus the time AGREE-Dog spends in CPU execution and large language
model (LLM) processing. Formally:

HRT = Wall-Clock Time — CPU Time — LLM Response Time (6)

AGREE-Dog Statistical
User-System Analysis and
Interactions Visualization

Conversation
History
Management

Recording

Metrics At Model-Repair

Log Files

tomatically

Fig. 5. AGREE-Dog Conversation Quality Assessment Workflow (CQAW). The work-
flow tracks structural metrics from conversation histories and temporal metrics from
copilot logs, leveraging timestamps to measure user and LLM response latencies.
Finally, metrics are analyzed and visualized using AGREE-Dog’s statistical utility.

5.3 Composite Score: Structural and Temporal Dimensions

To facilitate comprehensive evaluation, we interpret AGREE-Dog’s performance
using a composite score that integrates both structural and temporal dimensions:

(Nrc, HpR, TTC, Wall-Clock Time, LLM Response Latency, CPU Time) (7)

This composite vector captures not only the automation level and concise-
ness of each repair session but also temporal efficiency. For instance, sessions
with identical token counts and automation levels might still differ significantly
in usability due to variations in latency or total duration. Additionally, this for-
mulation supports the calculation of derived metrics, such as Human Return
Time (HRT) (Eq.6) and Repair Success Rate (RSR).

AGREE-Dog Copilot 131

By combining structural and temporal perspectives, the composite score pro-
vides nuanced insights into humandASsystem interaction dynamics, balancing
token efficiency with practical engineering outcomes.

6 Experimental Evaluation
6.1 Evaluation Setup and Fault Injection Protocol

Using the Conversation Quality Assessment Workflow (CQAW, Fig.5), we sys-
tematically tracked structural and temporal metrics to comprehensively evalu-
ate AGREE-Dog. Our experiments involved thirteen fault-injected test scenar-
ios based on an AADL-based Car model. Each scenario featured dynamically
evolving artifacts—including AADL source files, natural-language requirements,
counterexample traces, AGREE log files, and LLM-generated diagnostics—
culminating in approximately 32,100 tokens across all scenarios. On average,
scenarios began with around 400 lines of AADL and log content, fewer than
100 lines of counterexample traces, and less than 100 lines of natural-language
inputs.

Table 1. Summary of Structural and Temporal Metrics for AGREE-Dog Evaluation

Metric ‘Result

Structural Metrics

System Validity 100% achieved for all test scenarios

Repair Success Rate (RSR) |11/13 (84.6%) in 1 cycle; 1/13 in 2 cycles; 1/13 in 3 cycles
Human Input Ratio (HpR) |< 0.1% of total tokens

AGREE-Dog Generated Input/> 99.9% of total tokens

Token Use (per test suite) 4.8k, 5.5k, 22k tokens

Temporal Metrics
Wall-Clock Time (WCT) Mean: 2:09 min; Median: 1:39 min
LLM Latency (per cycle) Mean: 22s; Range: 4-33s

Faults targeted three safety-critical subsystems (Top-Level Control, Steering,
and Transmission), triggering 16 repair cycles. Injected faults covered typical
behavioral and contract-level violations—ranging from incorrect assumptions,
logic errors, and range violations to faulty assignments and temporal inconsis-
tencies. Repairs were accepted only after passing AGREE’s formal verification
and manual user confirmation via AGREE-Dog’s insert command, ensuring
both correctness and soundness.

Evaluation Metrics. Table1 summarizes AGREE-Dog’s structural and tem-
poral performance metrics (defined in Sect. 5). Figure 6 visualizes repair conver-
gence across the scenarios.

Next, we summarize the key insights obtained from our evaluation, supported
by quantitative data presented in Table 1 and visualized in Fig. 6.

132 A. Tahat et al.

Repair Success Rate (RSR)

84.6%

Number of Senarios

7.4% 7.4%

1 cycle 2 cycles 3 cycles
Number of Cycles to Reach Validity

Fig. 6. Repair cycles required by AGREE-Dog to achieve system-wide validity.

6.2 Key Results

This evaluation demonstrates the feasibility of integrating generative AI (GenAl)
with formal verification in Model-Based Systems Engineering (MBSE). By com-
bining large language model reasoning with AGREE-based validation in OSATE,
AGREE-Dog delivers verifiable repairs with minimal human effort.

1.

Rapid Convergence with Reduced Human Intervention Frequency:
AGREE-Dog resolved approximately 85% (11 out of 13) of the test cases
within a single cycle, while the remaining cases required two or three cycles
(approximately 7.5% each). This demonstrates swift convergence and signifi-
cantly reduces the frequency of user interventions needed across diverse fault
scenarios.

High Automation with Minimal Human Effort: Estiamted by (HpR)
metric, Human-generated content constituted less than 0.1% of the overall
tokens, with AGREE-Dog autonomously generating more than 99.9 % via its
integrated prompt construction mechanism and language model. Combined
with the rapid convergence rate noted previously, this outcome highlights
AGREE-Dog’s capability to effectively automate model repairs, significantly
reducing manual input relative to the extensive verification contexts encoun-
tered.

Efficiency and Reduced Human Return Time (HRT):

AGREE-Dog demonstrated significant computational and cognitive efficiency
throughout the evaluation. Internal computational overhead consistently
remained below one second per operation, complementing an average LLM
latency of approximately 22s per cycle. While the median overall wall-clock
time (WCT) was about 1min and 39s the average human response time
(HRT) was approximately 1 min and 3s. This average, however, was notably
skewed by two outlier cases; in fact, 85 % of scenarios achieved total resolu-
tion (WCT) in under 45s—including LLM latency—limiting human analy-
sis and decision-making time to less than 23s per scenario in 11 out of 13

AGREE-Dog Copilot 133

cases. Compared to traditional manual verification approaches, which typi-
cally require hours or days, AGREE-Dog’s structured guidance and intuitive
natural-language explanations significantly reduced human cognitive effort
estimated by (HRT) metric and the overall interaction duration (WCT).

7 Conclusions and Future Work

To enhance the explainability and usability of AGREE-generated counterex-
amples, we developed AGREE-Dog, the first open-source conversational copilot
specifically integrating neuro-symbolic methods with AGREE’s formal verifi-
cation tools within the OSATE environment. AGREE-Dog produces intuitive,
natural-language explanations for complex counterexamples, significantly reduc-
ing human effort and cognitive load required for formal model repairs. Our exper-
imental evaluation demonstrates AGREE-Dog’s feasibility and effectiveness at
realistic MBSE scales—handling scenarios spanning tens of thousands of tokens
without notable performance degradation. These initial results provide a promis-
ing evidence for the practical utility and scalability of neuro-symbolic methods,
highlighting significant potential for broader educational and industrial adop-
tion. AGREE-Dog is publicly accessible on GitHub.

Despite these encouraging outcomes, several avenues for future improve-
ment and exploration remain. We intend to continue evaluating AGREE-Dog
on increasingly sophisticated and complex system models and formal specifica-
tions.

Furthermore, ongoing developments in large-context language models (e.g.,
GPT-4.1’s 1-million-token context window) offer substantial opportunities to
explore more autonomous decision-making frameworks, including reinforcement
learning-driven judge-router-worker agentic architectures. Such systems could
dynamically and autonomously select optimal repair strategies, further reduc-
ing manual intervention. Additionally, extending AGREE-Dog’s capabilities to
emerging modeling standards, such as SysML v2 [10], represents a key future
goal.

Lastly, the integration of our evaluation workflow into INSPECTA’s DevOps
Assurance Dashboard will facilitate continuous monitoring, displaying metrics
such as model modifications, counterexample handling efficiency, and AGREE
usage statistics. This integration aims to quantify the tangible benefits of more
explainable counterexamples, driving targeted improvements in usability and
overall user experience.

We look forward to exploring these directions in future work and reporting
further advancements toward integrating neuro-symbolic verification approaches
in MBSE.

Acknowledgments. This work was funded by DARPA contract FA8750-24-9-1000.
The views, opinions and/or findings expressed are those of the authors and should
not be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

134 A. Tahat et al.

Algorithm 2: Memory Management and Prompt Optimization in
AGREE-Dog
Input : User input, conversation state, AADL model repository, optional
requirements file
Output: Optimized prompt, updated conversation history
Initialize Short-Term, Temporary, and Long-Term memories;
Identify and load recently updated files:
— Identify recently updated files in repository.
— Load only these updated files into Temporary memory.
— Cache filenames and timestamps.

Integrate system-level requirements (if provided);
Construct prompt from:

— Updated files from Temporary memory.
— User input and interaction history.
— System-level requirements.

Ensure prompt size within token limits (truncate oldest entries if necessary);
Generate response from AGREE-Dog model;
Update Short-Term memory with latest interaction;
if User selects Save Conversation then
L Save conversation to Long-Term memory;

if User selects Commit to Git then
Stage conversation and updated files;
Commit and push to remote repository;

return optimized prompt, updated conversation history;

A Appendix

— Initial Axle specification:®

guarantee G_axle_1 "roll limiter":
\begin{verbatim}
guarantee G_axle_1 "roll limiter":
if (Agree_Nodes::abs(Target_Tire_Direction.val) > 0.20
and Speed.val > 45.0)
then
Actual_Tire_Direction.val
else
Actual_Tire_Direction.val = Target_Tire_Direction.val;

0.20

— Fault injection: Introduced by changing the guarantee threshold from 0.20
to 0.10:

5 The full model is available at: https://github.com/loonwerks/AgreeDog/blob/main/
uploaded _dir/car/packages/Steering.aadl.

https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl
https://github.com/loonwerks/AgreeDog/blob/main/uploaded_dir/car/packages/Steering.aadl

AGREE-Dog Copilot 135

Fig.7. AGREE-Dog backend function call graph illustrating automated
DevOps/ProofOps orchestration. Nodes represent key operations, while edges
indicate dependencies and data flows between components.

if (Agree_Nodes::abs(Target_Tire_Direction.val) > 0.10
and Speed.val > 45.0)

— Counterexample detection: AGREE immediately detected a counterex-
ample, indicating the specification and implementation mismatch due to the
altered guarantee.

— AGREE-Dog first iteration: The copilot quickly located the faulty thresh-
old and corrected it back to 0.20, but inadvertently removed the else state-
ment from the guarantee:

else
-- Otherwise pass the request straight through
Actual _Tire_Direction.val = Target_Tire_Direction.val;

— Second iteration (Diff mechanism): A subsequent AGREE run revealed
another counterexample caused by the missing else statement. The user then
guided AGREE-Dog to utilize the built-in diff mechanism, comparing the
new and old files. After clearly identifying the missing else clause, the user
instructed the copilot explicitly to reinsert it, resolving the issue completely.

— Resolution and insights: After the second iteration, the corrected model
passed formal verification successfully. This example emphasizes the critical
role of symbolic verification and human feedback in conjunction with neuro-
symbolic copilots. It highlights the risks associated with relying solely on
neural approaches without rigorous symbolic validation.

136 A. Tahat et al.
References
1. AWS News Blog: Prevent factual errors from Illm hallucinations with mathe-

10.

11.

12.

13.

14.

15.

16.

17.

18.

matically sound automated reasoning checks (preview). AWS Blog Post(2024),
Accessed 11 May 2025

Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compo-
sitional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 126-140. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28891-3 13

Davis, J.A., et al.: Study on the barriers to the industrial adoption of formal
methods. In: Pecheur, C., Dierkes, M. (eds.) Formal Methods for Industrial Critical
Systems, pp. 63—77. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/
978-3-642-41010-9 5

Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley Profes-
sional, 1st edn. (2012)

First, E., Rabe, M.N.; Ringer, T., Brun, Y.: Baldur: Whole-proof generation and
repair with large language models. arXiv preprint arXiv:2303.04910 (2023)
INSPECTA Project: Inspecta. https://loonwerks.com/projects/inspecta.html,
Accessed: 19 May 2025

Kaleeswaran, A.P., Nordmann, A., Vogel, T., Grunske, L.: A systematic literature
review on counterexample explanation. Inform. Softw. Technol. 145 (2022)
Megill, N., Wheeler, D.A.: Metamath: A computer language for mathematical
proofs (2019)

Mirzadeh, S.I., Alizadeh, K., Shahrokhi, H., Tuzel, O., Bengio, S., Farajtabar,
M.: GSM-symbolic: understanding the limitations of mathematical reasoning in
large language models. In: The Thirteenth International Conference on Learning
Representations (2025). https://openreview.net/forum?id=AjXkRZIvjB

Object Management Group (OMG): Systems modeling language (sysml) v2 spec-
ification. (2024), Accessed 19 May 2025

Pei, K., Bieber, D., Shi, K., et al.: Can large language models reason about program
invariants? Proceedings of the 40th International Conference on Machine Learning
(July 2023)

Polu, S., Sutskever, I.: Generative language modeling for automated theorem prov-
ing. arXiv preprint arXiv:2009.03393 (2020)

RTCA: DO-333: Formal Methods Supplement to DO-178C and DO-278A (Decem-
ber 2011)

Sun, C., Sheng, Y., Padon, O., Barrett, C.: Clover: Closed-loop verifiable code
generation. arXiv preprint arXiv:2310.17807 (2024)

Tahat, A., Hardin, D., Petz, A., Alexander, P.: Metrics for large language model
generated proofs in a high-assurance application domain. In: High Confidence Soft-
ware and Systems Conference (HCSS 2024) (2024)

Tahat, A., Hardin, D., Petz, A., Alexander, P.: Proof repair utilizing large language
models: A case study on the copland remote attestation proofbase. In: Proceed-
ings of International Symposium On Leveraging Applications of Formal Methods
Verification and Validation (AISolA) (2024)

Wu, H., Barrett, C., Narodytska, N.: Lemur: Integrating large language models in
automated program verification. arXiv preprint arXiv:2310.04870 (2023)

Zhang, S., First, E., Ringer, T.: Getting more out of large language models for
proofs. arXiv preprint arXiv:2305.04369 (2023)

https://aws.amazon.com/blogs/aws/prevent-factual-errors-from-llm-hallucinations-with-mathematically-sound-automated-reasoning-checks-preview/
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-642-41010-9_5
http://arxiv.org/abs/2303.04910
https://loonwerks.com/projects/inspecta.html
https://loonwerks.com/projects/inspecta.html
https://loonwerks.com/projects/inspecta.html
https://loonwerks.com/projects/inspecta.html
https://loonwerks.com/projects/inspecta.html
https://loonwerks.com/projects/inspecta.html
https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=AjXkRZIvjB
http://arxiv.org/abs/2009.03393
http://arxiv.org/abs/2310.17807
http://arxiv.org/abs/2310.04870
http://arxiv.org/abs/2305.04369

AGREE-Dog Copilot 137

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by,/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Responsible and Trusted Al:
An Interdisciplinary Perspective

q

Check for
updates

Responsible and Trusted Al:
An Interdisciplinary Perspective (2025)

Sophie Kerstan! ®) @, Kevin Baum??> ®, Thorsten Helfer>*, Markus Langer1’3,
Eva Schmidt>® @, Andreas Sesing-Wagenpfeil’, and Timo Speith™3

1 Department of Psychology, University of Freiburg, 79085 Freiburg Im Breisgau, Germany
sophie.kerstan@psychologie.uni-freiburg.de
2 German Research Center for Artificial Intelligence (DFKI), Saarland Informatics Campus,
66123 Saarbriicken, Germany
3 Algoright e.V., 66121 Saarbriicken, Germany
4 CISPA Helmholtz Center for Information Security, 66123 Saarbriicken, Germany
5 Department of Philosophy and Political Science, TU Dortmund, 44227 Dortmund, Germany
6 Lamarr Institute for Machine Learning and Artificial Intelligence, 44227 Dortmund, Germany
7 Institute for Legal Informatics, Saarland University, 66123 Saarbriicken, Germany
8 Department of Philosophy, University of Bayreuth, 95448 Bayreuth, Germany

Abstract. As Artificial Intelligence (AI) continues to shape individual lives, insti-
tutional processes, and societal structures, ensuring its responsible and trusted
development has become a critical imperative. However, meeting this impera-
tive is far from straightforward. Al systems frequently lack transparency and are
embedded in environments where the distribution of responsibility and account-
ability is unclear, normative standards are disputed, and system behavior is unpre-
dictable. The Responsible and Trusted Al track at AISoLA 2025 addresses these
and similar challenges by fostering interdisciplinary collaboration across philos-
ophy, law, psychology, economics, sociology, political science, and informatics.
This introduction outlines the motivation for the track, emphasizing the sociotech-
nical embeddedness of Al and the need for approaches that go beyond technical
performance to consider questions related to trust and responsibility. It highlights
three core themes explored in this year’s contributions: democratic legitimation
and normative alignment, legal compliance and human oversight, and runtime
safety in high-risk contexts. Together, these contributions underscore the impor-
tance of interdisciplinary discussions to navigate normative ambiguity, regula-
tory uncertainty, and behavioral unpredictability in Al systems. The track aims to
advance dialogue and collaboration that support the development and deployment
of Al systems that are not only effective but are also designed and implemented
responsibly and can be trusted.

1 Introduction

Artificial Intelligence (AI) systems are becoming increasingly integrated into everyday
life. They support decision-making in healthcare, influence access to financial services,
shape how public infrastructure is managed, and affect what we consume and learn. In
short, Al plays a structuring role in how individuals, institutions, and societies operate.

© The Author(s) 2026
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 141-145, 2026.
https://doi.org/10.1007/978-3-032-07132-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_9&domain=pdf
http://orcid.org/0000-0002-0805-6485
http://orcid.org/0000-0002-6893-573X
http://orcid.org/0000-0002-7305-7126
https://doi.org/10.1007/978-3-032-07132-3\sb {9}

142 S. Kerstan et al.

This widespread integration brings considerable opportunities. Al can support sci-
entific discovery, help detect diseases earlier, tailor services to individual needs and
enhance productivity. However, it also introduces complex challenges and risks. These
include, among others, a lack of transparency in automated decisions, blurred lines
of accountability, unclear avenues for meaningful oversight, and the risk of reinforc-
ing social inequalities. Increasingly, Al systems act in ways that are hard to explain,
challenging to audit, and difficult to contest.

To harness the opportunities of Al while managing its challenges and risks, we
must ensure that their development, deployment and use is guided by ethical reflec-
tion, legal scrutiny, and social awareness. The concept of responsible and trusted Al
encapsulates these requirements. It encompasses a wide range of topics and issues span-
ning ethical reflection on the values that shape Al behavior, mechanisms for meaningful
human oversight, technical assurances around safety and reliability, and institutional
frameworks capable of fostering accountability and public trust. This means that, in the
context of Al, responsibility and trust are not just attributes of technological systems.
Rather, they are social and societal processes that require alignment between technical
capabilities, normative expectations, and behavioral and regulatory realities. Tackling
AT’s challenges and mitigating its risks thus requires more than technical ingenuity—it
demands a genuinely interdisciplinary effort. For instance, a system’s ability to operate
reliably under uncertain conditions is closely tied to how its behavior is interpreted,
how oversight is structured, and how legitimacy is established in the face of competing
values.

Following the successful introduction of similar tracks at AISoL.A 2023 and 2024,
the Responsible and Trusted Al track at AISoLA 2025 is grounded in this interdisci-
plinary imperative. It brings together scholars from philosophy, law, psychology, eco-
nomics, sociology, political science, and informatics to address ethical, societal, and
governance-related questions raised by the development, implementation, and regulation
of Al systems.

In this introduction, we first expand on the motivation for this year’s track and the
need for interdisciplinary discourse in approaching responsible and trusted Al. We then
introduce three papers that address three complementary core issues of this theme: Al
alignment and democratic legitimation, human oversight and regulatory compliance,
and runtime safety monitoring in high-risk contexts.

2 The Imperative for Responsible and Trusted Al

The increasing relevance of Al systems across diverse sectors prompts foundational
questions: What objectives should these systems pursue? Who decides what is appropri-
ate or fair? How can we ensure that Al behavior is not only efficient, but justifiable? And
how do we maintain humans’ ability to oversee Al systems, even when these systems
operate largely autonomously and in ways that are difficult to understand and anticipate?
These questions arise because Al systems do not operate in a vacuum. They interact
with, and are shaped by, the normative, social, and legal contexts in which they operate. At
the same time, they influence how decisions are framed, which options are made available
or prioritized, and how outcomes are distributed. In doing so, they often encode—
explicitly or implicitly—assumptions about what is relevant, fair, or desirable.

Responsible and Trusted Al 143

Considering this sociotechnical embeddedness, responsibility means ensuring that
Al systems not only perform tasks effectively but also do so in ways that are ethically
defensible, attuned to the social contexts in which they operate, and legally compliant.
Trust, in turn, is often invoked as a requirement for successful Al adoption. Yet trust
is neither inherently positive nor always justified. It can be misplaced, leading to the
acceptance of outcomes that ought to be challenged. To mitigate this risk and design
and implement Al in ways that make it worthy of trust, we must examine and better
understand the conditions under which trust arises, why it is granted and how we can
ensure that it is granted justifiably.

Responsible and trusted Al thus requires attention not only to performance metrics or
system reliability, but also to issues of justification, accountability, user understanding,
and empowerment. Accordingly, responsible and trusted Al must be approached as a
sociotechnical phenomenon that transcends disciplinary boundaries.

3 The Need for Interdisciplinary Approaches

As previously exemplified, addressing Al-related challenges and risks cannot be done
within the bounds of a single discipline. Each field brings critical insights that are indis-
pensable but incomplete on their own. Philosophy helps articulate the moral and con-
ceptual frameworks that guide alignment and legitimacy. Law provides the structure for
rights, obligations, and remedies. Psychology contributes knowledge on human cogni-
tion, trust formation, and interaction design. Economics brings tools to analyze incen-
tives, resource allocation, and decision environments. Sociology sheds light on the soci-
etal dynamics, institutional norms, and structural inequalities that shape and are shaped
by Al Political science examines legitimacy, democratic participation, and governance
structures. Informatics and engineering supply the technical means to implement and
evaluate Al systems.

Importantly, many challenges in responsible and trusted Al exist at the boundaries
of these disciplines. For example, the question of whether a user is coerced by an Al
system depends on philosophical definitions and psychological evidence. Similarly, the
effectiveness of human oversight mechanisms hinges not just on their formal presence,
but on their legal enforceability, and organizational context.

Interdisciplinary collaboration is therefore essential not only to combine knowledge,
but to clarify assumptions, identify blind spots, and align goals across disciplines. This
track encourages precisely these kinds of exchanges.

4 Core Interdisciplinary Themes in This Year’s Track

A unifying thread running through this year’s contributions is the challenge of navigat-
ing ambiguity and uncertainty in the sociotechnical embedding of Al systems. As Al
technologies increasingly interact with humans and operate in complex and high-stakes
environments, the question is not merely whether these systems function as intended,
but how normative, legal, and empirical standards can constrain their behavior, influence
their implementation, and guide their design. The three papers approach this question
from different disciplinary perspectives but share a focus on situations where questions

144 S. Kerstan et al.

around human freedom, oversight, and safety arise due to ambiguity and uncertainty in
normative standards, regulatory frameworks, and Al behavior.

One dimension of this problem space concerns the justification of normative con-
straints in Al behavior. In their contribution, Steingriiber and Baum critically examine
democratic approaches to Al alignment that seek to legitimize normative constraints by
grounding them in affected stakeholders’ preferences rather than expert judgment [1].
They systematically analyze both instrumental and non-instrumental justifications for
democratic alignment, focusing particularly on the argument that democratic processes
can prevent illegitimate coercion through Al systems. Their analysis reveals that the
coercion-prevention justification faces significant challenges: whether Al-imposed con-
straints actually undermining user freedom depends not only on how those constraints
were determined, but crucially on background conditions such as the availability of
alternative systems and the practical burdens users face in accessing them. By exposing
the deep normative and epistemic uncertainties involved in defining what Al systems
should do, their work highlights the fundamental difficulty of legitimizing Al behavior
without relying on contestable theoretical assumptions, ultimately suggesting that hybrid
approaches combining expert knowledge with democratic input may be necessary.

Another focal point is the operationalization of legal and institutional requirements
for human oversight. In their paper, Langer, Lazar, and Baum explore how oversight obli-
gations under the EU Al Act can be meaningfully tested [2]. They argue that checklist-
based assessments risk superficial compliance and fail to capture the real-world com-
plexity of human-Al interaction. Instead, they propose hybrid approaches that combine
standardization with empirical evaluation, grounded in psychology and human-computer
interaction. Their work shows how ambiguity in legal language and variance across appli-
cation contexts generate regulatory uncertainty. They stress that effective oversight is
dependent on interdisciplinary insight into human behavior, organizational constraints,
and system design.

The final contribution turns to technical assurances under behavioral uncertainty,
specifically in the domain of autonomous vehicles. Ehlers and colleagues develop a run-
time monitoring technique that uses activation pattern analysis and statistical guarantees
to detect when a perception system operates outside its training domain [3]. Rooted in
the ISO 21448 SOTTF standard, their method provides interpretable and narrowly scoped
safeguards for Al behavior in open-ended, safety-critical contexts. Their work addresses
an aspect of responsible Al that is distinct but closely related to those addressed by the
previously outlined contributions. Specifically, it considers how to build confidence in
system behavior when full formal specification is impossible, and how such mechanisms
can support safety, oversight, and post-deployment trust.

Together, these contributions illustrate that responsible and trusted Al depends on
interdisciplinary strategies to cope with ambiguity and uncertainty. Indirectly, they also
reflect a shared understanding that trust in Al systems should be ensured not only through
technical robustness, but through transparency in how values are embedded, how legal
compliance is ensured, and how Al system behavior is monitored over time.

Responsible and Trusted Al 145
S5 Conclusion

This year’s Responsible and Trusted Al track contributes to a broader understanding of
how Al systems can be aligned with ethical and democratic values, embedded within
legal structures, and equipped with safeguards that account for uncertainty and risk.
The three papers in this chapter each exemplify this integration. Steingriiber and Baum
provide a normative lens on alignment and coercion [1]. Langer et al. explore how to
test regulatory compliance with human oversight requirements [2]. Ehlers et al. offer a
technical method for ensuring runtime safety [3].

By drawing on philosophy, law, psychology, economics, sociology, political sci-
ence, and informatics, the contributions move beyond disciplinary silos and toward an
integrated understanding of responsible and trusted Al This interdisciplinary nature is
central to the track’s value.

As we prepare for the in-person discussions at AISoLA 2025, we look forward
to engaging with these contributions and the perspectives they elicit. We hope that
the work presented in this track will spark critical debate, foster new interdisciplinary
collaborations, and contribute meaningfully to the ongoing effort to shape Al systems
that are reliable and worthy of trust in meaningful ways.

References

1. Steingriiber, A., Baum, K.: Justifications for Democratizing Al Alignment and Their Prospects
(in this volume)

2. Langer, M., Lazar, V., Baum, K.: On the Complexities of Testing for Compliance with Human
Oversight Requirements in Al Regulation (in this volume)

3. Ehlers, R., Kamdoum Deameni, L., Maslov, N.: Supporting a SOTIF Safety Argument by
Activation Pattern Monitoring with Statistical Guarantees (in this volume)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

1

The AI alignment problem consists of two sub-problems: a technical problem
and a normative problem [9, p. 412-13]. The technical problem is a question of
machine ethics and requires us to find algorithmic implementations of normative
constraints that effectively regulate the behaviour of Al systems. The normative,
primarily philosophical problem, on the other hand, requires us to determine
what these constraints should be. In this paper we will be concerned with the
normative problem and potential justifications for solving it democratically.
There are two main ways to determine the content of an AI’s normative con-
straints. The first is to take a top-down approach and determine the content

Justifications for Democratizing Al
Alignment and Their Prospects

Andre Steingriiber®™) and Kevin Baum

German Research Center for Artificial Intelligence (DFKI),
66123 Saarbiicken, Germany
{andre.steingrueber,kevin.baum}@dfki.de

Abstract. The Al alignment problem comprises both technical and
normative dimensions. While technical solutions focus on implementing
normative constraints in Al systems, the normative problem concerns
determining what these constraints should be. This paper examines jus-
tifications for democratic approaches to the normative problem—where
affected stakeholders determine Al alignment—as opposed to epistocratic
approaches that defer to normative experts. We analyze both instrumen-
tal justifications (democratic approaches produce better outcomes) and
non-instrumental justifications (democratic approaches prevent illegiti-
mate authority or coercion). We argue that normative and metanorma-
tive uncertainty create a justificatory gap that democratic approaches
aim to fill through political rather than theoretical justification. How-
ever, we identify significant challenges for democratic approaches, par-
ticularly regarding the prevention of illegitimate coercion through AI
alignment. Our analysis suggests that neither purely epistocratic nor
purely democratic approaches may be sufficient on their own, pointing
toward hybrid frameworks that combine expert judgment with participa-
tory input alongside institutional safeguards against AI monopolization.

Keywords: Al Alignment - Legitimacy - Democratic Justification -
Public Reason - Value Imposition

Democratic Approaches to the Normative Problem
of AT Alignment

© The Author(s) 2026
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 146-159, 2026.
https://doi.org/10.1007/978-3-032-07132-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_10&domain=pdf
https://doi.org/10.1007/978-3-032-07132-3_10

Justifications for Democratizing AT Alignment and Their Prospects 147

of normative constraints by consulting normative philosophical theories or by
deferring to people identified as normative experts, see [1,3,4,14,19]. Secondly,
one can take a bottom-up approach, letting relevant stakeholders—for instance,
all those affected by an AI’s alignment (directly or indirectly)—determine the
content of its normative constraints, see [2,7,10,13,22|. Call the former “episto-
cratic approaches” and the latter “democratic approaches”.!

It is important to note, however, that democratic approaches may be demo-
cratic in name only, as they may fail to be genuinely democratic depending on
the procedure being used to determine the normative constraints from the input
of the people. Some procedures, if done correctly, are apt to be democratic—e.g.,
voting, sortition, or deliberation—others, like a knockout tournament in bowling
or a debating contest, much less so.

Schuster and Kilov [21] argue that current proposals for democratic
approaches all invoke procedures that fail to be democratic. However, we believe
this is based on a misunderstanding. Let us clarify, because this misunderstand-
ing comes up often in the alignment literature: The approaches that Schuster
and Kilov discuss are crowdsourcing normative judgement, reinforcement learn-
ing from human feedback (RLHF), and constitutional AI. Yet, these three tech-
niques should not be understood as solutions to the normative problem, but
rather as solutions to the technical problem.? In the case of crowdsourcing and
RLHF, normative constraints are given implicitly in the form of a large num-
ber of individual human normative judgements [7,13], and with constitutional
Al normative constraints are given explicitly in the form of a list of principles
formulated in natural language [4]. The primary aim of these techniques is to
implement normative constraints in Al systems and not to determine what the
normative constraints should be.

Crowdsourcing, RLHF and constitutional Al are all compatible both with
epistocratic and democratic approaches to the normative problem. Although
constitutional AI may sound like it particularly lends itself to epistocratic
approaches, and crowdsourcing and RLHF like they are especially suited for

! Pluralistic approaches would combine epistocratic and democratic elements to deter-
mine an AI’s normative constraints. As we will explain in the next section, the task
of producing normative constraints for an Al can be broken up into three steps: For
every scenario, we need to (i) identify the relevant reasons, (ii) measure the relative
strength of these reasons, and (iii) aggregate the relevant reasons to form overall
deontic verdicts that formulate the AI’s normative constraints. Approaching these
three steps in a pluralistic fashion, one can partition the set of scenarios and han-
dle one subset epistocratically and the other subset democratically, or one can let
epistocratic approaches take care of certain steps of the procedure and let demo-
cratic approaches do the remaining steps; or, alternatively, one can involve both
epistocratic and democratic approaches in a single step, e.g., identifying the rele-
vant reasons by eliciting people’s judgements on the matter and then letting experts
add missing reasons they consider important, or letting them veto against particular
reasons.

2 See, e.g., also [9, p. 414], [12, pp. 12-13], and [15, p. 2672], for instances where RLHF
and constitutional Al are treated as solutions to the normative problem.

148 A. Steingriiber and K. Baum

democratic approaches, there is no such association for any of these techniques.
In general, it is possible to determine the list of principles necessary for consti-
tutional AI both via an epistocratic or a democratic approach; either we consult
normative theories to derive a constitution, or we ask all affected people to deter-
mine one. Likewise for RLHF and crowdsourcing, what the input data should be
can either be decided by normative experts, or by the affected public. We must
be careful to distinguish between the procedures invoked to solve the normative
problem and techniques used to tackle the technical problem.

Having made this clarification, let’s return to the two approaches to the
normative problem. Some authors argue that democratic approaches, if they are
actually democratic, should be favoured over epistocratic ones because they allow
us to avoid putatively morally undesirable aspects of epistocratic approaches
[10,12,13]. Here are some moral reasons that are claimed to disfavour epistocratic
approaches:

‘The lack of a broad, inclusive, and democratic process for determining
these values can lead to Al systems that disproportionately reflect the
interests of specific groups, exacerbating existing inequalities and failing
to serve the broader public good.” [12, p. 11]

‘(W]e follow a bottom-up approach to Delphi for an important ethical
concern: |[...| implementing the top-down approach would force scientists
to impose their own value choices and principles in the system they build,
which is not an appropriate social role for scientists alone.’ [13, p. 7]

‘[E]fforts to align Al systems with a given moral schema may lead to unjust
value imposition or even domination.” [10, p. 3]

We can group the putative reasons speaking against epistocratic approaches
into two categories: Instrumental reasons against epistocratic approaches (and
for democratic approaches), and non-instrumental reasons against epistocratic
approaches (and for democratic approaches).® If epistocratic approaches were
to “exacerbate inequalities” or “fail to serve the public good”, they would be
instrumentally worse than democratic approaches, because adopting them would
have morally worse consequences. If, on the other hand, pursuing epistocratic
approaches were to constitute “value imposition” or “domination”, they would
be non-instrumentally worse, because they are inherently, i.e., independently of
their consequences, morally objectionable.

Proponents of democratic approaches are not always explicit about what
kind of justification it is that speaks in favour of their theory, and they don’t
always consider what theoretical resources epistocratic approaches can draw on
that may undercut the justifications that are supposed to support democratic
approaches. Therefore, in this paper, we want to unpack the reasons that may be

3 Compare [8] for this taxonomy of justifications for democratic practices.

Justifications for Democratizing AT Alignment and Their Prospects 149

used to justify democratic approaches and estimate how promising they are. We
want to suggest to the proponents of democratic approaches the most promising
justificatory avenues, but also point out what questions they have to answer to
pave those paths. Mainly, we will focus on non-instrumental reasons, but we
will also briefly touch upon the instrumental ones. Two possibilities for what
might be inherently bad about epistocratic approaches will be discussed: (i)
They give some people illegitimate authority over other people. (ii) Through
them some people will be illegitimately coerced by others. We will argue that the
latter is the more promising argumentative route for proponents of democratic
approaches. However, whether it succeeds in justifying democratic approaches
over epistocratic approaches depends on at least four things: that users of an
AT can really be coerced through the AI’s alignment; that, if users of an Al can
really be coerced through the Al’s alignment, this would be illegitimate; that
democratic approaches can produce a democratic justification that would justify
the coercion and thereby prevent illegitimate coercion; and that epistocratic
approaches cannot prevent the illegitimate coercion.

However, before we turn to discuss instrumental justifications and subse-
quently non-instrumental justifications, we first want to consider a crucial moti-
vation and enabling condition for democratic approaches: reasonable normative
disagreement.

2 Normative Disagreement Leaves a Justificatory Gap

The observation that reasonable people can deeply disagree when it comes to
normative matters is one motivation for proponents of the democratic approach
to pursue their project [2,10,12,13]. It is worthwhile to consider how exactly that
is so0, to get clearer on what the aims and obstacles of democratic approaches are.
The short version is this: The empirical fact of normative (and metanormative)
disagreement makes us normatively (and metanormatively) uncertain, i.e., we
are unsure what the right thing to do is (and whether there even is a uniquely
right thing to do). This uncertainty eliminates what would be a straightforward
justification for any potentially illegitimate state of affairs. If we were norma-
tively (and metanormatively) certain, we could simply show that the normative
constraints we are implementing are (objectively) correct. Since such a theoret-
ical justification is unavailable, this makes it possible that, by means of an AI’s
normative constraints, people are given illegitimate authority over other people,
or that some people are being illegitimately coerced by others. Let us consider
this in more detail.

We are facing the normative problem under both normative and metanor-
mative uncertainty. That is, neither are we certain what the normative ground
truth is, nor are we certain whether there even is a normative ground truth and
how to find out about it.

We are normatively uncertain because we can observe that reasonable peo-
ple can widely diverge in their judgements about what reasons are relevant for

150 A. Steingriiber and K. Baum

a decision and how their strength compares to each other, and because dif-
ferent normative theories, like theories of normative ethics, can have very dif-
ferent answers to these questions [17]. That is, our normative uncertainty is
the rational response to observed intersubjective and intertheoretical normative
disagreement.

Likewise for metanormative disagreement. It is the rational response to
observed intersubjective and intertheoretic metanormative disagreement. We are
metanormatively uncertain in at least three respects: We are uncertain whether
there is a normative ground truth, i.e., whether there are robustly mind-indepen-
dent normative reasons. We are uncertain whether this normative ground truth
is unique, i.e., whether normative reasons hold absolutely or only relative to
some frame of reference. And we are uncertain whether and how we can have
knowledge about this normative ground truth, i.e., whether there is a reliable
method to identify, measure and aggregate normative reasons.

A short digression: We are deliberately speaking about normative and
metanormative uncertainty in general and not just about moral and metaeth-
ical uncertainty in particular, because an AI’s normative constraints are not
exhausted by moral constraints. We don’t just want to know what is morally
permissible, impermissible or obligatory to do for an Al system, we want to
know what is overall permissible, impermissible or obligatory [5]. To properly
align Al systems they have to be sensitive to normative domains other than the
moral domain. Consider, e.g., that some things that are morally permissible are
not legally permissible, like taking food from the supermarket’s bin, or they are
not socially permissible, like talking much too loud in public spaces. To know
what we and what an AI should do—Are we allowed to stand in the middle of
the escalator blocking other people from walking past us?—we have to consider
all relevant reasons from different relevant normative domains and weigh them
against each other in order to arrive at an all-things-considered overall deontic
verdict and not just an all-things-considered moral deontic verdict. To solve the
normative problem, we thus have to: (i) identify which practical reasons from
which normative domain are relevant for a decision, (ii) measure the strength of
the relevant reasons, and (iii) aggregate the relevant reasons according to their
strength to form an all-things-considered overall reason that grounds an overall
deontic verdict.

The fact that we are seeking overall reasons that play the role of overall nor-
mative constraints exacerbates our normative and metanormative uncertainty.
For one, if we consider non-moral normative domains in isolation there may be
even less common ground in people’s judgements or conversely even more nor-
mative disagreement. Just consider the diverse social norms or legal norms that
people take to hold. Which of them should we choose to align AI with? But
what’s more, since the reasons from different normative domains interact, this
introduces an entirely new dimension of normative/metanormative uncertainty.
How exactly do moral reasons, reasons of politeness, and legal reasons interact,
for example? Some may tend to let legal and politeness reasons be able to take
precedence over moral reasons, others will think that moral reasons always over-

Justifications for Democratizing AT Alignment and Their Prospects 151

ride reasons from other domains. All these uncertainties can accrue and reflect in
our uncertainty about the all-things-considered overall normative reasons that,
in the end, are supposed to figure as normative constraints for an Al system.

Now, how exactly do normative and metanormative uncertainty motivate
democratic approaches? They do so insofar as they are necessary conditions for
the possibility of the illegitimacy of authority or coercion. If we were certain that
some objective all-things-considered overall reason holds, then this would give us
a justification to do as the reason demands. If we had decisive evidence (whatever
that would look like) for the truth of a certain practical normative judgement—
One ought to ¢p—then we would have all-things-considered theoretical reason
to believe that one ought to ¢ which in turn would constitute a contributory
practical reason to ¢. Normative certainty would therefore put us in a position
to justify and thereby legitimise authority or coercion; we would be able to
show that some demands are not discretionary but well founded. Conversely,
this is how normative and metanormative uncertainty is a necessary condition
for unjustified authority or coercion: it eliminates a sure theoretical justification
that could always legitimise potentially illegitimate authority or coercion; when
we don’t know what the normative ground truth is, or we don’t know how to
find out what it is, or are not even sure that there is one, then we can’t appeal
to it to safely justify a potentially illegitimate state of affairs.

Normative and metanormative uncertainty thus leave us with a justificatory
gap, one that democratic approaches are motivated to fill. The democratic aim
is to compensate for the missing theoretical justification of an AI’s normative
constraints with a political justification. The idea being, if all people affected by
an AT’s normative constraints get to have a say in what these constraints are, this
legitimises any potentially illegitimate authority or coercion by means of an Al’s
normative constraints. Preventing illegitimate authority or coercion is supposed
to non-instrumentally justify democratic solutions to the normative problem.
Before we consider non-instrumental justifications, however, let us briefly say a
few words about instrumental justifications for democratic approaches.

3 Instrumental Justifications for Democratic Alignment

Proponents of democratic approaches may justify their preferred solution to the
normative problem by arguing that it, in some sense, works better than epis-
tocratic approaches; employing democratic approaches has better consequences
than not doing so. We want to mention two ways in which this might be the
case, and on which defenders of the democratic approach could focus.*

First, one may try to argue that if we let the people that are going to be
affected by the behaviour of an aligned Al decide how it ought to be aligned,
then the aligned behaviour of the AI will be better for the people. The idea is
that people know best what is good for them, or at least better than normative
experts and their theories. Thus, if we let them decide, instead of only the
experts, they will be better off than they otherwise would have been.

* For a general description of both of them, see [8].

152 A. Steingriiber and K. Baum

But there is still quite some argumentative work left to be done for this
justification to really get off the ground. First of all, proponents of the democratic
approach need to decide whether they want to read the counterfactual “If people
have a say in what the normative constraints of an Al are, they would be better
off (with respect to the AI’s behaviour towards them) than they otherwise would
have been” generically or specifically. Do they aim for a general justification of
democratic approaches and want to roughly say “Typically, if people have a say
in what the normative constraints of an AI are, they would be better off (with
respect to the AIl’s behaviour towards them) than they otherwise would have
been”? Or do they aim for a case-by-case justification and want to say “In this
case, if people have a say in what the normative constraints of an Al are, they
would be better off (with respect to the AI’s behaviour towards them) than
they otherwise would have been” The latter justification is weaker but also
comparatively easier to come by.

Under both readings, democratic approaches still have to argue that people
would actually be better off than they otherwise would have been. It does not
seem implausible to suppose, e.g., that normative experts are subject to biases
that reflect in their normative verdicts and that consequently would disadvan-
tage certain groups of persons. If these people get to have a say, then, most
likely, they will not disadvantage themselves, i.e., plausibly they would be bet-
ter off. However, proponents of democratic approaches should be careful to take
epistocratic approaches seriously and not to argue against straw men of them.
It might be a real risk that epistocratic approaches arrive at normative con-
straints that are biased, but to criticise epistocratic approaches this risk has to
be estimated, and additionally, democratic approaches need to show that they
do not run this risk. Further, to argue successfully that it is better for people if
they can democratically participate, proponents of democratic approaches have
to react to objections that invoke cases where people seem to vote against their
best interest; think Brexit, Trump, the climate crisis, etc.

Another possible instrumental justification we want to mention relates to the
idea of the wisdom of crowds. The claim would be that, although epistocratic
approaches consult the judgement of normative experts, democratic approaches
are better at producing more correct results. This is an epistemic justification
because the point is supposed to be that (under certain assumptions) democratic
processes are better at tracking the normative facts. Typically, Condorcet’s Jury
Theorem is being used to argue for this point. Roughly, it states that the prob-
ability that a majority of voters choose the correct option approaches 1 as the
number of voters increases. That is, the bigger the electorate, the more reliable
the result of their vote [11].

However, Condorcet’s Jury Theorem relies on unrealistic assumptions. For
it to hold, one needs to assume that voters’ judgements are probabilistically
independent of each other, and that voters are generally competent, evidenced
by the fact that they are more likely to vote for the correct option than for the
incorrect option. In real-life cases these assumptions are almost never satisfied.
The assumptions can, however, be weakened to make the jury theorem applicable

Justifications for Democratizing AT Alignment and Their Prospects 153

for real cases [11]. Even then though proponents of the democratic approach have
to show that the weakened assumptions hold in the case of Al alignment they
are considering. And they need to respond to objections, two of which we want
to allude to. First, democrats have to make sure that epistocrats cannot also
make use of the jury theorem, with the difference being that only normative
experts comprise the electorate. And second, to employ the jury theorem one
has to assume that there is an objective fact about the matter that is being
voted on. In the present context of the normative problem the matter would be
normative, and to assume that there is an objective fact about these matters
would be a metanormative assumption. Such an assumption might be in tension
with the assumption of metanormative uncertainty democratic approaches are
motivated by.

Proponents of democratic approaches can argue for their proposed solution
to the normative problem by resorting to these and other instrumental jus-
tifications. To reap the justificatory fruits they have to show that the adver-
tised consequences—prudentially or epistemically better decisions—are actually
achievable in the case of Al alignment, and they have to show that epistocratic
approaches do not have access to the same benefits in different ways. Another
way to justify democratic approaches is through non-instrumental justifications.
We will turn to them now.

4 Non-instrumental Justifications for Democratic
Alignment

Above, we have quoted Gabriel and Keeling who worry that epistocratic
approaches may lead to illegitimate “value imposition or even domination” [10,
p. 3|. This exemplifies a non-instrumental objection to epistocratic approaches.
More detailed, the worry is that, through an AI’s alignment, people can be indi-
rectly subjected to normative standards they do not subscribe to themselves.
Since epistocratic approaches cannot close the justificatory gap left by norma-
tive and metanormative uncertainty, they cannot justify such subjection which
makes it illegitimate. For example, if your personal Al assistant does not let
you buy meat because that would be against its normative constraints, you are
being subjected to normative standards to which you do not subscribe. Or, if a
generative Al is uncompliant with your request to gender an email draft because
its alignment forbids it to do so, other people’s values are being imposed on you.

But what exactly do we mean by “value imposition”, “domination”, and “sub-
jection”? Two possible interpretations are that they either refer to authority over
the users of A, or to the coercion of users of Al. A person with (justified) author-
ity can issue commands or make claims that generate real reasons for action for
other people [18]. For example, within certain confines, teachers are typically
taken to have (justified) authority over their pupils. And a person equipped
with coercive power can restrict other people’s freedom to act as they desire.
For example, within certain confines, policemen are typically taken to wield
coercive power.

154 A. Steingriiber and K. Baum

What is at issue in the case of contentious AI alignment? Arguably, it is
coercive power rather than authority. The question of authority would only arise
if an Al system were to be deployed in a way where it issues commands or makes
claims on people. The question of coercive power, on the other hand, arises as
soon as an Al system restricts people’s freedom to act as they desire. This can
happen rather quickly. If a self-driving vehicle does not let you drive above a
certain speed limit because of its normative constraints, then it doesn’t command
you to drive slower, it simply makes you so. And if a large language model does
not let you write your text in gender-sensitive language, it makes no claim on
you to not do so, it just doesn’t use gender-sensitive language. We could multiply
examples but the point is: Both the question of an AT’s authority and its coercive
power can be pertinent but we take the threat of coercion to be the more pressing
and focus on it in the following.’

Proponents of democratic approaches have to argue for four things in order
to be able to claim that preventing illegitimate coercion non-instrumentally jus-
tifies democratic approaches as compared to epistocratic approaches: They have
to argue (i) that it is indeed possible for people to be coerced through an AT’s
normative constraints, (ii) that such coercion, if it is possible, would be unjus-
tified, (iii) that democratic approaches can produce a democratic justification
that would justify the coercion and thereby prevent illegitimate coercion, and
(iv) that epistocratic approaches cannot prevent the illegitimate coercion. Let
us make a few remarks concerning each proposition.

Is it possible for the users of an Al to be coerced through the AI’s normative
constraints? Two quick clarifications to begin with: First, if an AI’s alignment is
coercive, the primary coercer is not the Al itself but the person or organisation
that defines the normative constraints. The Al is only the means of (potential)
coercion. A bit more verbosely we are asking: Do the people who define the
normative constraints of an Al coerce the users of the AT if (some of) the chosen
normative constraints are not endorsed by the users? Second, and following from
this, if users are being coerced, then only indirectly so. The primary (potential)
coercers are the people who decide how the Al is aligned, but they don’t compel
the users directly; rather, their coercion is mediated by the AI. That an Al’s
alignment can only be indirectly coercive does not speak against it really being
coercive. If you can be coerced by having someone limit what you can do with
your bank account—think, abusive relationship—you can also be coerced by
having someone limit what you can do with an Al

More needs to be said to convincingly argue that users of an Al can be
indirectly coerced by its normative constraints. Let’s assume that an argument
can be given for that. What would have thereby been shown is that it is in
principle possible for an AT’s alignment to be coercive. What has not been shown
is that there is an actual case where it actually is coercive. For an AI’s alignment
to be actually coercive would not just depend on the relationship between the

5 See also Ripstein [20], who argues that, in general, the function of democratic justi-
fication is to legitimise coercion rather than authority.

Justifications for Democratizing AT Alignment and Their Prospects 155

users and the aligned AI but crucially also on certain background conditions.®

We said that a person equipped with coercive power can restrict other people’s
freedom to act as they desire. Conversely this means if a person is free to act as
she pleases then she is not being coerced. This matters for the case of normatively
coercive Al in the following way: Say, for normative reasons, your Al assistant
is noncompliant with your request to buy meat. Are you being coerced by this?
Well, it depends on whether you are still free to buy meat, maybe with the help
of another, differently aligned AI, or simply on your own. You wouldn’t be free
to do so, for example, if using the specific Al assistant were the de facto or de
jure standard for going shopping. You would then not be able to buy meat, at
least not without great opportunity cost. But if that is not the case, and without
much ado you can just go and use another AI or buy the meat yourself, then
you are not being coerced by the normatively noncompliant AI. You are no more
being coerced than you would be when you can only buy vegan products at your
local supermarket, or when you have to wear “gender appropriate clothes™—mno
skirts for men, no trousers for women, etc.—at your bowling club. The users of
the A, the supermarket, or the bowling club may be compelled to use them in
a certain way, but this is not coercion as long as they can freely go elsewhere to
use another Al, another supermarket, another bowling club.

The next point proponents of democratic approaches would have to argue
for, in order to strengthen the non-instrumental justification in favour of their
solution, is that coercion by means of an Al’s alignment, if it is possible, would be
unjustified. Two important ingredients for such an argument would presumably
be the prima facie wrongness of coercion, and the fact that we are normatively
and metanormatively uncertain. The first ingredient, the prima facie wrongness
of coercion, may be used to establish that prima facie coercion stands in need of
justification, much like murder or marital infidelity would. And the second ingre-
dient, normative and metanormative uncertainty, may be used to establish that
no straightforward theoretical justification for the AI’s normative constraints is
available, and consequently also not for the coercion by means of them. Thus,
other things being equal, coercion by means of an AI’s alignment would be
unjustified.

Observe however, that there is a tension between the two ingredients. If we
are normatively uncertain, how can we purchase the assumption that coercion
is prima facie wrong?” We are deliberately only talking about a tension and
not a contradiction because proponents of democratic approaches may be able
to argue that the two ingredients are consistent with each other. For example,
because our normative uncertainty is not evenly distributed over all normative
propositions; about some we are more certain, about some we are less certain.
Coercion being prima facie wrong perhaps is of the first kind, while overall we
are still normatively uncertain. Whether in this way or differently, if proponents

5 In a similar context Kolodny [16, pp. 97-101] calls these background conditions “tem-
pering factors”.
" We thank two reviewers for raising that point.

156 A. Steingriiber and K. Baum

of the democratic approach buy into both ingredients then they have to address
the apparent tension between them.

Another point that needs to be addressed is if there are other justifications
for (the choice of) certain normative constraints, apart from a sure theoreti-
cal justification, or the democratic justification that democratic approaches aim
for. If there is another possible justification, then coercion through AI align-
ment would be justifiable and proponents of democratic approaches would lose
the non-instrumental reason in favour of their solution. Candidates for such a
justification are decision rules that are explicitly designed to deal with norma-
tive uncertainty. For example, MacAskill, Bykvist and Ord [17] defend a rule
called “maximise expected choiceworthiness”. Analogous to descriptive uncer-
tainty they treat normative disagreement as data to approximate the correct
normative constraints by assigning weights to different normative hypotheses,
where different normative hypotheses determine the choiceworthiness of an out-
come. Maximise expected choiceworthiness then demands to choose the action
that leads to the outcome with the highest sum of weighted choiceworthiness.
Although we cannot have a sure theoretical justification for any particular nor-
mative constraint, we may be able to have a practical justification to choose
certain constraints over others by means of decision rules like this that deal with
normative uncertainty. The practical justification we get from any such rules
inherits its strength from the strength of the theoretical justification for the par-
ticular decision rule, meaning that proponents of democratic approaches either
have to critique the theoretical justification for the rule, or they have to argue
that the practical justification for choosing certain normative constraints we get
from rules like maximise expected choiceworthiness is in general of the wrong
kind.

The next point proponents of democratic approaches would have to argue for,
in order to strengthen the coercion-based non-instrumental justification in favour
of their solution, is that they can actually produce a democratic justification that
is suited to justify potential coercion. A number of objections can be levelled
against this, and would therefore have to be addressed by proponents of the
democratic approach. Let us mention just two.

Any democratic approach will have to stipulate what the rules of their demo-
cratic game should be. Do people vote, if so, what’s the voting procedure? Do
people deliberate, if so, what are the rules of discourse? And so on. No matter
what the rules end up being, for them to be recognisably democratic, they have
to make normative assumptions.® For example, a vote is free and equal, or a
deliberation is inclusive and non-coercive. The question however is, what jus-
tifies these normative assumptions? Some of the people affected by an aligned
Al may be able to reasonably reject them. But if the democratic process is not
properly justified, its output will also not be. This, like all the other points, is not
a knockdown argument, rather, it is intended to raise an issue that proponents
of democratic approaches have to somehow address—namely, the bootstrapping

8 For a detailed discussion of this point in context of Al ethics in general, see [6].

Justifications for Democratizing AT Alignment and Their Prospects 157

problem of how to justify the very democratic procedures that are supposed to
provide justification.

The same applies for this second objection. Given the deep normative dis-
agreement between people, one may worry that whatever all people affected
by an AT’s alignment can agree on will only be the ‘lowest common normative
denominator’, and much too little to really prevent the threat of illegitimate
coercion. The objection here is not that no democratic justification is achieved
through the democratic approach, it is that the justification is too minimal to do
the job it is supposed to do. The minimal output from democratic approaches
has to be beefed up, in order for Al systems to really be effectively regulated,
but then the threat of illegitimate coercion re-enters again.

The last point proponents of democratic approaches would have to argue
for, in order to strengthen the coercion-based non-instrumental justification in
favour of their solution, as opposed to the epistocratic solution, is that episto-
cratic approaches do not have the resources to confront the threat of illegitimate
coercion through an AI’s alignment. By now we have seen that it is not so clear
that this is the case. Let us mention again just two reasons for thinking that
epistocratic approaches can get a handle on the problem of illegitimate coercion.

We have said that the possibility of coercion depends on certain background
conditions. For example, if the use of some Al system is the de facto or de jure
standard, then people may not be free to do what they desire to do without
using the Al, and then they are potentially being coerced by the AI’s alignment.
Conversely this means, if we make sure that for all purposes there are always
multiple Als with different alignments available, then people are free to choose
the Al that does not coerce them. And in general, if we control the background
conditions that are necessary for coercion, we, and proponents of epistocratic
approaches in particular, can prevent the threat of illegitimate coercion by pre-
venting the threat of coercion.

Additionally, epistocratic approaches may be able to justify their choice of
normative constraints and thereby justify potential coercion by means of them.
To this end, they can invoke decision rules like maximise expected choiceworthi-
ness, that explicitly take normative uncertainty into account. If an epistocratic
approach is able to appropriately justify its solution of the normative problem,
and is able to transfer this justification to the coercion through an AI’s align-
ment, then this would undercut the non-instrumental justification from coercion
for democratic approaches.

5 Conclusion

In this paper, we have motivated democratic approaches to the normative ques-
tion of AT alignment. We have discussed instrumental and non-instrumental ways
of justifying them, focussing in particular on the non-instrumental justification
from coercion. We have argued that proponents of democratic approaches have to
argue for four propositions in order for this justification to be successful: (i) It is
possible for people to be coerced through an AT’s normative constraints. (ii) Such

158 A. Steingriiber and K. Baum

coercion, if it is possible, would be unjustified. (iii) Democratic approaches can
produce a democratic justification that would justify the coercion and thereby
prevent illegitimate coercion. (iv) Epistocratic approaches cannot prevent the
illegitimate coercion.

We have argued that none of the four propositions is without problems and
comes for free. In particular, we have argued that there are independent ways to
prevent people from being coerced by means of an AI’s normative constraints.
Namely, we can control the background necessary conditions for coercion, e.g.,
we can prevent any one Al becoming the de facto or de jure standard for certain
purposes such that people are dependent on it. If epistocratic approaches can
draw on this possibility, as democratic approaches can as well, then they might
be able to take the sting out of the non-instrumental justification from coercion
in favour of democratic approaches.

Our analysis suggests that neither purely epistocratic nor purely democratic
approaches to the normative problem may be sufficient on their own. The chal-
lenges we have identified do not eliminate the potential value of democratic par-
ticipation, but rather point towards more nuanced, context-sensitive solutions.
At least for some application contexts, hybrid frameworks that combine expert
judgement with targeted participatory input, alongside appropriate institutional
safeguards that mitigate AI monopolies and in particular Al systems that are
too uniformly aligned, may therefore be the most suitable paths for address-
ing the normative dimensions of Al alignment. The critical question for future
research is determining when and how to optimally combine epistocratic and
democratic elements—specifying which aspects of the normative problem bene-
fit from expert knowledge versus democratic input, and under what institutional
conditions such hybrid approaches can succeed.

Acknowledgments. We thank two anonymous reviewers and Elijah Millgram for
their feedback on versions of this paper. This work is partially funded by DFG grant
389792660 as part of TRR 248 — CPEC, see https://perspicuous-computing.science,
by the German Federal Ministry of Education and Research (BMBF) as part of the
project “MAC-MERLin” (Grant Agreement No. 01IW24007), and from the European
Regional Development Fund (ERDF) as well as the German Federal State of Saarland
within the scope of the project (To)CERTAIN.

Disclosure of Interests. The authors have no competing interests to declare.

References

1. Askell, A., et al.: A general language assistant as a laboratory for alignment (2021).
arXiv:2112.00861

2. Awad, E., et al.: The moral machine experiment. Nature 563, 59-64 (2018)

3. Bai, Y., et al.: Training a Helpful and harmless assistant with reinforcement learn-
ing from human feedback (2022). arXiv:2204.05862

4. Bai, Y., et al.: Constitutional AI: harmlessness from AI feedback (2022).
arXiv:2212.08073

https://perspicuous-computing.science
https://perspicuous-computing.science
https://perspicuous-computing.science
https://perspicuous-computing.science
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2212.08073

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

Justifications for Democratizing AT Alignment and Their Prospects 159

Baum, K.: Disentangling AI alignment: a structured taxonomy beyond safety and

ethics. In: Steffen, B., (ed.) AISoLA 2024 Post-Proceedings. Lecture Notes in Com-

puter Science. Springer, Cham (forthcoming). arXiv preprint arXiv:2506.06286
(2025)

Baum, S.D.: Social choice ethics in artificial intelligence. Al Soc. 35(1), 165-176
(2017). https://doi.org/10.1007/s00146-017-0760-1

Christiano, P. F., et al.: Deep reinforcement learning from human preferences. Adv.

Neural Info. Process. Syst. 30 (2017)

Christiano, T., Bajaj, S.: Democracy. The Stanford Encyclopedia of Philosophy
(2024). https://plato.stanford.edu/archives/sum2024 /entries/democracy/
Gabriel, L.: Artificial intelligence, values, and alignment. Mind. Mach. 2(5), 411—

437 (2020)

Gabriel, 1., Keeling, G.: A Matter of Principle? Al alignment as the fair treatment

of claims, Philosophical Studies (2025)

Goodin, R.E., Spiekermann, K.: An Epistemic Theory of Democracy. Oxford Uni-

versity Press, Oxford (2018)

Huang, L.T., Papyshev, G., Wong, J.K.: Democratizing Al alignment: from author-
itarian to democratic AI ethics. AI Ethics 5, 11-18 (2025)

Jiang, L. et al.: Can machines learn morality? The Delphi experiment (2022).
arXiv:2110.07574

Kim, T.W., Hooker, J., Donaldson, T.: Taking principles seriously: a hybrid app-
roach to value alignment in artificial intelligence. J. Artif. Intell. Res. 70, 871-890
2021

%(neer), M., Viehoff, J.: The hard problem of AI alignment: value forks in moral

judgment. In: FAccT ’25: Proceedings of the 2025 ACM Conference on Fairness,
Accountability, and Transparency, pp. 2671-2681 (2025)

Kolodny, N.: The Pecking Order. Harvard University Press, Cambridge, MA (2023)
MacAskill, W., Bykvist, K., Ord, T.: Moral Uncertainty. Oxford University Press,
Oxford (2020)

Raz, J.: The Morality of Freedom. Oxford University Press, Oxford (1986)
Riesen, E., Boespflug, M.: Aligning with ideal values: a proposal for anchoring Al
in moral expertise. Al Ethics 5, 3727-3741 (2025)

Ripstein, A.: Philos. Public Aff. Auth. Coercion 32(1), 2-35 (2004)

Schuster, N.; Kilov, D.: Moral disagreement and the limits of Al value alignment:
a dual challenge of epistemic justification and political legitimacy. AI Soc. (2025)
Ziegler, D., et al.: Fine-tuning language models from human preferences (2019) .
arXiv:1909.08593

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2506.06286
https://doi.org/10.1007/s00146-017-0760-1
https://doi.org/10.1007/s00146-017-0760-1
https://doi.org/10.1007/s00146-017-0760-1
https://doi.org/10.1007/s00146-017-0760-1
https://doi.org/10.1007/s00146-017-0760-1
https://doi.org/10.1007/s00146-017-0760-1
https://doi.org/10.1007/s00146-017-0760-1
https://doi.org/10.1007/s00146-017-0760-1
https://doi.org/10.1007/s00146-017-0760-1
https://plato.stanford.edu/archives/sum2024/entries/democracy/
https://plato.stanford.edu/archives/sum2024/entries/democracy/
https://plato.stanford.edu/archives/sum2024/entries/democracy/
https://plato.stanford.edu/archives/sum2024/entries/democracy/
https://plato.stanford.edu/archives/sum2024/entries/democracy/
https://plato.stanford.edu/archives/sum2024/entries/democracy/
https://plato.stanford.edu/archives/sum2024/entries/democracy/
https://plato.stanford.edu/archives/sum2024/entries/democracy/
http://arxiv.org/abs/2110.07574
http://arxiv.org/abs/1909.08593
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

On the Complexities of Testing for Compliance
with Human Oversight Requirements in Al
Regulation

Markus Langer1 =) , Veronika Lazarz, and Kevin Baum?

1 Department of Psychology, University of Freiburg, Freiburg, Germany
markus.langer@psychologie.uni-freiburg.de
2 German Federal Office for Information Security, Bonn, Germany
3 German Research Center for Artificial Intelligence, Responsible Al and Machine Ethics
Research Group, Saarbriicken, Germany
kevin.baum@dfki.de

Abstract. Human oversight requirements are a core component of the European
Al Act and in Al governance. In this paper, we highlight key challenges in testing
for compliance with these requirements. A central difficulty lies in balancing sim-
ple, but potentially ineffective checklist-based approaches with resource-intensive
and context-sensitive empirical testing of the effectiveness of human oversight of
Al Questions regarding when to update compliance testing, the context-dependent
nature of human oversight requirements, and difficult-to-operationalize standards
further complicate compliance testing. We argue that these challenges illustrate
broader challenges in the future of sociotechnical Al governance, i.e. a future
that shifts from ensuring “good” technological products to “good” sociotechnical
systems.

Keywords: Human Oversight - Auditing - AI Act - Regulation

1 Introduction

Testing for compliance with emerging legislation regarding Artificial Intelligence (AI)
such as the European Al Act will be a major task for providers and deployers of Al-
based systems when these systems are used for high-risk tasks [1, 2]. Some aspects of
this compliance testing will resemble traditional auditing processes for classical software
systems and other technologies governed by product safety regulations [1]. For instance,
verifying whether Al systems have adequate documentation, ensuring cybersecurity,
testing for data protection, and evaluating the accuracy of system outputs could all be
achieved by defining standards and quality thresholds. Eventually, compliance testing
may also draw on established best practices, such as checklist-based approaches to assess
whether implemented processes and technologies comply with standards set by norming
bodies. Of course, new testing procedures will also be required to assess robustness and
fairness according to various criteria, particularly with regard to the immediate safety
of (semi-)autonomous, agentic systems. New testing procedures and benchmarks will
emerge, and services and infrastructure will build around them.

© The Author(s) 2026
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 160-169, 2026.
https://doi.org/10.1007/978-3-032-07132-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_11&domain=pdf
http://orcid.org/0000-0002-8165-1803
http://orcid.org/0000-0002-6893-573X
https://doi.org/10.1007/978-3-032-07132-3\sb {11}

On the Complexities of Testing for Compliance 161

However, the AI Act and other emerging Al regulations introduce requirements that
go beyond the technical characteristics of the system and requirements that traditional
compliance testing methods cannot easily address. One such key requirement is effective
human oversight, as outlined in Article 14 of the Al Act [3, 4]. Various countries,
including Argentina, Bahrain, Uganda, and South Africa, already enforce similar but
less specific requirements for human involvement in Al-driven decision-making [3].
Effective human oversight in the sense of the Al Act includes specific sub-requirements,
such as ensuring that human oversight personnel remain aware of their tendency to
over-rely on outputs produced by a high-risk Al system (e.g., automation bias; [5]) and
that they properly understand the relevant capacities and limitations of the high-risk Al
system to adequately monitor its operation (see Article 14 Al Act).

In this paper we claim that a key challenge of testing for compliance with human
oversight requirements lies in balancing simple but potentially ineffective checklist-
based approaches with resource-intensive and context-sensitive empirical testing of the
effectiveness of human oversight of Al. Questions regarding when to update compliance
testing, the context-dependent nature of human oversight requirements, and difficult-to-
operationalize standards for when oversight is truly “effective” further complicate com-
pliance testing [6]. The intricate sociotechnical interplay of technical aspects, individual
factors, and environmental conditions that determine human oversight effectiveness adds
additional complexity [8]. In fact, research suggests that human oversight requirements
are particularly difficult to operationalize and test (see e.g., [7]). We argue that all of this
illustrates broader challenges in the future of sociotechnical Al governance, i.e. a future
that shifts from ensuring “good” technological products (e.g., safe products) to “good”
sociotechnical systems (e.g., safe human-Al interactions in a specific context).

2 The Possible Future of Testing for Compliance with Human
Oversight Requirements

The European Al Act establishes requirements for Al systems classified as “high-risk,”
including those used in (critical areas of) education, public administration, hiring, credit
scoring, and medicine. One such requirement is human oversight, as specified in Article
14 (see Appendix A for the full text). It states that “human oversight shall aim to prevent
or minimise the risks to health, safety or fundamental rights that may emerge when a
high-risk Al system is used in accordance with its intended purpose or under condi-
tions of reasonably foreseeable misuse, in particular where such risks persist despite
the application of other requirements set out in this Section.” These other requirements,
detailed in Articles 9—13 and Article 15 of the AI Act, cover risk management, data gov-
ernance, technical documentation, record keeping, transparency, accuracy, robustness,
and cybersecurity.

Some key requirements of Article 14 include that human oversight personnel should
be able to understand the capacities and limitations of Al systems and correctly inter-
pret outputs. They should remain aware of their tendency for automation bias (which,
according to the Al Act, refers to overtrust in Al outputs; but see [8] for the complexities
and dynamics of concepts associated with trust), decide when not to use Al outputs, and
override decisions when necessary. They are also supposed to intervene or interrupt a

162 M. Langer et al.

system, for example, using a stop button or a similar mechanism to halt the system in a
safe state.

Standards and norms are currently being developed to guide compliance testing
for human oversight requirements, including the Trustworthiness Framework developed
by CEN/CENELEC and the ISO/IEC CD 42105. Part of these standards and norms
will be informed by Article 14 of the Al Act and broader international governance
perspectives on human oversight. While still in development, we anticipate a future of
compliance testing for human oversight along a continuum between simple, checklist-
based approaches and empirical testing of the effectiveness of human oversight in specific
contexts.

A checklist approach would follow the model of existing compliance testing methods
[1, 7] translating Article 14 requirements into assessable items for internal or external
auditors. Checklist items inspired by Article 14 might include: “The human oversight
person has been made aware of their tendency to overtrust outputs of Al-based systems”,
“The human oversight person has received adequate training that enables them to under-
stand the capacities and limitations of the Al-based system they oversee”, or “There is
a stop button that allows the human oversight person to intervene in the operation of
the Al-based system”. Clearly, this list is not exhaustive and the requirements would
need to be refined. While such checklists could provide a straightforward compliance
mechanism, they may fall short of the Al Act’s broader goal of effectively mitigating Al-
related risks [1]. Moreover, developing an exhaustive checklist will be challenging. The
examples above are direct translations from Article 14. Clearly there can be an infinite
number of requirements with varying degrees of specificity, for instance, requirements
concerning the person who will be the human oversight person (e.g., specific skills they
must possess), or work design of human oversight jobs (e.g., specific maximum durations
for human oversight tasks) [9].

Empirical testing of the effectiveness of human oversight in specific contexts could
address some of the limitations of checklists. This approach would require testing the
actual effectiveness of human oversight in high-risk contexts and empirically demon-
strating compliance with Al regulatory requirements [3]. It could involve studies where
human oversight personnel monitor Al systems for a set duration, assessing whether they
detect erroneous or problematic outputs, intervene in system operation when necessary,
and accurately override inadequate Al-generated decisions. Another option could involve
comparing different human oversight designs to determine which best meets regulatory
requirements. Human oversight design, as outlined by Sterz et al. [9] is a sociotech-
nical design question. It encompasses technical aspects (e.g., optimizing explainability
approaches to support and amplify human oversight), individual factors (e.g., selecting
and training oversight personnel), and environmental conditions (e.g., job design and
working conditions). For instance, a controlled experiment could test various explain-
ability approaches to assess which most effectively supports oversight [10—12]. The main
advantage of this approach is that it provides empirical evidence on the effectiveness of
human oversight and how to optimize it.

On the Complexities of Testing for Compliance 163

However, this empirical approach demands significant resources for planning, con-
ducting, analyzing, and interpreting studies. Empirical testing for the effectiveness of
human oversight requires expertise with empirical methods and user studies. Researchers
and practitioners, for instance, with a background in human-computer interaction or psy-
chology will be required to adequately conduct empirical testing, interpreting the results,
and providing recommendations on how to optimize human oversight design. Moreover,
transferring insights across contexts may be challenging, as oversight effectiveness can
be — and typically is expected to be — highly context-sensitive. In general, empirical
testing scales poorly because it requires effort to conduct empirical testing with actual
human oversight personnel, and because it likely cannot be shifted from the token or
deployment level to the type or provider licensing level due to the context-sensitivity of
effective human oversight and the resulting loss of transferability of insights. Further-
more, deriving reliable conclusions often requires multiple studies (e.g., on the effects of
different explainability approaches), suggesting that oversight requirements may need
to be informed by high-quality meta-analyses that synthesize findings across studies for
broader applicability.

Checklist-based approaches and empirical approaches are clearly not the only possi-
ble options for testing compliance with human oversight requirements, but they illustrate
afundamental tension in Al governance. Traditional checklist approaches offer efficiency
and standardization but risk treating oversight as a technological feature to be verified
rather than a sociotechnical capability to be validated. They may produce inconclusive
results, such as when oversight mechanisms are formally in place but key performance
indicators conflict, when standard checklist items cannot capture context-specific ade-
quacy, or when there are gaps between documented policies and actual practice. Empiri-
cal approaches, by contrast, can validate the actual effectiveness of human oversight but
are resource-intensive and context-sensitive and thus difficult to standardize.

This tension reflects the broader challenge of shifting from evaluating “good” techno-
logical products against standardized criteria to validating “good” sociotechnical systems
where effectiveness emerges from dynamic interactions between humans, technology,
and specific contexts. Hybrid approaches may offer a way forward: when checklist-
based testing produces inconclusive results or reveals gaps between formal compliance
and effective oversight, empirical validation could help bridge the measurement-reality
divide. Clearly, such hybrid approaches raise their own questions about standardization
as well as practical challenges such as resource allocation regarding compliance testing.

Furthermore, any form of checklist-based and empirical approaches faces additional
challenges. First, it remains unclear when and how frequently human oversight processes
need to be reevaluated. Should compliance assessments be conducted regularly or should
they be triggered by evidence of non-compliance? Is it required to reevaluate compliance
after each Al system update or after personnel changes?

Second, not only is the effectiveness of human oversight context-sensitive, the human
oversight requirements themselves may also be context-dependent. For instance, over-
sight requirements may vary depending on the risk associated with the application con-
text. Stricter oversight requirements may apply to Al used in the public sector compared
to the private sector. Additionally, the required skills, expertise, and tasks of human
oversight personnel can also vary significantly [7]. In real-time contexts, such as for the

164 M. Langer et al.

oversight of autonomous vehicles, sustained vigilance over long periods may be nec-
essary, whereas in areas like hiring and credit scoring, human oversight personnel may
require training in ethical and moral reasoning.

Third, certain regulatory requirements may be difficult to translate into testable stan-
dards for two key reasons. First, some requirements involve psychological factors that
are challenging to operationalize and assess. This includes assessing whether human
oversight personnel sufficiently understand Al limitations or testing for possible automa-
tion bias of human oversight personnel [5, 6]. Second, Al regulations typically include
requirements where there is disagreement about guiding definitions and no clear ground
truth available. For instance, in the case of discrimination and fairness, no commonly
agreed standard exists for determining when a decision is discriminatory or unfair [4, 13].
This normative uncertainty, combined with the challenges of measuring psychological
factors, helps explain why compliance testing particularly struggles with requirements
related to transparency, explainability, and fairness [7].

These challenges point to the even more fundamental challenge that it remains
unclear what constitutes sufficiently effective human oversight. Figure 1 illustrates this
challenge. One fundamental expectation is that human oversight personnel add some-
thing beneficial to Al system operations. In other words, and in line with research and Al
governance efforts using this term heavily [14], adding human oversight should increase
the trustworthiness of Al operations. While trustworthy Al has many dimensions [8,
14, 15], one key goal — explicitly mentioned in the Al Act — is to increase safety. The
effectiveness of human oversight depends on characteristics of oversight personnel (e.g.,
skills, training), the technology (e.g., Al transparency), and the operational context (e.g.,
roles, tasks, organizational factors) [9]. While it seems obvious that one key goal is that
human oversight should make Al operations safer and more secure than autonomous
operation of Al, determining when oversight is sufficiently safe and secure remains an
open question.

Without concrete and testable standards for effective human oversight, normative
uncertainty will persist for providers and deployers of Al regarding their legal com-
pliance. This issue may be particularly pronounced for small businesses that lack the
resources to establish an Al compliance department [7]. This uncertainty could lead
to situations where the implementation of Al-based systems will be hampered in such
businesses. Moreover, without concrete standards, virtually any implementation could
be considered compliant [16]. This issue is especially problematic when audits rely on
post-hoc rationalizations of human oversight implementations. In hindsight, any app-
roach to human oversight could be justified as the “sufficiently good” or even “best
possible” option.

3 Concluding Thoughts and Next Steps

The challenges of testing for compliance with human oversight requirements reflect
broader difficulties in sociotechnical Al governance. As Al governance shifts from ensur-
ing “good” technological products to “good” sociotechnical systems, defining standards
will be complex, particularly when psychological concepts are involved. Beyond human
oversight requirements, another key example relates to emotion recognition systems

On the Complexities of Testing for Compliance 165

Al system with Al system with
Al system sufficiently good best possible
alone human oversight human oversight

context context
\ Safety
i
baseline o ‘perfect’
safety sufficient safety
safety

Fig. 1. A plausible criterion for effective human oversight is that human oversight of Al achieves
a higher level of safety compared to the Al system operating alone (baseline safety). However,
assessing safety has several layers: first, safety is inherently multi-dimensional, involving multiple,
sometimes interdependent risks (e.g., an Al system may exhibit different forms of unfairness that
cannot all be simultaneously eliminated). Second, even within a single safety dimension, it remains
unclear what “perfect” safety would entail, making it particularly difficult to define or measure
what counts as “sufficient” safety. This figure additionally highlights that safety (much like all
dimensions of the effectiveness of human oversight; [9]) depends on characteristics of oversight
personnel (e.g., skills, training), the technology (e.g., Al transparency), and the operational context
(e.g., roles, tasks, organizational factors).

[17, 18]. According to the AI Act, Al systems that automatically infer emotions (e.g.,
sadness) in high-risk contexts are prohibited but inferring physical states (e.g., fatigue)
is permitted. This raises questions such as: Is fatigue a purely physical state from lack
of sleep or a symptom of depression? If linked to depression, would its detection be
permitted? These questions seem relevant to governing respective Al products but they
can only be adequately addressed by taking a sociotechnical perspective that addresses
the intricate interplay between technical design (e.g., what model is used to infer emo-
tions?), human factors (e.g., how do verbal, nonverbal, and paraverbal behavior relate
to emotions?), and contextual considerations (e.g., what inferences about emotions are
adequate at different workplaces?).

As outlined before, additional difficulties arise when Al governance seeks to mitigate
risks for which no clear ground truth exists (e.g., risks of discrimination [7]) or when
it remains uncertain whether risks have been effectively mitigated. For instance, was a
fairness monitoring tool truly successful if it detects only one specific type of fairness
violation in Al outputs [4, 19, 20]? Again, this emphasizes the need for a sociotechnical
perspective that addresses technical design (e.g., for what kind of fairness metric to
calibrate Al-based decisions), human factors (e.g., training in the detection of fairness
issues), and contextual considerations (e.g., what kind of fairness definition is appropriate
in a given context)?

The next steps in testing for compliance with Al regulation are currently being devel-
oped. Standardization and norming bodies are working to operationalize the require-
ments outlined in Al regulation. We anticipate that emerging standards and norms will
fuel the debate on how to effectively test for compliance. The challenges outlined in this

166 M. Langer et al.

article will continue to require input from researchers, practitioners, and policymakers to
ensure that Al governance effectively reduces the risks associated with Al systems while
enhancing safety in their implementation without placing an undue burden on providers
and deployers through resource-intensive, context-dependent compliance testing.

In the case of human oversight, key tasks for the near future are to (a) establish a
middle ground or a feasible combination between checklists and empirical testing, (b)
develop standards and norms that are informed by and adapt to the latest research in
human-computer interaction, psychology, and related fields on effective human over-
sight [21], such as methods for preventing automation bias or effectively preparing
and supporting humans to detect inaccurate and problematic outputs, and (c) evaluate
the impact of human oversight requirements in Al practice. Finally, we want to high-
light the crucial importance of expertise on the human factor in human-Al interaction
for designing and testing for the effectiveness of human oversight. As Al governance
evolves beyond technological improvement to optimizing sociotechnical systems for
high-risk tasks, we believe research(ers) from psychology, human-computer interaction
and related fields should play a key role in providing insights on how to optimize the
technology, how to design the jobs and environments where humans and Al-based sys-
tems interact, and how to prepare and support human oversight personnel. This ensures
that expertise and perspectives on the human factors in Al augments the expertise and
perspectives that already play a key role in Al governance such as legal sciences, ethics,
machine learning and other technical and engineering perspectives. This would then
also substantiate commonly phrased claims (particularly in Europe) that AI governance
aims for “human-centered AI” implementation that in practice often lacks to consult and
integrate expertise on the “human” factors.

Acknowledgments. This work was partially funded by DFG grant 389792660 as part of TRR
248 CPEC - Center for Perspicuous Computing (Kevin Baum & Markus Langer), by the project
TITAN - Technologische Intelligenz zur Transformation, Automatisierung und Nutzerorien-
tierung des Justizsystems funded by the Daimler and Benz Foundation (grant no. 45-06/24)
(Markus Langer), by the European Regional Development Fund (ERDF) and the Saarland within
the scope of the project (To)CERTAIN — Towards a Center for European Research in Trusted Al,
and received support from the German Federal Ministry of Education and Research (BMBF) as
part of the project MAC-MERLIin (Grant Agreement No. 011W24007) (Kevin Baum).

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

On the Complexities of Testing for Compliance 167
Appendix A

Content of Article 14 of the European AI Act: Human Oversight

(1) High-risk Al systems shall be designed and developed in such a way, including with
appropriate human-machine interface tools, that they can be effectively overseen by
natural persons during the period in which they are in use.

(2) Human oversight shall aim to prevent or minimise the risks to health, safety or
fundamental rights that may emerge when a high-risk Al system is used in accordance
with its intended purpose or under conditions of reasonably foreseeable misuse, in
particular where such risks persist despite the application of other requirements set
out in this Section.

(3) The oversight measures shall be commensurate with the risks, level of autonomy
and context of use of the high-risk Al system, and shall be ensured through either
one or both of the following types of measures:

(a) measures identified and built, when technically feasible, into the high-risk Al
system by the provider before it is placed on the market or put into service;

(b) measures identified by the provider before placing the high-risk Al system on
the market or putting it into service and that are appropriate to be implemented
by the deployer.

(4) For the purpose of implementing paragraphs 1, 2 and 3, the high-risk Al system
shall be provided to the deployer in such a way that natural persons to whom human
oversight is assigned are enabled, as appropriate and proportionate:

(a) to properly understand the relevant capacities and limitations of the high-risk Al
system and be able to duly monitor its operation, including in view of detecting
and addressing anomalies, dysfunctions and unexpected performance;

(b) toremain aware of the possible tendency of automatically relying or over-relying
on the output produced by a high-risk Al system (automation bias), in particular
for high-risk Al systems used to provide information or recommendations for
decisions to be taken by natural persons;

(c) to correctly interpret the high-risk Al system’s output, taking into account, for
example, the interpretation tools and methods available;

(d) to decide, in any particular situation, not to use the high-risk Al system or to
otherwise disregard, override or reverse the output of the high-risk Al system;

(e) to intervene in the operation of the high-risk Al system or interrupt the system
through a ‘stop’ button or a similar procedure that allows the system to come to
a halt in a safe state.

(5) For high-risk Al systems referred to in point 1(a) of Annex III, the measures referred
to in paragraph 3 of this Article shall be such as to ensure that, in addition, no action
or decision is taken by the deployer on the basis of the identification resulting from
the system unless that identification has been separately verified and confirmed by
at least two natural persons with the necessary competence, training and authority.

The requirement for a separate verification by at least two natural persons shall not
apply to high-risk AI systems used for the purposes of law enforcement, migration,
border control or asylum, where Union or national law considers the application of this
requirement to be disproportionate.

168

M. Langer et al.

References

10.

11.

12.

13.

14.

15.

. Lam, K., Lange, B., Blili-Hamelin, B., Davidovic, J., Brown, S., Hasan, A.: A framework

for assurance audits of algorithmic systems. In: The 2024 ACM Conference on Fairness,
Accountability, and Transparency, Rio de Janeiro Brazil: ACM, pp. 1078-1092 (2024). https://
doi.org/10.1145/3630106.3658957

Mokander, J., Axente, M., Casolari, F., Floridi, L.: Conformity assessments and post-market
monitoring: a guide to the role of auditing in the proposed European Al regulation. Mind.
Mach. 32(2), 241-268 (2022). https://doi.org/10.1007/s11023-021-09577-4

. Green, B.: The flaws of policies requiring human oversight of government algorithms.

Comput. Law Secur. Rev. 45, 105681 (2022). https://doi.org/10.1016/j.clsr.2022.105681
Langer, M., Baum, K., Schlicker, N.: Effective human oversight of AI-Based systems: a signal
detection perspective on the detection of inaccurate and unfair outputs. Minds and Machines
(2024). https://doi.org/10.1007/s11023-024-09701-0

. Ruschemeier, H., Hondrich, L.: Automation bias in public administration - an interdisciplinary

perspective from law and psychology. SSRN Journal (2024). https://doi.org/10.2139/ssrn.473
6646

Laux, J.: Institutionalised distrust and human oversight of artificial intelligence: towards
a democratic design of Al governance under the European Union Al Act. Al Soc. 39(6),
2853-2866 (2024). https://doi.org/10.1007/s00146-023-01777-z

Scantamburlo, T., et al.: Software systems compliance with the Al act: lessons learned from
an international challenge. In: Proceedings of the 2nd International Workshop on Responsible
Al Engineering, Lisbon Portugal: ACM, pp. 44-51 (2024). https://doi.org/10.1145/3643691.
3648589

Schlicker, N., Uhde, A., Baum, K., Hirsch, M.C., Langer, M.: How do we assess the trust-
worthiness of Al: introducing the trustworthiness assessment model (TrAM). Comput. Hum.
Behav. (2025). https://doi.org/10.31234/osf.io/ghwvx

Sterz, S., et al.: On the quest for effectiveness in human oversight: Interdisciplinary perspec-
tives. In: The 2024 ACM Conference on Fairness, Accountability, and Transparency, Rio de
Janeiro Brazil: ACM, pp. 2495-2507 (2024). https://doi.org/10.1145/3630106.3659051
Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, oppor-
tunities and challenges toward responsible Al Inf. Fusion 58, 82—115 (2020). https://doi.org/
10.1016/j.inffus.2019.12.012

Langer, M., et al.: What do we want from explainable artificial intelligence (XAI)? A stake-
holder perspective on XAl and a conceptual model guiding interdisciplinary XAl research.
Artif. Intell. 296, 103473 (2021). https://doi.org/10.1016/j.artint.2021.103473

Lai, V., Chen, C., Smith-Renner, A., Liao, Q.V., Tan, C.: Towards a science of human-Al
decision making: an overview of design space in empirical human-subject studies. In: 2023
ACM Conference on Fairness, Accountability, and Transparency, Chicago IL USA: ACM,
pp. 1369-1385 (2023). https://doi.org/10.1145/3593013.3594087

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and
fairness in machine learning. ACM Comput. Surv. 54(6), 115 (2021). https://doi.org/10.1145/
3457607

Laux, J., Wachter, S., Mittelstadt, B.: Trustworthy artificial intelligence and the European
Union Al act: on the conflation of trustworthiness and acceptability of risk. Regul. Gov.
18(1), 3-32 (2024). https://doi.org/10.1111/rego.12512

High Level Expert Group on Artificial Intelligence. Ethics guidelines for trustworthy Al
Brussels, Belgium: European Commission (2019). https://ec.europa.eu/newsroom/dae/doc
ument.cfm?doc_id=60419

https://doi.org/10.1145/3630106.3658957
https://doi.org/10.1145/3630106.3658957
https://doi.org/10.1007/s11023-021-09577-4
https://doi.org/10.1016/j.clsr.2022.105681
https://doi.org/10.1007/s11023-024-09701-0
https://doi.org/10.2139/ssrn.4736646
https://doi.org/10.2139/ssrn.4736646
https://doi.org/10.1007/s00146-023-01777-z
https://doi.org/10.1145/3643691.3648589
https://doi.org/10.1145/3643691.3648589
https://doi.org/10.31234/osf.io/qhwvx
https://doi.org/10.1145/3630106.3659051
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.artint.2021.103473
https://doi.org/10.1145/3593013.3594087
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1111/rego.12512
https://ec.europa.eu/newsroom/dae/document.cfm%3Fdoc_id%3D60419
https://ec.europa.eu/newsroom/dae/document.cfm%3Fdoc_id%3D60419

17.

18.

20.

21.

On the Complexities of Testing for Compliance 169

. Cobbe, J., Lee, M.S.A., Singh, J.: Reviewable automated decision-making: a framework for

accountable algorithmic systems. In: Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, Virtual Event Canada: ACM, pp. 598-609 (2021). https://
doi.org/10.1145/3442188.3445921

Prégent, A.: Is there not an obvious loophole in the Al act’s ban on emotion recognition
technologies? Al Soc. s00146-025-02289-8 (2025). https://doi.org/10.1007/s00146-025-022
89-8

Meinel, P., Lauber-Ronsberg, A.: ‘How do you feel?” — Emotionserkennung nach der KI-VO.
Datenschutz Datensich 49(4), 236240 (2025). https://doi.org/10.1007/s11623-025-2078-3

. Biewer, S., etal.: Software doping analysis for human oversight. Formal Methods Syst. Design

(2024). https://doi.org/10.48550/arXiv.2308.06186

Baum, K., et al.: Taming the Al monster: monitoring of individual fairness for effective human
oversight. In: Model Checking Software, vol. 14624, Neele, T., Wijs, A. (eds.) in Lecture
Notes in Computer Science, vol. 14624. , Cham: Springer Nature Switzerland, pp. 3-25
(2025). https://doi.org/10.1007/978-3-031-66149-5_1

Laux, J., Ruschemeier, H.: Automation bias in the AI Act: on the legal implications of attempt-
ing to de-bias human oversight of AI (2025). arXiv. https://doi.org/10.48550/ARXIV.2502.
10036

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/3442188.3445921
https://doi.org/10.1145/3442188.3445921
https://doi.org/10.1007/s00146-025-02289-8
https://doi.org/10.1007/s00146-025-02289-8
https://doi.org/10.1007/s11623-025-2078-3
https://doi.org/10.48550/arXiv.2308.06186
https://doi.org/10.1007/978-3-031-66149-5_1
https://doi.org/10.48550/ARXIV.2502.10036
https://doi.org/10.48550/ARXIV.2502.10036
http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

1

In current autonomous driving solutions, Al-based system components take
safety-critical roles. Most notably, artificial neural networks are widely used
for camera-based environment perception components of autonomous vehicles.
Unlike for many traditional engineering activities, the development process of
such networks does not start from a verifiable specification. This is rooted in
the fact that the absence of a good model for how exactly the different types of
objects to be perceived are represented in the image is the reason for using Al

Supporting a SOTIF Safety Argument by
Activation Pattern Monitoring with
Statistical Guarantees

Riidiger Ehlers®™ ®, Loich Kamdoum Deameni, and Nikita Maslov

Clausthal University of Technology, Clausthal-Zellerfeld, Germany
ruediger.ehlers@tu-clausthal.de

Abstract. Modern autonomous-driving solutions rely on neural net-
works for visual perception. They typically lack precise specifications for
when their behavior is considered to be correct, which complicates the
use of traditional specification-driven verification approaches. To address
this challenge, ISO standard 21448 (“Safety of the Intended Function-
ality”, SOTIF) proposes activities focused on reducing — rather than
eliminating — the risk of using machine-learned models and the resulting
extent of harm.

One valuable activity in a SOTIF-based development process is run-
time monitoring, as it provides a safeguard against scenarios that could
not be anticipated during development. In the context of visual percep-
tion components based on learned neural networks, a runtime monitor
can detect previously unknown driving scenarios during operation. For a
SOTIF-based safety argument, however, the value it brings to the table
needs to be quantified.

In this paper, we show how by combining activation pattern moni-
toring with ideas from conformal testing, a monitoring approach with
statistical guarantees can be defined that supports a SOTIF safety argu-
ment. We apply an ellipsoid-based abstraction of the activation patterns
that are local to the output of a YOLO real-time object-detection neural
network. We demonstrate that by restricting the scope of the monitor to
detect input that is clearly out-of-domain (OD) at runtime, a high accu-
racy of the monitor can be obtained, leading to strong safety guarantees
that a SOTIF safety argument can build on.

Introduction

© The Author(s) 2026
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, pp. 170-185, 2026.
https://doi.org/10.1007/978-3-032-07132-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-07132-3_12&domain=pdf
http://orcid.org/0000-0002-8315-1431
https://doi.org/10.1007/978-3-032-07132-3_12

Activation Pattern Monitoring with Statistical Guarantees 171

in the first place. As a consequence, traditional specification-driven approaches
for building safe systems are not applicable.

So how can, under these conditions, the sufficient safety of such Al-based
components be proven and communicated to the general public, as needed for
the societal acceptance of autonomous driving in the long run? The approach
followed in the ISO standard 21448 (“Safety of the Intended Functionality” —
SOTIF) to address this question is to focus on the engineering process of the
component rather than only on the result of the process. This standard defines
a set of activities that includes identifying potential hazards, their triggering
conditions, and developing scenarios in which the hazard can lead to harm. By
performing these activities, during the development process, previously unknown
scenarios in which the system needs to operate correctly in become identified as
“known” (w.r.t. the development process), and the percentage of scenarios in
which the system behaves safely also increases. At the end of the process, all
activities performed together need to support an argument showing that the
system is both safe enough in known scenarios as well as in unknown scenarios.
The latter case addresses the problem that it is not possible to test Al-based
systems in all situations that can occur in the field since it is not even completely
well-defined what exactly constitutes a scenario. Similarly, formal verification is
not applicable because a verification process would require a precise model of
the input to which the system is applied.

Proving the sufficient safety of a system in unknown scenarios appears to
be contradictory at first, as for evaluating a system in a scenario, the scenario
has to be defined. This contradiction is resolved by the respective chapter on the
evaluation of unknown scenarios of the ISO standard. It clarifies that this type of
evaluation is concerned with activities that augment classical testing on defined
scenarios. This can for instance be the analysis of the effect of input noise on
a learned model, the behavior of a system under consideration on random test
cases, or the analysis of corner cases. Hence, the evaluation on unknown scenarios
is concerned with analysis steps for which it is reasonable to expect that good
performance of the system correlates with safe behavior in the field. As it is
societally expected that autonomous driving systems implement the state of the
art in such activities and at the end of these activities, they need to contribute
to an overall safety argument, it is fair to expect a reasonable baseline of such
activities commonly used in development processes according to ISO 21448 to
develop over time.

In this context, runtime monitoring is a particularly attractive activity
because it solves two problems at the same time, namely that (a) not all situa-
tions can be considered up-front and before the deployment of the system, and
(b) runtime monitoring makes what is being monitored explicit. Given that the
property being monitored is reasonable, continuous monitoring of an Al-enabled
system component can increase the trust in the component. In a nutshell, a run-
time monitor observes the behavior of a system and raises an alarm when the
property whose satisfaction it monitors is violated. While due to the absence
of a precise specification of the system, false positives and false negatives are
impossible to avoid in their entirety, the output of a monitor can be used as an
indicator for whether the driving situation is suitable for the autonomous driv-

172 R. Ehlers et. al

ing function. This is especially the case when the output of a monitor is used to
inform the system about whether the current situation is potentially not fully
tested (e.g., by disabling overtaking on roads if it is questionable whether the
current driving situation is fully understood by the perception system). Further-
more, the monitor output can be used to decide in which cases the input to the
system should be recorded so that it can be used as new situation in the next
iteration of the system’s development process.

Given the conceptual simplicity of monitoring, it is not surprising that a
plethora of monitoring approaches for a multitude of types of properties of
interest have emerged. These include, most prominently, detecting out of dis-
tribution (OOD) input [17,24] to a machine-learned model. In this context, out
of distribution refers to the input not being in the set of inputs from which the
training data of the machine-learned model was taken, ideally via random selec-
tion. Then, there are monitoring approaches that concern whether the system
under inspection adheres to expected aspects of their input/output behavior [1].
As a final example, one can monitor for whether the activation patterns that an
artificial neural network computes for some layers of its architecture at runtime
are included in some abstractions of the set of patterns on which the system
has shown correct behavior [5]. Such an activation pattern is just the output
computed by one (typically late) layer of a neural network.

The last of these examples is somewhat surprising at first, because it concerns
the internal state of an Al-based system. The idea behind this type of moni-
toring is that whenever an activation pattern is atypical (i.e., very different to
what has been observed on the training data), then the system behavior should
not be trusted as it was not trained on these activations. In this way, activation
pattern monitoring can also be seen as a technique for OOD detection. While
the relationship between activation patterns and input/output behavior of the
Al-based system is rather indirect, this approach to monitoring has an inter-
esting property: it is close to traditional monitoring of engineered systems. If a
system is engineered with certain invariants in mind (such as the temperature in
a machine being less than 100°C), then operating it outside of these invariants
is risky. Activation pattern monitoring mimics sanity checks of sensor data in
regular embedded systems: if some measured values are implausible, the system
needs to fall back to safer (but probably suboptimal) behavior. With these con-
nections, activation pattern monitoring can play a part in ezplaining the safety
of a system. To be truly useful to support a safety argument, the value that acti-
vation pattern monitoring brings to the table needs to be properly quantified,
however, which classical activation pattern monitoring approaches from the field
of formal methods do not.

In this paper, we revisit activation pattern monitoring and combine it with
a clearly defined purpose in the context of supporting a safety argument. We
show how by integrating ideas from the field of conformal prediction to obtain
statistical guarantees on the perception system operating within the input space
it was designed for, we can support a SOTIF-based development process. In
particular, we check, with statistical confidence, whether the system’s state has

Activation Pattern Monitoring with Statistical Guarantees 173

been pushed outside of what it was designed to work on due to the system
being operated outside of its operational design domain (ODD), i.e., the set of
situations and environments it was designed for. The statistical guarantees are
based on the assumption that data used in the development process is drawn in a
representative way from the scenarios of interest in the real world, so that such a
monitoring process can provide a quantitative component of a safety argument.
In particular, we provide the following contributions:

— We provide a summary of the differences and similarities of activation pattern
monitoring to classical OOD and ODD detection.

— We discuss which formulations of the activation pattern monitoring problem
are reasonable from a conceptual point of view.

— We provide an approach to define local neighborhoods for activation pattern
monitoring in a YOLO-like object detection network.

— We show how to adapt some ideas from conformance prediction to add sta-
tistical guarantees to activation pattern monitoring.

— Finally, we show some results on an activation pattern monitoring example
setting that demonstrate that this approach can detect out of domain acti-
vation patterns.

The resulting monitor can be used in a safety argument by (a) making the
autonomous driving system work with degraded performance if the monitor trig-
gers more than intermittently, and (b) making a probabilistic argument on the
completeness of engineering process by connecting how often the monitor triggers
in field tests with the statistical guarantees that it provides. While the statisti-
cal argument is based on the assumption of representativeness of the data used
for calibrating the guarantee, the rigor used in the data collection process of a
SOTIF-based development process can be used to support this claim, contribut-
ing to a proof that the residual risk of using the system is as low as reasonably
possible.

2 Related Work

Activation pattern monitoring of artificial neural networks [6,12,23], also called
abstraction-based monitoring, has its roots in formal methods. Such approaches
supervise the output of a layer of an artificial neural network and check if it lies
in an abstraction of the set of patterns found to be typical of normal operation.

Activation pattern monitoring has multiple purposes. On the one hand, it
has been noted that in practice, an activation pattern being outside of the com-
puted abstraction correlates with the input of the overall network being out-of-
distribution (OOD) [23]. On the other hand, Lukina et al. [14] use abstraction-
based monitoring to decide when enough novel input has been fed to the neural
network so that a manual data labeling and training process should be triggered.
They emphasize that in this way, monitoring helps with making the operation
of the network more transparent to the user. Furthermore, they show in their
experiments that the monitor results can be used to detect input that requires

174 R. Ehlers et. al

manual labeling, hence optimizing the retraining process of the system when the
budget of allowed interaction with a human for manual labeling is small.

Boursinos and Koutsoukos [2] combine the idea of monitoring activation pat-
terns with conformance prediction, as we do in this paper. Conformance predic-
tion is the process of postprocessing the output of a learned classification model
to a set of classes such that a statistical guarantee can be given that the class
that is correct for the given input is contained in the set. Just as in this paper,
their approach detects mispredictions with statistical confidence. They deviate
in their aim from our work, however: their purpose is to detect mispredictions,
whereas we focus on detecting whether the AI model is being used outside of
its operational design domain such that the internal state (an activation of a
late layer) is outside of what the model has been trained for. This aim is more
modest, resulting in the possibility to obtain a high accuracy. By combing a high
reliability with a modest aim, such a monitor can fulfill a well-defined purpose
in an overall system safety argument. Also, our approach is, unlike the one by
Boursinos and Koutsoukos, not based on considering different activation pattern
set abstractions for the individual classes, but detects regions in an input image
for which all classifier outputs together should not be trusted.

Activation pattern monitoring is conceptually related to out of distribution
(OOD) input detection as well as monitoring the operational design domains
(ODD) of an Al-based systems. Ultimately, the goal of ODD detection is to
identify input that is somewhat distant to the training dataset, and there is
no precise definition of what exactly this means, given that the probability dis-
tribution of the input to expect is not accessible for model training. A typical
concretization in this context is to treat this problem as a one-class classifica-
tion problem (in the absence of atypical input data), and for instance define
approaches to classify the probability distributions that form the output of a
classification artificial neural network into expected and unexpected ones [21].
Other approaches operate on the input directly [11]. Guérin et al. [9] argue that
the problem of detecting out-of-distribution input is ill-focused by the fact that
extrapolating to untrained cases is the whole point of learning a model in the
first place. They propose moving to a two-class classification problem for detect-
ing “Out-of-Model-Scope (OMS)” cases, which are defined by the learned model
mispredicting in them.

In contrast, what we aim for here is a simple sanity checking argument of
the system’s internal state that is close to monitoring the operating conditions
of technical systems, while addressing the fact that the state of an Al-based
perception system is an activation pattern. Although we adapt the proposal to
treat the problem at hand as a two-class classification problem (in Sect. 3.2),
we do not explicitly consider whether the network misclassifies. Instead, we are
interested in detecting inputs on which the AI model is not applicable and no
correct classification even exists. The simplicity of the approach in combination
with a statistical guarantee makes it suitable to support a formal safety argument
while allowing to built trust in a sufficiently low error rate of the system.

Activation Pattern Monitoring with Statistical Guarantees 175

While it would intuitively make sense to treat the problem solved in this
paper as an instance of operational design domain (ODD) monitoring (see, e.g.,
[4]), the term is normally used for reasoning over the expected input at a higher
level, such as how many vehicles can be visible at the same time to a perception
system. Such aspects are difficult to translate to the concrete input to such a
system apart from sampling potential input by means of a simulator [7].

Few works consider the problem of detecting OOD or ODD data in the scope
of a system constructed using a SOTIF-based development process. Hacker and
Seewig [10] recently considered a monitor ensemble for identifying several types
of safety-related insufficiencies in perception systems for autonomous vehicles.
For OOD detection, they use a heuristic that involves comparing multiple learned
models, which complicates making a statement about the scope of the monitor.
Also, their monitor ensemble aims at identifying multiple types of insufficiencies
rather than supporting an individual aspect of the overall safety argument.

3 How to Detect Cases in Which a System Was Not
Designed to Operate In?

When addressing the challenge of detecting whether an Al perception system is
operating within the conditions it was designed for, the first aspect to clarify is
what this actually means. For the scope of this paper, we consider the problem
of detecting objects in the scope of an Al model operating according to the
YOLO (you only look once) principle [15,22]. YOLO-based models operate on
a whole input image, but the image is partitioned into a grid of cells, and the
same convolutional neural network is applied to each cell. Figurel shows an
illustration of the partitioning of an input image. For each cell, the model predicts
a) a number of values that are used to determine the z and y positions as
well as the width and height of the bounding box of a potential object in the
cell, b) one class probability for every object class used in the dataset (which
indicates the likelihood of the cell containing an object of this class), and ¢) an
overall probability of the cell containing an object. Furthermore, YOLO models
often use several grid granularities of the input at the same time in order to
detect objects of different sizes. Finally, all probabilities and potential bounding
box positions are post-processed by a so-called header to produce the actual
bounding boxes of the detected objects.

Feeding input to the model that is from a different domain (off domain, OD)
than the data on which the model was trained (in domain, ID) can make the
input to the header meaningless, leading to the model being blind on some of
the parts of their input image even if the respective part contains objects from
the classes considered during training. For a responsible use of YOLO models in
the field, we hence have to balance the expectation that such models extrapolate
from learned data to a new slightly different input in the field with the purpose
of detecting when the model operates in a domain it was not designed for. For
instance, when some cells of the input image show a poster board at the side of
the road or a truck tarpaulin (possibly with a picture printed on it), or a part

176 R. Ehlers et. al

Fig. 1. Example input image and its split into cells.

of the lens is covered with dirt or a sticker, then the model under consideration
is blind on these input cells.

In such cases, it is reasonable to expect artificial neural networks to exhibit
atypical activation patterns. In fact, neural networks learn specific activation
patterns that allow them to correctly classify inputs on which it was trained.
However, the standard training process of a model does not explicitly prevent
the output of individual neurons from deviating from their usual range for inputs
that are off-domain (OD). Cheng et al. [6] experimentally validated this effect in
their work on activation pattern monitoring. Building on this observation, our
goal is to detect when, for parts of an input image, the system operates outside
of its intended boundaries.

For this purpose, we consider local activation patterns while focusing on a
single grid scale. The general idea is visualized in Fig.1 — the neural network
output for a 3 x 3 blocks large input group is used in order to estimate whether
the cell in the center of the group contains image data on which the perception
system operates outside of its domain. We aggregate the object class probabilities
for each cell in the group to a vector (activation pattern) on which the monitoring
approach described in the following operates.

Performing the monitoring process in this way has the property that it can
support a safety argument: the activation patterns are simple to measure “sensor
values” about the internal state of the system and treating the input in blocks
allows to pinpoint for parts of an input whether the system’s output can be
trusted on it — in this way, the detection of blind spots can be reasoned over in
the system’s safety argument based on the monitor output.

3.1 A First Experiment Using One-Class Classification

For a first experiment, we considered a YOLOv3 model [16] on the KITTI dataset
[8] with traffic situations trained on detecting objects from 96 classes, leading to

Activation Pattern Monitoring with Statistical Guarantees 177

activation vectors with 964 elements each. We overall extracted 82962 activation
patterns from 3771 images. We also use 27676 patterns from 1258 additional
images from the same dataset for testing whether the monitor detects these as
typical for the domain.

Henzinger et al. [12] proposed to use “boxes” (axis-parallel hyperrectangles)
for abstracting activation patterns from the training data to a representative
set of activation data. The core idea of their approach is that hyperrectangles
encapsulate activation patterns of inputs on which the system was trained, and
patterns not in the hyperrectangles are seen as suspicious.

They experimentally compared their box-based abstraction to two other
methods — specially balls and octagons — based on their precision and compu-
tational complexity. Their experiments demonstrated that using boxes balances
good precision in novelty detection with efficient computation. They concluded
that using a box-based abstraction allows for effective runtime monitoring with
minimal overhead. Although their boxes are simple to compute, they have the
odd property that activations that are relatively extreme in many dimensions,
but never the most extreme one in any dimension, might not be detected.

To address this limitation of boxes and to provide tighter boundaries than
balls, with minimal computational overhead, we propose to use an ellipsoid rep-
resentation. An ellipsoid can be encoded with a single positive definite matrix A
and a vector b such that an activation pattern z is in the ellipsoid if and only if
(r—b)-A-(x—0b)T < 1. The set of ellipsoids is closed under rotation, skewing,
scaling, and translation, which is desirable from a conceptual point of view. In
particular, as any rotation, translation, and skewing performed by a neural net-
work layer can be undone by a subsequent linear layer, and there are no steps in
the learning process that prevent the learning process from making unnecessary
such skewings, translations, and rotations, it makes sense to use an activation
pattern representation that is closed under such linear transformations.

We first considered the activation pattern monitoring problem as a one-class
classification problem by computing an ellipsoid around all 82962 activation pat-
terns in the training dataset. Using an implementation of Khachiyan’s algorithm
[20], we can compute an ellipsoid enclosing an approximately minimal volume.
Doing so adds an quality criterion to the computed ellipsoid, which is needed
to avoid trivial solutions (an ellipsoid containing all possible activation patterns
for arbitrary input images). The amount of data considered in this experiment
is however already too large for the algorithm to be applied (observed by it run-
ning out of memory when applying the algorithm on a computer with 1 TB of
RAM). As a consequence, we experimented with a classical machine learning-
based approach. Rather than learning the matrix A directly, we apply classical
back-propagation based learning to learn an ellipsoid center, a size (in each
dimension), and a fixed-length list of mirroring planes. Input data points are
mirrored by the planes in order, and the resulting point is checked for contain-
ment in the (then) axis-parallel ellipsoid. With the mirroring planes, skewing,
mirroring, and rotation can be learned while the number of planes provides a way
to select the complexity of the learnable skewing and rotation of the ellipsoid.

178 R. Ehlers et. al

Table 1. Performance results for the ellipsoid-based monitor from Sect. 3.1

Planes|Patterns contained in ellipsoid

Training Data|Testing Data (ID) Testing Data (OD)
0 99.2 % 99.2 % 75.8%
10 99.2 % 99.2 % 86.2 %
80 99.2 % 99.3 % 95.3 %

In the learning process, we use the product of the ellipsoid sizes (in each dimen-
sion) as an additional optimization criterion in the loss function that guides
the learning process. Doing so results in the volume enclosed by the ellipsoid
to be minimized (heuristically) during learning. We experimented with several
different numbers of mirroring planes, for which we give results in Table 1.

We observe that the learning process succeeds with more than 99% of the
in-domain images being contained in the ellipsoid, both in the training data set
as well as the testing data set from the application domain. To estimate the
usefulness of the monitor in the field, we also considered 44143 activation pat-
terns obtained from 521 images from the COCO dataset [13], which does not
concern traffic situations (with some exceptions), as example input that is out-
of-domain. Table 1 shows that most of the activation patterns from such inputs
however fall into the ellipsoid. In particular, the more freedom we give to the
learning process (by increasing the number of hyperplanes to mirror the activa-
tion patterns by), the more activation patterns from the out-of-domain dataset
are contained in the ellipsoid. Figure2 shows a histogram of the weighted dis-
tances (results of computing (z — b)A(z — b)T for the ellipsoid center b and the
ellipsoid matrix A) of the activation patterns to the ellipsoid center for the ellip-
soid learned without mirroring planes. It can be see that the distances of the
ID and OD cases overlap heavily despite the distributions of these cases differ-
ing notably. For a quantitative safety argument in a SOTIF-based development
process, these results appear to be insufficient, however. This observation leads
to the question whether this weak performance is unavoidable for this type of
monitor or whether a different type of learning process can improve it.

3.2 Treating the Out-of-Domain Detection Problem as a Two-Class
Classification Instance

Guérin et al. [9] argue that treating OOD detection as a one-class classification
problem is unreasonable as a primary goal of learning a model is to have it
extrapolate to unseen data. Instead, they propose to view the problem as a two-
class classification task where classes are defined by whether the learned model
under concern behaves correctly or incorrectly on an input.

Building on this idea, we can reformulate the OD detection problem on acti-
vation patterns to learn a two-class classifier that distinguishes between patterns

Activation Pattern Monitoring with Statistical Guarantees 179

12000 1

10000 1

8000 1

Cases

6000
4000

2000 1

|
\HHI\‘
U,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Distance to Ellipsoid Center

Fig. 2. Histogram of the weighted ellipsoid center distances for ID (orange) and OD
(blue, more to the right) activations for the approach from Sect.3.1 (Color figure
online). The distances are normalized to 1 so that exactly those of at most 1 cor-
respond to patterns in the ellipsoid.

from in-domain and off-domain input. For the following experiment, we adopt
this approach and continue employing the ellipsoid representation.

We use an additional 1560 out-of-domain images from the COCO dataset
for training the two-class classifier, resulting in 131241 activation patterns. We
again learn an ellipsoid with a backpropagation-based learning process, but this
time without size minimization for the ellipsoid.

Interestingly, the resulting classifier achieves a high accuracy on both the
training data as well as the testing data, as shown in Table2. As before, we
experimented with a varying number of mirroring planes. The results show that
both ID activation patterns and OD activation patters are detected in a reliable
way. Upon closer examination of the results, it turns out that the problem to be
solved is actually quite simple. Even without allowing the ellipsoid to be rotated
or skewed, we obtain a model with 99 % of in-domain test cases and 99.13 %
of out-of-domain test cases classified correctly. Figure 3 shows the histogram for
the case without mirroring planes. It can be seen that the ellipsoid separates the
ID and OD patterns relatively well despite the OD patterns still being relatively
close to the ellipsoid center.

While the case without mirroring planes is relative plain, a resulting mon-
itoring approach model still solves one problem of the box-based abstractions
[14], namely that cases that are close to the boundaries in many dimensions at
the same time are not detected as unusual.

Overall, this experiment shows that conceptually, two-class classification
appears to be the more fitting approach for out-of-domain detection of acti-
vation patterns, at least for the purpose of detecting if the model output for
parts of an input image are clearly out-of-domain. It should be noted that the
images in the COCO dataset are very diverse, so that the comparison between

180 R. Ehlers et. al

Table 2. Performance results for the ellipsoid-based monitor from Sect. 3.2

Planes|Patterns contained in ellipsoid

Training Data|Testing Data (ID) Testing Data (OD)
0 99.0 % 99.0 % 0.87%

10 199.2% 99.18 % 0.8%

12000 1

10000 1 i

8000 1 m

Cases

6000 =

4000 + ‘ |

|
Nl

¥
| ol

0.00 0.25 0.50 0.75 X
Distance to Ellipsoid Center

1.25 1.50 1.75 2.00

Fig. 3. Histogram of the weighted ellipsoid center distances for ID (orange, to the left)
and OD (blue, to the right) activations for the approach from Sect.3.1 (Color figure
online). The distances are normalized to 1 so that exactly those of at most 1 correspond
to patterns in the ellipsoid.

the one-class and two-class classification monitoring approaches is not skewed
by similarities between images in the COCO dataset.

For a SOTIF safety argument, an ellipsoid-based monitor with a good accu-
racy is already useful. For instance, it can be used to detect novel input in the
field for “phoning it home” to the perception system’s manufacturer, also help-
ing with human oversight of a vehicle manufacturer’s fleet. Its high accuracy
can serve as argument that the monitor-based preselection of new input to be
phoned home balances the needs to keep the data transmitted by all systems
of the manufacturer together reasonable while recording new situations that are
relevant for the continuous engineering process of the system.

3.3 Adding Statistical Guarantees

The high accuracy on the relatively simple out-of-domain detection approach
from above is useful for supporting a safety argument of a bigger system: while
the scope of what is detected is very limited, the high accuracy can provide
trust in the monitor detecting out-of-domain cases reliably. Furthermore, the
documentation performed in the context of an ISO 21448 development process

Activation Pattern Monitoring with Statistical Guarantees 181

assigns the measures taken in the development process to individual types of
hazards and risks — so the narrow scope of the monitor is actually rather an
advantage than a drawback (which is somewhat at odds with the idea to evaluate
approaches on difficult benchmarks sets, as common in works on OOD detection).

The overall safety argument for the perception system however needs to be
quantitative, showing a high probability of working correctly across different
situations. To support such an argument, the monitor should also provide sta-
tistical guarantees, which can be done by combining monitoring with ideas from
conformal prediction [18]. Boursinos and Koutsoukos [3] already considered such
a combination in the past, and we do so here in a way that makes use of the fact
that ellipsoids induce a weighted distance metric from some mean activations. In
this way, we can calibrate the monitor based on this metric to obtain guarantees.

More formally, we determine a distance threshold dy,;; that allows us to
identify in-domain activation patterns based on the calibration of a set of known
out-of-domain activation patterns C, assumed to be independent and identically
distributed (i.i.d.) drawn from the real distribution of the out-of-domain cases
to be detected at runtime. More concretely, for each x € C, we compute the
distance d(z) = (x —b)- A- (x —b)T and aggregate them in a multiset M. Then,
given a small probability of allowed failure «, we choose the greatest distance

value dj;;¢ such that at most a fraction of W# of the elements in M

are below djjpir. Thus, if the monitor does not flag a (local) activation pattern
as potentially problematic, then the probability that this verdict is correct is at
least 1 — « in the case of an out-of-domain activation pattern. In-distribution
cases can however sometimes be detected as problematic even if they are not.
At runtime, the resulting monitor considers all new activation patterns x’ for
which d(z’) > djmic as potentially being out-of-domain. The correctness of this
monitoring approach is based on the following theorem:

Theorem 1. For any new activation pattern z’ that is i.i.d. drawn from the
distribution Distc of out-of-domain input from which C was sampled, we have

P(d(l‘/) > diimit | z’ ~ Distc) >1—«

Proof. We follow the exposition by Shafer et Vovk [18] for a corresponding proof
in the context of conformal prediction.

If we order the |C| 4+ 1 distances computed for 2’ and the elements in C, the
i.i.d. assumption implies that d(z’) is equally likely to appear anywhere in the
ordered list. For any position k € {1,...,|C| 4 1}, the probability for d(z’) to
be among the k smallest elements in M U {d(z')} is ‘C‘% Therefore,

, o] SCEREET (o) +)1 =)]
Pd(z") > dimir) = T+ 1 = 1+ >1—a. O

We could, in a similar way, compute a value dj,,;, such that, if a new input
x is in domain, the probability of the weighted distance of its activation pattern
from the center of the ellipsoid being at most dj,,;, is at least 1 — . In this way,

182 R. Ehlers et. al

we could detect out-of-domain cases with statistical guarantees. This approach
is valid under the assumption that the in-domain patterns at runtime are i.i.d.
drawn from the same distribution as the in-domain samples in the calibration
dataset.

Let us evaluate monitoring with statistical guarantees on an example, where
for simplicity we use the learned axis-aligned ellipsoid (without mirroring) from
Sect. 3.2. We split the out-of-domain testing set into half calibration set and
half post-calibration testing set for the monitor with statistical guarantees and
choose a = 0.01 for this example study. The calibration value is 1.0046 times
the size of the ellipsoid for the monitoring process without statistical guarantees.
From the OD activation patterns in the post-calibration testing set, 99.06 % were
detected as potentially problematic. On the flip side, from the in-domain testing
data, 0.87 % were detected as potentially out-of-domain.

Overall, it can be seen that the approach provides good performance on
this rather small case study while giving statistical guarantees. In this way,
the monitor can be used as a part of the overall safety argument, namely by
addressing the need for a sufficiently high probability of an autonomous driving
function detecting that it is used out of domain. The overall safety argument
could then also reason over other monitors and/or the properties of error-resilient
maneuver planning approaches using the perception systems’ output as input.

4 Conclusion

This paper dealt with the question of how an activation pattern monitor can
support making a safety argument for an Al-based environment perception sys-
tem of an autonomous vehicle. When using a structured approach for doing so,
such as the one in ISO 21448, every measure needs to have a clear scope and
concrete quantifiable way in which it contributes to the overall safety argument.
We showed that by setting the scope of such a monitor to detect activations
resulting from far-from-normal local input, very high accuracy rates are possi-
ble on a moderately complex benchmark, and that also very strong statistical
guarantees are possible. Key to this result was defining the scope of the monitor
to be relatively narrow. While the next step is to evaluate the approach in an
actual engineering context with more data, and it is conceivable that the acti-
vation pattern domain may need to be extended (e.g., to sets of ellipsoids) to
maintain the good monitoring performance, the main focus of this paper was
showing what role a simple activation pattern monitoring approach can take in
a safety argument. Furthermore, the monitor output can be used to identify new
input of interest so that it can be recorded for re-engineering the system. In this
way, an activation pattern monitor can support human oversight of Al-based
systems [19] of a manufacturer’s fleet of vehicles, namely by pre-selecting cases
on which the environment perception systems behavior should be checked post
hoc. Finally, when the monitor results are fed to the driving maneuver decision
making process, the monitor output can be used to avoid more advanced maneu-
vers (such as overtaking) when part of the input is likely to contain unrecognized
objects.

Activation Pattern Monitoring with Statistical Guarantees 183

At the same time, we also indirectly addressed the question of building soci-
etal trust in a system’s correct operation beyond a formalized safety argument,
namely by focusing on a monitoring process that is simple enough so it that
it amounts to checking if some operating values stay within tested boundaries.
This is a common self-supervision approach in mechanical and electrical engi-
neering, and there is ample of experience in using it in these domains. While
the monitoring approach described in this paper is, from a scientific point of
view, unsophisticated, this property is also what enables wider use: engineers of
safety-critical systems can only employ techniques that can be understood by a
wider (engineering) audience in order to build a safety argument on them. We
hope that by showing that with a narrow scope, activation pattern monitoring
does not need to be complex, we provide an impulse on how this tension can be
addressed in the field.

Acknowledgements. This work was partially funded by the Federal Ministry for
Economic Affairs and Energy of Germany as part of the research project SafeWahr
under grant number 19A21026E. The authors want to thank Ayrat Khalimov for his
support with preparing this manuscript.

References

1. Aslam, I., Buragohain, A., Bamal, D., Aniculaesei, A., Zhang, M., Rausch, A.: A
method for the runtime validation of Al-based environment perception in auto-
mated driving system. arXiv/CoRR abs/2412.16762 (2024)

2. Boursinos, D., Koutsoukos, X.D.: Assurance monitoring of cyber-physical systems
with machine learning components. arXiv/CoRR abs/2001.05014 (2020)

3. Boursinos, D., Koutsoukos, X.D.: Assurance monitoring of learning-enabled cyber-
physical systems using inductive conformal prediction based on distance learning.
Artif. Intell. Eng. Des. Anal. Manuf. 35(2), 251-264 (2021)

4. Charmet, T., Cherfaoui, V., Ibanez-Guzman, J., Armand, A.: Overview of the
operational design domain monitoring for safe intelligent vehicle navigation. In:
26th International Conference on Intelligent Transportation Systems (ITSC), pp.
5363-5370. IEEE (2023)

5. Cheng, C., Luttenberger, M., Yan, R.: Runtime monitoring DNN-based perception
- (via the lens of formal methods). In: 23rd International Conference on Runtime
Verification (RV). Lecture Notes in Computer Science, vol. 14245, pp. 428-446.
Springer (2023). https://doi.org/10.1007/978-3-031-44267-4 24

6. Cheng, C.H., Nithrenberg, G., Yasuoka, H.: Runtime monitoring neuron activation
patterns. In: 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 300-303. IEEE (2019)

7. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning, pp. 1-16 (2017)

8. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTT vision benchmark suite. In: Conference on Computer Vision and Pattern
Recognition (CVPR) (2012)

https://doi.org/10.1007/978-3-031-44267-4_24
https://doi.org/10.1007/978-3-031-44267-4_24
https://doi.org/10.1007/978-3-031-44267-4_24
https://doi.org/10.1007/978-3-031-44267-4_24
https://doi.org/10.1007/978-3-031-44267-4_24
https://doi.org/10.1007/978-3-031-44267-4_24
https://doi.org/10.1007/978-3-031-44267-4_24
https://doi.org/10.1007/978-3-031-44267-4_24
https://doi.org/10.1007/978-3-031-44267-4_24
https://doi.org/10.1007/978-3-031-44267-4_24

184

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

R. Ehlers et. al

. Guérin, J., Delmas, K., Ferreira, R.S., Guiochet, J.: Out-of-distribution detection

is not all you need. In: Thirty-Seventh AAAI Conference on Artificial Intelligence,
AAAT pp. 14829-14837 (2023). https://doi.org/10.1609/AAAL V3711226732
Hacker, L., Seewig, J.: Insufficiency-driven DNN error detection in the context of
SOTIF on traffic sign recognition use case. IEEE Open J. Intell. Transp. Syst. 4,
58-70 (2023)

Hashemi, V., Kretinsky, J., Rieder, S., Schmidt, J.: Runtime monitoring for out-of-
distribution detection in object detection neural networks. In: 25th International
Symposium on Formal Methods (FM). Lecture Notes in Computer Science, vol.
14000, pp. 622-634. Springer (2023)

Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: Abstraction-based
monitoring of neural networks. In: ECAI 2020, pp. 2433—-2440. IOS Press (2020)
Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740-755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lukina, A., Schilling, C., Henzinger, T.A.: Into the unknown: active monitoring of
neural networks. In: 21st International Conference on Runtime Verification (RV),
pp. 42-61 (2021)

Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified,
real-time object detection. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 779-788 (2016)

Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv/CoRR
abs/1804.02767 (2018)

Salehi, M., Mirzaei, H., Hendrycks, D., Li, Y., Rohban, M.H., Sabokrou, M.: A
unified survey on anomaly, novelty, open-set, and out of-distribution detection:
solutions and future challenges. Trans. Mach. Learn. Res. 2022 (2022)

Shafer, G., Vovk, V.: A tutorial on conformal prediction. J. Mach. Learn. Res. 9,
371-421 (2008). https://doi.org/10.5555/1390681.1390693

Sterz, S., et al.: On the quest for effectiveness in human oversight: interdisci-
plinary perspectives. In: The 2024 ACM Conference on Fairness, Accountability,
and Transparency (FAccT), pp. 2495-2507 (2024)

Todd, M.J., Yildirim, E.A.: On Khachiyan’s algorithm for the computation of
minimum-volume enclosing ellipsoids. Discret. Appl. Math. 155(13), 1731-1744
(2007)

Wang, H., Li, Z., Feng, L., Zhang, W.: Vim: Out-of-distribution with virtual-logit
matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4921-4930 (2022)

Wong, A., Famuori, M., Shafiee, M.J., Li, F., Chwyl, B., Chung, J.: YOLO NANO:
a highly compact you only look once convolutional neural network for object detec-
tion. In: 2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive
Computing-NeurIPS Edition (EMC2-NIPS), pp. 22-25. IEEE (2019)

Wu, C., He, W., Cheng, C., Huang, X., Bensalem, S.: BAM: box abstraction mon-
itors for real-time OoD detection in object detection. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2632-2638 (2024)
Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: a
survey. Int. J. Comput. Vision 132(12), 5635 5662 (2024)

https://doi.org/10.1609/AAAI.V37I12.26732
https://doi.org/10.1609/AAAI.V37I12.26732
https://doi.org/10.1609/AAAI.V37I12.26732
https://doi.org/10.1609/AAAI.V37I12.26732
https://doi.org/10.1609/AAAI.V37I12.26732
https://doi.org/10.1609/AAAI.V37I12.26732
https://doi.org/10.1609/AAAI.V37I12.26732
https://doi.org/10.1609/AAAI.V37I12.26732
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.5555/1390681.1390693
https://doi.org/10.5555/1390681.1390693
https://doi.org/10.5555/1390681.1390693
https://doi.org/10.5555/1390681.1390693
https://doi.org/10.5555/1390681.1390693
https://doi.org/10.5555/1390681.1390693
https://doi.org/10.5555/1390681.1390693

Activation Pattern Monitoring with Statistical Guarantees 185

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A

Ahrendt, Wolfgang 11
Aichernig, Bernhard K. 11
Amundson, Isaac 117

B

Baum, Kevin 141, 146, 160
Ben Hajhmida, Moez 47
Burchardt, Carsten 83

C
Cofer, Darren 117

D
de Graaff, Thies 103

E
Ehlers, Riidiger 170
Etemadi, Khashayar 18

H

Hardin, David 117

Havelund, Klaus 11

Helali Moghadam, Mahshid 18
Helfer, Thorsten 141
Hertzberg, Niclas 63

K

Kamdoum Deameni, Loich 170
Kéreborn, Liv 63

Kerstan, Sophie 141

Author Index

L

Landt, Lennart 83
Langer, Markus 141, 160
Lazar, Veronika 160

Lee, Edward A. 3,47
Leucker, Martin 83
Lokrantz, Anna 63

M

Maslov, Nikita 170
Mohlmann, Eike 103
Miiller, Julian 103

P
Pettersson, Paul 18

S

Schmidt, Eva 141
Sesing-Wagenpfeil, Andreas
Sevenhuijsen, Merlijn 63
Sirjani, Marjan 18
Speith, Timo 141
Steingriiber, Andre 146
Strandberg, Per 18

T
Tahat, Amer 117

© The Editor(s) (if applicable) and The Author(s) 2026
B. Steffen (Ed.): AISoLA 2025, LNCS 16220, p. 187, 2026.

https://doi.org/10.1007/978-3-032-07132-3

141

https://doi.org/10.1007/978-3-032-07132-3

	 Preface
	 Organization
	Invited Keynote
	 Gaps in Generalization: Frontier Problems for Neurosymbolic AI

	Introduction to Section Formal Methods for Intersymbolic AI
	 Formal Methods for Intersymbolic AI
	 Contents

	Invited Keynotes
	Extended Abstract: Will Embodied AI Become Sentient?
	1 Embodied AI
	2 Subjective Knowledge
	3 First-Person Interaction
	4 Feedback
	5 Conclusion
	References

	AI Assisted Programming
	AI Assisted Programming (AISoLA 2025 Track Introduction)
	1 Introduction
	2 Contributions
	2.1 Talks with Papers in the Proceedings
	2.2 Talks Without Papers in the Proceedings

	3 Conclusion
	References

	LLM-Based Property-Based Test Generation for Guardrailing Cyber-Physical Systems
	1 Introduction
	2 Background on Property-Based Testing
	3 Proposed Approach
	3.1 Inputs of ChekProp
	3.2 Initial PBT Generation
	3.3 PBT Improvement Loop
	3.4 Output of ChekProp
	3.5 Implementation
	3.6 Property-Based Monitoring

	4 Experiments
	4.1 Research Questions
	4.2 Dataset
	4.3 RQ1: Property Relevance
	4.4 RQ2: PBT Quality

	5 Related Work
	6 Conclusion
	References

	RAG and Agentic Assistant: A Combined Approach
	1 Introduction
	2 Lingua Franca
	3 Code LLMs
	4 Enhancing LLM Capabilities
	4.1 RAG
	4.2 Agentic AI

	5 Code Generation with RAG
	6 Agentic Assistant
	7 Conclusion
	References

	CASP: An Evaluation Dataset for Formal Verification of C Code
	1 Introduction
	2 Background
	2.1 ANSI/ISO C Specification Language
	2.2 The Frama-C Framework

	3 Related Work
	3.1 Large-Scale Source Code Datasets
	3.2 Formal Specification Datasets Used in Literature
	3.3 Previous Work on LLMs for C Code and ACSL Specifications

	4 Dataset Collection
	4.1 Downloading the Stack
	4.2 Extracting Files Containing ACSL Specifications
	4.3 Minimally Complete C Files

	5 Verifying and Curating CASP Source Files
	5.1 Method

	6 CASP Pair Creation
	6.1 Motivation for Specification-Implementation Pairs
	6.2 Minimally Complete Files to Minimally Complete Pairs

	7 Dataset Statistics
	7.1 Semantic Distribution of File Contents

	8 Discussion and Analysis
	8.1 Current State of Affairs and the Need for CASP
	8.2 Dataset Composition and Analysis
	8.3 LLM-Based Specification Repair and Pair Extraction

	9 Conclusions and Future Work
	A Regex Patterns Used
	B Gemini Prompt
	C Function Pair Extraction
	References

	A Voice-Enabled Query Framework for Systems Engineering Artefacts
	1 Introduction
	2 The Modeling of Systems
	2.1 System Engineering
	2.2 Model-Based Systems Engineering

	3 AI, Voice Recognition, LLMs
	3.1 Comparison Realtime API and Assistant API
	3.2 Configuring Assistant API

	4 Our Solution
	4.1 The Information and Interaction Pipeline
	4.2 Interacting with the Model

	5 Evaluation
	6 Discussion
	7 Conclusion
	References

	Integrating LLMs with QC-OpenDRIVE: Ensuring Normative Correctness in Autonomous Driving Scenarios
	1 Motivation
	2 Related Work
	3 Integration of LLMs with QC-OpenDRIVE
	3.1 OpenDRIVE Generation Tasks for the Models

	4 Checking Normative Semantics
	4.1 OpenDRIVE Terminology
	4.2 Rule E5.9.1: road.geometry.contact_point

	5 Evaluation
	6 Conclusion
	References

	AGREE-Dog Copilot: A Neuro-Symbolic Approach to Enhanced Model-Based Systems Engineering
	1 Introduction
	2 Explainable AGREE
	2.1 Overview
	2.2 Making Counterexamples Actionable

	3 Motivations and Core Challenges
	3.1 Context-Aware Prompt Construction
	3.2 Ensuring Validity of Automated Repairs
	3.3 Minimizing User Effort and Interaction Latency

	4 AGREE-Dog Architecture and WorkFlow
	4.1 User Interface
	4.2 Backend Function Call Graph and Workflow Automation
	4.3 Context Selection and Memory Management Optimization
	4.4 Verification-Aware Feedback Loop and Repair Validity
	4.5 Traceability, Logging, and Continuous Refinement

	5 Evaluation Metrics
	5.1 Structural Metrics
	5.2 Temporal Metrics
	5.3 Composite Score: Structural and Temporal Dimensions

	6 Experimental Evaluation
	6.1 Evaluation Setup and Fault Injection Protocol
	6.2 Key Results

	7 Conclusions and Future Work
	A Appendix
	References

	Responsible and Trusted AI: An Interdisciplinary Perspective
	Responsible and Trusted AI: An Interdisciplinary Perspective (2025)
	1 Introduction
	2 The Imperative for Responsible and Trusted AI
	3 The Need for Interdisciplinary Approaches
	4 Core Interdisciplinary Themes in This Year’s Track
	5 Conclusion
	References

	Justifications for Democratizing AI Alignment and Their Prospects
	1 Democratic Approaches to the Normative Problem of AI Alignment
	2 Normative Disagreement Leaves a Justificatory Gap
	3 Instrumental Justifications for Democratic Alignment
	4 Non-instrumental Justifications for Democratic Alignment
	5 Conclusion
	References

	On the Complexities of Testing for Compliance with Human Oversight Requirements in AI Regulation
	1 Introduction
	2 The Possible Future of Testing for Compliance with Human Oversight Requirements
	3 Concluding Thoughts and Next Steps
	Appendix A
	References

	Supporting a SOTIF Safety Argument by Activation Pattern Monitoring with Statistical Guarantees
	1 Introduction
	2 Related Work
	3 How to Detect Cases in Which a System Was Not Designed to Operate In?
	3.1 A First Experiment Using One-Class Classification
	3.2 Treating the Out-of-Domain Detection Problem as a Two-Class Classification Instance
	3.3 Adding Statistical Guarantees

	4 Conclusion
	References

	Author Index

