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Abstract
In this article, the influence of large deformations on the effective permeability
of a bicontinuous porous material is investigated. On the fine-scale, Neo–Hooke
hyperelasticity is considered for the solid skeleton. In a third medium approach,
we model the pore space as filled with a softer material of the same type. Fluid
flow through the deformed pores is expressed in terms of a Stokes’ flow model.
The influence of the pore pressure on the deformation is neglected, resulting
in a one-way coupling which allows for a sequential solution of the two phys-
ical problems. The framework of Variationally Consistent Homogenization is
used to derive a two-scale formulation based on a Representative Volume Ele-
ment (RVE) characterizing the microstructure. Finally, a two-step procedure
to compute the deformation dependent permeability is established: Firstly, the
deformation of the RVE for a given macroscale deformation gradient is com-
puted. Secondly, sensitivities for the fluid flow through the deformed RVE are
computed and used to determine the effective permeability tensor. A numeri-
cal study is conducted for sets of RVEs with the same material parameters and
different porosity. For the case of uniaxial compression, a significant influence
of the deformation on the effective permeability is observed: For a macroscale
compression of 20%, the effective permeability orthogonal to the compression
direction is reduced by almost 60%.

K E Y W O R D S

effective permeability, large deformations, variationally consistent homogenization

1 INTRODUCTION

In a variety of fields and applications, the prediction of fluid flow through a porous medium is of interest. Some exam-
ples are geologic formations [24], concrete structures [11], and proton exchange membrane electrolyzers [23]. In most
cases, resolving the porous material numerically would result in excessive computational cost. It is, therefore, preferable
to employ a phenomenological model or use computational homogenization to ‘derive’ the macroscale response. For low
Reynold’s numbers, it is common to adopt Darcy’s law which relates the seepage velocity to the macroscale pressure gradi-
ent via the effective permeability of the porous medium [2, 21]. To determine the effective permeability can, indeed, turn
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out as a challenging task both experimentally and numerically. Over the years, a great number of methods for estimating
the effective permeability have been presented (see [4, 14, 16, 17] for reviews).

Depending on the application in mind, the interaction of the fluid flow with other physical fields are of interest: First
and foremost, the fluid flow in the pore space interacts with the deformation of the surrounding matrix [20]. Further, the
flows of multiple fluids may interact [1, 24]. Other effects might cause a transported species to be bound physically or
chemically to the matrix material [11].

Within the field of computational homogenization, different techniques have already been applied to this type of
problem. For example, asymptotic expansion based on Stokes flow coupled to linear elastic deformation has been pre-
sented in [15]. Variationally Consistent Homogenization (VCH) has been applied to a nonlinear flow problem in [18];
however, not accounting for interactions with the solid matrix.

In this contribution, we consider the deformation dependent permeability in a finite strain setting. First, the deforma-
tion of a porous medium is described for large deformations using a compressible Neo–Hookean material model. In this
step, the pore space is considered to be a soft solid to avoid self-penetration of the surrounding matrix. Next, a model of
Stokes flow in the deformed pore space is considered. A pull-back operation with the deformation gradient from the first
step is applied to express the problem in the undeformed configuration. The framework of VCH is applied to derive the
macroscale problem and an upscaling procedure from a Representative Volume Element (RVE).

The two key points of the one-way coupling are:

(i) We consider different time scales for the mechanical deformation (slow) and the Stokes flow problem (fast). As a
consequence, the flow state during deformation can be assumed to be always close to equilibrium.

(ii) The pore pressure magnitude is assumed to be small compared to the stresses related to the deformation.

Therefore, the action of fluid pressure on the solid skeleton is disregarded.
This approach allows for a sequential computation of the two physical problems. In reality, such a sequential order

of the process occurs, for example, during the production of components made of a soft porous material, such as the
assembly of electrolysis cells. In this case, the production process involves large deformation and one is interested in the
influence of the deformation on the permeability of the final product. For this type of application, we develop a consistent
homogenization method based on sets of RVEs with a realistic three-dimensional, bi-continuous microstructure. A third
medium approach is used to account for large deformations of the pore system. Moreover, direct upscaling is used to
efficiently compute the deformation dependent effective permeability.

The article is organized as follows: First, the balance and constitutive equations for the mechanical and fluid flow
problem on the fine-scale are presented in Section 2. Next, based on the concept of VCH, the pertinent two-scale analysis
is established in Section 3. The RVE-problem and the consequent upscaling procedure are considered in Section 4. Com-
putational results are presented and compared in Section 5. Finally, concluding remarks and an outlook to future work
are given in Section 6.

Regarding notation, meager type is used to denote scalars, whereas bold type is used to denote vectors as well as higher
order tensors. Scalar product (single contraction) is denoted by a dot. For example, for two vectors a,b and a second
order tensor A, we have a ⋅ b = aibi and (A ⋅ b)i = (A)ij(b)j in terms of their Cartesian components, where the Einstein
summation convention is used. To be consistent with index notation, ⬦ ⋅ 𝛁 (and not 𝛁 ⋅⬦) denotes the divergence (i.e.
(⬦)ij,j).

2 FINE-SCALE MODEL

2.1 Preliminaries

We consider a domain Ω with a fully resolved bicontinuous microstructure comprising a solid skeleton ΩS with a pore
system ΩP which is saturated with a fluid. The external boundary is denoted Γ and the interface of the phases is denoted
Γi = 𝜕ΩS ∩ 𝜕ΩP. On Γ we define N as the outward pointing normal vector in the initial configuration, while on Γi we
define N as the normal vector pointing into ΩS. Accounting for finite deformations, the corresponding quantities in the
current configuration are denoted 𝜔, 𝜔S, 𝜔P, 𝛾 , 𝛾 i, and n.

We consider a one-way coupled setting of mechanical deformation and flow of the incompressible fluid in the pore
space. Firstly, we assume that the contribution of the fluid to the mechanical response is negligible. Thus, for the
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mechanical problem, the pore space can be considered drained and the deformation can be computed independently of
the fluid pressure. After the deformation of the fluid domain has been computed, the flow of the fluid inside the deformed
pore space is computed in a separate step.

2.2 Mechanical problem

The deformation of the system is described by the mapping

𝝋 =

{
𝝋S ∶ ΩS → 𝜔S

𝝋P ∶ ΩP → 𝜔P
, (1)

with 𝝋(X) = X + u(X) where u(X) is the displacement field in a point X ∈ Ω. The deformation gradient is denoted F =
𝝋⊗ 𝛁X = I + u ⊗ 𝛁X , where I is the second order identity tensor and 𝛁X denotes the nabla operator in the reference
configuration, and J = det F is the Jacobian.

We consider the case of a drained (stress-free) pore space. In order to

(i) establish the complete map 𝝋 and
(ii) to prevent penetration of solid constituents

we shall consider a soft, yet aversive (enforcing J > 0) elasticity model in the pore space. This type of model for an
empty space is often referred to as third medium approach [9, 22].

With 𝝈 as the Cauchy stress and P ∶= J𝝈 ⋅ F−T as first Piola-Kirchhoff stress tensor, we adopt the material models

P(F) =

{
PS(F) in ΩS

PP(F) in ΩP . (2)

We choose a Neo–Hooke hyperelastic model for the stress in both phases. With the right Cauchy-Green deformation
tensor C = FT ⋅ F, the constitutive relation becomes

P(F) = F ⋅
[
G[I − C−1] + 𝜆 ln(J)C−1], (3)

where 𝜆 and G are the Lamé parameters. Before contact, the influence of the material in the pore space should be neg-
ligible. Thus, a very low stiffness in this phase is desirable. However, close to contact, the stress dramatically increases
due to the logarithmic term in (3), which impedes solving the problem. A larger stiffness of the pore space can reduce
the deformation of this phase and by that to some extend avoid the extreme region of the logarithmic expression. Yet, this
would imply a less accurate description of the problem before contact. Alternatively, regularization can be used to make
the low stiffness at contact computationally feasible (cf. [9, 22]). Here, regularization will not be discussed, because the
focus is on how to obtain the effective permeability for a deformed pore space.

To apply boundary conditions, the external boundary is split as Γ = Γu
D ∪ Γu

N into a Dirichlet part Γu
D and a Neumann

partΓu
N. OnΓu

D the displacement upre and onΓu
N the traction Tpre is prescribed. With this, the strong form of the mechanical

problem reads: Find u ∶ Ω → R3 that solves

− P ⋅ 𝛁X = 0 in Ω, (4a)

u = upre on Γu
D, (4b)

P ⋅ N = Tpre on Γu
N. (4c)

The weak form of the problem reads: Find u ∈ U that solves

∫Ω
[𝛿u ⊗ 𝛁X ] ∶ P(F)dΩ = ∫Γu

N

Tpre ⋅ 𝛿u dΓ ∀𝛿u ∈ U
0, (5)
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4 of 14 ROLLIN et al.

for the trial and test function spaces

U = {u ∈ [H1(Ω)]3 ∶ u|Γu
D
= upre}, (6a)

U
0 = {u ∈ [H1(Ω)]3 ∶ u|Γu

D
= 0}. (6b)

Here, H1(•) denotes the Sobolev space of functions with square integrable 0th and 1st order derivatives.

2.3 Fluid flow problem

For the deformed pore system, we shall now establish the seepage due to pressure gradients in the pore fluid. We consider
the fluid pressure p, fluid velocity v and viscous stress 𝝈v(v) with Stokes relation

𝝈v = 2𝜇[v ⊗ 𝛁]sym, (7)

where 𝛁 is the nabla operator in the current configuration and 𝜇 is the dynamic viscosity of the fluid. To apply boundary
conditions by prescribing a velocity vpre and traction tpre, the external boundary of the pore domain is split as 𝛾 ∩ 𝜕𝜔P =
𝛾v

D ∪ 𝛾v
N into a Dirichlet part 𝛾v

D and a Neumann part 𝛾v
N.

The strong form of incompressible (cf. (8b)) Stokes flow in the current configuration can be stated as: Find p ∶ 𝜔 → R

and v ∶ 𝜔 → R3 that solve

− [𝝈v(v) − pI] ⋅ 𝛁 = 0 in 𝜔P, (8a)
v ⋅ 𝛁 = 0 in 𝜔P, (8b)

v = vpre on 𝛾v
D, (8c)

[𝝈v(v) − pI] ⋅ n = tpre on 𝛾v
N, (8d)

v = 0 on 𝛾 i. (8e)

Next, we reformulate the problem in the reference configuration by i) expressing the current gradient in (8) as

[⬦⊗ 𝛁] = [⬦⊗ 𝛁X ] ⋅ F−1, (9)

and ii) conducting a pull-back using Piola’s identity

J[⬦ ⋅ 𝛁] =
[
J⬦ ⋅ F−T] ⋅ 𝛁X . (10)

Consequently, Stokes flow in the reference configuration can be stated as: Given vpre, Tpre, F, find v and p that solve

−
[
Pv(v,F) − pJF−T] ⋅ 𝛁X = 0 in ΩP

, (11a)

JF−T ∶ [v ⊗ 𝛁X ] = 0 in ΩP
, (11b)

v = vpre on Γv
D, (11c)[

Pv(v,F) − pJF−T] ⋅ N = Tpre on Γv
N, (11d)

v = 0 on Γi, (11e)

where the viscous part of the 1st Piola-Kirchhoff stress tensor reads*

Pv(v,F) = D(F) ∶ [v ⊗ 𝛁X ], (12a)

D(F) ∶= J𝜇
[

I ⊗ [F−1 ⋅ F−T] + F−T⊗F−1
]
. (12b)

*We introduce the notation, (A ⊗ B)ijkl ∶= AikBjl, (A⊗B)ijkl ∶= AilBjk.
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ROLLIN et al. 5 of 14

F I G U R E 1 Schematic visualization of an RVE.

The weak form reads: Given vpre, Tpre, F, find v ∈ V and p ∈ P that solve

∫ΩP
[𝛿v ⊗ 𝛁X ] ∶

[
Pv(v,F) − pJF−T]dΩ = ∫Γv

N

𝛿v ⋅ TpredΓ ∀𝛿v ∈ V
0, (13a)

∫ΩP
𝛿pJF−T ∶ [v ⊗ 𝛁X ]dΩ = 0 ∀𝛿p ∈ P, (13b)

for the trial and test function spaces

V = {v ∈ [H1(ΩP)]3 ∶ v|Γv
D
= vpre, v|Γi = 0}, (14a)

V
0 = {v ∈ [H1(ΩP)]3 ∶ v|Γv

D
= 0, v|Γi = 0}, (14b)

P = L2(ΩP). (14c)

3 VARIATIONALLY CONSISTENT HOMOGENIZATION

3.1 Preliminaries

Homogenization is carried out on given realization of the microstructure, defined by an RVE; however, whether the RVE
is actually representative is not an issue in this article. We denote the RVE domain Ω□, Γ□ is its boundary, (ΩS

□, ΩP
□,

ΓS
□, ΓP

□) are associated with the corresponding phases, and Γi
□ is their interface. A visualization of the RVE is given in

Figure 1. Note that, although it could not be visualized in Figure 1, both ΩS
□, ΩP

□ are assumed to be continuous.
Volume and surface averages of an intensive field ⬦ are defined as

⟨⬦⟩S
□ ∶= 1|Ω□| ∫ΩS

□

⬦dΩ, ⟨⬦⟩P
□ ∶= 1|Ω□| ∫ΩP

□

⬦dΩ, ⟨⬦⟩□ ∶= ⟨⬦⟩S
□ + ⟨⬦⟩P

□, (15a)

⟨⬦⟩S ∶= 1|ΩS
□| ∫ΩS

□

⬦dΩ, ⟨⬦⟩P ∶= 1|ΩP
□| ∫ΩP

□

⬦dΩ, (15b)

⟪⬦⟫□ ∶= 1|Ω□| ∫Γ□

⬦dΓ. (15c)

The macroscale representation of a quantity ⬦ is denoted ⬦.
For a mirror point X ∈ Γ+

□ and the corresponding image point X−(X) ∈ Γ□ ⧵ Γ+
□, we define the RVE jump operator⟦•⟧□(X) ∶= •(X) − •(X−(X)).

 15222608, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.70010 by C

halm
ers U

niversity O
f T

echnology, W
iley O

nline L
ibrary on [07/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 14 ROLLIN et al.

3.2 Mechanical problem

The mechanical RVE problem can be derived as presented in [19]: Given F, find u ∈ U□ and 𝝀 ∈ L□ that solve

⟨P(u) ∶ [𝛿u ⊗ ∇X ]⟩□ − 1|Ω□| ∫Γ+
□

𝝀 ⋅ ⟦𝛿u⟧□dΓ = 0 ∀𝛿u ∈ U□, (16a)

− 1|Ω□| ∫Γ+
□

𝛿𝝀 ⋅ ⟦u⟧□dΓ = − 1|Ω□| ∫Γ+
□

𝝀⊗ ⟦X − X⟧□dΓ ∶ [F − I] ∀𝛿𝝀 ∈ L□, (16b)

with the trial and test function spaces

U□ = {u ∈ [H1(Ω□)]3 ∶ ⟨⟨u⟩⟩□ = 0}, (17a)

L□ = [L2(Γ+
□)]

3. (17b)

3.3 Fluid flow problem

3.3.1 Two-scale problem

Firstly, we introduce running averages into the weak form equations. The fluid flow problem now reads:

∫ΩP
⟨[𝛿v ⊗ 𝛁X ] ∶

[
Pv(v,F) − pJF−T]⟩□dΩ = ∫Γv

N

𝛿v ⋅ TpredΓ ∀𝛿v ∈ V
0, (18a)

∫ΩP
⟨𝛿pJF−T ∶ [v ⊗ 𝛁X ]⟩□dΩ = 0 ∀𝛿p ∈ P

0. (18b)

Then, we assume the additive decomposition of the pressure in macroscale contribution pM and sub-scale fluctuation
part ps.

p = pM + ps. (19)

Moreover, we utilize a linear prolongation of the homogenized macroscale pressure p and its gradient G ∶= 𝛁X p

pM[p] = p(X) + G(X) ⋅ [X − X
P
] for X ∈ ΩP

□(X), (20)

where X
P
= ⟨X⟩P.

Next, we define the homogenization operators

p□[p] ∶= ⟨p⟩P, (21a)

G□[p] ∶= ∫ΓP,+
□

⟦p⟧□NdΓ ⋅

[
∫ΓP,+

□

⟦X − X⟧□ ⊗ NdΓ

]−1

, (21b)

and introduce the constraints

p□[ps] = 0, (22a)

G□[ps] = 0. (22b)

By incorporating the decomposition of the pore pressure in (19) with (20), we ensure that p□[p] = p and G□[p] =
G holds. In order to show this result, we use the identities p□[pM] = p and G□[pM] = G together with the
constraints (22a,b).
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ROLLIN et al. 7 of 14

To apply boundary conditions, we decompose the external part of the pore space boundary into Dirichlet and Neu-
mann parts as Γ ∩ 𝜕ΩP = Γv

D ∪ Γv
N. Further, we express the applied tractions in terms of their fluctuation part as Ts =

T + pMJF−T ⋅ N. The weak form of the fluid flow problem then reads: Given Ts,pre, vpre, ppre, F, find v ∈ V, ps ∈ Ps and
p ∈ P that solve

∫ΩP
⟨[𝛿v ⊗ 𝛁X ] ∶

[
Pv(v,F) − psJF−T] + 𝛿v ⋅ JF−T ⋅

[
𝛁X pM[p]

]⟩□dΩ = ∫Γv
N

𝛿v ⋅ Ts,predΓ ∀𝛿v ∈ V
0, (23a)

∫ΩP
⟨𝛿psJF−T ∶ [v ⊗ 𝛁X ]⟩□dΩ = 0 ∀𝛿ps ∈ P

s, (23b)

− ∫ΩP
⟨v ⋅ JF−T ⋅

[
𝛁X pM[𝛿p]

]⟩□dΩ = −∫Γv
D

pM[𝛿p]vpre ⋅ JF−T ⋅ NdΓ ∀𝛿p ∈ P
0
, (23c)

for the trial and test function spaces

V = {v ∈ [H1(ΩP)]3 ∶ v|Γv
D
= vpre, v|Γi = 0}, (24a)

V
0 = {v ∈ [H1(ΩP)]3 ∶ v|Γv

D
= 0, v|Γi = 0}, (24b)

P
s = {p ∈ H

1(ΩP) ∶ p□[p|ΩP
□
] = 0,G□[p|ΩP

□
] = 0}, (24c)

P = {p ∈ H
1(ΩP) ∶ p|Γv

N
= ppre}, (24d)

P
0
= {p ∈ H

1(ΩP) ∶ p|Γv
N
= 0}. (24e)

Remark 1. By choosing the homogenization operators (21a,b), we (implicitly) require higher regularity of the
pore pressure, seeking p ∈ H1(ΩP) ⊂ L2(ΩP).

3.3.2 Macroscale problem

By choosing 𝛿ps = 0 and 𝛿v = 0 we obtain the macroscale problem: Given W
pre

and ppre, find p ∈ P that solves

−∫Ω
W ⋅ [𝛁X𝛿p]dΩ = −∫ΓN

𝛿pW
pre

dΓ ∀𝛿p ∈ P
0
, (25)

with the trial and test function spaces

P = {p ∈ H
1(Ω) ∶ p|ΓD

= ppre}, (26a)

P
0
= {p ∈ H

1(Ω) ∶ p|ΓD
= 0}, (26b)

and the effective Piola seepage

W = ⟨v ⋅ JF−T⟩P
□. (27)

3.3.3 RVE problem

By choosing 𝛿p = 0 we obtain the RVE problem for periodic boundary conditions: Given F and G, find v ∈ V□ and ps ∈ P□

that solve

⟨[𝛿v ⊗ 𝛁X ] ∶ D(F) ∶ [v ⊗ 𝛁X ]⟩P
□ −

⟨
psJF−T ∶ [𝛿v ⊗ 𝛁X ]

⟩P
□ = −⟨𝛿v ⋅ JF−T⟩P

□ ⋅ G ∀𝛿v ∈ V□, (28a)

−
⟨
𝛿psJF−T ∶ [v ⊗ 𝛁X ]

⟩P
□ = 0 ∀𝛿ps ∈ P□, (28b)
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with trial and test function spaces

V□ = {v ∈ [H1(ΩP)]3 ∶ v|Γi
□
= 0, ⟦v⟧□ = 0 on ΓP,+

□ }, (29a)

P□ = {p ∈ H
1(ΩP) ∶ p□[p] = 0, ⟦p⟧□ = 0 on ΓP,+

□ }. (29b)

Remark 2. Since the constraint G□[ps] = 0 ∀ps ∈ P□ is automatically satisfied by the choice of periodic
boundary conditions, it is not explicitly imposed in (29b).

4 UPSCALING

Since the Stokes flow problem for a given deformation F is linear in v and p, the effective flow properties can be computed
once and for all by direct upscaling via unit loadings and sensitivities. We can express the effective seepage in a format
according to Darcy’s law

W = −K ⋅ G, (30)

where K is the effective permeability tensor for a specific deformation F. Next, we define (v̂(i), p̂s(i)) as the solution of the
RVE-problem (28) for a unit loading G = ei. For given F, we seek v̂(i){F} ∈ V□, p̂s(i){F} ∈ P□, such that for i ∈ {1, 2, 3}

⟨
[𝛿v ⊗ 𝛁X ] ∶ D(F) ∶ [v̂(i) ⊗ 𝛁X ]

⟩P

□
−

⟨
p̂s(i)JF−T ∶ [𝛿v ⊗ 𝛁X ]

⟩P

□
= −⟨𝛿v ⋅ JF−T⟩P

□ ⋅ ei ∀𝛿v ∈ V□, (31a)

−
⟨
𝛿psJF−T ∶ [v̂(i) ⊗ 𝛁X ]

⟩P

□
= 0 ∀𝛿ps ∈ P□, (31b)

Now, we may express the velocity field as

v =

[∑
i

v̂(i) ⊗ ei

]
⋅ G. (32)

Finally, the effective permeability can be computed as

K =
∑

i
− ⟨v̂(i) ⋅ JF−T⟩P

□ ⊗ ei =
∑

i,j

⟨
[v̂(i) ⊗ 𝛁X ] ∶ D(F) ∶ [v̂(j) ⊗ 𝛁X ]

⟩P

□
ei ⊗ ej. (33)

In order to show the first identity in (33), we insert (32) into the definition (27) of the effective seepage and rearrange the
result into a format matching (30). To show the second identity, from which it appears that K is symmetrical, we argue as
follows: Set 𝛿v = v̂(j) in (28a) and 𝛿ps = p̂s(j) in (28b) to obtain the identity

(
K
)

ij
= −

⟨
v̂(j) ⋅ JF−T

⟩P

□
⋅ ei =

⟨
[v̂(j) ⊗ 𝛁X ] ∶ D(F) ∶ [v̂(i) ⊗ 𝛁X ]

⟩P

□
. (34)

5 NUMERICAL STUDY

5.1 Preliminaries

We consider artificially generated unit cells according to the procedure presented in [7]. We consider periodic unit cells,
which, for the sake of simplicity, we refer to as RVEs. For the matrix material, we choose the Lamé constants 𝜆 = 84 GPa
and G = 38 GPa (see A), whereas for the pore space we use 𝜆 = 8.4 MPa, G = 3.8 MPa together with the viscosity 𝜇 =
1 mPa ⋅ s (approximating water at room temperature).

The numerical results are obtained using the Finite Element tool box Ferrite.jl [6]. For the mechanical problem
(16a,b), linear tetrahedral elements are used for the displacement field. As a special case of periodicity, Dirichlet boundary
conditions are applied. For the fluid flow problem (31a,b), Taylor-Hood elements are used for pressure and velocity.

 15222608, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.70010 by C

halm
ers U

niversity O
f T

echnology, W
iley O

nline L
ibrary on [07/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ROLLIN et al. 9 of 14

5.2 Simple RVE with a single cylindrical pore

As the first validation of the method, we consider a simple RVE with a single cylindrical pore aligned with the x1-axis. The
edge length of the RVE is lRVE = 1 m and the pore radius is r = 0.25 m. For different mesh resolutions, the effective seepage
velocity in pore direction W1 resulting from a pressure gradient of 1 Pa

m
in pore direction is computed. As mechanical

loading, compression to F33 = 0.8 is applied. More specifically, macroscale deformation gradients are prescribed with
F11 = F22 = 1 and Fij = 0 for i ≠ j. The remaining component F33 is varied from 1 to 0.8 in load steps. In Figure 2, a
visualization of the undeformed and deformed RVE with an average mesh size of lmesh = 0.055 m is given.

For all mesh resolutions, the resulting seepage velocities in the undeformed and the deformed state are collected in
Figure 3. For the undeformed RVE, an analytical reference solution can be derived assuming Poiseuille flow.

For increasing mesh resolution, we observe convergence of the effective seepage velocity in the undeformed RVE to
the reference value from Poiseuille flow (cf. Figure 3a). In Figure 3b, for the deformed RVE, one can observe convergence
towards a value of W 1 which is approximately 33% of the corresponding value in the undeformed RVE. The great influence
of the deformation on the effective permeability can be explained by the change in pore cross section area. The pore cross

F I G U R E 2 RVE with a single cylindrical pore in the undeformed state and for F33 = 0.8. The average mesh size is lmesh = 0.055 m
which corresponds to 4.55 elements across the pore radius r = 0.25 m, (A) Undeformed RVE mesh. The pore space is colored red and the
surrounding matrix light blue. (B) Deformed RVE with velocity magnitude in the pore space. The matrix is colored light gray.

(A) (B)

F I G U R E 3 Mesh convergence study: Non-dimensional effective seepage velocity W
∗
1 = 𝜇

l2
RVEG

W1 through an RVE with a single

cylindrical pore for a pressure gradient of magnitude G = 1 Pa
m

(giving W
∗
1 = 10−3 s

m
⋅ W1) in pore direction and different mesh resolutions.

The mesh resolution is quantified by the average number of elements across the pore radius computed from the average mesh size,
(A) Undeformed RVE. (B) Deformed RVE for compression to F33 = 0.8.
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10 of 14 ROLLIN et al.

F I G U R E 4 Example of an RVE in the undeformed state and for F33 = 0.8. The pore space is colored red and the surrounding matrix
light blue, (A) Undeformed RVE. (B) Deformed RVE.

section greatly influences the fluid flow velocity due to the no-slip condition on the interface to the solid skeleton and the
resulting quadratic velocity profile.

Furthermore, for a coarse mesh resolution, we observe that W 1 in the undeformed RVE is underestimated while
in the deformed RVE it is overestimated. The latter can be explained by an underestimation of the deformation. Over-
all, this indicates that the ratio of effective permeability in the deformed and undeformed configuration is likely to be
overestimated.

For the following study of more complex RVEs we consider 3 to 4 elements across the mean pore radius to be sufficient
for the purpose of demonstrating the presented method. Although we do not quantify the pore size, we try to choose the
mesh resolution accordingly.

5.3 Complex RVEs under uniaxial compression

Next, sets of statistically generated RVEs with a more complex microstructure are considered under uniaxial compression.
The same compressive loading as in the previous Section is applied to the mechanical problem (16a,b) and the resulting
deformation is used in the fluid flow problem (31a,b). An example RVE in the initial and final configuration is depicted
in Figure 4. For these two states, the magnitude of the fluid velocity in the pore space is depicted in Figure 5.

It can be observed that the compression significantly reduces the pore size. Moreover, for the same pressure gradient,
the fluid velocity in the deformed material is significantly smaller than in the undeformed state. This indicates a great
influence of the deformation on the effective permeability.

To study the effective permeability, sets of 10 RVEs are investigated. All RVEs have the same size lRVE = 1 𝜇m and
mesh resolution lmesh = 0.045 ± 0.005 𝜇m. Each set contains RVEs with a certain porosity nP ∈ {40%, 50%, 60%}.

When applying the compression, the effective permeability is computed for some of the load steps from (31a,b) and
(33). The resulting components of K are depicted in Figure 6 and normalized values are presented in Figure 7.

The values in Figure 6 for F33 = 1 confirm the expectation that the permeability in the undeformed state is isotropic
and increases significantly with the porosity. Interestingly, the relative change during deformation is very similar upon
changing porosity (cf. Figure 7).

Due to the uniaxial loading, the change in permeability is strongly anisotropic. For a compression of 20% strain,
orthogonal to the compression direction a decrease of permeability of almost 60% can be observed while in compression
direction the decrease is about 20%. The decrease in permeability orthogonal to the compression direction is about three
times larger than in compression direction. This is plausible, as the applied loading directly reduces the cross section area
of pores which are aligned orthogonal to the compression direction, while pores aligned with the compression direction
are influenced by transverse expansion effects: The RVE as a whole is prescribed to have no effective transverse expansion,
however, the matrix material inside is allowed to expand into the pore space. Note that upon computing effective perme-
abilities in a kinematically nonlinear description covers 2 effects: (1) Reducing the pore size and, hence, the geometric
permeability of the structure; (2) changing the RVE length (in our case in e3-direction) which is influencing the length
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ROLLIN et al. 11 of 14

F I G U R E 5 Velocity magnitude ||v|| in the pore space of an example RVE in the undeformed state and for F33 = 0.8 resulting from a
pressure gradient G = e1

Pa
m

. The matrix is colored light gray, (A) Undeformed RVE. (B) Deformed RVE.

F I G U R E 6 Non-dimensional components of the effective permeability tensor K versus the applied deformation for sets of 10 RVEs.
Each set is characterized by a different porosity nP. The lines represent the mean values of the sets and the shaded areas around them
visualize the standard deviation. The non-dimensional components are computed as K

∗
ij = 𝜇

l2
RVE

Kij with 𝜇

l2
RVE

= 109 Pa⋅s
m2 in this example.

F I G U R E 7 Normalized components of the effective permeability tensor K versus the applied deformation for sets of 10 RVEs. Each set
is characterized by a different porosity nP. The values are normalized with the components of K

0
as the effective permeability tensor of the

corresponding undeformed RVE. The lines represent the mean values of the sets.

on which the pressure gradient is acting. The first effect decreases permeability perpendicular to compression direction,
the latter increases effective permeability in loading direction.

6 CONCLUSION

In this article, we have developed a procedure for computing the deformation-dependent effective permeability of a bicon-
tinuous porous material. The deformation is computed in a finite strain setting applying a compressible Neo–Hookean

 15222608, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.70010 by C

halm
ers U

niversity O
f T

echnology, W
iley O

nline L
ibrary on [07/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 14 ROLLIN et al.

material model. The influence of the pore pressure on the deformation was neglected. Instead, the pore space was consid-
ered a fictitious, soft, elastic solid. This way, self-penetration of the matrix is prevented and the resulting deformation of
the pore space can conveniently applied to the second problem. Fluid flow in the deformed pore space was expressed in
terms of a Stokes flow model. The computed deformation was accounted for by using the resulting deformation gradient
for a pull-back operation.

The VCH framework was employed to derive an upscaling scheme based on a set of numerically generated RVEs
representing the microstructure. To efficiently compute the deformation-dependent effective permeability, a two-step
procedure was developed using a third-medium approach to accommodate large deformations of the pore system. In the
first step, the deformation of each RVE is determined for a given macroscale deformation gradient. In the second step,
the linear nature of the flow problem at fixed deformation is exploited to evaluate the effective permeability from the
sensitivities of the velocity field with respect to macroscale pressure gradients.

A numerical study was conducted on a set of RVEs with similar porosity and the same material parameters. Uniaxial
compression was considered to investigate the influence of the deformation on the effective permeability. A signifi-
cant reduction of effective permeability was observed for a compression up to 20% strain: In compression direction the
reduction was about 20% and in orthogonal directions about 60%.

The great influence of the deformation motivates further research for accurate prediction of the effective permeability.
A natural next step would be the extension of the presented one-way coupled approach to a fully coupled model. The fluid
traction (from the fluid pressure) will then be correctly accounted for at the computation of the deformed porous skeleton
and porespace. Obviously, this calls for an iterative procedure. Moreover, a validation with experimental data would be
valuable.
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APPENDIX A. MATERIAL PARAMETERS FOR THE MATRIX PHASE

As example material, we consider an anode catalyst layer in a polymer electrolyte membrane water electrolyzer. The
matrix material of this layer is assumed to be produced from Nafion® D2020 and Iridium particles. Since mechanical
properties of this specific material have not been found in the literature, we use a rough estimation of elastic parameters.

Firstly, we need parameters for the constituents of the matrix:

• We consider a Nafion® N117 membrane as reference material to find estimates for Nafion® D2020. For such a porous
membrane a Young’s modulus of EM ≈ 1.6 GPa is assumed based on [10]. Estimating the porosity of the membrane to
be nM

P ≈ 0.5 (cf, [8]), we choose EN ≈ EM
nM

P
= 3.2 GPa as Young’s modulus of the pure Nafion®. Using a Poisson’s ratio of

𝜈N ≈ 0.49 as estimate for a polymer, we obtain the Lamé parameters 𝜆N ≈ 52.6 GPa and GN ≈ 1.07 GPa.
• For Iridium, elastic parameters are taken from [12] to obtain the Lamé parameters 𝜆I ≈ 228 GPa and GI ≈ 210 GPa.

Next, we need the volume fractions of the constituents. Assuming an Iridium content of 2 ⋅ 103 kg
m3 (based on 2 mg

cm2

loading [13] and 10 𝜇m layer thickness [5]) and using the density of Iridium 𝜌I ≈ 22.56 ⋅ kg
m3 (cf. [3]), we estimate the
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volume fraction of Iridium in the overall catalyst layer to be nCL
I ≈ 0.089. For an assumed porosity of about nCL

P ≈ 0.5 of
the catalyst layer, the volume fraction of Nafion® is calculated as nCL

N ≈ nCL
P − nCL

I = 0.411. The volume fractions of the
two materials with respect to only the matrix phase are obtained as

nI =
nCL

I

nCL
P

= 0.178, (A1a)

nN =
nCL

N

nCL
P

= 0.822. (A1b)

Finally, we estimate the Lamé parameters for the matrix formed by Nafion® D2020 and Iridium particles as:

𝜆 = nN𝜆N + nI𝜆I ≈ 84 GPa, (A2a)
G = nNGN + nIGI ≈ 38 GPa. (A2b)
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