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Abstract
Phonons are collective lattice excitations that can be understood as quantized modes
of vibration. In recent years, it has been shown that a particular kind of phonons,
namely axial phonons, or circularly polarized phonons, can inducemagnetization of the
material. Excitingly, experimental evidence has shown that the arising magnetization
is unexpectedly large. Understanding this phenomenon has been an active topic of
research in recent years.

This thesis presents the contributions to this area based on two papers. The first paper
presents a microscopic theory for magnetization induced by axial phonons. This theory
is based on treating the interaction between the phonons and the electrons as a second
order perturbation of the system. The second paper reviews the recent progress of the
field. Here, the concept of axial phonons is introduced alongside with the phenomeno-
logical arguments for emergent magnetization. A summary of the experimental obser-
vations of the magnetization induced by axial phonons is also provided. Additionally,
an overview of recently proposed microscopic theories of the effect is presented. Fi-
nally, in an additional chapter the perspective of observing the effect of axial phonons
on other physical phenomena, such as the conventional and the anomalous Hall effect,
is discussed.

Keywords: Lattice vibrations, axial phonons, circularly polarized phonons, magnetism,
inverse Faraday effect, electron-phonon coupling
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1
Introduction

Phonons are collective excitations of the crystal lattice that can be understood as wave
packets of atomic vibrations [1], and can therefore be treated as quasiparticles. They
are typically described in terms of the displacement of atoms from their equilibrium
positions. This thesis focuses on a particular kind of phonons in which the atoms move
in a circular trajectory. Such phonon modes, known as circularly polarized or axial
phonons, are distinguished by their nonzero angular momentum.

Circularly polarized phonons have recently become an active area of research be-
cause of their ability to induce magnetization even in materials without preexisting
magnetism due to electronic spin, as illustrated in Fig. 1.1. Thus, axial phonons open
a new way of influencing and controlling magnetic properties of a material, which has

Magnetization

Figure 1.1: Schematic illustration of circularly polarized (axial) phonons represented by col-
lective vibrations in which the atoms move in circular orbits. The resulting magnetization is
shown as an upwards arrow.
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Chapter 1. Introduction

potential applications in data storage and processing and spintronics. However, in or-
der to utilize this potential, there needs to be a reliable way of predicting the size of the
emergent magnetization.

The arising magnetization can be explained by the fact that a cyclotron motion of a
charged particle is expected to result in a magnetic moment, due to the fact that the
magnetic moment of a particle is proportional to its angular momentum [2]. Therefore,
a simple estimate of the size of the phono-magnetic effects can be made through the
gyromagnetic ratio, i.e., the proportionality constant between the angular momentum
and the resulting magnetic moment. The gyromagnetic ratio is largely determined by
the mass of the particle. For a mass of an ion, an estimate based on the gyromagnetic
ratio gives a magnetic moment on a scale of 10−6𝜇B.

However, this estimate does not agree with the experimental observations. Recently,
a number of experiments have been conducted to detect andmeasure the resultingmag-
netization [3–18]. A common thread that links these observations is that they report
a magnetic moment several orders of magnitude larger than what the gyromagnetic
ratio would indicate. This highlights a gap in the understanding of phono-magnetic
effects. Evidently, the cyclotron motion of a charged particle cannot fully explain the
magnetization arising from circularly polarized phonons. However, what other factors
contribute to this magnetization remains unclear. This thesis explores this topic by
attempting to answer the following questions:

• Apart from ionic motion, what other effects contribute to the phono-
magnetic effects resulting in the large magnetization observed experimen-
tally?

• How can we better understand the nature of the magnetization induced
by axial phonons and how does it affect other physical phenomena such
as the Hall effect?

To address these questions, we first provide background information on phonons
in Chapter 2. Furthermore, in this chapter we phenomenologically motivate the con-
nection between phonon angular momentum and magnetization. We proceed to give
an overview of the experimental evidence that suggests that this magnetic moment
reaches large values. Finally, we give an argument for investigating the role of elec-
trons in phono-magnetic effects. In Chapter 3, we introduce a formalism for explain-
ing and predicting phonon-induced magnetization, which is based on time-dependent
perturbation theory and electron-phonon coupling. In our formalism, we consider the
effect as the phonon analogue to the optical inverse Faraday effect. Further, in Chapter
4, we explore the second question presented above, investigating the possibility of us-
ing conventional and anomalous Hall effects to understand the nature of the effective
magnetic field induced by axial phonons. We also present a summary of the papers
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included in Chapter 5. Finally, we conclude the thesis in Chapter 6.
This work is based on the two attached papers. Paper I and II deal with the first

question. Paper I proposes a new microscopic theory for the magnetization arising
from axial phonons presented in Chapter 3, while Paper II reviews recent progress in
the field, outlined in Chapter 2. The second question is addressed in Chapter 4, which
explores the possibilities of extending and verifying the progress outlined in Paper II.
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2
Role of electrons in

phono-magnetic effects

In this chapter, we first introduce the key concepts related to phonons in section 2.1 and
then proceed to motivate, from a phenomenological perspective, the contribution of ax-
ial phonons to magnetization. To provide this motivation, we first discuss the emergent
magnetization in terms of Landau theory in section 2.2. In section 2.3 we then explain
the connection between circularly polarized phonons and magnetization in terms of
dynamical multiferroicity, i.e., a phenomenon in which a time-varying electric polar-
ization induces magnetism in an otherwise non-magnetic material [19]. We proceed
to outline the experimental observations of phono-magnetic effects in section 2.4. As
noted in Chapter 1, the observed magnetization is significantly larger than previously
expected. Finally, in section 2.5, we argue that the interaction between electrons and
phonons may explain the large magnetization, which motivates the further direction
of this thesis.

2.1 Phonons as collective lattice displacement
As mentioned in the introductory chapter, phonons are collective crystal lattice exci-
tations. They can be described by the displacement 𝝉 of individual atoms from their
equilibrium positions:

𝝉𝑝𝑗 = 𝑹𝑝𝑗 − 𝑹0
𝑝𝑗 . (2.1)

Here, 𝑝 denotes the unit cell in the crystal and 𝑗 an atom in the unit cell. To study
phonons, it is convenient to use the harmonic approximation which involves Taylor
expanding the total potential energy 𝑈 up to the second order around the equilibrium
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Chapter 2. Role of electrons in phono-magnetic effects

positions of the atoms [20]:

𝑈 = 𝑈 0 + ∑
𝑝𝑗𝛼

𝜕𝑈 (𝝉0)
𝜕𝜏𝑝𝑗𝛼

𝜏𝑝𝑗𝛼 + ∑
𝑝𝑗𝛼

𝑝′𝑗′𝛼′

𝜕𝑈 (𝝉0)
𝜕𝜏𝑝𝑗𝛼𝜕𝜏𝑝′𝑗′𝛼′

𝜏𝑝𝑗𝛼𝜏𝑝′𝑗′𝛼′ . (2.2)

Here, 𝛼 denotes the Cartesian direction. The second term contains the first derivative
of the potential energy with respect to position, which can be recognized as the force,

𝐹𝑝𝑗𝛼 (𝝉0) = −
𝜕𝑈(𝝉0

)
𝜕𝜏𝑝𝑗𝛼

. Assuming that at the equilibrium position 𝝉0 = 0 there are no
external forces acting on the atoms, we can set the second term to zero. This way to
define force also allows us to rewrite the classical equation of motion as:

𝑚𝑝𝑗 ̈𝜏𝑝𝑗 = − ∑
𝑝′𝑗′𝛼′

𝐶𝑝𝑗𝛼,𝑝′𝑗′𝛼′𝜏𝑝′𝑗′𝛼′ , (2.3)

where 𝐶𝑝𝑗𝛼,𝑝′𝑗′𝛼′ is a force constant matrix, which is defined as

𝐶𝑝𝑗𝛼,𝑝′𝑗′𝛼′ = ∑
𝑝𝑗𝛼

𝑝′𝑗′𝛼′

𝜕𝑈(𝝉0)
𝜕𝜏𝑝𝑗𝛼𝜕𝜏𝑝′𝑗′𝛼′

. (2.4)

Assuming that the solutions to Eq. (2.3) have the form of plane waves allows to rewrite
Eq. (2.3) in the form of an eigenvalue problem:

∑
𝑗′𝛼′

𝐷𝑗𝛼,𝑗′𝛼′(𝒒)𝜉𝑗′𝛼′,𝜈(𝒒) = 𝜔2
𝒒𝜈𝜉𝑗𝛼,𝜈(𝒒), (2.5)

where 𝐷𝑗𝛼,𝑗′𝛼′(𝒒) is the dynamical matrix, defined as

𝐷𝑗𝛼,𝑗′𝛼′(𝒒) = 1
√𝑚𝑗𝑚𝑗′ ∑𝑝

𝐶0𝑗𝛼,𝑝𝑗′𝛼′ exp (𝑖𝒒 ⋅ 𝑹𝒑), (2.6)

with 𝒒 denoting the quasimomentum. The dynamical matrix is Hermitian, and there-
fore its eigenvalues are real. Specifically, its eigenvalues are the phonon frequency
modes 𝜔𝒒𝜈 , which can be obtained from the eigenvalue problem in Eq. (2.5). The
eigenvectors 𝜉𝑗𝛼,𝜈(𝒒) are commonly referred to as phonon polarization vectors. The
polarization vectors are orthonormal [20]:

∑𝜈
𝜉∗

𝑗′𝛼′,𝜈(𝒒) 𝜉𝑗𝛼,𝜈(𝒒) = 𝛿𝑗𝑗′ 𝛿𝛼𝛼′ ,

∑
𝑗𝛼

𝜉∗
𝑗𝛼,𝜈(𝒒) 𝜉𝑗𝛼,𝜈′(𝒒) = 𝛿𝜈𝜈′ .

(2.7)
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2.2. Landau theory

For each ion 𝑗, Eq. (2.5) gives us a set of eigenvalues and eigenvectors denoted by 𝜈,
which also depend on the quasimomentum 𝒒. The different eigenvalues correspond to
the distinct phonon frequency modes, 𝜔𝒒𝜈 . Since we applied the harmonic approxima-
tion, we can now view each phonon mode as an independent harmonic oscillator with
frequency 𝜔𝒒𝜈 [20].

Phonon modes can be classified as linear (e.g., optical or acoustical) or circularly
polarized, which are also referred to as axial phonons. This thesis focuses primarily
on the latter variety, which is defined as a phonon with a non-zero phonon angular
momentum:

𝑳ph = 𝒖 × 𝒖̇. (2.8)

Here, instead of displacement 𝝉 , phonon normal coordinates are used. They are defined
as 𝒖𝑝𝑗 = √𝑚𝑝𝑗𝝉𝑝𝑗 .

2.2 Landau theory
Magnetization arising from circularly polarized phonons can bemotivated phenomenol-
gically through the use of free energy [21]. In order to do that, we consider two degen-
erate linearly polarized phonon modes labeled by 𝜇 and 𝜈. The degeneracy allows us
to introduce a basis transform from {𝑢𝜇, 𝑢𝜈} to a circularly polarized basis, {𝑢𝑅, 𝑢𝐿}. In
this new basis, the displacement can be written as

𝒖(𝑡) = (
1

√2
𝑢𝑅( ̂𝒆𝜇 + 𝑖 ̂𝒆𝜈) + 1

√2
𝑢𝐿( ̂𝒆𝜇 − 𝑖 ̂𝒆𝜈))𝑒𝑖𝜔ph𝑡, (2.9)

with 𝑢𝑅 = (𝑢𝜇 − 𝑖𝑢𝜈)/√2 and 𝑢𝐿 = (𝑢𝜇 + 𝑖𝑢𝜈)/√2. With the displacement defined by
Eq. (2.9) we can define the free energy function as

𝐹𝑢 = 𝜒𝐵𝑧(𝑢𝑅𝑢∗
𝑅 − 𝑢𝐿𝑢∗

𝐿) = 𝑖𝜒𝐵𝑧(𝑢𝜇𝑢∗
𝜈 − 𝑢𝜈𝑢∗

𝜇), (2.10)

where 𝐵𝑧 is the component of the magnetic field perpendicular to the plane of the
phonon modes 𝜇 and 𝜈. Here, we have used the symmetry criteria of a nonmagnetic
and inversion symmetric crystal. Namely, for such a crystal the thermodynamic free
energy has to be even under time reversal and space inversion. Since the displacement
is odd under space inversion and even under time reversal, the free energy in Eq. (2.10)
fulfills the symmetry criteria. Eq. (2.10) represents the connection between the circu-
larly polarized phonons and the magnetic field. Furthermore, the magnetization can be
obtained from the expression of the free energy through:

𝑀𝑧 = − 𝜕𝐹𝑢
𝜕𝐵𝑧

= 𝜒(𝑢𝐿𝑢∗
𝐿 − 𝑢𝑅𝑢∗

𝑅). (2.11)
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Chapter 2. Role of electrons in phono-magnetic effects

The equation above describes the relationship between the magnetization and the cir-
cularly polarized phonons. In particular, it becomes clear that the imbalance between
left- and right-circularly polarized phonons is important, since if 𝑢𝐿𝑢∗

𝐿 = 𝑢𝑅𝑢∗
𝑅, mag-

netization becomes zero.

2.3 Dynamical multiferroicity
It is also possible to understand the phonon-induced magnetization by considering the
influence of axial phonons on the polarization of the material [19]. In a crystal lattice
exhibiting axial phonons, the circular motion of ions is expected to causemagnetization
𝑴 of the material through the relationship:

𝑴 ∼ 𝑷 × 𝜕𝑡𝑷 . (2.12)

This relationship describes the concept of dynamical multiferroicity, i.e., magnetization
arising from time-varying electrical polarization. To relate Eq. (2.12) to phonons, we
note that the polarization 𝑷 is closely related to the phonon normal modes 𝒖. This can
be seen by considering the definition of the Born effective charge [22, 23]:

𝑍𝑗𝛼𝛽 = Ω0
𝜕𝑃𝛼
𝜕𝑢𝑗𝛽

. (2.13)

Here, Ω0 is the unit cell volume, while 𝑗 labels the ions and 𝛼 and 𝛽 refer to the Cartesian
directions. Rearranging the equation above and integrating both sides gives us

𝑃𝛼 = 1
Ω0

𝑍𝑗𝛼𝛽𝑢𝑗𝛽 . (2.14)

Thus, Eq. (2.12) can be rewritten in terms of the ion displacement:

𝝁ph = 𝛾𝒖 × 𝒖̇ = 𝛾𝑳ph. (2.15)

Here, instead of the magnetization 𝑴 , which is defined as the magnetic moment per
unit volume [24], we used the phonon magnetic moment 𝝁ph. Eq. (2.15) shows that the
magnetic moment arising from phonons is proportional to phonon angular momentum,
i.e., the magnetization depends directly on the circular polarization of the phonons. The
proportionality constant is the gyromagnetic ratio 𝛾 , which is given by 𝛾 = 𝑞

2𝑚 , where 𝑚
is the mass of the particle, and 𝑞 its charge. To approximate the gyromagnetic ratio for
an ion, we take themass of a proton and elementary charge, i.e., 𝛾 ≈ 1

2 𝑒 Da−1. To obtain
an estimate for the phonon angular momentum, we assume the ionic displacement
|𝝉| ≈ 0.1 Å and the phonon frequency of 𝜔ph ≈ 2𝜋 × 1 THz, which gives 𝐿ph ≈ 1 ×
10−2 ℏ. With the approximate value of the gyromagnetic ratio, we obtain |𝝁ph| ≈ 5.4×

8



2.4. Experimental evidence

B
ωright

ωleft

Phonon Zeeman effect Magneto-optical Kerr effect

Magnetic switching

Figure 2.1: Illustration of the phenomena that have been used to detect phono-magnetic effects
experimentally. The Phonon Zeeman effect is characterized by the splitting of a phonon mode
into left- and right-circularly polarized phonon modes under the influence of an external mag-
netic field. The magneto-optical Kerr effect demonstrates a rotation of polarization of a linearly
polarized field reflected off a magnetized sample. In this case, the magnetization is induced by
a circularly polarized pump field driving circularly polarized phonons in the crystal. Magnetic
switching shows a permanent reversal of magnetic order with the help of circularly polarized
phonons modes driven by a laser.

10−6𝜇B. Here it is important to note that this estimate relies on a relatively large ionic
displacement of |𝝉| ≈ 0.1 Å. In most cases, root mean square displacement amounts
to only a few percent of the interatomic distance, which is typically on the order of an
Å. However, in certain materials, the root mean square displacement excited by a laser
drive can reach up to 10% of the interatomic distance before the sample is destroyed
[25]. Therefore, the value given above should be regarded as an upper bound for the
phonon magnetic moment.

To evaluate this estimate, we turn to the existing experimental observations of the
phonon magnetic moment.

9



Chapter 2. Role of electrons in phono-magnetic effects

2.4 Experimental evidence
While the experimental evidence supports the existence of the phonon magnetic mo-
ment, various observations report larger magnetization than the estimate presented at
the end of section 2.3 which is based on the ionic motion alone. In this section, we give
an overview of the experimental observations. The physical phenomena used to detect
phonon-induced magnetization are illustrated in Fig. 2.1.

One way to experimentally measure the phonon magnetic moment is through the
phonon Zeeman effect, which constitutes a splitting of a degenerate phonon mode into
two circularly polarized modes with opposite helicities [19]. This splitting is facili-
tated by an external magnetic field 𝑩. The size of the splitting, Δ𝜔, can be measured
through, e.g. Raman spectroscopy. The phonon magnetic moment, 𝜇ph, is then calcu-
lated through:

ℏΔ𝜔ph = 𝝁ph ⋅ 𝑩. (2.16)

The experimental observations recording the phonon Zeeman effect have been per-
formed on various materials. The earliest experiments were conducted on CeF3 and
CeCl3 and report a Zeeman splitting corresponding to magnetic moments of up to 12.6
𝜇B and 21 𝜇B, respectively [3–5]. More recent experiments involve, for example, MoS2,
where the Zeeman splitting indicates a magnetic moment of 2.5 𝜇B [8, 9]. A similar
measurement in CoTiO3 indicates a phonon magnetic moment of up to 1.11 𝜇B [10].
Smaller values of the phonon magnetic moment have also been recorded. For example,
in PbTe the Zeeman splitting indicates a phonon magnetic moment of 4 × 10−2𝜇B [7].

Interestingly, in the ferrimagnet Fe1.75Zn0.25Mo3O8 the phonon magnetic moment
was shown to be dependent on the temperature, reaching a value of 2.62 𝜇B near the
Néel temperature and 0.22 𝜇B in lower temperature regimes [12]. A similar dependency
was observed in Fe2Mo3O8, where the phonon magnetic moment was increased by a
factor of 6 near the Néel temperature [11]. Comparably, in a ferromagnet Co3Sn2S2
the phonon magnetic moment exhibits a similar dependency on the Curie temperature
[13].

Some measurements were performed using Dirac materials. For example, in the
Dirac semimetal Cd3As2 the phonon Zeeman splitting indicates a phonon magnetic
moment of 2.7 𝜇B [6]. In topological materials, such as Pb0.4Sn0.6Te, the phonon mag-
netic moment was shown to depend on the topological phase of the material, increasing
by two orders of magnitude at the transition from the trivial to the topological phase
and reaching values of up to 3.3 𝜇B [15].

Alternatively, phonon-induced magnetization can be observed through the magneto-
optical Kerr effect, i.e., rotation of the polarization of a linearly polarized light caused
by the reflection off a magnetized sample [26]. To utilize this phenomenon, a pump-
probe setup is used where the sample is driven with a circularly-polarized pump laser
field, which drives the phonons inside the crystal, ensuring their circular polarization.

10



2.5. Role of electrons in phono-magnetic effects

Subsequently, the magnetization is measured by observing the polarization rotation of
the linearly polarized probe laser field after it reflects from the material. The magnetic
moment per unit cell is then proportional to the angle of polarization rotation [16]. In
SrTiO3, the phonon magnetic moment observed using this method was reported to be
approximately 0.1𝜇B, which translates into a magnetic field of approximately 32 mT.
A similar measurement performed on CeF3 resulted in an effective magnetic field of
1 T [17], which is significantly larger than in the SrTiO3 experiment from Ref. [16].
However, considering the size of the primitive unit cell in CeF3 the reported magnetic
moment per unit cell only reaches values of 0.003 𝜇B [17].

Moreover, axial phonons provide a means to influence the magnetic properties of
a material outside the sample, as shown in proximity switching experiments [18]. In
such an experimental setup, axial phonons are induced by a circularly polarized pump
field. Magneto-optical images of a material placed on top of the sample reveal a switch-
ing of magnetic order that depends on the helicity of the pump field. This helicity de-
pendence highlights the role of axial phonons: a right-circularly polarized pump field
excites right-circularly polarized ionic motion, thereby determining the direction of the
induced magnetization.

Therefore, it can be concluded that circularly polarized phonons give rise to a signifi-
cantmagnetization that can be observed and used formanipulatingmagnetic properties
of a material. However, there is a discrepancy between the values of phonon magnetic
moment obtained classically by considering the circular motion of ions and the exper-
imental observations. This shows that these phono-magnetic effects are influenced by
other mechanisms, which are not taken into account by calculating the magnetic mo-
ment from a cyclotron motion of ions.

2.5 Role of electrons in phono-magnetic effects
In search of the origin of this effect, we start by considering the gyromagnetic ratio
again. As mentioned previously, the gyromagnetic ratio is the ratio between the mag-
netic moment and the angular momentum that is causing it. Therefore, we can express
the magnetic moment of an electron as

𝜇𝑒 = 𝛾ℏ = 𝑒
2𝑚𝑒

ℏ. (2.17)

At the same time, it is known that the magnetic moment of an electron is equal to the
Bohr magneton [27], which is closer to the experimentally observed values discussed
in section 2.4. This hints at the involvement of electrons in phono-magnetic effects.
This direction of describing phono-magnetic effects has been explored by a number of
recent theoretical works [21, 28–33]. Theoretical approaches can be divided into three
categories: adiabatic, Floquet, and perturbation.

11



Chapter 2. Role of electrons in phono-magnetic effects

The Floquet approach involves studying the influence of axial phonons on electronic
energy levels by using the Floquet perturbation theory [28], which can be applied to
systems described by a time-periodic Hamiltonian, i.e., 𝐻(𝑡+𝑇 ) = 𝐻(𝑡) [34]. Assuming
a coupling between the circularly polarized phonon mode and the electron degrees of
freedom, the Hamiltonian becomes time-periodic, allowing the use of Floquet theory.
Thus, it can be shown that circularly polarized phonons lead to splitting in the elec-
tronic energy levels [28]. By analogy with the Zeeman effect, the size of the splitting
is expected to be proportional to the effective magnetic field. With this method, the
effective magnetic field is estimated to be of the order of kT [28], which significantly
exceeds the magnetic field that can be expected from the phonon magnetic moments
observed in the experiments outlined in section 2.4. A potential explanation for this
could involve the fact that this magnetic field was calculated at the Γ point in momen-
tum space. Transforming it to real space would require taking an average over the full
Brillouine zone, leading to a lower estimate.

Another recently proposed microscopic theory uses the adiabatic approximation to
approach the problem. This formalism considers the characteristic circular ionicmotion
of axial phonons as a source of the adiabatic evolution of the electronic states [29]. The
magnetization induced by circularly polarized phonons can thus be related to the Berry
curvature hinting at its topological origins. This view on the effect leads to an estimate
of the phonon magnetic moment of the order of a Bohr magneton [29].

An alternative approach to the adiabatic and Floquet methods is viewing circularly
polarized phonons through the lens of perturbation theory. Similarly to the Floquet ap-
proach, this method involves considering a Hamiltonian which involves an additional
term that arises from electron-phonon coupling:

𝐻 = 𝐻0 + 𝐻el-ph. (2.18)

The Hamiltonian in Eq. (2.18) describes the electronic energy levels, including the ef-
fects from the electron-phonon interaction.

Assuming that the displacement of ions is sufficiently small, the effects of 𝐻el-ph can
be studied using perturbation theory. This can be done through the Green function
formalism [30, 31] or by viewing the resulting magnetization as a vibrational analogue
to the optical Faraday effect, i.e., the phonon inverse Faraday effect. This approach is
described in more detail in Chapter 3.

Even though the theoretical models developed in recent years differ in their ap-
proaches to the problem of phono-magnetic effects, all of them are in agreement that
electrons play an important role in these effects. Specifically, electron-phonon coupling
is particularly important, since several works highlight that the size of the magnetiza-
tion depends quadratically on its strength [21, 28, 30]. Furthermore, when certain fre-
quency limits are considered, different theoretical approaches correspond well to each
other. For example, the Floquet theory method in the high frequency limit gives the
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2.5. Role of electrons in phono-magnetic effects

same result as the phonon inverse Faraday effect approach [28]. Similarly, the low fre-
quency limit of the phonon inverse Faraday effect method agrees with the results of
the adiabatic approach [21].

13





3
Phonon inverse Faraday effect

In the previous chapter, we motivated the need to explain phonon-induced magneti-
zation at the electronic level. Building on this, we propose a microscopic theory of
such magnetization based on electron–phonon interactions. This brings us closer to
answering the first research question presented in Chapter 1, as we investigate the con-
tributions to phonon-induced magnetism beyond ionic motion alone. Our formalism is
based on treating the magnetism induced by circularly polarized phonons as a phonon
analogue to the optical inverse Faraday effect, in which the magnetization is induced
by circularly polarized light. Thus, the origin of this effect closely mirrors that of cir-
cularly polarized phonons. Therefore, we start this chapter by introducing the optical
inverse Faraday effect in section 3.1. We proceed to discuss the phonon inverse Faraday
effect formalism in section 3.2. In section 3.3 we apply our formalism to estimate the
effective magnetic field arising from axial phonons in SrTiO3.

3.1 Optical inverse Faraday effect
The optical inverse Faraday effect refers to the process of magnetization of a material
under the influence of a circularly polarized laser pulse [35, 36]. In this case, the electric
field of the laser pulse is given by

𝐸(𝑡) = 2Re
[

1
√2

( ̂𝒆𝒙 + 𝑖 ̂𝒆𝒚)ℰ𝑅 + 1
√2

( ̂𝒆𝒙 − 𝑖 ̂𝒆𝒚)ℰ𝐿]
𝑒𝑖𝜔𝑡, (3.1)

where 𝜔 is the laser frequency and ℰ𝑅,𝐿 = 1
√2

(ℰ𝑥 ∓ 𝑖ℰ𝑦), with ℰ𝑥, ℰ𝑦 denoting the
amplitude of the electric field strength in the respective direction. The electric field
is thus directed along the 𝑧-axis and expected to give rise to a magnetization along
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Chapter 3. Phonon inverse Faraday effect

the same direction. The size of this magnetization can be calculated through the same
consideration of the free energy as discussed in Chapter 2 [36]:

𝑀 = −𝜒(ℰ𝑅ℰ∗
𝑅 − ℰ𝐿ℰ∗

𝐿). (3.2)

From the equation above it is clear that themagnetization is expected to depend quadrat-
ically on the electric field strength, which echoes closely the phenomenological moti-
vation of the phonon magnetization discussed in Chapter 2. In contrast to phonon-
induced magnetization, the magnetization in the optical inverse Faraday effect is in-
duced by the electric field of a circularly polarized laser.

Pershan et al. describe the optical inverse Faraday effect using perturbation theory
[36], starting from a Hamiltonian in the form:

𝐻̂ = 𝐻̂0 + 𝑉 (𝑡), (3.3)

where 𝐻̂0 is the unperturbed Hamiltonian and 𝑉 (𝑡) is the time-dependent perturbation,
which is assumed to be small. If the perturbation is time-periodic, it is possible to write
it as:

𝑉 (𝑡) = 𝑣(𝑡)𝑒𝑖𝜔𝑡 + c.c., (3.4)

where 𝜔 is the frequency of the perturbation. The equation above separates the pertur-
bation into two parts: the perturbation amplitude 𝑣(𝑡) and a time-dependent component
𝑒𝑖𝜔𝑡. Assuming that the perturbation amplitude varies on a much larger time scale than

1
𝜔±𝜔𝑖𝑗

, with ℏ𝜔𝑖𝑗 being the energy difference between electronic levels labeled by 𝑖 and
𝑗[37], the effect of the perturbation on the electronic system can be described by an
effective Hamiltonian:

⟨𝑎| 𝐻eff(𝑡) |𝑏⟩ = − ∑𝑛 [
⟨𝑎| 𝑣 |𝑛⟩ ⟨𝑛| 𝑣∗ |𝑏⟩

𝐸𝑛𝑏 − ℏ𝜔 − ⟨𝑎| 𝑣∗ |𝑛⟩ ⟨𝑛| 𝑣 |𝑏⟩
𝐸𝑛𝑏 + ℏ𝜔 ] , (3.5)

which allows one to calculate the overlap elements between electronic states |𝑎⟩ and
|𝑏⟩. Here, |𝑛⟩ denotes the unperturbed electronic states while 𝐸𝑛𝑏 is the energy gap
between the respective electronic energy levels.

Assuming that the laser pulse from Eq. (3.1) couples to the system through dipole
coupling, the perturbation becomes:

𝑉 (𝑡) = Re [𝑒𝒓 ⋅ ℰ𝑒𝑖𝜔𝑡] . (3.6)

Thus, the perturbation amplitude takes the form:

𝑣(𝑡) = 𝑒(𝑟+ℰ𝑅 − 𝑟−ℰ𝐿), (3.7)
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3.2. Phonon inverse Faraday effect

where 𝑟± = 1
√2

(𝑥 ∓ 𝑖𝑦). Using Eq. (3.7) in Eq. (3.5) gives the effective Hamiltonian:

⟨𝑎| 𝐻eff |𝑏⟩ = 𝑒2 [ℰ𝑅ℰ∗
𝑅 − ℰ𝐿ℰ∗

𝐿]
× ∑𝑛

ℏ𝜔
𝐸2

𝑛𝑏 − ℏ2𝜔2 [⟨𝑎| 𝑟+ |𝑛⟩ ⟨𝑛| 𝑟− |𝑏⟩ − ⟨𝑎| 𝑟− |𝑛⟩ ⟨𝑛| 𝑟+ |𝑏⟩] . (3.8)

Here, it is important to note that while the expression for the effective Hamiltonian
includes other terms, only ℰ𝑅ℰ∗

𝑅 − ℰ𝐿ℰ∗
𝐿 transforms as a magnetic field, and therefore

only the terms containing such an expression will contribute to the magnetization.
Eq. (3.8) describes the effect of the perturbation in the form of circularly polarized

light on the electronic levels of the system. This expression can be used to show that
ℰ𝑅ℰ∗

𝑅 − ℰ𝐿ℰ∗
𝐿 acts as a time reversal symmetry breaking field, polarizing the spins as

a magnetic field would [36].

3.2 Phonon inverse Faraday effect
To apply the formalism of the optical inverse Farady effect to the case of axial phonons
we assume that the Hamiltonian can still be written in the form given by Eq. (3.3), with
the perturbation now originating from the displacement of ions. For lattice vibrations
such a displacement can be assumed to be sufficiently small, and we are still able to
apply perturbation theory. In order to write down the new form of the perturbation,
we linearize the potential energy in terms of the atom displacement and write down
the perturbation as:

𝑉 (𝑡) = ∑
𝑝𝑗𝛼

𝜕𝑈
𝜕𝜏𝑝𝑗𝛼

𝜏𝑝𝑗𝛼, (3.9)

where 𝑝 denotes a unit cell, 𝑗 an atom and 𝛼 is the Cartesian direction of the displace-
ment. At the same time, for a circularly polarized phonon, we can write down the
displacement as:

𝝉 =
(

1
√2

𝜏𝑅( ̂𝒆𝝁 + 𝑖 ̂𝒆𝜈) + 1
√2

𝜏𝐿( ̂𝒆𝝁 − 𝑖 ̂𝒆𝜈)
)

𝑒𝑖𝜔ph𝑡. (3.10)

Here, we rewrite the phonon displacement in the circularly polarized basis where 𝜇
and 𝜈 denote two perpendicular phonon modes. The displacement amplitudes 𝜏𝑅,𝐿 are
given by 𝜏𝑅,𝐿 = 1

√2
(𝜏𝜇 ∓ 𝑖𝜏𝜈). The perturbation now takes the form:

𝑉 (𝑡) = 2Re [𝝉 ⋅ ∇𝝉𝑈𝑒𝑖𝜔ph] . (3.11)

Thus, we can still write it down in the shape given by Eq. (3.4) and therefore use the
effective Hamiltonian in Eq. (3.5). First, we focus on a simplified case and consider a
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Chapter 3. Phonon inverse Faraday effect

single ion moving on a circular orbit. Then, the perturbation amplitude from Eq. (3.4)
takes on the form:

𝑣(𝑡) = 𝝉0 ⋅ ∇𝝉𝑈, (3.12)

where 𝝉0 = (
1

√2
𝜏𝑅( ̂𝒆𝝁 + 𝑖 ̂𝒆𝜈) + 1

√2
𝜏𝐿( ̂𝒆𝝁 − 𝑖 ̂𝒆𝜈)). Using this perturbation amplitude

in Eq. (3.5), gives us an expression for the effective Hamiltonian:

𝐻𝑎𝑏
eff = − ∑𝑛 [

𝐸𝑛𝑏
𝐸2

𝑛𝑏 − ℏ𝜔2 ((𝜏𝑅𝜏∗
𝑅 + 𝜏𝐿𝜏∗

𝐿)(∇𝑈 𝑎𝑛
+ ∇𝑈 𝑛𝑏

− + ∇𝑈 𝑎𝑛
− ∇𝑈 𝑛𝑏

+ )+

+2𝜏𝐿𝜏∗
𝑅∇𝑈 𝑎𝑛

− ∇𝑈 𝑛𝑏
− + 2𝜏∗

𝐿𝜏𝑅∇𝑈 𝑎𝑛
+ ∇𝑈 𝑛𝑏

+ )+

+ ℏ𝜔
𝐸2

𝑛𝑏 − ℏ2𝜔2
(𝜏𝑅𝜏∗

𝑅 − 𝜏𝐿𝜏∗
𝐿)(∇𝑈 𝑎𝑛

+ ∇𝑈 𝑛𝑏
− − ∇𝑈 𝑎𝑛

− ∇𝑈 𝑛𝑏
+ )],

(3.13)

where 𝑈± = (
𝜕𝑈
𝜕𝑢𝑥

± 𝑖 𝜕𝑈
𝜕𝑢𝑦 ) /√2. Similar to the case of the optical inverse Faraday

effect, only 𝜏𝑅𝜏∗
𝑅 − 𝜏𝐿𝜏∗

𝐿 transforms as a magnetic field, which allows us to drop all
other terms and write down:

𝐻𝑎𝑏
eff = − ℏ𝜔

𝐸2
𝑛𝑏 − ℏ2𝜔2

(𝜏𝑅𝜏∗
𝑅 − 𝜏𝐿𝜏∗

𝐿) ∑𝑛
[(∇𝑈 𝑎𝑛

+ ∇𝑈 𝑛𝑏
− − ∇𝑈 𝑎𝑛

− ∇𝑈 𝑛𝑏
+ )] . (3.14)

For clarity, we can also rewrite Eq. (3.14) in Cartesian coordinates to obtain:

𝐻𝑎𝑏
eff = −(𝝉 × 𝝉∗)𝑧 ∑𝑛

ℏ𝜔
𝐸2

𝑛𝑏 − ℏ2𝜔2
(⟨𝑎| ∇𝑈 |𝑛⟩ × ⟨𝑛| ∇𝑈 |𝑏⟩)𝑧 . (3.15)

Here, we point out that the effective Hamiltonian describing the effect of the axial
phonons has a form similar to the effective Hamiltonian in Eq. (3.8), which describes
the optical inverse Faraday effect. It is composed of two parts: the time-reversal-
symmetry–breaking field, expressed as 𝜏𝑅𝜏∗

𝑅 − 𝜏𝐿𝜏∗
𝐿 for phonons and ℰ𝑅ℰ∗

𝑅 − ℰ𝐿ℰ∗
𝐿

in the optical case, and a contribution arising from the coupling between the perturba-
tion and the electronic states. In the case of phonons, this coupling is described by the
action of the operator ∇𝑈 on the electronic states. In contrast, for the laser field, the
coupling is represented by the action of the 𝑟± operator. We can thus conclude that
the optical and phonon inverse Faraday effects both arise from a circularly polarized
field which acts as a perturbation and couples to the electronic states. In both cases this
field leads to time reversal symmetry breaking and hence magnetization. However, the
perturbations responsible for these effects arise from different origins, and the nature
of the coupling also differs. The similarities and differences between the optical inverse
Faraday effect and the phonon inverse Faraday effect are summarized in Table 3.1.
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3.2. Phonon inverse Faraday effect

Phonon IFE Optical IFE

Perturbation source Lattice vibrations Laser field
TRS-breaking field 𝜏𝑅𝜏∗

𝑅 − 𝜏𝐿𝜏∗
𝐿 ℰ𝑅ℰ∗

𝑅 − ℰ𝐿ℰ∗
𝐿

Perturbation amplitude 𝑣(𝑡) = 𝝉0 ⋅ ∇𝝉𝑈 𝑣(𝑡) = 𝑒𝒓 ⋅ ℰ ,

Table 3.1: Comparison between phonon and optical inverse Faraday effects.

To generalize the simple single ion model to describe a crystal lattice, we start by
quantizing the phonon modes 𝜇 and 𝜈 and writing them as:

𝜏𝑝𝜇 = 𝑖 ∑𝒒
𝑒𝑖𝒒⋅𝑹𝒑𝑙𝒒𝜇( ̂𝑎𝒒𝜇 + ̂𝑎†

−𝒒𝜇),

𝜏𝑝𝜈 = ∑𝒒
𝑒𝑖𝒒⋅𝑹𝒑𝑙𝒒𝜈( ̂𝑎𝒒𝜈 + ̂𝑎†

−𝒒𝜈).
(3.16)

Here, we introduce bosonic creation and annihilation operators ̂𝑎†
𝒒𝜇 and ̂𝑎†

𝒒𝜇. The sum
( ̂𝑎𝒒𝜇 + ̂𝑎†

−𝒒𝜇) now describes the number of phonons contributing to the phonon mode,
and the quantity 𝑙𝒒𝝂 = √(ℏ/2𝜔𝒒𝝂) is referred to as the zero-point displacement [20].

In order to describe the coupling between the phonons and the electronic states, we
use electron-phonon matrix elements defined as [20]:

𝑔𝑚𝑛𝜈(𝒌, 𝒒) = ⟨𝑚, 𝒌 + 𝒒| ∑𝑝
𝑙𝒒𝜈𝑒𝑖𝒒⋅𝑹𝒑 𝜕𝑈

𝜕𝜏𝑝𝜈
|𝑛, 𝒌⟩ . (3.17)

Electron-phonon matrix elements of this form describe the probability amplitude of
an electron in a state |𝑛, 𝒌⟩ absorbing a phonon described by a wave vector 𝒒 at a
frequency mode 𝜈 and scattering into a new state |𝑚, 𝒌 + 𝒒⟩. This process is illustrated
in the vortex diagram shown in Fig. 3.1. Using Eq. (3.16) and (3.17) in the expression
for the effective Hamiltonian given by Eq. (3.15) gives us the effective Hamiltonian:

ℋ 𝑎𝑏
eff (𝒌) = −𝑖ℏ𝜔ph ∑𝒒 [( ̂𝑎†

−𝒒,𝜇 + ̂𝑎𝒒,𝜇)( ̂𝑎†
−𝒒,𝜈 + ̂𝑎𝒒,𝜈)

× ∑𝑛

𝑔𝑎𝑛𝜇(𝒌, 𝒒)𝑔∗
𝑏𝑛𝜈(𝒌, 𝒒) − 𝑔𝑎𝑛𝜈(𝒌, 𝒒)𝑔∗

𝑏𝑛𝜇(𝒌, 𝒒)
𝐸2

𝒌𝑛𝑏 − ℏ2𝜔2
ph ]

. (3.18)

This effective Hamiltonian describes the effect of axial phonons on the electronic levels
in a crystal. Similarly to Eq. (3.15), it shows a dependence on the displacement in the
form of ( ̂𝑎†

−𝒒,𝜈 + ̂𝑎𝒒,𝜈) and ( ̂𝑎†
−𝒒,𝜇 + ̂𝑎𝒒,𝜇) operators. The coupling of the displacement

to the electronic energy levels is represented by the electron-phonon matrix elements.
Importantly, Eq. (3.18) is material independent and provides a way of estimating the
size of the effect, which we discuss in the next section.
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Chapter 3. Phonon inverse Faraday effect

Figure 3.1: Vortex diagram illustrating an electron scattering from state |𝑛, 𝒌⟩, labeled by anni-
hilation operator 𝑐𝑛,𝒌, to state |𝑚, 𝒌 + 𝒒⟩, labeled by creation operator 𝑐†

𝑚,𝒌+𝒒 , after absorbing a
phonon of mode 𝜈 andwave vector 𝒒, denoted by phonon annihilation operator 𝑎𝜈(𝒒). The prob-
ability amplitude of this process is given by the electron-phonon matrix elements 𝑔𝑚𝑛𝜈(𝒌, 𝒒)

.

3.3 Effective magnetic field in SrTiO3
To evaluate how well Eq. (3.18) describes the phonon-induced magnetization, we use it
to predict the effective magnetic field arising from axial phonons in a sample of SrTiO3.
In our choice of material we are motivated by the recent experimental observations of
the large magnetic moment in SrTiO3 [16]. In the experiment involving the magneto-
optical Kerr effect described in Chapter 2, a circularly polarized laser pulse was used to
drive the soft phonon mode at the Γ point, i.e., the phonon mode at 𝒒 = 0. To simplify
the further calculations, we rewrite the operators ̂𝑎𝒒𝜈 and ̂𝑎𝒒𝜇, in vector form, i.e., we

define ̂𝑎𝒒 and ̂𝑎†
−𝒒 , such that 𝜺 ̂𝑎𝒒 = (

̂𝑎𝒒,𝜇
̂𝑎𝒒,𝜈 ) and 𝜺∗ ̂𝑎†

−𝒒 = (
̂𝑎†
−𝒒,𝜇
̂𝑎†
−𝒒,𝜈 ). This allows us to

rewrite Eq. (3.18) as

𝐻𝑎𝑏
eff(𝒌) = −2𝑖ℏ𝜔ph ∑𝒒

[( ̂𝑎†
−𝒒 ̂𝑎𝒒 + 1

2𝛿−𝒒,𝒒)

× ∑𝑛

𝑔𝑎𝑛𝜇(𝒌, 𝒒)𝑔∗
𝑏𝑛𝜈(𝒌, 𝒒) − 𝑔𝑎𝑛𝜈(𝒌, 𝒒)𝑔∗

𝑏𝑛𝜇(𝒌, 𝒒)
𝐸2

𝒌𝑛𝑏 − ℏ2𝜔2
ph ]

.
(3.19)

Here, we have used the bosonic anticommutation relations and the orthonormality
property of the polarization vectors from Eq. (2.7). Further, we have assumed that
the degenerate modes contribute equally to the circularly polarized mode, i.e., 𝜀𝜇 = 𝜀𝜈 ,
and, following Ref. [38], omitted the terms containing ̂𝑎𝒒 ̂𝑎𝒒 and ̂𝑎†

−𝒒 ̂𝑎†
−𝒒 . With this
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Figure 3.2: Illustration of the electronic structure of SrTiO3. a) Valence bands composed of
oxygen 𝑝-states and conduction bands consisting of Ti 𝑑-states. b) Splitting of 𝑝-bands under
the influence of the effective magnetic field by analogy with the Zeeman effect.

expression, evaluating only the phonons at the Γ-point, leaves us with the effective
Hamiltonian expressed in terms of the phonon number operator ̂𝑛0:

𝐻𝑎𝑏
eff(𝒌) = −2𝑖ℏ𝜔ph [( ̂𝑛0 + 1

2)

× ∑𝑛

𝑔𝑎𝑛𝜇(𝒌, 0)𝑔∗
𝑏𝑛𝜈(𝒌, 0) − 𝑔𝑎𝑛𝜈(𝒌, 0)𝑔∗

𝑏𝑛𝜇(𝒌, 0)
𝐸2

𝒌𝑛𝑏 − ℏ2𝜔2
ph ]

.
(3.20)

To approximate the size of the effectivemagnetic field, we study the electronic structure
of SrTiO3. Oxygen 𝑝-states constitute the valence band, while Ti-𝑑 states compose the
conductance band, as shown in Fig. 3.2. We expect the magnetic field to induce a
splitting of 𝑝-states in analogy with the Zeeman splitting [39]. We thus expect the 𝑝-
states to take the form 𝑝± = 1

√2
(𝑝𝑥 ± 𝑖𝑝𝑦). Therefore, we calculate the overlap elements

𝐻𝑥𝑦
eff (0) and 𝐻𝑦𝑥

eff (0), where we set 𝒌 = 0 because we are interested in electrons at
the Γ point. In order to do this, we first observe that the phonon mode and electron
𝑝-states are parity odd. Therefore, the electron in the 𝑝-state absorbing a phonon can
only scatter to the parity-even state, i.e., Ti-𝑑 states. Moreover, since SrTiO3 has a large
band gap of Δ = 3.75 eV for the direct band gap [40], and 𝐻eff decreases quadratically
with the size of the gap, we assume that we only need to consider the overlap elements
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Figure 3.3: Polarization rotation as a function of electric field strength of the pump laser, cal-
culated with |𝑔| = 7 meV. The solid line represents the values obtained using Eq. (3.25), while
the dots represent the experimental data from Ref. [16].

corresponding to the gap. Thus, we get the final expression:

𝐻𝑥𝑦
eff (𝒌 = 0) = −𝐻𝑦𝑥

eff (𝒌 = 0) = −𝑖 ( ̂𝑛0 + 1
2)

ℏ𝜔ph |𝑔|2

Δ2 − ℏ2𝜔2
ph

. (3.21)

Here, 𝑔 is the electron-phonon coupling strength determined by the electron-phonon
matrix elements [41]. To calculate the energy level splitting, it is useful to switch basis
to 𝑝± as opposed to 𝑝𝑥, 𝑝𝑦. The Hamiltonian in this basis can be expressed as 𝐻±±

eff =
±𝑖𝐻𝑥𝑦

eff . Thus, we can deduce the energy levels:

𝐸± = ±
ℏ𝜔ph |𝑔|2

Δ2 − ℏ2𝜔2
ph

( ̂𝑛0 + 1
2) . (3.22)

With the size of the splitting of the electronic energy levels Δ𝐸 = 𝐸+ − 𝐸−, we can
calculate the effective magnetic field by comparing Δ𝐸 to the splitting expected for the
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Zeeman effect, i.e., Δ𝐸Zeeman
2 = 𝑔𝑧𝜇𝐵𝐵eff

𝑧 . Therefore, the effective magnetic field can be
calculated using the following equation:

ℏ𝜔ph |𝑔|2

Δ2 − ℏ2𝜔2
ph

( ̂𝑛0 + 1
2) = 𝑔𝐽 𝜇𝐵𝐵eff

𝑧 . (3.23)

The soft mode in SrTiO3 has a frequency of 𝜔ph = 2𝜋 × 2.7 THz [16], and we assume
𝑔𝐽 = 1. Therefore, in order to provide an estimate for 𝐵eff

𝑧 we need to approximate the
phonon number ̂𝑛0. In the SrTiO3 experiment [16], a circularly polarized laser with a
laser field strength of 𝐸0 = 230 kV/cm was used. Additionally, a screening constant of
𝛽 = 0.7 was applied to reflect the fact that not all of the incoming field strength will be
absorbed into the sample and give rise to axial phonons. Thus, we calculate the peak
intensity of the laser as:

𝐼max = 1
2𝜇0𝑐 𝐸2

0 , (3.24)

where 𝐸0 = 𝛽𝐸0. Here, we make the assumption that at the resonant frequency, i.e.,
𝜔 = 𝜔ph, one photon from the laser pulse will excite one axial photon. Thus, with the
energy of a single photon ℏ𝜔 we can approximate the number of incident photons per
unit cell as 𝑛 = 30 1/ps. Here we have used the fact that the intensity is defined as
the amount of incident energy per time per area. The area of the unit cell of SrTiO3
was calculated as 𝐴 = 𝑎2, where the lattice constant is 𝑎 = 3.9 Å. Given the pulse
length of 2 ps in agreement with Ref. [16], we set the total number of phonons as
𝑁ph = 𝑁 = 60. Thus, the electron-phonon coupling strength remains the only free
parameter in Eq. (3.23). Setting it to 𝑔 = 7 meV [41, 42] renders 𝐵eff ≈ 40 mT, in line
with 32 mT observed in the experiment [16].

Eq. (3.23) also allows us to calculate the angle of the Faraday rotation, which is a
rotation of polarization that a linearly polarized pulse acquires after passing through a
magnetized material. Faraday rotation and Kerr rotation are closely related, and differ
by no more than factor of 2 [16]. Therefore calculating the Faraday rotation allows us
to compare our findings with the experimental observations. Thus, we calculate the
Faraday rotation 𝜃𝐹 as follows [16, 26]:

𝜃𝐹 =
𝑙decay𝑉

2 𝐵eff
𝑧

=
𝑙decay𝑉

2
1

𝜇𝐵

ℏ𝜔 |𝑔|2

Δ2 − ℏ2𝜔2 (𝑛0 + 1
2) .

(3.25)

Here, V is the Verdet constant, which for SrTiO3 is given by 𝑉 ≈ 180 radm−1T−1 and
𝑙decay = 2.5 𝜇m is the penetration depth [16]. Eq. (3.25) allows us to plot the Faraday
rotation as a function of the electric field strength of the circularly polarized pump field.
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Chapter 3. Phonon inverse Faraday effect

Plotting the experimental data [16] on the same axis shows that the microscopic theory
presented above achieves a good agreement with the experiment. The plot with this
comparison is presented in Fig. 3.3.

Here, it is important to note that our calculation above was based on the simple
assumption that one photon of the pump laser excites one circularly polarized phonon,
which led us to the phonon number 𝑁 = 60. This number is related to the phonon
displacement through [25]

𝑁 =
𝜔ph

ℏ 𝑢2. (3.26)

At the same time, we can classically calculate the phonon normal mode displacement
expected from a laser field by solving the classical equation of motion, Eq. (4.7), as
explained in more detail in Chapter 4. From Eq. (3.26) and Eq. (4.7) we can calculate
that the laser field strength corresponding to 𝐸0 = 230 kV/cm should result in the
number of phonons on the order of 𝑁 ≈ 0.24. Similarly, Caruso et al. estimate that the
number of phonons arising from a THz pulse should be on the order of 𝑁 ≈ 1 [43].

However, this estimate originates from the assumption that the pump laser field ex-
cites, i.e., creates new vibrations in the material. This, however, does not address the
role of thermal vibrations that are already present in the sample. At room tempera-
ture 𝑇 = 300 K, we can expect around two phonons. This can be calculated using the
Bose-Einstein distribution [39]:

𝑁BE
ph = 1

exp(
ℏ𝜔ph
𝑘𝐵𝑇 ) − 1

. (3.27)

If the incoming circularly polarized laser polarizes the existing phonons rather than
exciting new ones, then the expected phonon number needs to be calculated differently
than the described estimation for SrTiO3.

In addition, the accuracy of the estimate of the effective magnetic field depends to a
greater extent on the accuracy of the electron-phonon coupling strength. At the same
time, obtaining a good estimate of the electron-phonon matrix elements at the Γ-point
in SrTiO3 presents a challenge. Recent calculations show that the electron-phonon
coupling strength can vary greatly around the Γ-point in SrTiO3 [41]. Although for
the ferroelectric soft mode investigated here, it remains of the order of 1-10 meV, it can
increase dramatically when the phonon 𝑘-vector is no longer precisely zero. At the
same time, Eq. (3.23) shows that the effective magnetic field 𝐵eff

𝑧 depends quadratically
on |𝑔|. Therefore, a variation in the electron-phonon coupling strength greatly affects
the results, which makes a precise calculation of |𝑔| at the Γ point crucial for obtaining
an accurate estimate of the magnetic field.

Moreover, when deriving our main result given by Eq. (3.18), we have assumed that
∇𝝉𝑈 is real, i.e., ∇𝝉𝑈 = (∇𝝉𝑈)

∗. Typically, it is a reasonable assumption, since as long
as ∇𝝉𝑈 is Hermitian, it can always be transformed into a basis where it would also be
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3.3. Effective magnetic field in SrTiO3

real. However, since we have allowed 𝝉 to be complex, a more general starting point
would be to assume that ∇𝝉𝑈 is also complex. Therefore, there could be an additional
contribution to the effective Hamiltonian in Eq. (3.18) arising from the complex part
of ∇𝝉𝑈 operator. Investigating this contribution is one of the directions of our future
research.

Therefore, while the results presented in Fig. 3.3 present the same quadratic depen-
dency on the electric field strength as was observed in the experiment [16], a more
accurate approximation of the phonon number and electron-phonon coupling strength
is needed to provide a better estimate of the expected effective magnetic field. Addi-
tionally, one needs to take into account potential contributions from the complex part
of the ∇𝝉𝑈 operator.

We have thus presented amicroscopic theory that explains the magnetization arising
from axial phonons by considering electron-phonon coupling as the perturbation to the
full Hamiltonian of the crystal. However, this formalism does not explore the nature
of the effective magnetic field, since it is approximated through the size of the splitting
of the electronic levels. In theory, such splitting could be caused by a time-reversal
symmetry breaking field that is not necessarily a magnetic field. In the next chapter,
we discuss possible ways to investigate this topic.
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4
Axial phonons and (anomalous)

Hall effect

In this chapter we describe how the conventional and anomalous Hall effect can be used
to improve our understanding of phonon-magnetic effects. Specifically, we explore the
possibility of using these effects to answer the question of whether the effective mag-
netic field arising from the axial phonons is a real magnetic field obeying Maxwell’s
equations, or an effective magnetic field that merely imitates its effects, such as time
reversal symmetry breaking. This directly relates to the second research question men-
tioned in Chapter 1, as it concerns a property of the phonon-inducedmagnetic field that
remains unresolved. We first present this problem in section 4.1. Then we give a brief
introduction to the Hall effect and the anomalous Hall effect in section 4.2, followed by
a description of a proposed experimental setup in section 4.3. Finally, in section 4.4 we
present a way to calculate the expected size of the conventional Hall effect.

4.1 Real vs effective magnetic field
To present the open question of the nature of the phonon-induced magnetic field, we
return to the experiments of the phonon magnetic moment described in Chapter 2. It is
worth noting that these experiments observe the magnetization ’by proxy’, i.e., by mea-
suring an observable that is closely related to the magnetization. Thus, in phonon Zee-
man effect experiments the phonon magnetic moment is calculated from the observed
size of the splitting of phonon frequencies [3–15] by applying Eq. (2.16). Similarly,
the experiments utilizing magneto-optical effects measure the angle of the polarization
rotation as the probe field is reflected from the material. The emerging magnetic field
can be calculated from the angle of the polarization rotation, [16, 17] as described in
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V

Jx
Ey

B⃗

Figure 4.1: Illustration of the Hall effect. Voltage 𝑉 passes current 𝐽𝑥 through the material. The
magnetic field 𝐵, perpendicular to the plane of the current, induces a transverse electric field
𝐸𝑦 that is perpendicular to both the current and the magnetic field.

more detail in Chapter 3. Neither of the methods measures the magnetic field directly,
which poses the question if the magnetic field is a real, Maxwellian magnetic field or
an effective magnetic field which sometimes causes the same phenomena (e.g., splitting
of phonon frequencies or rotation of polarization of the probe field) as a Maxwellian
magnetic field would, while being a different physical quantity.

In light of this question, an alternative explanation for the results of the pump-probe
experiments was proposed. It has been suggested that the large rotation of polariza-
tion observed by, e.g., Basini et al. [16] is caused by the coupling of the time reversal
symmetry breaking pump field to the linearly polarized probe field inside the material
and thus causing the rotation of polarization [44, 45]. As a result, there is no emergent
magnetic field, but only the imitation of its effects by the circularly polarized pump
field. Therefore, this effective field would not be measurable outside of the material.

However, the experiment involving a switching of magnetic order in a layer placed
on top of the layer excited with a circularly polarized pump field [18] contradicts this
idea since in this case axial phonons seem to have a direct effect on the layer of material
placed outside of the sample excited by the pump laser.

Thus, the nature of the phonon-induced effective magnetic field remains an open
question. Therefore, we suggest a method for investigating whether this magnetic field
is a real magnetic field or merely an effective field, based on the conventional and
anomalous Hall effects.

4.2 Hall effect and Anomalous Hall effect
Here, we give a brief introduction of the Hall effect and the anomalous Hall effect.
While they are both characterized by the presence of transverse conductivity and can
be observed in, e.g., graphene, there are some substantial differences between them
which are relevant for studying phono-magnetic effects.
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4.2. Hall effect and Anomalous Hall effect

TheHall effect can be observed in a layer ofmaterial subjected to a voltage that passes
a current 𝑱 through the material. When a perpendicular magnetic field is applied to
such a system, the electrons flowing through the layer of thematerial start to experience
the Lorentz force [46]:

𝑭 = 𝑒(𝑬 + 𝒗 × 𝑩). (4.1)
Here, 𝒗 is the velocity of the electrons proportional to the current 𝑱 and 𝑩 is the applied
magnetic field. According to the equation above, in a steady state, where 𝑭 = 0, a
transverse electric field 𝑬 has to be present, perpendicular to the applied magnetic
field and the current. Conductivity 𝜎 and resistivity 𝜌 are thus defined as tensors [1]:

𝐽𝜇 = 𝜎𝜇𝜈𝐸𝜈
𝐸𝜇 = 𝜌𝜇𝜈𝐽𝜈 .

(4.2)

In 2D materials, such as graphene, the Hall effect can become quantized, transform-
ing into the quantum Hall effect. This is typically achieved at low temperatures and
strong magnetic fields of the order of 10 T [47]. This effect is a consequence of Landau
levels, i.e., energy levels for free non-relativistic particles in the presence of an external
magnetic field: [1]

𝐸𝑛 = ℏ𝜔𝑒 (𝑛 + 1
2) . (4.3)

In the equation above 𝜔𝑒 = 𝑒𝐵
𝑐𝑚 is referred to as the cyclotron frequency, where 𝐵 is

the applied magnetic field. Here, 𝑛 is a quantum number that can only assume integer
values. It can be shown that the number of filled Landau levels is given by [48]

𝑁 = floor(
2𝜋ℏ𝑐
𝑔𝑞𝐵 𝛿𝑁) , (4.4)

where 𝛿𝑁 is the charge carrier density and 𝑔 is the Dirac cone degeneracy. The function
’floor’ comes from the fact that 𝑁 is an integer number. In graphene, the transverse
conductivity, 𝜎𝑥𝑦 and resistivity 𝜌𝑥𝑦 are related to the number of filled Landau levels
through:

𝜎𝑥𝑦 = 4𝑒2

ℎ (𝑁 + 1
2) ,

𝜌𝑥𝑦 = 1
𝜎𝑥𝑦

= ℎ
4𝑒2

1
𝑁 + 1

2
.

(4.5)

For small magnetic fields, the resistivity increases linearly with the magnetic field, but
in the strong magnetic field regime, it becomes quantized.

Given the experimental observations for SrTiO3 [16], the magnetic field arising from
axial phonons is not enough to enter the quantum Hall regime. However, the conven-
tional Hall effect is possible.
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The theory for the anomalous Hall effect was first proposed by Haldane, who consid-
ered a honeycomb lattice similar to graphene with no external magnetic field [49] and
showed that quantum Hall effect can be achieved without an external magnetic field,
as long as the system breaks time-reversal symmetry. This can be achieved through
spin-orbit coupling or if the material itself is intrinsically magnetic. Qiao et al. propose
a method of realizing the anomalous Hall effect in graphene, which is inherently chal-
lenging since graphene does not exhibit a significant spin-orbit coupling and is also
non-magnetic [50, 51]. This method consists of placing graphene on top of a substrate,
which leads to the emergence of the exchange coupling between the graphene layer
and the substrate. Additionally, graphene acquires Rashba spin-orbit coupling (SOC)
[52], and the graphene Hamiltonian takes the following form:

𝐻 = −𝑡 ∑
⟨𝑖𝑗⟩𝛼

𝑐†
𝑖𝛼𝑐𝑗𝛼 + 𝑖𝑡SO ∑

⟨𝑖𝑗⟩𝛼𝛽
̂𝑒𝑧 ⋅ (𝝈 × 𝒅𝑖𝑗) 𝑐†

𝑖𝛼𝑐𝑗𝛽 + 𝜆 ∑
𝑖𝛼

𝑐†
𝑖𝛼𝜎𝑧𝑐𝑖𝛼. (4.6)

Here, the first term corresponds to the pristine graphene Hamiltonian with hopping
constant 𝑡, and the second term comes from the Rashba SOCwith 𝑡SO being the strength
of the Rashba SOC coupling and 𝜎 the Pauli vector. The third term is caused by the
exchange field with 𝜆 denoting its strength.

For such a setup, the material chosen as the substrate needs to be an antiferromag-
netic insulator. The insulating quality ensures that the graphene is the only transport
channel, which affects the exchange term in Eq. (4.6). The antiferromagnetic proper-
ties are necessary because a ferromagnet would apply a magnetic field to the graphene
layer, which would complicate the detection of the anomalous Hall effect.

4.3 The setup
In this section, we propose an experimental setup that would utilize the conventional
and the anomalous Hall effects to determine the nature of the phonon-induced mag-
netic field. The setup is depicted in Fig. 4.2 and consists of a sample of a layer of
graphene placed on top of a sample of SrTiO3. The SrTiO3 sample is then subjected
to a circularly polarized laser pulse which causes the appearance of axial phonons and
hence the magnetization of the material. The magnetic field is then measured in the
graphene layer, as well as the transverse conductivity characteristic of the conventional
and the anomalous Hall effect.

This double measurement setup allows to understand the nature of the phonon-
induced magnetization in the following way: If the external magnetic field in the gra-
phene layer is non-zero after driving the axial phonons with the pump field, it shows
that the circularly polarized phonons give rise to a real, Maxwellian magnetic field.
On the other hand, if the magnetic field in the graphene is measured to be zero, but
simultaneously there is a non-zero transverse resistivity, it shows that axial phonons
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B⃗
SrTiO3

Graphene

Figure 4.2: The experimental setup consisting of a sample of SrTiO3 and a layer of graphene
placed on top of it. A circularly polarized laser pulse is applied to the SrTiO3 sample. Thus, a
magnetic field 𝑩 is expected to emerge due to the axial phonons driven by the laser pulse.

give rise to a field that mimics the effect of a magnetic field through time-reversal sym-
metry breaking, as expected in the anomalous Hall effect. Measuring the transverse
resistivity therefore acts as a way to verify that axial phonons are present in the ma-
terial after the sample has been driven by a circularly polarized pump laser field. The
setup proposed above should be possible to perform given the right equipment. As a
complement to the experimental measurement, an estimate of the expected values of
transverse resistivity and magnetic fields needs to be provided, in order to compare the
observations with the theoretical predictions. In the next section we propose a way to
make such an estimate.

4.4 Magnetic field and transverse resistivity
calculation

To calculate the size of the magnetic field and transverse resistivity that can be mea-
sured in the setup described in section 4.3, we first have to calculate the displacement
and the phonon angular momentum arising from the laser pump. To do that, we turn
to the classical equation of motion:

𝒖̈ + 𝜂𝒖̇ + 𝜔2
ph𝒖 = 𝑍𝑬𝑒𝑖𝜔𝑡. (4.7)

Here, 𝜂 is the damping parameter, 𝜔 is the frequency of the circularly polarized laser,
𝑬 is the laser field strength and 𝑍 is the effective charge. For SrTiO3, the parameters
of this equation are known: the damping parameter is given by 𝜂 = 2𝜋 × 0.63 THz and
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Figure 4.3: a) 𝑥- and 𝑦-components of the electric field strength 𝑬 modeled to correspond to
the pump laser field strength used by Basini et al. [16]. b) The corresponding amplitude of the
electric field strength. c)The resulting phonon angularmomentum calculated using the classical
equation of motion. d) Magnetic field strength calculated by determining the gyromagnetic
constant 𝛾 and distance to the dipole 𝑟𝑧 phenomenologically.

the phonon frequency at the Γ-point is 𝜔ph = 2𝜋 × 2.7 THz at 300K [53]. The effective

charge is given by 1.54 e Da− 1
2 [16]. In order to achieve the driving of the phonons by

the circularly polarized pump field, we set the laser frequency to be in resonance with
the phonon frequency, i.e., 𝜔 = 2𝜋 × 2.7 THz. The phonon angular momentum is then
obtained by solving Eq. (4.7) analytically:

𝐿𝑧 = 𝑢𝑥 ̇𝑢𝑦 − ̇𝑢𝑥𝑢𝑦 = 𝑍2𝐸2𝜔
(𝜔2

ph − 𝜔2)2 + 𝜂2𝜔2
. (4.8)

Here, the electric field is directed along the 𝑧-axis. In order to calculate the magnetic
field, we approximate it as a magnetic field due to a magnetic dipole:

𝐵𝑧 = 𝜇0𝑚𝑧
2𝜋𝑟3

𝑧
= 𝜇0𝛾𝐿𝑧

2𝜋𝑟3
𝑧

. (4.9)
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Then, the transverse resistivity can be calculated using Eq. (4.5). However, before we
can perform this calculation, we need to set the material specific parameters from Eq.
(4.9), namely, the gyromagnetic constant, 𝛾 and the distance between the graphene
layer and the magnetic dipole, 𝑟3

𝑧. In order to do that, we use the values recorded
in the recent pump-probe experiment on SrTiO3 involving the magneto-optical Kerr
effect [16], which is described in more detail in Chapter 2. We first model the electric
field strength to correspond to the pump-field used in the experiment using a Gaussian
embedding:

𝐸(𝑡) = 𝛽𝐸0𝑒− (𝑡−𝑡0)2
2𝜎2 . (4.10)

Here, 𝛽 = 0.7 is the screening constant. Furthermore, we set the maximum electric
field strength to 𝐸0 = 230 kV/cm, the pulse peak to 𝑡0 = 4 ps and 𝜎 = 1 ps in order to
be consistent with Ref. [16]. With these parameters and Eq. (4.8) we can calculate the
angular momentum resulting from axial phonons driven by the pump laser with the
laser field strength given by Eq. (4.10)

Now, we can phenomenologically determine the gyromagnetic ratio by using the
peak value of the obtained angularmomentum and the experimentally recorded phonon
magnetic moment of 𝜇ph = 0.1𝜇B [16]. With these values and Eq. (2.15) we determine
the gyromagnetic ratio to be 𝛾 ≈ 268.86 𝑒/Da

We determine the distance 𝑟𝑧 in Eq. (4.9) in a similar way. To detect the experimen-
tally observed value of 𝐵 = 32 mT, the magnetic field has to be measured at a distance
of 𝑟𝑧 ≈ 1.8 Å from the Ti-atoms in the SrTiO3 sample, which exhibit a soft phonon
mode of the needed frequency. The plots of the electric field strength, its amplitude,
as well as the resulting phonon angular momentum and magnetic field strength are
shown in Fig. 4.3.

The calculation proposed above makes it possible to provide a similar estimate for a
laser of a different strength. Therefore, it can be adapted for a potential future experi-
mental setup.
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5
Summary of papers

Paper I
Phonon Inverse Faraday Effect from Electron-Phonon Coupling

We present a microscopic theory of the magnetization induced by axial phonons
based on the formalism of the optical inverse Faraday effect. We consider circularly po-
larized phonons as a time-dependent perturbation to investigate their effects on elec-
tronic energy levels. Using second-order perturbation theory, we arrive at a general
expression for the effective Hamiltonian which describes these effects. In an attempt
to validate our findings by comparing with experimental observation, we apply the re-
sulting equation to the case of SrTiO3 sample driven with a circularly polarized laser
field. We calculate the size of the splitting of electronic energy levels in SrTiO3 which al-
lows us to estimate the size of the emergent magnetic field and reach a good agreement
with the experiment.
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Paper II
Axial phono-magnetic effects

In this review paper we summarize and present recent advances in understanding
the phono-magnetic effects. We first phenomenologically motivate the connection be-
tween phonon angular momentum and the arising magnetization. Further, we present
the experimental observations that confirm that axial phonons influence the magnetic
properties of the material, giving rise to a magnetic moment that has been measured
to be larger than can be expected from the ionic mass. Finally, we give an overview of
recently proposed theories that strive to explain this effect. We conclude by discussing
the similarities and connection between the different theoretical approaches.
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6
Conclusion and outlook

6.1 Conclusion
To conclude this thesis, we revisit the research questions posed in Chapter 1, the first
of which asks:

Apart from ionic motion, what other effects can influence phono-magnetic ef-
fects resulting in the large magnetization observed experimentally?

As explored in Chapter 2, the experimental observations conflict with the classical
explanation of phono-magnetic effects based on the ionic motion. At the same time,
the gyromagnetic ratios of electrons and ions suggest that electrons play a part in the
emergence of this effect. Furthermore, several recently proposed microscopic theories
striving to explain the phonon-induced magnetization involve examining the interplay
between axial phonons and electrons. However, while the theories seem to agree on
the importance of electron-phonon interaction, the explanations of how exactly this
interaction becomes relevant vary.

In Chapter 3 we have summarized a theory explaining phonon-induced magnetiza-
tion by considering the circularly polarized phonons as a second-order perturbation,
which couples to the electronic states through electron-phonon coupling. This allows
us to view phonon-induced magnetization as a vibrational analogue to the optical in-
verse Faraday effect. Our framework of the phonon inverse Faraday effect leads to
good agreement with the experimental observations. Therefore, it solidifies the propo-
sition that large phonon-induced magnetization originates from the electron-phonon
coupling.

In addition to the challenge of finding a microscopic theory accurately predicting
the size of the magnetization arising from axial phonons, the nature of the induced
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magnetic field remains not entirely understood. This issue was reflected in our second
question:

How can we better understand the nature of the magnetization induced by axial
phonons and how does it affect other physical phenomena such as theHall effect?

Chapter 4 presents our approach to this question through the use of the conventional
and anomalous Hall effects. We have outlined the way these effects could be utilized
in an experiment that would determine whether the magnetic field induced by axial
phonons is a Maxwellian field or merely an effective field that only breaks time-reversal
symmetry.

6.2 Outlook
This thesis outlines the progress made towards understanding the phono-magnetic ef-
fects. However, our work also points us towards several challenges that remain un-
solved.

For example, while we have proposed a microscopic theory explaining phonon-in-
duced magnetism in terms of the phonon inverse Faraday effect, a more exact calcu-
lation of the electron-phonon coupling strength is needed to make a more accurate
comparison with the experimental observations. Additionally, it would be beneficial
to understand the exact role of the drive of the pump laser pulse. Specifically, if the
pump laser field excites new vibrational modes that display the same polarization as
the laser, or if it polarizes the thermal vibrations that are already present in the material.
Moreover, the formalism could be improved by accounting for the contributions of the
complex part of the gradient of the potential energy operator.

In addition, since the nature of the magnetic field induced by phonons remains not
completely understood, a promising path would be to study the effect of axial phonons
on other physical phenomena. We discussed the potential of using the conventional and
anomalous Hall effects to understand if the arising field is a Maxwellian field. However,
several other phenomena where axial phonons could have a substantial impact remain
unexplored.

One such phenomenon is the temperature dependence of the electrical conductiv-
ity in strongly correlated systems. These systems are often described by a Hubbard
model which accounts for tunneling between electronic sites and the repulsion forces
between the electrons of different spins occupying the same site [54]. This model could
be modified to account for the influence of the axial phonons by introducing an addi-
tional term that includes the interaction between electron spin and phonon angular
momentum. We suggest that this coupling will cause spin splitting, the size of which
will be determined by the size of the phonon angular momentum. In turn, the phonon
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angular momentum induced by thermal vibrations is dependent on the temperature.
As the splitting of the bands could potentially influence the conductance if the new
bands cross the Fermi level [55], this opens for a potential to influence the temperature
dependence of conductivity through axial phonons.

Another largely unexplored area of research on phono-magnetic effects are axial
phonons in optical cavities. While optical cavities have been proposed as a way to
tune the phonon frequencies [56], the question of how an interaction with an optical
cavity may influence the induced effective magnetic field remains open. One way to
explore this would be to utilize the effective Hamiltonian discussed in Chapter 3 with
corrections for the coupling between the cavity and the phonons.

In summary, while some progress towards understanding and utilizing phono-mag-
netic effects has already been made, there are still plenty of unanswered questions. For
example, it remains to be seen if the large magnetization induced by axial phonons orig-
inates from a Maxwellian magnetic field. Additionally, the influence of axial phonons
on electric properties remains a promising but largely unexplored area of research. In-
vestigation of these questions promises to be a part of reaching a more complete under-
standing of phono-magnetic effects.
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