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Abstract

The fast-ion distribution function in fusion plasmas can only be measured indirectly by solving
an ill-posed inverse problem. The inversion being ill-posed necessitates regularisation of the
problem to ensure that the reconstruction of the fast-ion distribution function depends smoothly
on the measurements obtained by fast-ion diagnostics. In turn, the resulting reconstruction
depends on the choice of regularisation, and it is therefore beneficial to choose a
physics-informed prior as regularisation scheme. In this work, we reconstruct the high-energy
tail in the MeV-range of the fast-deuterium distribution in JET discharges heated by waves in
the ion cyclotron range of frequencies (ICRF) using neutron and gamma-ray emission
spectroscopy. We do this by applying a physics-informed prior based on collision physics and a
newly formulated ICRF-physics prior, and we compare these results with numerical simulations
and inversions based on a standard Tikhonov regularisation scheme. Our findings suggest that
the physics-informed regularisation scheme including the ICRF prior improves the
reconstructions compared with standard Tikhonov regularisation. Finally, it is shown that
constraining the reconstruction to have negative gradients in the directions of phase space
dictated by ICRF physics results in a reconstruction that well resembles expectations based on
ICRF physics theory and numerical simulations.

4 See Maggi et al 2024 (https://doi.org/10.1088/1741-4326/ad3e16) for JET Contributors.
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1. Introduction

In the burning plasma regime of magnetic confinement fusion,
the ions must be heated to temperatures of several keVs by
energetic fusion alpha particles, which must be well confined
from their birth in the MeV-range down to thermal energies.
Electromagnetic wave heating in the ion cyclotron range of
frequencies (ICRFs) is able to generate MeV ions, dubbed fast
ions. It is of paramount importance to measure and under-
stand the distribution function of fast ions, as they can drive
instabilities in the plasma [1-7] and interact with instabilit-
ies and magnetohydrodynamic modes causing fast-ion trans-
port from the core towards the edge [8—13]. The fast-ion velo-
city distribution function can be measured by velocity-space
tomography [14—16] which has been used at ASDEX Upgrade
[16-21], JET [22-24], MAST [25, 26], DIII-D [27], EAST
[28-30], and is being studied for TCV [31], KSTAR [32] and
ITER [33]. In this paper, we revisit two discharges of the
Joint European Torus (JET) tokamak heated by ICRF heating
generating fast deuterium ions in the MeV range. We recon-
struct the fast-ion velocity distribution functions in the core
of the plasma in discharges #86459 and #95679 by solving
an ill-posed inverse problem using measurements of neutron
emission spectroscopy (NES) and gamma-ray spectroscopy
(GRS), as was done in [22] and [23], respectively. In discharge
#86459, third-harmonic heating of deuterium is employed,
with a cold resonance in the center of the plasma [34]. This
generates a fast-ion tail up to MeV-range energies at approx-
imately zero pitch in the center of the plasma. In discharge
#95679, the three-ion heating scheme [35-38] is employed,
with a cold resonance on the high-field side of the plasma.
This generates a fast-ion tail of deuterium ions up to MeV-
range energies with a non-zero pitch in the center of the
plasma. The reconstruction of the high-energy tail in [22] used
a smoothing regulariser, and the reconstruction in [23] used
collision-physics regularisation as well as sparsity-promoting
regularisation. However, it has recently been shown that wave—
particle interactions between fast ions and the ICRF heating
waves [39—41] can be incorporated as prior information in
the inverse problem [42]. Here, we demonstrate that this new
ICRF regularisation improves the reconstructions from exper-
iments, in agreement with theory. Including the ICRF prior
both confirms the conclusions of [22, 23], and results in recon-
structions with fewer artefacts in agreement with theory.

We study the two JET discharges, #86459 and #95679, as
they utilised qualitatively different ICRF heating scenarios, to
study the flexibility of the ICRF regularisation and its ability
to aid in the reconstruction of the fast-ion distribution in both
cases. The theory behind these qualitative differences is briefly
reviewed in section 3, and this is taken into account in the ICRF
prior.

The paper is organised as follows: section 2 summarises the
fast-ion diagnostic setup, which collected the data used in this
study, in JET discharges #86459 and #95679. In section 3 we
review the theory of the wave—particle interaction in the ICRFs
needed to derive the streamlines in velocity space, along which
we expect a fast-ion phase-space flow. The inverse problem of
reconstructing the fast-ion distribution functions in discharges
#86459 and #95679 is solved in section 4. Section 5 concludes
the paper and provides an outlook.

2. Experimental setup

ICRF heated ions have been detected by FIDA [18, 43], NES
[44-47], GRS [37, 38, 47-51], ion-cyclotron emission (ICE)
[52], and NPA [53]. Our reconstructions are based on exper-
imental data acquired by NES [44] and GRS [54]. Both dis-
charges used the following neutron and gamma-ray generating
reactions,

ID+ID — 3He +n(2.45MeV), )
D +3Be — 1'B* 4-n,
B* — 1B 4 ~(2.868MeV), )
D +3Be — }°Be* + IH,
1"Be* — [°Be +7(3.367MeV). 3)

The NES diagnostics utilise the reaction in (1), and the GRS
diagnostics utilise the reactions in (2) and (3).

The diagnostic sensitivity to each part of velocity space
is quantified in so-called weight functions. The weight func-
tion w is defined as the kernel function that maps the fast-
ion distribution function f to the diagnostic signal s according
to [55-60]

S(EdlvEd2790) :/W(Edl 7Ed27907XaV)f(XaV) dXdV7 (4)

where E4q; and Eg denote the measurement bin edges of
the diagnostic with finite resolution, ¢ is the viewing angle
between the line of sight and the magnetic field in the (R, z)
point of interest in position space, and x and v are the Cartesian
position-space and velocity-space coordinates. The weight
functions have units of signal/ion, and the integrations are
effectively evaluated in a small finite region around the (R, z)
point of interest. In this study we reconstruct the fast-ion dis-
tribution function in velocity space for a small region around
the plasma core, where most neutrons and gamma-rays are
generated [22, 23]. In addition to this, for NES the recon-
struction rests on the appropriate assumption that the neutrons
mainly originate from beam-target reactions, where fast ions
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react with thermal ions compared to thermal-thermal or beam-
beam reactions [22, 23]. This assumption is always very well
fulfilled for two-step reaction GRS. Velocity-space weight
functions have been calculated for several different fast-ion
diagnostics, such as FIDA spectroscopy [55, 61-63], collect-
ive Thomson scattering (CTS) [33, 64-66], GRS [67, 68], NES
[22, 69, 70], fast-ion loss detectors [71, 72], ICE [73, 74]
and 3 MeV proton diagnostics [75]. Weight functions have
also been calculated in 3D phase space for one-step NES and
GRS diagnostics [57, 58], for two-step GRS diagnostics [76],
for neutron diagnostics, neutral particle analysers and FIDA
spectroscopy [56], as well as for a general-type diagnostic
based on projected velocities [77].

The weight functions are calculated using the orbit-weight
computational framework (OWCF) code [59] interfaced with
the DRESS code [78] for NES and with GENESIS for GRS
[50, 79]. Discretising the integral equation (4) allows us to
express the relation as a matrix-vector product,

s = WE, )

where each row in the matrix W is a weight function, s is the
diagnostic signal collected in a column vector, and f is the vec-
torised fast-ion distribution function.

2.1. Third-harmonic ICRF-heating scenario

In discharge #86459 the plasma was heated by 4.5 MW of
neutral beam injection (NBI) with beam injection energies of
80keV, 100keV and 120keV (and their corresponding half
and one-third energies), and 3 MW of third harmonic ICRF
heating. The ICRF wave frequency was 51 MHz and the mag-
netic field on axis was By = 2.25 T. The electron density was
approximately 4 x 10" m~3. The experimental data used in
this work is the average of the data collected in the time period
from 50.5 s to 52.1 s in the discharge. Three NES detectors and
one high-purity Germanium (HpGe) [51] were used. One neut-
ron detector, time of flight optimised for high rates (TOFORs)
[80, 81], measures the time of flight of neutrons traversing the
diagnostic instrument and has a line of sight that is almost per-
pendicular to the magnetic field. The two oblique NES detect-
ors, the single-crystal diamond detector and the liquid scintil-
lator NE213 [82], share a line of sight, which has an angle
of 47° with respect to the magnetic field on axis, which is
therefore vital when aiming to resolve the fast-ion distribu-
tion function in pitch. The neutrons mainly originate from the
DD reaction in equation (1), to which the TOFOR diagnostic
is optimised [80, 81]. The spectrum formation for beam-target
reactions gives direct access to the velocity of the energetic
particles [83, 84]. The HpGe GRS detector, measuring a spec-
trum of gamma-ray energies, shares the perpendicular line of
sight with TOFOR. The spectral broadening, caused by the
Doppler shift due to the motion of the fast deuterium popula-
tion, around the 2.868 MeV and 3.367 MeV peaks of nominal
energy, is used for the inference of the fast-ion distribution
function [85]. These spectral lines originate from the two two-
step nuclear reactions in equations (2) and (3) [51].

25 ¢

Raw data
Background
Denoised data

20 +

-10
2500

Counts
ot

3000 3500
Energy, E, [keV]

Figure 1. Subset of the HpGe data in discharge #86459. The raw
data is shown in blue, and the data following background
subtraction is shown in yellow. The background estimation is given
by the red line.

The processing of the experimental data of this discharge
follows that of [22], but is described in the following for
completeness. Since we are only interested in reconstruct-
ing the high-energy tail of the fast-ion distribution function
above the neutral beam injection energy, the measurement
data points also sensitive to contributions from velocity space
below 120keV are discarded. This is because the fast-ion
densities in the high-energy tail are significantly smaller than
the densities around the NBI energy. The retained and dis-
carded measurements are visualised in figures 2 and 4 in
[22]. We keep only measurement data points corresponding
to weight functions with a non-zero sensitivity somewhere in
our target velocity space. In addition to this, we de-trend the
gamma-ray data according to a linear polynomial as shown in
figure 1. The weight functions are rescaled with a single factor
per spectrum, such that the synthetic data calculated from the
matrix-vector product of the weight matrix and the ASCOT-
RFOF [51, 86] simulation of the discharge Wfascor matches
the amplitude of the experimental data. This is also shown in
figures 2 and 4 in [22]. To treat all diagnostics on an equal
footing, the weight functions and the experimental data are
weighted with the maximum value of the obtained measure-
ments for each diagnostic individually. Following this post-
processing we end up with a set of measurements collected
in the single vector s (see equation (5)), which is shown in
figure 2. This is the data used for the reconstruction of the fast-
ion distribution function in discharge #86459.

2.2. Three-ion scheme ICRF-heating scenario

For discharge #95679, the data used in the present work to
infer the high-energy tail of the fast-ion distribution function
is an average of the data collected between time = 8s and
t=09s in the discharge. The data is composed of four spectra
in total collected by three diagnostic instruments, as the single-
crystal diamond detector was not available for this shot. Thus,
the spectra are collected by the TOFOR diagnostic, an oblique
NE213 diagnostic [87], and the HpGe GRS diagnostic.
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Figure 2. Rescaled and normalised data used for the reconstruction
of the fast-ion distribution function in discharge #86459. Total
number of data points: 434.

As per the procedure in [23], the weight matrix W for
each diagnostic calculated by the OWCEF is rescaled using
the TRANSP distribution [88] of the corresponding discharge.
The weight matrix of a specific diagnostic is rescaled, such
that the maximum of the synthetic measurements calculated
from (5) matches the maximum of the experimental data col-
lected by the same diagnostic. This is done for all four dia-
gnostics and is also shown in figure 8 in [23].

We note that the ASCOT-RFOF simulation result and the
TRANSP simulation result are used for the two discharges
respectively as those were chosen for the analysis in [22, 23].
In this work, the simulation results are not to be considered the
ground truths. They serve to compare experimental measure-
ments with modelling, and it is considered beyond the scope
of this work to benchmark the codes against each other.

Since we are not attempting to reconstruct the distribution
function below the NBI energy, we discard all weight func-
tions polluted by the NBI, and the corresponding measure-
ments, as we did in the previous case. This is visualised in
figure 8 in [23]. Again, we keep only those weight functions
that have a non-zero sensitivity somewhere in our target velo-
city space, i.e. any zero rows in W are removed from the prob-
lem. In order to treat all diagnostics on the same footing in the
inverse problem, we weight the measurements and the weight
functions with the maximum value of the obtained meas-
urements for each diagnostic individually as for discharge
#86459. Following this post-processing of the data we end up
with a set of measurements collected in the single vector s (5)
used for the inversion. The post-processed data is shown in
figure 3.

3. Characteristics of ion motion in velocity space
for ICRF heating

The ICRF heating wave can exchange energy with ions in the
plasma if the following resonance condition is satisfied [40],

w :l’l(,ucl‘<|>k”v‘|7 (6)

1.2 - C
‘HchBc
WA |

Normalised measurements |-]

[

0 100 200 300 400
Index [-]

Figure 3. Rescaled and normalised data used for the reconstruction
of the fast-ion distribution function in discharge #95679. Total
number of data points: 407.

where w is the angular frequency of the heating wave, w.; =
gB(R,z)/m is the local cyclotron frequency, g is the electric
charge of the particle, m is the particle mass, n is an integer
harmonic, k|| is the parallel component of the wave vector of
the heating wave, and v is the component of the ion velocity
parallel to the magnetic field. The velocity-space character-
istics of the wave—particle interaction can be derived from the
corresponding changes in energy E, toroidal canonical angular
momentum P, and normalised magnetic moment A, which are
invariants of the motion in the absence of electric fields. From
these, we can deduce the change in the velocity component
perpendicular to the magnetic field v, given a change in v,

1—p2 v
AVJ_ = 721)00 ViAV”, (7)
Pso s

where p, is the asymptotic pitch value for large energy gains.
The vectors tangent to the streamlines in velocity space are
thus given by

Av 1
€= (AVL) = <1P2p(2>0 L) AVH (8)

The asymptotic streamline for large energy gains is given by

A
2 _ o0 2 9
vJ_,oo BO/B(R,Z)_AOOVHOO? ( )

where By is the magnetic field on axis and B(R, z) is the local
magnetic field. For more details on the A, parameter, we
refer the reader to appendix A. Here, we just note that if the
cyclotron cold resonance line of the ICRF wave is located
on the magnetic axis, then A, = 1, whereas A, # 1 if the
cyclotron resonance line is located off axis. The streamlines
in the core of the plasma for discharges #86459 and #95679
are shown in figure 4. In both cases, the streamlines in velo-
city space are drawn in the (R, z) coordinate pair of the mag-
netic axis. Contrary to 3D streamlines as in [42], a single
ion does not move along the streamlines in velocity space as
shown in figure 4. The ion moves to a different (R, z) location
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(b) Three-ion scheme with off-axis resonance #95679

Figure 4. ICRF streamlines in velocity space on the magnetic axis
for the JET discharges (a) #86459 and (b) #95679. The gray dashed
semicircles denote the energy contours of 120keV, 1 MeV and

2 MeV, respectively.

and is therefore not observed further. Instead, the velocity-
space streamlines can be understood as a ‘wind’ of ions one
would encounter if one was standing in a single (R, z) loca-
tion. The streamlines in velocity space look different depend-
ing on where in (R, z)-space they are drawn, and where the
resonance line is located. In discharge #86459, third-harmonic
ICRF heating was used, where the resonance line traverses the
magnetic axis, such that A, = 1. The streamlines therefore
pointin the v direction. Contrary to this, in discharge #95679
the three-ion scheme was used, where the wave absorption
happens in the core, but A, < 1, such that the resonance line
traverses the high-field side. This results in the tilted stream-
lines when observing the ions around the axis. The tilt of
the streamlines is a consequence of conservation of magnetic
moment [37, 42], which also leads to the so-called rabbit ear
distribution [89, 90]. To satisfy the resonance condition in
the core, the fast ions must therefore provide a Doppler shift,
resulting in primarily fast-ions with v > 0 absorbing wave
energy. The theory thus predicts that the high-energy tail of
the fast-ion distribution function is drawn in the v | -direction
in discharge #86459, whereas it is drawn with a tilt towards
positive pitches in discharge #95679.

4. The inverse problem and regularisation

To infer the fast-ion distribution function f given s and W it is
not feasible to do a standard least squares minimisation, due
to the ill-posedness of the inverse problem [91]. As the weight

matrix is ill-conditioned, noise in the data will be amplified
in the inversion, rendering the result useless. To circumvent
this issue, we regularise the problem by adding an additional
term in the least squares minimisation, with Tikhonov regular-
isation being a popular choice. The general Tikhonov solution
[92] is given by

Jy = arg min (||s — WE||3 + \*||Lf[)3) , (10)
f

where L is a regularisation matrix chosen to penalise a specific
property of the solution. Prior information can be incorporated
by an appropriate choice of regularisation matrix. The regular-
isation parameter A controls the strength of the regularisation
relative to the data fidelity term. Choosing the optimal regu-
larisation parameter is not trivial, and an overview of different
choosing methods can be found in chapter 5 of [93]. As one
method cannot be favored over others, in this work we com-
bine visual inspection with comparison to the ASCOT-RFOF
simulation of discharge #86459 and the TRANSP simulation
of discharge #95679.

A popular choice of regularisation matrix is to use the finite-
difference approximation of the gradient operator, denoted
by L, which promotes smooth solutions. The motivation for
this choice is that Coulomb collision between particles in the
plasma tends to render the distribution function smooth. The
same is the case for the diffusive nature of the wave—particle
interactions in ICRF heating. In this paper, we compare the
performance of this choice of regularisation matrix to regular-
isation matrices based on physics-informed prior information
of collision physics and ICRF physics, which includes know-
ledge of the actual physics acting to smoothen the distribution
function, contrary to the previous choice of regularisation.

The collision physics regularisation [24, 28, 94] was also
employed in [23] to reconstruct the fast-ion distribution func-
tion in discharge #95679, where the fast-ion distribution
function is expanded in a set of slowing-down distribution
functions [95, 96]. However, in this study we employ differ-
ent expansion functions. Instead of using full slowing-down
distribution functions as expansion functions, we dampen the
slowing-down distribution functions around the source injec-
tion points, as in [28], since we only need the correlation
between each point in velocity space and the points in its near
vicinity. This avoids the significant assumption of collisional
regularisation based on slowing-down functions generated by
following fast ions all the way from injection until thermalisa-
tion. This type of collision regularisation implicitly assumes
correlations between pixels far apart in phase space, which we
avoid. The dampened expansion functions in (v, p) space are

given by
0o —V
11
o ) (1n

where erfc(z) is the complementary error function, and we
have chosen o, =0.5-10°ms~!. The slowing-down distri-
bution functions in [95, 96] are derived for a homogeneous
plasma, which is not the case in a tokamak. The longer a
particle stays in the plasma, the larger the distance of that

fsd( p) fsd(VP)erfc< o )ef(



Nucl. Fusion 65 (2025) 112006

M. Rud et al

0.3

02
- 04

), [10° my/s)

[10% m/s]
'

-15 -10 -5 0 5 10 15 -15 -10 i 0 5 10 15
vy [10° m/s] v) [10° m/s]

(a) (b)

15, 15
0.4
= 0.3 =
=10 g 10 0.3
& 02 o
s : & 02
=P =5

= 01 = 01
0 0 0 0
-5 -0 -5 0 5 o 15 -5 -0 -5 0 5 o 15

5 E
vy [10° m/s| vy [10° m/s|

(©) (d)

Figure 5. Subset of normalised expansion functions, given by equation (11), collectively defining the collision physics regularisation. The
curved semicircles are the 120keV, 1 MeV and 2 MeV isocurves, respectively.

particle from the source point in velocity space becomes due
to the slowing-down process. Additionally, the longer the
particle stays in the plasma, the larger the effect of the plasma
inhomogeneity and any anomalous transport processes will
be. Therefore, the larger the distance in velocity space, the
less accurate the prior information of a particle slowing down
in a homogeneous plasma becomes for a particle slowing
down in a tokamak plasma with possible anomalous trans-
port. Therefore, o, is chosen to be so small that only nearby
pixels in velocity space are correlated via the slowing-down
distributions. The slowing-down distributions fy are given
by [95, 96]

1 STy .
C2y/mavi+v3

where the source strength S and the Spitzer slowing-down time
T can be absorbed in a normalisation, v, is the critical velocity
at which ion-ion collisions are equally as strong as ion-electron
collisions, and

_(r=r)*
4o

de (V7p> ) (]2)

14 (ve/v)? -
1+ (VL./v0)3> ’ )

where 8 = myZ; /2mg = 1/2 with my; and mg; being the masses
of the thermal and fast ions, respectively, and Z; is the effect-
ive ion charge. The + [ solution is used for v < v and the —f3
solution is used for v > vy. Examples of expansion functions
for the discharge #95679 are shown in figure 5. Note that the
expansion functions at higher speeds, which are in the elec-
tron collision dominated regime, are elongated in the radial
direction, corresponding to little pitch angle scattering, as in
figures 5(a) and (d). On the contrary, the expansion functions
at lower speeds, where ion collisions become more important,
are broader, corresponding to more pitch angle scattering, as
in figures 5(b) and (c). The expansion functions fsd are norm-
alised to unity when employed as regularisation. Equivalent
expansion functions for discharge #86459 are used for the
reconstructions of the fast-ion distribution function in that dis-
charge. The expansion of the fast-ion distribution function in
slowing-down functions in the discrete case is given by

o=

+5(1-p}) 10g<

3

M
£=> cifu;=Xe, (14)
j=1

where an expansion-function source is placed in all pixels in
velocity space, and where each column in the matrix X is an
expansion function, and c is the vector of expansion coeffi-
cients. With a source point at all points in velocity space, X is
square, and the task is no longer to reconstruct f in itself, but to
reconstruct the coefficients ¢. Penalising the two-norm of the
coefficient vector ¢ in the inverse problem has been shown to
be equivalent to regularising f according to collision physics
[28, 94]. In [23], the one-norm of ¢ was penalised to promote
sparsity.

As mentioned, in addition to the collision physics regu-
larisation we also regularise according to ICRF physics. As
in [42], the ICRF regularisation is implemented as a modi-
fication to the finite-difference approximation of the gradi-
ent operator L, which ensures that only neighbouring pixels
in phase space are assumed correlated with this ICRF phys-
ics regularisation. In addition to this, the ICRF regularisation
penalises those solutions of the inverse problem that are not
consistent with the wave—particle interaction theory, such that
the reconstructions do not only rely on collision physics prior
information. This is beneficial in situations with sparse data-
sets due to a limited number of available fast-ion diagnostics.
However, there is a difference between the ICRF regularisa-
tion in this work and the ICRF regularisation in [42]. The
ICRF regularisation in [42] was imposed in the 3D phase
space of invariants (E, Py, ), where the streamlines repres-
ent actual trajectories that ions follow in phase space if inter-
acting with the ICRF wave. Instead, in this work, the ICRF
regularisation is imposed in 2D velocity space, as also dis-
cussed in section 3. Here, each individual particle receiving
a kick in velocity space will be transferred to a slightly dif-
ferent drift orbit and thus move away from the (R, z) location
we consider. Nevertheless, the streamlines represent a ‘wind’
of ions traversing a single (R, z) location. This 2D case can
be considered a projection of the 3D case onto a single (R, z)
point.

The ICRF regularisation in velocity space only depends on
the heating-wave frequency and the magnetic field strength on
axis and in the point of interest and can therefore easily be
adapted from experiment to experiment, and across machines.
In order to penalise the gradients along the ICRF streamlines,
the gradient in each point in velocity space is projected onto
the tangent vectors given in (8) by the projection matrix
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Figure 6. (a) High-energy tail above the neutral beam injection energy from ASCOT-RFOF distribution of discharge #86459. (b)
Reconstruction of the high-energy tail of the fast-ion distribution function using first-order Tikhonov regularisation. (¢) Reconstruction of
the high-energy tail of the fast-ion distribution function using both collision physics regularisation and ICRF regularisation. All colourbars
are cut off at the maximum of (c). (d) 1D distributions f(E) integrated over pitch.
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where €, AvH and Av, are given by (8), and m=1,....M
is the velocity-space pixel index with M being the total num-

ber of pixels in velocity space. In units of (A )2 /||€m]?, the

ICREF regularisation matrix LEIC) is then [97]

acy _ Iy D, ., (V|>VJ_)>
200 _ H L, (16
! <DVLV (VH)VJ_) DVLVL (V”’VJ‘) : ( )

where I, is the M x M identity matrix, and D; are M x M
diagonal matrices with the m’th element along the diagonal
being the i,j’th element of (15). In addition to this, we also
require that the fast-ion distribution function must be non-
negative. The minimisation problem to solve is then

— . IC
2 = arg min (s — WXel + X2llefl3 + A 1L{VXe|})
c

subject to Xc > 0,
(17

such that

fr=Xc, (18)

where A and A\jc are the regularisation parameters controlling
the strength of the collision-physics regularisation and the
ICRF-physics regularisation, respectively.

4.1. Reconstructions

In figure 6, we compare the ASCOT-RFOF distribution func-
tion in a small volume around the magnetic axis of dis-
charge #86459 (figure 6(a)) with reconstructions using dif-
ferent regularisations. A reconstruction employing first-order
Tikhonov regularisation is shown in figure 6(b) and a recon-
struction employing collision physics and ICRF regularisa-
tion is shown in figure 6(c). Regularisation parameter scans of
the reconstructions are shown in appendix B. The reconstruc-
tions in figures 6(b) and (c¢) are also shown in figures B1(c)

and B2(g). One-dimensional distributions in energy are shown
in figure 6(d), which are obtained by integration of the 2D
functions over pitch [98]:

f(E)z/_llf(p\/gW> |w :

)

(19)
where the Jacobian of the coordinate transformation is
6(VH,VJ_) . 1 (20)
9(E,p) my/1—p2

It is evident that the high-energy tails of the reconstructions
match that of the ASCOT-RFOF computation. The ASCOT-
RFOF distribution increases strongly towards the NBI region.
The tomographic reconstructions has no information about
such low energies. All colourbars of figure 6 are thus cut
off at the maximum of figure 6(c). The overall shape of the
reconstruction using the ICRF prior has a better match with
ASCOT-RFOF, as it is slimmer and smoother and does not
have the slight bump-on-tail appearing in the reconstruction
using only Tikhonov regularisation, which is most likely an
artefact. Above a certain fast-ion energy, finite Larmor radius
effects will reduce the wave—particle interaction strength. This
region in energy is referred to as the barrier region, and it
is expected to occur at around 2 MeV in this discharge [34]
with third-harmonic heating, such that the tail is not dragged
to higher energies. Without enforcing it in the inversion, our
reconstructions reflect this property predicted by theory.

In figure 7, we compare the TRANSP distribution func-
tion in a small volume around the magnetic axis of discharge
#95679 with reconstructions employing first-order Tikhonov
regularisation and collision physics and ICRF regularisation.
In figure 7(d) we compare the 1D distributions in energy.

As in the on-axis resonance case, the trend of the high-
energy tails of the reconstructions follow that of the numer-
ical computation well, this time calculated by TRANSP. All
colourbars in figure 7 are thus cut off at the maximum of
figure 7(c). Regularisation parameter scans of the recon-
structions are shown in appendix B. The reconstructions in
figures 7(b) and (c) are also shown in figures B3(c) and B4(g).
We notice that the depleted region of phase-space density in
v| as predicted by the TRANSP simulation is not measured by
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Figure 7. (a) High-energy tail above the neutral beam injection energy from TRANSP distribution of discharge #95679. (b) Reconstruction
of the high-energy tail of the fast-ion distribution function using first-order Tikhonov regularisation. (¢) Reconstruction of the high-energy
tail of the fast-ion distribution function using both collision physics regularisation and ICRF regularisation. All colourbars are cut off at the
maximum of (¢). (d) 1D distributions f(F) integrated over pitch. The blue line denote the ICRF characteristic expected from initial energy of

110keV and pitch v /v = 0.6.

the tomography. The combination of the collision-physics reg-
ularisation and ICRF regularisation enables a reconstruction
with a narrow tail in accordance with the expectations from
the wave—particle interactions, while simultaneously obtain-
ing a small bump on tail, which is not expected. On the con-
trary, the reconstruction with first-order Tikhonov regularisa-
tion appears to be broader in pitch than expected from the sim-
ulation as a result of the required smoothing. This leads to a
smaller peak in the high-energy tail and a less pronounced ori-
entation along the streamlines than expected from ICRF phys-
ics. Here, the combined use of collision-physics regularisa-
tion and ICRF regularisation outperforms first-order Tikhonov
regularisation. On the other hand, the reconstructions show a
region relatively broad in pitch near the NBI energy at v > 0
compared with the TRANSP distribution. This is expected to
be due to the higher diagnostic sensitivity to co-going ions than
counter-going ions and due to the sparsity of the measurement
data.

The use of regularisation is inevitable, but it is preferred to
apply as little regularisation as possible, such that the recon-
struction is determined primarily by the obtained measure-
ments. However, as demonstrated in this work, strong physics-
informed prior information is an advantage in situations with
sparse datasets. To this end, we present a reconstruction using
an additional piece of prior information. Because ICRF heat-
ing is a diffusive process in phase space, the effect of the wave
absorption is loosely speaking to smooth out the distribution
function along the energy direction. On its own, it can there-
fore not create a bump-on-tail feature in the energy direction
for a given A (A.2) and Py (A.3), and therefore no bump-on-
tail in the distribution function of fast deuterons is expected.
On top of this, there is no evidence of a bump-on-tail present in
the neutron spectra from this discharge in the time window of
interest, as presented in figure 3. Examples of such spectra can
be seen in [99]. To use this as prior information, we can add the
constraint to the inverse problem that the gradient of the fast-
ion distribution function along the ICRF streamlines must be
negative towards higher energies. The minimisation problem
to solve is then the same as in equation (17) with the addi-
tional constraint LEIC)XC < 0. A reconstruction with this addi-
tional constraint is shown in figure 8. Here we also show the
streamlines to emphasise the direction of the tail distribution.

600

400

200

vy [10° m/s]
N\

) [10% m/s]

Figure 8. Reconstruction of the high-energy tail distribution of
discharge #95679 including the monotonicity constraint along the
streamlines. Colourbar and blue line as in figure 7.

The one-dimensional distribution in energy of this reconstruc-
tion is also visualised in figure 7(d) by the green dashed-dotted
line.

5. Conclusion and outlook

The study has shown the reconstructions of the tails of ICRF-
heated fast-ion distribution functions in velocity space using
physics-informed prior information in the form of collision
physics and ICRF physics. By comparing these reconstruc-
tions with reconstructions from previous studies using first-
order Tikhonov regularisation and collision-physics regular-
isation without ICRF regularisation, it has furthermore been
shown how the addition of physics-informed prior informa-
tion results in less artefacts in the fast-ion distribution func-
tion, while at the same time limiting correlations between
pixels far apart in phase space, as can be the case in colli-
sion physics regularisation. Specifically, the inclusion of the
ICREF prior to reconstruct the fast-ion distribution function in
discharge #86459 results in a smooth and narrow high-energy
tail extending in the v, direction. For discharge #95679, reg-
ularising according to ICRF physics results in a definite high-
energy tail tilted towards positive pitches in accordance with
theory, and the combination of collision-physics and ICRF-
physics priors results in a narrower tail compared with the
Tikhonov regularisation counterpart. In addition to this, con-
straining the reconstruction to have negative gradients along
the streamlines results in a reconstruction that well resembles
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expectations based on ICRF physics theory and the TRANSP
simulation result. Different regularisation techniques result in
different reconstructions. However, all reconstructions share
the main physical properties, such as the direction of the tilt of
the high-energy tail in velocity space.

We expect that the physics-based prior information of col-
lision physics and ICRF physics will be essential for the feas-
ibility of reconstructions in phase space as recently demon-
strated by orbit tomography [100]. The 2D formalism exploit-
ing these physics-informed priors are in fact derived for phase-
space tomography in 3D-5D [42,77, 94,97, 101]. Future work
will attempt 3D-5D phase-space tomography using the prior
information in the same way as we demonstrate here experi-
mentally for 2D velocity-space tomography.

As an extension to the wave—particle interaction prior, a
next step is to incorporate interactions between fast ions and
Alfvén eigenmodes and neoclassical tearing modes, which are
of lower frequency than the ICRF heating wave. In this case,
the magnetic moment is conserved, altering the changes in the
constants of motion from the ICRF heating case. In addition
to this, the resonance condition is different, as it must take
into account orbital frequencies given by poloidal and toroidal
transit times of the fast-ion orbits.
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Appendix A. Derivation of velocity-space
characteristics

In the appendix, we derive the velocity-space characteristics of
the wave—particle interaction from the corresponding changes
in energy E, toroidal canonical angular momentum P, and
normalised magnetic moment A, which are invariants of the
motion in the absence of electric fields. The invariants of the
motion are defined by

1
E=om (+42). A1)
B mv’ B
Sl T A2
B
Py=mR=2v) +q¥y, (A3)

where v is the particle velocity component perpendicular to
the magnetic field, u is the magnetic moment, By is the mag-
netic field on axis, B=B(R,z) is the local magnetic field,

By = By(R,z2) is the toroidal component of the magnetic field,
R is the major radial coordinate, and W, = W,(R,z) is the
poloidal magnetic flux per radian. In the case of resonant
interaction between the ICRF heating wave and the ion, the
energy exchange results in changes in Py and A according
to [39, 40, 102]

AP, =V AE, (A4)
w

(AS)

where N is the toroidal mode number of the wave. If the cyclo-
tron cold resonance line of the ICRF wave is located on axis,
the parameter A, = 1, whereas A, # 1 if the cyclotron res-
onance line is located off axis. The parameter is given by
Ao = nweo/w, where wy is the cyclotron frequency on axis.
For interactions between fast ions and waves of lower fre-
quency, such as neoclassical tearing modes and Alfvén eigen-
modes, equation (A.5) is replaced by Ap = 0. Such interac-
tions have been studied extensively [13, 103—109], but are not
considered in this work. From the relation between A and the
ion pitch p = v} /v,

A= (1-p*)Bo/B(R,z2), (A.6)

the streamlines in velocity space can be derived [23, 37],
yielding

1-p? Py —p3
2 oo 2 0 oo 2
Vi = Vi — v, (A.7)
o o
where
B(R
21— (’Z)Ao, (A.8)
By
B(R
2 —1- (’Z)AOC, (A.9)
By

where the 0 subscript on p, v and A refers to their initial val-
ues, and the oo index refers to the asymptotic values for large
energy gains. From (A.7), we can deduce the change in v
given a change in v,

Ay, = (A.10)

1—-p2 v
2pooiAVH'
P VL

Appendix B. Regularisation parameter scans

Reconstructions of the fast-ion distribution function in dis-
charge #86459 using first-order Tikhonov regularisation are
shown in figure B1 for different regularisation parameters.
All distributions are normalised independently to have a max-
imum at 1, as the diagnostics do not allow an absolute
calibration [22]. All reconstructions show the same tendencies
such as a tilt of the tail, a bump-on-tail and the decay of the tail
around the barrier region, as presented in section 4.
Reconstructions of the fast-ion distribution function in dis-
charge #86459 using both ICRF regularisation and collision-
physics regularisation are shown in figure B2 for different
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regularisation parameters. Increasing the ICRF regularisation
strength can diminish the small tilt of the tip of the tail as is
evident when comparing the top and bottom row of figure B2,
and the tail appears more smooth than in figure B1. Otherwise,
the reconstructions appear consistent across the regularisation
parameter scan.

Reconstructions of the fast-ion distribution function in dis-
charge #95679 using first-order Tikhonov regularisation are
shown in figure B3 for different regularisation parameters.
The reconstructions show a definite tendency towards posit-
ive pitches, as expected from the three-ion scheme. However,

the expected tail appears as disjoint blobs in subfigure (a),
and with a bump-on-tail in subfigure (b). As the regularisation
strength is increased towards subfigures (c) and (d) the entire
distribution function is smoothened to such an extent that the
narrow tail vanishes.

Reconstructions of the fast-ion distribution function in dis-
charge #95679 using both collision-physics regularisation and
ICRF-physics regularisation are shown in figure B4 for dif-
ferent regularisation parameters. Increasing the strength of the
ICRF regularisation from the top to the bottom row smoothens
out the tail towards positive pitches, whereas increasing the
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