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HIGHLIGHTS

+ Reformulates the P2D model into a quasilinear PIDE system without algebraic states.
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- Stable, efficient simulation without Jacobians, robust to initial guess errors.
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ARTICLE INFO ABSTRACT
Keywords: This paper presents a novel algorithmic framework for efficiently solving the pseudo-two-dimensional (P2D)
Battery modeling model of lithium-ion batteries. The proposed approach reformulates the original P2D model, typically expressed

Pseudo-two-dimensional (P2D) model
Partial integro-differential equation (PIDE)
Gradient-free method

Lithium-ion battery

Fixed-point iterative method

as a system of coupled nonlinear partial differential-algebraic equations, into a system of quasilinear partial
integro-differential equations (PIDEs). Through this reformulation, intermittent algebraic states, such as local
potential and current terms, are effectively eliminated, thereby reducing the model complexity. This enables
the identification of a generic fixed-point iterated function for solving the P2D model’s nonlinear algebraic
equations. To implement this iterated function, the finite volume method is employed to spatially discretize
the PIDE system into a system of ordinary differential equations. An implicit-explicit (IMEX) time integration
scheme is adopted, and the resulting quasilinear structure facilitates the development of a single-step numerical
integration scheme that admits a closed-form update, providing stable, accurate, and computationally efficient
solutions. Unlike traditional gradient-based approaches, the proposed framework does not require the Jacobian
matrix and is insensitive to the initial guess error of the solution, making it easier to implement and more
robust in practice. Due to its significantly reduced computational cost, the proposed framework is particularly
well-suited for simulating large-scale battery systems operated under advanced closed-loop control strategies.

1. Introduction for understanding their evolution over a battery’s lifetime [4]. Today,
due to their mathematical simplicity, ease of implementation, and low

Lithium-ion (Li-ion) batteries have demonstrated outstanding per- computational cost, equivalent circuit models (ECMs) are most widely
formance as power sources for electric vehicles (EVs) and energy used in the development of the algorithms for battery management
storage systems in modern electric power grids [1,2]. These batter- systems [5]. In an ECM, the dynamic electrochemical behavior of

ies offer the typical advantages of electrochemical devices, such as
modularity and scalability, while also providing higher energy density
compared to other battery chemistries [3]. However, their health and
safety issues require careful consideration during both the design and
operational stages. It is vital to predict both the measurable character-
istics and internal, unmeasurable states to ensure the safety, reliability,
and longevity of Li-ion batteries.

Mathematical models are valuable and often essential tools for
quantifying the physical mechanisms that govern performance and

batteries is emulated using electrical circuits composed of basic com-
ponents such as capacitors, resistors, inductors, and voltage/current
sources. Low-order, empirically derived ECMs are computationally effi-
cient and well-suited for applications operating within narrow current
and temperature ranges. However, ECM parameters must be identi-
fied from available experimental data, and extrapolation beyond the
observed range poses challenges for emerging applications such as
ultra-fast charging [6] and low-temperature operation of electrified
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Nomenclature

Latin Letters

Cs,max

€50
D, eft

Dy et

Faraday’s constant [C mol™']

Universal gas constant [J mol~! K]
Particle surface area to volume [m~']
Li-ion concentration at the particle surface
[mol m—3]

Li-ion concentration in the electrolyte
[mol m~3]

Average Li-ion concentration in the elec-
trolyte [mol m~3]

Specific heat capacity [J kg™' K™']

Li-ion concentration in the solid phase
[mol m—3]

Theoretical maximum Li-ion concentration
in the solid phase [mol m~3]

Initial solid-phase concentration [mol m~3]
Effective electrolyte diffusion coefficient
[m? s71]

Effective solid-phase diffusion coefficient
[m? s~']

Activity coefficient [-]

Heat transfer coefficient [W m=2 K~!]
Exchange current density [A m2]
Electrolyte current density [A m~2]
Solid-phase current density [A m~2]
Applied charging current density [A m™2]
Intercalation molar flux [mol m~2 s~!]
Effective electrode rate
[A m25 mol~!7]

Width of a domain

Width of a control volume (m)
Number of control volumes in a domain

constant

Order of convergence

Error contraction ratio

Heat flux of current collectors [W m™2]
Heat flux due to ohmic effects [W m~2]
Reversible heat flux [W m~2]

Heat flux due to intercalation [W m—2]
Heat flux of SEI [W m~2]

Total heat generation rate [W m~2]
Microscopic spatial coordinate [m]

Sum of re and rf g [Q m?]

Radius of assumed spherical particle [m]
Areal resistance of current collectors [Q m?]
Areal charge-transfer resistance [Q m?]
Effective areal SEI film resistance [Q m?]
Battery temperature [K]

Temporal coordinate [s]

Time step size [s]

Transference number [-]

Ambient temperature [K]

Reference temperature [K]

Equilibrium potential of a reaction [V]
Open-circuit potential of an electrode [V]
An overpotential term of electrolyte [V]
Battery terminal voltage [V]

x Macroscopic spatial coordinate [m]

Greek Letters

a Symmetric coefficient [-]

B =2(1-1,) [-]

) Electrode/separator boundary [m]

et Charge-transfer overpotential [V]

Keff Effective electrolyte conductivity [S m™']
D, Electrolyte potential [V]

D, Solid-phase potential [V]

p Mass density [kg m~3]

Oeff Effective solid-phase conductivity [S m™!]
€, Volume fraction of the electrolyte [-]

Volume fraction of the solid phase [-]
0 Combined resistivity of solid-phase and
electrolyte [Q m]

Superscript

+ Positive electrode

- Negative electrode

-1 Inverse

+ Positive or negative electrode domain

T Transpose

Jj Electrode or separator domain

sep Separator

Subscript

i Control volume index

i+% Interface between of the ith and (i + 1)th
control volumes

k Iteration index

vehicles [7]. There is a growing need to design battery cells for higher
current rates, more dynamic load profiles, and increasingly harsh en-
vironments. Meeting these demands with ECMs typically requires in-
creased model order, more complex parameter-fitting functions, and
greater experimental effort to identify the parameters accurately [8].
Furthermore, since ECM components do not necessarily have direct
mechanistic relationships with underlying electrochemical processes,
these models tend to provide limited insight into physically meaningful,
time-varying parameters, degradation mechanisms, and internal safety
constraints. As a result, the predictive accuracy of ECMs can degrade
significantly if the evolving battery dynamics due to aging are not
properly taken into account.

In contrast to ECMs, physics-based models are derived from funda-
mental principles of batteries, and they can overcome many limitations
of ECMs and better exploit the full potential of Li-ion batteries [9,10]. A
foundational framework in this category is the pseudo-two-dimensional
(P2D) model, commonly referred as the “DFN model”, introduced by
Doyle, Fuller, and Newman [11-13]. The P2D model is a system of par-
tial differential-algebraic equations (PDAEs) that consists of a number
of coupled nonlinear partial differential equations (PDEs) and algebraic
equations (AEs). A major advantages of the P2D model is its exten-
sibility: it can be readily modified to incorporate additional physical
phenomena such as thermal effects, mechanical stress, and degradation
mechanisms. However, the inherent complexity of the model makes
it computationally demanding to solve using conventional numerical
methods, particularly for large-scale, long-duration simulations and
real-time battery management applications [14].

In recent years, various attempts have been made to reduce the
computational burden of physics-based models by employing model
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Table 1

Comparison of nonlinear algebraic equation solvers.
Method Gradient- Jacobian- Robust to Convergence Memory Large-scale Parameter

free free initial guess rate usage suitable tuning free

Newton X X Very Poor Quadratic Medium X X
QN-Broyden X v Poor Superlinear Medium v X
Gauss-Newton X X Poor Linear Medium X X
Trust-region X X Medium Superlinear High X X
LM X X Medium Superlinear Medium X X
Proposed v v Good Approx. Linear Low v v

order reduction (MOR) techniques [15]. One widely used approach is
the single particle model (SPM), which simplifies each electrode of the
battery cell as a lumped domain, ignoring electrolyte dynamics and
temperature effects [16]. The SPM has been used extensively in the
design of state-of-charge (SOC) estimators [17,18]. To improve the pre-
dictive accuracy, the model was subsequently extended to incorporate
electrolyte dynamics and capture thermal behavior [19,20]. However,
the underlying assumption of a “lumped particle” representation is
generally valid only at low to moderate current rates and can be signif-
icantly violated under more demanding conditions. This limitation is
particularly pronounced in the batteries with thick electrodes, a grow-
ing trend in modern battery design. The shortcomings of the SPM and
its variants have driven the development of simplified P2D models that
retain spatially distributed behaviors within the electrodes. Examples
include spatially discretized P2D models [21-23] and polynomially
approximated formulations [24]. Nevertheless, the accuracy of these re-
duced order models often depends on specific operating conditions and
model assumptions, which limit their generalizability. Consequently,
such models are generally unsuitable for predicting battery behavior
under extreme operating scenarios, such as ultra-high current rates
or high/low temperature environments, where batteries may approach
their internal physical limits.

As a result, significant efforts have been directed towards develop-
ing more efficient algorithms for solving the full-order battery mod-
els [25-28], with the goal of enabling both online battery management
and offline applications such as machine learning, parameter identifica-
tion, and optimal design, where large numbers of simulations are often
required. A commonly adopted strategy involves applying the method
of lines (MOL), which converts the system of PDAEs into a set of highly
stiff differential-algebraic equations (DAEs) via spatial discretization
techniques, such as the finite volume method (FVM), or spectral meth-
ods like Galerkin [29] and orthogonal collocation [30] approaches.
The resulting stiff DAEs are typically solved using well-established
time integration schemes, such as the backward differentiation formula
(BDF), Rosenbrock methods, implicit Runge-Kutta methods, and direct
collocation approaches [31]. Many existing P2D simulation studies em-
ploy general-purpose solvers such as IDA from the SUNDIALS suite [32]
or MATLAB’s odel5s, both of which are based on BDF. However,
these solvers are designed for continuous-time systems and are not
well aligned with the discrete-time and single-step structures preferred
in the control systems, where real-time implementation and computa-
tional efficiency are crucial. Moreover, because these solvers are not
specifically tailored to the structure of the P2D model, they often suffer
from computational inefficiencies when applied to its highly nonlinear
and stiff dynamics.

In practice, the computational efficiency of full-order model solvers
is often limited by the techniques used to iteratively solve the nonlinear
AEs. To explain this, consider a generic form of the iterated update used
in many existing algorithms:

Via1 (1) = Vi (8) + h(xX(0), u(1), v, (1), A), [6))

where ¢ denotes the time index, v, and v, represent the present
and the next iterates of the algebraic state vectors, respectively, x
denotes the system state vectors, u is the control input, h(-) is a vector-
valued function defining the update rules, and A represents a set of

tuning parameters. The iterative process continues until convergence is
achieved at v*(r), the solution of the algebraic subproblem. These class
of algorithms typically suffers from the following limitations.

(1) Many widely used algorithms, including Newton’s methods,
quasi-Newton (QN) methods, Gauss—Newton (GN) methods, and var-
ious optimization-based approaches, such as trust-region (TR) and
Levenberg-Marquardt (LM) methods, aim to directly reduce the update
increment v, | — v,. These methods are fundamentally gradient-based
and require either the computation or approximation of Jacobian
matrices within the update function h(-). For large-scale systems, this
process is computationally intensive and may introduce numerical
stability issues.

(2) The convergence speed and reliability of nonlinear AE solvers
are highly sensitive to the quality of initial guess v (7). For smooth cur-
rent profiles, such as during constant-current charging and discharging,
the solution from the previous time step v*(t — T,) (where T, denotes
the time step size) can be reused as an effective initial guess. This
is justified by the fact that under the condition u(r) ~ u(t — T,) and
x(1) ~ x(t — Ty), the algebraic solution v* is also expected to change
gradually. However, during highly dynamic conditions, such as fast-
changing load currents encountered in realistic driving cycles, this
assumption no longer holds, leading to increased iteration counts and
reduced computational efficiency.

(3) The performance of these iterative solvers often depends on
appropriate selection of tuning parameters A, which govern the trade-
off between numerical stability and convergence speed. Identifying
suitable values typically involves extensive trial-and-error and can
complicate the design of robust, general-purpose solution schemes.

Is it possible to develop a nonlinear AE solver tailored specifically
for the P2D model that can overcome the above-mentioned challenges?
To answer this question we need a deeper investigation into the struc-
ture and inherent properties of the P2D model, an area that has received
limited attention in the research community. One early attempt to
improve the efficiency of solving the DAEs, without relying on the
iterative form given in (1), involves reformulating the model into an
equivalent circuit network [33]. In this approach, circuit theory was
applied to transform the AEs obtained from the FVM into a system of
linear equations. This allows the algebraic states to be calculated in
closed form without the need for iteration. The solution takes the form:

Vi) = R, V()T (@), u()), @

where the matrix R depends on the state vector x and an intermediate
approximation v(r), while the vector b is parameterized by the state
and the input u(r). Since the algebraic variables v(r) are calculated
analytically, the resulting system is converted into an ODE system,
which is much easier to solve than a DAE system. However, this
method relies on several simplifying assumptions, such as a linearized
expression for the activation overpotential (see detailed discussions
in Section 3.1.1), and it is derived based on a specific discretization
approach. In addition, the resulting stiff ODE system was solved using
a variable time-step algorithm (ode23ts in MATLAB), which is not
convenient for real-time implementation or for the development of
advanced control and management algorithms. Due to the stiffness
of the system, fixed-step simulation requires very small time steps,
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typically less than 1 s, making the method computationally expensive,
particularly for long-term simulations (e.g., aging studies) or large-scale
batch simulations involving many battery cells.

To address the aforementioned drawbacks, this paper proposes a
computationally-efficiently, single-step numerical scheme to solve the
P2D model with the following innovative ideas.

We first show that the original PDAE system of the P2D model can
be reformulated as a system of partial integro-differential equations
(PIDEs). We emphasize that the term reformulation in this work is used
differently from its usage in the literature [34]. Here, it is not primarily
intended for model reduction, but rather facilitates the identification
of a general fixed-point iterated operator G to address the challenging
algebraic constraints in the P2D model, i.e.,

Vg1 (%, 1) = Gx (x, 1), u(®), vy (x, 1)), 3

where x is the spatial index, and y(x,t) and ov(x,t) represent the spa-
tiotemporal variables corresponding to the state vector x(¢) and the
algebraic variables v(t), respectively. Once the operator G is established,
spatial discretization is applied to convert the PIDE system into an
DAE system. Within this framework, the algebraic variables can be
computed through a fixed-point iteration using the following update
rule:

Vi1 (1) = gX(0), u(?), v (1)), @

where g(-) is a vector-valued iterated function corresponding to the it-
erated operator G. A single-step time-integration scheme with a closed-
form update is developed to enable fast and accurate numerical inte-
gration in the time domain.

The main advantages of the proposed method are summarized as
follows, among which the benefits of the PIDE-based nonlinear AE
solver compared with some well known solvers in Table 1. We will
demonstrate these advantages in later sections.

(1) The proposed method solves for the algebraic states using an
analytical fixed-point iterated function g(-). As a gradient-free algo-
rithm, it does not require computation or approximate of the Jacobian,
simplifying the implementation and reducing computational cost.

(2) The iteration exhibits approximately linear asymptotic conver-
gence and demonstrate minimized sensitivity to initial guess of the
algebraic variables. These characteristics ensure that only up to 2 it-
erations are required for practical applications with very dynamic load
conditions, ensuring very lower computational burden and suitable for
large-scale system simulation.

(3) The use of a single-step implicit—explicit method enables signifi-
cantly larger time step sizes compared to traditional solvers. Numerical
experiments confirm that stability can be maintained with time steps up
to 30 s.

(4) The reformulation does not rely on simplifying model assump-
tions and is compatible with various spatial discretization schemes and
time integration methods, enhancing its adaptability across applica-
tions.

The proposed algorithm can be readily used for testing battery
performance and proficient in control algorithm design. The algorithm
is superior to many existing methods especially when simulating the
behaviors of the battery under dynamic current profiles.

2. Overview of the P2D model
2.1. Overview of electrochemical P2D model

The P2D model of Li-ion batteries was established based on the
porous electrode theory and the concentrated solution theory [11-13].
It is a physics-based model which reflect the sandwich-like structure
of the battery cell with three domains, namely the positive electrode
(i.e. the cathode, denoted by “+ ), the negative electrode (i.e. the an-
ode, denoted by “~"), and the separator (sep) in between, as illustrated

Journal of Power Sources 661 (2026) 238591

in Fig. 1, and L*, L=, and L%P represent the width of correspond-
ing domain. The lithium species are stored in a number of assumed
spherical particles in the solid phase of the electrode, and transport
of lithium species during charge/discharge cause the variation of the
lithium concentrations in the particles as well as in the electrolyte.
On the one hand, the P2D model describes the cell behaviors in the
horizontal axis (x-direction) on the macro scale. As indicated in Fig. 1,
we denote 0t =0, 6t = L*, 6" = LT+ L, and 0~ = LY+ L*P + L~ as
the positions of four boundaries on the macro scale, and Q+ = [0F,57],
Q%P = [67,67], and Q- = [67,07] as the three domains. On the
other hand, the P2D model also describe the particle-level behavior
along the pseudo radial axis (r-direction) on the micro scale, with
r € [0, R;] in the positive electrode and r € [0, R;] in the negative
electrode, where R;r and R, correspond to the surfaces of the assumed
spherical particles. The model consists of the following tightly coupled
and nonlinear PDAEs:

ac) ;oocl\ 11—t 0i
ﬁzli Dieffi +__+£, 5)
ot € ax et ox Fel ox
oc* oct
s 190 D P2, 6)
ot y2or \ seff or
ool i wrl dAnfl,_)omd
—=——.+ﬁ— 1+ — _—, (7)
ox ,(éff F dinc ox
0ix 9i%eP
—< =Fatjt, —/— =0, 8
ox O Jn ox ®)
op* i*
=t ©
x Ot
oif .
X = —Fa;];, 10)

it aFn* (1 —a)Fn*
. 0 t t
£ oo ) oo (5| av

+ __ + + + + it
N = @5 — @7 UG - F"f,eff/:’ 12)
subject to boundary conditions
0| Lo pe E| e 0e” a3
ox ot ? Teeff gx gt eeff gy i’
t)csr 0. D* 0csi n 14
or r=0 o Sﬁff? r:Rfj - _I/ﬂ '
el g 22 sep 0P as)
T Reff 5x T Teff ’
ox . et gx st el 0x st
LS _, o 0 (16)
eff jx T otapp 5y -
x=0% x=6%
and initial conditions
Cf|r=0 = C;_;), Cf|z=() = Cg, a7)

where superscripts j € {+,—,sep} and + € {+,—} denote the domain
in which the equation applies to. Electrolyte concentrations cﬁ(x, 1)
and solid-phase concentrations c¢¥(x,r, ) are spatio-temporal state vari-
ables. The sur_face solid-phase _concentration is defined as ct(x,0) 1=
cE(x, RE,1). DL(x,1), DE(x.1), iy(x.1), iE(x,1), jE(x,1), and n¥(x,1) are
spatio-temporal algebraic states. The applied current density i,,,(?) is
defined as positive when charging and negative when discharging.
Model parameters are functions of concentrations and/or battery tem-
perature, i.e., U: = f(cZ,T), ig = [F(ck ¢t T), Di,eff = f;(cg,T),
ker = J3( D), Digg = f3(D), of = fE(D), 15 q = f7(T), and
k;—'ff = fg(M). p = 2(1 —1,) is assumed to be a constant. Detailed
expressions of these functions are provided in Appendix A.

By solving the presented PDAEs, other variables, such as the battery
terminal voltage and SOC, can be calculated as model outputs. For

example, the terminal voltage of the cell is calculated by

Vbat(t) = d’: |x:0+ - d’; |x:07 + rcoliapp. (18)
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Al Positive Electrode Separator Negative Electrode cu
(Cathode, +) P (Anode, -)
qr r
L+ Lsep L X
0* & 5 0

Fig. 1. Schematic of the P2D model structure of Li-ion batteries.

The physical meanings and the units of all symbols used in the P2D
model are given in Nomenclature. More details about the P2D model
can be found in various literature, such as [32,33,35].

2.2. Thermal model

In an isothermal P2D model, the temperature T is considered as a
constant parameter. A thermal model can be added to describe how T
changes over time during battery operation. Since thermal modeling
is not the focus of this paper, we use a simple lumped thermal model
for demonstrating how the proposed reformulation of P2D model can
affect the thermal model in latter sections. This lumped thermal model
is given by

i odT

L)yl 2=
;< AL
J

where T, is the ambient temperature, p is the mass density, c, is the
specific heat capacity, 4 is the heat transfer coefficient, and “V;” means
“j € {+,—,sep}”. The total heat flux ¢, generated by the battery is

expressed as

= h(Tamb =T) + Gior 19

dtot = 9rxn t Grev t dohm T dsei T+ dcol (20)

where gy, drevs dohms 4seis and g, are heat flux due to reaction,
reversible entropy change, ohmic effects, solid—electrolyte interface
(SED film, and the current collectors, given by

Ion =, / FatjEntdx, 1)
vt /2

Grev = 2 / Fafj; (22)
for

dohm = Z/ _’Je ax (23)

Gsei = VZ /7 at(FjEyrs "% et (24)

dcol = igpprcol’ (25)

where “V+” means “+ € {+,-}".
3. Methodology

As mentioned in the introduction, the MOL first converts the PDAE
into a DAE system using spatial discretization. The PDEs (5) and (6) are
reduced to ordinary differential equations (ODEs), whereas the spatial
constraints (7)-(12) are converted to a set of AEs. A DAE solver is
then required to solve the system in the time domain. Usually, DAE
solvers use generic iterative methods which involves calculating the
Jacobian of the DAE model and/or careful selection of initial guess of
the solution. This can significantly reduce the computational speed and
compromise numerical stability, being particularly problematic when
the Jacobian differs greatly between successive time steps. This issue is
pronounced during dynamic charging or discharging conditions with
frequent current variations, where stored Jacobian matrices become
less useful, as they do not closely resemble the new values needed for
the next step.
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3.1. A PIDE representation of P2D model

A problem-specific fixed-point iteration, though, is simple to im-
plement and can be computationally very efficient. However, finding
an iterated function is usually not straightforward for such a complex
system. In this section, we show that for the P2D model, a form of
iterated function (3) can be expressed as

JE e GeE e T, igpp. ), (26)

where c¥, ¢%, and T belong to the state variable y, fapp 1S the input
variable u, and j¥ is the algebraic variable v. Note that @%, @%, iF, iF,
and »% in the original P2D model are intermittent states that shall be

eliminated in our reformulated model.

3.1.1. Reformulated kinetic reaction equation
According to the Butler-Volmer (BV) Eq. (11), the charge-transfer
overpotential can be expressed as:

2RT . , _
o= % smhm‘(qs), 27

where ¢ =

2,, and sinh,(-) is a

deformed hyperbohc sine function, defined by
exp (2a¢) — exp (-2(1 — a)¢)

sinh, (¢) := > . (28)

We can then introduce the charge-transfer resistance r. as
Mg RT sinh,' (@) ¢

+ ==L =t , 29
T EETFE @ "et0 sinh, (¢) (29)

+ _ RT
where 1, = i

Note that (29) 1s only defined at j* # 0 and ¢ # 0. Considering that
there is a removable discontinuity point lim,_(¢/ sinh,(¢)) = 1, we
define the charge-transfer resistance as

denotes the steady-state charge-transfer resistance.

raUn) = rggisinhe, (9G;)), (30)

where the function isinhc,(¢) is defined as

isinhe.(6) {1, $=0
isinhc, (¢) = ®
sinh (¢) ¢ #0.

Here, isinhc,(¢) describes the relationship between the normalized
charge-transfer resistance, r%,/r% , and the normalized molar flux at
different a,

Note that in most existing literature, r, is obtained by linearizing
the BV equation [33] and/or assuming a = 0.5 [25-28], which results
inry = rctO’ while this approximation is seen inaccurate under high
current conditions especially when « deviates significantly from 0.5
(see Fig. 2).

Furthermore, we define the sum of r; and r} off 45 @ New resistance,
rs, which is a function of the molar ﬂux denoted by

ct0

r3U) = rgUn) + 15 e (3D
With (29) and (31), (12) can be written as

®F — &F —UE — FrijE=0. (32)

3.1.2. Reformulated electrolyte potential equation ,
Next, we define two potential terms, U (x,t) and ¥/ (x, 1), as follows

Jo
RT In f+/—c€

U/ = p=- , (33)
e F fﬂ/_cg

v =) - U/, (34

where ff /- is the nominal value of the activity coefficient f er /- when

cg (x,1) = cg (i.e., the steady-state value).
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1.5 T T
- 1¢
HE
~
~
1B
~
0.5 F g
-3 -2 -1 0 1 2 3
Fjt
¢= 27%

Fig. 2. Relationship between the normalized areal charge-transfer resistance
and the normalized molar flux at different a.

Eq. (33) shows U, j is a function of the local electrolyte concentration
¢) and temperature T. The gradient of (33) is

6Uj _4RT 0 ||
TUF ox

rl /_c;'(x, )
0
Iy, el
RT (31n ( /=€ )
F ox
RT dinfl, ) omel

=p=|1+ ——|—=. 35
=% dinc] ox ©>

Substituting (34) and (35) into (7) yields

P lf : (36)
x K eff

Note that (36) is in agreement with that derived in [33], although

. din f’
in [33], the term

in (35) was omitted by assuming f J Y= f)‘: p
3.1.3. Integro-differential equations for charge conservation
Substituting (34) into (32), we have
O —WE UL -FrijE=0, 37
where
r=UL+UZF.

With (9) and (36), the gradient of (37) can be derived as:

+ o+
oUE 0@t ovE oFryjy)
ox ox ox ax
i* i o(Fr¥j*)
i (38)
Ot Keft X
Using (8) and boundary conditions, one can derive
X
it + o ’
i* =Fat /0i JE ndx, (39)
iy =gy (40)
Using (10) and boundary conditions, we have
X
i = igpp = Faf/ JE Ddx'. 41)
0x

Substituting (39) and (41) into (38) yields an integro-differential
equation (IDE):

x ot D i oux
aro* [ gax - T2 oL, T ), (42
s o " 0x F\ o 0x
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where ¢* = — + — denotes the combined resistivity of solid phase

ar  Neit
and electrolyte.

Each of the IDEs is subject to an integral boundary condition (IBC),
which can be obtained by evaluating (39) at the electrode/separator
boundary, i.e.,

51
+ FE= BN — 5¢P _
Fa; /0: Jpdx' =iyl s =iy =igpp. 43)

To this end, the spatial constraints (7)—(12) and their BCs (15) and
(16) are reformulated to the PIDE (42) and its IBC (43). Along with two
PDEs modified from (5), (6), and (8), the reformulated P2D model as a
PIDE system is summarized in Tables 2 and 3 for completeness. It can be
seen that the algebraic states @F, @%, i¥, i¥, and ’73 in the original P2D
model are eliminated in this PIDE system, which significantly simplifies
the model complexity.

3.2. A fixed-point iterative method for solving the IDEs

The structure of the reformulated P2D model as a PIDE system is
illustrated in Fig. 3. It shows that the PDEs (5) and (6) update the
solid-phase concentration c£ and the electrolyte concentration ¢! solely
based on the molar flux j*. Since there are various existing techniques
for solving the diffusion PDEs (5) and (6), they are not the focus of the
present study. In contrast, solving the IDEs is not straightforward and
has not been discussed in the literature for the P2D model. Specifically,
it can be seen that it needs UZ, UZ, i app> and r to solve for jF. Here, UZ
and U* can be calculated as nonlinear functlons of states c%, ¢, and
T, whlle r5 depends on the algebraic variable j*. As a consequence,
there is no closed-form solution for j*. Hence, we focus our discussion
on how to solve for the unknown ;¥ iteratively.

We now propose a generic fixed-point iterative method for solv-
ing the IDEs (42) and (43). First, for ease of notation, the follow-
ing linear operation £ is defined on a spatiotemporal variable v(x, ),
parameterized by g, (x,) and g,(x,1):

L(v; 1, 0) = h /Oix U(x/,t)dx’+ﬁ2g—z. (44)
Assuming r§ is known, the IDE (42) can be expressed as
L(v; By, B>) = Po, (45)
where
v=jf, (46)
B = a;o*, (48)
Py =—rt. (49)

Note that (47)—(49) are only applicable for x € [0%, 5%). For x = §%,
we need to use the IBC (43) to obtain

b= fapp> (50)
B, = Fat, (51
B, =0. (52)

In (45), if £ has a unique inverse operation with respect to j¥, and
if all parameters are known, we can solve the equation by its inverse
operation £~!, denoted by

JEGe1) = L7 (By(x,1); By (x, 1), By (x, 1) (53)

One can view (53) as the iterated operation in (3), i.e., ¢ = £7!. This
is because, according to (29)-(31), r 1n (49) is parameterized by j* it
and thus jT is a fixed point. Therefore, given an initial guess jn_o(x 1),
we can solve j*(x,?) iteratively:

z k ’gtolsmhc (PJ,:L,C/(Z%)) s (54)
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Table 2
Reformulated P2D model as a PIDE systems.
PDE BC
ot 1 o L oct =, 4.4 ot _ 4 oct sep e
= ( e.enx) el v leor = O Dietr v |vcse = Dot or | ocse
o 1 9 sep dc,” sep dc;” Dt
T EF ox eeff ox )° eeff ox [y—se eeff ox |,
oct 1o L oot oct L oct .
% T Por ( vett’ o ) “or [ " ’ ;eff o r=R; B _j:
IDE IBC
Y . ors jE) o Uy
as—()‘/;)ij,,‘dX'fig): = % (%+?), Fa* fo* JEAX =iy,
Additional Equations
4 _oexox RT St v _ 1 oot i Fix +
Ug=Ugs+UF = fi(c.T)+ p=In <ff//;ft.’ ), =t = re isinhe, <¥) 1%
Table 3
Output equations of the reformulated P2D model.
i =Far [ jE 0dx', igT = iy, i = g, — Fat [ jE, Ddx
Voar = (UZ +Frij}) e T (Ug +Fr3dy) o T e Fat [o. for p L dx'dx + (/Qscp 5 dx + ’col) Lapp-
B . Integrating (36) gives
s ‘/nk+l
Ci jni
ss - + | +
b 6) (14 = fi + l{,e |x=0* x o+ = (58)
ot L@s Qi Kéﬁ
]n,k
C5 v N fapp (42),(43) Substituting (58) into (57) and considering the expressions i/ in
(30),(31) sk > (39)-(40), the battery voltage Eq. (18) can be expressed as
0
Ce + + .+ - —
* AU: Voar = (Use +Fryi, )‘X=0+ - (Use +Fryy, ) =0-
5),(8 - x gk “n
> O ~ (33) + Fat D dx o+ Fa; .
o+ Jo+ K Q- Jo- Kege
PDEs Nonlinear Functions IDEs

Fig. 3. Block diagram of the proposed reformulated P2D model as a system of
PIDEs. The red lines indicate the algebraic loop that can be used for iteratively
calculating j*. The z=' block indicates the memory for iterative calculating the
algebraic states in one time step (rather than time delay), and it involves an
initial guess, jf,o'

,,k+1 =L" (ﬁo /3|’ﬂ2(" k)) (55)

Here, the subscript k represents the kth iteration. The iterations
terminate when a stopping criteria is met, for example, by evaluating
the norm

Jr 0
- < (56)
nk l(x t)

where 0 < ¢ < 1 is the termination tolerance and we denote the

corresponding iteration number as Nj,. Therefore, the solution j* =
.+
'] n,k=N;
The loop highlighted in red in Fig. 3 indicates the path where the

molar flux is iteratively solved. Since this method does not require
to calculate the local potentials, current densities, and charge-transfer
overpotentials, the computational burden is significantly reduced than
the original P2D model.

3.3. Reformulated voltage equation

Since the PIDE in Table 2 does not involve potential terms, the
battery voltage Eq. (18) needs to be modified.
Using (34), the voltage Eq. (18) can be rewritten as

Voar = (Uge + Friiy)

= (U +Fryiy)

x=0+

- 5ve_ |x=0*) + rcoliapp' (57)

x=0"
+ (7]

x=0%

1 .
+ (/ sep —dx + rc()l) iapp- (59)
Q5P K

eff

3.4. Reformulated thermal model

Considering (7), (9), and (33), the ohmic heat flux Eq. (23) can be
simplified to

N2
e ) / (%) oul
9ohm = VZA/Q* e ; o 7 o / dx, (60)

eff Kot

and i¥ and i can be further obtained using J¥ and i,p, according to
(39)-(41).

Considering (21), (24), (29), and (31), the sum of the reaction heat
flux and SEI heat flux can be simplified to

Grxn T dsei = Z/ an Iy (I+)2dx (61)
V+

Therefore, the total heat generation is a function of jZ%, i iapp» Uj and
0UZ /0T . The relationship between the reformulated thermal model and
the 1sotherma1 P2D model is shown in Fig. 4.

4. Numerical solution method
4.1. Solving IDEs

The IDEs derived in Section 3 can be solved using various techniques
of numerical integration and differentiation. We use (42) to demon-
strate the method to solve the IDEs. We divide the positive electrode
domain into N* control volumes, denoted by {1,2,..., N*}, along the
electrode thickness, and x, 4l denotes the boundary between element
i and i + 1. The width of the ith control volume is denoted as /;. The
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ot Ty
> (20),(22),(25),(60),(61) > (19) |€=
Y WY Y
Uss Uel Jn |T'E T
Y
lapp _ Reformulated P2D Model in Table 2
o (Fig. 3)
Us U e rE
Y Y Y Y
> (59) " Voat

Fig. 4. Block diagram for the reformulated P2D model coupled with a thermal
model and its output voltage.

following discretization rules are applied to (42) at the interface of its
ith and (i + 1)th control volumes, i = {1,2,...,NT —1}:

X1 i
/ X ndx =Y X, 0, (62)
0 n=1
X — X,
9xX S T 63)
0x lex | 05U +141)
it+5
L+l
Xlx:le = I; livg (64)
S A )

which yields Nt — 1 linear equations (an underdetermined system) as
given in the matrix form (65).

P
+ 4+ (01T o7 13) et
ry tail 3 Is) 0
1o [ 1 rot
ot (0313 +010}) + 4+ (3l +ertt) .t
a; ll s s, +a; 12 2233 Tss
o N o
I (o)) 4+ (010 +ol 1) + ++M
aly 2 ally 2 rystally
(0* (IR Yoo O ) (a* (ST 0 ) (0* I, 4ot It )
44 vt N+ TN 4o \On+ o v TON+ TN 47+ AN Nt TN N
atl atl atl
sl 2 s°2 2 53 2
0 o |
It
0 o ||
Jn2
0 0 it
In3
o +
+ Lot ("wtx’mq*"’w[w) o jt
Fyn+o1 T N+ 2 Fen+ |Lnne
L i
1. 1 -1 1 0 0 of| Ul
ry r se,1
Ceif.1 Oeff2 N
PR 0 -1 1 o oflu
2 4 3 se.2
- 1 [ i+ 1 0 0 1 e 0 oll u* (65)
2F . app F se3
,+
Nt—1 + Nt
m T +
CefrN+-1 Teff.N+ 0 0 0 -1 1 Use,N*
——
b+ Cc* ut

In (65), j* = Ly iy
volume-averaged molar fluxes, u* = [USJ;’I, Ust,z’ “Ug y +]T is a vector
containing all local volume-averaged potentials, and L*, b*, and C*
are matrices or vector of appropriate dimensions associated with local

resistive components.

R jIN +]T is a vector containing all local

The IBC gives the Nth equation:

Fap1y.i* (66)

= lapp;

+ . .
where 1+ € RV" is a unit vector.
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Table 4
Comparison of the components in the general form and the FVM implementa-
tion in the iterated function for the positive electrode.

Symbol General FVM
L+
L (48), (49), (51), (52) (Paj)lL,]
v(x,1) Ju(x, 1) it
bt +
Ao @7, 50 HEE [0% G

Due to the quasilinear nature, (65) and (66) can be solved simulta-
neously by matrix inversion, i.e.,

+ -1 + +

=g ] ([ lag ). @
where 0,+ € RV" is a zero vector. This represents the FVM implemen-
tation of the iterated function (53). The correspondence between the
general form and its FVM implementation for the positive electrode is
summarized in Table 4. A similar procedure can be applied to calculate
I =Uypdny iy, N,]T for the negative electrode, but the details are
omitted here for brevity.

4.2. Solving PDEs

As can be seen from Fig. 3, the IDEs are discretized into AEs and
solved iteratively together with the nonlinear functions. The inputs of
this process, i.e., the solid-phase and electrolyte concentrations, are
obtained by solving the PDEs, while the outputs of the AEs (molar
fluxes) serve as inputs of the PDEs. Consequently, the numerical scheme
used to solve the PDEs must provide the information required by the
AE solver.

4.2.1. Solving the electrolyte diffusion equation
A generic state-space representation for solving the diffusion equa-
tions is given by

X, (1) = Ax, (1) + B, j(0), (68)
¢, (1) = C,x,(1), (69)

where x, denotes the state vector of the electrolyte diffusion equation,
¢, is the vector of local electrolyte concentrations, and j = [j*,j~17
collects all local molar fluxes. The matrices A,, B,, and C, are pa-
rameterized by system state variables, such as x, and the battery
temperature. It should be noted that this representation omits the
feedthrough term in order to avoid algebraic loops between the input
and output of the diffusion equation, which would otherwise restrict
the choice of numerical algorithms. In the present study, for the FVM
scheme adopted in the previous section, a compatible scheme for
solving the electrolyte concentration Eq. (5) is also using the FVM
method. The corresponding expressions of the matrices A,, B,, and C,
are omitted for brevity.

Note that the ODE system derived from the FVM method is typically
highly stiff. To enhance numerical stability, we discretize the ODE at
time 7 using an implicit-explicit (IMEX) scheme, as described in [9]:
X, (1 +T,) — x,(1)

T,

s

=Ax,(t+T,)+B, j), (70)

where T denotes the sampling period. Note that this formulation does
not correspond to the standard backward Euler scheme but rather an
IMEX method, since j(r) depends on x,(r). Owing to the linear structure
of the system, the solution of (70) can be expressed in closed form using
matrix inversion:

X (+T)=A-T, A)™" [x, () + T, B, jov)] . (71)

where I is the identity matrix of appropriate dimension.
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In contrast, the Crank-Nicholson (CN) method, which is based on
the trapezoidal rule, can also be expressed into closed form due to the
linear structure of the equation:

T _1
Xt +T) = <I - ?SAG>
TS .
(Xe(t) <I + 7Ae> +T; B, _](t)) . (72)

4.2.2. Solving the solid-phase diffusion equation

Solving the solid-phase diffusion equation is more flexible. At each
macro-scale location (x = x;), a PDE is formulated that only involves
the micro-scale coordinate, yielding c*(x;,r,1) = c;f,.(r, ) and ci(x;,1) =
cs*—;’,.(t). Various methods exist for solving this PDE, including polynomial
profile approximation, Padé approximation, FVM, and finite difference
method [15]. However, the choice of method must be made carefully,
since as mentioned above, we aim to avoid introducing the feedthrough
terms in the present algorithm. Under this requirement, the discretized
model takes the following form
xii(z) =ATx* )+ Bii jii(z), (73)

S,i7s,0

cE (1) = CEXE (1), 74

SS,i S,07s, 0

where the matrices AT, B, and C{; are parameterized by the battery
temperature and can also depend on the state vector x;—'J.

Although the FVM can be applied in a manner similar to that
used for the electrolyte diffusion equation, it typically leads to a high-
order system to might significant increase the computational burden.
To address this, we adopt the moment matching method [10]. For
simplicity, we assume the order of moment matching, denoted by
M, is the same for both electrode. The resulting system matrices are

expressed as

0o 0 0 0
0 —al/'r;—ti 0 0
o =10 0 —ay /Ty 0 ,
0 0 0 —ay /7E
.
B§i=[3 ~by/RE  —by/RE —bM/R;f] ,

+ _
CS,[ - 1]><(M+])7

where T;—;, = (le)2 / Diemi and 1,41 is an (M + 1)-dimensional row
vector of ones. The parameters a;,a,,...,ay, and by, b,, ..., by, depend

on the selection of M.

5. Results and discussion
5.1. System configuration

In this section, the effectiveness of the proposed solution method
is evaluated through numerical simulations. All algorithms are imple-
mented in MATLAB R2019b and executed on a system equipped with
an Intel Core i7 processor and 16 GHz of RAM.

The benchmark model used for comparison is a spatially discretized
P2D model formulated as a system of DAE based on the model param-
eters given in Appendix B. This model is obtained using the same FVM
rules as applied in the proposed framework. The number of the control
volumes in the positive electrode, separator, and negative electrode
domains are set to N* = 10, NP = 5, and N~ = 10, respectively.
The order of moment matching is set to M = 2, leading to a; =
20.57, a, = 16842, b; = 2.18, and b, = 15.82. The resulting DAE
system consists of ODEs derived from (5) and (6), and AEs resulting
from (7)-(12). The proposed method employs the single-step explicit
technique described in (71) (whereas we still use IMEX to indicate this
method) to solve the ODEs with sampling time T, = 1 s. The benchmark
model uses MATLAB’s £solve function to solve the AEs, specifically
for computing the molar flux j* with high accuracy.
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5.2. Initialization methods

As mentioned in Section 3.2, at time ¢, the iterative method for
solving the nonlinear AEs needs to be initialized by providing an initial
guess jf,o of the solution. Several initialization schemes are investigated
here.

(1) Initialization with zero values:

j:o(x, =0, VxeQt

(2) Initialization with the solution in the previous time step 7 — T}:
j:io(x, N =j¥x,t-Ty), VxeQ*

(3) Initialization with physically consistent uniform profile satisfy-
ing
Fiapp(?)
FafL+’

(4) Initialization with physically consistent quadratic profile satis-
fying

jnio(x, 1= Vx € Q*.

JE D) = aF () + aF()x + aF (DX, Vx € QF,

where the coefficients ;—a, are determined by solving the following
three equations based on the boundary conditions

51
Fat / JE O 0dx" = i (1),
0+ 7

+ . +
oUg _ lapp - Jno
- + z

0x x=0% O-eff 9% x=0%t

+ . it
0Use B fapp N T o
ox TE T Tox

x=6% eff x=6%

5.3. Convergence test

We examine the convergence behavior of the proposed fixed-point
iteration method for solving the IDEs in Section 3.2. To measure and an-
alyze both the speed and quality of convergence, the error contraction
ratio ¢ is calculated:

g+ —dxll2
ik = k-1 ll2
which quantifies how much the iteration approaches the solution at
each step. In practice, we are particularly interested in the first-step and
second-step contraction ratios, ¢, and ¢,, since minimizing the number
of iterations is crucial for reducing computational cost.

The nature of convergence is further characterized by the estimated
order of convergence, given by

q (1) =

() = log |ljxrr —dillz = 1og lljx = Ji—1ll2
log Ik = Ji—1ll2 —10g llix-1 = Ji-2ll2

Theoretically, the estimated order of convergence should converge
to the true order as k increases. However, in practice, numerical
limitations may reduce the accuracy when the residual becomes very
small, causing the estimated order of convergence to become unstable
at higher iterations. In this study, we use the estimate at k = 8, which
was observed to be stable and representative across simulations.

To evaluate the convergence characteristics of the proposed solver,
termination a very small termination tolerance is used, specifically,
€ =1x10"2, to avoid premature termination of iteration process. The
calculated contraction ratios and estimated order of convergence for
1C and 3C discharge tests are presented in Fig. 5. It shows that the
initial contraction ratios depicted in Fig. 5(a) are very small, suggesting
that the solver can reach a highly accurate solution within just first
one or two iterations in practice. Furthermore, in Fig. 5(b), most of
the time the estimated order of converge remains slightly below 1
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Fig. 5. Results or convergence test with different initialization methods. (a) First- and second-step contraction ratio under 1C-discharge. (b) Estimated order of
convergence under 1C-discharge. (c) First- and second-step contraction ratio under 3C-discharge. (d) Estimated order of convergence under 3C-discharge.

and higher than 0.95, indicating the algorithm exhibits approximately
linear convergence, comparable to many state-of-the-art AE solvers.

Although some differences are observed among the presented ini-
tialization strategies, e.g., zero initialization appears to yield a slightly
better first-step contraction ratio as seen from Fig. 5(a), the overall
impact of the initial guess is not significant. This indicates that the
proposed AE solver exhibits low sensitivity to initial estimate of the
algebraic states, which is advantageous for practice implementation.

Fig. 5(c) and (d) show the convergence performance under a 3C
discharge condition. This represents an extremely high current rate,
given that the maximum rated C-rate for the battery chemistry under in-
vestigation is approximately 2C. Under such higher current conditions,
the battery experience stronger polarization effects and greater het-
erogeneity in internal state distributions (concentrations, molar fluxes,
etc.). Consequently, both the contraction ratio and order of conver-
gence are somewhat degraded in general. Nonetheless, the observed
values (0.01 < ¢ < 0.5, 0.85 < p < 0.99) remain within satisfactory
bounds, ensuring that the proposed fixed-point iteration still converges
rapidly.

5.4. Performance comparison with existing AE solvers

In this section, the performance of the proposed gradient-free AE
solver is compared with MATLAB’s fsolve function, which is based
on the trust-region dogleg algorithm combining Newton’s method and
gradient descent. To evaluate the trade-off between computational
speed and solution accuracy, different termination tolerance values e
are tested. Three solver configurations are considered: (1) e = 1 x 1075,
(2) € = 1 x 1073, both without any limit on the maximum number
of iterations, and (3) a single-iteration setting, where the maximum

10

number of iterations is limited to one. For all cases, the molar fluxes
are initialized to zero at every time step.

Figs. 6 and 7 show the simulation results under a dynamic discharg-
ing profile based on the Federated Urban Driving Schedule (FUDS).
In Fig. 6, the original FUDS profile is applied, where the maximum
current rate is 1C. In Fig. 7, the original current profile is amplified
by a factor of three, and it is repeated applied until the voltage
reaches the cut-off voltage of 3.0 V to evaluate performance under more
extreme conditions. The evaluation metrics involve voltage prediction
error (relative to the gradient-based fsolve baseline), the number of
iterations, and CPU runtime per simulation time step. Table 5 further
provides a summary of the comparison results.

As can be seen in Fig. 6 and Table 5, under the original FUDS
current profile, all three solver settings yield high predictive accuracy
compared to the benchmark. For e = 1x107>, the number of iterations is
between 1 and 4, while for ¢ = 1x 103, the number of iterations ranges
from 1 to 3. These results suggest that both settings offer sufficiently
accurate solutions, potentially exceeding the accuracy requirements
for practical applications. Notably, even in the single-iteration case,
the solver achieves a voltage root-mean-square error (RMSE) of less
than 1 x 107 V, and maximum absolute error (MaxArr) of 0.151 mV,
indicating the minimal iteration is often adequate.

As expected, higher current magnitudes, such as those in the am-
plified FUDS profile, demand for more iterations to attain the similar
levels of accuracy, as shown from Fig. 7(h) and Table 5. Nevertheless,
across all test conditions, the proposed solver consistently demonstrates
significantly lower computational cost than fsolve, with CPU run-
times reduced by more than one order of magnitude. This performance
enhancement is primarily due to the fact that the proposed method
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Fig. 6. Comparison of gradient-based and proposed gradient-free AE solvers under FUDS profile with the maximum current of 1C. (a) Voltage. (b) Voltage error.
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Table 5
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Numerical performance comparison of gradient-based and proposed gradient-free AE solvers.

Current Solver Voltage (V) Iteration CPU runtime (s)
Profile Config.
RMSE MaxArr Average Max Average Max
fsolve - - - - 0.0105 0.029
. 1) 1.87 x 1071 590 x 107'° 2.67 4 0.00035 0.0037
FUDS (Orig.) @ 186 x 107 473 x 107 2.08 3 0.00029 0.0013
3) 4.87 x 107° 1.51 x 107 1 1 0.00016 0.0007
fsolve - - - - 0.0155 0.0466
(€8] 1.51 x 107 7.14 x 1078 3.67 9 0.00068 0.0045
FUDS (Mod.) (2) 1.82 x 1077 1.06 x 107 2.57 5 0.00051 0.0044
(©)) 248 x 107 1.05 x 1072 1 1 0.00025 0.0038
g
= 1 N R
= e el
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Fig. 8. Comparison of BDF, CN, and IMEX methods under a 1C discharging with a simulation time step of 20 s. (a) Voltage error. (b) Molar flux in the positive
electrode. (c) Electrolyte concentration. (d) CPU Runtime for solving the full battery models.

only solves a linear equation for each electrode at every iteration and
eliminates the requirement for Jacobian evaluation.

It is worth noting that MATLAB’s £solve is internally optimized
using C/Fortran via MEX. The proposed algorithm, if similarly com-
piled, is expected to achieve further improvements in computational
efficiency. This aspect, however, is left for future investigation, while
the current results already demonstrate significant advantages.

5.5. Comparison of time integration schemes

In previous section, all simulation were conducted using the FVM
implementation described in Sections 4.1 and 4.2, with the time-
domain integration based on the single-step explicit method derived
from the IMEX formulation, as defined in (71).

In this section, we compare that scheme with two alternatives: the
CN scheme described in (72) and a widely used multistep method for
solving the stiff DAEs, i.e. the BDF, implemented in MATLAB’s ode15s
function. To test each method’s capability to handle longer time steps
(important for accelerating large-scale battery system simulations), the
integration step size is increased to 20 s. Based on previous findings,
the number of fixed-point iterations is limited to two for both the IMEX
and CN schemes, with each iteration initialized with zero guess of molar
fluxes. Simulation results are presented in Fig. 8.

Although not shown in the illustrated examples, the IMEX and CN
methods exhibits similar accuracy when using small step sizes (e.g., 1
s), as used in the previous study cases. However, as the step size
increases, the CN scheme begins to exhibit oscillatory behavior in
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the calculated molar flux and the electrolyte concentration, quantities
that contribute significantly to the stiffness of the P2D model. Further
increasing the step size leads to numerical instability and crash of the
simulation. In contrast, the IMEX scheme remains stable and deliver
accurate voltage predictions, achieving an RMSE below 0.02 mV.

In addition, as expected, both the IMEX and CN schemes with
the proposed gradient-free framework demand much lower computa-
tional burden, i.e., about two orders of magnitude lower than the BDF
method, thanks to their single-step nature and avoidance of Jacobian
evaluations.

6. Conclusion

This paper presents a numerical framework for solving the pseudo-
two-dimensional (P2D) model of lithium-ion batteries using a gradient-
free, single-step implicit-explicit (IMEX) method. A general iterative
formulation is derived by reformulating the original partial differential—
algebraic equation (PDAE) system into a partial integro-differential
equation (PIDE) system. The PIDE system is then spatially discretized
using the FVM method at the macro-scale, and a single-step numer-
ical scheme with a closed-form update is developed for time-domain
integration, leveraging the quasi-linear structure of the discretized
model. Simulation results demonstrate that the proposed method yields
numerically stable and robust solutions while significantly reducing
computational cost. The framework consistently outperforms several
widely used solvers in battery research community, which offers a
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promising approach for large-scale simulation and real-time applica-
tions. Future work will focus on incorporating more advanced tech-
niques, such as spectral-based methods such as the Galerkin method
and physics-informed data-driven techniques, into the solution of the
PIDE system. These enhancements are expected to further improve
computational efficiency while maintaining high accuracy within the
proposed framework.
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Appendix A. Additional model equations

The following nonlinear functions are used in the P2D model to
describe the temperature- and concentration-dependent parameters.

U=
FEEET) = U + —2(T =T (A1)
FE(E, G2, T) = PR (cE . — c2) ()1, (A.2)
S ed
el 1) = (s A3)
e e
fi(el,T) = ()88 ), (A4
+
e = g~ (Lo L )
> B R T Te)) ’
.
ey orexp( - P (1 L
sl F-))
FET) = 1%, ex (a1 (A7)
7 A P R T T ’ ’
Ei
ey e T (L L
ool S5

where. U+ = fgi(c;—rs/c;—tmax), == = Fiolet /et a)s Dy = fuu(el, T,
and k) = fi,(c,, T). The nonlinear functions f3° and f}; are based on
electrodes’ materials, f;; and f}, are based on electrolyte’s material,
and they are usually fitted from experimental data.
Appendix B. Model parameters

The Li-ion battery electrochemical parameters are obtained from
[32,33] and are given in Table B.6.

Data availability

Data will be made available on request.
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Table B.6
Electrochemical parameters of Li-ion battery.

Sym. Parametric value/expression
+ sep -
RS 2 x 107 - 2 x 107°
Dy 1.0 x 1074 - 39 x 10714
ar 8.85 x 10° - 7.236 x 10°
L 8.0 x 107° 25 x 1073 88 x 107°
et 0.59 - 0.4824
el 0.385 0.724 0.485
oy 100 - 100
brugg’ 4 4 4
E ax 51,554 30,555
% 25,545 - 26,128
N 2334 x 107! - 5.031 x 1071
P 2500 1100 2500
< 700 700 700
;D 5000 - 5000
< 5000 - 5000
Eﬂi)r/ 5000 - 5000
ik 5000 - 5000
r% 0 - 0.01
F 96,487
Tret 298.15
R 8.314
5 1000
t, 0.364
fo 1
h 2
+ —4.656+88.66962—401.1196" +342.9096° ~462.4716%+433.4346'°
9 —1+18.93307—79.5320%+37.31166~73.0830° +95.960'0
fy 0.7222+0.13876+0.0296°5 001726~ +0.00196~"5 +0.2808 exp(0.9~156)—
0.7984 exp(0.44650—0.4108)
+ —0.001 (l). 199521039-0.9283738220+1.3645506896%—0.61 l5448949‘)
10 1-5.6614798870+11.4763619162-9.8243121366° +3.0487550636*
0.005269056+3.2992657090-91.793257986
0.001 +1004.9110086° ~5812.2781276* +19329.75496°
_ —37147.89476°+38379.1812707 —16515.053086%
f“] 1-48.092872276+1017.2348040% —10481.804196%
+59431.30* ~195881.64880° +374577.31520°
~385821.160767 +165705.85976°
—10.5+0.668 x 1077¢,+0.494 x 1072 ’
fu 107 x ¢, +(0.074-1.78 x 107¢,~8.86 x 107'°c2)T
+(=6.96 x 107428 x 107%c,)T?
fi2 10 x 107 T e R e
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