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Abstract

In many real-world applications, evaluating the quality of in-
stances is costly and time-consuming, e.g., human feedback
and physics simulations, in contrast to proposing new in-
stances. In particular, this is even more critical in reinforce-
ment learning, since it relies on interactions with the environ-
ment (i.e., new instances) that must be evaluated to provide
a reward signal for learning. At the same time, performing
sufficient exploration is crucial in reinforcement learning to
find high-rewarding solutions, meaning that the agent should
observe and learn from a diverse set of experiences to find
different solutions. Thus, we argue that learning from a di-
verse mini-batch of experiences can have a large impact on
the exploration and help mitigate mode collapse. In this pa-
per, we introduce mini-batch diversification for reinforcement
learning and study this framework in the context of a real-
world problem, namely, drug discovery. We extensively eval-
uate how our proposed framework can enhance the effective-
ness of chemical exploration in de novo drug design, where
finding diverse and high-quality solutions is crucial. Our ex-
periments demonstrate that our proposed diverse mini-batch
selection framework can substantially enhance the diversity
of solutions while maintaining high-quality solutions. In drug
discovery, such an outcome can potentially lead to fulfilling
unmet medical needs faster.

1 Introduction

In recent years, utilizing reinforcement learning (RL) for
fine-tuning of pre-trained generative models has shown great
success in various applications (Zhai et al. 2024; Fan et al.
2023), including de novo drug design (Olivecrona et al.
2017; Atance et al. 2022). De novo drug design is a compu-
tational problem that aims to identify novel molecular struc-
tures with specific properties without any starting template
(Mouchlis et al. 2021), where generative models have shown
great success (Tong et al. 2021; Pang et al. 2023). When
fine-tuning a generative model, the goal is often to align
the model’s outputs with respect to human preferences or
experiments. However, many practical applications require
frequent assessment of data and experiences, e.g., via hu-
man expert evaluation, computer simulations, field testing,
and laboratory experimentation. These assessment meth-
ods are often resource-intensive, demanding significant time

and financial investment. In de novo drug design, resource-
intensive computational methods are used to assess the fit
of molecules into the binding site of a target protein to pre-
dict the strength of each protein-ligand interaction (Paggi,
Pandit, and Dror 2024). Consequently, the volume of data
that can undergo thorough evaluation is often constrained
by budgetary limitations.

In this paper, we tackle this problem in reinforcement
learning, where the training instances are provided solely
from the agent’s interaction with the environment. In partic-
ular, we study this problem in the context of de novo drug de-
sign, where RL techniques are commonly used to fine-tune
a pre-trained generative model to produce molecules with
desired properties (Patronov, Papadopoulos, and Engkvist
2021; Pitt et al. 2025). In general, many successful RL al-
gorithms, e.g., (Schulman et al. 2017; Mnih et al. 2016), run
many copies of the environment in parallel to synchronously
or asynchronously learn from numerous interactions. For
synchronous on-policy algorithms, the experiences are ac-
cumulated to compute an average loss to update the agent’s
policy. This is also true for de novo drug design (Olive-
crona et al. 2017), where for each policy update, a batch
of molecules is first generated in parallel. However, in many
real-world applications, including de novo drug design, it is
impractical to assess all interactions with the environment,
where each assessment of an interaction provides a reward
signal for the agent. Instead, it is preferable to evaluate a
smaller, representative set and learn from it.

At the same time, to avoid mode collapse, exploration
mechanisms play a vital role in agent performance, espe-
cially in tasks with delayed/sparse reward or for a reward
landscape with a vast number of local optima to explore. In
de novo drug design, a reward can only be obtained when
the full molecular structure has been generated. Moreover,
diversity among generated molecules is essential since a di-
verse molecular library increases the likelihood of identify-
ing candidates with unique and favorable pharmacological
profiles, thereby enhancing the overall efficiency and suc-
cess rate of drug development pipelines. In drug design,
the reward function is often complex and has many high-
rewarding modes that should be found and subsequently ex-
ploited to obtain a diverse set of solutions. Thus, chemical


https://arxiv.org/abs/2506.21158v2

exploration and diversification are of integral importance in
drug design. In real-world deployment of this de novo drug
design, it is also often costly and time-consuming to evaluate
an instance (i.e., a state-action episode) to obtain a reward.
This creates a reward bottleneck which limits the policy up-
dates, leading to the need for efficient exploration.

One popular approach to enhance exploration in RL is
the addition of an exploration bonus to the reward function,
commonly denoted as intrinsic reward (Burda et al. 2018;
Badia et al. 2020; Seo et al. 2021; Tang et al. 2017). Another
common approach is maximum entropy RL, where the agent
tries to maximize both the reward and entropy simultane-
ously, i.e., succeeding at a task while still acting as randomly
as possible (O’Donoghue et al. 2017; Haarnoja et al. 2017).
Our work provides a consistent perspective where, while im-
proving exploration by achieving diverse behaviors, it is im-
portant to make sure that the interactions with the environ-
ment are of high quality (i.e., receive high rewards). This
becomes especially critical when the agent must account for
safety considerations, exhibits sensitivity to noise, or oper-
ates in environments where numerous trajectories are infea-
sible. For example, in de novo drug design, a molecular rep-
resentation may not correspond to a chemically viable com-
pound, and minor modifications can readily compromise its
validity. In this work, we accomplish this by considering
mini-batch diversification in reinforcement learning, where
a large number of interactions (obtained from running copies
of the environment in parallel) are summarized in a smaller,
diverse set of interactions used for updating the policy. This
provides an effective way to impose additional exploration
in the learning process, while overcoming the reward bottle-
neck by learning from a smaller set.

In this paper, we argue that providing a diverse mini-batch
of interactions makes the agent’s exploration more effective
and increases the diversity of the forthcoming interactions,
especially in de novo drug design. Thus, there are two key
benefits for such mini-batch diversification: (1) computa-
tional aspects to address the reward bottleneck; (2) enhance
exploration by diverse behaviors. Therefore, we introduce
a framework for diverse mini-batch selection in reinforce-
ment learning, which is illustrated in figure 1. To the best
of our knowledge, this is the first effort to study the effects
of diverse mini-batch selection in reinforcement learning to
overcome the reward bottleneck and promote exploration.
We study the use of determinantal point processes (DPP)
(Kulesza and Taskar 2012), the MaxMin algorithm (Ashton
et al. 2002) and k-medoids clustering (Rdusseeun and Kauf-
man 1987) for this task. DPPs provide an effective frame-
work to sample a diverse set based on specified similarity
information, while the MaxMin algorithm and k-medoids
clustering seek to choose a subset to maximize the cover-
age of a larger set. Previous work has proposed a mini-batch
diversification scheme based on DPPs for stochastic gradi-
ent descent and shown its effectiveness (Zhang, Kjellstrom,
and Mandt 2017; Huang, Da Xu, and Oppermann 2019), but
such a scheme has not been applied to reinforcement learn-
ing. Also, previous work has used DPPs in diverse sampling
for batch Bayesian Optimization (Nava, Mutny, and Krause
2022). In this paper, we focus on mini-batch diversification
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Figure 1: We propose a framework for diverse mini-batch
selection in reinforcement learning. The RL agent generates
a set of experiences in parallel, e.g., trajectories. A kernel
measures the pairwise similarities between trajectories and
is used to select a diverse set. The selected set is evaluated
and, subsequently, is used to update the RL agent.

for improving exploration and reducing reward computa-
tions (i.e., addressing the reward bottleneck) in reinforce-
ment learning. In reinforcement learning, DPPs have pre-
viously been used for unsupervised option discovery (Chen,
Aggarwal, and Lan 2023), diverse recommendations for RL-
based user preferences (Liu et al. 2021), and multi-agent
RL (Sheikh, Frisbee, and Phielipp 2022; Yang et al. 2020;
Osogami and Raymond 2019). All of these are different
from our setting and can not be applied to our setting. The
MaxMin algorithm is a popular method used in drug discov-
ery to pick a diverse set (Dreiman et al. 2021; Tan et al.
2022), but has not been investigated in combination with
reinforcement learning. Furthermore, k-medoids clustering
is a widely known clustering technique for finding a good
partition in non-Euclidean data and has only been used for
cluster-based RL (Grua and Hoogendoorn 2018), which is
different from our setting. To the best of our knowledge, our
paper provides the first combinations of these methods with
reinforcement learning to effectively fine-tune a generative
model for de novo drug design (or any other application).
Thereby, the contribution of this paper is twofold:

* We propose a mini-batch diversification framework for
RL to enhance exploration and, at the same time, to ad-
dress the reward bottleneck issue.

* We extensively investigate the proposed framework on
the de novo drug design application, and demonstrate its
effectiveness via extensive experiments.

Due to the characteristics of the de novo drug design prob-
lem, it is a suitable problem to employ diverse mini-batch
selection and study its effectiveness. We believe that this
framework can also help to overcome the reward bottle-
neck and enhance exploration in other real-world applica-
tions of reinforcement learning, especially for fine-tuning a
pre-trained generative model in other domains. Exploration
is a key challenge in RL, and domain-specific information
can easily be incorporated into the proposed framework.

2 Background
2.1 RL-based de novo Drug Design

The aim of de novo drug design is to design novel drug
molecules given a set of predefined constraints, but with-
out any known initial structure (Mouchlis et al. 2021). A
popular approach for de novo drug design is to use chemi-
cal language models to generate string-based representations



of molecules (Arts-Pous et al. 2019; Segler et al. 2018).
To steer the chemical language model to promising areas
of the chemical space, reinforcement learning can be lever-
aged (Olivecrona et al. 2017). This paper focuses on promot-
ing diversity in RL-based fine-tuning of a chemical language
model via mini-batch diversification. An action a in this RL
problem corresponds to adding one token to the string rep-
resentation of the molecule, where A is the set of possible
tokens that can be added, including a start token ¢*"* and a
stop token a*°P. The reward function assesses the quality of
the molecule represented by the string, and the molecule can
only obtain a reward when the full string representation has
been generated, i.e., a stop token has been added. This de
novo drug design problem can be modeled as a Markov de-
cision process (MDP), e.g., see (Gummesson Svensson et al.
2024) for more details.

One popular string-based representation of chemical en-
tities is Simplified Molecular Input Line Entry System
(Weininger 1988), abbreviated SMILES. Evaluations by
both Gao et al. (2022) and Thomas et al. (2022) have
concluded good performance of the SMILES-based REIN-
VENT (Segler et al. 2018; Olivecrona et al. 2017; Blaschke
et al. 2020a; Loeffler et al. 2024) compared to both other
RL-based and non-RL-based approaches for de novo drug
design. REINVENT consists of a long short-term memory
(LSTM) network (Hochreiter 1997) using SMILES to rep-
resent molecules as text strings. REINVENT utilizes an on-
policy RL algorithm to perform online optimization of the
policy my to generate higher-rewarding molecules. Previous
work has shown that minimizing its loss function is equiva-
lent to maximizing the expected return, as for policy gradi-
ent algorithms (Guo and Schwaller 2024). Our work builds
upon the success of REINVENT and focuses on improving
its chemical exploration and avoiding mode collapse.

2.2 Diversity in de novo drug design

The drug-like chemical space is estimated to consist of
1033 synthesisable molecules (Polishchuk, Madzhidov, and
Varnek 2013). To explore this space and improve the diver-
sity of the generated molecules, several studies aim to im-
prove the chemical exploration carried out by the RL agent.
Without the use of any exploration technique, the policy
easily collapses to generating only a few modes of the re-
ward function, which leads to low diversity. To improve
the diversity in RL-based de novo drug design, Blaschke
et al. (2020b) therefore introduces a count-based method
that reduces the reward for similar molecules based on
their structure. The work of Park et al. (2024) and Wang
and Zhu (2024) employs memory and learning-based in-
trinsic motivation to improve the reward of the generated
molecules. Moreover, previous work shows that incorporat-
ing both structure- and learning-based information into the
reward function can improve the overall diversity of de novo
drug design (Gummesson Svensson et al. 2025). Our work
takes on a fundamentally alternative perspective to enhance
diversity. Rather than just encouraging diverse and explo-
rative behavior via the reward signal, our work studies the
effect of maximizing the diversity of the molecules that we
evaluate and learn from.

To measure the diversity among a given set of molecules,
several existing metrics have been proposed. Hu et al. (2024)
divides these metrics into two main categories: reference-
based and distance-based. A reference-based metric com-
pares a molecular set with a reference set to find the intersec-
tion. Distance-based metrics use pairwise distances among
the molecular set to determine the diversity. In this work,
both metrics are applied. As the representative reference-
based metric, the number of molecular scaffolds, also known
as Bemis-Murcko scaffolds (Bemis and Murcko 1996), is
used. As a distance-based metric, we utilize the number of
diverse actives' metric by Renz, Luukkonen, and Klambauer
(2024), which is based on #Circles metric proposed by Xie
et al. (2023). Following the definition by Renz, Luukkonen,
and Klambauer (2024) but using the terminology of pre-
dicted active molecules (rather than hit molecules), the num-
ber of diverse actives for distance threshold D is defined by

w(H; D) = maxceon |C] s.t. Vo £y € C:d(z,y) > D, (1)

where 7 is a set of predicted active molecules, 2H" is the
power set, d(x, y) is the distance between molecules x and y.
As suggested by (Renz, Luukkonen, and Klambauer 2024),
we use the MaxMin algorithm (Ashton et al. 2002) imple-
mented in RDKit (Landrum 2006) to find an approximate
maximal value of the cardinality of C.

3 Diverse Mini-Batch Selection For RL

Algorithm 1: Diverse Mini-Batch Selection

1: input: G, B, k, 00,7, po
22 M+

3: 9(—90

4: forg=1,...,Gdo

> Initial policy parameters

5 forb=1,...,Bdo > Generate in parallel
6: s0 ~ po(+) > Sample first state
7: fort=0,1,...,7 —1do

8: Q¢ ~ Tg (St)

9: Observe next state s;y1 ~ P(+|s¢, ar)
10: end for
11: Ty = 80,00, -.-,AT—1, ST > Trajectory
12: end for
13: B+ {m,...,m8}
14: Compute kernel matrix L over B

15: Select k representative trajectories from 3
16: V7 €Y, observe return 7(7) > Evaluation

17: M~ MU (Urey {r,r(1)})
18: Update € using RL algorithm
19: end for

20: output: 6, M

We propose a framework to enhance exploration in rein-
forcement learning while reducing the number of interac-
tions evaluated. We seek to generate more diverse solutions
through reinforcement learning-based fine-tuning of a pre-
trained generative model. In this paper, we focus on fine-

'Diverse actives is termed diverse hits in previous work by
Renz, Luukkonen, and Klambauer (2024).



tuning a chemical language model. We assume delayed re-
wards and that acquiring a sequence of states and actions
is inexpensive compared to the evaluation, which is often
true for real-world problems such as de novo drug design.
Given a large set of interactions, we seek to select a smaller,
representative set to use for updating the parameters of our
policy. We hypothesize that this affects the agent’s explo-
ration of the solution space, which is of vast importance in
RL-based de novo drug design, while overcoming the reward
bottleneck by considering a fixed budget of evaluations. The
intuition is that learning from diverse experiences helps the
agent to explore more effectively.

Therefore, we suggest enforcing diversity among the se-
lected interactions to improve the efficiency of the explo-
ration. For this purpose, we propose a diverse mini-batch
selection framework for reinforcement learning, which is
illustrated in algorithm 1. Here, we focus on trajectories
of actions, i.e., an interaction corresponds to a trajectory,
which we use as a more general notion of an episode. How-
ever, the framework can easily be extended beyond trajec-
tories/episodes. In the de novo drug design problem that
we consider, an episode corresponds to a fully generated
molecule, since each action in the episode corresponds to
adding a character in the SMILES representation. Also, we
consider policy-based RL, where we directly learn a policy
e With policy parameters 6, but the suggested framework
can also be applied to value-based RL algorithms, e.g., by
diverse mini-batch selection from the replay buffer.

Over G training/generative steps, using the agent’s current
policy 7y, a batch BB of B trajectories is sampled in parallel
over copies of the same environment. Each trajectory has a
maximum horizon of 7' steps, where the true length of each
trajectory can depend on some stopping criteria or when the
terminal state is reached. If B is chosen such that B > k
and the agent’s policy is stochastic, this set will contain pri-
marily unique items. We let the RL agent in each copy of
the environment focus on maximizing the expected return
of each trajectory with respect to the reward function, i.e.,
maximizing the return generated by the agent’s policy
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where T is a state-action trajectory
So, A0, S1...,S7-1,Ar—1,S7, R(7) is the return of
following 7 and E.,[-] denotes the expected value of a
random variable given that the agent follows policy my. This
generates 3 under the belief that the agent tries to maximize
each return, without explicitly considering the diversity
among individual trajectories. This can be particularly
important when the agent has to consider safety concerns, is
sensitive to noise, or when many trajectories are not viable.
For instance, in de novo drug design, a SMILES string
is not necessarily chemically feasible, and small changes
can easily break its validity. Therefore, it is important that
the agent primarily focuses on generating chemically valid
SMILES strings of high quality. Moreover, the proposed
method can be combined with other exploration techniques,
e.g., intrinsic motivation (Burda et al. 2018; Tang et al.
2017), to provide additional domain-specific exploration.
Given a large batch of trajectories B, to stay within the

given budget of evaluations (per generative step), the
next step is to obtain a smaller, diverse mini-batch Y that
summarizes B. We study the use of determinantal point
processes (DPPs) (Kulesza and Taskar 2012), the MaxMin
algorithm (Ashton et al. 2002) and k-medoids clustering
(Rdusseeun and Kaufman 1987) for this task. After a set
Y of k trajectories has been obtained, each trajectory in
Y is evaluated to obtain the corresponding returns and/or
state-action rewards. Using the returns and rewards, the
policy parameters are updated by employing an arbitrary
RL algorithm. The discussed framework is agnostic to the
RL algorithm used to update the policy parameters, and
yields both the policy parameters 6 and a diverse set of
trajectory-return pairs {7, R(7)}.

3.1 Determinantal Point Processes (DPPs)

We propose and study the use of determinantal point pro-
cesses (Kulesza and Taskar 2012) to sample a diverse mini-
batch for RL updates. DPPs provide an effective framework
to sample a diverse set based on specified similarity informa-
tion. To the best of our knowledge, our work is a novel com-
bination of DPP and reinforcement learning to effectively
fine-tune a generative model.

A point process P is a probability measure over finite
subsets of a set B. We consider the discrete case of B =
{1,2,..., B}, where B is the number of unique trajecto-
ries. In this case, a point process is a probability measure
on the power set 2B je., the set of all subsets of . De-
terminantal point processes (DPPs) are a family of point
processes characterized by the repulsion of items such that
similar items are less likely to co-occur in the same sam-
ple. Given a kernel, providing a similarity measure between
pairs of items, DPP places a high probability on subsets that
are diverse with respect to the kernel. We consider a class of
DPPs named L-ensembles (Borodin and Rains 2005), which
is defined via a real, symmetric matrix L over the entire (fi-
nite) domain of B. This matrix is often denoted as the kernel
matrix. The probability of subset Y C B is given by

PrL(Y) o< det(Ly), 3)

where Ly = [L;j;]; jey denotes the restriction of L to the
entries indexed by items of Y. Thus, the probability of sam-
pling the set Y C B is proportional to the determinant of
Ly restricted to Y. The normalization constant is available
in closed form since )y 5 det(Ly) = det(L + I), where
I'isthe N x N identity matrix.

Given the larger set B, we want the smaller set Y to con-
tain a pre-defined number of items from 5. Thus, we are
interested in sampling a subset Y with a fixed cardinality
|Y'| = k to sample a mini-batch with a fixed size. k-DPPs
(Kulesza and Taskar 2011) concern DPPs conditioned on the
cardinality of the random subset. Formally, the probability
of a k-DPP to sample a subset Y C B is given by

o det(Ly>
ZY/QB:|Y’|:]€ det(Ly,) ’

where |Y| = k. The k-DPP’s inherent ability to promote
diversity makes it an excellent choice for selecting diverse
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and representative mini-batches in reinforcement learning.
In this way, k-DPP provides a smaller and diverse set of
items from a larger set of items.

How the k-DPP will summarize the larger set is deter-
mined by the kernel matrix L. Constructing the kernel ma-
trix entails using domain knowledge, but other informa-
tion can also be used. Let ¢; € R™ be a quality term and
#; € RP, ||¢s|| = 1, a vector of normalized diversity fea-
tures of the ¢-th item in B, e.g., the i-th generated SMILES
string. Following the work of Kulesza and Taskar (2012), the
entries of the kernel matrix can then be expressed

Lij = 0! ¢;4q5, (5)

where g; is a quality term measuring the intrinsic “good-
ness” of the i-th item, and ¢ ¢; € [—1,1] is a signed mea-
sure of similarity between ¢-th and j-th item. Therefore, uti-
lizing k-DPPs allows for a flexible sampling procedure that
behaves differently depending on the information incorpo-
rated in the kernel matrix L. It does not directly optimize
the determinant of L, but instead includes randomness to
encourage additional exploration. In the de novo drug design
problem studied in this paper, we only consider the similar-
ity between items and do not explore the effects of quality
terms. The reason for this is that we focus on pure diver-
sification, and we assume that the items generated by the
policy have similar quality. Our preliminary studies on de
novo drug design did not find any performance gain in in-
corporating a quality term provided by an oracle. However,
we believe that it can be beneficial to include a quality term,
but different terms need to be investigated to find a suitable
one.

3.2 Maximum Coverage

As an alternative to selecting a representative set by sam-
pling via k-DPPs, we also study mini-batch diversification
by maximizing the coverage of the larger set for a fixed
cardinality. While k-DPPs provide a sampling procedure to
summarize a larger set given a kernel matrix, maximum cov-
erage aims to directly cover as large a part of the space as
possible. In this way, we seek to pick the most diverse items
subject to the cardinality constraint of k. For a given set B
of B candidate items, let f(Y") be a function that measures
the “coverage” of any given set Y of items. The goal is to
choose a set Y of k items such that f(Y) is maximized.
Here we consider a fixed size of k, but a possible extension
could be to choose the smallest set Y such that a sufficient
coverage of B is obtained. Formally, we define this problem
by
e, fY), (6)
where [B]* & {X € 28 : | X| = k} is the set of all subsets
with cardinality £. In this work, we consider coverage func-
tions f(Y") based on dissimilarities between trajectories.
We investigate two algorithms to find an approximate
maximum coverage of the large set: (1) the MaxMin algo-
rithm (Ashton et al. 2002), implemented by RDKit (Lan-
drum 2006); (2) k-medoids clustering (Rdusseeun and Kauf-
man 1987), using the FasterPAM algorithm (Schubert and

Rousseeuw 2019, 2021) implemented by Schubert and
Lenssen (2022). The MaxMin algorithm first picks a starting
item, creating a picked set. Then the algorithm iteratively,
from the items in the candidate pool, finds the item that
has the maximum dissimilarity to molecules in the picked
set and adds this item to the picked set. The MaxMin algo-
rithm is widely used in drug discovery to pick a diverse set
(Dreiman et al. 2021; Tan et al. 2022).

k-medoids clustering (Rdusseeun and Kaufman 1987) is a
popular technique to cluster non-Euclidean data using arbi-
trary dissimilarities or input domains. The k-medoids prob-
lem aims to split B items into k& (< B) clusters, where the
number of clusters is assumed to be specified beforehand.
The medoid of a cluster is defined as the item in the cluster
with the minimum average of dissimilarity to all the other
items in the cluster, i.e., the item that is most centrally lo-
cated within the cluster. Unlike several other clustering al-
gorithms, e.g., k-means (Arthur and Vassilvitskii 2007), the
medoid is an actual item in the cluster. Thus, the objective is
to find medoids my, . .., my that minimizes

k
arg min Z Z d(xze,my), @)

{ma,ome}CY 527 e,

where C; is the cluster of medoid m; and d is an arbitrary
dissimilarity function. While the MaxMin algorithm sequen-
tially adds items to the picked set in a greedy manner, k-
medoids simultaneously seeks to optimize all medoids to
find the best picks. Finding the global optimum of the k-
medoid problem is NP-hard (Kariv and Hakimi 1979). In-
stead, the Partitioning Around Medoids (PAM) algorithm
(Rdusseeun and Kaufman 1987), which is the standard algo-
rithm for k-medoids clustering, improves the clustering to-
wards a local optimum. In this paper, we use the FasterPAM
algorithm (Schubert and Rousseeuw 2019, 2021), which
achieves a speedup in runtime compared to the original PAM
algorithm, to select k items (given by the medoids found by
the algorithm).

4 Experimental Evaluation

We extensively evaluate our framework on de novo drug de-
sign. We run experiments on three reward functions based on
well-established molecule binary bioactivity label optimiza-
tion tasks: the Dopamine Receptor D2 (DRD2), c-Jun N-
terminal Kinases-3 (JNK3), and Glycogen Synthase Kinase
3 Beta (GSK3/) predictive activity models (Olivecrona et al.
2017; Li, Zhang, and Liu 2018) provided by Therapeutics
Data Commons (Velez-Arce et al. 2024). The final (extrin-
sic) reward also includes the quantitative estimation of drug-
likeness (QED) (Bickerton et al. 2012), molecular weight,
number of hydrogen bond donors, and structural constraints.
For full specifications on the reward functions, we refer to
appendix C.

To update the policy and generate SMILES, we use the
REINVENT framework (Loeffler et al. 2024) with its pre-
trained policy on the ChEMBL database (Gaulton et al.
2017) to generate drug-like bioactive molecules. Previous
benchmarks on de novo drug design have, for this frame-
work, concluded among the best performances (Gao et al.



2022; Thomas et al. 2022), while it is also used in real-world
applications (Pitt et al. 2025). The action space A consists of
34 tokens, including start and stop tokens. We evaluate the
diversity of the generated set M by the number of molec-
ular scaffolds and the number of diverse actives (see equa-
tion (1)), where the diverse actives are computed for every
250th generative step. For the diverse actives, we use Tani-
moto dissimilarity to measure the distance between 2048-bit
Morgan fingerprints (with radius 2 and computed by RDKit
(Landrum 2006)) and the distance threshold D = 0.7 pro-
posed by (Renz, Luukkonen, and Klambauer 2024). When
computing the diversity in terms of both scaffolds and di-
verse actives, we only regard active molecules, defined as
molecules with both QED and predicted activity larger than
0.5.

We compare the use of mini-batch diversification in com-
bination with different techniques to modify the original re-
ward for de novo drug design: (1) no modification of the
reward, i.e., the agent observes the original (extrinsic) re-
ward; (2) using the popular identical molecular scaffold
(IMS) penalty (Blaschke et al. 2020b), which sets the re-
ward to 0 when M molecules with the same molecular scaf-
fold have been generated; (3) using the TanhRND technique
(Gummesson Svensson et al. 2025), which shows promising
empirical results in terms of diversity. No modification of
the reward is included as a baseline to investigate if mini-
batch diversification can act as an alternative approach to
avoid mode collapse by modifying the original reward. We
hereafter denote the original reward without any modifica-
tion as the extrinsic reward. For mini-batch diversification
with a mini-batch of ¥ = 64 SMILES, we first generate
B = 640 SMILES via multinomial sampling and then use
k-DPP to select a diverse mini-batch. Without mini-batch
diversification, we directly generate k¥ = 64 SMILES via
multinomial sampling, which is the standard procedure of
the REINVENT framework. We denote these approaches
without mini-batch diversification as diversification-free.

4.1 Construction of Kernel Matrix

All of the investigated methods for mini-batch diversifica-
tion (i.e., DPP, the MaxMin algorithm and k-medoids clus-
tering) rely on a kernel matrix L to encode the similar-
ity between different molecules. We construct this kernel
matrix based on two other kernel matrices L and Lp,
which we denote as “base” kernel matrices. The first base
kernel matrix L is constructed by the Tanimoto similar-
ity between the corresponding 2048-bit Morgan fingerprints
(with radius 2 using RDKit (Landrum 2006)) of the gener-
ated SMILES. To incorporate more scaffold-based informa-
tion, we construct the base kernel matrix L p by computing
the Dice coefficients (Dice 1945; Sorensen 1948) between
the scaffolds’ atom pair fingerprints (Carhart, Smith, and
Venkataraghavan 1985). Given these base kernels, we aggre-
gate these base kernel matrices to define the kernel matrix L,
which is used for selecting £ molecules, by L = L1 + Lp.
In appendices A and B, we provide a study on different com-
binations of the base matrices to define L and argue that the
kernel matrix defined here provides the best balance between
the different diversity metrics.

4.2 Effects on Quality of Diverse Mini-Batch
Selection
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Figure 2: Average extrinsic rewards per generative step
across the mini-batch of SMILES evaluated on the DRD2-
, GSK34-, or INK3-based reward functions. For clarity of
presentation, we display the moving averages with a win-
dow size of 101. The average across 10 independent runs
per generative step is plotted over 10 000 generative steps,
where the shaded area shows standard deviations among the
independent runs.

We first assess the quality (i.e., the reward) of the gener-
ated molecules to evaluate if our proposed framework can
maintain high quality while enhancing the diversity. There-
fore, we study the extrinsic reward of each configuration.
The extrinsic reward is the original reward provided for each
molecule that we want to maximize, but not the reward ob-
served by the agent when using IMS or TanhRND.

Figure 2 displays the average extrinsic rewards for each
mini-batch Y of SMILES evaluated in each generative step.
The average across 10 independent runs per generative step
is plotted over 10000 generative steps, where the shaded
area shows the corresponding standard deviation across the
independent runs. For clarity of presentation, we show the
moving averages with a window size of 101 (i.e., the current
step and upto 50 steps on each side). Each plot of figures 2a
to 2c compares the use of diverse mini-batch selection using
k-DPP, the MaxMin algorithm and k-medoids clustering in



combination with different techniques of modifying the ex-
trinsic (original) reward for de novo drug design. The left
plots compare the extrinsic rewards for both with and with-
out mini-batch diversification when the extrinsic reward is
not modified. The middle plots compare the extrinsic re-
wards when using the identical molecular scaffold (IMS)
penalty proposed by (Blaschke et al. 2020b) and the right
plots display the comparisons when utilizing the TanhRND
technique (Gummesson Svensson et al. 2025).

For the DPP and diversification-free methods on the
DRD2- and GSK3/3-based reward functions (see figures 2a
and 2b), we observe similar trends in terms of extrinsic re-
ward, especially when using IMS or TanhRND. Moreover,
on the DRD2 reward, these experiments achieve a reward of
0.8 or higher, while rewards close to 0.8 are achieved on
the GSK30 function. The diversification-free experiments
converge faster, but the DPP experiments often converge to
a similar average reward. Faster convergence tends to in-
dicate that less exploration is performed, which is demon-
strated in figures 3 and 4 below in terms of diversity of
the generated molecules. k-medoids shows similar results
on DRD2, but achieves more unstable and lower quality on
GSK3p4. For the MaxMin experiments on the DRD2 and
GSK3p problems, we observe that extrinsic rewards are
lower than for both the DPP and diversification-free exper-
iments. This is possibly because more exploration is en-
forced, due to a more diverse mini-batch, at the cost of
less exploitation. For the experiments on the JNK3-based
reward function (see figure 2c), we observe similar trends
as for DRD2 and GSK33 when not modifying the extrin-
sic reward (see left plot in figure 2c). On the other hand,
when using the IMS or TanhRND technique to modify the
extrinsic reward, all methods display similar extrinsic re-
ward, but different convergence rates. Only k-medoids uti-
lizing IMS performs differently, displaying an early conver-
gence to a reward of around 0.4, which is lower than the
other methods. This is likely due to insufficient exploration
induced by this configuration. In general, the extrinsic re-
wards are significantly lower on JNK3, indicating that the
JNK3-based reward function is more challenging to opti-
mize. One possible explanation is that there are fewer active
molecules for JNK3 in the ChEMBL database. When we
evaluate molecules from ChEMBL on the DRD2, GSK373,
and JNK3 oracles, we observe that 2.4%, 1.8%, and 0.3%
of the molecules, respectively, have an oracle score above
0.5 (we refer to appendix D for more details). Thus, there
are fewer good solutions for JNK3. Since we use a model
pre-trained on ChEMBL data, which limits the generation
to molecules similar to those found in this data, the initial
model is less likely to find sufficient solutions for INK3.

4.3 Diverse Mini-Batch Selection Enhances
Distance-Based Diversity

To evaluate the distance-based diversity among the gener-
ated molecules, we calculate the number of diverse actives.
Figure 3 shows the total number of diverse actives for ev-
ery 250th generative step in the de novo drug design task
for the DRD2-, GSK33- and JNK3-based reward functions.
The lines and shaded area display the mean and standard de-
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(c) INK3

Figure 3: Total number of diverse activities after g genera-
tive steps evaluated on reward functions based on the DRD2,
GSK34, or INK3 predictive model. The total number of di-
verse actives is plotted for every 250th generative step. The
average across 10 independent runs per generative step is
plotted over 10 000 generative steps, where the shaded area
shows standard deviations among the independent runs.

viation, respectively, across 10 independent reruns for each
configuration. Each plot of figures 3a to 3c compares the use
of DPP in combination with different techniques of modify-
ing the extrinsic reward for de novo drug design.

Dopamine Receptor D2 (DRD2) Figure 3a displays the
cumulative number of diverse actives per generative step
on the DRD2-based reward function. We observe that uti-
lizing mini-batch diversification significantly improves the
total number of diverse actives found over 10000 generative
steps compared to the diversification-free experiments (blue
lines). We observe a significant gain after just a few hundred
generative steps. In particular, MaxMin consistently yields
the best results in terms of diverse actives, compared to the
Interestingly, when not using IMS or TanhRND to mod-
ify the extrinsic reward (see left plot in figure 3a), DPP and
MaxMin display a considerable increase in distance-based
diversity after a few hundred generative steps compared
to the diversification-free method, where diversity quickly
stagnates. Without mini-batch diversification (and any ex-
trinsic reward modification), it is expected that the diver-



sity should stagnate since it has previously been observed
that the agent can easily get stuck in a local optimum and
will then generate similar molecules (Blaschke et al. 2020b).
Using mini-batch diversification via DPP or MaxMin over-
comes this issue even without modifying the extrinsic re-
ward, which is the standard method for tackling this issue. In
addition, we observe that mini-batch diversification in com-
bination with a modification of the extrinsic reward (see the
middle and right plot in figure 3a) yields the largest num-
ber of diverse actives, especially when utilizing TanhRND.
However, using k-medoids for mini-batch diversification
generates fewer diverse activities than the diversification-
free methods, even when not modifying the rewards.

Glycogen Synthase Kinase 3 Beta (GSK33) Figure 3b
displays the cumulative number of diverse actives per gener-
ative step on the GSK3/-based reward function. We observe
that utilizing mini-batch diversification via DPP or MaxMin
generates significantly more diverse active after a few hun-
dred generative steps. We see this behaviour no matter if we
modify the extrinsic reward or not, meaning that mini-batch
diversification can successfully be used as an exploration
technique to overcome mode collapse and lead to diverse
behaviors. Moreover, we notice that, after at most 4000 gen-
erative steps, MaxMin yields substantially more diverse ac-
tives than the other methods. Also, we note that, similar to
the experiments on the DRD2-based reward functions, using
k-medoids yields a substantially lower number of diverse ac-
tives than the other methods, including diversification-free
methods.

c-Jun N-terminal Kinases-3 (JNK3) Figure 3c shows the
cumulative number of diverse actives per generative step on
the INK3-based reward function. Firstly, we observe a high
standard deviation among all experiments, compared to the
other reward functions. This is likely since the JNK3 oracle
is more difficult to optimize than the other oracles, and there-
fore does not have a large margin to the activity threshold of
0.5 for diverse actives. Similar trends in terms of diversity
have been observed by previous work (Gummesson Svens-
son et al. 2025). Most approaches using mini-batch diversi-
fication keep improving over a large number of generative
steps, while the diversification-free experiments generally
show a substantially lower number of average diverse ac-
tives. For no extrinsic reward modification (see left plot in
figure 3c), MaxMin generates the highest average number
of diverse actives, while DPP has lower variance but yields
fewer diverse actives. When using the IMS or TanhRND
strategy to modify the reward (see middle and right plot in
figure 3c), MaxMin also yields the highest average number
of diverse actives, but the runs overlap with DPP since both
have high variance. For the experiments using TanhRND
(see right plot in figure 3c), all MaxMin configurations dis-
play a larger increase in the average number of diverse ac-
tives over time. On this reward function, k-medoids can
generate more diverse actives than the diversification-free
method when not modifying the (extrinsic) reward, while
these two methods display similar performance when modi-
fying the reward.

DRD2 DRD2: using IMS

50000 { 400000 {

DRD2: using TanhRND

400000 {

350000 { :

200000 {
300000 { 300000

1500001 et | 2500001

- 200000 {

100000 { - 150000 {

200000

100000 { 100000 {

N

500001

# Active Molecular Scaffolds (1)
\

G 2000 4000 6000_8000 10000 G 2000 4000 6000 8000 10000 G 2000 4000 6000_8000 10000
Generative Step Generative Step Generative Step
— diversifi ication-fi ication-freeTanhRND ~ ——  MaxMin/MaxMin-IMS/MaxMin-TanhRND
DPP/DPP-IMS/DPP-TanhRND i " hRND
(a) DRD2
GSK3B GSK3: using IMS

GSK3p: using TanhRND
2000001 300000 ] 0000 {
2500007 200000 {
1500001
200000 {
150000 {
100000 { 150000 {
100000 {
_.= | 1000001
500001 i

L 500001 50000 |

# Active Molecular Scaffolds (1)

.)

ol - o] -
G 2000 4000 6000_8000 10000 G 2000 4000 6000 8000 10000 G 2000 4000 6000_8000 10000
Generative Step Generative Step Generative Step

—— diversifi fi i ication-freeTanhRND ~ ——  MaxMin/MaxMin-IMS/MaxMin-TanhRND
DPP/DPP-IMS/DPP-TanhRND i i TanhRND

(b) GSK33

JNK3 JNK3: using IMS

JNK3: using TanhRND
] 1200001 1

2 7000 100000 {

@ s000 o 80000

3 000 600007 c0000]

g 7 { e -
$ 2 :

*

- e
o o} of —
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 G 2000 4000 6000 8000 10000
Generative Step Generative Step Generative Step

—— diversifi fi i ication-free-TanhRND ~ ——  MaxMin/MaxMin-IMS/MaxMin-TanhRND
DPP/DPP-IMS/DPP-TanhRND ids-TanhRl

ND

(c) INK3

Figure 4: Total number of molecular scaffolds after g gen-
erative steps evaluated on reward functions based on the
DRD2, GSK3p3, or JNK3 predictive model. The average
across 10 independent runs per generative step is plotted
over 10000 generative steps, where the shaded area shows
standard deviations among the independent runs.

4.4 Diverse Mini-Batch Selection Enhances
Reference-Based Diversity

To obtain a more comprehensive evaluation of the diver-
sity, we also investigate reference-based diversity (Hu et al.
2024). In particular, we consider the number of unique
molecular scaffolds, also named Bemis-Murcko scaffolds
(Bemis and Murcko 1996), computed by RDKit (Landrum
2006). We are only interested in the diversity of molecules
suitable for our target and, therefore, only consider scaf-
folds of active molecules with both an oracle score and QED
above 0.5. Figure 4 shows the cumulative number of unique
active molecular scaffolds per generative step for the DRD2-
, GSK3/3- and JNK3-based reward functions. The lines and
shaded area display the mean and standard deviation, respec-
tively, across 10 independent reruns for each configuration.

Dopamine Receptor D2 (DRD2) Figure 4a displays the
cumulative number of active molecular scaffolds, per gen-
erative step, evaluated on the DRD2-based reward func-
tion. When not modifying the extrinsic reward (see left plot
in figure 4a), using mini-batch diversification via DPP or
MaxMin leads to substantially more scaffolds, compared to



the diversification-free method, after less than 750 genera-
tive steps. In particular, our experiments demonstrate that
DPP generates most scaffolds on average. When utilizing
the identical molecular scaffold (IMS) filter (Blaschke et al.
2020b) for modifying the extrinsic reward (see middle plot
in figure 4a), we observe that DPP generates more molecular
scaffolds compared to the other methods. For the TanhRND
technique (see right plot in figure 4a), the diversification-
free, MaxMin and DPP methods show similar diversity in
terms of molecular scaffolds and perform on par with the
best methods when using IMS (see middle plot in figure 4a).
In terms of molecular scaffolds, it is clear that the scaffold-
based similarity that mini-batch diversification provides can
be important, especially in combination with no or less ef-
fective exploration techniques. However, across all experi-
ments, it is clear that k-medoids generates the least amount
of scaffolds, and it is therefore important to choose an ap-
propriate method for mini-batch diversification.

Glycogen Synthase Kinase 3 Beta (GSK33) Figure 4b
displays the cumulative number of molecular scaffolds for
the evaluation on the GSK33-based reward function. With-
out any modification of the extrinsic reward (see left plot
in figure 4b), we observe that mini-batch diversification via
DPP or MaxMin yields significantly more scaffolds com-
pared to the diversification-free method (blue line). The
DPP effectively generates more molecular scaffolds, while
MaxMin is less effective. For reward modification (see the
middle and right plots in figure 4b), we observe that using
mini-batch diversification via DPP generates more scaffolds
on average and has lower variance. However, the difference
in effectiveness of using DPP is reduced in terms of diverse
actives, but DPP can still consistently improve diversity. For
MaxMin, which consistently generates the largest number
of diverse actives (see figure 3b), we observe a lower num-
ber of scaffolds. Thus, when using the MaxMin algorithm
to impose mini-batch diversity, we see that high distance-
based diversity does not directly result in high reference-
based diversity, and vice versa. When using mini-batch di-
versification via k-medoids, it generates significantly fewer
scaffolds, except when using TanhRND, where it performs
on par with the other methods.

c-Jun N-terminal Kinases-3 (JNK3) Figure 4c displays
the scaffold diversity for the evaluation on the JNK3-based
reward function. When not modifying the extrinsic reward
(see left plot in figure 4c), all DPP-based methods are more
effective after around 2000 generative steps. For DPP, we
observe the largest average number of molecular scaffolds
and notice a more consistent exploration, since the rate of
diverse solutions is higher. The MaxMin algorithm does not
display the same consistent improvement in the number of
scaffolds. When modifying the extrinsic reward (see middle
and right plots in figure 4c), both DPP and MaxMin obtain a
higher average number of scaffolds, but they also display a
high variability and are therefore not always more effective.
This is likely because the agent is not able to effectively op-
timize the reward (see figure 2¢). In general, as depicted in
figure 2c, the INK3-based reward is more difficult to opti-
mize for the RL agent. Thus, we notice that the robustness

of our proposed mini-batch diversification depends on how
well the agent can optimize the given task. This is expected
since the mini-batch selection depends on the given larger
set 3 and, therefore, has limited capabilities to enhance the
diversity if the RL agent itself cannot find sufficient solu-
tions.

5 Conclusions

In this work, we present an easily applicable framework
for enhancing mini-batch diversity in reinforcement learn-
ing algorithms. The framework seeks to tackle the prob-
lem of efficient exploration when it is costly to evaluate
a reward function. In this paper, we apply our framework
to de novo drug design, but the framework is problem-
agnostic. We believe that the proposed framework can also
be beneficial in other applications in reinforcement learning,
where efficient exploration and diverse behaviors are crucial.
To solve the problem of mini-batch diversification in RL,
we study the use of determinantal point processes (DPPs)
(Kulesza and Taskar 2012), the MaxMin algorithm (Ash-
ton et al. 2002) and k-medoids clustering (Rdusseeun and
Kaufman 1987) for the diversification process. In this way,
we seek to summarize a larger set of molecules by selecting
a smaller mini-batch of diverse molecules to evaluate, re-
quiring fewer evaluations. DPP samples a diverse mini-batch
given a kernel matrix, while the MaxMin algorithm and k-
medoids clustering aim to find the maximum coverage of the
larger set with respect to dissimilarities between molecules.
We argue that this enhances the exploration by focusing on
promising, more diverse molecules, while keeping the re-
wards high. We observe that our proposed framework for
mini-batch diversification can substantially improve the di-
versity of de novo drug design, especially when combined
with a domain-specific modification of the extrinsic reward,
such as TanhRND (Gummesson Svensson et al. 2025). We
demonstrate that DPP-based mini-batch diversification en-
hances both distance- and reference-based diversity, while
the MaxMin algorithm primarily improves distance-based
diversity. Therefore, we propose to use DPP for the diver-
sification process, since it also allows for a more adaptable
kernel matrix, e.g., by incorporating quality terms, and a
natural way to introduce randomness in the diversification
process. Moreover, we notice that if the agent alone pro-
vides sufficient solutions, our framework can substantially
enhance the diversity of the generated solutions. Our exper-
iments indicate that using diverse mini-batches in reinforce-
ment learning improves exploration and provides a basis for
the effectiveness of this approach.
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DPP-A DPP-T DPP-P DPP-D
Lr+Lp Lr Lr®Lp Lp

Table 1: Different kernel matrix L configurations. Lz con-
sists of Tanimoto similarities between Morgan fingerprints
and L p consists of Dice similarities between atom-pair fin-
gerprints. ® denotes element-wise multiplication.

A Kernel Matrix for DPP

To obtain a diverse mini-batch, we perform exact sam-
pling from a k-DPP using the Gram-Schmidt sampler im-
plemented in DPPy (Gautier et al. 2019). Performing ex-
act sampling from the k-DPP typically requires an eigen-
decomposition of its kernel (Kulesza and Taskar 2011), typ-
ically requiring O(NN3) time. Given a decomposition, draw-
ing a sample typically takes O(N K?3) time overall (Kulesza
and Taskar 2012). For more details, we refer to (Derezin-
ski, Calandriello, and Valko 2019; Calandriello, Derezinski,
and Valko 2020) for more efficient exact sampling proce-
dures, (Li, Jegelka, and Sra 2016; Grosse et al. 2024) for ap-
proximative methods and (Anari, Gharan, and Rezaei 2016;
Rezaei and Gharan 2019) for Markov-Chain-Monte-Carlo
(MCMC) procedures.

To perform sampling from a k-DPP, a kernel matrix L
needs to be constructed at each generative step. We explore
two different approaches to measure the similarity between
molecules, resulting in two base kernel matrices that in-
corporate varying levels of information. The first base ker-
nel matrix is constructed by the Tanimoto similarity be-
tween the corresponding 2048-bit Morgan fingerprints (with
radius 2 using RDKit (Landrum 2006)) of the generated
SMILES. We denote this base matrix by L. To incorporate
more scaffold-based information, we also create a base ker-
nel matrix by computing the Dice coefficients (Dice 1945;
Sorensen 1948) between the scaffolds’ atom pair finger-
prints (Carhart, Smith, and Venkataraghavan 1985). We de-
note this base kernel matrix by Lp.

We investigate four combinations of Ly and L to create
the kernel matrix L used for sampling from a k-DPP (see
table 1). We obtain the first variant by element-wise summa-
tion of Ly and Lp, which we denote by DPP-A. Note that
taking an element-wise arithmetic mean instead, i.e., mul-
tiplying a constant term 1/2 with all items in L, does not
change the probabilities and, therefore, would make no dif-
ference in practice for sampling. The second variant is ob-
tained by only using Ly, which we denote by DPP-T. The
third variant is obtained by the element-wise product of the
two matrices, which we denote by DPP-P. The last variant is
obtained only using Lp and is denoted by DPP-D. This re-
sults in four different configurations of DPP. For each kernel
matrix in table 1 for DPP, we study how it affects the quality
and diversity on the different reward functions. We investi-
gate mini-batch diversification in combination with differ-
ent techniques to modify the reward function (for enhancing
exploration and diversity). Figure 5 displays the average ex-
trinsic reward and standard deviation per generative step on
the DRD2-, GSK34-, or JINK3-based reward functions. For

clarity of presentation, we display the moving averages with
a window size of 101. Each line shows the average, while
the shaded area shows the standard deviation. For all dif-
ferent configurations of DPP, we observe similar trends in
terms of extrinsic rewards. Figure 6 displays the total num-
ber of diverse activities up to the current generative steps.
The total number of diverse actives is plotted for every 250th
generative step. For the DRD2-based reward functions, both
DPP-A and DPP-T generate among the largest number of di-
verse actives. For the GSK35-based reward function, DPP-T
often generates the largest number of diverse actives, while
DPP is the second-best configuration. For the JNK3-based
reward function, the variability of all methods is high when
they can generate more than around 10 diverse actives. We
observe that DPP-A often displays the largest number of di-
verse actives when using the IMS and TanhRND technique
to modify the reward. Figure 7 shows the total number of
molecular scaffolds up to the current generative step. For
the DRD2-based reward function, DPP-A consistently gen-
erates the largest number of scaffolds. On GSK33, DPP-D
generates the largest number of scaffolds, while DPP-A is
the second-best method. There is a high variability for the
JNK3 reward. DPP-A displays a large average number of
scaffolds. Overall, we observe that DPP-A consistently dis-
plays a good balance between the different diversity metrics.
Therefore, we use this method in the main paper to represent
mini-batch diversification via DPP sampling.

B Kernel Matrix for Maximum Coverage

We also investigate three different dissimilarity functions for
the MaxMin algorithm and k-medoids clustering. We also
refer to kernel matrices for the MaxMin algorithm and k-
medoids clustering. Thus, we explore the following con-
figurations of the MaxMin algorithm and k-medoids clus-
tering: (1) “MaxMin-T"/*kMedoids-T” using the Tanimoto
similarity between the Morgan fingerprints described above,
which corresponds to using kernel matrix Lr; (2) “MaxMin-
D”/*kMedoids-D” using the Dice similarity with the atom
pair fingerprints described above, which corresponds to L p;
(3) “MaxMin-A’/"kMedoids-A” using the average Tani-
moto and Dice similarities, which corresponds to Lptlr,
This results in 3 different configurations for the MaxMin
algorithm and k-medoids clustering. We also denote these
dissimilarity functions as kernel matrices. For each dissim-
ilarity function for the MaxMin algorithm and k-medoids
clustering, we study how it affects the quality and diversity
on the different reward functions. We investigate mini-batch
diversification in combination with different techniques to
modify the reward function (for enhancing exploration and
diversity).

B.1 MaxMin Algorithm

Figure 8 displays the extrinsic reward per generative step on
the DRD2-, GSK33-, and JNK3-based reward functions. For
clarity of presentation, we display the moving averages with
a window size of 101. Each line shows the average, while the
shaded area shows the standard deviation. For all configura-
tions of the MaxMin algorithm, we mostly observe similar
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Figure 5: Average extrinsic rewards per generative step
across the mini-batch of SMILES evaluated on the DRD2-
, GSK34-, or INK3-based reward functions. For clarity of
presentation, we display the moving averages with a win-
dow size of 101.

extrinsic rewards, but MaxMin-D sometimes displays lower
and sometimes higher rewards. Figure 9 shows the total
number of diverse actives up to the current generative step.
For all experiments, except MaxMin-D-TanhRND on JNK3,
MaxMin-T generated the largest number of diverse actives,
while MaxMin-A is second-best. When using TanhRND on
the JNK3-based reward function, all configurations display
similar results, with high variability. Figure 10 shows the
total number of molecular scaffolds up to the current gener-
ative step. For the DRD2-based reward function, all configu-
rations show similar trends when using IMS or TanhRND to
enhance exploration, where MaxMin-T generates the largest
number of scaffolds across all experiments. For the GSK3 -
based reward function, MaxMin-T generates the smallest
number of scaffolds, while MaxMin-D and MaxMin-A yield
the largest and second largest number of scaffolds, respec-
tively. On the JNK3 problem, MaxMin-A and MaxMin-T
display similar trends when using IMS or no reward mod-
ification, yielding a larger number of scaffolds compared
to MaxMin-D, which stagnates after a few thousand steps.
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Figure 6: Total number of diverse activities after g genera-
tive steps evaluated on reward functions based on the DRD2,
GSK34, or INK3 predictive model. The total number of di-
verse actives is plotted for every 250th generative step.

When using TanhRND, all configurations display a large
variability, where MaxMin-D yields the largest average and
MaxMin-T the smallest average.

Overall, MaxMin-T generates the largest number of di-
verse actives, while MaxMin-A illustrates comparable di-
versity and better diversity in terms of scaffolds. MaxMin-A
better balances the two different diversity metrics and, there-
fore, we use this configuration in the main paper.

B.2 k-Medoids Clustering

Figure 11 displays the extrinsic reward per generative step
on the DRD2-, GSK33-, and JNK3-based reward functions
when using k-medoids clustering for mini-batch diversifica-
tion. For clarity of presentation, we display the moving av-
erages with a window size of 101. Each line shows the aver-
age, while the shaded area shows the standard deviation. For
all different kernel matrices explored for k-medoids cluster-
ing, we observe similar trends. Rewards on the DRD2 prob-
lem are above 0.8, rewards on GSK3/5 are mostly between
0.8 and 0.6, and rewards on JNK3 are primarily below 0.6.
Figure 12 shows the total number of diverse actives up to the
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Figure 7: Total number of molecular scaffolds after g gen-
erative steps evaluated on reward functions based on the
DRD2, GSK33, or JNK3 predictive model.

current generative step. On the DRD2-based reward function
(see figure 12a), kMedoids-D consistently yields the largest
number of diverse actives, while kMedoids-A is slightly bet-
ter than kMedoids-T. For the experiments on GSK3/ (see
figure 12b), kMedoids-T yields the largest number of di-
verse actives when using TanhRND, but otherwise generates
a smaller number of diverse actives. kMedoids-A generates
the second largest average number of diverse actives across
all experiments, but its standard deviation overlaps with the
other methods. For the JNK3-based reward function (see fig-
ure 12c¢), all methods generate a similar number of diverse
actives. Figure 13 shows the total number of molecular scaf-
folds up to the current generative step. When modifying the
reward (see middle and right plots in Figure 13), the exper-
iments of kMedoids-A generate the largest number of scaf-
folds, but their standard deviations overlap with the ones of
kMedoids-T. When not modifying the extrinsic reward (see
left plots in Figure 13), fewer scaffolds are generated, where
kMedoids-D performs the best.

Overall, both kMedoids-D and kMedoids-T generate the
largest number of diverse actives (for different reward func-
tions), while kMedoids-A or kMedoids-T yield the largest
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Figure 8: Average extrinsic rewards per generative step
across the mini-batch of SMILES evaluated on the DRD2-
, GSK3/-, or INK3-based reward functions. For clarity of
presentation, we display the moving averages with a win-
dow size of 101.

number of scaffolds. We argue that kMedoids-A best bal-
ances the benefits of kMedoids-T and kMedoids-D, since it
is always the second-best or best method. Therefore, we use
this configuration in the main paper.

C Experimental Detatils

The de novo drug design problem can be modeled as a
Markov decision process (MDP). Then, a; € A is the ac-
tion taken at state s;. We can define the current state as the
sequence of performed actions up to round ¢

St = A0:t—1 = A0, A1y ..., 0t—1, (8)

where the initial action is always the start token ag = a’*™.

This means that the distribution of the initial state sq is de-
terministic po(sop = a*™*) = 0. The transition probabilities
are deterministic

P(5t+1|5t7at) = §st4—|»at7 )

where +H- denotes the concatenation of two sequences. If
action a*°P is taken, the following state is terminal, stopping



Algorithm 2: Diverse Mini-Batch Selection for Drug Design
1: input: G, B, k, Oprior, h

22 M+ > Initialize memory
30 0 < Oprior > The prior policy is fine-tuned
4: forg=1,...,Gdo > Generative steps
5 L(0) <0
6 K+ 0
7 forb=1,...,Bdo > Large batch of SMILES
8: t<0
9: a; < a(stam > Start token is initial action
10: St11 < Q¢

11: while s, ; is not terminal do

12: t+—t+1

13: az ~ mo(st)

14: St41 € Aot

15: end while

16: B+ BU St41

17: Observe property score 7(S¢41)

18: if 7(s¢+1) > h then

19: M~ MU {sp41}

20: end if

21: Compute and store penalty f(s¢4+1; M)

22: end for

23: Compute matrix kernel L over B

24: Select £ SMILES from B
25: for AcY do

26: Compute intrinsic reward R;(A; M)
27: Computed modified reward R(A)
28: Compute loss £ 4(0) wrt R(A)

29: L(0) + L(8)+ La(0)

30: end for

31: Update 0 by minimizing £(#) in equation (13)
32: end for
33: output: 6, M
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Figure 9: Total number of diverse activities after g genera-
tive steps evaluated on reward functions based on the DRD2,
GSK34, or INK3 predictive model. The total number of di-
verse actives is plotted for every 250th generative step.

the current generation process and subsequently evaluating
the generated molecule,

P(terminal|s;, a®P) = 1, (10)

where 0, denotes the Dirac distribution at z. The extrinsic
reward epsidoci such that

if ay = a*,

R(sy,a;) = Rlag.) = {T(st“) a1

0 otherwise,

where reward r(s7) € [0, 1] (only observable at a terminal
state) measures the desired property, which we want to opti-
mize, of molecule A = aq.7_2. We let T denote the round
that a terminal state is visited, i.e., ap_; = a*°P. Note that
in practice, the string between the start and stop tokens en-
codes a molecule such that a;.7—5 is equivalent to ag.7—1
during evaluation. The objective is to fine-tune a policy 7y,
parameterized by 6, to generate a structurally diverse set of
molecules optimizing the property score 7 (-).

We use the REINVENT4 (Loeffler et al. 2024) framework
to sequentially fine-tune the pre-trained (prior) policy. The
algorithm is based on the augmented log-likelihood defined
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Figure 10: Total number of molecular scaffolds after g gen-
erative steps evaluated on reward functions based on the
DRD2, GSK33, or JNK3 predictive model.

by
T—2
log ma,,, (A) = Z log ma ., (at|s¢) + oR(A),  (12)
t=1
where A = ay.7_o is a generated molecule, o is a scalar
value, g, is the (fixed) pre-trained policy. The policy 7y
is optimized by minimizing the squared difference between

the augmented log-likelihood and policy likelihood given a
mini-batch Y of £k SMILES

z(e):% >

a1.7—2€Y

(108; ™ (a1.r-2)

T 2 (13)
- Z log mo(at|st)
t=1

Previous work has shown that minimizing this loss function
is equivalent to maximizing the expected return, as for policy
gradient algorithms (Guo and Schwaller 2024).

In practice, at each step g of the generative process, B
full trajectories/episodes (until reaching a terminal state)
are rolled out, to obtain a batch B of generated SMILES.
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Figure 11: Average extrinsic rewards per generative step
across the mini-batch of SMILES evaluated on the DRD2-
, GSK3/-, or INK3-based reward functions. For clarity of
presentation, we display the moving averages with a win-
dow size of 101.

Each token in the SMILES is sampled from the multino-
mial distribution induced by the policy’s action probabilities.
Subsequently, k-DPP, the MaxMin algorithm or k-medoids
clustering is used to select a mini-batch of & trajectories
(SMILES) from B. The modified reward R(A) for each
molecule A € Y is observed by the agent and subsequently
used for fine-tuning. The modified reward R(A) is computed
using the penalty function f(A) and/or intrinsic reward Ry
(depending on which reward function is used). The penalty
functions and intrinsic rewards use a bucket size of M to de-
termine the desired number of generated molecules with the
same scaffold (we refer to (Blaschke et al. 2020b; Gummes-
son Svensson et al. 2025) for more details). The modified
reward is used to compute the loss £(6) in equation (13),
ie., we let R(A) = R(A) if the extrinsic reward is modi-
fied, e.g., via intrinsic reward or reward penalty. The policy
parameters § are updated with respect to the £(6) using a
learning rate «. Algorithm 2 illustrates the specific proce-
dure utilized for de novo drug design. The source code is
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Figure 12: Total number of diverse activities after g genera-
tive steps evaluated on reward functions based on the DRD2,
GSK34, or INK3 predictive model. The total number of di-
verse actives is plotted for every 250th generative step.

available in a GitHub repository.? Fine-tuning of the policy
network is done on a single NVIDIA A40 GPU with 48GB
RAM or NVIDIA T4 GPU with 16GB RAM using PyTorch
1.12.1 and CUDA 11.3 on a Linux-based system. We use
the DPPy package (Gautier et al. 2019) with version 0.3.3 to
perform exact sampling from k-DPP, using the default ran-
dom seed. For k-medoids clustering, we use the FasterPAM
algorithm (Schubert and Rousseeuw 2021) from the kme-
doids package (Schubert and Lenssen 2022) with version
0.5.3.1. We use random initialization of medoids and at most
100 iterations. We use the MaxMin algorithm implemented
by RDKit (Landrum 2006) with version 2023.9.6.

C.1 Reward Function

Our experiments utilize scoring components of REIN-
VENT4 (Loeffler et al. 2024) to define the extrinsic reward
using a geometric mean. In addition, we implement a scor-
ing component using the predictive oracles of the Dopamine
Receptor D2 (DRD2), Glycogen Synthase Kinase 3 Beta
(GSK3p) and c-Jun N-terminal Kinases-3 (JNK3) oracles

*https://github.com/hampusgs/diverse-mini-batch-selection-rl
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Figure 13: Total number of molecular scaffolds after g gen-
erative steps evaluated on reward functions based on the
DRD2, GSK34, or JNK3 predictive model.

from TD Commons (Huang et al. 2021; Velez-Arce et al.
2024). The weight and parameters for each scoring com-
ponent are displayed in table 2. Predictive oracle functions,
providing the activity values, are provided by PyTDC 1.1.4.
Fingerprints and QED are computed using RDKit 2023.9.6.
For the custom alerts, we use the following default chemical
patterns in the SMARTS language:

e [*18]
e [*19]
e [*rl0]
e [*rll]
e [*®rl2]
e [*rl3]
e [*rl4]
e [*®rl5]
e [*rl6]
e [*rl7]
o [#8][#8]
o [#6:+]

*  [#16][#16]



Component Weight Transform type high low cgy ¢ ce k
Molecular weight 1 Double sigmoid 550 200 500 20 20 -

# hydrogen bond doners 1 Reversesigmoid 6 2 - - - 05
QED 1 None - - - - - =

Custom Alerts 1 None - - - - = =
Predictive oracle 5 None - - - - = =

Table 2: Parameters for scoring components in the REINVENT4 (Loeffler et al. 2024) framework. A geometric mean is used to

combine them into the extrinsic reward observed by the agent.

s [#7;!In][S;!$(S(=0)=0)]
e [#7;In][#7;!n]

e C#C

*  C(=[0,SDIO.S]
*  [#7:In][C;!1$(C(=
s [#7;In][C;!1$(C(=
o [#7;In][C;!$(C(=[O,N][N,OD][#8;!0]

s [#8;10][C;!$(C(=[O,N])IN,OD][#16;!s]
o [#8:10][C;!I$(C(=[O,N]DIN,OD][#8;!0]
o [#16;!S][C;!$(C(=[O,ND[N,OD][#165!s]

O,NDI[N,ODI[#16;!s]
O,NDIN,OD][#7;!n]

C.2 Hyperparameters

Table 3 displays the hyperparameters used in the experimen-
tal evaluation. We run for G = 10000 generative/training
steps to investigate the chemical exploration over a large
number of steps. We generate a large set B of |B| = B =
640 instances/items since we argue that ten times the num-
ber of items we want to choose (i.e., k) is sufficient to gener-
ate diverse solutions. This is supported by our experiments.
We use a distance threshold D = 0.7 as suggested by (Renz,
Luukkonen, and Klambauer 2024) since there is a significant
decrease in the probability of similar bioactives beyond this
threshold (Jasial et al. 2016). When computing the diversity
in terms of both scaffolds and diverse actives, we only regard
active molecules, defined as molecules with both QED and
predicted activity larger than h = 0.5. The activity models
are trained on binary classification tasks, such that a value
larger than A = 0.5 means that the molecule is most likely
to be active. A QED of 0.5 is close to the mean QED of
approved drugs (Bickerton et al. 2012). Otherwise, we use
the default hyperparameters of REINVENT4 (Loeffler et al.
2024).

D Analysis of predictive activity models

To better understand the underlying reward space, we visu-
alize the molecules from ChEMBL25 (Gaulton et al. 2017),
in total 2474589 molecules, on the three predictive activity
models (oracles) investigated in this work. ECFP (Morgan)
fingerprints with 2048 bits are reduced to 200 features us-
ing principal components analysis (PCA) using scikit-learn
(Buitinck et al. 2013). These 200 features are subsequently
reduced to 2 dimensions using UMAP (Mclnnes, Healy,
and Melville 2018). For clarity, we only display the active
molecules with a predicted activity of more than 0.5. Only
fingerprints are used for the different predictive models to

match the fingerprints used for the corresponding predictive
models in Therapeutics Data Commons (Huang et al. 2021;
Velez-Arce et al. 2024).

For DRD?2 oracle, ECFPC3 fingerprints (using counts and
features) are calculated using RDKit (Landrum 2006) and
visualized in figure 14a. There are 58843 active molecules
in total for the DRD?2 oracle. For the GSK3 oracle, ECFP2
fingerprints are calculated using RDKit (Landrum 2006) and
visualized in figure 14b. There are 44066 active molecules
in total for the GSK3/ oracle. For the JINK3 oracle, ECFP2
fingerprints are calculated using RDKit (Landrum 2006) and
visualized in figure 14c. There are 7249 active molecules in
total for the JNK3 oracle.



Parameter | Value

B 640

G 10000

h 0.5

k 64

D 0.7

o 128

«a 0.0001

Optimzer | Adam (Kingma and Ba 2017)

M 25
|A| 34

Table 3: Hyperparameters for the experimental evaluation using the REINVENT4 (Loeffler et al. 2024) framework.
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Figure 14: 2-dimensional UMAP projection of 200 PCA features. The PCA features are derived from 2048-bits ECFP (Morgan)
fingerprints. We only display the active molecules with a predicted activity of more than 0.5.



