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ABSTRACT
In recent years, the integration of social robots into various domains has received significant atten-
tiondue to their potential to engageusers inmeaningfulways, offering companionship, support, and
assistance in tasks, particularly in healthcare. This study investigates the impact of different types
of feedback provided by the social robot Furhat on user engagement during a digital visuospatial
memory training task. Using a 3 × 2 × 2mixed design (N = 58), we investigated three types of feed-
back: performance-based, affective-based, and a combination of both, across two levels of challenge
(Easy and Medium) between subjects, incorporating a within-subject baseline control block. The
results indicate that affective-based feedback leads to significantly higher social engagement, as evi-
denced by higher eye contact with the robot. However, this higher social engagement is associated
with lower task performance in the affective-based feedback condition. Additionally, participants
perceived the social robot as more user-friendly in the combined feedback condition and as more
distractingwithin theMedium challenge level. This research provides insights into theways inwhich
social robots can be used to facilitate human performance and engagement in tasks where both
positive attitudes towards the task and high performance are essential for long-term involvement.
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1. Introduction

The integration of social robots into various domains,
particularly healthcare, has garnered significant attention
in recent years. As the global population ages, with peo-
ple over 60 now accounting for almost 16% of the world’s
population and set to nearly double in the next 25 years
[1], demographic shifts will impact the cost and acces-
sibility of healthcare services [2]. Therefore, there is a
need for innovative solutions to support and enhance the
quality of care. Social robots, being employed as ‘compan-
ions’, offer a scalable approach to buffering these rising
demands for healthcare, having previously been used in
cognitive therapy [3,4], reducing depression and loneli-
ness among elderly individuals in long-term care facilities
[5–8], assisting children with Autism SpectrumDisorder
(ASD) in acquiring skills related to distrust and decep-
tion [9–11]. This is particularly important in long-term
cognitive training interventions, where sustained engage-
ment is critical for success, e.g. adherence to a full course
of clinical intervention [12,13]. These social robots can
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adjust their interactions with users through various ver-
bal or non-verbal feedback and help users feel more
socially engaged and maintain their interest [14,15].

Measuring engagement in HRI settings, particularly
with social robots, is vital for understanding user expe-
riences and tailoring interactions to meet user needs.
Engagement in HRI is a complex concept that has been
defined and explored in various ways across numerous
studies [16]. This diversity in interpretations has led to
the adoption of various metrics and features for assessing
user engagement in the HRI literature [17]. In this paper,
engagement is defined as:

a quality of user experiences with technology that is
characterized by challenge, aesthetic and sensory appeal,
feedback, novelty, interactivity, perceived control and
time, awareness, motivation, interest, and affect ([18], p.
949).

Engagement interpretations can be divided into differ-
ent components, such as cognitive, behavioral, and emo-
tional engagement [16]. Each of these components can
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have various measures based on the HRI setup. For
instance, attention is often seen as a cognitive measure
of engagement [16], while emotional engagement can
be measured through affect states, such as facial expres-
sions [19], physiological responses [20], or subjective
self-reports [21].

There are various studies that have explored the expe-
rience and perceptions of individuals interacting with
social robots [22–24], focusing on specific aspects of
human-robot interaction and highlighting the ways in
which social robots can impact user experience. The
dimensions of ‘warmth’ and ‘competence’ are two funda-
mental dimensions in humanperceptions that users asso-
ciate with robots [25,26]. Warmth refers to traits such as
being friendly and trustworthy, while competence relates
to abilities and effectiveness. Robots with these attributes
can significantly affect users’ willingness to accept and
engage with social robots [27,28]. Feedback mechanisms
in social robots can further enhance the perception of
human-like qualities, such as warmth and competence,
and increase anthropomorphism. By offering timely and
relevant feedback that shows empathy and understand-
ing, robots can create a sense of connection similar to
human interactions.

Mollahosseini et al. focused on investigating empa-
thy in human-robot interaction, using the Ryan Com-
panionbot to assess the participants’ perception of the
robot’s social likability and empathy [29]. The study
found that automated empathic responses improved sub-
jects’ perception of empathy and likability. In a study
focused on interactive feedback and performance, [30]
investigated the Nao robot’s impact on children’s engage-
ment and performance in understanding 3D geometric
figures. The findings indicated that high interactivity,
with behaviors such as high-fives and personalized feed-
back, led to increased engagement and improved per-
formance on the Post-Experiment Exam (PEE) assess-
ing the taught mathematical concept. Similarly, [31]
explored cognitive task performance and social pres-
ence using the Nao robot during a Stroop task. The
study demonstrated that the social presence of an anthro-
pomorphized robot significantly enhanced participants’
attentional control mechanisms, with the ‘social robot’
condition showing the most substantial performance
improvements.

While these studies suggest that more interactive sce-
narios and task-related feedback foster stronger social
connections with robots and enhance task performance,
excessive feedback from social robots could potentially
lead to cognitive overload, diminishing both user engage-
ment and motivation [32]. The effectiveness of specified
feedback may also depend on factors such as the spe-
cific HRI setup (e.g. concerning the extent and timing

of robot feedback), the nature of the task (fast-paced or
slower), and its challenge level [33]. However, there is
limited research comparing user responses to different
types of feedback, such as feedback corresponding to task
performance or to a user’s emotional state. This study
aims to address this gap by investigating the impact of
performance-based and affective-based feedback from a
social robot, Furhat, on both task and social engagement
during a fast-paced visuospatial memory training task.
The term ‘fast-paced task’ refers to tasks that require con-
tinuous user engagement with the task with minimal idle
time. These tasks are specifically designed to challenge
working memory (e.g. [34]). This research has implica-
tions for applications in education, healthcare, and other
fields.

In healthcare, social robots engage in interpersonal
interactions to provide adaptive responses tailored to
individual user needs, which is crucial for applications
like mental health support. Their non-judgmental pres-
ence encourages open engagement, facilitating better
user experiences in sensitive contexts. Additionally, these
robots offermonitoring and guidance to promote healthy
behavior [35]. Common characteristics of robot feed-
back in healthcare include emotion and expression recog-
nition, allowing robots to connect empathetically with
users; natural behavior to establish trust; and multi-
modal communication, incorporating verbal responses,
facial expressions, and gestures for better engagement
[36].

In educational settings, feedback from social robots is
characterized by a blend of affective and cognitive out-
comes, aiming to foster both empathy and learning gains,
through personalization and adaptive responses that
adjust based on students’ actions and emotional states
[37]. Such feedback often incorporates social engagement
techniques, utilizing supportive behaviors like address-
ing students by name and offering encouragement to
enhance motivation. Additionally, it can provide cogni-
tive and affective support, addressing both understanding
of material and emotional well-being while employing
engagement-sustaining techniques to maintain interest
and focus. Moreover, feedback incorporates social cues
like gestures and facial expressions to create a natu-
ral interaction environment and is delivered clearly and
constructively to guide learners effectively toward their
educational goals [38].

Performance-based feedback is widely used in HRI to
enhance users’ intrinsic motivation and self-esteem and
consequently increase performance, particularly when
the feedback is positive, as it reinforces feelings of compe-
tence and enjoyment in tasks [28]. Meanwhile, affective-
based feedback has been studied for its role in fostering
social engagement and emotional connection between
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users and robots [39–41]. These feedback mechanisms
align with the fundamental dimensions of warmth and
competence in human perception. Given that warmth
and competence influence users’ acceptance and percep-
tion of social robots [25,26], it is essential to investigate
how these types of feedback impact user engagement. By
studying these methods, we aim to deepen the under-
standing of how different types of feedback shape user
engagement and performance.

The present study investigates a number of metrics,
such as eye contact with the social robot [42,43], distance
from screen [44], performance [45], affect states [29,46],
and blink rate [47,48] to evaluate different aspects of
engagement within an establishedHRI setup. Thesemea-
surements guide the design and development of more
effective and enjoyable interactions between users and
robots [49]. While task engagement and social engage-
ment are interconnected, they represent distinct dimen-
sions of the interaction that can influence user outcomes
in different ways. By analyzing these two types of engage-
ment independently, researchers can identify specific fac-
tors that enhance or hinder each dimension. This sepa-
ration allows for a more targeted approach to designing
social robots that target the unique needs of users in
various contexts, e.g. in tasks where maintaining focus
and a flow state [50] is essential. It is also important to
ensure that social engagement does not interfere with
task engagement.

To achieve the above, a general HRI framework is pro-
posed, which outlines the interaction loop between the
social robot, the humanuser, and a gamified task. The fol-
lowing section details this HRI framework, highlighting
its key components and their roles in fostering effective
task-based and social interactions.

2. HRI framework

Figure 1 depicts a proposed general HRI framework fea-
turing several modules designed for customized user
interaction. Within this framework, different gamifica-
tion elements are implemented [51], e.g. users can engage
with the task by receiving rewards and audiovisual feed-
back from both the robot and the task itself. The inter-
action loop, as presented in Figure 1, encompasses six
components:

(1) Challenge Modulation: Adjusting the challenge level
of the task based on the user’s expressed state of
engagement or disengagement.

(2) Task State: This involves providing information on
human performance considering the current state of
the game.

(3) Action Selection: This involves the use of
touchscreen-based, verbal, or mouse inputs for
selecting actions.

(4) Reward Feedback: The task provides direct feedback
on user performance and specific actions.

(5) Social Feedback: This includes the robot’s ver-
bal/nonverbal feedback.

(6) Engagement State: Possible inputs that help deter-
mine the user’s engagement state.

Integrating gamification elements in HRI frameworks
can significantly boost user engagement, enhance the
effectiveness of interactions, and increase users’ moti-
vation to interact with robots for longer durations [52].
These gamification features can be applied at two key
levels: the interaction design [53] and task design [54].
At the interaction level, gamification aims to make the
overall interaction between humans and robots more
engaging and enjoyable. This can include elements like
verbal or non-verbal feedback that encourage users to
participate actively. Within task design, gamification is
embedded into the specific tasks users undertakewith the
robot to enhance user experience and motivation.

Previous research by Markelius et al. [55] examined
the impact of minimal feedback from Furhat on task
performance, finding that its presence, compared to no
feedback, did not negatively affect outcomes. Building on
this foundation, the present study expands the scope by
investigating how different types of feedback influence
both engagement and performance. While prior work
primarily focused on the absence or minimal presence
of feedback, this study explores the effects of various
feedback types, including performance-based feedback,
affective-based feedback, and a combination of both.
Affective-based feedback involves responses that convey
emotions, acknowledge enjoyment, and inquire about the
user’s emotional state, whereas performance-based feed-
back provides information on accuracy, progress, and
overall task performance. By examining these dimen-
sions, this study seeks to provide deeper insights into how
feedback strategies shape user interaction and outcomes.

2.1. Research questions and hypotheses

The research question of this study is:

• Question: How do different types of feedback from
the social robot Furhat influence users’ engagement
during a digital visuospatial memory training task?

Based on the literature reviewed above, we set up two
hypotheses:
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Figure 1. This diagram illustrates a general HRI framework, which consists of six interconnected components that facilitate how a social
robot and a human user interact within the framework to complete a task required by the user.

• Hypothesis 1: Participants’ social and affective engage-
ment will be higher in conditions with affective-based
feedback compared to conditions without such feed-
back.

• Hypothesis 2: Participants’ task performance will be
higher in conditions with performance-based feed-
back compared to conditions without such feedback.

3. Methodology

The experimental design follows a 3 × 2 × 2 mixed
design with three independent variables: types of feed-
back (IV1) and challenge levels (IV2) as between-
subjects factors and a within-subject baseline control
block (IV3). IV1 encompasses three types of feedback: (i)
performance-based (PB), (ii) affective-based (AB), and
(iii) combined (COM). IV2 comprises two challenge lev-
els: (i) Easy challenge level and (ii) Medium challenge
level. The baseline control block is not influenced by
the feedback manipulation, as block feedback is pro-
vided only after the block is completed. By incorporating
challenge levels as a factor, we account for its influence
on users’ working memory and cognitive states, such as
mental fatigue and cognitive overload, which are linked
to cognitive load [56] and how it affects the users’ per-
ception of appropriate feedback from a robot. In this
study, the difficulty is determined by the number of stim-
ulus sequences users must remember in a visuospatial
memory training task. A more difficult task involves a
greater number of sequences, leading to increased work-
ing memory taxation and cognitive load. By manipulat-
ing the challenge level, we aim to examine how users’
engagement and perception of the robot change across
different challenge levels. This allows us to assess our
hypotheses and determine whether they hold true under
varying challenge levels. Figure 2 illustrates the configu-
ration layout of the experimental setup. In the illustration

Figure 2. Experimental setup: The robot delivered audiovisual
feedback through facial expressions, head movements (such as
nodding or shaking its head), and verbal phrases, all related to the
task.

shown, the robot was positioned next to the human par-
ticipant, providing a view of both the task and the par-
ticipant from an angled perspective. This arrangement
aimed to enhance interactions between the human and
the robot.

For this study specifically, we utilized a memory train-
ing task, which involves a sequence of cognitive exercises
designed to challenge and improve visuospatial memory.
The task requires users to process and recall informa-
tion under time constraints, making it both cognitively
demanding and time-sensitive. The task is a modified
(gamified) version of a visuospatial workingmemory task
with Differential Outcome Training (DOT) developed by
Vivas et al. [57]. In previous research, this task was used
with different numbers of trials and challenge levels [55],
investigating how different types of interactions (simu-
lated versus physical robots) could influence participants’
performance and affective responses during the task. Our
current focus is solely on physical robots, and the task fea-
tures two distinct challenge levels, each comprising three
blocks of eight trials.



888 B. SALAMAT RAVANDI ET AL.

Figure 3. Sequence of steps within a single block of eight trials, outlining the phases from start cue to feedback delivery by the robot
after each trial and also at the end of each block: Each trial begins with a start cue stimulus, followed by an encoding phase where
participants memorize the locations of the white cells. After a delay phase, participants select a location corresponding to one of the
previously presented sample stimuli (response phase). At the end of the trial, feedback is provided, indicating whether the response was
correct (reward) or incorrect. Concurrently with the presentation of the trial outcome by the game, the robot provides trial feedback.
Upon completion of all eight trials within the block, the robot delivers block feedback.

As illustrated in Figure 3, the process diagram outlines
the sequence of steps within a single block comprising
eight trials. During each trial, playersmust remember the
locations of white cells that appear on a 5 × 5 grid and
choose from the provided options at the end of each trial.
Each trial begins with a start cue stimulus, followed by
an encoding phase where participants are instructed to
memorize the locations of white cells while also being
presented with red and blue distractor cells. The distrac-
tor taskwas used to increase the cognitive load ofworking
memory and make the task more challenging. Partici-
pants are instructed to press the spacebar when blue cells
appear. Amiss is recorded if a participant fails to respond
to blue cells within two seconds. The encoding phase
is followed by a delay phase, leading into the response
phase, where participants select a location correspond-
ing to a previously presented stimulus. Trial feedback is
then provided to indicate whether the response was cor-
rect or incorrect, where participants receive audiovisual
feedback from both the social robot Furhat and the task.
The trial feedback provided by the robot is consistent
with the audiovisual feedback that the task provided for
reward types. Table 1 illustrates 6 different outcomes for
each trial and the corresponding trial feedback provided
by the task and the robot. Furthermore, while deliver-
ing this feedback, the robot occasionally turns its head
toward the participant – this occurs randomly with a
higher likelihood during the earlier trials – to enhance
engagement.

A pause follows each trial, and upon completing all
eight trials in the block, Furhat provides block feedback,

which can be categorized as performance-based (PB),
affective-based (AB), or a combination of both (COM).
Performance-based feedback offers details on the num-
ber of correct responses, progress, and overall perfor-
mance, such as ‘Looks like you are performing very well.
You got X out of eight trials correct this time. Well done!
If you keep up this score over the coming trials, you will
earn so many coins and diamonds.’, whereas affective-
based feedback involves responses that convey emotions,
recognize enjoyment, and inquire about the individual’s
feelings, like ‘I hope you still feel happy playing the game!
How do you feel about your results? [wait for a response].
I am sure youwill keep improving over the coming levels.’
Finally, combined feedback states a combination of these
two types of feedback, for example, ‘Looks like you are
performing very well. You got X out of eight trials correct
this time. Looks like you are enjoying this game. Do you
feel happy about your good results? [wait for a response]’.

The robot, Furhat, was introduced as a compan-
ion to the task, using a scripted scenario before the
game. Positioned at a fixed angle, it greeted participants
and explained the memory training task rules, which
remained the same across conditions.

3.1. Participants

Recruitment was advertised and involved healthy adults
between the ages of 18 and 45 to participate in the
research study, conducted atKoçUniversity, Turkiye. Par-
ticipants were informed through email lists for students
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Table 1. Trial feedback from the task and the robot: At the end of each trial, feedback is first provided by the task based on the trial’s
outcome, followed by additional feedback from the robot.

Outcome Task Feedback Robot Feedback

Outcome 1 Smile+ random ‘Yes, one coin’, ‘Huh, you got a coin’, ‘Hmm, good work’[Medium pitch]

Outcome 2 Big smile+ random ‘Wow, excellent! Three coins’, ‘Whoa, you got three coins!’, ‘Oh yes,
jackpot!’[High pitch]

Outcome 3 Nod+ random ‘Aha, one diamond!’, ‘Okay! you got a diamond’, ‘Yes, well done!’[Medium pitch]

Outcome 4 Double nod+ random ‘Wow, you got three diamonds’, ‘Outstanding! So many diamonds’, ‘Yes!
Brilliant!’[High pitch]

Incorrect Shake head+ random ‘Incorrect, keep fighting!’, ‘Try to stay focused’, ‘No, try again!’, ‘Come on,
you can do it!’[Low pitch]

Timeout Shake head+ random ‘Uh, time out!’, ‘Time out, be faster!’, ‘Oh no, pick up speed!’, ‘Huh, catch
up’[Low pitch]

Table 2. Distribution of participants across conditions.

Condition Easy Challenge Medium Challenge Total

PB Feedback 8 9 17
AB Feedback 9 10 19
COM Feedback 11 11 22
Total 28 30 58

at the Departments of Electrical and Electronics Engi-
neering and Computer Engineering. Participants were
required to provide informed consent and could with-
draw from the experiment at any time without conse-
quences. The participants were divided evenly into the
available time slots under different conditions. However,
some participants did not attend, and some participants
were under 18 years old. Fifty-eight engineering students
(35 males, 23 females) from Koç University’s Electrical
and Electronics Engineering and Computer Engineering
departments, aged 18 to 24 (M = 20, SD = 1.87), partic-
ipated in the experiment. The distribution of participants
across conditions can be seen in Table 2.

3.2. Data collection

Data collection included the task performance metrics,
participants’ video recordings, and eye-tracking data,
which were gathered using the non-invasive Tobii Pro
X2-30 screen-based eye tracker device. Additionally,
questionnaires and structured interviewswere conducted
to obtain subjective feedback from the participants. Upon
completing the task, participants were instructed to fill
out two questionnaires: the Self-Assessment Manikin
(SAM) scale [58], which measures emotional responses,
and the Human-Robot Interaction Evaluation Scale
(HRIES) [59], which assesses anthropomorphism in
human-robot interactions. Following the completion of
these questionnaires, participants also took part in a
structured interview to provide further insights into their
experiences and perceptions.

The iMotions software was used to collect real-time
data from eye-tracking devices and facial expression
recognition using Affectiva’s Affdex toolkit. Affectiva’s
Affdex is a software development kit (SDK) designed for
real-time emotion recognition [60]. It involves analyzing
facial expressions to determine an individual’s emotional
state by capturing data such as facial movements and
expressions.

3.3. Engagement and performance assessment
metrics

Engagement in this study is categorized into two primary
types: task engagement and social engagement.

• Social Engagement: Involves the interaction between
participants and the robot. This is assessed through
the frequency of eye contact with the robot, as well
as affect data captured via facial expressions. Eye con-
tact typically reflects social connection, indicating a
participant’s interest and emotional responsiveness
towards the robot [61]. In human interactions, eye
contact plays a crucial role in signaling attention, con-
nection, and communication [62]. When participants
were engaging with a robot, the frequency of eye con-
tact can indicate the level of attentiveness or interest in
the interaction. In this context, eye contact serves as a
non-verbal cue, signaling how connected or engaged
a user feels with the robot. The more frequently users
make eye contact with the robot, the more likely they
are to be socially engaged in the robot’s feedback.

• Task Engagement: Refers to the participant’s engage-
ment with the task itself. This is measured through
affect data captured via facial expressions, blinks, and
distance from the screen captured through eye tracker
data. Blink rate serves as an indicator of cognitive
load [63], where higher rates during lost trials sug-
gest decreased engagement or cognitive fatigue, while
lower rates indicate heightened focus. Distance from
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the task can reveal comfort levels and willingness
to engage, with closer proximity suggesting positive
interaction and greater distance indicating discom-
fort [64]. Task performance is intrinsically linked to
task engagement, which is typically assessed using
objective metrics such as accuracy, response time, or
completion rate. The primary objective of task engage-
ment is to enhance user outcomes [16]. Jain et al.
[45] employed task performance as a key indicator in
engagement modeling.

This study utilizes a combination of objective and sub-
jective assessment metrics to evaluate engagement in the
proposed HRI setup. The following objective and subjec-
tive metrics are employed:

• Performance Metrics:
° Accuracy: Accuracy per block is assessed through

the percentage of correct responses per block.
Participants completed three blocks of eight tri-
als each, with accuracy measured both per block
and across all blocks. Since the accuracy is influ-
enced by block feedback only after the first block
(see Figure 3), the first block was considered
as a baseline control block. The accuracy per
block 2 and block 3 serves as a metric to com-
pare the impact of different types of feedback on
performance.

° Distractor Task: Participants are instructed to
press the spacebar when blue cells appear. The
rate of successful responses to these blue cells
(hit rate) is used as an additional measure of user
performance. In each trial, two to four cells are
displayed, depending on the challenge level and
the stimulus sequences.

• Behavioral data:
° Eye Contact: Eye contact with the robot during

each trial is recorded as a binary measure, where
a value of 1 indicates that the participant looked
at the social robot at least once, and 0 indi-
cates no eye contact. This measure was used to
assess attention to the robot, particularly during
feedback delivery and reward presentation (see
Figure 3). Eye contact instances were manually
labeled using the video recordings to determine
whether the usermade eye contactwith the robot
during each trial or not.

° Blinks: The number of blinks per trial is extracted
during the encoding phase of each trial (see
Figure 3), using Affectiva’s Affdex SDK within
the iMotions software (version 9.4.0).

° Distance Measure: Eye-tracking data is used
to assess each participant’s distance from the

screen. The distance measure is calculated per
trial to assess users’ behavior. The distance mea-
sure for participant i during trial j is calculated
as:

�di,j = doutcomei,j − dtriali,j

where �di,j is the shift in distance from the
screen for participant i during trial j, doutcomei,j is
the average distance from the screen measured
after the outcome was presented, for 5 s which
also includes the pause between trials, for par-
ticipant i during trial j, and dtriali,j is the average
distance from the screen measured during the
trial period before the outcome is revealed for
participant i during trial j.

• Affect Measure: The affect measure per trial is used to
measure affective engagement, calculated as:

�vi,j = voutcomei,j − vtriali,j

where �vi,j is the shift in valence for participant i
during trial j, voutcomei,j is the average valence mea-
sured after the outcome is presented, for 5 s which also
includes the pause between trials, for participant i dur-
ing trial j, and vtriali,j is the average valence measured
during the trial period before the outcome is revealed
for participant i during trial j. Valence is measured by
Affectiva’s Affdex SDK within the iMotions software
through facial expression recognition [60]. It analyzed
facial expressions to infer an individual’s emotional
state by capturing facial movements and expressions.

• Self-AssessmentManikin (SAM): The study utilized the
SAMquestionnaire [58] to evaluate participants’ emo-
tional responses and engagement levels, incorporating
three distinct dimensions: valence, arousal, and dom-
inance. Valence measures the happiness or unhappi-
ness of the emotional experience, arousalmeasures the
intensity of that experience from calm to stressed, and
dominancemeasures the sense of control or influence
participants feel over their emotions, as illustrated in
Figure 4. The SAM scale was specifically used to assess
users’ affective states, providing support for detecting
any differences in emotional responses that might be
observed through the iMotions Affdex SDK.

• Human-Robot Interaction Evaluation Scale (HRIES):
HRIES provides additional insights into participants’
perception of anthropomorphism in human-robot
interactions [59]. The HRIES Questionnaire encom-
passed 16 attributes, prompting participants to assess
their perceptions of social robots using a 7-point Lik-
ert scale. The 16 attributes of the HRIES question-
naire were divided into four distinct categories: Socia-
bility (including Warm, Likable, Trustworthy, and
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Figure 4. Example of the SAM Scale.

Friendly), Agency (comprising Self-Reliant, Ratio-
nal, Intentional, and Intelligent), Animacy (includ-
ing Alive, Natural, Real, and Human-Like), and Dis-
turbance (comprising Creepy, Scary, Uncanny, and
Weird). The HRIES scale was employed to measure
participants’ perceptions of the robot, which varied
based on the type of feedback received.

4. Results

This section presents the findings of the study, focus-
ing on how different types of feedback from the social
robot Furhat influence user engagement and task perfor-
mance. The results are divided into objective and sub-
jective engagement metrics, each providing insights into
the effectiveness of feedback types during the visuospatial
memory training task.

4.1. Objectivemetrics

4.1.1. Eye contact
Table 3 shows the mean number of trials with eye con-
tact with the robot across blocks, challenge levels, and
types of feedback. The eye contact frequency with the
robot in the first block was slightly higher than other
blocks. However, the first block was considered a base-
line control block because participants received the block
feedback only after it. A two-wayANOVAwas conducted
to compare the main effect of types of feedback and chal-
lenge levels as well as their interaction effects on users’
eye contact frequency with the robot during block 2 and
block 3. The main effect of challenge levels was not sig-
nificant, F(1, 45) = 1.09, p = 0.30, η2p = 0.02. The main

effect of types of feedbackwas significant, F(2, 45) = 4.03,
p = 0.02, η2p = 0.15). The interaction effect was not sig-
nificant, F(2, 45) = 0.91, p = 0.40, indicating that there
was no combined effect of challenge levels and types of
feedback on eye contact with the robot.

The Bonferroni post-hoc test results for the dependent
variable eye contact with the robot show that there are no
significant differences between COM and PB (p = 0.80)
or COM and AB (p = 0.12). However, significant differ-
ences were found between PB and AB (p = 0.01), with
AB scoring higher by 2.35 points on average on a scale
from 0 to 8.

A between-subjects ANOVA analysis was conducted
to examine the effects of feedback type and level on
eye contact with the robot in the baseline control block.
The main effect of feedback type was not significant,
F(2, 52) = 1.45, p = 0.24,
η2 = 0.05, nor was the main effect of level, F(1, 52) =
0.10, p = 0.75, η2 = 0.00. Additionally, the interaction
between feedback type and level was not significant,
F(2, 52) = 1.44, p = 0.24, η2 = 0.05.

4.1.2. Accuracy
Table 4 presents the mean accuracy and standard devi-
ation across various challenge levels and types of feed-
back within each block and in total. The first block was
considered as a baseline control block because partic-
ipants received the block feedback only after the first
block. A two-way ANOVA was conducted to compare
the main effect of types of feedback and challenge lev-
els as well as their interaction effects on accuracy (block
2 and block 3). The main effect of challenge levels was
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Table 3. The mean number of trials with eye contact with the robot across blocks, challenge levels, and types of feedback.

Type of Feedback Challenge Level Block 1 Block 2 Block 3 Total

PB Easy 1.38 (1.50) 0.63 (0.74) 0.38 (0.51) 0.79 (1.06)
AB Easy 2.22 (2.43) 2.78 (2.83) 1.56 (1.74) 2.19 (3.35)
COM Easy 2.80 (2.74) 1.50 (1.65) 0.80 (0.63) 1.70 (2.00)
PB Medium 0.50 (0.54) 1.00 (1.09) 0.67 (0.81) 0.72 (0.82)
AB Medium 3.71 (2.43) 1.57 (1.51) 1.29 (2.98) 2.19 (2.52)
COM Medium 2.36 (2.37) 0.36 (0.92) 0.55 (0.68) 1.09 (1.73)

Table 4. Mean accuracy and standard deviation (SD) per block and in total across different challenge levels and types of feedback (unit:
percentage).

Type of Feedback Challenge Level Block 1 Block 2 Block 3 Total

PB Easy 84.37 (17.35) 82.81 (16.28) 96.87 (5.78) 88.02 (14.96)
AB Easy 77.77 (19.54) 58.75 (27.66) 77.77 (21.44) 76.58 (19.82)
COM Easy 73.86 (23.35) 81.81 (17.99) 79.54 (25.16) 78.40 (21.93)
PB Medium 52.77(18.51) 70.83 (19.76) 63.88 (19.20) 62.50 (19.91)
AB Medium 60.00 (9.86) 58.75 (27.66) 41.25 (17.72) 53.33 (21.00)
COM Medium 68.18 (27.02) 71.59 (22.42) 69.31 (16.16) 69.69 (21.65)

significant, F(1, 52) = 19.58, p<0.001, η2p = 0.27. The
main effect of types of feedback was also significant,
F(2, 52) = 3.94, p = 0.02, η2p = 0.13. The interaction
effect was not significant F(2, 52) = 1.08, p = 0.34, indi-
cating that there was no combined effect of challenge
levels and types of feedback on accuracy.

The Bonferroni post-hoc test results show that there is
a statistically significant difference in accuracy between
PB and AB (p = 0.02), with PB scoring higher by 14.71
percent on average. However, no significant differences
are observed between COM and PB (p = 1.00) or COM
and AB (p = 0.09). These results suggest that PB feed-
back leads to significantly better accuracy than AB, while
COM does not significantly differ from either PB or AB.

A two-way ANOVA was conducted to compare the
main effect of types of feedback and challenge levels as
well as their interaction effects on accuracy over the base-
line control block. The main effect of type of feedback is
not significant, F(2, 52) = 0.08, p = 0.91, suggesting that
accuracy does not differ statistically among types of feed-
back in the control block. However, the main effect of
challenge level is significant, F(1, 52) = 11.63, p = 0.00,
indicating that performance varies significantly based on
challenge level. The interaction effect between type of
feedback and challenge level is not significant, F(2, 52) =
1.94, p = 0.15, suggesting that the effect of the types of
feedback does not differ significantly across challenge
levels.

The mean accuracy under the PB condition increased
from 67.65 in block 1 (control) to 77.21 in block 2 and
block 3, with improvements in both Easy (from 84.38
to 87.50) and Medium (from 52.78 to 68.06) conditions.
This suggests that PB led to overall accuracy gains, par-
ticularly in the Medium challenge level, indicating better
adaptation over time. Mean accuracy under the AB con-
dition declined from 68.42 in block 1 (control) to 62.50

in block 2 and block 3, with a more significant drop in
the Medium challenge level (from 60.00 to 50.00), while
the Easy challenge level showed only a slight decrease
(from 77.78 to 76.39). This suggests that participants in
the AB condition struggled more in later blocks, par-
ticularly under the Medium challenge level. The mean
accuracy under the COM condition slightly improved
from 71.02 in block 1 (control) to 73.86 in block 2 and
block 3, with a noticeable increase in the Easy challenge
level (from 73.86 to 79.55), while the Medium challenge
level remained stable at 68.18. Figure 5 illustrates a box
plot of accuracy across types of feedback and challenge
levels in the baseline control block and experimental
blocks (block 2 and block 3). This visualization highlights
the differences between the AB and PB conditions in the
experimental blocks, while no such statistical distinction
is observed in the baseline control block.

4.1.3. Distractor task
Table 5 presents the average hit rate for blue cells per
block and in total across challenge levels and types of
feedback. A two-way ANOVAwas performed to examine
themain effects of types of feedback and challenge levels, as
well as their interaction on hit rate. The analysis revealed
no significant differences in the average hit rate across the
study conditions. These results suggest that the types of
feedback provided and the challenge levels did not signif-
icantly influence the users’ performance on the distractor
task.

4.1.4. Blinks
Table 6 presents the average number of blinks per block
and in total across different challenge levels and types of
feedback. A two-way ANOVAwas conducted to examine
themain effects of types of feedback and challenge levels, as
well as their interaction on the number of blinks. Neither
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Figure 5. Box plot illustrating accuracy across types of feedback (PB: performance-based, AB: affective-based, COM: combined) and
challenge levels (Easy, Medium). A dashed line connects mean accuracy values.

Table 5. The average hit rate for blue cells and the standard deviation (SD) per block and in total across different challenge levels and
types of feedback.

Type of Feedback Challenge Level Block 1 Block 2 Block 3 Total

PB Easy 0.85 (0.34) 0.91 (0.25) 0.98 (0.02) 0.98 (0.02)
AB Easy 0.82 (0.31) 0.86 (0.32) 0.88 (0.33) 0.86 (0.31)
COM Easy 0.86 (0.29) 0.89 (0.29) 0.89 (0.29) 0.88 (0.28)
PB Medium 0.94 (0.03) 0.98 (0.02) 0.97 (0.03) 0.97 (0.03)
AB Medium 0.86 (0.30) 0.88 (0.31) 0.82 (0.34) 0.86 (0.31)
COM Medium 0.86 (0.29) 0.88 (0.29) 0.90 (0.29) 0.88 (0.28)

the main effect nor interaction effects of challenge levels
and types of feedback were significant.

4.1.5. Distancemeasure
Table 7 displays the mean of the distance measure per
block and in total across different challenge levels and
types of feedback. A two-way ANOVA showed no signif-
icant differences between the study conditions.

4.1.6. Affect measure
Table 8 presents the mean of the affect measure and the
standard deviation per block and in total across challenge
levels and types of feedback. The results of a two-way
ANOVA revealed no significant differences between the
study conditions.

4.2. Subjective engagementmetrics

The result of a two-way ANOVA for each category
of Sociability, Agency, Animacy, and Disturbance indi-
cates no significant difference between conditions. How-
ever, looking at individual items in these 16 attributes
using the ANOVA indicated that within the Medium
challenge level, participants perceived Furhat as more
distracting, F(1, 57) = 5.21, p = 0.02. Also, participants
deemed Furhat to be less rational in PB conditions,
F(2, 27) = 3.57, p = 0.02, compared to COM (p = 0.06)
and AB (p = 0.00), as well as between AB and COM
(p = 0.40). Additionally, participants found COM to
be more user-friendly, F(2, 57) = 3.12, p = 0.05, with
p = 0.01 between AB and COM and p = 0.21 between
AB and PB, as well as p = 0.28 between PB and COM.

The SAM questionnaire was also evaluated to indi-
cate participants’ emotional responses across challenge
levels and types of feedback. Results indicated that par-
ticipants reported significantly higher arousal during
theMedium challenge level (M = 3.33, SD = 0.92) com-
pared to the Easy challenge level F(1, 52) = 24.84, p <

0.001 (M = 2.21, SD = 0.83). However, no significant
differences were found among the types of feedback.

4.3. Interaction of trial outcomes/feedback and
objective engagementmetrics

To further explore the interaction between trial out-
comes/feedback and engagement metrics, the trials were
categorized into two groups: wins and losses. A ‘win’ trial
indicates that participants correctly identified the loca-
tion of the white stimulus, while a ‘loss’ trial indicates an
incorrect response. As the examination of the eye contact,
participants demonstrated more eye contact with Furhat
during lost trials, with the mean proportion of trials
where participantsmade eye contact with the robot being
in lost trials (N = 332,M = 0.26, SD = 0.43) compared
to won trials (N = 892,M = 0.16, SD = 0.63). In exam-
ining the distancemeasure, the results suggest a tendency
for participants to move backward more frequently after
making incorrect responses, indicating potential disen-
gagement. Descriptive statistics for the distance mea-
sure indicated that the lost trials (N = 384) had a mean
of M = 2.82 (SD = 23.34), while the won trials (N =
943) had amean ofM = −0.23 (SD = 21.61). Regarding
blinks, the results indicate that incorrect responses were
associated with higher blinking. Descriptive statistics for
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Table 6. Average number of blinks with standard deviation (SD) per block and in total across different challenge levels and types of
feedback.

Type of Feedback Challenge Level Block 1 Block 2 Block 3 Total

PB Easy 5.38 (7.36) 6.75 (7.10) 3.25 (3.88) 5.12 (6.21)
AB Easy 9.67 (8.97) 12.56 (12.31) 11.44 (12.96) 11.22 (11.16)
COM Easy 8.50 (11.84) 9.50 (13.68) 8.40 (15.57) 8.80 (13.31)
PB Medium 14.67 (7.86) 18.00 (11.47) 20.17 (14.73) 17.61 (11.23)
AB Medium 8.29 (9.39) 14.14 (12.28) 15.86 (15.79) 12.76 (12.55)
COM Medium 9.82 (10.51) 11.45 (14.13) 9.18 (12.36) 10.15 (12.07)

Table 7. Mean distance measure and the standard deviation (SD) per block and in total across challenge levels and types of feedback.

Types of Feedback Challenge Level Block 1 Block 2 Block 3 Total

PB Easy −1.10 (4.48) −1.70 (3.47) −1.62 (7.58) −1.47 (5.23)
AB Easy 0.01 (5.26) 1.45 (2.69) −1.23 (14.46) 0.07 (8.73)
COM Easy 1.75 (7.24) 0.61 (2.21) 0.11 (5.31) 0.82 (5.181)
PB Medium 3.88 (7.57) 5.61 (8.34) −0.06 (9.15) 3.14 (8.40)
AB Medium 3.58 (10.75) 1.51 (11.02) 2.01 (8.47) 2.36 (9.83)
COM Medium −1.18 (8.95) −1.28 (8.83) −1.39 (6.48) −1.28 (7.91)

blink rate per trial indicated that the lost trials (N = 332)
had a mean number of blinks of M = 1.90 (SD = 2.31),
while the won trials (N = 892) had a mean number of
blinks of M = 1.10 (SD = 1.66). Lastly, the affect mea-
sure showed that more positive facial expressions were
exhibited when participants made incorrect responses
compared to correct ones. Descriptive statistics for the
affect measure indicated that the lost trials (N = 328)
had a mean of M = 6.38 (SD = 24.13), while the won
trials (N = 886) had a mean ofM = 0.34 (SD = 15.60).

5. Discussion

This study examined how different types of feedback
– performance-based (PB), affective-based (AB), and a
combination of both (COM) – delivered by a social
robot, Furhat, influence user task engagement and social
engagement during a visuospatial memory training task.
To potentially improve interaction, participants received
one of these types of feedback at the end of each block of
trials. The results offer valuable insights into the distinct
impacts of these types of feedback on participants’ social
and task engagement, highlighting the complexities of
HRI in a gamified setting.

The results provide partial support for Hypothesis
1, which is that the AB condition did result in higher
social engagement, as indicated by higher eye contact

with the robot compared to performance-based feed-
back. However, it did not support the aspect of Hypoth-
esis 1 predicting higher affective engagement in the AB
condition as measured by valence values. There were no
significant differences in affective engagement between
groups. Further analysis revealed that the combined
feedback condition, which also includes affective-based
feedback, failed to support higher social engagement.
A deeper examination showed that participants made
more eye contact with the robot during trials with neg-
ative outcomes (lost trials), suggesting that eye con-
tact may be more closely related to trial outcomes or
trial feedback rather than block feedback, where par-
ticipants were given summarizing feedback over eight
trials. Given the lower accuracy observed in the affective-
based condition and the significant association between
trial outcome and eye contact, the increased eye con-
tact appears to be more closely related to the trial out-
come rather than the block feedback itself. This sug-
gests that while the block feedback may influence over-
all performance, the immediate trial outcomes are more
directly linked to participants’ eye contact with the
robot.

The results support Hypothesis 2, demonstrating that
conditions involving performance-based feedback lead
to higher task performance, as evidenced by greater
accuracy compared to conditions without performance-
based feedback. The consistent findings in the combined

Table 8. Mean of the affect measure and standard deviation (SD) per block and in total across challenge levels and types of feedback.

Type of feedback Challenge Level Block 1 Block 2 Block 3 Total

PB Easy 0.81 (6.16) 1.44 (5.38) 0.06 (0.32) 0.77 (4.55)
AB Easy 0.72 (8.54) 2.40 (4.80) −0.01 (2.53) 1.04 (5.71)
COM Easy 5.36 (10.74) 2.77 (7.06) −0.35 (4.58) 2.59 (7.96)
PB Medium 0.44 (5.48) −0.83 (1.28) −1.02 (3.149) −0.47 (3.56)
AB Medium 10.53 (12.60) 1.22 (7.43) 2.75 (8.70) 4.83 (10.21)
COM Medium 3.29 (5.66) 3.31 (12.06) 2.19 (4.85) 2.93 (8.20)
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(COM) condition indicate that performance-based feed-
back, whether delivered alone or in combination with
affective-based feedback, is more effective at maintaining
or slightly enhancing accuracy.

Moreover, the study found no significant interaction
effects between types of feedback and challenge levels
on social engagement or task performance. This lack of
interaction effects may indicate the consistent influence
of feedback across different challenge levels.

The results further suggest that participantsweremore
likely to disengage from the screen after losing a trial
and receiving negative feedback, compared to winning
a trial and receiving positive feedback. Moreover, par-
ticipants tended to display facial expressions with more
positive valence (as picked up by the Affectiva module
of iMotions software) after losing a trial compared to
after winning a trial. While interpreting ‘positive valence
happy’ as the simplest inference, the literature provides
examples of how humans smile, e.g. to cover an embar-
rassment or even in tragic situations [65,66]. Another
noteworthy result showed that the blink rate was higher
during lost trials compared to won trials, which indicates
that the subjects were concentrating less during loss trials
[67]. These findings highlight how engagement levels are
tied to task events and feedback from both the robot and
the game.

Furthermore, the questionnaire data provided addi-
tional insights. We found that participants in the com-
bined feedback condition generally found the robotmore
friendly than affective-based feedback or performance-
based feedback conditions, alongside higher perfor-
mance in the COM and PB feedback conditions. This
suggests that combined feedback is more desirable and
yields better results. One participant from the combined
feedback group noted, ‘She’s so beautiful and pretty, actu-
ally, and it seems really friendly. It’s not scary; I like her.’.
Another participant from the performance-based con-
dition shared, ‘When he said, ‘Oh, you did eight out of
eight,’ I felt very happy and successful.’

Participants also reported the robot as more distract-
ing during the Medium challenge level compared to the
Easy challenge level, indicating that the appropriateness
of feedback is linked to task difficulty and participants’
cognitive capacity [68]. One participant engaged in the
Medium challenge remarked,

All right, now if you are trying tomotivateme, just let me
focus on the task. I think the sound feedback was more
important- like when you do it wrong, you get a beep,
and when you do it right, you get a sound.

The results have practical implications for designing
social robots in educational and therapeutic environ-
ments. Incorporating performance-based feedback may

benefit tasks where performance is the primary goal,
such as cognitive training or educational exercises. Con-
versely, in contexts where building a social connection is
crucial- such as companionship or social skills training-
prioritizing affective-based feedback could enhance user
engagement with the robot. Additionally, in long-term
interventions or educational programs, it’s crucial for
participants to not only achieve strong performance but
also maintain positive attitudes and ongoing engagement
with the tasks. A social agent can effectively support this
dual emphasis, fostering both performance outcomes and
user engagement. This approach is vital for the success
of long-term interventions or tasks, ultimately leading to
better learning outcomes.

Although this study provides significant insights, it
is not without limitations. The sample size, while suffi-
cient for detecting main effects, may limit the generaliz-
ability of the findings. Despite the random assignment
of participants to different conditions, individual vari-
ations in personality traits could influence the engage-
ment metrics, rendering them more reflective of per-
sonal characteristics rather than universal indicators of
engagement. Additionally, focusing exclusively on a spe-
cific task type – visuospatial memory training task – may
not fully capture the potential variability in responses
to different types of feedback across other tasks or con-
texts.While the study found that affective-based feedback
might impair performance, these findings underscore the
need for further research into long-term engagement and
the complexities of managing multiple factors within the
proposed HRI setting.

A direction for future research is to investigate the
long-term effects of different types of feedback on user
engagement and performance, particularly in settings
like education, healthcare, and home environments.Met-
rics such as blink rate, gaze, distance, and valence could
be examined to determine if they consistently reflect
engagement over time, as they have shown a relationship
with short-term performance. Additionally, it is possi-
ble that the novelty of interacting with a robot may wear
off, which could impact user engagement and perfor-
mance. Moreover, future research should consider pro-
viding systematically generated feedback to evaluate its
effects.Understanding the types of feedback that promote
sustained engagement will be essential for improving
human-robot interaction over the long term, particularly
in vulnerable user groups such as the elderly or young
individuals with special needs. However,more research is
needed to ensure that the nature and appropriateness of
the engagement strategies are tailored to the unique cog-
nitive and emotional needs of these populations, thereby
maximizing the long-term benefits of social robot appli-
cations in contexts like healthcare and education.
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6. Conclusion

This study examines how different types of feedback
from a social robot influence user performance and
engagement. The findings reveal that affective-based
feedback negatively impacts performance but enhances
social engagement. The observation that affective-based
feedback led to poorer performance, compared to other
types of feedback, raises interesting questions about the
relationship between emotional responses and cognitive
task performance, warranting further investigation.

Additionally, the study explored participants’ percep-
tions of the robot, revealing that during more challeng-
ing tasks, feedback was perceived as more distracting
than during easier tasks. This highlights the impor-
tance of designing feedback that accounts for partici-
pants’ cognitive capacity.Moreover, participants reported
higher arousal levels during the Medium challenge level
compared to the Easy challenge level, suggesting that
increased task difficulty may promote greater engage-
ment.
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