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ABSTRACT

The increasing use of social assistive robots (SARs) has sparked researcher interest to investigate
user engagement to enhance SAR interactive capabilities. Engagement in Human-Robot
Interaction (HRI) aims to benefit users during interactions. Diverse interpretations of engagement
have led to various metrics for its measurement and detection. Despite numerous algorithmic
approaches for detecting user engagement, Deep Learning (DL) algorithms have become promin-
ent in HRI engagement detection. However, there is a lack of comprehensive reviews on DL meth-
ods for engagement detection in HRI. This scoping review summarizes a decade of DL
applications in HRI engagement detection, highlighting key findings and gaps including the need
for context-specific datasets, understanding temporal dynamics, and exploring non-social robots.
Moreover, this review focuses on employed DL algorithms, sensory inputs, ground truths, robots,
and datasets. This review serves as a valuable reference for HRI researchers aiming to improve
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user engagement detection strategies.

1. Introduction

The field of Human-Robot Interaction (HRI) has seen sig-
nificant development in recent years, finding applications in
entertainment (Lytridis et al, 2019), healthcare (Weng &
Hirata, 2022), and assistive technology (Kubota et al., 2022).
Over the past two decades, a new type of robot called
Socially Assistive Robots (SARs) has been developed which
can assist human users through social interaction, aiming to
achieve measurable progress in areas such as convalescence,
rehabilitation, learning, and other assistive tasks (Feil-Seifer
& Mataric, 2005). SARs focus on creating close and effective
interactions with users to offer support and aid in various
domains. These robots can be used to impact users’ engage-
ment through two-way interactions, such as providing verbal
hints when playing a game (Jain et al., 2020), or displays of
affective expressions, such as smiling or gesturing (Ritschel
et al., 2017).

Research has shown that people’s level of motivation and
productivity can significantly increase in the presence of
others. This phenomenon is often referred to as social facili-
tation, where the mere presence of others can enhance an
individual’s performance on a given task (Belletier et al,
2019). It’s not just the presence of humans that can have the
social presence effect, however; recent studies have also
demonstrated that the presence of social robots can provide
similar benefits (Luria et al, 2019). Social robots through

adaptive social feedback (e.g., audiovisual feedback and/or
affective interactions) have been found to improve task
engagement and attention (Chan & Nejat, 2010), learning
(Silvera-Tawil et al.,, 2022), and engagement (Ahmad et al.,
2019). and attitudes to therapies (Logan et al., 2019).

The concept of “engagement” in the HRI literature is broad
and encompasses various interpretations such as cognitive
engagement, behavioral engagement, and emotional engage-
ment, according to Doherty and Doherty (2019). The various
interpretations of engagement in the HRI literature have
therefore led to different features and measurements being
used to evaluate user engagement. For example (Hadfield
et al., 2019), used gaze and pose detection to detect engage-
ment while (Mollahosseini et al., 2018) employed facial expres-
sions to detect engagement. Moreover, considering the
distinctions between different types of interactions, researchers
can address diverse aspects of engagement, such as social
behaviors, communication dynamics, and user preferences.
For instance, the assessment of engagement can be conducted
either online (i.e., in real-time applications) or offline (ie.,
after the interaction). In studies that attempt to measure
engagement online (algorithmic), the aim is to modify the
interaction or provide feedback; where engagement is assessed
offline (non-algorithmic) the design of the interaction is typic-
ally emphasized. As an example of an offline approach
(Mucchiani et al, 2021), utilized surveys to measure users’
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responses, both verbal and physical, in order to determine
which aspects of HRI are significant in the development of
social agents for patient screening. To classify engagement
effectively, various learning methods (Amaro et al, 2019;
Andriella et al.,, 2020; Barenholdt et al., 2020; Bjorling et al.,
2018; Liu et al., 2007) have been utilized for the classification
of engagement in both online and offline applications.
However, the diversity of interpretations presents challenges
for selecting optimal methodological approaches to enhance
HRI frameworks, including the identification of suitable sen-
sory data.

To clarify our definition of engagement, in this scoping
review paper we incorporated two of the most common
views in the literature (Doherty & Doherty, 2019):

1. “By engagement, we mean the process by which two (or
more) participants establish, maintain and end their per-
ceived connection. This process includes: initial contact,
negotiating a collaboration, checking that other is still
taking part in the interaction, evaluating whether to stay
involved, and deciding when to end the connection,”
(Sidner et al., 2004, p. 78).

2. “Engagement is a quality of user experiences with tech-
nology that is characterized by challenge, aesthetic and
sensory, appeal, feedback, novelty, interactivity, per-
ceived control and time, awareness, motivation, interest,
and affect.” (O’Brien & Toms, 2008, p. 949).

The first definition aids in understanding the establish-
ment of engagement, while the second is geared towards
assessing the quality of engagement. Various sensory inputs/
features are employed to assess both the existence and qual-
ity of engagement. For instance, distance from the robot,
and gaze towards/away from the robot serve as effective
measures for determining the presence and level of engage-
ment, and affect measures become more relevant in evaluat-
ing the depth or intensity of engagement.

In recent years, the use of machine learning techniques
for detecting engagement has become increasingly prevalent
(Oertel et al., 2020). Our particular focus pertains to Deep
Learning (DL) methodologies, which have garnered atten-
tion for their inherent capacity to deal with large and/or
unstructured multi-modal data through performing feature
extraction and modality fusion (Goodfellow et al, 2016),
without relying on pre-trained modules (e.g., Sanghvi et al,,
2011), used the CAMShift algorithm from OpenCV packages
to extract Body Lean Angle (BLA) (Salam et al., 2017), used
different frontal and profile face detection models based on
the OpenCV version of Viola and Jones Haar Cascade algo-
rithm (Boccanfuso et al., 2016), used Principal Component
Analysis (PCA) for dimensional reduction of data). Deep
neural networks, such as CNNs and RNNs, offer the cap-
ability to extract complex features from data and leverage
temporal information for more accurate estimations in HRI
scenarios (Bandi & Thomas, 2023; Dhaussy et al., 2023;
Gonzalez & Mizuuchi et al., 2023; Kawahara et al., 2018;
Kokate et al., 2022; Shenoy et al., 2022; Simoes et al., 2023;
Swietlicka et al., 2023; Zhang et al., 2021).
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Although there have been reviews on the synthesis of infor-
mation relevant to assessing engagement, none, to the authors’
knowledge, have explicitly delved into a systematic or scoping
review of the DL methods utilized for engagement detection or
discussed the sensory input/features employed for engagement
detection. As an example of a non-systematic/scoping review
(Doherty & Doherty, 2019), provides valuable insights into the
concept of engagement in HCI research and mainly focuses on
the concept of engagement, theoretical frameworks, and meas-
urements. Another example by Oertel et al. (2020) aimed to
answer several questions related to engagement, such as the
most commonly used definitions of engagement, how engage-
ment differs across different interaction settings and user types,
and what methods are used to establish engagement ground
truths. They suggest that choosing appropriate input features is
crucial for successful engagement recognition using DL
approaches. Notwithstanding the insights these papers provide,
there is a lack of review articles summarizing how different data
modalities or features such as speech features, facial features,
and physiological sensors are integrated for engagement detec-
tion using DL methods, which features are commonly utilized,
and how these features correspond with specific DL algorithms
employed in modeling engagement, and how the ground truth
for engagement detection is established.

In order to gain a comprehensive understanding of the exist-
ing applications of DL methods in engagement detection within
the domain of HRI, this paper presents a scoping review to
address several research questions. These questions aim to iden-
tify existing research gaps and provide researchers with an
understanding of the current state of the literature with respect
to the development of DL frameworks for engagement detec-
tion. These questions are designed to assist researchers in devis-
ing effective strategies for studying engagement in potential
HRI setups and understanding commonly utilized features,
thereby enabling them to equip their setups with appropriate
sensors and engagement detection modules. Additionally, the
review seeks to address challenges associated with the ground
truths establishment of engagement, which often involves com-
plexities and may require trained human annotators or alterna-
tive methods such as self-reporting. The review also explores
the utilization of datasets from previous studies and examines
engagement detection methodologies employed with specific
social robots. Lastly, the review investigates methods for inte-
grating engagement detection into HRI setups. The research
questions guiding this review are as follows:

1. Which DL methods are used for users’ engagement
modeling in HRI?

2. Which sensory inputs/features are used for users’
engagement modeling using DL methods in HRI?

3. How does the literature address the establishment of
ground truths for engagement in HRI for training DL
models?

4. What datasets have been used for training DL models
for engagement detection in HRI?

5. What types of HRI setups, such as social robots, virtual
agents, or interactive environments, are used to develop
engagement detection models?
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6. What engagement adaptation methods have been

applied to the HRI setups?

The novelty of this work lies in its focused exploration of
multimodal data integration and the application of advanced
DL techniques for engagement detection in HRI. While pre-
vious studies have addressed engagement detection, this
research uniquely emphasizes the synergistic use of diverse
data modalities—such as facial features, speech features, and
physiological signals—to create a more comprehensive under-
standing of user engagement. Furthermore, the work highlights
the implementation of state-of-the-art DL algorithms, specific-
ally tailored for processing and integrating multimodal data.

2. Methodology

The methodology employed in this review entailed a multi-
step screening process. Our methodology was inspired by
similar works previously published in HRI (Amirova et al.,
2021; Oertel et al., 2020). In order to ensure unbiased assess-
ments and minimize potential biases, we followed a rigorous
approach that involved implementing inter-rater evaluations
with blinding procedures in place. All four authors took
part in the inter-rater screening, with each reviewer con-
ducting screening and reviews independently, without know-
ledge of their peers’ evaluations. In the event of conflicts
arising, a conflict resolution process was conducted by an
independent reviewer (not involved in the screening of the
specific paper) to ensure that the inclusion or exclusion of
papers was based on a majority vote decision.

Each paper was reviewed by two independent reviewers.
Inter-rater reliability was assessed using Cohen’s Kappa (x),
which measures agreement beyond chance (McHugh, 2012).
For the title and abstract screening stage, the average x value
was 0.49, indicating moderate agreement. In the full-text
screening stage, the average x value was 0.63, reflecting sub-
stantial agreement.

2.1. Search

We conducted a literature search in four major databases—
Scopus, IEEE Xplore, PubMed, and Elsevier—chosen for
their extensive coverage of peer-reviewed research in
robotics, computer science, and HRI. To supplement our
search, we also applied backward snowballing to identify
additional relevant studies and and set no start year limit.
This search occurred initially in September 2022, with an
updated search conducted in February 2024. In order to not
overlook potential papers in the initial literature survey, we
employed a search string that we hoped would capture a
wide range of papers, to remove irrelevant papers in future
stages of the process. Below are the detailed search queries
used for each database:

e Elsevier (via ScienceDirect): Title, abstract,
keywords: Engagement AND (Human-Robot
Interaction OR Virtual Agents OR HRI OR
Human Robot Interaction OR Human-Robot) .

e Scopus: TITLE-ABS (“Engagement”) AND TITLE-
ABS (“Human-Robot Interaction” OR “Virtual
Agents” OR “HRI” OR “Human  Robot
Interaction” OR “Human-Robot”).

e PubMed: (“Engagement” [Title/Abstract]) AND
( (“Human-Robot Interaction” [Title/Abstra
ct] OR “Wirtual Agents”[Title/Abstract]
OR “HRI” [Title/Abstract] OR “Human Robot
Interaction” [Title/Abstract] OR “Human-
Robot” [Title/Abstract]).

e IEEE Xplore: (“Abstract”:Engagement) AND
(“Abstract” :Human-Robot Interaction OR
“Abstract”:Virtual Agents OR “Abstract”:
HRI OR “Abstract” :Human Robot Interaction
OR “Abstract” :Human-Robot).

We decided to include “Virtual Agents” as a keyword in
order to ensure a comprehensive review by capturing studies
with overlapping methodologies and insights. This approach
broadens the scope, accommodates terminology variations,
and includes relevant algorithmic models for engagement
that apply to both virtual agents and robots. Moreover, it is
important to note that this study did not aim at restricting
to a specific definition of “engagement,” but instead focused
on conducting a comprehensive search for research studies
implementing algorithmic models for engagement detection
in HRI, with a focus on DL methods.

2.2. Inclusion and exclusion criteria

In this study, we specifically excluded papers that did not
focus on algorithmic detection of engagement. The inclusion
criteria for papers in this study were as follows: the paper
must present specific engagement algorithms that have under-
gone some training and are not limited to conceptual
approaches. The paper must be written in legible English.
Additionally, review papers such as scoping reviews, systematic
reviews, meta-analyses, reviews of proceeding conferences, and
publications of low quality such as non-peer-reviewed articles,
book chapters, and editorials were excluded from this study.

Inclusion Criteria

e Application or investigation of engagement detection
algorithms.
Includes social robots, virtual agents, or HRI contexts.
Simulated or physical robots are acceptable.
Wizard of Oz (WoZ) studies if engagement data is col-
lected for deep learning applications.
Written in legible English.
Peer-reviewed papers, including conference papers (e.g.,
IEEE, ICRA, IROS).
Sufficient detail for replication or empirical investigation.
Papers presenting trained algorithms (not just conceptual).

Exclusion Criteria

Engagement not focused on algorithmic detection.
Non-HRI focus or no reference to robots/agents.



e No use of DL methods (e.g., SVMs, random forests, tra-
ditional ML).

e Use of virtual reality/agents unrelated to HRI or

engagement.

Non-peer-reviewed works, book chapters, or editorials.

Abstracts or extended abstracts (4 pages).

Poorly written or lacking sufficient detail.

Papers with no results or analysis.

Redundant works presenting preliminary ideas followed

by implementations.

Low-quality publications or vague, incomplete studies.

Scoping reviews, systematic reviews, or meta-analyses.

The focus of our study is on the application of DL meth-
ods for engagement detection in HRI. The rationale behind
this decision was to concentrate on the advancements and
specific contributions that Deep Learning approaches offer,
particularly in terms of their ability to handle complex data
representations and learn intricate patterns from large data-
sets. Even though the focus of our study was on Deep
Learning methods, traditional methods have been compared
to provide a better understanding of the overall landscape of
engagement detection techniques. This comparison helps to
contextualize the advancements made by DL algorithms and
highlights the strengths and limitations of both approaches.

2.3. Screening

In the initial stage, papers that were not relevant to the topic
of engagement detection or were off-topic were excluded
from further consideration. After selecting initial papers
based on the inclusion and exclusion criteria, in the second
stage of screening, in the process of full-text reviewing,
we identified papers that employed algorithmic develop-
ment, including various DL algorithms, while separating
traditional ML-based algorithms that are not DL (non-
ANNs). Considering the inconsistent use of the term “Deep
Learning” with respect to multi-layered neural networks, we
used an inclusive interpretation of “Deep Learning” accord-
ing to the use of Neural Networks. Within this broad scope,
we included Neural Networks such as Autoencoders, Long
Short-Term Memory Networks (LSTMs) and Gated
Recurrent Units (GRUs), Convolutional networks (including
Residual networks, Recurrent NNs (RNNs), Multilayer per-
ceptrons, RCNN, YOLO, VGG-16/19, ResNet, Inception X),
Deep Reinforcement Learning (including Deep Q Networks
(DQN)), Bayesian Neural Networks and other algorithms
that are based on Neural Networks. The selected papers
were required to have sufficient details to allow for replica-
tion of the work, including algorithmic implementation or
experimentation, and to have undergone basic empirical
investigation. Abstracts/extended abstracts with no longer
than four pages and papers that are poorly written or lack
details were excluded from consideration.

To ensure the review was comprehensive, backward
snowballing was implemented. This process
examining the reference lists of selected papers to identify
older, relevant studies. Data extraction was conducted by

involves
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two extractors, with a third person serving as a conflict
reviewer.

3. Results

In this section, we summarize the results of the conducted
review in reference to the research questions outlined in the
methodology. In total, 855 records were collected from the
databases mentioned in 2.1, and after eliminating duplicates
using the EPPI-Reviewer web screening platform (Thomas
& Graziosi, 2010), 618 records remained for screening. EPPI
Reviewer selects duplicate papers by using an automated
algorithm to compare titles, authors, publication years,
abstracts, and other bibliographic details to identify potential
duplicates. Users can adjust the sensitivity of the matching
criteria to balance between missing duplicates and incor-
rectly flagging unique records. The software groups potential
duplicates into clusters based on similarities, which users
then manually review to confirm or reject. This process
ensures accurate and efficient identification and manage-
ment of duplicates in systematic reviews. The selection pro-
cess is depicted in Figure 1, adapted from the PRISMA-ScR
flow diagram (Tricco et al., 2018).

Following the first screening stage, which was based
solely on the title and abstract, 154 articles were included
for further review. In the second stage, the full texts of the
papers were reviewed and a total of 57 papers were identi-
fied as algorithmic development of engagement within
which 36 papers employed DL approaches. 3 papers used
non-text, 2 review papers, 7 were non-HRI related, 69 were
non-algorithmic, 21 were non-ANNs (traditional algorithmic
developments), 5 papers were without established results
(more discussions of frameworks), and 11 Low quality and
non-replicable papers were identified.

During the snowballing, an additional 37 papers were
identified to undergo the selection process. Based on the
title and abstract screening, 14 papers aligned with the pre-
defined inclusion criteria. In the second stage of the review
of these 14 records, 5 papers were identified as algorithmic
development within which 2 papers employed DL algo-
rithms, 8 were non-algorithmic papers, 3 were non-ANNs
(traditional algorithmic developments), and also one review
paper was identified.

In total, 38 papers were included in the final scope review
list of papers that used DL methods for engagement detec-
tion in HRI (see Table 1). In the final included papers, there
are some cases of multiple studies including many of the
same authors, however, these works differ in one or more
key aspects such as using a new dataset to train an engage-
ment model, employing a different DL model, adopting an
adaptive approach to interaction based on the developed
engagement model, or utilizing a different method for data
annotation. Out of these 38 papers that employed DL meth-
ods, 11 papers also employed traditional methods. Plus, 24
papers that were categorized as non-ANNs used traditional
methods for engagement detection. In Figure 2, we can
observe the papers that were extracted along with their
respective publication year. The initial screening indicates
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Records idenitifed through
Scopus searching
Feb 2, 2024
(n=490)

Records idenitifed through
ScienceDirect searching
Feb 2, 2024
(n=43)

Records idenitifed through
IEEE searching
Feb 2, 2024
(n=207)

Records idenitifed through
PubMed searching
Feb 2, 2024
(n=115)

\'4 v
|—> Records after duplicates removed (n=237) <—|

2
Records (titles and abstracts)
Records excluded Screened Reco(r:i:gzl)uded
(n=118) (n=154)
English text (3) &
review (2) Full-text articles assessed for Forward and backward
Non—l-.-IRI (7.) eligibility > snowballing
Non-algorithmic (69) (n=36) (n=37)
Non-ANNs (21)
No Results/analysis (5) v
Low quality, non-replicable Records (titles and abstracts) Records axelidad
(11) Screened > (n=23)
(n=14)

Records excluded

Full-text articles assessed for (n=12)
eligibility > Non-Algorithmic (8)
(n=2) Non-ANN (3)
Review (1)

Studies included (n=38)

Figure 1. Screening process: been adapted based on the PRISMA-ScR flow diagram (Tricco et al., 2018).

the general trend of studies on engagement in HRI within
which algorithmic-based publications for engagement detec-
tion are a sub-part. Notably, the analysis of algorithmic
approaches for engagement detection reveals a rising prefer-
ence for DL methods over the past five years compared to
more traditional methods.

The review utilized a structured data extraction frame-
work to systematically analyze studies on engagement detec-
tion in HRI. This framework included several key categories:
the framework captured input features, detailing the specific
sensory inputs used, such as facial features, gaze direction,
and speech features, which are crucial for engagement detec-
tion. The algorithm type category identified the algorithms
employed, distinguishing between various DL approaches.
Furthermore, the framework differentiated between adapta-
tion and non-adaptation approaches, categorizing models
based on their application in adjusting to user engagement.
The robot used in each study was specified to provide
insights into practical applications, while the ground truth
method of engagement documented how engagement was
labeled, whether through expert annotation, self-reporting,
or other techniques. By extracting data across these catego-
ries, the review aimed to create a comprehensive overview
of methodologies and findings in the field, facilitating com-
parisons between studies and identifying trends, strengths,
and gaps in current research.

3.1. Which DL methods are used for users’ engagement
modeling in HRI?

In the field of engagement research, various DL algorithms
have been utilized for engagement detection, which can be

categorized into CNN (ResNet3D, ResNetXt-50, ResNet,
end-to-end 3D ConvNet, VGG19, ImageNet-VGG-F,
EmoVGGFace2, VGGFace2-SA), RNN (BLSTM, GRU,
RNN-CTC, ESNs, LSTM, LDN, ResNet-18), MLP (MLPR)
and combinations of these types. As depicted in Figure 3,
CNNs are the most frequently used method in the records
(see Table 1 for more details).

CNNs stand out as the predominant modules for engage-
ment detection, due to their ability to extract visual features
from images. Visual cues, such as eye movements, body pos-
ture, facial features, and other non-verbal behaviors, play a
crucial role in understanding and measuring user engagement.
The preference for visual cues suggests that engagement is
often perceived as a visually observable phenomenon rather
than an internal state necessitating physiological sensory data.
The focus on visual data may stem from the complexities
involved in processing physiological signals or a lack of interest
or expertise among researchers in that domain. Furthermore,
most engagement studies concentrate on social engagement,
where visible physical interaction is more significant than task
engagement. In task engagement, participants are typically less
physically expressive, making physiological or eye-tracking
measures more valuable for assessing underlying engagement.

RNN-based models, given their inherent continuity and
time-sensitive nature, particularly in contexts where tem-
poral information is crucial for engagement modeling, espe-
cially emotional engagement that evolves over time (Scherer,
2005), are one of the other most prevalent used DL meth-
ods. For example, in scenarios requiring engagement detec-
tion using speech features, temporal information is essential
(Pattar et al., 2019; Inoue et al., 2018; Rudovic et al., 2019).
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Table 1. Continued.

Sensory inputs/features (facial
expressions, gaze, speech,

Ground truth (dataset)

Dataset [AffectNet]

Adaptive/non-adaptive Robot/agents

Algorithm type

CNN [VGG16,

.2)

Facial Features [expressions]

Title/study type

Authors

Social Plantroid

Non-adaptive

Physical Embodiment versus Novelty

(Gonzalez & Mizuuchi,

Data collection [27 participants[14

ResNet18]

- which influences interactions
with Embodied Conversational

Agents more?

2023)

were female and 13 were male,

mean age of 25.56 years (standard

deviation: 4.05 years),
(19 — 33 years old)]
Dataset [Qamqo, PInSoRo]

Non-adaptive No robot

CNN

Facial Features [landmarks,

To Transfer or Not To Transfer:

(Rakhymbayeva et al.,

expressions], body pose,

Engagement Recognition within

2022)

Robot-assisted Autism Therapy

Nonetheless, due to inadequate datasets or the challenges
associated with ground truth establishment of engagement,
RNN-based models have not been extensively investigated,
presenting a promising avenue for future research. Six
papers used a combination of CNNs and RNNs to capture
visual cues (Del Duchetto & Hanheide, 2022; Zhang et al,,
2021). Nine papers referred to using MLP methods.
However, due to their limited capabilities, MLP methods
have been primarily used for low-level feature extraction
(e.g., Jain et al., 2020; Kokate et al., 2022; Stimer et al., 2023;
Rossi & Rossi, 2021) or in conjunction with other methods
or pre-trained modules (e.g., Bartlett et al., 2019; Ben-
Youssef et al., 2019). Additionally, one publication utilized
transformers (Kokate et al., 2022) which show promise for
future engagement detection due to their ability to capture
temporal differences and integrate multimodal data—such as
visual, auditory, and textual cues.

Papers utilizing traditional methods and not involving DL
were separately categorized as non-ANNs. Papers utilizing
both DL and traditional methods were classified as both
DL and non-ANNs. Although traditional methods like
SVM (Support Vector Machine), RF (Random Forest), LR
(Logistic Regression), DT (Decision Trees), K-NN (K Nearest
Neighbors), BN (Bayesian Networks), and HMM (Hidden
Markov Model) remain popular for engagement detection,
these methods often require dimension reduction pre-process-
ing (Boccanfuso et al, 2016; Siimer et al., 2023) or feature
extraction prior to the training process. For instance (Alyiiz
et al., 2016), leveraged the Intel RealSense SDK to extract fea-
tures from video data for input into an RF algorithm.
Additionally, others utilized the OpenCV packages to extract
desired features (e.g., Haar-like features) for modeling pur-
poses (Prado et al, 2011; Salam et al, 2017; Sanghvi et al,
2011). Furthermore, certain studies employed Kinect sensors
to extract skeleton and body motion features (Foster et al,
2017; Tuyen et al, 2018). Although traditional methods are
practical and straightforward for engagement detection, espe-
cially in scenarios with limited data, DL-based methods dem-
onstrate efficiency in feature extraction, mitigating the need
for specific feature assumptions, however, they require a sub-
stantial amount of well-annotated data.

3.2. Which sensory inputs are used for users’
engagement modeling using DL methods in HRI?

Sensory inputs provide valuable information about how
scholars interpret engagement within HRI. By analyzing
diverse sensory data used for training DL techniques,
researchers can gain a deeper understanding of how users
engage with robots, in order to develop more personalized
and adaptive interaction experiences. Different sensory
inputs offer complementary cues that can help in accurately
detecting and interpreting users’ engagement states. By lev-
eraging multiple modalities such as facial features, body
poses, gaze patterns, and speech features, DL models can
capture nuanced aspects of user engagement, leading to
more robust and reliable engagement detection systems in
HRI scenarios.
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Figure 2. Number of publications per year: search and snowballing resulted publications: publications that used traditional methods [non-neural network such as
SVM, Decision Trees, etc.] for engagement modeling and publications that used DL algorithms for modeling purposes.

py EMM
3% 2%

LR

SVM
18%

Figure 3. Types of algorithms used in the publications.

Figure 4 illustrates various features used by these publica-
tions for engagement detection, considering that a majority
of studies employed multimodal features (see Table 1).
These features encompass various features used in both tra-
ditional methods and DL methods including facial features
(such as Facial Action Units, facial landmarks, Histogram of
oriented gradients (HOG), and Gabor Filter), head pose
(including nodding), body pose (involving skeletal, hand
movement, or landmark, and Kinect data), gaze, speech fea-
tures (including laughter, vocalization, yaw, pitch, roll, jitter,
formants, backchannels, frequency, intensity, and harmonic-
ity), user position (distance), physiological sensors (such as
EEG tools like MUSE, E4 wristband, galvanic skin conduct-
ance, body temperature, accelerometer data, etc.), and task
performance which includes challenge level, incorrect
responses, and elapsed time in a session (see Table 1). Facial

CNN
23%

Transformers
1%

features (33 papers), head pose (19 papers), and body pose
(16 papers) emerge as the most frequently employed features
for engagement detection using DL methods (Figure 4). The
use of facial features and gaze is notably lower in traditional
methods compared to DL methods. This is directly related to
the low potential of traditional methods for extracting high-
level features like facial features unless they utilize pre-trained
modules. Speech features are also utilized in 14 studies
employing DL for engagement detection. Their usage is lim-
ited in comparison to facial features, head poses, and body
poses. Additionally, eight studies incorporated user position
as a feature for engagement detection using DL methods.
However, user position offers limited insights for engagement
detection as it mainly indicates whether engagement is estab-
lished or not rather than measuring given information about
engagement’s quality or intensity, for example (Ben-Youssef
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Traditional Methods
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Figure 4. Key sensory inputs/features used for training traditional methods [non-neural network such as SVM, Decision Trees, etc.] and DL methods.

et al, 2019), used users’ position (distance from robot) to
establish engagement ground truth.

The utilization of physiological data for engagement
detection using DL methods remains uncommon, likely due
to the complexity of pre-processing and quantifying
the often noisy sensory data. Only two papers used physio-
logical data for engagement detection using DL methods
(Rajavenkatanarayanan et al, 2018; Rudovic et al,, 2019).
Similarly, only one paper used task performance in order to
detect engagement using DL methods (Jain et al., 2020). The
limited usage of task performance or action-related data in
engagement detection using DL methods suggests a gap in
leveraging contextual information for engagement evalu-
ation. This gap may be attributed to challenges in obtaining
appropriate labels for different task performances in relation
to other sensory data, which could explain the limited litera-
ture utilizing performance data. It is worth noting that it is
more frequent to use traditional methods with physiological
data. Five papers that utilized traditional methods for
engagement detection did employ physiological sensory data
(Fan et al., 2021; Liu et al., 2007; Mower et al., 2007;
Ramadurai et al., 2024; Rani & Sarkar, 2007).

3.3. How does the literature address the establishment
of ground truths for engagement in HRI for training DL
models?

The choice of the engagement ground truth establishment
method directly impacts the quality and reliability of the
training data used to train DL models for engagement detec-
tion. By comprehensively examining the prevalent engage-
ment ground truth establishment methods, researchers can

make informed decisions about how to label their datasets,
ensuring that the models are trained on accurate and
representative data that captures the nuances of user engage-
ment in HRI scenarios. This understanding is crucial for
improving the performance and robustness of DL models in
detecting and interpreting engagement signals, ultimately
enhancing the overall user experience in HRI. Moreover,
knowledge of common engagement ground truth establish-
ment methods enables researchers to compare and bench-
mark their own annotation strategies against established
practices in the field. By understanding the strengths and
limitations of different annotation approaches, researchers
can evaluate the effectiveness of their annotation processes
and make informed decisions about how to optimize their
data labeling procedures.

The primary method for labeling data in the records is the
manual annotation by experts (17 out of 38 papers), who
have specialized knowledge relevant to the established annota-
tion process by researchers. Four studies have utilized users’
self-reports as ground truth (Dhamija & Boult, 2018).
Additionally, four studies have employed unsupervised meth-
ods to extract engagement patterns (Pattar et al.,, 2019). used
clustering to classify data into four categories (approaching,
interacting, leaving, and uninterested), with a timestamp serv-
ing as the basis for comparison (Rajavenkatanarayanan et al.,
2018). used the EEG data collected from the MUSE sensor to
measure the engagement level of the users during the task.
This engagement value computed from the MUSE sensor data
was considered the ground truth for the engagement detection
model (Vaufreydaz et al., 2016). used semi-automatic labeling
for engagement detection by initially segmenting events based
on timestamped notes from the experimenter. Automatic



labeling was then applied using tablet interaction data and
available features to assign labels such as “will interact” for
approaching the robot and “leave interact” for paths taken
after disengaging. All labels were reviewed by a human expert
who examined video recordings to ensure accuracy and con-
sistency in the labeling of the dataset. Abdelrahman et al.
(2022) extracted the ground truth of users’ engagement based
on the tasks such as registration, interaction, and answering
questionnaires. By tracking these engagement and disengage-
ment actions during the study, the researchers were able to
label the data events accordingly.

Twenty papers have leveraged datasets to develop engage-
ment models, particularly evident in DL-based algorithms
(see Figure 5). The availability of datasets has contributed to
the growth of using DL-based models for engagement detec-
tion. While using datasets is the most common approach in
DL publications, human experts’ annotation is the most fre-
quent ground-truth labeling in traditional methods. It’s
noteworthy that while these datasets may not always be
labeled for engagement specifically, they often contain labels
for affect detection which is a component of engagement as
defined by Doherty and Doherty (2019). In total, thirty-five
papers incorporated facial features for engagement detection
which underscores the importance of the affect component
of engagement.

3.4. What datasets have been used for training DL
models in HRI?

By examining the datasets used in prior studies, researchers
can gain insights into the types of data modalities, features,
and annotations that have proven effective for training
engagement detection models. This knowledge enables
researchers to make informed decisions when selecting or

Human Experts

Traditional Methods
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creating datasets for their own investigations, ensuring that
their models are built on a solid foundation of relevant and
representative data. The diversity of engagement datasets
used in HRI research highlights the range of scenarios and
contexts in which engagement detection models have been
developed and tested.

In total 12 datasets have been used to detect user
engagement in HRI. These include UE-HRI dataset (used in
five publications), PInSoRo (used in three publications),
FERdataset (used in three publications), and TOGURO (used
in three publications). Other datasets such as BHEH, ATC
Trajectory, JPL-Interaction dataset, Cardiff, SFEW dataset,
EASE, DAISEE dataset, and Affectnet dataset have been used
in one publication each. While most of these datasets are
publicly accessible, researchers often need to register or
request access based on the dataset owner’s policies.

The UE-HRI dataset was obtained from the interaction of
the Pepper robot with people in a public exhibition. This data-
set includes various features such as video, voice, sonar, and
laser data, and has been manually annotated to include cues
of engagement decrease and negative affect. The TOGURO
dataset is collected from the interaction of the NAO robot in
a public place and includes features such as video streams and
cues of verbal/non-verbal behaviors of users, as well as infor-
mation on users positions. Additionally, several affect-based
datasets have been utilized in engagement research, including
SFEW, FER, and AffectNet (Mollahosseini et al, 2018;
Poltorak & Drimus, 2017). Despite the existing datasets, there
is a gap in well-structured datasets for engagement detection
that combines different components of engagement including
affect, and attention.

Although, leveraging a combination of these affect data-
sets with tailored labeled data from specific HRI setups
could offer a promising approach to address engagement

Unsupervised

Self Report

Datasets

Deep Learning

Figure 5. Labeling approaches for data preparation for engagement modeling.
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detection, establishing suitable datasets for engagement analysis
is time-intensive, and without clear definitions, developing uni-
versal datasets for all HRI setups is challenging. Different data-
sets might generalize over different use cases and how specific
they are to the robot or interactive domain they are utilized
on, for example, the UE-HRI dataset is developed using the
Pepper robot in a public space where the annotation focused
on a specific definition of engagement that is tied with the dis-
tance of users from the robot, user’s head orientations and
speech signals (Ben-Youssef et al.,, 2017). Another critical con-
sideration in dataset development is the targeted demographic.
Notably, studies like Jain et al. (2020) and Silvia Ivani et al.
(2022) emphasize intervention-based data collection involving
children with Autism Spectrum Disorder (ASD). For such
groups, creating engagement detection models for social robots
necessitates expert annotation of participants’ engagement lev-
els (Rakhymbayeva et al., 2022).

3.5. What types of HRI setups, such as social robots,
virtual agents, or interactive environments, are used to
develop engagement detection models?

Understanding the types of HRI setups used to develop
engagement detection models provides insights into the diver-
sity of platforms and technologies employed in HRI research,
showcasing the versatility and applicability of engagement
detection across different contexts. By identifying the specific
setups utilized, researchers can gain a better understanding of
the environments in which engagement detection models are
tested and validated, leading to more informed decisions
regarding the generalizability and scalability of these models.
Furthermore, knowing the types of HRI setups used for

engagement detection helps researchers and practitioners tailor
their approaches and methodologies to suit specific interaction
scenarios. Different setups may require unique considerations
in terms of sensor modalities, data collection methods, and
algorithmic approaches, highlighting the importance of adapt-
ing engagement detection techniques to the characteristics of
the interaction environment.

The NAO robot is one of the most frequently used robots
referred to in the extracted literature. Many of these
studies have focused on the robot’s physical movement as a
means of interaction, with the NAO robot often being
utilized to provide instructional feedback. For example
Rajavenkatanarayanan et al. (2018), employed NAO robots
to give instructions and provide verbal feedback based on
user performance. Another commonly used robot is the
Pepper robot, which is typically utilized in public spaces.
Figure 6 depicts the robots that are being utilized in the
extracted articles that utilized DL methods and traditional
methods for engagement detection. It is worth noting that
from the corpus of articles analyzed, it was observed that a
subset of publications did not utilize any robots or datasets
directly associated with robots and a few papers did not spe-
cify the type of robot they used (Bartlett et al, 2019;
Dresvyanskiy et al, 2021; Huang et al, 2017; Poltorak &
Drimus, 2017). Also, there are instances of publications that
utilized engagement functions to control or adapt non-social
robots. For example Pattar et al. (2019), used Cobots[Robotic
arms] to interact with subjects and gathered data for engage-
ment modeling (Mower et al., 2007; Rani & Sarkar, 2007).
used two-wheel adaptive robots to interact with subjects and
these robots were able to adapt to users’ engagement levels,
based on physiological sensory data. Moreover, two
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Figure 6. An array of robot designs featured in engagement-related publications, from humanoid and animal-like models to functional types like wheeled robots

and robotic arms.



publications used users’ interaction with virtual environments/
agents to model engagement (Nezami et al., 2020; Trinh et al.,
2018) using DL. Overall the result suggests a desire to enhance
interaction by incorporating engagement detection, highlight-
ing the significance of adjusting to users’ engagement levels
and a noticeable gap in the advancement of engagement
methods with the aim for adaptive non-social robots and vir-
tual agents, signaling an area that requires further
investigation.

3.6. What engagement adaptation methods have been
applied to the HRI setup?

Engagement adaptation in HRI plays a pivotal role in shap-
ing the quality of interactions between humans and robots.
By dynamically adjusting robots’ behaviors in response to
users’ engagement levels, robots can create more personal-
ized and engaging experiences that cater to individual pref-
erences and communication styles. This adaptability not
only enhances user satisfaction and enjoyment but also fos-
ters effective communication and mutual understanding
between humans and robots. Additionally, sustaining long-
term engagement through continuous adaptation to users’
engagement signals is crucial for maintaining users’ interest
and involvement over time. By dynamically adjusting their
behaviors to match users’ changing engagement levels,
robots can ensure ongoing interaction and collaboration,
preventing disengagement and promoting sustained user
participation. This long-term engagement fosters a sense of
continuity and connection in HRI, contributing to a positive
and fulfilling user experience that aligns with users” evolving
needs and preferences.

Seven out of the thirty-eight included publications
employed adaptive approaches for interaction. Five of these
papers utilized rule-based decisions that vary based on user
engagement levels (Abdelrahman et al., 2022; Duque-Domingo
et al., 2020; Mollahosseini et al., 2018). Two studies incorpo-
rated engagement levels into reinforcement learning (RL)
based policy learners, which enables more tailored adaptations
for users, widening the spectrum of adaptivity (Del Duchetto
& Hanheide, 2022). employed RL policies to improve the
social behavior of robots towards exhibition visitors, while
(Jain et al., 2020) utilized RL-based feedback and instructions
for adaptive behavior. The relatively low number of studies
using adaptive models, especially those employing learning-
based adaptations, indicates a potential research gap. This gap
requires further exploration to enable more personalized inter-
actions and improve overall HRI experiences.

4. Discussion

This scoping review serves as a comprehensive resource for
researchers seeking to delve into the realm of DL techniques
for engagement detection in HRI. By highlighting key find-
ings, research gaps, and methodological considerations, the
review sets the stage for future investigations aimed at
enhancing the understanding and implementation of engage-
ment detection mechanisms. The increasing adoption of DL
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algorithms for engagement detection signifies a shift towards
data-driven approaches in understanding the engagement
concept in HRI. By leveraging the capabilities of DL models
researchers are able to extract meaningful insights from vari-
ous data modalities like speech features, facial features, and
physiological sensors to enhance engagement detection
accuracy. The review emphasizes the importance of selecting
appropriate sensory inputs/features and integrating different
data modalities effectively to improve engagement detection
using DL methods. Furthermore, the identification of com-
mon DL algorithms used for engagement modeling, such as
CNNs like ResNet and VGGI19, RNNs like BLSTM and
LSTM, and MLPs, provides a roadmap for researchers to
explore and compare different algorithmic approaches in
their studies.

The scoping review shows that the detection of engagement
using DL methods is often facilitated by the use of facial fea-
tures and head and body pose as primary features (as demon-
strated in Figure 4), while, speech and gaze features are also
commonly utilized features. The selection of features employed
is dependent on the specific definition of engagement being
studied. There appears to be a lack of thorough exploration
into using task performance features, physiological features,
and user position in comparison to gaze, facial, and speech
teatures. The scarcity of using physiological sensors is partly
because of the delay usually associated with these sensory data
which makes it impractical for instant engagement detection.
Moreover, the emphasis on social engagement rather than
task engagement contributes to this scarcity. While social
engagement measurement relies more on visual signals, task
engagement—especially in activities requiring minimal move-
ment and where visual signals offer limited information—
could benefit more from physiological signals despite the
challenges in evaluating them.

It is noticeable that using visual cues for engagement mod-
eling suggests a tendency to focus more on the visual aspect
of engagement rather than the internal cues of engagement.
Convolutional Neural Networks (CNNs) which dominate as
the preferred algorithmic method for engagement detection
facilitate this typical engagement interpretation. At the same
time, there are studies that used Recurrent Neural Networks
(RNNs) to capture temporal aspects of engagement. However,
there’s a need for more established methodologies for utiliz-
ing RNNs, particularly with datasets that consider temporal
engagement aspects.

While traditional methods like Support Vector Machines
(SVMs) remain favorable due to their simplicity in capturing
relevant patterns, these methods often aided by feature selec-
tion techniques like PCA (Boccanfuso et al., 2016; Siimer
et al., 2023) or leverage open-source tools such as OpenFace
and OpenPose for facial and body cues extraction, driven by
the scarcity of sufficient training data for feature extraction
(Rudovic et al., 2019; Dhamija & Boult, 2018; Saleh et al,,
2021). These methods are especially effective in scenarios
where limited training data poses challenges for feature
extraction in DL models. Furthermore, achieving real-time
performance is critical in HRI, as delays in response can
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diminish user experience; however, many DL models are
computationally intensive, complicating this requirement.

Furthermore, annotating engagement is a challenging task
that typically demands a significant time investment and at
least two human annotators. Moreover, the lack of a clear
and consistent definition of engagement further compounds
the difficulty and necessitates training annotators to
ensure consistent labeling making it even less appealing to
develop engagement datasets. Unsupervised engagement
labeling (Pattar et al., 2019) and semi-automatic annotation
(Vaufreydaz et al.,, 2016) are potential methods to aid in the
creation of engagement datasets. Incorporating both self-
reports and expert annotators could also be a viable
approach to address this issue (Rudovic et al., 2019). adopted
an active data labeling strategy that omits unnecessary anno-
tations by actively selecting frames for labeling based on an
active learning approach. By tailoring the selection of data
for each user, their engagement estimation model could be
personalized to better suit the target child. The review
recognizes that variability in ground truth establishment
methods—such as manual annotation, self-reporting, and
unsupervised techniques—could lead to inconsistencies in
how engagement is defined and measured. Experts’ annota-
tion, while generally reliable, can vary based on the annota-
tors’ interpretations, potentially affecting the consistency of
engagement labels. Similarly, self-reporting can introduce
biases that may not accurately reflect actual engagement lev-
els, leading to discrepancies across studies. The use of
unsupervised methods, although beneficial for discovering
patterns, may lack the nuanced understanding that human
annotators provide, resulting in less reliable ground truth. By
highlighting these variabilities, the review underscores the
importance of establishing standardized methods for ground
truth labeling to enhance the validity and comparability of
results across different studies in the field of HRI.

Although various datasets have been employed to study
engagement in HRI, they are often designed for specific
applications and are not easily adaptable to other contexts.
As mentioned, there are a number of papers that utilize the
UE-HRI dataset for the detection of engagement. However,
there are papers that have used affect-based datasets that are
not established for engagement detection purposes, which
indicates the inadequacy of appropriate datasets for this pur-
pose. Notably, studies employing DL methods tend to rely
more on datasets and this is mainly because of the substan-
tial training requirements of DL approaches.

It is noteworthy that the robots featured in these studies
primarily belong to the category of social/humanoid robots.
This emphasis is driven by the potential for improving HRI
through social interaction using engagement detection mod-
ules. However, while a few studies include non-social robots,
there remains a gap in the literature regarding engagement
modeling in non-social robots. Addressing this gap could
significantly improve interactions with these robots.

Moreover, by recognizing the distinctions between public
and targeted interactions, researchers can address diverse
aspects of engagement, such as social behaviors, communi-
cation dynamics, and user preferences. One illustration of

public interactions with robots involves the use of the
Pepper robot in a public space to interact with random
attendees (Ben-Youssef et al., 2017). The study collected the
UE-HRI dataset which is widely utilized for investigating
engagement (Zhang et al., 2021; Dhamija & Boult, 2018;
Saleh et al., 2021; Liu & Kappas, 2018; Atamna & Clavel,
2020; Del Duchetto et al., 2020). Another approach relates
to intervention or participation-based interactions, in which
robots interact with individuals in a more targeted and
time-specific manner (Alghowinem et al., 2021; Jain et al,
2020). The NAO humanoid robot is the most frequently
used robot in this category (Anagnostopoulou et al., 2021).
In the first approach, features such as individuals approach-
ing or turning toward the robot, body posture, and gaze
toward the robot, are the main indicators of engagement,
while in the second approach, the focus is on the quality of
interaction between the subject and the robot.

This review highlights some challenges and limitations in
the existing literature. Despite the progress made in utilizing
DL for engagement detection, challenges such as annotation
complexities, dataset availability, and model generalizability
remain prevalent in the field. Addressing these challenges
through standardized methodologies, benchmark datasets, and
cross-validation techniques will be crucial for advancing the
reliability and applicability of DL-based engagement detection
systems in real-world HRI scenarios. Future research efforts
should focus on addressing these challenges to advance the
field and facilitate the development of more effective and reli-
able engagement detection systems. Furthermore, conducting
longitudinal studies to assess the long-term performance of
engagement detection, can contribute to the development of
more robust and adaptive engagement detection algorithms,
ultimately enhancing the user experience and fostering deeper
connections between humans and robots.

The effectiveness of engagement detection models can vary
significantly depending on the environment in which the
robots operate. For instance, robots used in public spaces,
such as the Pepper robot interacting with random attendees at
exhibitions, must be designed to handle spontaneous and
diverse interactions. These settings often involve a wide range
of user demographics and engagement levels, requiring models
that can adapt to varying social cues and behaviors. In con-
trast, robots employed in clinical settings, such as those assist-
ing patients with specific needs, operate within a more
structured and targeted framework. Here, the interactions are
often more focused, with defined goals related to therapy or
rehabilitation. The engagement detection models in these con-
texts must account for the unique dynamics of patient interac-
tions, including emotional states and specific communication
needs. By recognizing these differences, researchers can
develop tailored datasets and methodologies that enhance the
applicability and reliability of engagement detection systems
across various HRI scenarios. This contextual relevance is
essential for ensuring that engagement detection models are
not only effective but also sensitive to the nuances of different
interaction environments, ultimately leading to improved
human-robot interactions.



Ethical considerations also play a crucial role in engage-
ment model development, particularly concerning user priv-
acy and the potential for biases in the models can lead to
inequitable treatment of different user demographics.
Furthermore, there is a risk of over-reliance on Al systems
in sensitive areas like healthcare, where the human element
is vital for effective care. Despite these challenges, the accur-
ate detection of user engagement through DL can lead to
significantly improved user experiences, as SARs can tailor
their interactions based on real-time engagement cues. This
adaptability not only fosters more personalized and mean-
ingful interactions but also enhances user satisfaction and
trust, ultimately promoting the long-term adoption of SARs
in various settings, including therapeutic and assistive envi-
ronments. By addressing these challenges, researchers can
pave the way for more effective and reliable engagement
detection systems that enhance the overall impact of SARs
on users’ lives.

5. Conclusion

The primary objective of this scoping review paper is to pro-
vide a comprehensive overview of the current DL methods
used for detecting user engagement in HRI, as well as the
features employed for this purpose. The utilization of DL
algorithms for engagement detection is a noticeable and con-
tinuously increasing trend in comparison to traditional
methods. This trend is expected to gain further momentum
in the near future with the development of more appropriate
datasets. Through the use of a rigorous methodology, this
review paper identified common features and patterns
obtained by DL techniques for user engagement detection.
The review reveals that DL techniques employ facial features
and head poses as prominent features in detecting engage-
ment. The most commonly utilized robots in this research
area are social robots. The review also reported prevalent
datasets and labeling approaches for developing engagement
detection models.

It's important to note that while other related studies may
have explored similar topics without explicitly addressing
“engagement,” this paper emphasizes algorithmic approaches
for engagement detection. We identified gaps in the literature,
particularly the need for more exploration into the temporal
nature of engagement, the lack of context-based datasets, and
a notable gap in investigating engagement for non-social
robots. Furthermore, while there are studies that have utilized
physiological sensory and performance-related data, there has
been an insufficient investigation into employing these data
for engagement detection and deriving substantive insights
into the potential of this approach.
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