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Abstract

Fluorescence microscopy is an effective tool for imaging biological samples, yet captured
images often contain noises, including photon shot noise and camera read noise. To ana-
lyze biological samples accurately, separating background pixels from signal pixels is
crucial. This would ideally be guided by the knowledge of a parameter called the Pois-
son parameter, Apg, representing the mean number of photons collected in a background
pixel (for the case when quantum efficiency = 1 and the dark current is negligible).

This study introduces a method for estimating Apg, from an image which contains both
background and signal pixels, using probabilistic noise modeling for an sCMOS cam-
era. The approach incorporates Poisson-distributed photon shot noise and sCMOS cam-
era read noise modelled with a Tukey-Lambda distribution. We apply a chi-square test
and a truncated fit technique to estimate Apg directly from a general sCMOS image, with
camera parameters determined through calibration experiments.

We validate our method by comparing Apg estimates in images captured by sCMOS and
EMCCD cameras for the same field of view. Our analysis shows strong agreement for
low to moderate exposure images, where estimated values for A,g align well between the
sCMOS and EMCCD images. Based on our estimated Ay, we perform image threshold-
ing and segmentation using our previously introduced procedure.

Our publicly available software provides a platform for photophysical image analysis for
sCMOS camera systems.

Introduction

Fluorescence imaging of biological samples is fundamental in studying cellular and molec-
ular components. Fundamentally, a fluorescence microscope operates on the principle of
distributing a limited photon budget across the spatial dimensions of a detector or an image
plane. Fluctuations due to a limited number of photons is referred to as photon shot noise [1].
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In addition, the image recorded in fluorescence microscopy is affected by the camera read
noise which is the random electronic noise introduced by the sensor’s readout electronics
[2,3].

Scientific complementary metal oxide semiconductor (sSCMOS) cameras have gained sig-
nificant popularity in recent years for imaging dynamic biological samples [4,5]. Their advan-
tages, such as higher frame rates (images captured per second), larger sensor areas, high quan-
tum efficiency (photon-to-photoelectron conversion rate), and low effective read noise , make
them an increasingly popular alternative to EMCCD cameras, which are limited by multi-
plicative noise (noise multiplied along with the signal by the electron multiplying gain) [6-9].
Processing sCMOS fluorescence images (i.e. image thresholding, image segmentation) still
poses challenges, as each pixel may exhibit independent response characteristics, such as noise
and offset, due to the independent readout units [2,7]. This is also different in comparison to
EMCCD where the incoming photoelectrons are shifted serially through a gain multiplication
register [10].

A common challenge in fluorescence microscopy image analysis is image thresholding,
which distinguishes signal pixels (emitted photons from fluorophores) from background pix-
els (dominated by non-specific photons). Thresholding methods are categorized into super-
vised and unsupervised approaches. Supervised methods require manual parameter adjust-
ments tailored to each image or extensive labeled training data, while unsupervised tech-
niques automatically classify pixels based on heuristic criteria or intrinsic image properties
such as photon statistics and intensity distributions or calibration data [10]. In low-intensity
images, distinguishing signal from background becomes especially difficult due to minimal
contrast and overlapping photon distributions [9]. However, incoming photons follow proba-
bility distributions, and understanding these statistical patterns can allow for improved image
classification. It is the overarching purpose of this study to introduce a new probabilistic
photophysics-based method for unsupervised image thresholding for low-intensity sCMOS
images.

The gold standard for unsupervised image thresholding is the Otsu method, which has
been widely used for decades. Otsu’s approach is a heuristic method that finds an optimal
intensity threshold by minimizing the weighted sum of intra-class variances (or equivalently
maximizes inter-class variances) [11]. The Otsu method does not explicitly account for the
noise characteristics inherent in imaging systems, nor does it provide rate of misclassifica-
tions - issues that are especially important in low-intensity image analysis.

Probabilistic unsupervised image thresholding methods include the Poisson-Gaussian
(PG) framework which seeks to separate photon shot noise (Poisson) and stationary noise
sources (Gaussian) [12], Generalized Anscombe Transformation (GAT)-based denoising [13],
and pixel-wise MLE calibration [14]. However, these methods oversimplify noise sources by
modeling them (including read noise) collectively as Gaussian with pixel-dependent vari-
ances. Recently, K. Wei et al [15], addressed the non-Gaussian nature of sSCMOS read-noise
featuring heavy-tail behavior in low-light regime images. They subsequently used a con-
volutional neural network (CNN) based image enhancing algorithm, which required large
training datasets.

Despite advances in camera-specific noise modeling, a universal physics-driven framework
for unsupervised probabilistic thresholding, with a priori control over misclassification rates,
is lacking. To remedy this, we adapt the EMCCD photophysical image analysis pipeline by J.
Krog et al [10] to sCMOS images. Following [15], we model the sCMOS readout noise using
a Tukey-Lambda distribution to deal with low-light conditions. Our framework automati-
cally estimates the background Poisson parameter (4yg) without user intervention directly
from an image that contains both background and signal pixels (at arbitrary ratios). Using this
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estimate, we subsequently perform unsupervised probabilistic sSCMOS image thresholding
and segmentation.

The paper is structured as follows: In “Materials and methods” we outline the method,
including noise modeling at different sCMOS imaging stages, the probabilistic model for
intensity distribution, and techniques for estimating camera parameters. In “Results” we
present results, detailing noise model parameter estimation, Poisson parameter A for back-
ground pixels, and probabilistic image thresholding and segmentation. We also demonstrate
the robustness of our approach by comparing estimates of Ay, in images acquired from both
sCMOS and EMCCD cameras of the same field-of-view (FOV) with identical experimental
settings. In the “Summary and outlook” section, we conclude with key findings and future
directions.

Materials and methods

The photophysical image analysis pipeline integrates three components. First, modeling the
sCMOS imaging cascade: from photon-to-photoelectron conversion, charge transfer, and
amplification to digitization, with stage-specific noise sources (shot noise, read noise, quan-
tization noise), see subsection “Theory” below. The model is expressed as an expression for
the probability mass function (PMF) of the recorded image counts. Second, empirically esti-
mating SCMOS camera parameters (gain, offset and the Tukey-Lambda distribution param-
eters) to align model with experimental data, see subsections “Experiments” and “Camera
parameter estimation”. Third, equipped with camera parameters, a probabilistic method esti-
mating Ay, and performing photophysical image thresholding and segmentation, see the last
subsections “Estimating A,” and “Unsupervised probabilistic image thresholding and image
segmentation”

Experiments

Two types of cameras were used in this study: 1) sCMOS (Photometrics Prime 95B 22 mm)
and 2) EMCCD (Andor iXon Ultra). The sCMOS camera has a pixel size of 11 um and a sen-
sor format of 1412 x 1412 pixels. The camera has three software-controllable gain modes: sen-
sitive, balanced, and full well [16]. Throughout this study, we consistently used the balanced
gain setting mode for all sSCMOS camera experiments. The EMCCD camera has a pixel size
of 13 um and a sensor format of 1024 x 1024 pixels [16]. The EM gain setting of the camera is
variable from 2 to 300.

All the images were captured using a Zeiss Axio Observer Z1 microscope which has two
side ports to mount the cameras and a software option to switch between the camera ports.
The microscope is coupled to a Colibri 5 multicolor LED light source that can emit four wave-
lengths. A 100X oil immersion microscope objective lens was used to capture all the signal
images at a scaling of 110 nm per pixel.

In the following, we categorize the experiments performed in this study in three subsec-
tions i) Calibration experiments ii) fluorescent DNA and bacterial cell imaging experiments
iii) Dual camera same FOV experiments.

sCMOS calibration experiments. We performed two types of sCMOS calibration experi-
ments:

In the Cap-on experiment, the illumination was turned off and the camera shutter was
kept closed to capture a dark-field image of the sSCMOS camera with exposure time 1 us. We
estimated offset and read noise parameters by analyzing this image (see camera parameter
estimation).
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In the Illuminated white wall experiment, bright field movies were captured by focusing the
sCMOS camera on a uniformly illuminated white wall and varying the illumination inten-
sity from 10% to 100% in increments of 10 percentage points. We captured 1000 time frames
at each intensity keeping the exposure time fixed at 400 ms. We used these stacks of bright
images of different intensities to determine the gain by a mean-variance analysis 19.

sCMOS images of fluorescent DNA and bacterial cells. Fluorescently stained DNA was
stretched on a silanized glass slide [17]. The DNA was stained with YOYO-1 dye that has an
absorption maximum of 489 nm and an emission maximum of 509 nm. In the Fluoroscent
DNA experiments, these DNA molecules were imaged with a sSCMOS camera with blue light
excitation (469/38 nm bandpass excitation filter) at 8% illumination intensity and exposure
time varying from 1 ms to 1000 ms [18].

For the cellular imaging experiments purpose, Bacillus subtilis bSS82 cells (genotype trpC2
amyE::spc PrpsD-gfp) which overexpress the green fluorescent protein (GFP) were used [19].
Live bacterial cells were fixed on agarose pads on microscopy glass slides. During imaging, the
light intensity was fixed at 8% and the images were captured using the sCMOS camera at the
following exposures: 10, 100, and 400 ms.

Dual camera imaging of the same FOV. We mounted the sCMOS and the EMCCD cam-
eras on each of the two mounting ports (left and right) of the microscope. Using the fluores-
cently stained DNA sample on glass (prepared as described above), we captured an image
using one camera, and then switched port and captured the same field of view (FOV) using
the other camera. The camera port was switched using the microscope software. We recorded
the images in both cameras under identical experimental conditions (same light source inten-
sity, and exposure time). In these experiments, the EMCCD camera had a gain setting of 100
and the sCMOS camera used the balanced-gain setting. To minimize the effects of photo-
bleaching, a different FOV on the glass slide was imaged for each exposure setting and the
videos were limited to 20 frames. Also, the cameras were alternated, in the sense that if an
image was captured at one exposure setting first with sCMOS and then EMCCD, the image
for the next exposure setting was captured first with EMCCD and then sCMOS.

In addition, to estimate the camera model parameters of the EMCCD camera (required for
analysis of the same FOV images of the EMCCD), we performed a set of calibration exper-
iments (Cap-on and Illuminated white wall) similar to the sSCMOS camera calibration [10].

To this end, the dark field image was captured at a minimum EM gain 2 and at a fixed expo-
sure of 1uus. We recorded 100 bright field time frames by EMCCD camera at each different
intensity (10%, 20%, ---, 100%) keeping exposure time and EM gain fixed at 500 ms and 100,
respectively.

Theory

The output from each image pixel is a digital image count (n;.), which can be expressed as a
sum of independent random contributions,

nic:gnoe+Nread+Nq+A) (1)

where n,, is the number of output photoelectrons generated in each pixel area. N,.,4 repre-
sents the cumulative noise generated in the readout circuit during the conversion of photo-
electrons to voltage signals. ¢ is a constant representing overall gain of the system in units
of ADU/e”, during the conversion of electrons to digital counts. N, represents the quanti-
zation error (in digital counts or ADU) during conversion to a digital number, and A is the
offset, a constant (in ADU) added to each pixel to prevent any undesirable negative output.
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The quantities n,, due to the quantum nature of light, Nye,q due to electronic fluctuations in
the read-out circuitry, and N, due to rounding to the next integer value, are random num-
bers, and as a consequence, 7, is also a random variable. The aim of the modelling is to derive
an expression for the probability mass function (PMF) of n;.. To this end, we start by briefly
discussing the generation of each of these components and the underlying processes, before
deriving an explicit formula for the PME

Photons hit the sensor region. In an imaging process, photons arriving at the camera
sensor are typically assumed to be Poisson-distributed [10,15]. This underpins the principal
noise source in sSCMOS imaging: photon shot noise, which is non-deterministic due to the
quantum nature of light, and varies randomly about a mean number of photons (A) directly
proportional to the camera’s exposure time. These photons then undergo photoelectric con-
version to the mean number of photoelectrons (4) at the sensor. The conversion factor is
known as quantum efficiency (QE). The resulting random variable #,, has a PMF:

p(”oel/l) =P(noe1), A=QE-A+c )

where P(k; A) is the PMF for the Poisson distribution with parameter A. ¢ is a constant cor-
responding to the mean number of photoelectrons in the absence of incoming photons (e.g.
dark currents) [20].

Transfer of photoelectrons through readout circuitry. After the photoelectric conver-
sion of photons to electrons within each pixel area of the sensor region, these electrons are
amplified and converted into voltage signals by the output readout circuitry inside each pixel
[2,16]. The conversion of electrons (e”) to voltage signals at each pixel is mediated by a mul-
tiplication factor called the analog conversion gain (g’). Usually, the voltage signals and ¢’ are
expressed in terms of 4V and uV/e™, respectively.

The readout process in sSCMOS sensors introduces read noise (Ne,q), which arises from
electronic perturbations during charge-to-voltage conversion in the pixel’s readout circuitry.
Such noise also includes contributions from thermal noise and source follower noise [15].
Under certain conditions (e.g., high readout speeds), source follower noise can exhibit non-
Gaussian outliers, leading to a long-tailed distribution that deviates from purely Gaussian
behavior [15]. Recent work argues that the Tukey-Lambda (TL) distribution family can effec-
tively model the long-tail behavior of read noise (Nyeaq ~ TL(Arr, tr1, o) in SCMOS cam-
eras. The TL distribution is defined by its quantile function for a uniformly distributed ran-
dom variable R ~2£(0,1) [21]:

Nread = g1 + 011 Q(R; A1), (3)
with
RATL ~(1-R AL
R (=R o 20,
Q(R;ArL) = RATL (4)
Inl — |, if At =0,
n(l—R) R

where Ay, is the shape parameter that determines the type of distribution, such as At & 0.14
approximates a Gaussian distribution and Ary, = 0 corresponds to a logistic distribution. p7y,
the location parameter is set to zero following the zero mean noise assumption [15]. oy is the
scale parameter.

Each pixel in a row is then connected to the appropriate column voltage bus, where the
on-chip analog-to-digital conversion (ADC) process in sCMOS cameras maps a pixel’s voltage
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signal Ve (voltage signal converted from the charge of electrons in a given pixel) to a digi-

tal value (ADU) using the relation: Vi X (2‘"/1 ;1)

ADC, and Vg, is the ADC’s reference voltage (full-scale range) [16,22]. Therefore, the over-
all gain g of the sSCMOS camera is equal to the magnitude of analog gain ¢’ (charge-to-voltage
conversion factor) with units [uV/e"] X [ADU/uV] = ADU/e", where ADU/uV represents
the unit of transfer function of ADCs [23]. We operated in balanced mode with 12-bit depth
ADC, which balances sensitivity and noise [16,24].

The conversion of overall voltage signal (V}ix;) within a pixel to the nearest integer intro-
duces a quantization noise (in units of ADU) which approximately follows a uniform distribu-
tion [10],

, where ny, is the bit depth (resolution) of the

-1 1
N, ~U(—,— 5
1~ UG 50) ©
with g = 1 is the quantization step [15].
After the conversion processes described above, we have g1y, + Nyeqq + N, for each pixel
in units of ADU. To this number, the camera adds offset (A) to form the final output image

count (n;) given by Eq (1).

PMF for the image counts

In the above section, we have seen that the random variables 71, Nyeqq and N, have distinct
sources of origin and are characterized by PDFs/PMFs of known form. In such cases, the
characteristic function (CF), which is the Fourier transform of the PMF given by (exp(ikn;.)),
is a useful construct. The CF of a sum of independent random variables factorizes into

the CFs of the individual random variables [25]. Hence, we may first calculate the CF and
then Fourier-invert it back to its corresponding PME So, the characteristic function of the
recorded image count n;. (see Eq (1)) in a pixel is given by,

¢ (k) = (exp(iknic)) = (exp(ikgnoe)) (exp(ikNyead)) (exp(ikNy)) exp(ikA) (6)

Photoelectrons Read Noise Quantization Noise

where k is the Fourier variable associated with n;.. As the mean number of incoming photons
and outgoing photoelectrons (A and 4, respectively) both follow Poisson distributions, the
individual characteristic function of the outgoing photoelectrons 4 has a closed form [26] and
is represented by,

(exp(ikgn,e)) = exp (/1 (eikg - 1)) (7)
with 1 = QE - A+c as before.
The CF of the read-noise Nieaq (3), is:

1 RATL _ (1~ R)ATL
(exp(ikNyead)) = f exp (ikaTL R -(-R)™ dR. (8)
0 TL
where the choice of integration limits follows from the fact that expectation value on the
right-hand side is with respect to a uniform distribution over the range [0,1]. The integral
above cannot be solved analytically. Thus, we approximate it by discretizing R into n points:
Ri=(1-1)6,6=1/(n-1),1=1,...,n. We evaluate the integrand at each R;:
RM— (1 R)An
yi=exp | ikorL ! . 9)
A
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and, lastly we apply the trapezoidal rule:

) n-1
(exp(ikNiead)) & 2 ()q +yn + 22)}1) . (10)
1=2

Next, the CF of the quantization noise N, (Eq 5) is given by:

sin(k/2)

(exp(ikNy-1)) = /2 (11)
Combining all independent components, the total CF becomes:
) n-1 : 2
®(k) ~exp (4 (e’kg - l))|§ (yl + Y+ Zéyl)]ﬁnk(/kz/) exp(ikA) (12)
where y; is given in equation (9).
To compute the PMF p(#n;), we apply the Gil-Pelaez Fourier inversion [27] to the CF
@(k):
1 (7 -
(i) = PME(n) ~ — / R [@(k)e ] dk, (13)
7w Jo

where R denotes the real part of the integrand. The upper limit is 77 because the CF of the dis-
crete variable 7, is periodic with period 27, so the inversion integral is taken over [0, 7]. We
again discretize the integral by using a trapezoidal quadrature similar to Eq (10).

The cumulative distribution function CDF(n,) is calculated by the summation of PMF
p(ni0) [10]

Mic

CDF(ny) :Zp(n). (14)

We use this CDF for the image thresholding algorithm which discriminates background from
signal pixels based on their probabilistic distributions.

The sCMOS-PMF given by the Eq (13) is different from EMCCD-PMF [10] in two funda-
mental ways. First, here the gain step does not include electron-multiplication (the sSCMOS
camera does not amplify the converted output electrons). Second, the read noise for sSCMOS
cameras is a Tukey-Lambda distributed random number instead of a Gaussian random num-
ber as for EMCCD [10].

Camera parameter estimation

We here demonstrate how to estimate the camera model parameters, chipParams =
(g AL, 0711, A), through theoretical analysis of calibration experiments. In the “Results”
section, we will use chipParams in the estimation of A;,.

Estimation of the gain parameter, g. We estimate the sSCMOS camera gain, g, using a
mean-variance approach, where g is obtained as the slope of the experimental pixel-based
mean-variance relationship.

For the mean-variance analysis we use data from the Illuminated white wall experiment
(see subsection “Experiments”), at all different illumination intensities. For each pixel, the
experiments provide a time series of the image counts from which we estimate the means and
the variances. This procedure yields experimental mean-variance data, i.e., (ﬁg), $20)), where
jlabels the pixels in all experiments (j = 1, ..., m, where m is the number of pixels).
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To match the experimental mean-variance data to theory, we need to derive an expression
for the relation between the mean image count and its variance. Taking the expectation value
of Eq (1), we obtain the mean image count at a pixel as

E[nic] = gE[#5e] + E[Nyeaa] + E[Ny] + A. (15)

Since ;. is a sum of independent random variables (discussed above), its mean is simply
the sum of the individual means. Furthermore, using the facts that E[#,,] = 4, E[Nyeaa] = 0
(since uyy, = 0) and E[N,] = 0 we obtain

E[n;.]=gA+A. (16)

Similarly, the variance of n;., see Eq (1), is obtained using the fact that variances of inde-
pendent random variables add up:

1
Var[n;.] = @A + 53 + o (17)

where we used that for a Poisson distribution, the mean is equal to the variance, i.e. E[ng,.] =
Var[#,.] = A. The variance of Tukey-lambda distributed random number is given by,

2 1 I'(1+Arp)?

2z _ , 18
A%L 1+ ZATL F(2 ATL + 2) ( )

S”ZFL :U%L[

where A > -1/2 [21] and T'(z) is the Gamma function. Above we also used the fact that the
variance of the rounding error N, is given by Var(N,-;) = 1/12 [10,28].

Solving Eq (16) for A and plugging the result into Eq (17) we obtain our final mean (sub-
tracted by offset)-variance relation:

Var[n; ] =g (E[ni] -A) +d. (19)

where the constant (“y-intercept”)

d=st + 1—12 (20)

Inspecting Eq (19), we notice that the gain, g, appears as the slope if the variance is plotted
as a function of the offset subtracted from mean (E[#,.] - A). In the mean-variance analysis,
we therefore fit (using the least squares method) our experimental mean-variance data (see
above) to a straight line. The slope of this line serves as our estimate of g. The fitted value for
the constant d is here not used for parameter estimation. We will, however, later show how to
use it as a consistency check.

Offset estimation. The offset, A, is estimated by using the dark frame image acquired
during Cap-on experiment (see the “Experiments” section). In this experiment, we have no
input photons and therefore we can set the n,, to 0 in Eq (1). By further taking the expecta-
tion value of this equation we obtain E[n;.] = A following Eq (15). Hence, A is the average
image count in the Cap-on experiment. We therefore estimate A as the empirical mean,

1<, 0
A-— Z n 3
j=1
where ni(cj ) is the recorded image count for pixel j (j = 1,2, .., m) in the cap-on experiment.
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Estimation of the read noise parameters (A7, orr). To estimate the shape parameter
(A7p) and the scale parameter (o7r) in the Tukey-Lambda distribution we again make use of
the Cap-on experiment. Again setting the first term in Eq (1) to 0 (no incoming photons in the
cap-on experiments), we find that the image count in these experiments is a random variable
#ic = Nreag + Ng + A. In the following, we also neglect the rounding error, i.e., we set N, ~ 0, and
assume A known (i.e. estimated in the previous subsubsection). With these approximations,
we have 7, — A & Nieaq; 1.€., the statistics of the recorded image count in the Cap-on experiment
(with the offset subtracted) is described by the Tukey-Lambda distribution.

To estimate the parameters Ay, and oy, we use a technique called probability plot cor-
relation coefficient (PPCC) [21,29], which we here recapitulate for completeness. The PPCC
method, as applied to our data, is divided into the following steps:

o Collect the image counts from a cap-on sCMOS image into an one-dimensional array. Sort
o @ (m) @) o cplm

this array to yield: (n;.’,n,”’, ..., n;, b

 Write the theoretical quantiles for the Tukey-Lambda distribution on the form

), where ni(cl) <n

cheory,j =orLF theory,j (22)
forj=1,..., m, with unscaled theoretical quantiles

A A

up ™ — (1 —uy)?m

Ftheory,j = A — > (23)
TL

where

For a fixed set of parameters, the quantile function for the Tukey-Lambda distribu-
tion can be graphically illustrated by plotting Qneory as a function of u where Qneory =
(Qtheory,1> Qtheory,2s -+ » Qtheory,m) and u = (uy, s, ..., uy,) (by instead plotting u as a function
of Qiheory> one could illustrate the cumulative distribution function).

o Compute empirical quantiles

Qupj =1 =8, j=1,..,m.

« For each Ay, within a range [-1,1], compute the Pearson correlation coefficient (PCC)
between the Qemp and Fiyeory:

Z;Zl (Qemp,j - Qemp)(Ftheory,j - Ftheory)

p(An) = —— = — = :
\/Ejzl (Qemp,j - Qemp)2 ZFI (Ftheory,j - Ftheory)2

The PCC takes values between -1 and 1, and perfect agreement (up to a scale factor)
gives PCC = 1. For a “good fit” (Qtheory ® Qemp)> @ quantile-quantile (QQ) plot of Qepyp ver-
sus Fieory should ideally be a straight line, where the slope of this line gives o7y, (see Eq 22)
[29]. We therefore choose the value of Ay that maximizes p [29] (the “optimal” Agy) .

« For the optimal Ay from above, we then estimate the slope by fitting a linear function
using the least squares method; the value of the fitted slope serves as our estimate of o,
[29].
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Consistency check of estimated camera parameters. After estimating all the camera
parameters: chipParams = (g, AL, 011, A), as a consistency check, we plug these estimates
into Eqs (18) and (20) to obtain an expected value for the y-intercept, d. This value can then
be compared to the actual y-intercept obtained in the fitting procedure in the mean-variance
analysis in Fig 1.

Estimating 4,,

Using the estimated sCMOS camera chip parameters, chipParams, we estimate the Poisson
parameter Ayg describing background pixels in sCMOS images containing both background
and signal regions. Following Krog et al. [10], we fit a truncated version of sSCMOS-PME, Eq
(13) given by PMF(ni(Z) |6), to the lower tail of the image count histogram (where background
dominates) with A, as a fit parameter. Note that we deliberately restrict the fit to the lower
tail of the image count histogram, so that any contribution from signal photons (described by
Poisson parameter A4g) does not enter our truncated PMF fit. The fitting procedure involves

(@)
the truncated likelihood: ] %Nbgl's))

As in [10], we iteratively adjust the truncation point lecg and perform maximum likelihood
estimation (MLE) until the fit satisfies a goodness-of-test with a significance level set by
PGor = 0.01.

, where O = {chipParams, Apg} = {g, A11, 011, A, Apg}-

Unsupervised probabilistic image thresholding and image segmentation

With all camera parameters and Apg estimated, we can perform unsupervised probabilistic
image thresholding and segmentation, similar to [10], but here for an sCMOS imaging system
instead of an EMCCD setup.

For image thresholding, we follow the procedure formalized by [10]. We first estimate an
image count threshold, Z\]}}:‘r“h based on a p-value binarization threshold ppinasize = 0.01. Here,

1800
1600
1400

1200

Variance
-
o] o
o o
o o
T

(2]

o

o
T

400 ‘g
200 f

0 = !
0 200 400 600 800 1000 1200 1400
Mean - Offset

Fig 1. Estimating the gain parameter, g, of the sCMOS camera: Variance vs mean plot of bright field images
acquired during the Illuminated white wall experiment (see ‘Experiments’ section). Intensity levels were incre-
mented in 10% steps from 10% to 100%. The gain is calculated from the slope of plot using the Eq (19), yielding
g=0.81+0.005 (shown as the solid cyan line). The y-intercept of the linear fit is 6.4. This value is consistent with the
value 4.7 obtained using Eq (20).

https://doi.org/10.1371/journal.pone.0335310.g001
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PDbinarize 1S our a priori value of the number of false positives that we accept (i.e., an accept-
able value for the fraction of white pixels in background regions). The p-value is turned into
an image count threshold, N'™h by inverting the CDF (Eq 14). With this threshold in hand,
we binarize (threshold) the image by turning pixels with an image count above the thresh-
old, white, and those below the threshold, black. The strength of this method is that by using
Pbinarize We know a priori the expected fraction of white pixels in background regions.

For segmentation, we use the binarized image and apply the method from [10] with
allowedGapLength = 1 to identify the connected components of white/black pixels. Seg-
mentation quality is controlled via a p-value pyg (see [10] for details), calculated using the
sCMOS-PMF for summed counts in each segmented region.

Results

The Results section is organized as follows: First, we calibrate the sCMOS parameters (gain,
offset, read noise parameters) using calibration experiments. Next, we estimate the back-
ground Poisson parameter (1s,) from images containing both signal and background pixels.
We then perform automated, unsupervised thresholding and segmentation with prior error
estimation, requiring no user intervention. Finally, we validate the sCMOS-PMF framework
by comparing 4;, estimates derived from sCMOS and EMCCD detectors under identical
imaging conditions, confirming the accuracy of our algorithm.

Camera parameter estimation

Using a set of calibration experiments combined with the parameter estimation procedure
described in Materials and Methods, we estimate the model parameters for the sCMOS cam-
era used herein.

We first estimate gain parameter of the camera using data from the Illuminated white
wall experiment recorded at increasing intensities (10%,20%,..,100%), see Fig 1. Through
mean-variance analysis (see “Methods and materials”), the slope of this relationship yields
the camera’s gain, estimated as g = 0.81 +0.005 ADU/e” under balanced conversion gain
settings.

From the mean dark-frame intensity in the Cap-On Experiment (Eq 21), we estimate A =
100.10 +0.05 ADU, which is in close agreement to the factory default bias of 100 ADU [16].

We next seek to estimate the camera parameters associated with the read noise. From our
Cap-On experiment, we acquired the dark frame images, which are used to estimate shape
parameter (Arr) and scale parameter (o) in the Tukey-Lambda distribution family fol-
lowing the steps discussed in “Methods and materials” (see Fig 2). The mean value of Ay,
and oy, over all dark frames of our sCMOS camera are given by values 0.055 + 0.007 and
1.310 +0.005 7, respectively.

Estimating 4,, in an image with background and signal pixels

Using the calibrated camera parameters (g, Ay, o1, A), we can estimate the Poisson param-
eter Apg describing background pixels in sSCMOS images containing both background and
signal regions using the procedure described in Materials and Methods. We estimate the back-
ground Poisson parameter Ayg of a fluorescence image of DNA on glass (Fig 3), acquired with
a 100 ms exposure time and balanced gain settings.

To deal with non-uniform illumination, like in [10], we partition the image into 16 X 16
tiles (64 X 64 pixels each). Focusing on the tile {(7,13)}, we compute A using our truncated
PMEF fitting procedure described in Materials and Methods. In Fig 3(b), the histogram’s blue
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Fig 2. Estimation of read noise parameters, Ay and o7, for the sCMOS camera. Panel (a) shows the Pearson
correlation coefficient, Eq (24), between the empirical quantiles , Qemp, from the dark frame image (acquired during
Cap-On experiment) and the unscaled theoretical quantiles, F, for a range of shape parameters (A7 ). The dashed
line in the figure represents Ay = 0.055 + 0.007 corresponding to the maximum PCC score. Panel (b) plots the dark
image frame empirical quantiles against the theoretical unscaled quantiles at the optimal Ary, from panel (a). The
slope of this curve gives estimation of the scale parameter (071 ) given by 1.310 +0.005 ¢™ . The y-intercept of the
fitted line is 0.009 (which is close to the expected value 0).

https://doi.org/10.1371/journal.pone.0335310.g002

bars represent pixel intensities below Nfcg =190, identified as true background, while orange
bars denote uncertain (mixed background/signal) pixels. Our analysis yields Apg = 102.6, cor-
responding to an average of approximately 102 photoelectrons (or 102 photons multiplied
with QE) generated in the sensor. To illustrate the robustness of our algorithm, we also fit the
image counts from the tile {(8,8)} in Fig 3(c). Here, the estimated 4;, = 102.2 remains similar
to that of {(7,13)}. However, the threshold Nzg increases to 197 highlighting the variation in
the image. The sCMOS-PMF given by black dashed line, Eq (13) fits well to the entire image
histogram.
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Fig 3. (a) An sCMOS image of fluorescently labelled single DNA molecules deposited on a glass slide. The image is acquired using a procedure described in the
subsection Experiments in Materials and Methods. The image is split into tiles of size 64x64 pixels, where each tile is given a label {row,column}, where in this example
row,column = 1,..,,16. (b) A histogram of the image counts for a single tile, here tile {7,13} (yellow bordered tile in Fig 3(a)). The blue bars represent pixels regarded as
true background, while the orange bars represent the outliers (not true background or signal pixels). The background Poisson parameter is estimated to Ayg = 102.6. The

image count threshold was estimated to be Ni’f =190. This threshold separates the blue and orange bars and was determined using a p-value threshold, pg,r = 0.01, for
the goodness-of-fit tests. The dashed black curve shows the fitted PMF for the estimated background, extended to the full range of image counts (in our method, we fit a
truncated PMF to the blue bars). (c) To show the contrast across the tiles in the image, we estimate lbg =102.2 for another tile {8,8} (green bordered tile in Fig 3(a)) with

fo =197. Thresholded and segmented versions of the image from panel (a) are found in the Supporting information, S1 Fig.
https://doi.org/10.1371/journal.pone.0335310.g003

One of the key advantages of our algorithm is its performance with very low-exposure
images (e.g., 1 ms). To demonstrate this, we plotted the sSCMOS-PMF fit on the image his-
togram of the sSCMOS camera for three low exposure times: 1 ms, 8 ms, and 20 ms in Fig 4.
The average background Poisson parameter for the 1 ms image is 4,, = 0.335, indicating that,
on average, each pixel records less than 1 photoelectron.

Finally, to further validate the robustness of our sCMOS-PMF fitting procedure, we calcu-
lated Apg from DNA on glass images across a wide range of exposure times, from 1 ms to 1000
ms. Ideally, the algorithm should provide a background Poisson parameter that follows a lin-
ear relationship with exposure time (10 times longer exposure times results in 10 times more
photons hitting the sensor). Fig 5 shows this expected behavior, where A;,4 indeed display a
linear relationship with exposure time.

Probabilistic image thresholding and image segmentation

With the camera parameters and 4,, estimated, we next apply our probabilistic image thresh-
olding and segmentation methods, see “Materials and Methods”. Fig 6(a) show an example of
a bacterial cell image, acquired using a procedure described in the subsection Experiments.
Fig 6(b) display a thresholded (binarized) version of this image, where white pixels ideally
represent non-background regions (given a significance level set by ppinarize). From the bina-
rized image we perform image segmentation, where Fig 6(c) displays detected regions (yellow
boundaries) using the method described in “Methods and Materials”

We notice that visually our unsupervised thresholding and segmentation procedure works
very well for the above example. To further evaluate the robustness and performance of our
image processing pipeline, we applied it a few more datasets including bacterial cell images
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Fig 4. Performance of the sCMOS-PMF algorithm at low exposure time images: (a) 1 ms, (b) 8 ms, and (c) 20 ms
(tile {5,7}). The sample being imaged is identical to the one in Fig 3. Black dashed curves represent fitted PMFs.

Estimated background Poisson parameters (4;,) and threshold counts (N?;g ) are given in the figure legends for each
case.

https://doi.org/10.1371/journal.pone.0335310.g004

acquired at other exposure times and fluorescently stained DNA on glass substrates (Fig 3)
(see Supporting information, S2-S3 Figs).

Comparison of estimates of 4;, for sSCMOS and EMCCD for cameras
focusing on same FOV

To test the robustness of our algorithm across different fluorescence cameras, we conducted a
procedure Dual camera same FOV experiment (see the experiments subsection in “Methods”),
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Fig 5. Relationship of the estimated background Poisson parameter (4;¢) with the exposure time of the sCMOS
camera. We show the average background Poisson parameter (over all tiles) for images with exposure times (1-1000
ms). The inset shows zoomed version of the image for 1-16 ms. Notice that Ay, increases linearly with exposure time,
as it should (since the number of collected photons increases linearly with exposure time). The error bars are the
standard deviations of Apg across tiles in the image.

https://doi.org/10.1371/journal.pone.0335310.g005

where both cameras were mounted on the same microscope and focused on the same field

of view (FOV) containing a DNA sample on glass. This approach ensures that, under identi-
cal experimental conditions (same light source intensity, and exposure time), both cameras
should ideally record the same amount of background photon counts per unit area after offset
and noise parameter corrections.

We compared the sSCMOS-derived estimates of A,,/pixel area with its counterpart from
the EMCCD camera as the pixel size for the sCMOS (11 um) differs from EMCCD (13 yum).
For the EMCCD setup, we applied the the EMCCD-PIA algorithm by Krog et al. [10]. Prior
to analysis, EMCCD calibration was performed following Krog et al’s [10] protocol with
estimated parameters listed in the caption of Fig 7.

We find that the sCMOS algorithm produces an output for A, per pixel area which aligns
closely with the 4, per pixel area from the EMCCD setup, see Fig 7. Minor differences in
background counts were observed between the two cameras, potentially due to differences
in their quantum efficiencies, QE. Additionally, at very low exposure times, EMCCD images
exhibit pixel bleeding [30]. This effect and EM gain-amplified spurious charge could cause a
mixing of signal and background, potentially leading to an overestimation of 13, for EMCCD
cameras at low exposure times, in agreement with the findings in Fig 7 [31,32]. Furthermore,
EMCCDs exhibit lower dark current due to their deeper cooling , which reduces thermal
noise accumulation in long-exposure images [33]. This lower dark current may contribute to a
reduced effective photon count in high-exposure scenarios for EMCCD compared to sCMOS
cameras 7 [20,34].

This diligent setup and comparison confirm that, while slight variations exist, our algo-
rithms are robust across different fluorescence camera systems.

Summary and outlook

We developed a probabilistic image analysis framework for sCMOS cameras, lever-
aging the statistical properties of photon emission and detection. By exploiting the
multiplicative property of the characteristic functions for independent random variables,
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(a) Original Image

(b) Thresholded Image

(c) Segmented Image

i
10 microns

Fig 6. The photophysical sCMOS image processing pipeline applied to bacteria cells overexpressing GFP. (a)

a 100 ms exposure time image of fluorescently stained cells (balanced gain setting). (b) Binarized image processed
by our unsupervised thresholding algorithm with a p-value threshold of py;4rize = 0.01. Our algorithm is designed
so that for this choice of threshold we expect approximately 1% false positives, which from visual inspection may
roughly be the case (no ground truth is available here). (c) Output of our segmentation approach with the yellow
pixels forms the boundary of the “objects” identified by our unsupervised segmentation method. Example images at
lower and higher exposure times are found in the Supporting information, $2-S3 Figs.

https://doi.org/10.1371/journal.pone.0335310.g006
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Fig 7. Comparison of the mean background Poisson parameter per pixel area (%) between sCMOS and
EMCCD cameras. Images were recorded by sCMOS and EMCCD cameras focusing on same field of view (see Dual
camera same FOV experiment in experiment subsection). For each camera, Ayg was first calculated in individual
image tiles; plotted values represent the mean over all tiles, with error bars showing the standard deviation of Apg
across tiles. The Poisson parameter is scaled by the pixel area as the pixel size is different for the two cameras (see
Experiments section). The calibration parameters for the sSCMOS camera are same as calculated in the parameter
estimation section while for the EMCCD camera the EM Gain knob on the camera was set at 100. The EMCCD
calibration parameters , gain/AD factor (g/f), offset (A), read noise (ro) are 4.518 , 483.77, and 7.81 respectively,
calculated following the procedure discussed for EMCCD cameras in [10].

https://doi.org/10.1371/journal.pone.0335310.g007

we derived an expression for the sCMOS-specific probability mass function (sCMOS-
PMF) by numerical inversion. This PMF enables estimation of the background Pois-
son parameter, A3, representing the average number of photoelectrons for background
pixels.

Our algorithm excels in low-intensity regimes (44 = 1), where traditional thresholding
methods often fail due to overlapping signal and noise distributions. To validate the method,
we adapted the EMCCD-PIA pipeline for comparative analysis of EMCCD and sCMOS
images under equal experimental conditions. The experiment demonstrated agreement in the
estimation of 4,, ensuring the robustness of the algorithm.

The framework is not restricted to fluorescence imaging; it generalizes to any sCMOS-
acquired image where camera noise parameters (readout noise, gain, offset) can be pre-
calibrated and proves particularly valuable for limited photon budget experiments, such as
imaging photo-sensitive biological specimens or astronomical observations.

We provide public implementations (GUI and non-GUI versions) enabling experimental-
ists to: a) directly process raw sCMOS images through automated calibration pipelines and
robustly estimate background Poisson parameters (1), for precise signal-background sepa-
ration and b) generate thresholded and segmented outputs without any user intervention. The
software is available at https://github.com/dibyajyoti41.
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