CHAL

UNIVERSITY OF TECHNOLOGY

Spectral Invariants of Integrable Polygons

Downloaded from: https://research.chalmers.se, 2025-11-30 20:46 UTC

Citation for the original published paper (version of record):

Mardby, G., Rowlett, J. (2025). Spectral Invariants of Integrable Polygons. Journal of Fourier
Analysis and Applications, 31(6). http://dx.doi.org/10.1007/s00041-025-10202-6

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Journal of Fourier Analysis and Applications (2025) 31:69
https://doi.org/10.1007/s00041-025-10202-6

®

Check for
updates

Spectral Invariants of Integrable Polygons

Gustav Mardby'® - Julie Rowlett'

Received: 30 October 2024 / Revised: 22 September 2025 / Accepted: 9 October 2025
© The Author(s) 2025

Abstract

An integrable polygon is one whose interior angles are fractions of 7; that is to say of
the form 7- for positive integers . We consider the Laplace spectrum on these polygons
with the Dirichlet and Neumann boundary conditions, and we obtain new spectral
invariants for these polygons. This includes new expressions for the spectral zeta
function and zeta-regularized determinant as well as a new spectral invariant contained
in the short-time asymptotic expansion of the heat trace. Moreover, we demonstrate
relationships between the short-time heat trace invariants of general polygonal domains
(not necessarily integrable) and smoothly bounded domains and pose conjectures and
further related directions of investigation.

Keywords Laplace spectrum - Helmholtz equation - Polygonal domain - Laplace
eigenvalues - Heat trace - Spectral zeta function - Zeta-regularized determinant -
Polygonal billiard - Closed geodesic

1 Introduction
Let Q C R? be a bounded domain in the Euclidean plane. We consider the Laplace
eigenvalue problem, also known as Helmholtz’s equation, that is to find all eigenfunc-
tions u : 2 — C and eigenvalues A € C such that

Au+iu=0inQ, A=03;+0;. (1)

The Helmholtz equation is perhaps the most fundamental partial differential equation
of mathematics and physics, with numerous real-world applications including acoustic
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a

Fig. 1 Rectangles are integrable polygons, as their interior angles all measure % If the rectangle has sides
of lengths a and b, then the length of the shortest closed geodesic is twice the length of the shortest side,
corresponding to the orbit running perpendicularly between the two longer sides

design, structural engineering, diffusion processes, quantum mechanics, and wave
propagation. The function u is assumed to be in the Sobolev space H?(£2), and is
further required to satisfy a boundary condition. Here, we consider the Dirichlet or
Neumann boundary conditions, which respectively require the function or its normal
derivative to vanish on the boundary. The set of Laplace eigenvalues is the spectrum,
and any quantity that is defined in terms of the spectrum is a spectral invariant.

Although there exist fast and accurate methods for numerically calculating Laplace
eigenvalues [12], the collection of domains for which the eigenvalues can be computed
analytically in closed form is quite limited. Restricting to polygonal domains in the
plane, this collection includes rectangles, equilateral triangles, isosceles right triangles,
and hemi-equilateral triangles, also known as 30-60-90 triangles. By [20] these are
precisely the polygons which are integrable, meaning they have all interior angles of
the form 7z /n where n € N. Itis a straightforward exercise in planar geometry to prove
that all integrable polygons must be one of these four types as shown in Figures 1 —
4. By [34] (see also [44, Thm. 1]), the polygonal domains which strictly tessellate
the plane are precisely rectangles, equilateral triangles, isosceles right triangles, and
the 30-60-90 triangle. Therefore, polygons being integrable is equivalent to strictly
tessellating the plane.

The Laplace eigenfunctions and eigenvalues of rectangles can be obtained using
separation of variables by solving the one-dimensional Helmholtz equation. This was
known to mathematicians and physicists in the 18th century; however proving that all
eigenfunctions and eigenvalues are obtained by this method could not be demonstrated
until functional analysis was developed in the 19th century [18]. The eigenfunctions
of a square that are odd along a diagonal produce Dirichlet eigenvalues of isosceles
right triangles [23]. For equilateral triangles, Lamé was the first to obtain expressions
for eigenvalues and eigenfunctions [24-26]. At the end of the 19th century these
eigenvalues and eigenfunctions were studied further by Pockels, who also noticed that
the eigenfunctions of a regular rhombus and a regular hexagon are not trigonometric,
i.e. cannot be expressed in terms of sines and cosines [42]. It was not until 2008 that
McCartin proved that in fact, the only polygonal domains that have a complete set
of trigonometric eigenfunctions are the integrable polygonal domains [34]. Rowlett
et. al. generalized this result to higher dimensions, where polygons are replaced by
polytopes [44] (Fig. 2).

Birkhauser



Journal of Fourier Analysis and Applications (2025) 31:69 Page3of45 69

Fig. 2 Equilateral triangles are
integrable polygons, as their
interior angles all measure %
Their shortest closed geodesic is
formed by connecting the
midpoints of the three sides,
creating an equilateral triangle f E
with sides of length % and

. 4
therewith total length 3 5

Although Lamé obtained closed formulas for eigenvalues and eigenfunctions of
equilateral triangles, similar to the case of rectangles, it is another matter to prove
that these are all eigenvalues. Indeed, this was first rigorously demonstrated in the
1980s by Pinsky who gave a new way of deriving the eigenvalues and eigenfunctions
and established completeness [40, 41]. In 1998, Prager gave a different method for
deriving the eigenvalues and eigenfunctions of the equilateral triangle [43], and in 2002
McCartin gave another elementary method [31-33]. McCartin also showed that the
eigenfunctions of an equilateral triangle with either two Dirichlet and one Neumann
boundary condition or one Dirichlet and two Neumann boundary conditions are not
trigonometric [32]. Similar to rectangles and isosceles right triangles, one obtains the
eigenvalues of hemi-equilateral (30-60-90) triangles by considering the eigenfunctions
of equilateral triangles that are odd along a nodal line [32].

In 1957 Brownell studied arbitrary polygonal domains with the Dirichlet boundary
condition and conjectured that their heat trace expansion only has three terms [8].
A complicated and somewhat incomplete proof of this was given in [5, 6]. In 1988
van den Berg and Srisatkunarajah improved this result by obtaining a bound on the
error term after the first three terms [46]. Moreover, they gave a detailed calculation
of the third heat trace term for polygonal domains that had previously appeared in the
literature without a complete proof [22], [36], attributed to unpublished work by Ray.
Using the explicit expressions of the eigenvalues, Verhoeven calculated the heat trace
of rectangles, isosceles right triangles, and equilateral triangles in his Bachelor thesis
[47]. Although he did not explicitly compute the sharp remainder term, Verhoeven’s
techniques help us to obtain the sharp remainder term in the short time asymptotic
expansion of the heat trace for integrable polygons. In the case of equilateral triangles,
we compute the heat trace via an independent method and show that our expression
is in fact equal to Verhoeven’s. In doing so, we are able to prove directly that two
different formulas (13), (24) for the eigenvalues of the equilateral triangle are in fact
equivalent. This equivalence can be deduced by combining results from McCartin [32,
35], but to the best of our knowledge a direct proof has not previously appeared in the
literature. Moreover, we obtain expressions for the spectral zeta functions and zeta-
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regularized determinants of integrable polygons, some of which appear to be new. We
also prove that our expressions for the spectral zeta functions of integrable polygons
turn out to be equal to those obtained by Aurell and Salomonson in [4, (108)], who were
the first to obtain such closed-form expressions. We further show that differentiating
these expressions one obtains the same results for the zeta-regularized determinant. By
presenting these spectral invariants in their most explicit form, we aim to facilitate both
practical computations and theoretical insights. Notably, our investigation of the heat
trace leads to a conjecture for a new spectral invariant for convex polygonal domains,
namely the length of their shortest closed geodesic. Durso proved that the length of
the shortest closed geodesic is a spectral invariant in triangular domains by studying
the singularities of the wave trace [16]. More generally she proved that the Poisson
relation holds in polygonal domains, meaning that the times at which the wave trace
is singular is contained in the set of lengths of closed geodesics in the domain. It is
unknown if this containment is proper or an equality, so in order to show that the length
of a certain closed geodesic is a spectral invariant, one must prove that the wave trace
is singular when time is equal to that length. Our approach is via the heat trace, which
may be slightly more accessible (Fig. 3).

Theorem 1.1 Let Q2 be an integrable polygonal domain. Let {A }x>1 denote the Dirich-
let eigenvalues of Q2. Then the heat trace has the short time asymptotic expansion

—Aktzﬂ |8Q| i O(e= L=/ 1 0 Ve =0
;e o Z Y + O(e ), t = 0, Ve > 0.

Above, |Q2| is the area of 2, |0K2| is its perimeter, y; are the measures of its interior
angles, n is the number of sides, and L is the length of the shortest closed geodesic in
Q. If instead {juk }k>0 denote the Neumann eigenvalues of 2, then the heat trace

Q Q2 i
et = e 4 S T 0 O, 0, ve -0
k>0

The remainder estimate in both cases is sharp in the sense that is the supremum

over all ¢ > 0 such that the remainder is O(e~</") as t — 0.

Theorem 1.1 is proved separately for each class of integrable polygons: in Theorem
2.4 forrectangles, Theorem 3.7 for equilateral triangles, Theorem 4.5 for isosceles right
triangles, and Theorem 5.4 for hemi-equilateral triangles. This result is not surprising
if one considers flat tori, as their heat trace consists of a leading term involving the
volume, and an exponentially decaying remainder term with exponent of the same
form as the remainder here for integrable polygons. In the following sections, §2—
§5 we calculate the spectral zeta function, zeta-regularized determinant, and heat
trace of rectangles, equilateral triangles, isosceles right triangles, and hemi-equilateral
triangles. In the last section of the article §6 we present a brief comparison of the heat
traces of flat tori, Euclidean space forms, convex polytopes, convex polygonal domains,
and smoothly bounded domains. We conjecture that for Euclidean space forms as well
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Fig.3 Isosceles right triangles
are integrable polygons, as their
interior angles measure % and

7 - Their shortest closed
geodesic is the altitude that joins
the right angle to the hypotenuse

av/2

as convex polytopes, the heat trace has a short time asymptotic expansion with a
rapidly decaying remainder term of the same type as that of flat tori and integrable
polygons. We then consider convex polygonal domains converging in the Hausdorff
sense to a smoothly bounded domain and prove that the first three heat trace invariants
converge to those of the smoothly bounded domain. In contrast, if smoothly bounded
domains converge in the Hausdorff sense to a convex polygonal domain, then only
the first two heat trace invariants converge; we show that the third does not. We hope
to provide an inclusive introduction to the Laplace eigenvalue problem suitable for a
broad readership and at the same time, inspire those readers well-versed in the field
to investigate the many remaining open problems.

Notation and Abbreviations

For the reader’s convenience, we include a summary of our notation and abbreviations
in Table 1.

2 Spectral Invariants of Rectangles

Consider a rectangular domain [0, a] x [0, b] in the plane. One can separate variables
and solve the Laplace eigenvalue equation on the two segments [0, a] and [0, b],

Uyy +tyy +Au(x,y) =0, O<x<a, O0<y<b, 2)
imposing either the Dirichlet or Neumann boundary condition, respectively,

(DBO) : u(0, y) = u(a, y) = u(x,0) =u(x,b) =0,
(NBO) : ux(0,y) = ux(a,y) = uy(x,0) = uy(x,b) =0.

Birkhauser
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Fig.4 Hemi-equilateral
triangles are integrable
polygons as their interior angles
measure % and % and %. Their
shortest closed geodesic is the
altitude that joins the right angle
to the hypotenuse

(95
l\.’)%
w

N

In the Dirichlet case, the results of this calculation yields the eigenvalues and eigen-
functions

2 2
Do = 7 (’"— + Zz) mon =1,y (x,y) = sin(max/a) sin(nwy/b). (3)

Having obtained these eigenvalues and eigenfunctions using separation of variables,

one may follow [27, p. 83] to prove completeness, in other words that these are indeed
all eigenfunctions and eigenvalues.

2.1 The Spectral Zeta Function and Zeta-Regularized Determinant of Rectangles

By our calculation of the eigenvalues under the Dirichlet boundary condition in (3)
the spectral zeta function is

m@)-izzz T )
m=1n=1 _2

We begin by computing two equivalent expressions for the spectral zeta function. These
expressions are relatively simple to obtain using known results, but it seems that the
first expression is less widespread. Note that while the sum in (4) only converges
for s € C with Re(s) > 1, it is well known that the spectral zeta function has an
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Table 1 Notation and abbreviations

A Laplace operator or Laplacian defined in (1)
DBC Dirichlet boundary condition
NBC Neumann boundary condition

Y mez Z;( <zsum over all integer pairs except (0, 0)

r Gamma function

o (s) Dirichlet spectral zeta function for a rectangle [0, a] x [0, b]

Gr(s) function defined in (6)

Hé‘) (1) Dirichlet heat trace for a rectangle [0, a] x [0, b]

Hlljv (t) Neumann heat trace for a rectangle [0, a] x [0, b]

cm(s) Dirichlet spectral zeta function for a square with sides of length a

Ly (s) Dirichlet spectral zeta function for an equilateral triangle with sides of length £
Gy(s) function defined in (20)

Hé) (1) Dirichlet heat trace for an equilateral triangle with sides of length £

Hév ) Neumann heat trace for an equilateral triangle with sides of length £

Lo (s) Dirichlet spectral zeta function for an isosceles right triangle with legs of length a
Go(s) function defined in (29)

Hg (1) Dirichlet heat trace for an isosceles right triangle with legs of length a

H <1>V ) Neumann heat trace for an isosceles right triangle with legs of length a

Lo(s) Dirichlet spectral zeta function for a hemi-equilateral (30-60-90) triangle with hypotenuse ¢
Gol(s) function defined in (32)

Hé) (1) Dirichlet heat trace for a hemi-equilateral (30-60-90) triangle with hypotenuse £
Hév ) Neumann heat trace for a hemi-equilateral (30-60-90) triangle with hypotenuse ¢
ZR(s) Riemann zeta function

n(z) Dedekind eta function

L3(s) Dirichlet L-function 1 — 275 +475 — ...

Ly4(s) Dirichlet L-function I — 375 +575 ...

analytic continuation to C\{1} with a simple pole at s = 1. Moreover, the formulas
in Proposition 2.1 are well defined and analytic in C\{1}. Therefore, in the analytic
continuation of the spectral zeta function, the formulas hold for all such s.

Proposition 2.1 The spectral zeta function of a rectangle [0, a] x [0, b] with the Dirich-
let boundary condition is equivalently given by the expressions

Lo\ 2 — DI(s — 12
{D(s)=§<;> |:_§R(2S)+aﬁCR(s )T (s /)}

b T'(s)
)
ab\* 1 \/E o o 4
(= - ns= /2 dl—ZS/ xs—3/2e—7mn(x+x )/hdx
(7) rals s,
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and

a® b\ 2
¢ols) = T[GD(S) -2 (—) CR(2s) — 7§R(2S)i|v s € C\{1}.
amn JT =

Here L denotes the Riemann zeta function, and

1
Go(s) = Z Z m z=uai/b, Re(s) > 1. 6)

meZ ne’

Proof We write
1 o0 (o 0]
— 2 Z T
m=1n=1 2

! ' 1 2s 2s
- [Z Z 3 — 2r(2s)(a” + b )}, Re(s) > 1.

4728 m2 | n2
meZ ne’l (a2 + b2 )S

{ols) =

By [10, p. 87], we have

2ab>—1 2s — DI(s — 1/2
) Z —ZaQS{R(Zs)—f— ab™" /mir(2s — DI'(s /)+Q(s),
( I'(s)
meZ neZ b2
_ A(mab)® s—1/2 - 25/ 532 —man(x+x~) /b
=) [Z %d e dx, Re(s) > 1.

Therefore, the first formula in the proposition follows for Re(s) > 1, and hence for
all s € C\{1} in the analytic continuation of {(s). To obtain the second formula for
¢o(s) we write for Re(s) > 1

1
_ 25
ED(S) a Zzn2v|m+nz|2v
m=1n=1
where z = ai /b, which implies the second formula in the proposition. O

Corollary 2.2 The zeta-regularized determinant of a rectangle [0, a] x [0, b] with the

5(0)

Dirichlet boundary condition is e 0 with (’D (0) equivalently given by

/ —_—
50 = —log(2b) + 0 “ 4 E nema/b ;d
n

1 2b 1
") = = log [ —— 2b) + — — Y log(1 — e~ 2mnalby - — 4i/b.
5(0) 20g<|n(z)|2> log( >+12b X;Og( e ), 2 =ai/

Birkhauser
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Proof We differentiate our first expression from Proposition 2.1 and obtain

;o b\ [ b\ a7 trQ2s — DI(s — 1/2)
éhD(s)_lo‘gG) <5> [_(;R(st b () }

1 (b\* aymw 1 ,
+5<;) [ 229+ ST e )2[2r<s>;R<2s—1)r<s—1/2>

+T()r@s — DIV(s — 1/2) = TV(s)¢r 2s — DI'(s — 1/2)}]

I"(s) 12 1-2: —3/2 — +x71)/b
<ﬂ)l—~(s)2\/725/zd s/ s/erran(xx)/dx

d|n

1 <ab> [Z sS12 30 g1 2;/ 5=3/2 —manGe+x) /b g
F(s) ds d\n 0 ’

s € C\{1}.

In Lemma A.1 we prove that we may differentiate termwise and under the integral
in the last term above, and thereby obtain that this term vanishes at s = 0 due to the
presence of % If we write

¢ = %, then ¢'(0) = 1, @)

due to the fact that limy_. sI"(s) = 1. Thus we obtain

o b 1 / ay/ml’(0)¢r(=DI(=1/2)
¢(0) = log (-) |:_§R(0)j| +§[—2§R(0)— bT(0)2 ]

+¢(O)\/>Zn_l/22d/ x~32gmanG4x" /by

We make the change of variable x = ¢’, use the identity e~/2 = cosh(t/2) —
sinh(?/2), together with the identities [15, Eq. 10.32.9, Eq. 10.39.2] to compute

* ap +x /b b —amansp
/ X~ / e—nan(x x7Y)/ dx = .| —e¢~ wan/ ) (8)
0 an

Moreover, we have

log(2m)
2

1 1
CR(0)=—§, ¢(R(0) = — ; §R(—1)=—E, [(=1/2) = =2Jm. (9)

Thus we obtain the first formula in the corollary.

Birkhauser
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Next we differentiate the second expression of Proposition 2.1:

¢ (s) = a* log(a) [GD(” - ( b

2s 1
) E) ¢r(2s) — 7 §R(2S)}

G/ b 2s b b 2s
+a2s[¥_(5> 1g< )cR(Zs) (7) £ (25)

1
+ —5; log(m)sr(2s) — 79’3(2@], s € C\{1}.
T T

After inserting s = 0, this becomes

¢5(0) = log(a )[ D(O)+1]+@+llog(@>.

2 a

We have by [39, p. 204-205] (see also [1, p. 1830-1831]),

1 24
G(0) = ~1. G(0) = — 1 log (Q V“W) |
where N
n(r) = q'/1? H(l —¢™), g =™, Im(z) > 0, (10)
n=1

is the Dedekind eta function. Since

__ -« —27na/b
log(n(z)) = 2b +§ log(1 — e™=""4/%),
we obtain
1 2b 1
! 0) = -1 = —1] - 1 1— —2mna/b
¢H(0) > Og(m(z)'z) 3 0g(2 )+ E og(l—e ).

It may be of some interest to verify explicitly that our two expressions of {’D (0) are
equal.
To this end, it is enough to show that

—Zlog(l—q)-Z Y

n=1 d|n

for |g| < 1. We Taylor expand log(1 — ¢"*) around 0 and obtain

00 [eSIeTe] qnm oo 1 oo
DICIEVEES 3 SLE 3 D ore
n=1 n=1m=1 m=1 n=1
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If we write this as a power series in g, we see that g” gets a contribution of 1/m if m
divides n, and zero otherwise. Thus,

—Zlog(l—q)—ZqZ Z Zd

n=l1 d|n n=1 d|n

where the last equality follows from the fact that n/d + d is a bijection between the
divisors of n. This completes the proof that the two expressions for {’D (0) are equal. O

Remark 2.3 We note that our expression for {I’j (0) is equivalent to that given in [4,
(105)]. In the case of a square, our expression for the spectral zeta function is equivalent
to the first line of [4, (108)], and the derivative at s = 0 agrees with the expression
given in [4, (113)].

2.2 The Heat Trace of a Rectangle and its Short Time Asymptotic Expansion

For the rectangle [0, a] x [0, b], the Dirichlet heat trace

o0 oo o0 o0
H£(t) — Z o hmat — Z Zefnz(mz/a%rnz/bz)t _ Zefnzmzt/az Zefrﬂnzt/bz'

Am,n m=1 n=1 m=1 n=1

Since o
®3(q) 2
Z L, O3(9) =) _q",
n=1 nez

the heat trace satisfies

b (O3 ey — 1) (@37 ) — 1)
4
Although we will not use this well known expression, we present it for the sake of
completeness. Our focus here is on the asymptotic expansion of Hé,) (t)yast — 0.
For any convex polygon €2 in the Euclidean plane with interior angles y1, ..., ¥,
its heat trace with the Dirichlet boundary condition admits the asymptotic expansion

12| |3Q| —e/t
E Z Sy +O(€ ), t —> 0,

for some ¢ > 0 that has been estimated in [46]. For the Neumann boundary condi-
tion, an analogous estimate with such a remainder term remains an open problem.
Verhoeven [47] used the Poisson summation formula to obtain the expression (11)
that can be used not only to obtain further terms in the asymptotic expression, but
also to determine the supremum of all such ¢ for the remainder estimate above. We
provide the sharp remainder here as well as the corresponding result for the Neumann

Birkhauser
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boundary condition. It is interesting to note that certain terms appear with different
signs according to the different boundary conditions.

Theorem 2.4 Let 2 = [0, a] x [0, b] be a rectangle that is not a square. Then the heat
trace with the Dirichlet boundary condition admits the asymptotic expansion

ﬁﬁ_“+b+l ggfmmwwt
4t 4w
_ min(a, b) b) o~ min(@,b)/t
27

c= mln(max(a, b)z, 4 min(a, b)z).

HB (1) =

+OQ”{m)tﬁQ

The heat trace with the Neumann boundary condition admits the asymptotic expansion

b b 1 b )

Hlljv(t) = 42 + i + . a_efmm(a,b)z/t
4t At

min(a, b) o min(@.b)?/1

N

If the rectangle is a square, a = b, then the respective expansions are

+0 (t_le_c/t) . t— 0.

2 2
a a 1 a 2 a 2 2
HDI=———+—+—7a/t——7a/l+0l7172a/t, t — 0,
o® 4ot 2w 4 me «/me (e )
2 a2
HY (1) = ~— - + < —“2/’ e L O e, 0,

2«/ 4 Jt
In all cases the remainders are sharp.

Remark 2.5 We note that the heat trace formulas for squares are not obtained by letting
a = b in the corresponding formulas for rectangles. In particular, the coefficients after
the first three terms are inconsistent. The reason for this is that in the case a = b,
certain sums in the heat trace can be combined, which effectively doubles some of
the coefficients compared to the case a # b where such grouping is not possible. In
effect, then, one cannot interchange the limits b — a and ¢t — 0.

Proof By the Poisson summation formula,

2.2 2 a 2.2
Ze—nmt/a:_ze—ma/tat>o
= , a, ,

mez mez

which implies that

=
R —
—
ﬁa
|
~
+
3

«/Cl_ Z —m a2/t.

Tt me1
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Consequently, the Dirichlet heat trace becomes

D _ 1 L a .- —maz/t
HD(”‘(z(m 1)+ G

m=
o0
l( b ) b Ze anZ/t
2\t B
:ﬂ a+b 1+ ab & o az/t+ﬂie_nzbz/[
4t 4«/71 2wt o 2t ot
a > 2 b s 2,2 2.2, .2;2
_ —m a“/t _ e b /t —(m a“+n“b )/t

(1D

The proof in the Dirichlet case is then completed by calculating the leading order

terms and determining the remainder by analyzing each of the three series. We note

that Verhoeven did not compute the sharp remainder estimate in [47]. Instead, he stops
with the formula above.

The eigenvalues of the rectangle [0, a] x [0, b] with the Neumann boundary con-

dition are given by
)hm,n =T + b2 ma n 2 07

so the heat trace becomes

0o 00 00 00
HZDV(I) _ Z Ze—nz(mz/az—i-nz/bz)l =14 X:e—ﬁznzt/b2 + Z e—irzmzt/a2 + Hé)(l)

m=0n=0 n=l1 m=1

I e

22
Z m-a“/t +H£([)
m=1
ab a-+b 1 ab —m az/t —n2b2)t
4 T avmi 3 2w 716 2mze

n=1

00
—mzaz/t Z —nzbz/t ab Z Z —(m2a2+n2b2)/t
=1

mlnl

f

Here we have used the Poisson summation formula and our calculation of ng (t). The
proof in the Neumann case is similarly completed by reading off the leading order
terms and collecting the remainder.

When a = b, the heat traces simplify to

2 2 00

a a 1 a 2 2
HDt:———_|___|__ —m2d®jt _ —m2a?t
D() 4t 2t 4 n[ze Z

m=1 m 1
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2 0 X
a_ZZe—(mz—i-nz)az/t’
wt

m=1n=1
2 2 o0 o0
a a 1 2 2
HY () = — + it e Y e
. 4t 2«/7{t = NE T
a2 o0 o0 ) 2 2
—(m“+n-)a“/t
N e s
m=1n=1

from which the claimed heat trace expansions follow.

Theorem 2.4 immediately implies that as t — 0,

ab  a+ b 1 . )

H =— — O (e~ (min@.0)’ =) /1y

D( ) = dnt a7 4 + O(e )
b a+b b 1 . )

HY @ — 4 O(e(min@b)*=e)/1y

for any € > 0, but not € = 0. In particular, there is no maximal ¢ such that the error
term is O(e~/?), but the supremum of all such values is min(a, b)2. To compare with
[46], we note that their estimate for the exponent in the remainder term in case of
rectangles is %"Z’b)z. By [21, Prop. 8], min(a, b)? is the square of half the length of
the shortest closed geodesic in the rectangle. This proves Theorem 1.1 in the case of
rectangles. This is not surprising considering the analogous result one can obtain for
flat tori as discussed in §6.

We can easily generalize Theorem 2.4 to n-dimensional Euclidean boxes. For a
Euclidean box, H'};] [0, a;], a calculation similar to the one above yields the following
heat trace in the Dirichlet and Neumann case, respectively:

1 " aj : 2

_ —1)+ O(ef(mm(m ..... an) 76)/1) Ve >0.t—0

o H( — ) : 10,
Jj=1

n

1
— —L 4 1) + O(e~mintar,..., an)* /N Ve >0, t — 0.
(%)

We again observe that min(ay, .. ., ay)? is the square of half the length of the shortest
closed geodesic in this Euclidean box.

3 Spectral Invariants of Equilateral Triangles

Let Q = {(x,y) € RZ:0 < y < x+/3, y < +/3(1 — x)} be an equilateral trian-
gular domain. We note that the sides each have length one. We consider the Laplace
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eigenvalue problem with the Dirichlet boundary condition

Af(x,y)+af(x,y)=0ing,

(12)
f(x,y) =00n0d%.
By [40, Thm. 1], the eigenvalues of (12) are
1672
Amoan = 2371 (m2 —mn + nz), with m, n € Z satisfying (13)

(A) m+n =0 (mod 3),
(B) m # 2n,
(©) n #2m,
(D) m # —n.

Although these conditions are stated in [40] and [41], there is no proof given that they
are necessary and sufficient to guarantee that the associated 1,, , is an eigenvalue. A
formula is given for the associated eigenfunction, but it could happen that the func-
tion vanishes identically, or that it does not satisfy the boundary condition. McCartin
filled this gap by providing a beautiful pedagogical derivation of these expressions
and showed how the conditions are necessary and sufficient [35]. We have a slightly
different proof that some readers may find more accessible, and since it takes a mere
page, we include it for the benefit of readers.
If A, 1s an eigenvalue of €2, a corresponding eigenfunction is given by

TRCRED D (14)

(m,n)
Here, the sum goes through the six pairs in
(=n,m —n), (=n, —m), (n —m, —m), (n —m,n), (m,n), (m,m —n) (15

from left to right and the sign alternates for each term. It is straightforward to verify
that (m, n) satisfies (A) — (D) if and only if every pair above also satisfies (A) — (D).
Explicitly, the eigenfunction corresponding to these six pairs is

Fon(x,y) = ezni/3((m—n)x—(m+n)y/ﬁ) _ 62n1/3(—mx+(m—2;1)y/ﬁ)
+ ezni/3(—mx+(2n—m)y/ﬁ) _ eZni/3(nx+(n—2m)y/\/§) (16)

+ ezni/3(nx+(2m—n)y/ﬁ) _ ezni/3((m—n)x+(m+n)y/ﬁ)
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or, equivalently,

. di _ . (2n(m+n)y il .
alx,y) = —21627”/3(’" nx sin <— —je i /3mx sin
Sy 33

" <2n(m - 2n)y) o 2mifnx gy (27T(n - 2m)y) ‘
33 3V3

a7

We will now prove that f;, , is an eigenfunction of €2 with corresponding eigenvalue
Am,n if and only if (A), (B), (C), and (D) are satisfied. First, we note that

(m +n)? 5 (m— 2n)? 5 (n— 2m)2  4m? — dmn + 4n?
—_— = m —_— =
3 3 3 3

(m—n)*+

)

from which it immediately follows that
Afm,n + )Nm,nfm,n =0.

Next, we examine when f;, , satisfies the boundary condition. At the boundary y = 0,
it is clear from (17) that f, , vanishes. Aty = x+/3 we obtain

fm,n(X,X\/g) — eZni/3(—2nx) _ e%(—an) +62ﬂi/3((2n—2m)x)
_ eZﬂi/S((2n72m)x) + eZni/S(me) _ eZni/3(2mx) —0.

For y = \/§(1 — x), we have

Fonn(x, V/3(1 = x)) = 2TH/3(m4m+2m) _ 2 [3((m=2m)-+Qn—2m)q)
1 2i/3(@n=m)=2nx)
_ Q2 3(n=2m)+2mx) 4 2w [3((2m—n)+(2n—2m)x)
_ p2mi/3((m+n)=2nx)
= oAi/3mx (23 m=n) _ 2wi/3(n=2m)y
4 /A=) (2i/3@m—n) _ 2i[3(m—2m)y

+ e47ri/3(fnx)(e27ri/3(2nfm) _ eZni/3(m+n))

This vanishes if and only if condition (A) holds. Indeed, if m 4+ n = 0 (mod 3), then
m + n = 3k for some k € Z, and

fm,n(xs \/5(1 _ x)) — e4ni/3mx(62ni/3(73k) _ 627‘”'/3(3](73"1))

 ATI/3=mx (2 [3Gm=3k) _ 2 [3(3k=3n))

+ e471i/3(—nx)(6271i/3(3n—3k) _ 62711'/3(3k)) =0.

) Birkhduser
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If instead m +n = 1 (mod 3), so that m 4+ n = 3k + 1, then it simplifies to
fm’n(x’ ﬁ(l _x)) — —i\/§(€4ﬂi/3mx +e47‘ri/3(n—m)x +e—4ﬂi/3I1X)’

which is not identically zero. For example, at x = 3/4 this equals —i~/3((—1)" +
(=D 4+ (=D") # 0. Similarly, if m + n = 2 (mod 3), then m +n = 3k — 1 and

fm’n(x’ \/5(1 —.X)) — i\/§(€4ni/3mx +e4ﬂi/3(n—m)x +e—47ti/3nX) 7—é 0

Next, we show that f,, , = 0 when either (B), (C), or (D) isn’t satisfied. For this it
suffices to check that f,,, 2/, fan,n, and f_, , are all identically zero. To show this, we
compute that the six pairs in each case respectively are

(—2m, —m), (—2m, —m), (m, —m), (m, 2m), (m, 2m), (m, —m);
(—n,n), (—n, —2n), (—n, —2n), (—n, n), 2n, n), 2n, n);
(—n, —2n), (—n,n), 2n, n), 2n,n), (—n, n), (—n, —2n).

Due to the alternating signs in the definitions of fi,; 2/, fan.n, and f—, , it follows that

they each vanish identically.
Finally, we compute that

Smn(0,y) = =2i [sin (7211“2(3; n)) + sin (727”‘;11\1/; 2n)> + sin <72ny;n\/—§ 2m) >i| .

Sines with different frequencies are linearly independent. Consequently as long as
|m + n|, |m — 2n| and |n — 2m| are not all equal, then f, »,(0, y) is not the zero
function. Since f, , is a real analytic function on R2 it then follows that Sm.n 1s also
not the zero function. We therefore compute

m? + n? + 2mn = m* + 4n* — 4mn = n* + 4m* — 4mn
e 6mn=3n% < n=0o0r2m=n.

Since 2m # n by (C), this would require n = 0, but then m = 0 which violates (D).
We have therewith shown that each orbit in (15) satisfying (A)—(D) gives rise to a
(nontrivial) Laplace eigenfunction that satisfies the Dirichlet boundary condition. The
fact that each orbit gives rise to a distinct eigenfunction, and that the collection of all
of these functions constitutes an orthogonal basis for L on the triangle follows from
[41].
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3.1 The Spectral Zeta Function and Zeta-Regularized Determinant of an
Equilateral Triangle

For the equilateral triangle with side length ¢, the spectral zeta function corresponding
to the Dirichlet boundary condition is

1 1/ 27¢2\° 1
MS):ZMM =< <16n2> > o7 oy Re@ > 1

)\m,n )‘m.n

We sum according to (13). Each eigenvalue occurs six times its actual multiplicity,
hence we divide by 6 to correctly account for multiplicities. Our first result is an
expression for this spectral zeta function that we have not encountered in the literature.

Proposition 3.1 The spectral zeta function for an equilateral triangle with side lengths
equal to £ and the Dirichlet boundary condition is equivalently

1 /30\% 22 mer(2s — DT(s — 1/2)
o0

47825—1/2 s—1 o] 4
—1/2 =25, 1\n 5s—3/2 —mn/3(x+x"1/2
Pt 2T AT ED e dx]’

=1 din
(18)
1[92 \° 9¢2 \"
tv(s) = 8 (167‘[2) Gy(s) — (167r2) CR(2s), s € (C\{IL (19)
/ 1 —3+4i/3
Gv(s) =Y > SRR T R 1L (20)
meZ kel

Proof To calculate the sum defining the spectral zeta function we begin by restricting
the sum to nonzero pairs (m, n) = (m, 3k — m) satisfying (A):

’ 1
Z Z (m?2 —m@Bk —m) + 3k —m)?)s

meZ keZ
1 ’ 1
T3 , Re(s) > 1.
Yy L
3 et kez, (7 — 3km 365
By [10, p. 87], we have
' : 22 /mir(2s — DI(s = 1/2)
——————5— = 20r(2 ’
% kezz o —3km + 2y RCIE F)3—172 +06)
4212 S iy i % 5=3/2 ,—mn3x+x1)2
Q(s) = Wzlnb' ;d 5(_1)17\/0 $573/2 p=n/3(x+x dx, Re(s) > 1.
n= n
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When we sum over the pairs (m, n) with m = 2n, we get

1 2
Z - = —{r(2s), Re(s) > 1.
2 _9y. 2.
neZ.n0 ((2”) 211 n + n )S 33

We get the same result when we sum over the pairs (m, n) with n = 2m and m =
—n. Thus, recalling the factor of %, we obtain the first expression for ¢y (s) in the
proposition.

The second expression follows from noting that

Z Z (m? —3km+3k2)Y

meZ keZ

-3
- Z Z |m+k |2s =Gv(s), —H\/_ , Re(s) > 1.

meZ keZ

m}

Remark 3.2 Aurell & Salomonson [4] gave an expression for the spectral zeta function
of the equilateral triangle in the third line of their equation (108) as

4\
<§> [L3(s)¢R(s) — ER(29)]. 2D

Here L3 is the Dirichlet L-series 1 —27% +47% —57% 4... . One can show using [50,
Example 1, p. 280] that this expression is equivalent to our (19). We thank Anders
Sodergren for suggesting this reference to demonstrate the equivalence.

Corollary 3.3 The derivative of the spectral zeta function of an equilateral triangle
with sides of length £ and the Dirichlet boundary condition is equivalently given by
the expressions

o2 30\ |, 73 2n (D)
e = Jlox () + 50 + 32 s 2

;’(0>—%lo( o )
v =3 el )

’y(0) = %log(nﬁ) + 17—2 log(3) —logI"'(1/3).

Above, 1 is the Dedekind eta function.

Proof We have by Proposition 3.1

1 30\ 30\ 2% R (2s — DI(s — 1/2)
() = M%Mﬂﬂ)[wmm+ SRR
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n F‘tﬂ;;j/zi/l/“ S a2 g gy /OO xs—3/2e—nn\/§(x+x*1)/2dx]
K 0
n=1

d|n
1/30\% Var (32 4
-1 <H) 8009+ <4ﬂ2 [log (5) tr(2s — DTG — 1/2)

+ 205 (2s = DT (s — 1/2) — ¢r(2s — DI()T(s — 1/2)

+tr2s — DI (s — 1/2)]

;i [ e OCE -1/2 1-2s © 5-3/2 —anAtx— 12

p LA A2 S 12 3 g1 gy [ 32k dx],
35/2—1/4

6ds [ T(9)38/271/ n=1 dln 0

s € C\{1},

and we compute

d [ 412 1=25,_qwn [ 5372 —wn3x+x1)2
—\ ST E n E d = (—1) / x° e dx:|
ds ()32 n=1 din 0

/ ps—1/2
_ _II: (S; 4;‘/?_1/: 3 w512 Zd172s(_1)n /00 5=3/2 30t /2
() n=1 din 0

1 d[4n25- 12 , o -1
Z s— /22 1-2s, 1y s=3/2 —mn/3(x+x"1)/2
T'(s) ds|: 3s/2—1/4 ln a 4D fo ! ‘ dx].

n= n

By Lemma A.1, the last term vanishes as s — 0, and we thus obtain

V3 Lr(=DT(=1/2)I7(0)
6I'(0)2

/0—11 3¢ 470 4/0
v ( )—g 0g<5)(— ¢r( ))—§§R( ) —
J’_
0

4 o0
: 34’/(0)211_1/2261(—1)" / 323D 2 gy
3ﬁ n=1 d|n

Here, ¢ is again given by (7). By (7), (8), and (9), this simplifies to the first expression
in the corollary.
Next we differentiate (19)

L9 ‘1 9¢2 1G ) 1G/ 0l
fv(S)—(@) [0g<16n2) (g v(s) — ¢r( S))"'g v(s) —2¢R( S)i|-

At s = 0 this becomes

2

1 1, ,
16712) (gGv(O) - é“R(O)) + BGV(O) —2¢4(0).

9¢
¢5(0) = log (

) Birkhduser
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Our Gy (s) = L G(s) with G defined in [1, p. 1830-1831], and the parameter L = .
With the calculations of [1, p. 1830-1831] (see also [39, p. 204-205]) we have

1 —
G)=-1, G'0) = -5 log(2m)*L™*(n(2)71(2))**) L= —21og(2In(2) 1),
hence
—3+iV3
Gv(0) = —1, Gy(0) = —log(r?) —2log2In()*), z= %‘/_

Thus, we obtain the second expression for ¢, (0) in the corollary. Since

31/81(1/3)3/2

n(z)| = B —

the third expression for {% (0) also follows. O

Remark 3.4 Since our expression is equal to that in (21) for ¢y (s), we have calculated
the derivative of that expression at s = 0 and obtained

L0) = 2logl+ 2log3 — 2 log2 4 11 L Jog LU/
= — 10 — 10 — — 10 —10gmT — — 10 .
v 3 OB T OB T 0BT L I0BT T S 08 T 3y

Using identities for the Dedekind eta function and the Gamma function, it is straight-
forward to show that this is equal to the second expression in the corollary as well as
[4, (110)].

3.2 The Heat Trace of Equilateral Triangles and an Alternative Expression for the
Eigenvalues

There is another common expression for the eigenvalues of an equilateral triangle in
the literature (see e.g. [32]), namely

472 2 ’
km,nzm(m +mn+n°), m,n>1.

Here, r is the radius of the inscribed circle of the triangle. If the triangle has side lengths
each equal to £, then r = £/+/12. Therefore this expression for the eigenvalues in case
£ = 11is simply

_ 1672
9

This is different from the expression (13) given by Pinsky [40, 41] and Lamé [24-26].
It may appear simpler for computations because it no longer involves the conditions
(A)—(D) on the integers, and their range is N rather than Z. At the same time, the
connection to eigenfunctions is obfuscated, as is the multiplicity of the eigenvalues.

(m2 + mn +n2), m,n > 1. (22)

)‘-m,n
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By [40, 41], expressing the eigenvalues as (13), we know that there are six pairs that
correspond to one linearly independent eigenfunction, given by the six pairs in (15).
Each distinct orbit gives rise to a distinct, linearly independent eigenfunction. Hence to
calculate spectral invariants like the spectral zeta function or the heat trace, it suffices
to sum over all integers (m, n) satisfying (A)—(D) and then divide by six. It is not at
all clear how to account for multiplicities using the expression (22). Here we use the
heat trace to show how to account for the multiplicities correctly if one wishes to use
(22) to compute eigenvalues and spectral invariants of equilateral triangles.

Proposition 3.5 The heat trace for the equilateral triangle with side length € and the
Dirichlet boundary condition is equivalently given by the expressions

03(¢%03(¢°) + 02(¢*)®2(¢°) — 303(¢%) +2

HP @) = ’
v () .
2 2 B 5 )
©2(q) = Zq(”“/z) , O3(g) = an | g = e 16T/
nez neZ
00 00 s - )
HY (1) = Z Zeflsn £/963) (P +mnn?) @3
m=1n=1

As a consequence, the eigenvalues are the values

1672
9¢2

m* +mn+n%, mn>1. (24)

For each pair (m, n) with m,n > 1 there is exactly one orbit of the form (15) where
each of the six pairs in the orbit satisfies conditions (A), (B), (C), and (D).

Proof For the equilateral triangle with side length ¢, the heat trace with the Dirichlet
boundary condition is

1
HVD([) _ < Z e*16n2t/(27l2)(m27mn+n2).

)\m,n

The sum goes through all pairs (m,n) € Z? satisfying (A), (B), (C), and (D). To
compensate for the fact that the six pairs in (15) all correspond to the same eigenvalue,
we have divided by 6.

2 2 . . .
—167%/(276%) e get when summing over all integer pairs

Z quzfanrnz — Zq3n2/4 Z q(mfn/2)2

Then, forg = e

mezZ nez nez mez
2 2 24 1/2)?
D SCA D DAL UL
ne2Z mez ne2Z+1 mez

= 03(9)O3(¢>) + ©2(9)O2(g>).
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Now let us only sum over the pairs (m, n) which satisfy (A). We write n = 3k — m
and obtain

hi(t) = Z Z qmz—m(3k—m)+(3k_m)2

keZ meZ
2 _ 2
=Y g P = 03(¢7)0:3(0%) + 02(67)02(g7).
keZ meZ

To obtain Hé) (1), we must subtract the contribution from the pairs (m, n) withm = 2n
orn=2morm = —n:

22
hz(t) — Zq(Zn) 2n-n+n — @)3(q3)7

nez
2. 2
h3(l) — Z qm m-2m+(2m) — @3(q3)’
mez
2 (_ 2
ha(t) =) g™ = = @5(¢%).
nez
Thus, we get
HD (1) = MO = ha(®) = hs(0) = ha(r) +2
v 6
_ 03(¢7)03(¢°) + 02(¢))O2(g”) —303(¢%) +2

3 (26)

The plus 2 appears because when we subtract the contribution from pairs (m, n) with
m = 2n or n = 2m or m = —n, we subtract the contribution from (0, 0) three times.
Now, [47] starts with (23) and computes

B0 = 33 - ; [Z o) 33 g 2] ,

m=1n=1 mezZ nez mez

27)

which by (25) agrees with (26). In particular, the two expressions for the heat trace
are identical. Since the heat trace uniquely determines the spectrum, this proves the
equivalence between the two expressions for the eigenvalues of equilateral triangles.

]

Remark 3.6 Observe that in the expression (24), it is not at all obvious that each
eigenvalue occurs precisely six times, but this is indeed the case. While this equivalence
can be deduced by combining McCartin’s works [32, 35], the argument presented here
provides, to the best of our knowledge, the first direct proof. It is also interesting to
recall the observation made in [47, Corollary 2.2.6]: there is no bounded domain in
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R? whose spectrum has the form
2 2
cim® —mn+n°), m,n €.

In particular, the restrictions (A) — (D) on the pairs (m, n) € Z x Z are essential to the
correct expression for the eigenvalues of the equilateral triangle.

3.3 Short Time Asymptotic Expansion of the Heat Trace

Here we obtain further terms in the short time asymptotic expansion of the heat trace.
We note that [47] obtained a related formula but rather than extracting further terms
explicitly, collected all terms that vanish as + — 0 into one big-O term using the
asymptotic behavior of Jacobi theta functions.

Theorem 3.7 The Dirichlet heat trace for an equilateral triangle with sides of length
£ has the asymptotic expansion

HY (1) =

I + —_
167t 8/t 3 4wt 8

+ O e E) s,

V3 3¢ ! 3¢ e /60 Zzﬁe—uz/(m)
Tt

The Neumann heat trace has the asymptotic expansion

V3030 1 3 e, OV3 s
+ + -+ ——e + ——e
6t 8wt 3 4mt 8mt

+ 0@ ey 0,

Hév(t) =

The remainders are sharp.

Proof By Proposition 3.5 the Dirichlet heat trace is

03(%)03(¢°) + ©2(¢>)O2(¢°) — 303(¢%) +2

HP (1) = A
1 —16721/(9¢%)m* —16721/(3¢%)n?
_ 6[ e e
mez nez

n Z o—16721/(96%) (m+5)? Z 16771/ 3 (n+3)* _ 5 Z o—167%1/(9¢%)m? 4 2]_
mez nez mez

By the Poisson summation formula,

Z eflﬁnzt/(9€2)m2 _ 3¢ Z ef%zmz/(lﬁt)’
4/t

mez mez
Zefl6n2t/(3132)nz _ f /i Z€f3€2n2/(16t)

4\ mt ’
nez nez
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Zg—l6nzt/(9£2)(m+%)2 Z( e —9¢%2m 2/(16[)

meZ mEZ
Z —167%t/(36%) (n+ 5% ) _ / Z( 1)'e —30%n 2/(161‘)
nez nEZ
This gives
113623 X o2m? G 22
_ 2 - (161) —32n2/(16t)
HP (1) [167” <1+2Ze m 1+2) 3
m=1 n=1
3023 s 2.2 > 22
142 _yme—9m?aen ) (14, 1) e—3t3n? /(161
+16m<+m;()e +r§()e

9¢ i 2.2
_ 142 —962m2 /(161) +2]
4wt ( Z ¢

m=1

oo oo
_ V3 3 N 1 3 ) 92 /l61) V3 Ze—“z"z/(‘m
lore 8wt 3 4yt = 8t

n=1

23 ZOO 0022 23 ) ZOQ 2 (3m2 4
_ /4 | Vo —302(3Bm~+n~)/(4t)
+ 8t ¢ * 4 ¢

m=1 m=1n=1

sz —30232m—1)2+(2 1)2)/(161)
4wt Z Ze .

m=1n=1

which proves the Dirichlet case.
The eigenvalues of the same equilateral triangle with the Neumann boundary con-
dition are
N 1672
m,n — 9£2
so its heat trace becomes

(m2 + mn +n2), m,n >0,

Hv (t) = Z Z —16721/(9€%) (m24+mn+n?) _ =142 Z —16721/(9¢%)m? + HD(t)
m=0n=0 m=1

By the Poisson summation formula,

o0

Z o 1672/0m? _ 1 < LI 1) Z 9¢m?/(161)
2 \ 44/t 4«/
m=1 m=1
so, we have
HY (1) = V3 I i o—9Cm2/(161) 23 ie—nznz/(m
v 1ot 8wt 3 4wt 1 8t ot

oo
n V3 3 o9
8t =

—~
]
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ezf Z Z —302(3m? +n2)/(4t) ¢ f Z Z —3623@m—1)2+@2n—1)2)/(161)

m=1n=1 m=1n=1
This completes the proof. O

It follows from Theorem 3.7 that

2
Hé)(t) = V3 — 3¢ l —(962—6)/(16t))’ Y
16wt 8wt 3
E2~/' 3¢ 1
Hév(l‘) = + + O(e —(952—6)/(160) 0,

167rt 8 3

for any € > 0. Consequently, the supremum over all ¢ > 0 such that the remainder
is O(e~/"y is 22 - By [16, p. 43], this is the square of half the length of the shortest
closed geodes1c 1n the equilateral triangle of side length £. Thus, Theorem 1.1 follows
in the case of equilateral triangles.

4 Spectral Invariants of Isosceles Right Triangles

By [3], the eigenvalues of an isosceles right triangle with area %, and therewith legs
of length g are
20,2 2
T
)\m,nzw, m>n>1. (28)
a

The fact that these are all eigenvalues including multiplicities follows from [23, p.
168]; see also [19] and [37, p. 756].

4.1 The Spectral Zeta Function and Zeta-Regularized Determinant of Isosceles
Right Triangles

Our first result for the isosceles right triangle concerns two equivalent expressions for
the spectral zeta function. To the best of our knowledge these expressions are new.

Proposition 4.1 The spectral zeta function of an isosceles right triangle with area a2
and with the Dirichlet boundary condition is equivalently given by the expressions

3 a a\2s VT a2 (g(2s — DI(s — 1/2)
to = (2)" tres) - 2S+1 () o +35 () o
L ! i i S1/2 37 g1 /oo 532 (et g
2\ 7w F(s = i 0
and
a® [1 1
{o(s) > ZG<>(S) ~ % Cr(2s) — an 2)VCR(2S) , s € C\{1}.
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Here,

1
Gol)=Y_ Z e P Re(s) > 1. (29)

me7Z ne’

Proof For Re(s) > 1, we have

1 a\2s 1 1 1/ a%\
o) =) I (;) > iy Sms) — 5 (2”—2> ¢r(2s),

P m>n>1
(30)
where (g is the spectral zeta function of a square with sides of length a. The result is
thus an immediate consequence of Proposition 2.1. O

Remark 4.2 Similar to the case of equilateral triangles, one can show that our expres-
sion for the isosceles right triangle is equal to that given in the second equation of [4,
(108)],

to) =5 (5) 7 [Lai) — (1 +27)x25)]
<& - 7 \4 4 R R .

Corollary 4.3 The zeta-regularized determinant of an isosceles right triangle with area
a?/2 and with the Dirichlet boundary condition is e 5O with §</>(0) equivalently

given by
, 1og(4a3)
0 == —+3; —Znemzd
d|n
0 =11 (4a3) log(4a’) ——-Zl (1= o2
¢ 4°g oL 7 o '

Proof From (30), we get

, 1 , 1 2 $ 2 2 s
c<><s>=5;.<s>—5(2“7) 1g( - )mzs) (‘; ) Ch(25), s € C\{1}.

Corollary 2.2 then gives the following equivalent expressions

) 1|1 1
¢, = 5 | 5 loga) + +Z mZd —Elog(2 2)cR(0> £h(0),

dln

10 = Ltog (<2} + Log (42 + Liogen
=-1lo —log| — —log(27),
o) =gloe| L ap ) Taloe\ gz ) T oloe

which respectively simplify to those in the corollary. O
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Remark 4.4 Differentiating the expression in [4, (108)] for the spectral zeta function
of the isosceles right triangle and setting s = 0 it becomes

3 1
§<>(O) loga +log2 + - s logm — 7 log"'(1/4). (€2))

Using identities for the Dedekind eta function and the Gamma function, one can show
that this is equivalent to the expressions in our corollary as well as [4, (111)].

4.2 The Heat Trace of Isosceles Right Triangles

For the isosceles right triangle with area a2 /2 and with the Dirichlet boundary condi-
tion, the heat trace is

2(2 2
Hg(t) _ Ze_/\n'm[ _ Z o~ (m*+n )t/az.

An,m m>n>1

2 2
Let g = ¢~ '/ and note that

i iqmz—&-n -2 Z m?4n? + Z q2m

m=1n=1 m>n>1

Since

wiant  (©3(@) — 1)’
IDIICRGE (L

m=1n=1

it follows that

O3(q) — 1 ©3(¢%) — 1
H<>()‘2[< 2 ) 2 }

_ 03(9)* —203(¢) —203(¢%) +3
- s .

Now we use our expressions for the heat trace for the isosceles right triangle to obtain
further terms in the short time asymptotic expansion of the heat trace as well as a sharp
remainder term.
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Theorem 4.5 The heat trace with the Dirichlet boundary condition for an isosceles

right triangle of area % admzts the asymptotic expansion

a? _a2++v2) V2) 3 a 200
e — —e
8tt 8wt 8 22wt 2t
+ O 2, 1 0.

—a?/t

HY (1) = —

The heat trace with the Neumann boundary condition admits the asymptotic expansion

HY (1) = +a(2+*/_) 3 Le—az/(zr>+ﬁe—a2/z
¢ 8t 8/mt 8 24271 2t

+ O(t_l/ze_“z/’), t — 0.

The remainders are sharp.

Proof We have

2, 2 2 e 272m?
ST oDy 4 Y e
m=1n=1 m=1
and
> 1
Z —2m?t Ja® — _ < a _ 1) + —m az/t
2 \/mt

m=1 =1
> 2 1 a a ad 2

_27[ m t/a B _ 1) + —m2a /(1)
ot ()=

by the Poisson summation formula, hence

1] /(1 ad 2

a a 2.2 a
HPhy=-|[=(—=—-1)+ Y et ——( —1)
o ® 2 <2<~/m > Vot = 2 27t

o0
a Z —m a2/(2t):|
— e
V2t et

2 > a? &
a a2++v2) v2) 3 a —m2a®/(21) —m?a’*/t
* Z ot 2rt Z

= 8ur 8/t 8 22nt 1
2 2 > 2 :
—m a /t —m2a Jt
o (Z . ) |

m=1

m=1

) Birkhduser
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The eigenvalues of an isosceles right triangle with area a? /2 with the Neumann bound-
ary condition are
2 (m2 +n?)
Am,n:—za m>n>0,
a

so the corresponding heat trace becomes

o0 oo
Hév(t) _ Z e—nz(m2+n2)t/a2 — 1+ Z e—nszI/az + Ze_2n2n2l/a2 + Hg([)

m>n>0 = n=1
NG 20} a2+ «/—) e/ | Z —m2d?/t
8t 8wt 27Tt
n a i —m a2/; i (i oM az/t>2'
2/t o 27tt —
The proof is now completed by collecting leading order terms. O

Theorem 4.5 shows that

a2 a(2+f) 3 >
HP () = + 4O @O/Q0y 4 0,
g = s71 svmr s o¢ )
a++v2) 3 o2
HY (1) = 2L O @9y 4
NOES 8m+ Wer +o (e ), t—

for any € > 0. Again, a?/2 is the square of half the length of the shortest closed
geodesic in the isosceles right triangle (see [16, p. 43]), hence Theorem 1.1 follows in
this case.

5 Spectral Invariants of Hemi-Equilateral (30-60-90) Triangles

By [32], the eigenvalues of the 30-60-90 triangle with hypotenuse of length ¢ are given
by

47

)‘m,n=272(m +mn +n?) = m>+mn+n%, m>n>1.

952
Here, r is the radius of the inscribed circle of the equilateral triangle obtained by
doubling the hemi-equilateral triangle. McCartin shows in [32] how antisymmetric

eigenfunctions of equilateral triangles form a complete set of eigenfunctions for 30-
60-90 triangles [13]; see also [23, p. 168].

5.1 The Spectral Zeta Function and Zeta-Regularized Determinant of
Hemi-Equilateral Triangles

Our first result for these triangles contains two equivalent expressions for the spectral
zeta function that to the best of our knowledge are new.
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Proposition 5.1 The spectral zeta function of the hemi-equilateral triangle with
hypotenuse of length £ and with the Dirichlet boundary condition is equivalently
given by the expressions

2% miR(2s — DI'(s — 1/2)

1 [/3¢0\* 6
lo(s) = — (—) [— 4cp(2s) — §§R(2S) +

4 T (5)3~1/2
4rss=12 -
/2 1-2s n ¥$3/2 —mn/3(x4+x"1/2
Ry, Y F(s)35/2 1/4 Zn ;d (=D / e dxi|’
n

1 /3¢ 6 6
Lo(s) = L\7 Gols) — ﬁCR(zs) - WQ(ZS) . s € C\{1}.
Here,

_ 3+iV3
Go@s) =Y _ Z n2S|m+kZ|2S = S Re@) > 1. (32)
meZ keZ

Proof The spectral zeta function is for Re(s) > 1

()_<2)2Y 1
bols) = 47 Z (m? + mn +n2)s’

m>n>1

Since

o0 o0
3% iy =2 X ey )
ot (m2 + mn + n2)s (m2 +mn +n2)s 38 RS20,

m>n>1

we can rewrite {o as

32

Lo(s) = —CV( )= 5 (T) ¢r(2s), s € C\{1}, (33)

where (v is the spectral zeta function of the corresponding equilateral triangle with
sides of length €. The result now follows from Proposition 3.1. O

Corollary 5.2 The zeta-regularized determinant of the hemi-equilateral triangle with

hypotenuse of length £ and with the Dirichlet boundary condition is e~ O yirh £5(0)
equivalently given by

5 5 N
h(0) = log(e) + > log(3) - log(2)+—+ Z S )

1 ne” n3 din
1 362
t5(0) = fiv(O) + 7 log < 1 ) .
Proof The proof follows by differentiating (33) and setting s = 0. O
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Remark 5.3 We have verified that our expression for the spectral zeta function of the
hemi-equilateral triangle in (33) agrees with that given in [4, (108)],

1/ 92\ s
fols) = 5 <16n2) [L3(s)Zr(s) — (1 +37)¢r(29)].

Differentiating the equivalent expression and evaluating at s = 0 one can show that it
agrees with our expressions above as well as that given in [4, (112)].

5.2 The Heat Trace of Hemi-Equilateral Triangles
For the hemi-equilateral triangle with hypotenuse of length £, we let

g = e—mnzz/(%z)_

By 27),

i iqmz+mn+nz _ 03(9)03(4%) + ©2(9)92(¢%) — 303(q) +2
_ : ,
m=1 n=1

On the other hand, we have

00 00 5 5 ) ) 0 O3( 3) —1
Z qu +mn+n® _ o Z g™ tmatn® Z ¢ = 2H£(t) + %
m=1n=1 m=1

m>n>1

By comparing, we obtain the heat trace for the Dirichlet boundary condition

2 P I P 2 >
Hg(l) — Z qm +mn+n® _ §|: Z qu +mn+n® _ Z q3m:|
m=1

m>n>1 m=1n=1

03(9)03(¢%) + ©2(9)02(¢%) — 303(¢9) —303(¢>) +5
12 '

We calculate the short time asymptotic expansion of the heat trace, obtaining further
terms and a sharp remainder.

Theorem 5.4 The heat trace for the hemi-equilateral triangle with hypotenuse of
length € with the Dirichlet boundary condition admits the asymptotic expansion

2
HE (1) = £v3 ks v3) + St /ie—Szz/(mt)
327t 16/t 12 8V 7t

_ 3¢ 6—962/(16t)+O(t—le—3£2/(4t))’ 0.

8/t
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The heat trace with the Neumann boundary condition admits the asymptotic expansion

N < EY3 8V S L3 aesaen
@ 32nt 164/t 12 8V nt
3 _o2/q6n —1,-302/(4
4+ — ¢ + O e3/60y 0,
Nl ( )

The remainders are sharp.

Proof Since the heat trace of the equilateral triangle and that of the hemi-equilateral
triangle are related via

o0 o0 00
— 2 2 2 2 _ 2 N
HVD(I) — Z Ze 167t /(9€%) (m*+mn+n”) _ 2H£(l‘) + Ze 167%t/(36%)m ’
m=1 n=1 m—1
by the Poisson summation formula

o0 o0
Z - 1672/Gm? _ l f /i ). { /i Z o —36m?/(161)
2\4V nt 4V &t —

it follows that

HE (1) = % [Hé)(t) % (§\/:— ) - _/»Z =30%m 2/(160}

We apply Theorem 3.7 to obtain

HD(t) = ey3 — tG+ ‘/_) =~ _ = Z 302m?/(16t)
N 327t lovmr 12 V

—9m?/(161) ¢ ﬁzedﬂnz/(m)
167t

sz/— 9822 2 2
- J@én | —32(3m2+n2)/(41)
* o Ze Ly

m=1n=1

2
5 V3o Z Ze**‘fz“@m D24@n—1)%)/(160)

8t

m=1n=1

This proves the theorem in the Dirichlet case. The eigenvalues of the hemi-equilateral
triangle with hypotenuse of length £ and the Neumann boundary condition are

1672 ) 2
)»m,n=W(m +mn+n%), m>n>0,

—
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so the heat trace becomes

1671
B = 3 SRt 3 +Ze 4 HE ).

m>n>0 m=1

We have by the Poisson summation formula

—16721/(9¢%)m? _ 1 3¢ ) 9¢2m 2/(16[)
e —_ =
> (s ) s i

m=1
o0
Ze—lfmzt/(%z)nz :l f / / Z —30%n 2/(mz)
2 \4
n=1
Then
2
ANy = ¢ V3 _tB+V3 5 ¢ / Z 3w 161)
@ 32mt 16/t T
—90m?/(161) ¢ ﬁze—wnz/(m
167t
EZ\/_ 0022 2 2
- /(40 —302(3m%+n2)/(41)
62«/_ 302 2
—30°32m—1)"+2n— 1) )/(16t)
e
o Z )3
m=1n=1
which proves the theorem in the Neumann case. O

It follows from Theorem 5.4 that

HD([) _ sz/g . Z(s + \/_) + + O( *(3[2*6)/(16”)
© 32nt 164/ 12 0,

V3 IEE: I) L5 oo,
32mt 163/7 12 0.
forany € > 0. Once again, 3¢2/16 is the square of half the length of the shortest closed

geodesic in the hemi-equilateral triangle with hypotenuse of length ¢ as proven in [16,
p. 43]. This completes the proof of Theorem 1.1.

HY (1) =

6 Heat Traces of Flat tori, Convex Polygonal Domains and a
Comparison with Smoothly Bounded Domains

A full-rank lattice I' C R” is adiscrete additive subgroup of the additive group (R”, +).
In fact, every discrete additive subgroup of R” is a lattice, albeit not necessarily full-
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rank. A full-rank lattice I' C R” gives rise to a smooth, compact Riemannian manifold
known as a flat torus, obtained as the quotient R” / I". Its Riemannian metric is inherited
from the Euclidean (flat) metric on R”. The eigenvalues of the Laplacian on the flat
torus R/ I are the values 4772||y||> for all y in the dual lattice I'*, with multiplicities
counted according to how many distinct y have the same length; recall

M={yeR':y-xeZ, Vx eI}
The Poisson summation formula is the relation (see [11, p. 125])

S I Vol(R"/T7) Z ~IlyIP /)
e

T(Axn2
e Am)n
We recognize the left side as the heat trace of the flat torus. Thus, we have the asymp-
totic expansion

el vol(R"/T)

e (1 T m(yeInIPrén 4 O(e—H)/zllz/(‘U))) 0.

k=0

Above, {At}k>0 are the eigenvalues of the flat torus, m(y1) is the number of y € I' of
minimal positive length given by ||y ||, with the next shortest length given by ||y2||. We
then observe that the shortest closed geodesic in R” / T" has length ||y ||. Consequently,
the asymptotic expansion of the heat trace consists of the usual leading term, together
with a remainder term that is of the form Ot~/ 212G )) with L the length of the
shortest closed geodesic in the flat torus. This leads us to make a conjecture about the
short time asymptotic expansion of the heat trace in similarly flat settings.

A compact Riemannian manifold with curvature identically equal to zero is known
as a Euclidean space form. The fundamental groups of compact Euclidean space
forms are examples of crystallographic groups. These are discrete groups of Euclidean
isometries with compact quotients. It is interesting to note that in two dimensions, the
fundamental domains of crystallographic groups are precisely the integrable polygonal
domains of this study. In two dimensions, all space forms are diffeomorphic to either
a flat torus or a Klein bottle. There are 10 diffeomorphism classes of compact 3-
dimensional Euclidean space forms, and 75 classes in dimension 4. Every Euclidean
space form is a quotient of a flat torus by a finite group of isometries, and in each
dimension there are only finitely many diffeomorphism classes of Euclidean space
forms, although the complete classification is known only in low dimensions. We
refer to [49] and [28] for further details about Euclidean space forms. Due to the
vanishing of their curvature, similar to the case of flat tori, we reasonably expect their
heat traces to have a similar form.

Conjecture 6.1 Assume that M is an n-dimensional Euclidean space form. Then its
heat trace admits an asymptotic expansion of the form

Ze‘*k’ =12 (—VOI(M) + O(e_Lz/(4’))> , t— 0.

2
=0 Amr)r
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Here, L is the length of the shortest closed geodesic in M.

In higher dimensions, strictly tessellating polytopes as defined in [44, Definition 1]
are analogous to integrable polygons in dimension two. Indeed, one could reasonably
define an integrable polytope to be a strictly tessellating polytope in the sense of [44].
Heuristically, our definition of a polytope is a bounded domain in Euclidean space
such that its boundary is piecewise smooth and consists of flat boundary faces. In
two dimensions, for example, a polytope is a bounded, connected polygonal domain.
We suggest that it is reasonable that all polytopes admit a heat trace expansion that
behaves analogously to the two-dimensional case.

Conjecture 6.2 Assume that M is a polytope in R". Then its heat trace with either
the Dirichlet or Neumann boundary condition admits an asymptotic expansion of the
form

n

Ze_)‘k’ =t "/? Zajt-//z +0E ], t—0.
k=0 =0

The coefficient ag is given by ap = (4) ™2 vol(M) with vol(M) the n-dimensional
(Lebesgue) volume of the polytope. The coefficient ay can be expressed with a universal
constant together with the total (n — 1)-dimensional volume of the boundary faces of
the polytope. Analogously, the coefficients aj for 2 < j < n — 1 can be expressed
with a universal constant together with the total (n — j)-dimensional volume of the
(n — j)-dimensional intersections of the boundary faces. The coefficient a,, can be
expressed in terms of the angles in the polytope and its boundary faces as well as
angles between the intersections of these. The supremum over all ¢ > 0 such that this
remainder estimate holds is L* /4 with L the length of the shortest closed geodesic in
M.

The coefficients a; for 0 < j < n — 1 are motivated by locality principles [38] that
generalize Kac’s principle of not feeling the boundary [22, p. 9]. The idea is that on
the interior of each (n — j)-dimensional subset of the boundary, away from its edges,
the heat kernel in M can be modelled as the heat kernel in R” /. The leading term
in the heat trace then comes simply from the (n — j)-dimensional volumes of these
subsets, together with certain universal constants.

6.1 A Comparison of Heat Trace Invariants of Smoothly Bounded Domains and
Polygonal Domains

We conclude with a comparison of the heat trace expansion of smoothly bounded

planar domains to that of polygonal domains that need not be integrable. We therefore
recall the short time asymptotic expansion of the heat trace in these contexts.
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Proposition 6.3 Let Q2 C R? be a smoothly bounded domain. For the Dirichlet bound-
ary condition, the heat trace of 2 satisfies

a1 a-1;2
H({t) ~ —+ +ap+a t— 0,
() ; NG 0+ a1V,
where
a_; = @’ a_ip = |9$2] ap = — k(s)ds, ayjp = ;/‘ k(S)zdS,
4 8f 127 256./7 Jaq

(34)
with k(s) being the Gauss curvature of the boundary. If in addition 2 is convex, then
ap = 1/6. If instead Q2 is a convex n-sided polygon with interior angles yy,...,Yn, then

S P (35)
a0 = — 24my; ’

Proof The formulas given by (34) can be found in [48]. Moreover, by [38, Thm. 6.10,
Remark 6.15] we have qp = %322 (Q) , which equals 1/6 if Q2 is convex. Finally, (35)
follows from [38, Thm. 6.10]. O

As a consequence, we will see that the first two heat trace coefficients of a sequence
of smoothly bounded convex domains that converge to a convex polygonal domain
converge to that of the polygonal domain. However, the third heat trace coefficient
does not converge to that of the polygonal domain.

Theorem 6.4 Let {2} be a sequence of convex smoothly bounded domains in R* and
let Q2 be a convex polygon such that Q. — 2 in the Hausdorff distance. For the
Dirichlet boundary condition, the heat trace coefficients satisfy

aj(€) = aj(Q), j=-1,-1/2, ao(Q) 7> ao().

Proof With the assumptions of convexity and Hausdorff convergence, it follows that
the areas |2k | and perimeters |9 €2 | converge to |€2| and |92, respectively. So we now
consider the third heat trace coefficient. By Proposition 6.3, ag(€2;) = 1/6 for every
k. We will show that ap(£2) > 1/6, from which the result follows. By Proposition 6.3,

no2
@ =3 S 2471;/ Z v 24m ZV’

i=1

Z___”("_ )_24,.21 Vi

By the Cauchy-Schwarz inequality,

n <Z Z%—Z%n(n—Z),

i=1

Birkhauser



69 Page 38 of 45 Journal of Fourier Analysis and Applications (2025) 31:69

so that
n2

; ,Zn(n—Z)

Thus,

@ > 7 n? n—-2 1 N 1 1 36)
a — - =4 —>-.
Y =47m—2) 24 6 6m-2 6

Using the notation of Theorem 6.4, it follows that
lim ao(Qk) ;é a()< lim Qk> .
k— 00 k— 00

In other words, the map 2 — ao(£2) is not continuous in the Hausdorff topology.
Intuitively, this failure arises because the third heat trace coefficient encodes different
geometric information in the smooth and polygonal cases. For smooth domains, it
depends on the integrated boundary curvature, while for polygons, it depends on the
interior angles at the corners. Although a sequence of smooth curves can approximate
a corner arbitrarily well in shape, we cannot expect the curves to capture the singular
corner contributions appearing in the polygonal coefficient. It is interesting to note that
if instead we approximate a smoothly bounded domain by polygonal domains, this
third heat trace coefficient of the polygonal domains converges to that of the smoothly
bounded domain.

Theorem 6.5 (See [29], Thm. 4.4.1) Let {2} be a sequence of Ni-sided convex poly-
gons with interior angles yy. j, fork > 1 and 1 < j < Ny. Assume that Qi — Qin
Hausdorff, with Q2 being a nonempty smoothly bounded convex domain. Then the first
three heat trace coefficients of Q2 converge to those of Q.

Proof The first two heat trace coefficients converge thanks to the assumptions of
Hausdorff convergence and convexity. By [30, Lemma 4.7], the interior angles yx ;
all tend to 7 as the polygons tend to the smoothly bounded domain in Hausdorff
convergence. Next, we show that Ny — oo as k — 00. Suppose instead that there
isan M > 0 such that Ny < M for all k. Since the angles all tend to 7, there is an
N > 1suchthaty, j > 7 — 27" forallk > N and 1 < j < Ng. Then, fork > N,

2w
(N — ZykJ>Nk(n——)

which implies that Ny > M, a contradiction.
Now, the term aq for each k is

Nk

- 1N 1
Q § = Dk
ao(§2) = 57 Ve, 24 T
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Following the proof of [29, Thm. 4.4.1], we can write y; ; = w(1 — f(k, j)), k >
1. 1< j < Ny, from which it follows that Y"1 | £ (k, j) = 2 for every k and

O\I'—‘

Ny 2
1 f(k,
ao($2) = —4 E A (;() s

If we then write

€ = 13}1’}/ fk, j),

then €, — 0 because the angles tend to 7. We therefore obtain that

N 2 N
Sk, j) €k . ek
0< < k,j)= —— Oask .
—gl—ﬂk,j)—l—ek;f( N=qzg 7 iwhze

Thus, ag(Q) — § = ag(Q) as k — oo. O

6.2 Concluding Remarks

There are numerous modes of geometric convergence for domains, Riemannian man-
ifolds, and more general types of possibly singular spaces. Under different modes
of convergence, one can study the behavior of spectral invariants of a sequence and
compare to those of the limit space, as long as it is possible to define a Laplace
spectrum on the elements of the sequence and also on the limit space. Interestingly,
one can define a Laplace spectrum on very singular spaces, including but not limited
to noncollapsed limits under Gromov-Hausdorff convergence [9], rough Riemannian
manifolds [7], and RCD spaces [2]. In some cases, it is even possible to define notions
of curvature, from which one could hope to obtain higher order heat trace invariants.
As a first step, one could investigate the convergence of the most elementary spectral
invariants: the individual eigenvalues. Convergence of individual eigenvalues under
Gromov-Hausdorff convergence to noncollapsed limits of compact manifolds with
Ricci curvature bounded below was shown by Cheeger and Colding [9]. In the same
setting, the associated heat kernels also converge [14]. However, the convergence of
other spectral invariants can be much more subtle, because in essence it could involve
several limiting processes that need not commute. In the simple setting of Hausdorff
convergence of planar domains, if we remove the assumption of convexity, a quan-
tity as simple as the perimeters of the domains need not converge! There are many
interesting problems one could study in the general field of spectral geometry, explor-
ing relationships between the Laplace spectrum and the underlying geometry, and we
welcome both newcomers and seasoned researchers to join us in exploring!
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Appendix A Estimates

Here we show that certain quantities are bounded and therewith justify our calculations
of the zeta-regularized determinants.

LemmaA.1 Forany a, b > 0, the quantity
ab s—1/2 1-2s 53/2 g—man(e+xh) /b
1=y f I ¢ dx
is bounded in a neighborhood of s = 0. In particular,
ab -1
lim s—1/2 dl —2s / v—3/2 —man(x+x )/bd =0.
i i |(7) oS e :

Proof Since

00
i @ ' g ins—l/2 Zd1—2s 00 xs—3/26—nan(x+x_1)/bdx
ds T b 0
n=1 dln
ab\’* ab a oo 1
(=11 - - s—1/2 1-2s §—3/2 ,—man(x+x"")/b
<n> og(JT)\/;nZ:;n dzlnjd A X e dx

+<_) [d va 1/2 Zdl 2v/ v—3/2e—nan(x+x*1)/bdx ’
T S
n=1

d|n
it is enough to show that
s—1/2 1-2s 5—3/2 —mna(x+x~1)/b
z IS 12y / e dx
n=1 d|n
is bounded in a neighborhood of zero, say s € (—1, 1). We will in fact show that we

may differentiate termwise and differentiate under the integral sign, from which the
lemma will follow. Let

fnis) = Zn‘ 23 d ZSf K3 2mmant /b N > 1 s e (=1, 1).
d|n
By definition of infinite sums, fy converges pointwise to
f(S) Z s—1/2 Zdl 23/ s—3/2€—nan(x+x_')/bdx.

n=1 dln
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Now, we need to show that £, (s) converges uniformly to some function. We have

N oo
f[(/(S) — Zns—l/Z Zdl—ZS(log(n) _ 210g(d))/ xs—S/Ze—nan(x—&-x_l)/bdx
0

n=1 dln
N 4T
n Znsfl/Z Zdlfzsd_ |:/ xs3/2enan(x+xl)/bdx] .
s LJo
n=1 din

To proceed, we want to show that we may differentiate under the integral sign. Let
h(s, x) = xS =32~ manG+xD/b o ¢ (L1 1), x € (0, 00).

Fix s. Since h(s, x) — 0 as x — 0 and h(s, x) decays exponentially as x — oo, it
follows that A (s, x) is Lebesgue-integrable over x € (0, co). Moreover,

o = log(x)xs_3/2e_”“"("+x71)/b
as

exists forall s € (—1, 1) and x € (0, 0co0). Finally, let

log(x)x_s/ze_”“"(x“_l)/b, 0<x <1,
0(x) =

log(x)e—n'an(x—l-x_')/b’ x> 1.

By construction we have |%| <6O(x)foralls € (—1, 1) and x € (0, 00), and O(x) is
Lebesgue-integrable over x € (0, co) by the same arguments as for A (s, x). Thus, it
follows from [17, Thm. 2.27] that

d

. -1 o0 ' -1
-~ |:/ x373/2ef7ran(x+x )/bdxj| — / log(x)xstf/Zefnan(erx )/bdx.
ds 0 0

Therefore,

N oo
f]/\l(s) — Zns—1/2 Zdl_zs(log(}’l) _ 210g(d))/ xS—3/Ze—7Tan(X+x_l)/bdx
0
n=1 dln

N
+ Znsfl/Z Zdlfzs /oo log(x)xs73/2€f7mn(x+x’l)/bdx.
n=1 din 0

To show that f}(s) converges uniformly, we use Weierstrass” M-test. Write fy (s) =
SN | gn(s) where

o
gn(s) = Zns_l/zdl—ZS |:(10g(n) _ 210g(d))/ xs—S/Ze—nan(x+x‘1)/bdx
0
d|n
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+/ log(x)x*~ 3/2, ﬂan(x+xl)/hdx:|.
0

We need to bound |g, (s)| by some sequence M,, such that ZZO: | M, converges. We
have

|gn(s)| <an 1/2d1 —2s

d|n

+/ log(x)xs73/2677wn(x+x*1)/bdx
0

(log(n) — 210g(d))/ (532 —man(etx) /b g

0
o
+/ |log(x)|xs—3/26—nan(x+x_l)/bdx].
0
To obtain a bound on the first integral, we compute
o
/ ¥$3/2 —ﬂan(x—i—x’l)/hdx

33/2 p—man(xta” 1)/bdx+/Ooxsf3/267nan(x+x’l)/bdx
1

1

/ nan(erx’l)/bdx + /Ooefnan(erx’l)/bdx

-3 pTanx 1/bdx+/°° efmmx/bdx
1

— 2+ b e—mm/b'
JTCli’l mwan

Similarly for the second integral,
o
/ |log(x)|xs—3/2e—ﬂan(x+x71)/bdx
0
1 1 oo
< / |log(x)|x 3™ /by + / log(x)e ™/b g x
0 1
1 1 00
f/ x—4e—nanx /bdx—i-/ xe—nanx/bdx
0 1

2
_b oy b N
wan wan  (wan)?

Thus,

3b b b 3b 2b?
[8n(s)] < P — 2+ + 2+ + e~ Tan/b. (37)
ma wan man wan = (wan)?
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In particular, there are constants C > 0 and M > 1 such that |g, (s)| < CnMg—man/b
foralln > 1ands € (—1,1). Since

00
Z CnMefrmn/b
n=1

converges, it follows from Weierstrass’ M-test that f (s) converges uniformly on
(=1, 1). This in turn implies that we can differentiate f termwise (see e.g. [45, Thm.
7.17]), i.e.

o0 00
d § :ns71/2 2 :d172s / xx73/2677ran(x+x’l)/bdx
ds 0

n=1 d|n

oo
— Zns—l/Z Zdl—ZS(log(n) _ Zlog(d)) /ooxs—3/26—nan(x+x*1)/bdx
0

n=1 din
0 %)
n Zns—uz Zd1—zs / log(x)x* 32— Tan(ex /b g
0
=1 d|n

In particular, we can by (37) conclude that the derivative is bounded for s € (—1, 1).
O
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