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Abstract
An integrable polygon is one whose interior angles are fractions of π ; that is to say of
the form π

n for positive integers n.We consider the Laplace spectrumon these polygons
with the Dirichlet and Neumann boundary conditions, and we obtain new spectral
invariants for these polygons. This includes new expressions for the spectral zeta
function and zeta-regularized determinant as well as a new spectral invariant contained
in the short-time asymptotic expansion of the heat trace. Moreover, we demonstrate
relationships between the short-timeheat trace invariants of general polygonal domains
(not necessarily integrable) and smoothly bounded domains and pose conjectures and
further related directions of investigation.

Keywords Laplace spectrum · Helmholtz equation · Polygonal domain · Laplace
eigenvalues · Heat trace · Spectral zeta function · Zeta-regularized determinant ·
Polygonal billiard · Closed geodesic

1 Introduction

Let � ⊂ R
2 be a bounded domain in the Euclidean plane. We consider the Laplace

eigenvalue problem, also known as Helmholtz’s equation, that is to find all eigenfunc-
tions u : � → C and eigenvalues λ ∈ C such that

�u + λu = 0 in �, � = ∂2x + ∂2y . (1)

The Helmholtz equation is perhaps the most fundamental partial differential equation
ofmathematics and physics, with numerous real-world applications including acoustic

Communicated by Hans G. Feichtinger.

B Julie Rowlett
julie.rowlett@chalmers.se

Gustav Mårdby
mardby@chalmers.se

1 Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96
Gothenburg, Sweden

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-025-10202-6&domain=pdf
http://orcid.org/0009-0007-1867-1901
http://orcid.org/0000-0002-5724-3252


   69 Page 2 of 45 Journal of Fourier Analysis and Applications            (2025) 31:69 

Fig. 1 Rectangles are integrable polygons, as their interior angles all measure π
2 . If the rectangle has sides

of lengths a and b, then the length of the shortest closed geodesic is twice the length of the shortest side,
corresponding to the orbit running perpendicularly between the two longer sides

design, structural engineering, diffusion processes, quantum mechanics, and wave
propagation. The function u is assumed to be in the Sobolev space H2(�), and is
further required to satisfy a boundary condition. Here, we consider the Dirichlet or
Neumann boundary conditions, which respectively require the function or its normal
derivative to vanish on the boundary. The set of Laplace eigenvalues is the spectrum,
and any quantity that is defined in terms of the spectrum is a spectral invariant.

Although there exist fast and accurate methods for numerically calculating Laplace
eigenvalues [12], the collection of domains for which the eigenvalues can be computed
analytically in closed form is quite limited. Restricting to polygonal domains in the
plane, this collection includes rectangles, equilateral triangles, isosceles right triangles,
and hemi-equilateral triangles, also known as 30-60-90 triangles. By [20] these are
precisely the polygons which are integrable, meaning they have all interior angles of
the form π/n where n ∈ N. It is a straightforward exercise in planar geometry to prove
that all integrable polygons must be one of these four types as shown in Figures 1 –
4. By [34] (see also [44, Thm. 1]), the polygonal domains which strictly tessellate
the plane are precisely rectangles, equilateral triangles, isosceles right triangles, and
the 30-60-90 triangle. Therefore, polygons being integrable is equivalent to strictly
tessellating the plane.

The Laplace eigenfunctions and eigenvalues of rectangles can be obtained using
separation of variables by solving the one-dimensional Helmholtz equation. This was
known to mathematicians and physicists in the 18th century; however proving that all
eigenfunctions and eigenvalues are obtained by this method could not be demonstrated
until functional analysis was developed in the 19th century [18]. The eigenfunctions
of a square that are odd along a diagonal produce Dirichlet eigenvalues of isosceles
right triangles [23]. For equilateral triangles, Lamé was the first to obtain expressions
for eigenvalues and eigenfunctions [24–26]. At the end of the 19th century these
eigenvalues and eigenfunctions were studied further by Pockels, who also noticed that
the eigenfunctions of a regular rhombus and a regular hexagon are not trigonometric,
i.e. cannot be expressed in terms of sines and cosines [42]. It was not until 2008 that
McCartin proved that in fact, the only polygonal domains that have a complete set
of trigonometric eigenfunctions are the integrable polygonal domains [34]. Rowlett
et. al. generalized this result to higher dimensions, where polygons are replaced by
polytopes [44] (Fig. 2).
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Fig. 2 Equilateral triangles are
integrable polygons, as their
interior angles all measure π

3 .
Their shortest closed geodesic is
formed by connecting the
midpoints of the three sides,
creating an equilateral triangle
with sides of length �

2 and

therewith total length 3 �
2

Although Lamé obtained closed formulas for eigenvalues and eigenfunctions of
equilateral triangles, similar to the case of rectangles, it is another matter to prove
that these are all eigenvalues. Indeed, this was first rigorously demonstrated in the
1980s by Pinsky who gave a new way of deriving the eigenvalues and eigenfunctions
and established completeness [40, 41]. In 1998, Prager gave a different method for
deriving the eigenvalues and eigenfunctions of the equilateral triangle [43], and in 2002
McCartin gave another elementary method [31–33]. McCartin also showed that the
eigenfunctions of an equilateral triangle with either two Dirichlet and one Neumann
boundary condition or one Dirichlet and two Neumann boundary conditions are not
trigonometric [32]. Similar to rectangles and isosceles right triangles, one obtains the
eigenvalues of hemi-equilateral (30-60-90) triangles by considering the eigenfunctions
of equilateral triangles that are odd along a nodal line [32].

In 1957 Brownell studied arbitrary polygonal domains with the Dirichlet boundary
condition and conjectured that their heat trace expansion only has three terms [8].
A complicated and somewhat incomplete proof of this was given in [5, 6]. In 1988
van den Berg and Srisatkunarajah improved this result by obtaining a bound on the
error term after the first three terms [46]. Moreover, they gave a detailed calculation
of the third heat trace term for polygonal domains that had previously appeared in the
literature without a complete proof [22], [36], attributed to unpublished work by Ray.
Using the explicit expressions of the eigenvalues, Verhoeven calculated the heat trace
of rectangles, isosceles right triangles, and equilateral triangles in his Bachelor thesis
[47]. Although he did not explicitly compute the sharp remainder term, Verhoeven’s
techniques help us to obtain the sharp remainder term in the short time asymptotic
expansion of the heat trace for integrable polygons. In the case of equilateral triangles,
we compute the heat trace via an independent method and show that our expression
is in fact equal to Verhoeven’s. In doing so, we are able to prove directly that two
different formulas (13), (24) for the eigenvalues of the equilateral triangle are in fact
equivalent. This equivalence can be deduced by combining results fromMcCartin [32,
35], but to the best of our knowledge a direct proof has not previously appeared in the
literature. Moreover, we obtain expressions for the spectral zeta functions and zeta-
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regularized determinants of integrable polygons, some of which appear to be new. We
also prove that our expressions for the spectral zeta functions of integrable polygons
turn out to be equal to those obtained byAurell and Salomonson in [4, (108)], whowere
the first to obtain such closed-form expressions. We further show that differentiating
these expressions one obtains the same results for the zeta-regularized determinant. By
presenting these spectral invariants in their most explicit form,we aim to facilitate both
practical computations and theoretical insights. Notably, our investigation of the heat
trace leads to a conjecture for a new spectral invariant for convex polygonal domains,
namely the length of their shortest closed geodesic. Durso proved that the length of
the shortest closed geodesic is a spectral invariant in triangular domains by studying
the singularities of the wave trace [16]. More generally she proved that the Poisson
relation holds in polygonal domains, meaning that the times at which the wave trace
is singular is contained in the set of lengths of closed geodesics in the domain. It is
unknown if this containment is proper or an equality, so in order to show that the length
of a certain closed geodesic is a spectral invariant, one must prove that the wave trace
is singular when time is equal to that length. Our approach is via the heat trace, which
may be slightly more accessible (Fig. 3).

Theorem 1.1 Let� be an integrable polygonal domain. Let {λk}k≥1 denote theDirich-
let eigenvalues of �. Then the heat trace has the short time asymptotic expansion

∑

k≥1

e−λk t = |�|
4π t

− |∂�|
8
√

π t
+

n∑

i=1

π2 − γ 2
i

24πγi
+ O(e−(L2−ε)/(4t)), t → 0, ∀ε > 0.

Above, |�| is the area of �, |∂�| is its perimeter, γi are the measures of its interior
angles, n is the number of sides, and L is the length of the shortest closed geodesic in
�. If instead {μk}k≥0 denote the Neumann eigenvalues of �, then the heat trace

∑

k≥0

e−μk t = |�|
4π t

+ |∂�|
8
√

π t
+

n∑

i=1

π2 − γ 2
i

24πγi
+ O(e−(L2−ε)/(4t)), t → 0, ∀ε > 0.

The remainder estimate in both cases is sharp in the sense that L2

4 is the supremum
over all c > 0 such that the remainder is O(e−c/t ) as t → 0.

Theorem 1.1 is proved separately for each class of integrable polygons: in Theorem
2.4 for rectangles, Theorem3.7 for equilateral triangles, Theorem4.5 for isosceles right
triangles, and Theorem 5.4 for hemi-equilateral triangles. This result is not surprising
if one considers flat tori, as their heat trace consists of a leading term involving the
volume, and an exponentially decaying remainder term with exponent of the same
form as the remainder here for integrable polygons. In the following sections, §2–
§5 we calculate the spectral zeta function, zeta-regularized determinant, and heat
trace of rectangles, equilateral triangles, isosceles right triangles, and hemi-equilateral
triangles. In the last section of the article §6 we present a brief comparison of the heat
traces offlat tori, Euclidean space forms, convexpolytopes, convexpolygonal domains,
and smoothly bounded domains. We conjecture that for Euclidean space forms as well
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Fig. 3 Isosceles right triangles
are integrable polygons, as their
interior angles measure π

2 and
π
4 . Their shortest closed
geodesic is the altitude that joins
the right angle to the hypotenuse

as convex polytopes, the heat trace has a short time asymptotic expansion with a
rapidly decaying remainder term of the same type as that of flat tori and integrable
polygons. We then consider convex polygonal domains converging in the Hausdorff
sense to a smoothly bounded domain and prove that the first three heat trace invariants
converge to those of the smoothly bounded domain. In contrast, if smoothly bounded
domains converge in the Hausdorff sense to a convex polygonal domain, then only
the first two heat trace invariants converge; we show that the third does not. We hope
to provide an inclusive introduction to the Laplace eigenvalue problem suitable for a
broad readership and at the same time, inspire those readers well-versed in the field
to investigate the many remaining open problems.

Notation and Abbreviations

For the reader’s convenience, we include a summary of our notation and abbreviations
in Table 1.

2 Spectral Invariants of Rectangles

Consider a rectangular domain [0, a] × [0, b] in the plane. One can separate variables
and solve the Laplace eigenvalue equation on the two segments [0, a] and [0, b],

uxx + uyy + λu(x, y) = 0, 0 < x < a, 0 < y < b, (2)

imposing either the Dirichlet or Neumann boundary condition, respectively,

(DBC) : u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0,

(NBC) : ux (0, y) = ux (a, y) = uy(x, 0) = uy(x, b) = 0.
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Fig. 4 Hemi-equilateral
triangles are integrable
polygons, as their interior angles
measure π

2 and π
3 and π

6 . Their
shortest closed geodesic is the
altitude that joins the right angle
to the hypotenuse

In the Dirichlet case, the results of this calculation yields the eigenvalues and eigen-
functions

λm,n = π2
(
m2

a2
+ n2

b2

)
, m, n ≥ 1, um,n(x, y) = sin(mπx/a) sin(nπ y/b). (3)

Having obtained these eigenvalues and eigenfunctions using separation of variables,
one may follow [27, p. 83] to prove completeness, in other words that these are indeed
all eigenfunctions and eigenvalues.

2.1 The Spectral Zeta Function and Zeta-Regularized Determinant of Rectangles

By our calculation of the eigenvalues under the Dirichlet boundary condition in (3)
the spectral zeta function is

ζ�(s) = 1

π2s

∞∑

m=1

∞∑

n=1

1

(m
2

a2
+ n2

b2
)s

. (4)

Webegin by computing twoequivalent expressions for the spectral zeta function. These
expressions are relatively simple to obtain using known results, but it seems that the
first expression is less widespread. Note that while the sum in (4) only converges
for s ∈ C with Re(s) > 1, it is well known that the spectral zeta function has an
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Table 1 Notation and abbreviations

� Laplace operator or Laplacian defined in (1)

DBC Dirichlet boundary condition

NBC Neumann boundary condition
∑

m∈Z
∑′

k∈Zsum over all integer pairs except (0, 0)

� Gamma function

ζ�(s) Dirichlet spectral zeta function for a rectangle [0, a] × [0, b]
G�(s) function defined in (6)

HD
� (t) Dirichlet heat trace for a rectangle [0, a] × [0, b]

HN
� (t) Neumann heat trace for a rectangle [0, a] × [0, b]

ζ�(s) Dirichlet spectral zeta function for a square with sides of length a

ζ∇ (s) Dirichlet spectral zeta function for an equilateral triangle with sides of length �

G∇ (s) function defined in (20)

HD∇ (t) Dirichlet heat trace for an equilateral triangle with sides of length �

HN∇ (t) Neumann heat trace for an equilateral triangle with sides of length �

ζ♦(s) Dirichlet spectral zeta function for an isosceles right triangle with legs of length a

G♦(s) function defined in (29)

HD♦ (t) Dirichlet heat trace for an isosceles right triangle with legs of length a

HN♦ (t) Neumann heat trace for an isosceles right triangle with legs of length a

ζ♥(s) Dirichlet spectral zeta function for a hemi-equilateral (30-60-90) triangle with hypotenuse �

G♥(s) function defined in (32)

HD♥ (t) Dirichlet heat trace for a hemi-equilateral (30-60-90) triangle with hypotenuse �

HN♥ (t) Neumann heat trace for a hemi-equilateral (30-60-90) triangle with hypotenuse �

ζR(s) Riemann zeta function

η(z) Dedekind eta function

L3(s) Dirichlet L-function 1 − 2−s + 4−s − · · ·
L4(s) Dirichlet L-function 1 − 3−s + 5−s + · · ·

analytic continuation to C\{1} with a simple pole at s = 1. Moreover, the formulas
in Proposition 2.1 are well defined and analytic in C\{1}. Therefore, in the analytic
continuation of the spectral zeta function, the formulas hold for all such s.

Proposition 2.1 The spectral zeta function of a rectangle [0, a]×[0, b]with theDirich-
let boundary condition is equivalently given by the expressions

ζ�(s) = 1

2

(
b

π

)2s [
− ζR(2s) + a

√
π

b

ζR(2s − 1)�(s − 1/2)

�(s)

]

+
(
ab

π

)s 1

�(s)

√
a

b

∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

(5)
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and

ζ�(s) = a2s

4

[
G�(s) − 2

(
b

aπ

)2s

ζR(2s) − 2

π2s ζR(2s)

]
, s ∈ C\{1}.

Here ζR denotes the Riemann zeta function, and

G�(s) =
∑

m∈Z

∑′

n∈Z

1

π2s |m + nz|2s , z = ai/b, Re(s) > 1. (6)

Proof We write

ζ�(s) = 1

π2s

∞∑

m=1

∞∑

n=1

1

(m
2

a2
+ n2

b2
)s

= 1

4π2s

[ ∑

m∈Z

∑′

n∈Z

1

(m
2

a2
+ n2

b2
)s

− 2ζR(2s)(a2s + b2s)

]
, Re(s) > 1.

By [10, p. 87], we have

∑

m∈Z

∑′

n∈Z

1

(m
2

a2
+ n2

b2
)s

= 2a2sζR(2s) + 2ab2s−1√πζR(2s − 1)�(s − 1/2)

�(s)
+ Q(s),

Q(s) = 4(πab)s

�(s)

√
a

b

∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞
0

xs−3/2e−πan(x+x−1)/bdx, Re(s) > 1.

Therefore, the first formula in the proposition follows for Re(s) > 1, and hence for
all s ∈ C\{1} in the analytic continuation of ζ�(s). To obtain the second formula for
ζ�(s) we write for Re(s) > 1

ζ�(s) = a2s
∞∑

m=1

∞∑

n=1

1

π2s |m + nz|2s ,

where z = ai/b, which implies the second formula in the proposition. 
�
Corollary 2.2 The zeta-regularized determinant of a rectangle [0, a] × [0, b] with the
Dirichlet boundary condition is e−ζ ′

�(0) with ζ ′
�(0) equivalently given by

ζ ′
�(0) = 1

2
log(2b) + πa

12b
+

∞∑

n=1

1

ne2πna/b

∑

d|n
d,

ζ ′
�(0) = 1

2
log

(
2b

|η(z)|2
)

= 1

2
log(2b) + πa

12b
−

∞∑

n=1

log(1 − e−2πna/b), z = ai/b.
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Proof We differentiate our first expression from Proposition 2.1 and obtain

ζ ′
�(s) = log

(
b

π

)(
b

π

)2s [
− ζR(2s) + a

√
π

b

ζR(2s − 1)�(s − 1/2)

�(s)

]

+ 1

2

(
b

π

)2s [
− 2ζ ′

R(2s) + a
√

π

b

1

�(s)2

[
2�(s)ζ ′

R(2s − 1)�(s − 1/2)

+ �(s)ζR(2s − 1)�′(s − 1/2) − �′(s)ζR(2s − 1)�(s − 1/2)

]]

−
(
ab

π

)s �′(s)
�(s)2

√
a

b

∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞
0

xs−3/2e−πan(x+x−1)/bdx

+ 1

�(s)

d

ds

⎡

⎣
(
ab

π

)s √
a

b

∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞
0

xs−3/2e−πan(x+x−1)/bdx

⎤

⎦ ,

s ∈ C\{1}.

In Lemma A.1 we prove that we may differentiate termwise and under the integral
in the last term above, and thereby obtain that this term vanishes at s = 0 due to the
presence of 1

�
. If we write

φ = 1

�
, then φ′(0) = 1, (7)

due to the fact that lims→0 s�(s) = 1. Thus we obtain

ζ ′
�(0) = log

(
b

π

) [
− ζR(0)

]
+ 1

2

[
− 2ζ ′

R(0) − a
√

π�′(0)ζR(−1)�(−1/2)

b�(0)2

]

+ φ′(0)
√
a

b

∞∑

n=1

n−1/2
∑

d|n
d

∫ ∞

0
x−3/2e−πan(x+x−1)/bdx .

We make the change of variable x = et , use the identity e−t/2 = cosh(t/2) −
sinh(t/2), together with the identities [15, Eq. 10.32.9, Eq. 10.39.2] to compute

∫ ∞

0
x−3/2e−πan(x+x−1)/bdx =

√
b

an
e−2πan/b. (8)

Moreover, we have

ζR(0) = −1

2
, ζ ′

R(0) = − log(2π)

2
, ζR(−1) = − 1

12
, �(−1/2) = −2

√
π. (9)

Thus we obtain the first formula in the corollary.
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Next we differentiate the second expression of Proposition 2.1:

ζ ′
�(s) = a2s log(a)

[
G�(s)

2
−

(
b

aπ

)2s

ζR(2s) − 1

π2s ζR(2s)

]

+ a2s
[
G ′

�(s)

4
−

(
b

aπ

)2s

log

(
b

aπ

)
ζR(2s) −

(
b

aπ

)2s

ζ ′
R(2s)

+ 1

π2s log(π)ζR(2s) − 1

π2s ζ ′
R(2s)

]
, s ∈ C\{1}.

After inserting s = 0, this becomes

ζ ′
�(0) = log(a)

[
G�(0)

2
+ 1

]
+ G ′

�(0)

4
+ 1

2
log

(
4b

a

)
.

We have by [39, p. 204-205] (see also [1, p. 1830-1831]),

G�(0) = −1, G ′
�(0) = − 1

12
log

(
(2π)24

(η(z)η̄(z))24

π24

)
,

where

η(τ) = q1/12
∞∏

n=1

(1 − q2n), q = eπ iτ , Im(τ ) > 0, (10)

is the Dedekind eta function. Since

log(η(z)) = − πa

12b
+

∞∑

n=1

log(1 − e−2πna/b),

we obtain

ζ ′
�(0) = 1

2
log

(
2b

|η(z)|2
)

= 1

2
log(2b) + πa

12b
−

∞∑

n=1

log(1 − e−2πna/b).

It may be of some interest to verify explicitly that our two expressions of ζ ′
�(0) are

equal.
To this end, it is enough to show that

−
∞∑

n=1

log(1 − qn) =
∞∑

n=1

qn

n

∑

d|n
d

for |q| < 1. We Taylor expand log(1 − qn) around 0 and obtain

−
∞∑

n=1

log(1 − qn) =
∞∑

n=1

∞∑

m=1

qnm

m
=

∞∑

m=1

1

m

∞∑

n=1

qnm .
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If we write this as a power series in q, we see that qn gets a contribution of 1/m if m
divides n, and zero otherwise. Thus,

−
∞∑

n=1

log(1 − qn) =
∞∑

n=1

qn
∑

d|n

1

d
=

∞∑

n=1

qn

n

∑

d|n
d,

where the last equality follows from the fact that n/d �→ d is a bijection between the
divisors of n. This completes the proof that the two expressions for ζ ′

�(0) are equal. 
�
Remark 2.3 We note that our expression for ζ ′

�(0) is equivalent to that given in [4,
(105)]. In the case of a square, our expression for the spectral zeta function is equivalent
to the first line of [4, (108)], and the derivative at s = 0 agrees with the expression
given in [4, (113)].

2.2 The Heat Trace of a Rectangle and its Short Time Asymptotic Expansion

For the rectangle [0, a] × [0, b], the Dirichlet heat trace

HD
� (t) =

∑

λm,n

e−λm,n t =
∞∑

m=1

∞∑

n=1

e−π2(m2/a2+n2/b2)t =
∞∑

m=1

e−π2m2t/a2
∞∑

n=1

e−π2n2t/b2 .

Since ∞∑

n=1

qn
2 = �3(q) − 1

2
, �3(q) =

∑

n∈Z
qn

2
,

the heat trace satisfies

HD
� (t) =

(
�3(e−π2t/a2) − 1

)(
�3(e−π2t/b2) − 1

)

4
.

Although we will not use this well known expression, we present it for the sake of
completeness. Our focus here is on the asymptotic expansion of HD

� (t) as t → 0.
For any convex polygon � in the Euclidean plane with interior angles γ1, . . . , γn ,

its heat trace with the Dirichlet boundary condition admits the asymptotic expansion

|�|
4π t

− |∂�|
8
√

π t
+

n∑

i=1

π2 − γ 2
i

24πγi
+ O(e−c/t ), t → 0,

for some c > 0 that has been estimated in [46]. For the Neumann boundary condi-
tion, an analogous estimate with such a remainder term remains an open problem.
Verhoeven [47] used the Poisson summation formula to obtain the expression (11)
that can be used not only to obtain further terms in the asymptotic expression, but
also to determine the supremum of all such c for the remainder estimate above. We
provide the sharp remainder here as well as the corresponding result for the Neumann
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boundary condition. It is interesting to note that certain terms appear with different
signs according to the different boundary conditions.

Theorem 2.4 Let� = [0, a]×[0, b] be a rectangle that is not a square. Then the heat
trace with the Dirichlet boundary condition admits the asymptotic expansion

HD
� (t) = ab

4π t
− a + b

4
√

π t
+ 1

4
+ ab

2π t
e−min(a,b)2/t

− min(a, b)

2
√

π t
e−min(a,b)2/t + O

(
t−1e−c/t

)
, t → 0,

c = min(max(a, b)2, 4min(a, b)2).

The heat trace with the Neumann boundary condition admits the asymptotic expansion

HN
� (t) = ab

4π t
+ a + b

4
√

π t
+ 1

4
+ ab

2π t
e−min(a,b)2/t

+ min(a, b)

2
√

π t
e−min(a,b)2/t + O

(
t−1e−c/t

)
, t → 0.

If the rectangle is a square, a = b, then the respective expansions are

HD
� (t) = a2

4π t
− a

2
√

π t
+ 1

4
+ a2

π t
e−a2/t − a√

π t
e−a2/t + O(t−1e−2a2/t ), t → 0,

HN
� (t) = a2

4π t
+ a

2
√

π t
+ 1

4
+ a2

π t
e−a2/t + a√

π t
e−a2/t + O(t−1e−2a2/t ), t → 0.

In all cases the remainders are sharp.

Remark 2.5 We note that the heat trace formulas for squares are not obtained by letting
a = b in the corresponding formulas for rectangles. In particular, the coefficients after
the first three terms are inconsistent. The reason for this is that in the case a = b,
certain sums in the heat trace can be combined, which effectively doubles some of
the coefficients compared to the case a �= b where such grouping is not possible. In
effect, then, one cannot interchange the limits b → a and t → 0.

Proof By the Poisson summation formula,

∑

m∈Z
e−π2m2t/a2 = a√

π t

∑

m∈Z
e−m2a2/t , a, t > 0,

which implies that

∞∑

m=1

e−π2m2t/a2 = 1

2

(
a√
π t

− 1

)
+ a√

π t

∞∑

m=1

e−m2a2/t .
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Consequently, the Dirichlet heat trace becomes

HD
� (t) =

(
1

2

(
a√
π t

− 1

)
+ a√

π t

∞∑

m=1

e−m2a2/t

)

(
1

2

(
b√
π t

− 1

)
+ b√

π t

∞∑

n=1

e−n2b2/t

)

= ab

4π t
− a + b

4
√

π t
+ 1

4
+ ab

2π t

∞∑

m=1

e−m2a2/t + ab

2π t

∞∑

n=1

e−n2b2/t

− a

2
√

π t

∞∑

m=1

e−m2a2/t − b

2
√

π t

∞∑

n=1

e−n2b2/t + ab

π t

∞∑

m=1

∞∑

n=1

e−(m2a2+n2b2)/t .

(11)
The proof in the Dirichlet case is then completed by calculating the leading order
terms and determining the remainder by analyzing each of the three series. We note
that Verhoeven did not compute the sharp remainder estimate in [47]. Instead, he stops
with the formula above.

The eigenvalues of the rectangle [0, a] × [0, b] with the Neumann boundary con-
dition are given by

λm,n = π2
(
m2

a2
+ n2

b2

)
, m, n ≥ 0,

so the heat trace becomes

HN
� (t) =

∞∑

m=0

∞∑

n=0

e−π2(m2/a2+n2/b2)t = 1 +
∞∑

n=1

e−π2n2t/b2 +
∞∑

m=1

e−π2m2t/a2 + HD
� (t)

= 1 + 1

2

(
b√
π t

− 1

)
+ b√

π t

∞∑

n=1

e−n2b2/t + 1

2

(
a√
π t

− 1

)

+ a√
π t

∞∑

m=1

e−m2a2/t + HD
� (t)

= ab

4π t
+ a + b

4
√

π t
+ 1

4
+ ab

2π t

∞∑

m=1

e−m2a2/t + ab

2π t

∞∑

n=1

e−n2b2/t

+ a

2
√

π t

∞∑

m=1

e−m2a2/t + b

2
√

π t

∞∑

n=1

e−n2b2/t + ab

π t

∞∑

m=1

∞∑

n=1

e−(m2a2+n2b2)/t .

Here we have used the Poisson summation formula and our calculation of HD
� (t). The

proof in the Neumann case is similarly completed by reading off the leading order
terms and collecting the remainder.

When a = b, the heat traces simplify to

HD
� (t) = a2

4π t
− a

2
√

π t
+ 1

4
+ a2

π t

∞∑

m=1

e−m2a2/t − a√
π t

∞∑

m=1

e−m2a2/t
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+ a2

π t

∞∑

m=1

∞∑

n=1

e−(m2+n2)a2/t ,

HN
� (t) = a2

4π t
+ a

2
√

π t
+ 1

4
+ a2

π t

∞∑

m=1

e−m2a2/t + a√
π t

∞∑

m=1

e−m2a2/t

+ a2

π t

∞∑

m=1

∞∑

n=1

e−(m2+n2)a2/t ,

from which the claimed heat trace expansions follow.

�

Theorem 2.4 immediately implies that as t → 0,

HD
� (t) = ab

4π t
− a + b

4
√

π t
+ 1

4
+ O(e−((min(a,b)2−ε)/t ),

HN
� (t) = ab

4π t
+ a + b

4
√

π t
+ 1

4
+ O(e−((min(a,b)2−ε)/t ),

for any ε > 0, but not ε = 0. In particular, there is no maximal c such that the error
term isO(e−c/t ), but the supremum of all such values is min(a, b)2. To compare with
[46], we note that their estimate for the exponent in the remainder term in case of

rectangles is min(a,b)2

512 . By [21, Prop. 8], min(a, b)2 is the square of half the length of
the shortest closed geodesic in the rectangle. This proves Theorem 1.1 in the case of
rectangles. This is not surprising considering the analogous result one can obtain for
flat tori as discussed in §6.

We can easily generalize Theorem 2.4 to n-dimensional Euclidean boxes. For a
Euclidean box,

∏n
j=1[0, a j ], a calculation similar to the one above yields the following

heat trace in the Dirichlet and Neumann case, respectively:

1

2n

n∏

j=1

(
a j√
π t

− 1

)
+ O(e−(min(a1,...,an)2−ε)/t ), ∀ε > 0, t → 0,

1

2n

n∏

j=1

(
a j√
π t

+ 1

)
+ O(e−(min(a1,...,an)2−ε)/t ), ∀ε > 0, t → 0.

We again observe that min(a1, . . . , an)2 is the square of half the length of the shortest
closed geodesic in this Euclidean box.

3 Spectral Invariants of Equilateral Triangles

Let � = {(x, y) ∈ R
2 : 0 < y < x

√
3, y <

√
3(1 − x)} be an equilateral trian-

gular domain. We note that the sides each have length one. We consider the Laplace
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eigenvalue problem with the Dirichlet boundary condition

{
� f (x, y) + λ f (x, y) = 0 in �,

f (x, y) = 0 on ∂�.
(12)

By [40, Thm. 1], the eigenvalues of (12) are

λm,n = 16π2

27
(m2 − mn + n2), with m, n ∈ Z satisfying (13)

(A) m + n ≡ 0 (mod 3),
(B) m �= 2n,
(C) n �= 2m,
(D) m �= −n.

Although these conditions are stated in [40] and [41], there is no proof given that they
are necessary and sufficient to guarantee that the associated λm,n is an eigenvalue. A
formula is given for the associated eigenfunction, but it could happen that the func-
tion vanishes identically, or that it does not satisfy the boundary condition. McCartin
filled this gap by providing a beautiful pedagogical derivation of these expressions
and showed how the conditions are necessary and sufficient [35]. We have a slightly
different proof that some readers may find more accessible, and since it takes a mere
page, we include it for the benefit of readers.

If λm,n is an eigenvalue of �, a corresponding eigenfunction is given by

fm,n(x, y) =
∑

(m,n)

±e2π i/3(nx+(2m−n)y/
√
3). (14)

Here, the sum goes through the six pairs in

(−n,m − n), (−n,−m), (n − m,−m), (n − m, n), (m, n), (m,m − n) (15)

from left to right and the sign alternates for each term. It is straightforward to verify
that (m, n) satisfies (A) – (D) if and only if every pair above also satisfies (A) – (D).
Explicitly, the eigenfunction corresponding to these six pairs is

fm,n(x, y) = e2π i/3((m−n)x−(m+n)y/
√
3) − e2π i/3(−mx+(m−2n)y/

√
3)

+ e2π i/3(−mx+(2n−m)y/
√
3) − e2π i/3(nx+(n−2m)y/

√
3)

+ e2π i/3(nx+(2m−n)y/
√
3) − e2π i/3((m−n)x+(m+n)y/

√
3),

(16)
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or, equivalently,

fm,n(x, y) = −2ie2π i/3(m−n)x sin

(
2π(m + n)y

3
√
3

)
− 2ie−2π i/3mx sin

×
(
2π(m − 2n)y

3
√
3

)
− 2ie2π i/3nx sin

(
2π(n − 2m)y

3
√
3

)
.

(17)

We will now prove that fm,n is an eigenfunction of � with corresponding eigenvalue
λm,n if and only if (A), (B), (C), and (D) are satisfied. First, we note that

(m−n)2 + (m + n)2

3
= m2 + (m − 2n)2

3
= n2 + (n − 2m)2

3
= 4m2 − 4mn + 4n2

3
,

from which it immediately follows that

� fm,n + λm,n fm,n = 0.

Next, we examine when fm,n satisfies the boundary condition. At the boundary y = 0,
it is clear from (17) that fm,n vanishes. At y = x

√
3 we obtain

fm,n(x, x
√
3) = e2π i/3(−2nx) − e

2π i
3 (−2nx) + e2π i/3((2n−2m)x)

− e2π i/3((2n−2m)x) + e2π i/3(2mx) − e2π i/3(2mx) = 0.

For y = √
3(1 − x), we have

fm,n(x,
√
3(1 − x)) = e2π i/3(−(m+n)+2mx) − e2π i/3((m−2n)+(2n−2m)x)

+ e2π i/3((2n−m)−2nx)

− e2π i/3((n−2m)+2mx) + e2π i/3((2m−n)+(2n−2m)x)

− e2π i/3((m+n)−2nx)

= e4π i/3mx (e2π i/3(−m−n) − e2π i/3(n−2m))

+ e4π i/3(n−m)x (e2π i/3(2m−n) − e2π i/3(m−2n))

+ e4π i/3(−nx)(e2π i/3(2n−m) − e2π i/3(m+n)).

This vanishes if and only if condition (A) holds. Indeed, if m + n ≡ 0 (mod 3), then
m + n = 3k for some k ∈ Z, and

fm,n(x,
√
3(1 − x)) = e4π i/3mx (e2π i/3(−3k) − e2π i/3(3k−3m))

+ e4π i/3(n−m)x (e2π i/3(3m−3k) − e2π i/3(3k−3n))

+ e4π i/3(−nx)(e2π i/3(3n−3k) − e2π i/3(3k)) = 0.
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If instead m + n ≡ 1 (mod 3), so that m + n = 3k + 1, then it simplifies to

fm,n(x,
√
3(1 − x)) = −i

√
3(e4π i/3mx + e4π i/3(n−m)x + e−4π i/3nx ),

which is not identically zero. For example, at x = 3/4 this equals −i
√
3((−1)m +

(−1)n−m + (−1)n) �= 0. Similarly, if m + n ≡ 2 (mod 3), then m + n = 3k − 1 and

fm,n(x,
√
3(1 − x)) = i

√
3(e4π i/3mx + e4π i/3(n−m)x + e−4π i/3nx ) �≡ 0.

Next, we show that fm,n ≡ 0 when either (B), (C), or (D) isn’t satisfied. For this it
suffices to check that fm,2m , f2n,n , and f−n,n are all identically zero. To show this, we
compute that the six pairs in each case respectively are

(−2m,−m), (−2m,−m), (m,−m), (m, 2m), (m, 2m), (m,−m);
(−n, n), (−n,−2n), (−n,−2n), (−n, n), (2n, n), (2n, n);
(−n,−2n), (−n, n), (2n, n), (2n, n), (−n, n), (−n,−2n).

Due to the alternating signs in the definitions of fm,2m , f2n,n , and f−n,n it follows that
they each vanish identically.

Finally, we compute that

fm,n(0, y) = −2i

[
sin

(
2π y(m + n)

3
√
3

)
+ sin

(
2π y(m − 2n)

3
√
3

)
+ sin

(
2π y(n − 2m)

3
√
3

)]
.

Sines with different frequencies are linearly independent. Consequently as long as
|m + n|, |m − 2n| and |n − 2m| are not all equal, then fm,n(0, y) is not the zero
function. Since fm,n is a real analytic function on R

2 it then follows that fm,n is also
not the zero function. We therefore compute

m2 + n2 + 2mn = m2 + 4n2 − 4mn = n2 + 4m2 − 4mn

⇐⇒ 6mn = 3n2 ⇐⇒ n = 0 or 2m = n.

Since 2m �= n by (C), this would require n = 0, but then m = 0 which violates (D).
We have therewith shown that each orbit in (15) satisfying (A)–(D) gives rise to a
(nontrivial) Laplace eigenfunction that satisfies the Dirichlet boundary condition. The
fact that each orbit gives rise to a distinct eigenfunction, and that the collection of all
of these functions constitutes an orthogonal basis for L2 on the triangle follows from
[41].
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3.1 The Spectral Zeta Function and Zeta-Regularized Determinant of an
Equilateral Triangle

For the equilateral triangle with side length �, the spectral zeta function corresponding
to the Dirichlet boundary condition is

ζ∇(s) =
∑

λm,n

1

λsm,n
= 1

6

(
27�2

16π2

)s ∑

λm,n

1

(m2 − mn + n2)s
, Re(s) > 1.

We sum according to (13). Each eigenvalue occurs six times its actual multiplicity,
hence we divide by 6 to correctly account for multiplicities. Our first result is an
expression for this spectral zeta function that we have not encountered in the literature.

Proposition 3.1 The spectral zeta function for an equilateral triangle with side lengths
equal to � and the Dirichlet boundary condition is equivalently

ζ∇ (s) = 1

6

(
3�

4π

)2s [
− 4ζR(2s) + 22s

√
πζR(2s − 1)�(s − 1/2)

�(s)3s−1/2

+ 4π s2s−1/2

�(s)3s/2−1/4

∞∑

n=1

ns−1/2
∑

d|n
d1−2s(−1)n

∫ ∞
0

xs−3/2e−πn
√
3(x+x−1)/2dx

]
,

(18)

ζ∇ (s) = 1

6

(
9�2

16π2

)s

G∇ (s) −
(

9�2

16π2

)s

ζR(2s), s ∈ C\{1}, (19)

G∇ (s) =
∑

m∈Z

∑′

k∈Z

1

|m + kz|2s , z = −3 + i
√
3

2
, Re(s) > 1. (20)

Proof To calculate the sum defining the spectral zeta function we begin by restricting
the sum to nonzero pairs (m, n) = (m, 3k − m) satisfying (A):

∑

m∈Z

∑′

k∈Z

1

(m2 − m(3k − m) + (3k − m)2)s

= 1

3s
∑

m∈Z

∑′

k∈Z

1

(m2 − 3km + 3k2)s
, Re(s) > 1.

By [10, p. 87], we have

∑

m∈Z

∑′

k∈Z

1

(m2 − 3km + 3k2)s
= 2ζR(2s) + 22s

√
πζR(2s − 1)�(s − 1/2)

�(s)3s−1/2 + Q(s),

Q(s) = 4π s2s−1/2

�(s)3s/2−1/4

∞∑

n=1

ns−1/2
∑

d|n
d1−2s (−1)n

∫ ∞
0

xs−3/2e−πn
√
3(x+x−1)/2dx, Re(s) > 1.
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When we sum over the pairs (m, n) with m = 2n, we get

∑

n∈Z,n �=0

1

((2n)2 − 2n · n + n2)s
= 2

3s
ζR(2s), Re(s) > 1.

We get the same result when we sum over the pairs (m, n) with n = 2m and m =
−n. Thus, recalling the factor of 1

6 , we obtain the first expression for ζ∇(s) in the
proposition.

The second expression follows from noting that

∑

m∈Z

∑′

k∈Z

1

(m2 − 3km + 3k2)s

=
∑

m∈Z

∑′

k∈Z

1

|m + kz|2s = G∇(s), z = −3 + i
√
3

2
, Re(s) > 1.


�
Remark 3.2 Aurell & Salomonson [4] gave an expression for the spectral zeta function
of the equilateral triangle in the third line of their equation (108) as

(
4π

3�

)−2s

[L3(s)ζR(s) − ζR(2s)] . (21)

Here L3 is the Dirichlet L-series 1−2−s +4−s −5−s +· · · . One can show using [50,
Example 1, p. 280] that this expression is equivalent to our (19). We thank Anders
Södergren for suggesting this reference to demonstrate the equivalence.

Corollary 3.3 The derivative of the spectral zeta function of an equilateral triangle
with sides of length � and the Dirichlet boundary condition is equivalently given by
the expressions

ζ ′∇(0) = 2

3
log

(
3�

2

)
+ π

√
3

36
+ 2

3

∞∑

n=1

(−1)n

neπn
√
3

∑

d|n
d,

ζ ′∇(0) = 2

3
log

(
3�

2|η(z)|
)

,

ζ ′∇(0) = 2

3
log(π�) + 7

12
log(3) − log�(1/3).

Above, η is the Dedekind eta function.

Proof We have by Proposition 3.1

ζ ′∇ (s) = 1

3
log

(
3�

4π

) (
3�

4π

)2s [
− 4ζR(2s) + 22s

√
πζR(2s − 1)�(s − 1/2)

�(s)32s−1/2
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+ 4π s2s−1/2

�(s)3s/2−1/4

∞∑

n=1

ns−1/2
∑

d|n
d1−2s (−1)n

∫ ∞
0

xs−3/2e−πn
√
3(x+x−1)/2dx

]

− 1

6

(
3�

4π

)2s
8ζ ′

R(2s) +
√
3π

�(s)2

(
3�2

4π2

)s [
log

(
4

3

)
ζR(2s − 1)�(s)�(s − 1/2)

+ 2ζ ′
R(2s − 1)�(s)�(s − 1/2) − ζR(2s − 1)�′(s)�(s − 1/2)

+ ζR(2s − 1)�(s)�′(s − 1/2)

]

+ 1

6

d

ds

[
4π s2s−1/2

�(s)3s/2−1/4

∞∑

n=1

ns−1/2
∑

d|n
d1−2s (−1)n

∫ ∞
0

xs−3/2e−πn
√
3(x+x−1)/2dx

]
,

s ∈ C\{1},

and we compute

d

ds

[
4π s2s−1/2

�(s)3s/2−1/4

∞∑

n=1

ns−1/2
∑

d|n
d1−2s (−1)n

∫ ∞
0

xs−3/2e−πn
√
3(x+x−1)/2dx

]

= − �′(s)
�(s)2

4π s2s−1/2

3s/2−1/4

∞∑

n=1

ns−1/2
∑

d|n
d1−2s (−1)n

∫ ∞
0

xs−3/2e−πn
√
3(x+x−1)/2dx

+ 1

�(s)

d

ds

[
4π s2s−1/2

3s/2−1/4

∞∑

n=1

ns−1/2
∑

d|n
d1−2s (−1)n

∫ ∞
0

xs−3/2e−πn
√
3(x+x−1)/2dx

]
.

By Lemma A.1, the last term vanishes as s → 0, and we thus obtain

ζ ′∇(0) = 1

3
log

(
3�

4π

)
(−4ζR(0)) − 4

3
ζ ′
R(0) −

√
3πζR(−1)�(−1/2)�′(0)

6�(0)2

+ 2 4
√
3

3
√
2
φ′(0)

∞∑

n=1

n−1/2
∑

d|n
d(−1)n

∫ ∞

0
x−3/2e−πn

√
3(x+x−1)/2dx .

Here,φ is again givenby (7).By (7), (8), and (9), this simplifies to thefirst expression
in the corollary.

Next we differentiate (19)

ζ ′∇(s) =
(

9�2

16π2

)s [
log

(
9�2

16π2

)(
1

6
G∇(s) − ζR(2s)

)
+ 1

6
G ′∇(s) − 2ζ ′

R(2s)

]
.

At s = 0 this becomes

ζ ′∇(0) = log

(
9�2

16π2

) (
1

6
G∇(0) − ζR(0)

)
+ 1

6
G ′∇(0) − 2ζ ′

R(0).
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OurG∇(s) = L2sG(s)withG defined in [1, p. 1830-1831], and the parameter L = π .
With the calculations of [1, p. 1830-1831] (see also [39, p. 204-205]) we have

G(0) = −1, G ′(0) = − 1

12
log((2π)24L−24(η(z)η(z))24)

L=π= −2 log(2|η(z)|2),

hence

G∇(0) = −1, G ′∇(0) = − log(π2) − 2 log(2|η(z)|2), z = −3 + i
√
3

2
.

Thus, we obtain the second expression for ζ ′∇(0) in the corollary. Since

|η(z)| = 31/8�(1/3)3/2

2π
,

the third expression for ζ ′∇(0) also follows. 
�
Remark 3.4 Since our expression is equal to that in (21) for ζ∇(s), we have calculated
the derivative of that expression at s = 0 and obtained

ζ ′∇(0) = 2

3
log � + 5

6
log 3 − 1

2
log 2 + 1

6
logπ − 1

2
log

�(1/3)

�(2/3)
.

Using identities for the Dedekind eta function and the Gamma function, it is straight-
forward to show that this is equal to the second expression in the corollary as well as
[4, (110)].

3.2 The Heat Trace of Equilateral Triangles and an Alternative Expression for the
Eigenvalues

There is another common expression for the eigenvalues of an equilateral triangle in
the literature (see e.g. [32]), namely

λm,n = 4π2

27r2
(m2 + mn + n2), m, n ≥ 1.

Here, r is the radius of the inscribed circle of the triangle. If the triangle has side lengths
each equal to �, then r = �/

√
12. Therefore this expression for the eigenvalues in case

� = 1 is simply

λm,n = 16π2

9
(m2 + mn + n2), m, n ≥ 1. (22)

This is different from the expression (13) given by Pinsky [40, 41] and Lamé [24–26].
It may appear simpler for computations because it no longer involves the conditions
(A)–(D) on the integers, and their range is N rather than Z. At the same time, the
connection to eigenfunctions is obfuscated, as is the multiplicity of the eigenvalues.
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By [40, 41], expressing the eigenvalues as (13), we know that there are six pairs that
correspond to one linearly independent eigenfunction, given by the six pairs in (15).
Each distinct orbit gives rise to a distinct, linearly independent eigenfunction. Hence to
calculate spectral invariants like the spectral zeta function or the heat trace, it suffices
to sum over all integers (m, n) satisfying (A)–(D) and then divide by six. It is not at
all clear how to account for multiplicities using the expression (22). Here we use the
heat trace to show how to account for the multiplicities correctly if one wishes to use
(22) to compute eigenvalues and spectral invariants of equilateral triangles.

Proposition 3.5 The heat trace for the equilateral triangle with side length � and the
Dirichlet boundary condition is equivalently given by the expressions

HD∇ (t) = �3(q3)�3(q9) + �2(q3)�2(q9) − 3�3(q3) + 2

6
,

�2(q) =
∑

n∈Z
q(n+1/2)2 , �3(q) =

∑

n∈Z
qn

2
, q = e−16π2t/(27�2),

HD∇ (t) =
∞∑

m=1

∞∑

n=1

e−16π2t/(9�2)(m2+mn+n2). (23)

As a consequence, the eigenvalues are the values

16π2

9�2
(m2 + mn + n2), m, n ≥ 1. (24)

For each pair (m, n) with m, n ≥ 1 there is exactly one orbit of the form (15) where
each of the six pairs in the orbit satisfies conditions (A), (B), (C), and (D).

Proof For the equilateral triangle with side length �, the heat trace with the Dirichlet
boundary condition is

HD∇ (t) = 1

6

∑

λm,n

e−16π2t/(27�2)(m2−mn+n2).

The sum goes through all pairs (m, n) ∈ Z
2 satisfying (A), (B), (C), and (D). To

compensate for the fact that the six pairs in (15) all correspond to the same eigenvalue,
we have divided by 6.

Then, for q = e−16π2t/(27�2), we get when summing over all integer pairs

∑

m∈Z

∑

n∈Z
qm

2−mn+n2 =
∑

n∈Z
q3n

2/4
∑

m∈Z
q(m−n/2)2

=
∑

n∈2Z
q3n

2/4
∑

m∈Z
qm

2 +
∑

n∈2Z+1

q3n
2/4

∑

m∈Z
q(m+1/2)2

= �3(q)�3(q
3) + �2(q)�2(q

3).

(25)
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Now let us only sum over the pairs (m, n) which satisfy (A). We write n = 3k − m
and obtain

h1(t) =
∑

k∈Z

∑

m∈Z
qm

2−m(3k−m)+(3k−m)2

=
∑

k∈Z
q9k

2/4
∑

m∈Z
q3(m−3k/2)2 = �3(q

3)�3(q
9) + �2(q

3)�2(q
9).

To obtain HD∇ (t), wemust subtract the contribution from the pairs (m, n)withm = 2n
or n = 2m or m = −n:

h2(t) =
∑

n∈Z
q(2n)2−2n·n+n2 = �3(q

3),

h3(t) =
∑

m∈Z
qm

2−m·2m+(2m)2 = �3(q
3),

h4(t) =
∑

n∈Z
q(−n)2−(−n)n+n2 = �3(q

3).

Thus, we get

HD∇ (t) = h1(t) − h2(t) − h3(t) − h4(t) + 2

6

= �3(q3)�3(q9) + �2(q3)�2(q9) − 3�3(q3) + 2

6
. (26)

The plus 2 appears because when we subtract the contribution from pairs (m, n) with
m = 2n or n = 2m or m = −n, we subtract the contribution from (0, 0) three times.

Now, [47] starts with (23) and computes

HD∇ (t) =
∞∑

m=1

∞∑

n=1

q3(m
2+mn+n2) = 1

6

[
∑

m∈Z

∑

n∈Z
q3(m

2+mn+n2) − 3
∑

m∈Z
q3m

2 + 2

]
,

(27)

which by (25) agrees with (26). In particular, the two expressions for the heat trace
are identical. Since the heat trace uniquely determines the spectrum, this proves the
equivalence between the two expressions for the eigenvalues of equilateral triangles.


�

Remark 3.6 Observe that in the expression (24), it is not at all obvious that each
eigenvalue occurs precisely six times, but this is indeed the case.While this equivalence
can be deduced by combiningMcCartin’s works [32, 35], the argument presented here
provides, to the best of our knowledge, the first direct proof. It is also interesting to
recall the observation made in [47, Corollary 2.2.6]: there is no bounded domain in
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R
2 whose spectrum has the form

c(m2 − mn + n2), m, n ∈ Z.

In particular, the restrictions (A) – (D) on the pairs (m, n) ∈ Z×Z are essential to the
correct expression for the eigenvalues of the equilateral triangle.

3.3 Short Time Asymptotic Expansion of the Heat Trace

Here we obtain further terms in the short time asymptotic expansion of the heat trace.
We note that [47] obtained a related formula but rather than extracting further terms
explicitly, collected all terms that vanish as t → 0 into one big-O term using the
asymptotic behavior of Jacobi theta functions.

Theorem 3.7 The Dirichlet heat trace for an equilateral triangle with sides of length
� has the asymptotic expansion

HD∇ (t) = �2
√
3

16π t
− 3�

8
√

π t
+ 1

3
− 3�

4
√

π t
e−9�2/(16t) + �2

√
3

8π t
e−3�2/(4t)

+ O(t−1e−9�2/(4t)), t → 0.

The Neumann heat trace has the asymptotic expansion

HN∇ (t) = �2
√
3

16π t
+ 3�

8
√

π t
+ 1

3
+ 3�

4
√

π t
e−9�2/(16t) + �2

√
3

8π t
e−3�2/(4t)

+ O(t−1e−9�2/(4t)), t → 0.

The remainders are sharp.

Proof By Proposition 3.5 the Dirichlet heat trace is

HD∇ (t) = �3(q
3)�3(q

9) + �2(q
3)�2(q

9) − 3�3(q
3) + 2

6

= 1

6

[ ∑

m∈Z
e−16π2t/(9�2)m2 ∑

n∈Z
e−16π2t/(3�2)n2

+
∑

m∈Z
e−16π2t/(9�2)(m+ 1

2 )2
∑

n∈Z
e−16π2t/(3�2)(n+ 1

2 )2 − 3
∑

m∈Z
e−16π2t/(9�2)m2 + 2

]
.

By the Poisson summation formula,

∑

m∈Z
e−16π2t/(9�2)m2 = 3�

4
√

π t

∑

m∈Z
e−9�2m2/(16t),

∑

n∈Z
e−16π2t/(3�2)n2 = �

4

√
3

π t

∑

n∈Z
e−3�2n2/(16t),
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∑

m∈Z
e−16π2t/(9�2)(m+ 1

2 )2 = 3�

4
√

π t

∑

m∈Z
(−1)me−9�2m2/(16t),

∑

n∈Z
e−16π2t/(3�2)(n+ 1

2 )2 = �

4

√
3

π t

∑

n∈Z
(−1)ne−3�2n2/(16t).

This gives

HD∇ (t) = 1

6

[
3�2

√
3

16π t

(
1 + 2

∞∑

m=1

e−9�2m2(16t)

)(
1 + 2

∞∑

n=1

e−3�2n2/(16t)

)

+ 3�2
√
3

16π t

(
1 + 2

∞∑

m=1

(−1)me−9�2m2/(16t)

) (
1 + 2

∞∑

n=1

(−1)ne−3�2n2/(16t)

)

− 9�

4
√

π t

(
1 + 2

∞∑

m=1

e−9�2m2/(16t)

)
+ 2

]

= �2
√
3

16π t
− 3�

8
√

π t
+ 1

3
− 3�

4
√

π t

∞∑

m=1

e−9�2m2/(16t) + �2
√
3

8π t

∞∑

n=1

e−3�2n2/(4t)

+ �2
√
3

8π t

∞∑

m=1

e−9�2m2/(4t) + �2
√
3

4π t

∞∑

m=1

∞∑

n=1

e−3�2(3m2+n2)/(4t)

+ �2
√
3

4π t

∞∑

m=1

∞∑

n=1

e−3�2(3(2m−1)2+(2n−1)2)/(16t),

which proves the Dirichlet case.
The eigenvalues of the same equilateral triangle with the Neumann boundary con-

dition are

λm,n = 16π2

9�2
(m2 + mn + n2), m, n ≥ 0,

so its heat trace becomes

HN∇ (t) =
∞∑

m=0

∞∑

n=0

e−16π2t/(9�2)(m2+mn+n2) = 1 + 2
∞∑

m=1

e−16π2t/(9�2)m2 + HD∇ (t).

By the Poisson summation formula,

∞∑

m=1

e−16π2t/(9�2)m2 = 1

2

(
3�

4
√

π t
− 1

)
+ 3�

4
√

π t

∞∑

m=1

e−9�2m2/(16t),

so, we have

HN∇ (t) = �2
√
3

16π t
+ 3�

8
√

π t
+ 1

3
+ 3�

4
√

π t

∞∑

m=1

e−9�2m2/(16t) + �2
√
3

8π t

∞∑

n=1

e−3�2n2/(4t)

+ �2
√
3

8π t

∞∑

m=1

e−9�2m2/(4t)
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+ �2
√
3

4π t

∞∑

m=1

∞∑

n=1

e−3�2(3m2+n2)/(4t) + �2
√
3

4π t

∞∑

m=1

∞∑

n=1

e−3�2(3(2m−1)2+(2n−1)2)/(16t).

This completes the proof. 
�
It follows from Theorem 3.7 that

HD∇ (t) = �2
√
3

16π t
− 3�

8
√

π t
+ 1

3
+ O(e−(9�2−ε)/(16t)), t → 0,

HN∇ (t) = �2
√
3

16π t
+ 3�

8
√

π t
+ 1

3
+ O(e−(9�2−ε)/(16t)), t → 0,

for any ε > 0. Consequently, the supremum over all c > 0 such that the remainder
is O(e−c/t ) is 9�2

16 . By [16, p. 43], this is the square of half the length of the shortest
closed geodesic in the equilateral triangle of side length �. Thus, Theorem 1.1 follows
in the case of equilateral triangles.

4 Spectral Invariants of Isosceles Right Triangles

By [3], the eigenvalues of an isosceles right triangle with area a2
2 , and therewith legs

of length a are

λm,n = π2(m2 + n2)

a2
, m > n ≥ 1. (28)

The fact that these are all eigenvalues including multiplicities follows from [23, p.
168]; see also [19] and [37, p. 756].

4.1 The Spectral Zeta Function and Zeta-Regularized Determinant of Isosceles
Right Triangles

Our first result for the isosceles right triangle concerns two equivalent expressions for
the spectral zeta function. To the best of our knowledge these expressions are new.

Proposition 4.1 The spectral zeta function of an isosceles right trianglewith area a2/2
and with the Dirichlet boundary condition is equivalently given by the expressions

ζ♦(s) = − 1

4

( a

π

)2s
ζR(2s) − 1

2s+1

( a

π

)2s
ζR(2s) +

√
π

4

( a

π

)2s ζR(2s − 1)�(s − 1/2)

�(s)

+ 1

2

(
a2

π

)s
1

�(s)

∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞
0

xs−3/2e−πn(x+x−1)dx

and

ζ♦(s) = a2s

2

[
1

4
G♦(s) − 1

π2s ζR(2s) − 1

(2π2)s
ζR(2s)

]
, s ∈ C\{1}.
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Here,

G♦(s) =
∑

m∈Z

∑′

n∈Z

1

π2s |m + ni |2s , Re(s) > 1. (29)

Proof For Re(s) > 1, we have

ζ♦(s) =
∑

λm,n

1

λsm,n
=

( a

π

)2s ∑

m>n≥1

1

(m2 + n2)s
= 1

2
ζ�(s) − 1

2

(
a2

2π2

)s

ζR(2s),

(30)
where ζ� is the spectral zeta function of a square with sides of length a. The result is
thus an immediate consequence of Proposition 2.1. 
�

Remark 4.2 Similar to the case of equilateral triangles, one can show that our expres-
sion for the isosceles right triangle is equal to that given in the second equation of [4,
(108)],

ζ♦(s) = 1

2

(π

a

)−2s [
L4(s)ζR(s) − (1 + 2−s)ζR(2s)

]
.

Corollary 4.3 The zeta-regularized determinant of an isosceles right triangle with area
a2/2 and with the Dirichlet boundary condition is e−ζ ′♦(0) with ζ ′♦(0) equivalently
given by

ζ ′♦(0) = log(4a3)

4
+ π

24
+ 1

2

∞∑

n=1

1

ne2πn
∑

d|n
d,

ζ ′♦(0) = 1

4
log

(
4a3

|η(i)|2
)

= log(4a3)

4
+ π

24
− 1

2

∞∑

n=1

log(1 − e−2πn).

Proof From (30), we get

ζ ′♦(s) = 1

2
ζ ′
�(s) − 1

2

(
a2

2π2

)s

log

(
a2

2π2

)
ζR(2s) −

(
a2

2π2

)s

ζ ′
R(2s), s ∈ C\{1}.

Corollary 2.2 then gives the following equivalent expressions

ζ ′♦(0) = 1

2

⎡

⎣1

2
log(2a) + π

12
+

∞∑

n=1

1

ne2πn
∑

d|n
d

⎤

⎦ − 1

2
log

(
a2

2π2

)
ζR(0) − ζ ′

R(0),

ζ ′♦(0) = 1

4
log

(
2a

|η(i)|2
)

+ 1

4
log

(
a2

2π2

)
+ 1

2
log(2π),

which respectively simplify to those in the corollary. 
�
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Remark 4.4 Differentiating the expression in [4, (108)] for the spectral zeta function
of the isosceles right triangle and setting s = 0 it becomes

ζ ′♦(0) = 3

4
log a + log 2 + 3

8
logπ − 1

2
log�(1/4). (31)

Using identities for the Dedekind eta function and the Gamma function, one can show
that this is equivalent to the expressions in our corollary as well as [4, (111)].

4.2 The Heat Trace of Isosceles Right Triangles

For the isosceles right triangle with area a2/2 and with the Dirichlet boundary condi-
tion, the heat trace is

HD♦ (t) =
∑

λn,m

e−λn,mt =
∑

m>n≥1

e−π2(m2+n2)t/a2 .

Let q = e−π2t/a2 and note that

∞∑

m=1

∞∑

n=1

qm
2+n2 = 2

∑

m>n≥1

qm
2+n2 +

∞∑

m=1

q2m
2
.

Since

∞∑

m=1

∞∑

n=1

qm
2+n2 =

(
�3(q) − 1

2

)2

,

∞∑

m=1

q2m
2 = �3(q2) − 1

2
,

it follows that

HD♦ (t) = 1

2

[(
�3(q) − 1

2

)2

− �3(q2) − 1

2

]

= �3(q)2 − 2�3(q) − 2�3(q2) + 3

8
.

Now we use our expressions for the heat trace for the isosceles right triangle to obtain
further terms in the short time asymptotic expansion of the heat trace as well as a sharp
remainder term.
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Theorem 4.5 The heat trace with the Dirichlet boundary condition for an isosceles

right triangle of area a2
2 admits the asymptotic expansion

HD♦ (t) = a2

8π t
− a(2 + √

2)

8
√

π t
+ 3

8
− a

2
√
2π t

e−a2/(2t) + a2

2π t
e−a2/t

+ O(t−1/2e−a2/t ), t → 0.

The heat trace with the Neumann boundary condition admits the asymptotic expansion

HN♦ (t) = a2

8π t
+ a(2 + √

2)

8
√

π t
+ 3

8
+ a

2
√
2π t

e−a2/(2t) + a2

2π t
e−a2/t

+ O(t−1/2e−a2/t ), t → 0.

The remainders are sharp.

Proof We have

∞∑

m=1

∞∑

n=1

e−π2(m2+n2)t/a2 = 2HD♦ (t) +
∞∑

m=1

e
− 2π2m2

a2
t

and

∞∑

m=1

e−π2m2t/a2 = 1

2

(
a√
π t

− 1

)
+ a√

π t

∞∑

m=1

e−m2a2/t ,

∞∑

m=1

e−2π2m2t/a2 = 1

2

(
a√
2π t

− 1

)
+ a√

2π t

∞∑

m=1

e−m2a2/(2t)

by the Poisson summation formula, hence

HD♦ (t) = 1

2

⎡

⎣
(
1

2

(
a√
π t

− 1

)
+ a√

π t

∞∑

m=1

e−m2a2/t

)2

− 1

2

(
a√
2π t

− 1

)

− a√
2π t

∞∑

m=1

e−m2a2/(2t)

]

= a2

8π t
− a(2 + √

2)

8
√

π t
+ 3

8
− a

2
√
2π t

∞∑

m=1

e−m2a2/(2t) + a2

2π t

∞∑

m=1

e−m2a2/t

− a

2
√

π t

∞∑

m=1

e−m2a2/t + a2

2π t

( ∞∑

m=1

e−m2a2/t

)2

.
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The eigenvalues of an isosceles right triangle with area a2/2with theNeumann bound-
ary condition are

λm,n = π2(m2 + n2)

a2
, m ≥ n ≥ 0,

so the corresponding heat trace becomes

HN♦ (t) =
∑

m≥n≥0

e−π2(m2+n2)t/a2 = 1 +
∞∑

m=1

e−π2m2t/a2 +
∞∑

n=1

e−2π2n2t/a2 + HD♦ (t)

= a2

8π t
+ a(2 + √

2)

8
√

π t
+ 3

8
+ a

2
√
2π t

∞∑

m=1

e−m2a2/(2t) + a2

2π t

∞∑

m=1

e−m2a2/t

+ a

2
√

π t

∞∑

m=1

e−m2a2/t + a2

2π t

( ∞∑

m=1

e−m2a2/t

)2

.

The proof is now completed by collecting leading order terms. 
�
Theorem 4.5 shows that

HD♦ (t) = a2

8π t
− a(2 + √

2)

8
√

π t
+ 3

8
+ O(e−(a2−ε)/(2t)), t → 0,

HN♦ (t) = a2

8π t
+ a(2 + √

2)

8
√

π t
+ 3

8
+ O(e−(a2−ε)/(2t)), t → 0,

for any ε > 0. Again, a2/2 is the square of half the length of the shortest closed
geodesic in the isosceles right triangle (see [16, p. 43]), hence Theorem 1.1 follows in
this case.

5 Spectral Invariants of Hemi-Equilateral (30-60-90) Triangles

By [32], the eigenvalues of the 30-60-90 triangle with hypotenuse of length � are given
by

λm,n = 4π2

27r2
(m2 + mn + n2) = 16π2

9�2
(m2 + mn + n2), m > n ≥ 1.

Here, r is the radius of the inscribed circle of the equilateral triangle obtained by
doubling the hemi-equilateral triangle. McCartin shows in [32] how antisymmetric
eigenfunctions of equilateral triangles form a complete set of eigenfunctions for 30-
60-90 triangles [13]; see also [23, p. 168].

5.1 The Spectral Zeta Function and Zeta-Regularized Determinant of
Hemi-Equilateral Triangles

Our first result for these triangles contains two equivalent expressions for the spectral
zeta function that to the best of our knowledge are new.
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Proposition 5.1 The spectral zeta function of the hemi-equilateral triangle with
hypotenuse of length � and with the Dirichlet boundary condition is equivalently
given by the expressions

ζ♥(s) = 1

12

(
3�

4π

)2s [
− 4ζR(2s) − 6

3s
ζR(2s) + 22s

√
πζR(2s − 1)�(s − 1/2)

�(s)3s−1/2

+ 4π s2s−1/2

�(s)3s/2−1/4

∞∑

n=1

ns−1/2
∑

d|n
d1−2s(−1)n

∫ ∞

0
xs−3/2e−πn

√
3(x+x−1)/2dx

]
,

ζ♥(s) = 1

12

(
3�

4

)2s [
G♥(s) − 6

π2s ζR(2s) − 6

(3π2)s
ζR(2s)

]
, s ∈ C\{1}.

Here,

G♥(s) =
∑

m∈Z

∑′

k∈Z

1

π2s |m + kz|2s , z = −3 + i
√
3

2
, Re(s) > 1. (32)

Proof The spectral zeta function is for Re(s) > 1

ζ♥(s) =
(
3�

4π

)2s ∑

m>n≥1

1

(m2 + mn + n2)s
.

Since

∞∑

m=1

∞∑

n=1

1

(m2 + mn + n2)s
= 2

∑

m>n≥1

1

(m2 + mn + n2)s
+ 1

3s
ζR(2s),

we can rewrite ζ♥ as

ζ♥(s) = 1

2
ζ∇(s) − 1

2

(
3�2

16π2

)s

ζR(2s), s ∈ C\{1}, (33)

where ζ∇ is the spectral zeta function of the corresponding equilateral triangle with
sides of length �. The result now follows from Proposition 3.1. 
�
Corollary 5.2 The zeta-regularized determinant of the hemi-equilateral triangle with
hypotenuse of length � and with the Dirichlet boundary condition is e−ζ ′♥(0) with ζ ′♥(0)
equivalently given by

ζ ′♥(0) = 5

6
log(�) + 7

12
log(3) − 5

6
log(2) + π

√
3

72
+ 1

3

∞∑

n=1

(−1)n

neπn
√
3

∑

d|n
d,

ζ ′♥(0) = 1

2
ζ ′∇ (0) + 1

4
log

(
3�2

4

)
.

Proof The proof follows by differentiating (33) and setting s = 0. 
�
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Remark 5.3 We have verified that our expression for the spectral zeta function of the
hemi-equilateral triangle in (33) agrees with that given in [4, (108)],

ζ♥(s) = 1

2

(
9�2

16π2

)s [
L3(s)ζR(s) − (1 + 3−s)ζR(2s)

]
.

Differentiating the equivalent expression and evaluating at s = 0 one can show that it
agrees with our expressions above as well as that given in [4, (112)].

5.2 The Heat Trace of Hemi-Equilateral Triangles

For the hemi-equilateral triangle with hypotenuse of length �, we let

q = e−16π2t/(9�2).

By (27),

∞∑

m=1

∞∑

n=1

qm
2+mn+n2 = �3(q)�3(q3) + �2(q)�2(q3) − 3�3(q) + 2

6
.

On the other hand, we have

∞∑

m=1

∞∑

n=1

qm
2+mn+n2 = 2

∑

m>n≥1

qm
2+mn+n2 +

∞∑

m=1

q3m = 2HD♥ (t) + �3(q3) − 1

2
.

By comparing, we obtain the heat trace for the Dirichlet boundary condition

HD♥ (t) =
∑

m>n≥1

qm
2+mn+n2 = 1

2

[ ∞∑

m=1

∞∑

n=1

qm
2+mn+n2 −

∞∑

m=1

q3m
]

= �3(q)�3(q3) + �2(q)�2(q3) − 3�3(q) − 3�3(q2) + 5

12
.

We calculate the short time asymptotic expansion of the heat trace, obtaining further
terms and a sharp remainder.

Theorem 5.4 The heat trace for the hemi-equilateral triangle with hypotenuse of
length � with the Dirichlet boundary condition admits the asymptotic expansion

HD♥ (t) = �2
√
3

32π t
− �(3 + √

3)

16
√

π t
+ 5

12
− �

8

√
3

π t
e−3�2/(16t)

− 3�

8
√

π t
e−9�2/(16t) + O(t−1e−3�2/(4t)), t → 0.
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The heat trace with the Neumann boundary condition admits the asymptotic expansion

HN♥ (t) = �2
√
3

32π t
+ �(3 + √

3)

16
√

π t
+ 5

12
+ �

8

√
3

π t
e−3�2/(16t)

+ 3�

8
√

π t
e−9�2/(16t) + O(t−1e−3�2/(4t)), t → 0.

The remainders are sharp.

Proof Since the heat trace of the equilateral triangle and that of the hemi-equilateral
triangle are related via

HD∇ (t) =
∞∑

m=1

∞∑

n=1

e−16π2t/(9�2)(m2+mn+n2) = 2HD♥ (t) +
∞∑

m=1

e−16π2t/(3�2)m2
,

by the Poisson summation formula

∞∑

m=1

e−16π2t/(3�2)m2 = 1

2

(
�

4

√
3

π t
− 1

)
+ �

4

√
3

π t

∞∑

m=1

e−3�2m2/(16t)

it follows that

HD♥ (t) = 1

2

[
HD∇ (t) − 1

2

(
�

4

√
3

π t
− 1

)
− �

4

√
3

π t

∞∑

m=1

e−3�2m2/(16t)

]
.

We apply Theorem 3.7 to obtain

HD♥ (t) = �2
√
3

32π t
− �(3 + √

3)

16
√

π t
+ 5

12
− �

8

√
3

π t

∞∑

m=1

e−3�2m2/(16t)

− 3�

8
√

π t

∞∑

m=1

e−9�2m2/(16t) + �2
√
3

16π t

∞∑

n=1

e−3�2n2/(4t)

+ �2
√
3

16π t

∞∑

m=1

e−9�2m2/(4t) + �2
√
3

8π t

∞∑

m=1

∞∑

n=1

e−3�2(3m2+n2)/(4t)

+ �2
√
3

8π t

∞∑

m=1

∞∑

n=1

e−3�2(3(2m−1)2+(2n−1)2)/(16t).

This proves the theorem in the Dirichlet case. The eigenvalues of the hemi-equilateral
triangle with hypotenuse of length � and the Neumann boundary condition are

λm,n = 16π2

9�2
(m2 + mn + n2), m ≥ n ≥ 0,
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so the heat trace becomes

HN♥ (t) =
∑

m≥n≥0

e
− 16π2

9�2
(m2+mn+n2)t = 1 +

∞∑

m=1

e
− 16π2

9�2
m2t +

∞∑

n=1

e
− 16π2

3�2
n2t + HD♥ (t).

We have by the Poisson summation formula

∞∑

m=1

e−16π2t/(9�2)m2 = 1

2

(
3�

4
√

π t
− 1

)
+ 3�

4
√

π t

∞∑

m=1

e−9�2m2/(16t),

∞∑

n=1

e−16π2t/(3�2)n2 = 1

2

(
�

4

√
3

π t
− 1

)
+ �

4

√
3

π t

∞∑

n=1

e−3�2n2/(16t).

Then

HN♥ (t) = �2
√
3

32π t
− �(3 + √

3)

16
√

π t
+ 5

12
− �

8

√
3

π t

∞∑

m=1

e−3�2m2/(16t)

− 3�

8
√

π t

∞∑

m=1

e−9�2m2/(16t) + �2
√
3

16π t

∞∑

n=1

e−3�2n2/(4t)

+ �2
√
3

16π t

∞∑

m=1

e−9�2m2/(4t) + �2
√
3

8π t

∞∑

m=1

∞∑

n=1

e−3�2(3m2+n2)/(4t)

+ �2
√
3

8π t

∞∑

m=1

∞∑

n=1

e−3�2(3(2m−1)2+(2n−1)2)/(16t).

which proves the theorem in the Neumann case. 
�
It follows from Theorem 5.4 that

HD♥ (t) = �2
√
3

32π t
− �(3 + √

3)

16
√

π t
+ 5

12
+ O(e−(3�2−ε)/(16t)), t → 0,

HN♥ (t) = �2
√
3

32π t
+ �(3 + √

3)

16
√

π t
+ 5

12
+ O(e−(3�2−ε)/(16t)), t → 0,

for any ε > 0. Once again, 3�2/16 is the square of half the length of the shortest closed
geodesic in the hemi-equilateral triangle with hypotenuse of length � as proven in [16,
p. 43]. This completes the proof of Theorem 1.1.

6 Heat Traces of Flat tori, Convex Polygonal Domains and a
Comparison with Smoothly Bounded Domains

Afull-rank lattice� ⊂ R
n is a discrete additive subgroupof the additive group (Rn,+).

In fact, every discrete additive subgroup of Rn is a lattice, albeit not necessarily full-
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rank. A full-rank lattice� ⊂ R
n gives rise to a smooth, compact Riemannian manifold

known as a flat torus, obtained as the quotientRn/�. Its Riemannianmetric is inherited
from the Euclidean (flat) metric on R

n . The eigenvalues of the Laplacian on the flat
torus Rn/� are the values 4π2||y||2 for all y in the dual lattice �∗, with multiplicities
counted according to how many distinct y have the same length; recall

�∗ = {y ∈ R
n : y · x ∈ Z, ∀x ∈ �}.

The Poisson summation formula is the relation (see [11, p. 125])

∑

γ∈�∗
e−4π2t ||γ ∗||2 = vol(Rn/�)

(4π t)n/2

∑

γ∈�

e−||γ ||2/(4t).

We recognize the left side as the heat trace of the flat torus. Thus, we have the asymp-
totic expansion

∑

k≥0

e−λk t = vol(Rn/�)

(4π t)n/2

(
1 + m(γ1)e

−||γ1||2/(4t) + O(e−||γ2||2/(4t))
)

, t → 0.

Above, {λk}k≥0 are the eigenvalues of the flat torus, m(γ1) is the number of γ ∈ � of
minimal positive length given by ||γ1||, with the next shortest length given by ||γ2||.We
then observe that the shortest closed geodesic inRn/� has length ||γ1||. Consequently,
the asymptotic expansion of the heat trace consists of the usual leading term, together
with a remainder term that is of the form O(t−n/2e−L2/(4t)) with L the length of the
shortest closed geodesic in the flat torus. This leads us to make a conjecture about the
short time asymptotic expansion of the heat trace in similarly flat settings.

A compact Riemannian manifold with curvature identically equal to zero is known
as a Euclidean space form. The fundamental groups of compact Euclidean space
forms are examples of crystallographic groups. These are discrete groups of Euclidean
isometries with compact quotients. It is interesting to note that in two dimensions, the
fundamental domains of crystallographic groups are precisely the integrable polygonal
domains of this study. In two dimensions, all space forms are diffeomorphic to either
a flat torus or a Klein bottle. There are 10 diffeomorphism classes of compact 3-
dimensional Euclidean space forms, and 75 classes in dimension 4. Every Euclidean
space form is a quotient of a flat torus by a finite group of isometries, and in each
dimension there are only finitely many diffeomorphism classes of Euclidean space
forms, although the complete classification is known only in low dimensions. We
refer to [49] and [28] for further details about Euclidean space forms. Due to the
vanishing of their curvature, similar to the case of flat tori, we reasonably expect their
heat traces to have a similar form.

Conjecture 6.1 Assume that M is an n-dimensional Euclidean space form. Then its
heat trace admits an asymptotic expansion of the form

∑

k≥0

e−λk t = t−n/2
(

vol(M)

(4π t)n/2 + O(e−L2/(4t))

)
, t → 0.
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Here, L is the length of the shortest closed geodesic in M.

In higher dimensions, strictly tessellating polytopes as defined in [44, Definition 1]
are analogous to integrable polygons in dimension two. Indeed, one could reasonably
define an integrable polytope to be a strictly tessellating polytope in the sense of [44].
Heuristically, our definition of a polytope is a bounded domain in Euclidean space
such that its boundary is piecewise smooth and consists of flat boundary faces. In
two dimensions, for example, a polytope is a bounded, connected polygonal domain.
We suggest that it is reasonable that all polytopes admit a heat trace expansion that
behaves analogously to the two-dimensional case.

Conjecture 6.2 Assume that M is a polytope in R
n. Then its heat trace with either

the Dirichlet or Neumann boundary condition admits an asymptotic expansion of the
form

∑

k≥0

e−λk t = t−n/2

⎛

⎝
n∑

j=0

a j t
j/2 + O(e−c/t )

⎞

⎠ , t → 0.

The coefficient a0 is given by a0 = (4π)−n/2 vol(M) with vol(M) the n-dimensional
(Lebesgue) volume of the polytope. The coefficient a1 can be expressedwith a universal
constant together with the total (n − 1)-dimensional volume of the boundary faces of
the polytope. Analogously, the coefficients a j for 2 ≤ j ≤ n − 1 can be expressed
with a universal constant together with the total (n − j)-dimensional volume of the
(n − j)-dimensional intersections of the boundary faces. The coefficient an can be
expressed in terms of the angles in the polytope and its boundary faces as well as
angles between the intersections of these. The supremum over all c > 0 such that this
remainder estimate holds is L2/4 with L the length of the shortest closed geodesic in
M.

The coefficients a j for 0 ≤ j ≤ n− 1 are motivated by locality principles [38] that
generalize Kac’s principle of not feeling the boundary [22, p. 9]. The idea is that on
the interior of each (n − j)-dimensional subset of the boundary, away from its edges,
the heat kernel in M can be modelled as the heat kernel in R

n− j . The leading term
in the heat trace then comes simply from the (n − j)-dimensional volumes of these
subsets, together with certain universal constants.

6.1 A Comparison of Heat Trace Invariants of Smoothly Bounded Domains and
Polygonal Domains

We conclude with a comparison of the heat trace expansion of smoothly bounded
planar domains to that of polygonal domains that need not be integrable. We therefore
recall the short time asymptotic expansion of the heat trace in these contexts.
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Proposition 6.3 Let� ⊂ R
2 be a smoothly bounded domain. For the Dirichlet bound-

ary condition, the heat trace of � satisfies

H(t) ∼ a−1

t
+ a−1/2√

t
+ a0 + a1/2

√
t, t → 0,

where

a−1 = |�|
4π

, a−1/2 = − |∂�|
8
√

π
, a0 = 1

12π

∫

∂�
k(s)ds, a1/2 = 1

256
√

π

∫

∂�
k(s)2ds,

(34)
with k(s) being the Gauss curvature of the boundary. If in addition � is convex, then
a0 = 1/6. If instead � is a convex n-sided polygon with interior angles γ1,…,γn, then

a0 =
n∑

i=1

π2 − γ 2
i

24πγi
. (35)

Proof The formulas given by (34) can be found in [48]. Moreover, by [38, Thm. 6.10,
Remark 6.15] we have a0 = χ(�)

6 , which equals 1/6 if � is convex. Finally, (35)
follows from [38, Thm. 6.10]. 
�

As a consequence, we will see that the first two heat trace coefficients of a sequence
of smoothly bounded convex domains that converge to a convex polygonal domain
converge to that of the polygonal domain. However, the third heat trace coefficient
does not converge to that of the polygonal domain.

Theorem 6.4 Let {�k} be a sequence of convex smoothly bounded domains in R2 and
let � be a convex polygon such that �k → � in the Hausdorff distance. For the
Dirichlet boundary condition, the heat trace coefficients satisfy

a j (�k) → a j (�), j = −1,−1/2, a0(�k) �→ a0(�).

Proof With the assumptions of convexity and Hausdorff convergence, it follows that
the areas |�k | and perimeters |∂�k | converge to |�| and |∂�|, respectively. So we now
consider the third heat trace coefficient. By Proposition 6.3, a0(�k) = 1/6 for every
k. We will show that a0(�) > 1/6, from which the result follows. By Proposition 6.3,

a0(�) =
n∑

i=1

π2 − γ 2
i

24πγi
= π

24

n∑

i=1

1

γi
− 1

24π

n∑

i=1

γi

= π

24

n∑

i=1

1

γi
− 1

24π
π(n − 2) = π

24

n∑

i=1

1

γi
− n − 2

24
.

By the Cauchy-Schwarz inequality,

n2 ≤
n∑

i=1

1

γi

n∑

i=1

γi =
n∑

i=1

1

γi
π(n − 2),
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so that
n∑

i=1

1

γi
≥ n2

π(n − 2)
.

Thus,

a0(�) ≥ π

24

n2

π(n − 2)
− n − 2

24
= 1

6
+ 1

6(n − 2)
>

1

6
. (36)


�
Using the notation of Theorem 6.4, it follows that

lim
k→∞ a0(�k) �= a0

(
lim
k→∞ �k

)
.

In other words, the map � → a0(�) is not continuous in the Hausdorff topology.
Intuitively, this failure arises because the third heat trace coefficient encodes different
geometric information in the smooth and polygonal cases. For smooth domains, it
depends on the integrated boundary curvature, while for polygons, it depends on the
interior angles at the corners. Although a sequence of smooth curves can approximate
a corner arbitrarily well in shape, we cannot expect the curves to capture the singular
corner contributions appearing in the polygonal coefficient. It is interesting to note that
if instead we approximate a smoothly bounded domain by polygonal domains, this
third heat trace coefficient of the polygonal domains converges to that of the smoothly
bounded domain.

Theorem 6.5 (See [29], Thm. 4.4.1) Let {�k} be a sequence of Nk-sided convex poly-
gons with interior angles γk, j , for k ≥ 1 and 1 ≤ j ≤ Nk. Assume that �k → � in
Hausdorff, with � being a nonempty smoothly bounded convex domain. Then the first
three heat trace coefficients of �k converge to those of �.

Proof The first two heat trace coefficients converge thanks to the assumptions of
Hausdorff convergence and convexity. By [30, Lemma 4.7], the interior angles γk, j
all tend to π as the polygons tend to the smoothly bounded domain in Hausdorff
convergence. Next, we show that Nk → ∞ as k → ∞. Suppose instead that there
is an M > 0 such that Nk ≤ M for all k. Since the angles all tend to π , there is an
N ≥ 1 such that γk, j > π − 2π

M for all k ≥ N and 1 ≤ j ≤ Nk . Then, for k ≥ N ,

π(Nk − 2) =
Nk∑

j=1

γk, j > Nk

(
π − 2π

M

)
,

which implies that Nk > M , a contradiction.
Now, the term a0 for each k is

a0(�k) = π

24

Nk∑

k=1

1

γk, j
− Nk

24
+ 1

12
.
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Following the proof of [29, Thm. 4.4.1], we can write γk, j = π(1 − f (k, j)), k ≥
1, 1 ≤ j ≤ Nk , from which it follows that

∑Nk
j=1 f (k, j) = 2 for every k and

a0(�k) = 1

6
+ 1

24

Nk∑

j=1

f (k, j)2

1 − f (k, j)
.

If we then write
εk = max

1≤ j≤Nk
f (k, j),

then εk → 0 because the angles tend to π . We therefore obtain that

0 ≤
Nk∑

j=1

f (k, j)2

1 − f (k, j)
≤ εk

1 − εk

Nk∑

j=1

f (k, j) = 2εk
1 − εk

→ 0 as k → ∞.

Thus, a0(�k) → 1
6 = a0(�) as k → ∞. 
�

6.2 Concluding Remarks

There are numerous modes of geometric convergence for domains, Riemannian man-
ifolds, and more general types of possibly singular spaces. Under different modes
of convergence, one can study the behavior of spectral invariants of a sequence and
compare to those of the limit space, as long as it is possible to define a Laplace
spectrum on the elements of the sequence and also on the limit space. Interestingly,
one can define a Laplace spectrum on very singular spaces, including but not limited
to noncollapsed limits under Gromov-Hausdorff convergence [9], rough Riemannian
manifolds [7], and RCD spaces [2]. In some cases, it is even possible to define notions
of curvature, from which one could hope to obtain higher order heat trace invariants.
As a first step, one could investigate the convergence of the most elementary spectral
invariants: the individual eigenvalues. Convergence of individual eigenvalues under
Gromov-Hausdorff convergence to noncollapsed limits of compact manifolds with
Ricci curvature bounded below was shown by Cheeger and Colding [9]. In the same
setting, the associated heat kernels also converge [14]. However, the convergence of
other spectral invariants can be much more subtle, because in essence it could involve
several limiting processes that need not commute. In the simple setting of Hausdorff
convergence of planar domains, if we remove the assumption of convexity, a quan-
tity as simple as the perimeters of the domains need not converge! There are many
interesting problems one could study in the general field of spectral geometry, explor-
ing relationships between the Laplace spectrum and the underlying geometry, and we
welcome both newcomers and seasoned researchers to join us in exploring!
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Appendix A Estimates

Herewe show that certain quantities are bounded and therewith justify our calculations
of the zeta-regularized determinants.

Lemma A.1 For any a, b > 0, the quantity

d

ds

⎡

⎣
(
ab

π

)s √
a

b

∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

⎤

⎦ .

is bounded in a neighborhood of s = 0. In particular,

lim
s→0

1

�(s)

d

ds

⎡

⎣
(
ab

π

)s √
a

b

∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

⎤

⎦ = 0.

Proof Since

d

ds

⎡

⎣
(
ab

π

)s √
a

b

∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

⎤

⎦

=
(
ab

π

)s

log

(
ab

π

)√
a

b

∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

+
(
ab

π

)s √
a

b

d

ds

⎡

⎣
∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

⎤

⎦ ,

it is enough to show that

d

ds

⎡

⎣
∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
xs−3/2e−πna(x+x−1)/bdx

⎤

⎦

is bounded in a neighborhood of zero, say s ∈ (−1, 1). We will in fact show that we
may differentiate termwise and differentiate under the integral sign, from which the
lemma will follow. Let

fN (s) =
N∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx, N ≥ 1, s ∈ (−1, 1).

By definition of infinite sums, fN converges pointwise to

f (s) =
∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx .
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Now, we need to show that f ′
N (s) converges uniformly to some function. We have

f ′
N (s) =

N∑

n=1

ns−1/2
∑

d|n
d1−2s(log(n) − 2 log(d))

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

+
N∑

n=1

ns−1/2
∑

d|n
d1−2s d

ds

[∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

]
.

To proceed, we want to show that we may differentiate under the integral sign. Let

h(s, x) = xs−3/2e−πan(x+x−1)/b, s ∈ (−1, 1), x ∈ (0,∞).

Fix s. Since h(s, x) → 0 as x → 0 and h(s, x) decays exponentially as x → ∞, it
follows that h(s, x) is Lebesgue-integrable over x ∈ (0,∞). Moreover,

∂h

∂s
= log(x)xs−3/2e−πan(x+x−1)/b

exists for all s ∈ (−1, 1) and x ∈ (0,∞). Finally, let

θ(x) =
{
log(x)x−5/2e−πan(x+x−1)/b, 0 < x < 1,

log(x)e−πan(x+x−1)/b, x ≥ 1.

By construction we have | ∂h
∂s | ≤ θ(x) for all s ∈ (−1, 1) and x ∈ (0,∞), and θ(x) is

Lebesgue-integrable over x ∈ (0,∞) by the same arguments as for h(s, x). Thus, it
follows from [17, Thm. 2.27] that

d

ds

[∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

]
=

∫ ∞

0
log(x)xs−3/2e−πan(x+x−1)/bdx .

Therefore,

f ′
N (s) =

N∑

n=1

ns−1/2
∑

d|n
d1−2s(log(n) − 2 log(d))

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

+
N∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
log(x)xs−3/2e−πan(x+x−1)/bdx .

To show that f ′
N (s) converges uniformly, we use Weierstrass’ M-test. Write f ′

N (s) =∑N
n=1 gn(s) where

gn(s) =
∑

d|n
ns−1/2d1−2s

[
(log(n) − 2 log(d))

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx
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+
∫ ∞

0
log(x)xs−3/2e−πan(x+x−1)/bdx

]
.

We need to bound |gn(s)| by some sequence Mn such that
∑∞

n=1 Mn converges. We
have

|gn(s)| ≤
∑

d|n
ns−1/2d1−2s

∣∣∣∣(log(n) − 2 log(d))

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

+
∫ ∞

0
log(x)xs−3/2e−πan(x+x−1)/bdx

∣∣∣∣

≤ n9/2
[
3 log(n)

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

+
∫ ∞

0
| log(x)|xs−3/2e−πan(x+x−1)/bdx

]
.

To obtain a bound on the first integral, we compute

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

=
∫ 1

0
xs−3/2e−πan(x+x−1)/bdx +

∫ ∞

1
xs−3/2e−πan(x+x−1)/bdx

≤
∫ 1

0
x−5/2e−πan(x+x−1)/bdx +

∫ ∞

1
e−πan(x+x−1)/bdx

≤
∫ 1

0
x−3e−πanx−1/bdx +

∫ ∞

1
e−πanx/bdx

= b

πan

(
2 + b

πan

)
e−πan/b.

Similarly for the second integral,

∫ ∞

0
| log(x)|xs−3/2e−πan(x+x−1)/bdx

≤
∫ 1

0
| log(x)|x−3e−πanx−1/bdx +

∫ ∞

1
log(x)e−πanx/bdx

≤
∫ 1

0
x−4e−πanx−1/bdx +

∫ ∞

1
xe−πanx/bdx

= b

πan

(
2 + 3b

πan
+ 2b2

(πan)2

)
e−πan/b.

Thus,

|gn(s)| ≤ n9/2
[
3b

πa

(
2 + b

πan

)
+ b

πan

(
2 + 3b

πan
+ 2b2

(πan)2

) ]
e−πan/b. (37)
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In particular, there are constants C > 0 and M ≥ 1 such that |gn(s)| ≤ CnMe−πan/b

for all n ≥ 1 and s ∈ (−1, 1). Since

∞∑

n=1

CnMe−πan/b

converges, it follows from Weierstrass’ M-test that f ′
N (s) converges uniformly on

(−1, 1). This in turn implies that we can differentiate f termwise (see e.g. [45, Thm.
7.17]), i.e.

d

ds

⎡

⎣
∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

⎤

⎦

=
∞∑

n=1

ns−1/2
∑

d|n
d1−2s(log(n) − 2 log(d))

∫ ∞

0
xs−3/2e−πan(x+x−1)/bdx

+
∞∑

n=1

ns−1/2
∑

d|n
d1−2s

∫ ∞

0
log(x)xs−3/2e−πan(x+x−1)/bdx .

In particular, we can by (37) conclude that the derivative is bounded for s ∈ (−1, 1).
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