
PHANTOM: Curating GitHub for engineered software projects using
time-series clustering

Downloaded from: https://research.chalmers.se, 2025-11-29 08:52 UTC

Citation for the original published paper (version of record):
Pickerill, P., Jungen, H., Ochodek, M. et al (2020). PHANTOM: Curating GitHub for engineered
software projects using time-series clustering. Empirical Software Engineering, 25(4): 2897-2929.
http://dx.doi.org/10.1007/s10664-020-09825-8

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

https://doi.org/10.1007/s10664-020-09825-8

PHANTOM: Curating GitHub for engineered software
projects using time-series clustering

Peter Pickerill1 ·Heiko Joshua Jungen1 ·Mirosław Ochodek2 ·Michał Maćkowiak2 ·
Miroslaw Staron3

© The Author(s) 2020

Abstract
Context Within the field of Mining Software Repositories, there are numerous methods
employed to filter datasets in order to avoid analysing low-quality projects. Unfortunately,
the existing filtering methods have not kept up with the growth of existing data sources,
such as GitHub, and researchers often rely on quick and dirty techniques to curate datasets.

Objective The objective of this study is to develop a method capable of filtering large
quantities of software projects in a resource-efficient way.

Method This study follows the Design Science Research (DSR) methodology. The pro-
posed method, PHANTOM, extracts five measures from Git logs. Each measure is
transformed into a time-series, which is represented as a feature vector for clustering using
the k-means algorithm.

Results Using the ground truth from a previous study, PHANTOM was shown to be able
to rediscover the ground truth on the training dataset, and was able to identify “engineered”
projects with up to 0.87 Precision and 0.94 Recall on the validation dataset. PHANTOM
downloaded and processed the metadata of 1,786,601 GitHub repositories in 21.5 days using
a single personal computer, which is over 33% faster than the previous study which used a
computer cluster of 200 nodes. The possibility of applying the method outside of the open-
source community was investigated by curating 100 repositories owned by two companies.

Conclusions It is possible to use an unsupervised approach to identify engineered projects.
PHANTOM was shown to be competitive compared to the existing supervised approaches
while reducing the hardware requirements by two orders of magnitude.

Keywords Mining software repositories · GitHub · Data curation · Curation tools

Communicated by: Yasutaka Kamei

Authors’ Pre-Print submitted to Empirical Software Engineering Journal

� Mirosław Ochodek
miroslaw.ochodek@cs.put.poznan.pl

Extended author information available on the last page of the article.

Empirical Software Engineering (2020) 25:2897–2929

Published online: 27 May 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09825-8&domain=pdf
mailto: miroslaw.ochodek@cs.put.poznan.pl

1 Introduction

Software project analysis used to be performed on small corpora of projects, as seen in
industry-based case studies (Feldt et al. 2013; Staron et al. 2013a, b). However, since the
widespread use of code sharing sites such as GitHub,1 researchers now have access to a
massive corpus of software projects that can be analysed. Consequently, we see more and
more studies in the area of software quality that base their research on mining GitHub
repositories. Unfortunately, the quality of these repositories is unclear. It has been shown
that most repositories can be considered to be of low quality, and could therefore skew
analysis (Kalliamvakou et al. 2016).

For instance, in the recent editions of the Mining Software Repositories (MSR) confer-
ence, a number of studies performed analyses based on GitHub repositories. The reported
dataset sizes ranged between one to over 80,000 repositories (e.g. Cito et al. (2017), Gon-
zalez et al. (2017), Noten et al. (2017), Sadat et al. (2017), Zhu et al. (2017), Rausch et al.
(2017), Macho et al. (2017)), which is just 0.08% of the current number. Most of these
studies needed to filter out low-quality repositories from the collection, where low-quality
denotes those repositories that do not fit into the desired sample. One of the frequently used
approaches to filter such repositories is to rely on the project popularity. Unfortunately, it
has been shown to perform poorly (Munaiah et al. 2017). It is clear then, that for researchers
to make use of the large number of repositories available on GitHub, new filtering methods
are required.

Munaiah et al. (2017) proposed a filtering method that outperformed traditional filter-
ing approaches by using supervised classification. With this framework, over 1.8 Million
GitHub repositories have been analysed, what makes it one of the largest datasets (Cosentino
et al. 2017). While this is an impressive achievement, a number of key issues with the
method remain. First, the method analyses multiple artefacts to calculate the necessary
metrics, i.e. Git logs, configuration files, source code, GitHub issues, license, unit tests.
Consequently, the method has high computing-resource demands (in the study, a computer
cluster with over 200 nodes to process the largest dataset and the task still required a month
to complete). Second, some artefacts require dedicated processing, depending on the pro-
gramming language and libraries used in the project. As a result, the proposed tool might
require further work to adapt it to changing trends in programming technologies. Finally,
the method requires multiple project artefacts to be downloaded and analysed; some of them
might be out of interest for many studies using the method to pre-process the data.

With this in mind, in this paper, we propose a new method called PHANTOM2 (Project
History Analysis of Time-Series Method) that has the same purpose as the method proposed
by Munaiah et al.. It uses unsupervised learning to distinguish between “engineered” and
“not engineered” projects at very large scale, solely based on their development history,
while using commodity hardware. We argue that it is possible to achieve comparable results
to Munaiah et al. (2017) (which we refer to as the baseline study) by applying the proposed
unsupervised-learning method to filter repositories. Since the proposed method is unsuper-
vised, it could also help the researchers to establish a ground truth by automatically grouping
projects which have similar characteristics. By using the development history exclusively,
we simplify the acquisition of data used for analysis, making it possible to perform the
analysis on commodity hardware. We validate PHANTOM on the datasets published in the

1https://github.com
2PHANTOM — https://github.com/Ionman64/PHANTOM.

Empirical Software Engineering (2020) 25:2897–29292898

https://github.com
https://github.com/Ionman64/PHANTOM

baseline study (Munaiah et al. 2017), extending it with additional 200 repositories. The
method’s efficacy is shown by using this dataset consisting of 850 labelled repositories from
open source and 100 additional repositories owned by companies. PHANTOM’s applica-
bility for large-scale analyses is shown when it is applied to the dataset of over 1.8 Million
software repositories.

The structure of this paper is as follows. Section 2 presents and discusses related studies.
The problem statement and the design of the validation study are presented in Section 3.
Section 4 describes the proposed method, which is further validated in Section 5. We discuss
the findings from the validation study in Section 6. Finally, we conclude our findings in
Section 7.

2 RelatedWork

The large-scale projects analyses (including code analysis) are mainly performed on open-
source code repositories. With over 100 million Git repositories available, GitHub is
becoming one of the most important sources data that could be used to study software
source code and project-related phenomena. Unfortunately, the quality of the data available
on GitHub is questionable. For instance, Kalliamvakou et al. (2016) performed the quan-
titative analysis of project metadata and manual investigation of a sample of 434 projects
stored on Github to learn that the assumption that every repository available on GitHub con-
tains a software project does not hold. In the studied sample, only 63.4% of the repositories
were related to software development. Also, most of the projects were personal—67% of the
projects had only 1 committer while 87% had 2 or less. Finally, most repositories remained
inactive or showed low activity (only 25% of the studied repositories were active for over
100 days). Therefore, there is a need for filtering repositories that contain engineered soft-
ware projects in order to reduce the chance of biasing the results of MSR studies by poorly
engineered projects.

The simplest and often used approach to filter unwanted repositories is to rely on projects
popularity, e.g. GitHub Stargazers (e.g. Padhye et al. (2014), Ray et al. (2014), Casalnuovo
et al. (2015), Silva et al. (2016), and Russell et al. (2018)). The rationale behind using
popularity as a filtering criterion is that it is assumed to be positively correlated with quality.
However, as Sajnani et al. (2014) have shown, this might not be true.

Many studies used multi-stage pipelines to select a desirable sample of projects from
GitHub. Most of them query publicly available services such as GHTorrent.3 For instance,
Vasilescu et al. (2015) and Yu et al. (2015) selected projects by sequentially querying
GHTorrent and Travis API in a funnel-like manner to study continuous integration practices.
A similar approach was used by Gharehyazie et al. (2019) who studied software clones.

Some studies go beyond querying the metadata collected by GHTorrent by processing
project repositories and extracting metadata from their artefacts. Good examples of studies
implementing project analysers capable of processing such repositories are Gabel and Su
(2010) and Hebig et al. (2016). They feature a high level of automation, yet the resources
required (e.g. time, computing power) are large. Gabel and Su (2010) conducted a study
about the uniqueness of source code within C++, C# and Java applications taken from
SourceForge.4 They approached the question of “how unique is software?” by performing

3Gousios (2013), http://ghtorrent.org
4http://www.sourceforge.com

Empirical Software Engineering (2020) 25:2897–2929 2899

http://ghtorrent.org
http://www.sourceforge.com

lexical analysis on a dataset of 6000 projects (in total 420 million lines of code). Following
this, the percentage of unique code within 30 selected projects was measured. The study
identified a general lack of uniqueness within software, where most programs are made from
code snippets found in other software. The analysis time took four months, where source
code was compared on a token-level with an optimised tool. This shows that source-code
analysis requires a lot of time even for a small number of projects. Similarly, in the study
by Hebig et al. (2016) that aimed to find GitHub repositories containing UML models, the
process of downloading and processing the repositories took 6 weeks.

Cosentino et al. (2017) looked into 80 studies that mined GitHub. They found that the
two largest data sources, GHTorrent and GitHub API5, were criticised by researchers. The
GitHub API was said to be a source of problems, given request limitations and errors in
the data returned. They state that “the GitHub API request limit acts as a barrier to get-
ting data from GitHub”, which affects curated datasets (such as GHTorrent) and individual
researchers. Many researchers criticise the size and up-to-dateness of services like GHTor-
rent. Cosentino et al. report that of studies they explored, only three looked at more than
100,000 repositories. These findings show that despite using these services, researchers
struggle to collect up-to-date data at large scale.

Robles et al. (2017) identified similar issues with GitHub when collecting information
about twelve million repositories. First, due to API limits, they calculated that it would have
taken fourteen months to collect all of the data using a single API key, adding that “[. . .]
this would have made the data gathering unfeasible.” To gather the data in a feasible time,
twenty keys were used. Secondly, 25% of the twelve million repositories had been moved
or deleted between the time GHTorrent collected its data and the researchers request to the
GitHub API, which wasted keys and analysis time. This shows that data collection time can
be reduced by using volunteered keys for data collection, a practice employed by GitHub
mirroring sites, like GHTorrent and Boa.6

Kalliamvakou et al. (2016) observed that there are different ways to merge commits and
GitHub cannot detect all of them. Therefore, some merges are not reported through the API.
A further peril when using the GitHub API is that, unlike cloning with Git, the GitHub API
does not redirect requests when a repository was moved. Accessing a moved repository with
the API will result with a not found status code.

Nuñez-Varela et al. (2017) conducted a systematic review of 226 papers studying source-
code metrics. They identified that most studies considered one programming language and
paradigm. Over 85% of the studies use object-oriented metrics. This is reflected in the
available public datasets and metric-extraction tools. While the paper does not reason why
researchers focus on one language, it indicates that cross-language analysis of source code
may not be straightforward. They claim that although the use of metrics “theoretically
can be applied to any language”, in practice, it is complex and tools do not support all
languages.

Recently, Munaiah et al. (2017) proposed a new automatic method along with a tool
called reaper that can be used to curate GitHub for engineered software projects. The
method classifies GitHub repositories using seven dimensions: Community, Continuous
integration, Documentation, History, Issues, License, and Unit testing. reaper was used to
download and process 1.8 million GitHub repositories. The analysis required a computer
cluster with over 200 nodes and took over a month to complete. In the next step, the authors

5https://developer.github.com/v3
6Dyer et al. (2013), http://boa.cs.iastate.edu

Empirical Software Engineering (2020) 25:2897–29292900

https://developer.github.com/v3
http://boa.cs.iastate.edu

sampled the collected dataset and manually labelled 500 repositories, of which 200 were
used for validation. In addition, they analyzed and manually labelled 150 repositories owned
by organizations such as Amazon, Apache, Facebook, Google, and Microsoft. They trained
and validated four classifiers (Random Forest and custom score-based classifier) using the
collected data and applied them to predict the number of repositories hosted on GitHub that
contain engineered software projects. Depending on the classification algorithm and train-
ing dataset, the predictions of the number of such repositories ranged between 6% and 70%.
The most accurate classifier predicted that only around 24% of the repositories contained
engineered projects. Also, they showed that the proposed classifiers outperform filtering
repositories by their popularity.

Our study proposes a light-weight method for filtering projects that complements the
methods proposed in the above studies. The method processes only one project artefact,
the Git log, and extracts five measures directly from it (Integration Frequency, Commit
Frequency, Integrator Frequency, Committer Frequency, and Merge Frequency). Each of
the measures (being a time series) are characterised by a set of over forty manually-
designed features (e.g. duration, amplitude, positive and negative gradients). Since the
method directly analyses the Git logs, it does not suffer from the limitations of GitHub
API or GHTorrent. Secondly, it is programming language agnostic because it does not
analyse the source code. Its closest counterpart is the filtering method proposed by Muna-
iah et al. (2017), since any both methods are based on machine-learning algorithms and
have the purpose of filtering engineered software projects by a defined quality. The main
difference between the two approaches is that they use different artefacts to extract infor-
mation about the projects and different machine-learning algorithms. The approaches to
filtering projects proposed by other authors were developed to select projects having partic-
ular, explicitly known characteristics that were interesting for a given study (e.g. Vasilescu
et al. (2015) selected projects not being forks, written in certain programming languages,
and having 200+ pull requests). In the case of distinguishing between engineered not engi-
neered projects, it is difficult to explicitly provide such characteristics. However, even for
such studies and others that require processing other project artefacts than Git logs, the pro-
posed method could be used as a scanning tool as the first step to quickly identify and reject
repositories containing not engineered projects and prevent wasting resources to download
and process their artefacts.

3 ResearchMethodology

The research conducted in this paper follows the Design Science Research (DSR) method-
ology (Hevner et al. 2004). In particular, we decided to follow the guidelines provided by
Wieringa (2014).

DSR is a problem-solving paradigm that focuses on creating and evaluating artefacts and
solutions for practical purposes. In design science, research follows the engineering cycle—
it is conducted iteratively until the objectives are reached. The engineering cycle consists of
five steps:

1. Problem investigation — understanding the problem and outlining the steps to solve the
problem and evaluate the solution.

2. Treatment design – designing an artefact which is used in the study (e.g. a computer
program).

Empirical Software Engineering (2020) 25:2897–2929 2901

3. Treatment validation — evaluating the artefact in a context similar to the context where
it is to be used (e.g. lab environment).

4. Treatment implementation — introducing the artefact into the context where it is to be
used (e.g. software development organization).

5. Implementation evaluation — evaluation of the effects of the introduction of the arte-
fact on the context (e.g. check whether the program improved the process of software
development).

The first three steps of the engineering cycle are called the design cycle. According to
Wieringa, the design cycle is what is usually performed by researchers when designing an
artefact while the remaining two steps (treatment implementation and evaluation) can be
done once the artefact is in the hands of its intended users.

The design cycle begins with an investigation of the problem to gain an in-depth
understanding of the causes. The acquired knowledge is then used to design a treatment.
Treatment is defined as the interaction of an artefact with a problem context. The goal of
the third step, treatment validation, is to confirm that the designed treatment satisfies all the
requirements and whether the treatment is able to treat the problem.

In our study, we performed a full design cycle to create a new method—PHANTOM
which is the method to analyse software projects, and the problem context is to filter
engineered projects from GitHub. Firstly, we investigate the problem and define the require-
ments for the method by analysing the limitations of the reaper tool proposed in the study
by Munaiah et al. (2017). Then we perform a validation of the method by applying it to the
datasets provided in the baseline study and comparing the results between PHANTOM and
reaper.

The goal of two remaining steps in the engineering cycle is to apply the treatment to
and investigate how it interacts with their real-world context. Treatment evaluation is a
scalable process and usually requires multiple applications of the treatment to get a full
understanding of its usefulness. Although we do not aim to evaluate the method in this
study, we apply PHANTOM to replicate the task of filtering nearly 1.8 Million real software
repositories stored on GitHub in the baseline study, what could be perceived as an initial
evaluation of the method in its real-life context, and apply it to recognise engineered projects
in industrial Git repositories.

In the remaining part of this section, we investigate the problem of filtering soft-
ware repositories that justifies the need for designing PHANTOM. Then, we discuss the
validation and evaluation procedures used in this study.

3.1 Problem investigation

Munaiah et al. (2017) provides an abstract definition of an engineered software project
which states that “a software project that leverages sound software engineering practices
in one or more of its dimensions such as documentation, testing, and project management.”
Later in their study, they customise it by stating that “(a) an engineered software project is
similar to the projects contained within repositories owned by popular software engineering
organizations such as Amazon, Apache, Microsoft and Mozilla and7 (b) and engineered
software project is similar to the projects that have a general-purpose utility to users other

7Although the definition provided by Munaiah et al. (2017) uses and as the conjunction between parts (a)
and (b), we believe it should be or since they exclusively train classifiers either on the repositories owned by
the organisations or on the repositories containing general-purpose utility projects.

Empirical Software Engineering (2020) 25:2897–29292902

than the developers themselves.” Since we partially base our study on the dataset provided
by Munaiah et al. (2017), we follow these definitions of an engineered software project.

The existing methods for filtering projects (and in particular filtering engineered
projects) make trade-offs between the depth of analysis and performance. The lightweight
approaches use community-based filtering strategies, for example; popularity, issues, and
forks are common but do not measure the internal quality of a project. Unfortunately, these
approaches are typically less accurate than those relying on analysing project artefacts
(Munaiah et al. 2017) and cannot be used on repositories without community interaction,
for instance, those that are hosted on private servers. The methods that perform deeper anal-
yses of project artefacts (e.g. reaper proposed by Munaiah et al. (2017)) are more accurate
but require high computing power. These methods often analyse multiple project artefacts,
including source code, which is time-consuming and require implementing and maintaining
dedicated analysis tools (e.g. to analyse code written in different programming languages).
To mitigate performance problems, these methods often rely on the metadata collected by
publicly available services such as GHTorrent. Unfortunately, multiple studies have reported
problems and limitations of this approach. Also, the existing methods perform filtering
based on the cross-sectional assessments of projects, i.e. without taking into account their
history. Finally, the methods that base filtering on supervised machine-learning algorithms
require manual labelling of the training data which is time-consuming.

Therefore, it seems that if one wants to create a new filtering method that analyses project
artefacts, they should focus on reducing hardware requirements. Also, it is worth consider-
ing basing the filtering on chronological measures, which not only reflect the current status
of the project but also its history. Finally, it would be preferable if the method does not
require manual labelling of data, and instead use unsupervised methods, such as clustering.

Chronological measures taken from repositories can be represented as a time-series. In
the field of time-series clustering, a number of techniques are available. Euclidean Dis-
tance and DTW (Ratanamahatana and Keogh 2004) are most commonly used, however
they cannot compare time-series of very different lengths. Feature-based approaches have
been shown as an effective way to compare time-series of different lengths and reduce the
dimensionality of the data significantly (e.g. Wang et al. (2006), Deng et al. (2013), Fulcher
and Jones (2014), Guo (2008)). However, extracted features must describe the time-series
correctly to ensure accurate clustering.

Git logs seem to be one of the most frequently analysed artefacts to extract features used
for filtering projects. Also, it allows extracting chronological measures describing trends
in the development of a software project (e.g. commit frequency, number of contributors).
Commit frequency can tell much about the process and practices employed by a software
development team and reflects the changes made in the ways of working (Zhao et al. 2017).
Also, the frequency of commits correlates with the number of bug-introducing changes in
software (Eyolfson et al. 2014). The relationship between commit frequency and overall
quality of a project is also observed by Kolassa et al. (2013), who stated that “the commit
frequency is a fast indicator to determine if the project is healthy because it has regu-
lar contributions and if the developers are productive by checking whether they contribute
regularly.” (Kalliamvakou et al. 2015) observed that industrial projects have more merges
resulting from pull requests. Even the number of reverted commits could be an indicator of
how the project team operates. According to Shimagaki et al. (2016) many reverted commits
could be avoided if a team has good communication practices and high change awareness.
Therefore, it is reasonable to assume that the information about commit frequency might be

Empirical Software Engineering (2020) 25:2897–2929 2903

a useful source of information when filtering engineered projects. We could expect that engi-
neered projects will exhibit different characteristics of commit frequency in time (including
merging commits) not present in not engineered projects.

Taking the above into account, we define the following requirements for a new project-
filtering method, which we call PHANTOM:

– Req1: All measures must be extractable from a Git log. — we want to limit the number
of artefacts that need to be processed to a single one, being Git log.

– Req2: Time-series must be characterised by feature vectors accurately. — we want to
extract chronological measures from Git log; since the feature-based clustering seems
to be the best option to compare time-series of different lengths, we need to find a set of
features that will correctly capture the most important characteristics of the time-series
(Esling and Agon 2012).

– Req3: The established ground truth can be discovered using unsupervised learning
(without knowing the decision classes). — we have to verify that the proposed method
is able to identify clusters that are meaningful from the perspective of the problem of
filtering repositories containing engineered software projects.

– Req4: The method performs well on commodity hardware at large-scale. — it is the key
requirement; it addresses the most important limitation of the existing filtering methods
that analyse project artefacts.

– Req5: The method provides comparable accuracy to supervised methods. — the exist-
ing approaches make a trade-off between accuracy and performance; the proposed
method is supposed to provide similar accuracy while reducing the performance
requirements.

– Req6: The method can be used to filter projects in different contexts. — there is a threat
that the performance of an unsupervised method can be specific to a single dataset
only; therefore, we need to perform studies on different datasets coming from both
open-source community and industry to mitigate that risk.

3.2 Treatment validation

In order to validate PHANTOM, we performed a series of simulation studies on the datasets
published in the baseline study.

Munaiah et al. (2017) published five datasets. These datasets are formatted as collec-
tions of GitHub repository URLs. Four of these datasets (Organization8, Utility, Negative
Instances, and Validation) are used as ground truth in the validation of the proposed method,
with the fifth being referred to as the Large dataset (a collection of over 1.85 Million URLs).

To create the ground truth datasets, Munaiah et al. followed a manual curation process
in order to label repositories. Each repository was independently judged by two or three
researchers as either engineered or not, according to agreed guidelines. If the judgement
about a repository differed, it was either discussed further or discarded. The datasets are
summarised in the list below:

– Organization — it consists of a set of 150 engineered repositories. Engineered projects
are defined as similar to those of popular software engineering companies such as Ama-
zon, Apache and Facebook. The researchers manually investigated repositories to find
those project that matched the definition.

8We preserve the original spelling of the dataset name used in the study by Munaiah et al. (2017).

Empirical Software Engineering (2020) 25:2897–29292904

– Utility — it consists of another set of 150 engineered repositories. It defines an engi-
neered project as one with a general-purpose. That is to say, a repository that has
value to users other than the developers. The repositories were randomly sampled from
1,857,423 GitHub repositories.

– Negative Instances — it holds 150 repositories that are not engineered. The repos-
itories do not conform to either of the definitions of engineered project. The dataset
resulted from the selection process of the Utility dataset, which means that it contains
the first 150 repositories that both authors rejected.

– Validation — it consists of 100 engineered and 100 not engineered project repositories.
The selection process is similar to the one of the Utility dataset and shares the definition
of what is engineered and not.

– Large dataset — it is a collection of 1,857,423 GitHub URLs. In contrast to the other
datasets, there is no ground truth, meaning the quality of the repositories is unknown.

Since the four ground-truth datasets contained labelled data, they allowed us to validate
the PHANTOM’s accuracy and compare it with the accuracy of reaper proposed in the
baseline study. While evaluating the accuracy of the methods we used the popular prediction
quality metrics Precision, Recall, F-Measure, and Matthews Correlation Coefficient (MCC).

When predicting the label of an object and comparing the predicted label to the actual
label there are four possible outcomes: the object is correctly classified to a positive class—
true positive (TP), the object is falsely classified to a positive class—false positive (FP), the
object is correctly recognised as not belonging to the positive class—true negative (TN) and
the object is falsely recognised as not belonging to the positive class—false negative (FN).
We calculate Precision, Recall, F-Measure, and Matthews Correlation Coefficient (MCC)
by aggregating information about the outcomes for all classified cases.

We extended the previous study by comparing the accuracy of the baseline and PHAN-
TOM models on another sample of projects from the Large dataset. The goal of this analysis
was two-fold. First, it allowed us to compare the accuracy of the models on a new dataset.
Second, we were able to verify the validity of predictions regarding the number of engi-
neered software projects hosted on GitHub reported in the baseline study and the ones
obtained with the PHANTOM models.

We classified all instances from the Large dataset using the baseline and PHANTOM
models (we used a best-performing PHANTOM model for each of the measures considered
by PHANTOM). Since we wanted to understand the similarities and differences between
the prediction made by the models, we used stratified sampling to select 5 samples, each
containing 50 project instances (the total number of 250 instances):

– True/True — this was a sample of instances for which the best-performing baseline
models and PHANTOM models trained on the Utility dataset9 unanimously classified
them as engineered projects.

– False/False — we randomly selected instances that were unanimously10 classified as
not engineered projects.

– False/True — a random sample of instances which were unanimously predicted to
be not engineered projects by the PHANTOM models and unanimously predicted as
engineered projects by the best-performing baseline models.

9The baseline study concluded that the best-performing models were trained using the Utility dataset.
10We ignored the predictions made by PHANTOM model trained using the ’merges’ time-series after we had
discovered that it was indicating nearly all repositories as engineered.

Empirical Software Engineering (2020) 25:2897–2929 2905

– True/False — a random sample of instances which were unanimously predicted to
be engineered projects by the PHANTOM models and unanimously predicted as not
engineered projects by the best-performing baseline models.

– Mixed — a random sample of the remaining repositories not fitting to any of the above
categories. These were instances for which there was a partial agreement between the
prediction models.

All of the selected instances were then independently labelled by two or three authors
using the same criteria as in the baseline study for the Utility dataset. By using this dataset,
we were able to analyse how much the baseline and PHANTOM models complement or
contradict each other. Consequently, we were able to assess the impact of the differences in
the way they classify repositories on their predictions of the number of engineered projects
hosted on GitHub.

Finally, we applied the best-performing PHANTOM models to filter industrial projects
to investigate whether it is possible to use PHANTOM in different contexts. We introduced
a new dataset (Industry) that contains 100 repositories belonging to two companies. Com-
pany A is one of the fastest-growing software agencies in the European Union. With its
presence on the market for more than ten years, it has successfully delivered over 1400
projects. Currently, it employs more than 500 employees and develops products for multiple
sectors, e.g. FinTech, Healthcare, Tourism, E-commerce, Entertainment, and e-Government.
It maintains around 500 Git repositories in a private GitHub space. Company B develops
embedded software for infrastructure projects. The dataset was labelled by the employees
of the companies.

4 PHANTOM—ADeveloped Artefact

PHANTOM (Project History Analysis of Time-Series Method) is a software-repositories
filtering method that addresses the problems identified in Section 3.1. The process used in
PHANTOM is presented in Fig. 1 and its steps are explained in the subsequent paragraphs.

The input to the method is a collection of repository URLs, which locate the repositories
to be analysed. Each repository is cloned to the machine using Git (Step A). Next, the Git
log of the cloned repository is generated (Step B) in the format defined in Table 1, where
each column is separated by a comma (”,”). From now on, Git log will refer to this format.

An example Git log is presented in Table 2. The Git log contains timestamped rows,
which makes the conversion to time-series possible (Step C). These time-series use combi-
nations of the different columns of the Git log and are referred to as measures. We extract
five measures: Commit Frequency (Commits), Integration Frequency (Integrations), Com-
miter Frequency (Commiters), Integrator Frequency (Integrators), and Merge Frequency
(Merges). These measures are defined in Table 3. As previously mentioned in the problem
investigation (Section 3.1), many studies observed that commit frequency could be a valu-
able source of information about the process and practices used in software development
projects. Our hypothesis is that the measures we extract from Git logs allow separating
engineered and not engineered projects, in a given dataset. They can be divided into two
groups. Commits, Integrations, and Merges characterise ways of working and peace of the
project. For instance, we could see periodic increases in the frequency of commits, or long
periods of inactivity, etc. The frequency of commits seem to correlate with the quality of
the project (Eyolfson et al. 2014; Kolassa et al. 2013), therefore, they could help discrimi-
nate between engineered and not engineered projects. Similarly, the code merging practices

Empirical Software Engineering (2020) 25:2897–29292906

Fig. 1 Overview of PHANTOM

might be different depending on the capabilities of projects, as the number of merges tends
to be greater in commercial projects (Kalliamvakou et al. 2015). The remaining two mea-
sures (Commiters and Integrators) provide information about the number of people involved
in the project at a given period of time. We expect that more attractive projects bring more
attention from the community and consequently more people contribute to their codebase.

In Table 4, the example Git log is transformed into the five measures. Measures are
represented as a regular time-series, which makes their comparison possible; however, con-
sidering very different lengths, a direct comparison of the time-series may not make much
sense. Interpolation would mean that the data are manipulated, which the authors argue
would not be a true representation of the development history. The time-series are of very
different lengths (e.g. 50 weeks and 900 weeks). Therefore, DTW and Euclidean distance
are not suitable. Instead, a feature-based approach is selected, which does not come with
these issues.

The time-series are therefore reduced in dimensionality by extracting a fixed-length fea-
ture vector (Step D). In the feature-based approach, a time-series is represented by a feature
vector. This feature vector is fixed-length which makes it compatible with common cluster-
ing algorithms. A feature vector consists of a number of values that describe certain aspects
of time series. For example, a feature could be the lowest value within the sequence, which
could be called Min Y. Features can show very simple, or very complex characteristics (see

Table 1 The format of the generated Git logs, each column is separated with a comma (UTS refers to Unix
Timestamp, GUID refers to Globally Unique Identifier

Hashes Author Committer

Name Commit Parent Name Email Date Name Email Date

Format %H %P %an %ae %at %cn %ce %ct

Type GUID GUID String String UTS String String UTS

Empirical Software Engineering (2020) 25:2897–2929 2907

Table 2 Example Git log, where each row is one commit

Hashes Author Committer

Commit Parent Name Email Date Name Email Date

b57f4f3 82c9f95 ab a@b.com 1519904296 cd c@d.com 1519904396

82c9f95 efaf9cd ab a@b.com 1519834072 ab a@b.com 1519904296

efaf9cd 703b7b1 ab a@b.com 1519404672 ab a@b.com 1519824672

Fig. 2). The up and down peaks of the time-series are marked using upward and down-
ward pointing triangles. To calculate the features Peak Up and Peak Down these points are
counted. A peak can be described as any point that is either higher or lower than the preced-
ing and succeeding points. Peak None is the sum of all points that are not marked (e.g. at
week 250). The feature Max Y is the largest value within the time-series, which is roughly
4000 in the example. The position of Max Y is captured by Max Y Pos, which is the index
(week) in which the value occurred, around 150 in the example. Duration is equal to the
total number of weeks between the first point and the last point, illustrated by the bar close
the x-axis.

In Fig. 3 more features are illustrated. At the start of the time-series, a subsequence is
labelled to show a positive gradient. All positive gradients between neighbouring observa-
tions are averaged to calculate the feature Mean Positive Gradient. Similarly, the feature
Mean Negative Gradient is calculated by averaging the negative gradients. A further set of
features relate to amplitude; Min Amp, Avg Amp and Max Amp. Amplitude is the increase
in value that is measured between an up peak and its previous point, divided by the Max Y
value. That means, it is the increase relative to the maximum value. An example is shown
at around week 250 in (b). The amplitude is labelled in the middle of the plot and for the
purpose of the example, the difference between the peak and the previous value is equal
to 1000. The Max Y value of the time-series is roughly 4000, which therefore means an

Table 3 The measures extracted by PHANTOM

Measure Git Log Information Used Description

Commit Frequency Author Date The number of commits summed

(Commits) per Week

Integration Frequency Committer Date The number of integrations summed

(Integrations) per Week.

Committer Frequency Author Date, The number of unique developers

(Committers) Author Email (by email) that have made commits

per Week

Integrator Frequency Integrations Date, The number of unique developers

(Integrators) Integrations Email (by email) that have made integrations

per Week

Merge Frequency Parent Hashes, The number of merges summed

per Week

(Merges) Committer Date

Empirical Software Engineering (2020) 25:2897–29292908

Table 4 Example time-series for
the five measures Date Integrations Integrators Commits Authors Merges

2018-02-26 2 2 2 1 0

2018-02-19 1 1 1 1 0

Fig. 2 Example features that can be extracted from a time-series

Fig. 3 Example features that can be extracted from a time-series

Empirical Software Engineering (2020) 25:2897–2929 2909

amplitude of 25%. Min Amp is the lowest measured amplitude, Avg Amp is the mean of all
amplitudes, and Max Amp is the highest amplitude.

A complete list of the 42 extracted features is presented in Table 5. The measures are
extracted separately, which means that there is one feature vector per measure. In Table 6,
a sample of the extracted features is presented. Some features cannot be extracted from

Table 5 Features extracted by PHANTOM

Duration Duration Time interval in weeks between the first and last week

of the time-series

Y value Max. y The highest value

Max. y Pos The week number of the Max Y

Mean y The average value

Sum y The sum of all values

q25 The 25% quantile of values

q50 The 50% quantile of values

q75 The 75% quantile of values

std The standard deviation of values

Peaks Peak down The number of downwards facing peaks

Peak none The number of peaks that are neither downwards, nor

upwards facing peaks

Peak up The number of upwards facing peaks

Time between peaks Min. TBP up The time between upwards facing peaks is measured

as the number of weeks between two neighbouring

peaks.

Avg. TBP up

Max. TBP up

Min. TBP down

Avg. TBP down

Max. TBP down

Amplitude Min. amplitude The amplitude is the difference in height between a

peak and the previous valley. This value is

normalised by dividing it with Max Y.

Avg. amplitude

Max. amplitude

Positive and negative Min. PPD The positive peak deviation (PPD) is the difference

peak deviation between the Mean Y value and the y value of a

upwards facing peak.

Avg. PPD

Max. PPD

Min. NPD The negative peak deviation (NPD) is the difference

between the Mean Y value the y value of a

downwards facing peak.

Avg. NPD

Max. NPD

Empirical Software Engineering (2020) 25:2897–29292910

Table 5 (continued)

Positive and negative Min. PS A sequence is, when at least two sequential gradients

sequences have the same sign. Therefore, the positive (PS) and

negative sequences (NS) are numeric values, that

count the number of sequential same sign gradients.

Avg. PS

Max. PS

Sum. PS

Min. NS

Avg. NS

Max. NS

Sum. NS

Positive and negative Min. PG Gradients are the difference between two

gradients neighbouring y values.

Avg. PG

Max. PG

Min. NG

Avg. NG

Max. NG

PG Count Number of positive gradients (PG)

NG Count Number of negative gradients (NG)

all measures. For example, peak-related features cannot be measured on time-series with a
length of three or less, because peaks cannot be detected. Where features are immeasurable
the value is set to zero (”0”) during the preprocessing step (Step E) because the k-means
algorithm cannot handle missing values. Each repository in the input collection is processed
in this way. After this, feature vectors are used in the subsequent steps.

Some of the features capture characteristics that might depend on the project size (e.g.
Sum y, Max. y). However, due to the manual investigation done by the baseline study, we
guess that larger projects better meet the definition of engineered project and would rarely
aim to deliver toy applications or solutions to students’ homework assignments. Also, there
are many features extracted by PHANTOM that should not depend on the size of the projects
but rather on the changes in the “intensity” of product development (e.g. Min. TBP up, Max.
TBP up).

Table 6 Example feature vectors
for the five measures Measure Duration Avg Y Max Y

Integrations 2 1.5 2

Integrators 2 1.5 2

Commits 2 1.5 2

Authors 2 1 1

Merges 2 0 0

Empirical Software Engineering (2020) 25:2897–2929 2911

The next step is to select the best subset of features from the feature vector (Step F). In
order to remove redundant features, the Pearson correlation coefficient is calculated. If the
correlation meets or exceeds a specified threshold the feature is removed.

The remaining features are normalised with the standard score and then used to fit a k-
means model (Step G). In this study, we divided observations into two clusters and used the
standard configuration of k-means in the Python library Scikit-Learn:11

– number of clusters = 2,
– number of initialisations = 10,
– centroid update algorithm = k-means++ (Lloyd’s algorithm),
– max iterations = 300.

Finally, the fitted model is outputted. A new observation is classified to a cluster by
measuring its Euclidean distance to all centroids and assigning it to the cluster represented
by the closest one.

Although PHANTOM uses unsupervised models, it is worth to emphasise that the fea-
tures extracted and preprocessed in steps D and E could be used as an input to supervised
models, if the ground truth is available for the considered dataset.

5 Validation Results

We validated PHANTOM against each of the requirements defined in Section 3.1. For the
requirements requiring evaluating the accuracy of the proposed method or comparing it with
the baseline study (reaper), we based the validation on the datasets and prediction quality
measures presented in Section 3.

5.1 All measures must be extractable from the Git log (Req1)

The five measures extracted by PHANTOM are Integration Frequency, Commit Frequency,
Integrator Frequency, Committer Frequency, and Merge Frequency. Each measure uses dif-
ferent information from the Git log, along with at least one of the two date types (author
or committer date). The other parts of the Git log are the author and committer email, and
the number of parent commits (see Table 3). All of this information is available in every
Git managed repository, and, in fact, Git ensures its availability, because when commit-
ting changes, the information is automatically recorded. PHANTOM has no dependency on
additional data from GitHub, such as the GitHub API and mirroring services like GHTor-
rent. Due to the decision to use this specific set of information, PHANTOM is able to extract
all measures from Git logs exclusively.

5.2 Time-series must be characterised by feature vectors accurately (Req2)

Feature vectors must capture the characteristics of time-series accurately to allow k-means
to find meaningful clusters. It can be difficult to select features that do this. This problem is
illustrated by the two integration frequencies plotted in Fig. 4, which were selected from an
investigation of twenty repositories using PHANTOM. The plots are visually distinguish-
able. However, when converted into feature vectors, a small number of features, such as

11Pedregosa et al. (2011), https://scikit-learn.org

Empirical Software Engineering (2020) 25:2897–29292912

https://scikit-learn.org

Fig. 4 Integration Frequencies for https://github.com/mono/mono (a) and https://github.com/FFmpeg/
FFmpeg (b)

Max Y or Duration may not be enough to differentiate two time-series from each other (see
Table 7). The difference between the Max Y values and the Duration values is 30 and 40
respectively. Max Y and Duration are close enough that one can say that the time-series
are similar to each other. Therefore, crucial features are missing to differentiate them. An
additional feature such as the x value of the highest peak (Max Y Pos) would show a clear
difference between the two repositories. PHANTOM uses Duration, Max Y, and Max Y Pos
along with 40 additional features described in Table 5 to characterise time-series.

Even if a number of features are similar, the chances of an identical feature vector for two
different time-series is reduced with a larger feature vector. By this, the k-means algorithm
is able to cluster time-series via feature vectors effectively, as those differences are clear.
By using larger feature vectors, PHANTOM captures the characteristics of time-series and
the differences between them are highlighted.

5.3 The established ground truth can be discovered using unsupervised learning
(Req3)

We used PHANTOM to fit k-means models on the ground-truth datasets.12 These are the
Organization and Utility datasets, which are both complemented with the negative instances
so they contain engineered and not engineered repositories to almost equal parts. PHAN-
TOM requires a correlation threshold to select the best subset of features. As it is unknown
which threshold is the best, we explored thresholds ranging from 0.05 to 1, with a step
size of 0.05. This means that for each combination of datasets and measures, twenty mod-
els were fitted. As k-means is unsupervised, the true labels are not known to the algorithm
when fitting the model, which enables a comparison of the produced cluster labels and the
ground-truth labels.

The comparisons of obtained prediction quality measures of Organization and Utility
datasets depending on the correlation threshold are presented in Fig. 5. On the Organization
dataset, there are many models that achieve Precision and Recall close to 1.0. On the utility
dataset, the accuracy is lower with Precision and Recall of up to 0.9. The high Precision and
Recall indicate that the models were able to rediscover the majority of true labels for both
datasets. Overall, the Organization repositories could be rediscovered with higher accuracy

12The features extracted by PHANTOM from the datasets and supplemental materials are published under
DOI: 10.5281/zenodo.3483755.

Empirical Software Engineering (2020) 25:2897–2929 2913

https://github.com/mono/mono
https://github.com/FFmpeg/FFmpeg
https://github.com/FFmpeg/FFmpeg

Table 7 Example feature vector
for the time-series in Fig. 4 (the
values have been rounded)

Repository Duration Max Y Max Y Pos

A (https://github.com/mono/mono) 870 470 160

B (https://github.com/FFmpeg/FFmpeg) 900 430 640

than the Utility repositories. However, the accuracy largely depends on the dataset, measure
and correlation threshold. This shows that a ground truth could successfully be discovered
using an alternative, unsupervised technique.

Based on the results presented in Fig. 5, we can also observe that setting a threshold
anywhere between 0.75 and 0.95 will result in obtaining very similar accuracy of all the
models.

5.4 Themethod performs well on commodity hardware at large-scale (Req4)

In order to validate the applicability of PHANTOM to process large-scale data, we per-
formed two analyses. In the first one, we used PHANTOM to download and process the
labelled, smaller datasets; Utility, Negative Instances, and Validation to extrapolate the
results to the size of the Large dataset. Since the Organization dataset comes from a differ-
ent selection process than the other datasets, it is not used for this extrapolation. The second
analysis is performed directly on the Large dataset.

PHANTOM’s results for both analyses are presented in Table 8. For the smaller datasets,
it shows that 3.8% of the repositories were unavailable, which means they have been deleted
or made private. The total download time was 7.5 minutes for 500 repositories, which gives
the average repository-download time of 0.94 seconds. When these values are extrapolated
up to the Large dataset (1,857,423 software project repositories), the time to obtain the Git
logs is estimated to be 20.2 days.

For the Large dataset, it took PHANTOM 21.5 days to obtain the Git logs for 1,780,773
(95.36% of all) repositories. This leaves 76,650 (4.64% of all) repositories that were not
available, due to either deletion or being made private. When converting the Git logs to
time-series, some of the logs had to be excluded from the analysis, because of a format-
ting problem; Logs with author and committer names that contain a comma (”,”) had to be

Fig. 5 The accuracy of k-means model thresholds against the the ground truth for the five measures (the
Organization and Utility datasets combined with the Negative Instances dataset)

Empirical Software Engineering (2020) 25:2897–29292914

https://github.com/mono/mono
https://github.com/FFmpeg/FFmpeg

Table 8 Number of available
repositories and timings to clone
and generate the Git log for them

Dataset Available repositories Time taken

Organization 149 / 150 10:39 minutes

Utility 145 / 150 2:44 minutes

Negative Instances 138 / 150 1:53 minutes

Validation(engineered) 100 / 100 1:36 minutes

Validation(Not engineered) 98 / 100 1:18 minutes

Large 1,780,773 / 1,857,423 21.5 days

excluded, because the additional comma made the correct separation of information impos-
sible since Git logs are saved as CSV files. For this reason 9,606 (0.5% of the obtained) Git
logs had to be discarded. The remaining 1,771,167 Git logs were converted to time-series
and feature vectors were extracted.

5.5 Themethod provides comparable accuracy to supervisedmethods (Req5)

In the baseline study, custom Score-based and Random Forest classifiers were trained on
the Organization and Utility ground-truth datasets (each combined with the instances from
the Negative Instances dataset). The classifiers were then used to predict the Validation
dataset. In order to compare k-means to these algorithms, PHANTOM is applied to the
same datasets. First, similarly to Section 5.3, PHANTOM explores a range of thresholds for
each combination of datasets and measures. This time, however, the fitted models are used
to predict repositories from the Validation dataset. Accuracy when predicting repositories
is shown in Fig. 6. As already seen in Fig. 5, the accuracy varies across measures, datasets,
and thresholds. Although we base our discussion of the PHANTOM accuracy based on
the results obtained for the best-performing PHANTOM models, we can see in Fig. 6 that
choosing any threshold between 0.75 and 0.95 would result in models having very similar
filtering accuracy.

To compare the results against the baseline study, the best models for each dataset and
measure are selected. In order to achieve this, the authors established a set of rules that
determine the best model:

Fig. 6 The accuracy of k-means model thresholds against the the Validation data for the five measures (fitted
on the Organization and Utility datasets combined with the Negative Instances dataset)

Empirical Software Engineering (2020) 25:2897–2929 2915

1. Find the highest F-Measure.
2. Find the highest Precision.
3. Find the highest Recall.
4. Find the lowest correlation threshold.

These rules are implemented in PHANTOM which automates the feature selection
process. The best models are presented in Tables 9 and 10.

Before comparing the accuracy of PHANTOM models with the classifiers from the
baseline study, we first compare their accuracy to the accuracy of three naı̈ve classifiers
(uniform random, stratified random, and selecting the most frequently appearing class). The
F-Measure for these classifiers were equal to 0.52, 0.51, and 0.67, respectively. By look-
ing at the results presented in Tables 9 and 10, we can see that all of the best-performing
PHANTOM models visibly outperformed the naı̈ve classifiers.

The accuracy of the models proposed in the baseline study is presented in Table 11. The
baseline classifiers, trained on the Organization dataset, achieves a lower F-Measure than
any PHANTOM model fitted to the same data. PHANTOM matches the Precision and sur-
passes the Recall of the supervised algorithms. Classifiers trained on the Utility dataset set a
higher benchmark than classifiers trained on the Organization dataset. PHANTOM matches
the F-Measure of the score-based classifier. Although the highest Precision on the Utility
dataset of 0.82 could be surpassed by two out of five PHANTOM models (Integrations,
Commits), the Recall on these was lower than the one obtained for the RF classifier. Interest-
ingly, the RF classifier trained on the Organization dataset in the baseline study performed
visibly worse than one of the naı̈ve classifiers. Also, the Score-based classifier trained on
the same dataset achieved an F-Measure only 0.01 higher than the naı̈ve classifier.

As a follow-up analysis, we trained a set of Random Forest classifiers13 using the mea-
sures and extracted features provided by PHANTOM to investigate whether the features
allow obtaining similar results to the baseline study. The prediction accuracy of the RF Clas-
sifiers are presented in Tables 12 and 13. The F-Measure scores obtained for the best RF
models for the Organization and Utility datasets were equal to 0.72 and 0.79 respectively.
For the Organization dataset, the F-Measure was higher by 0.15 when compared to the cor-
responding RF models in the baseline study, while for the second dataset, it was lower by
0.05. This confirms that the features extracted by PHANTOM allow separating instances
of engineered and not engineered projects for both unsupervised and supervised models.
Nevertheless, when compared to the accuracy of PHANTOM, the F-Measure scores for
PHANTOM were higher by 0.11 for the first dataset and lower by 0.01 for the second one
than for the RF classifiers trained using the same features. Thus, it seems that the unsuper-
vised model used by PHANTOM can achieve higher prediction accuracy than RF for some
cases.

Finally, we compared the accuracy of the models on the sample of the Large dataset (see
Section 3.2). The baseline study concluded that the number of engineered projects in the
Large dataset is 24%, which was the prediction made by the best-performing model (RF
trained on the Utility dataset). The predictions made by other models differed visibly and
ranged from 6% to 70%. We estimated the accuracy of the best model to be ca. 0.72 with
the 0.95 Confidence Interval (CI)14 between 0.57 and 0.83.

13We used the default configuration of Random Forest provided by the Scikit-Learn library since Munaiah
et al. (2017) did not provide information about the RF meta-parameters they used in their study.
14We first calculated Accuracy for each stratum, and then aggregated them using the weighted average with
weights being the numbers of observations belonging to strata in the Large dataset.

Empirical Software Engineering (2020) 25:2897–29292916

Table 9 Prediction accuracy for the five measures when clustering repositories. (Organization models)

Measure Threshold Precision Recall F-Measure MCC Features

Merges 0.90 0.68 0.85 0.76 0.48 17

Integrators 0.75 0.82 0.71 0.77 0.57 9

Integrations 0.90 0.75 0.93 0.83 0.64 19

Commits 0.90 0.75 0.94 0.83 0.65 19

Committers 0.75 0.82 0.71 0.77 0.57 11

Table 10 Prediction accuracy for the five measures when clustering repositories. (Utility models)

Measure Threshold Precision Recall F-Measure MCC Features

Merges 0.85 0.68 0.84 0.75 0.47 11

Integrators 0.45 0.83 0.69 0.76 0.56 5

Integrations 0.95 0.86 0.70 0.78 0.61 22

Commits 0.95 0.87 0.70 0.78 0.62 22

Committers 0.75 0.83 0.71 0.77 0.58 8

Table 11 The accuracy of the baseline’s tool reaper as reported in Munaiah et al. (2017)

Data set Classifier Precision Recall F-Measure

Organization Score-based 0.76 0.61 0.68

Organization Random Forest 0.88 0.42 0.57

Utility Score-based 0.58 0.99 0.73

Utility Random Forest 0.82 0.86 0.84

Table 12 Prediction accuracy for
the five measures and Random
Forest classifiers. (Organization
models)

Measure Precision Recall F-Measure MCC

Merges 0.95 0.58 0.72 0.59

Integrators 0.94 0.44 0.60 0.48

Integrations 0.94 0.47 0.63 0.51

Commits 0.93 0.38 0.54 0.43

Committers 0.93 0.42 0.58 0.46

Table 13 Prediction accuracy for
the five measures and Random
Forest classifiers. (Utility
models)

Measure Precision Recall F-Measure MCC

Merges 0.74 0.78 0.76 0.51

Integrators 0.78 0.75 0.77 0.54

Integrations 0.78 0.80 0.79 0.57

Commits 0.77 0.79 0.78 0.56

Committers 0.80 0.75 0.77 0.56

Empirical Software Engineering (2020) 25:2897–2929 2917

We selected the PHANTOM models that performed best on the Validation dataset and
applied them to classify the projects in the Large dataset. This means that ten models (one
for each combination of ground-truth dataset and measure) were used to predict the repos-
itory labels for the Large dataset. In Tables 14 and 15, the best models and the number of
repositories predicted to be engineered are presented. Out of these models, six resulted in a
percentage of engineered repositories between 35% and 40% and two resulted in 55%. The
remaining two models resulted in 19% and 96%. Accuracy for all the PHANTOM models
but one was slightly lower than the best model from the baseline study (ca. -0.03).

Figure 7 shows the comparison between the accuracy of the baseline and PHANTOM
models for a sample of the repositories from the Large dataset. We can see that whenever
the models were unanimous in predictions (for ca. 35% of the repositories) they achieved
the highest accuracy ca. 0.75. On the contrary, when the baseline and PHANTOM models
strongly disagreed, their accuracy dropped visibly, even to the level of random guessing.
However, there should be only around 6% of such instances. For the remaining cases, the
accuracy of the best models ranged between 0.6 and 0.7 (for ca. 59% of the repositories).

The most accurate PHANTOM model predicted the number of engineered repositories
to be 19%, which is quite similar to the prediction made by the best model from the baseline
study. However, it is important to emphasise that the predictions made in both studies could
be affected by a visible error because the accuracy of the models was ca. 0.70.

Most of the false-positive repositories contained student assignments, automatically
exported code, private sandboxes, and web applications with no documentation (usually
developed using the Ruby on Rails and Django frameworks). Many of these repositories
contained code of applications or services, however, they did not provide enough informa-
tion to decide whether the application is intended to be used by anyone else than the authors.
Many of the False Positives are repositories for student assignment projects. They are often
well-structured and documented. However, the main question is whether the outcomes of
such projects may attract external users. When it comes to False Negatives, they were dom-
inated by the repositories containing very small utility tools (e.g. often having the form of a
single script), showcase applications, and plugins/extensions.

5.6 Themethod can be used to filter projects in different contexts (Req6)

When the best-performing classifiers for each of the measures were applied to the Indus-
try dataset, they predict that the percentage of repositories containing engineered software
projects is between 12% and 95%. The most accurate PHANTOM model (Merges,
Organization) classified repositories with F-Measure and MCC equal to 0.89 and 0.53,
respectively.

Table 14 Results from PHANTOM on 1,771,167 repositories from the Large dataset. Each row represents
one model (Organization models)

Measure Threshold # of engineered % of engineered Acc Acc 0.95 CI

Merges 0.9 343,818 19% 0.69 (0.53, 0.79)

Commits 0.9 704,995 40% 0.65 (0.49, 0.76)

Committers 0.75 688,260 39% 0.67 (0.52, 0.78)

Integrations 0.9 700,501 39% 0.65 (0.49, 0.76),

Integrators 0.75 688,260 38% 0.67 (0.52, 0.78)

Empirical Software Engineering (2020) 25:2897–29292918

Table 15 Results from PHANTOM on 1,771,167 repositories from the Large dataset. Each row represents
one model (Utility models)

Measure Threshold # of engineered % of engineered Acc Acc 0.95 CI

Merges 0.85 1,716,118 96% 0.41 (0.29, 0.55)

Commits 0.95 985,213 55% 0.68 (0.54, 0.79)

Committers 0.75 690,371 39% 0.67 (0.52, 0.78)

Integrations 0.95 983,553 55% 0.68 (0.54, 0.79)

Integrators 0.45 617,042 35% 0.68 (0.54, 0.79)

We discussed the results with the companies’ employees. They categorised the Git repos-
itories based on their contents. The resulting categories are presented in Table 16. It turned
out that only 35 of the repositories contained source code of products developed for external
customers. According to the employees, these repositories should be identified as contain-
ing engineered projects. As it is shown in Table 16, most of the classifiers correctly indicated
that the majority of the repositories belong to this decision class (the average accuracy was
equal to 0.70). The best-performing model on the Large dataset (Merges, Organization) cor-
rectly recognised 94% of them as containing engineered projects while the corresponding
model trained on the Utility dataset (Merges, Utility) was able to correctly classify all of
them.

The second group of categories contains repositories storing internal libraries and
reusable components which are parts of products developed by Company A (UI component,
Ruby gems or extensions, npm packages, or Python libraries). As we can see, most of these
repositories were correctly indicated as the ones containing engineered projects. Reposito-
ries that were misclassified as not engineered software projects were mostly micro-projects
having short or irregular development histories.

The third category contains repositories storing examples, snippets, spike solutions, and
template solutions. According to the employees, nearly all of these repositories should be
classified as containing not engineered projects. PHANTOM models correctly recognized
“toy projects”, however, they misclassified not-engineered projects that had long and active
histories of development (e.g. a pattern application).

The next category groups forked repositories of external libraries that were modified and
used by Company A. These repositories were correctly indicated as containing engineered

Fig. 7 Accuracy for the baseline and PHANTOM models on the sample from the Large dataset

Empirical Software Engineering (2020) 25:2897–2929 2919

Ta
bl
e
16

T
he

pr
ed

ic
tio

ns
m

ad
e

by
th

e
PH

A
N

T
O

M
m

od
el

s
fo

r
th

e
In

du
st

ry
da

ta
se

t

O
rg

an
iz

at
io

n
da

ta
se

t
U

til
ity

da
ta

se
t

#
of

In
te

-
In

te
-

C
om

m
i-

In
te

-
In

te
-

C
om

m
i-

Ty
pe

N
en

g.
A

ve
ra

ge
M

er
ge

s
gr

at
or

s
gr

at
io

ns
C

om
m

its
te

rs
M

er
ge

s
gr

at
or

s
gr

at
io

ns
C

om
m

its
te

rs

F-
M

ea
su

re
10

0
75

0.
73

0.
89

0.
81

0.
84

0.
84

0.
81

0.
85

0.
18

0.
84

0.
84

0.
36

R
ec

al
l

0.
72

0.
91

0.
79

0.
83

0.
84

0.
77

0.
96

0.
11

0.
88

0.
89

0.
24

Pr
ec

is
io

n
0.

80
0.

87
0.

84
0.

85
0.

84
0.

84
0.

76
0.

67
0.

80
0.

80
0.

75

M
C

C
0.

24
0.

53
0.

33
0.

38
0.

36
0.

31
0.

08
-0

.0
7

0.
23

0.
25

0.
00

A
cc

ur
ac

y
Pr

oj
ec

t
35

35
0.

70
0.

94
0.

66
0.

86
0.

89
0.

60
1.

00
0.

03
0.

89
0.

91
0.

23

U
I

C
om

po
ne

nt
4

4
0.

70
0.

75
1.

00
0.

50
0.

50
1.

00
1.

00
0.

50
0.

75
0.

75
0.

25

R
ub

y
ge

m
5

4
0.

60
0.

80
0.

80
0.

80
0.

80
0.

80
0.

80
0.

00
0.

60
0.

60
0.

00

np
m

pa
ck

ag
e

1
1

0.
80

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

0.
00

E
xt

en
si

on
3

2
0.

73
0.

67
1.

00
0.

67
0.

67
1.

00
0.

67
0.

67
0.

67
0.

67
0.

67

L
ib

ra
ry

1
1

0.
80

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
00

1.
00

1.
00

0.
00

E
xa

m
pl

e/
Sn

ip
pe

t
9

2
0.

44
0.

33
0.

33
0.

33
0.

33
0.

44
0.

44
0.

78
0.

33
0.

33
0.

78

Pa
tte

rn
ap

p
1

0
0.

20
0.

00
0.

00
1.

00
0.

00
0.

00
0.

00
1.

00
0.

00
0.

00
0.

00

Sp
ik

e
so

lu
tio

n
2

0
0.

55
0.

50
0.

50
0.

50
0.

50
0.

50
0.

00
1.

00
0.

50
0.

50
1.

00

Fo
rk

12
12

0.
82

1.
00

0.
92

1.
00

1.
00

1.
00

0.
75

0.
08

0.
92

0.
92

0.
58

H
ac

ka
th

on
2

0
0.

90
1.

00
1.

00
1.

00
1.

00
1.

00
0.

00
1.

00
1.

00
1.

00
1.

00

R
&

D
1

0
0.

90
1.

00
1.

00
1.

00
1.

00
1.

00
0.

00
1.

00
1.

00
1.

00
1.

00

To
ol

7
5

0.
76

1.
00

1.
00

0.
71

0.
71

1.
00

0.
71

0.
43

0.
86

0.
86

0.
29

In
te

rn
al

A
PI

2
2

0.
70

0.
50

1.
00

0.
50

0.
50

1.
00

1.
00

0.
50

1.
00

1.
00

0.
00

In
te

rn
al

ap
p

6
6

0.
55

0.
83

0.
50

0.
67

0.
67

0.
50

1.
00

0.
00

0.
67

0.
67

0.
00

In
fr

as
tr

uc
tu

re
3

1
0.

60
1.

00
0.

67
0.

67
0.

67
0.

67
0.

33
0.

33
0.

67
0.

67
0.

33

Se
tu

p
2

0
0.

80
1.

00
1.

00
1.

00
1.

00
1.

00
0.

00
1.

00
0.

50
0.

50
1.

00

D
oc

um
en

ta
tio

n
4

0
0.

40
0.

50
0.

75
0.

50
0.

50
0.

50
0.

00
0.

75
0.

00
0.

00
0.

50

Empirical Software Engineering (2020) 25:2897–29292920

projects. However, it shows that there is a need for manually identifying the forks of reposi-
tories to avoid including clones of repositories when conducting MSR studies on the GitHub
data since they can bias the results.

The fifth group of categories includes repositories that store source code of applications
developed during Hackathon sessions or being the result of internal Research & Devel-
opment. These were mostly considered by the employees as not engineered projects and
correctly identified as such by the PHANTOM models. However, there were a few projects
that have matured over time and are now regularly used in Company A (categorised as inter-
nal APIs and internal applications). The best-performing PHANTOM model on the Large
dataset correctly classified 1 out of 2 internal API projects and 83% of internal applications.

The sixth group of categories contains repositories storing the code of internal tools
(scripts), infrastructure code (e.g. Docker), or setup (configurations). Although some of the
tools could be considered as engineered software projects, most of the infrastructure and
setup repositories should be regarded as not engineered. All of the projects belonging to
these categories were correctly classified by the best-performing PHANTOM classifier.

Finally, the remaining category groups repositories containing documentation (usually in
the form of markdown files). Interestingly, some of the repositories were falsely identified
as containing engineered projects. Those that were most frequently misclassified contained
knowledge bases that are regularly used and updated within Company A, making their com-
mit histories similar to active software development projects. This revealed a limitation of
relying on Git commit frequencies when training classifiers instead of analysing multiple
project artefacts. Therefore, it might be worth to extend the list of features to include the
extensions of the files being modified in the project to filter such cases.

From this analysis, we conclude that the classifiers trained on Git logs coming from
publicly available repositories can be used to identify repositories containing engineered
software projects in industrial settings. The results were confirmed by the employees of the
companies owning the repositories. However, we identified two limitations of the proposed
approach; First, one needs to manually filter repositories being “forks” (unless they are
supposed to be the subject of the analysis). Second, Git log commit frequencies do not allow
distinguishing between the repositories storing application source code and the ones storing
documentation written in the markdown language.

6 Discussion

PHANTOM extracts five measures in the form of a time series. Then, 42 features are
extracted that characterise each of the time series. The measurement and feature extraction
process are done directly on the Git log without the need of accessing any external sources
of information (e.g. bug trackers, continuous integration servers), analysing project artefacts
(e.g. project documentation or source code) or any Git-hosting-site specific information
(e.g. GitHub Pull Requests). This allows PHANTOM to be used to curate Git repositories
independently of the infrastructure used to host them.

Also, the validation shows that PHANTOM was able to rediscover the ground truth of
the software repository datasets published in the baseline study by (Munaiah et al. 2017),
in which software projects were manually labelled. Many of the PHANTOM (unsuper-
vised) models were able to achieve Precision and Recall close to 1.0. That confirms that
the measures and extracted features are descriptive enough to allow differentiating between
engineered and not engineered software projects.

Empirical Software Engineering (2020) 25:2897–2929 2921

By comparing the prediction accuracy of the PHANTOM models presented in Tables 9
and 10 with the accuracy of the classifier in the baseline study presented in Table 11, it is
clear that the PHANTOM models can compete with the supervised approaches. Commit-
ters model achieved slightly higher F-Measure and Recall for the Organization study than
the best classifier in the baseline study, and higher Precision for the Utility dataset. This
shows, that k-means is a competitive alternative to supervised algorithms for the considered
problem. When the features extracted by PHANTOM were used to train supervised mod-
els (Random Forest), they obtained similar accuracy than the corresponding models in the
baseline study.

Also, PHANTOM reduces the number of measures needed for analysis from seven taken
by reaper to one. Although five measurements were experimented with, four of them show
competitive results when used on their own. This shows that with only limited information,
accurate predictions can be made about the quality of a repository. For instance, PHAN-
TOM can produce competitive results with Commit Frequency alone, which is also taken
by reaper as part of the seven extracted measures (as a monthly average). This shows that
PHANTOM was able to achieve similar accuracy, with a subset of the data used by reaper
(i.e. one-seventh), by choosing a different representation.

Since measurements are taken from the Git logs, rather than other sources (e.g. source
code, GitHub API, GHTorrent), private or closed-source repositories can now be cross-
analysed with open-source ones. PHANTOM also avoids the limitations of other sources
such as out-of-date information and API key sharing.

PHANTOM’s working assumption is that the programming language of a repository is
not relevant. As the Git log is independent of the programming language, it can analyse
projects of any programming language, which is a significant improvement over reaper.
However, the authors must admit that the efficacy of PHANTOM on other programming
languages has not been established, since the large dataset contains repositories from a set
number of languages, which are the ones supported by reaper.

PHANTOM achieved a 33% reduction in data collection time over reaper, however,
4.64% of the repositories were unavailable. It took 21.5 days to generate the Git logs for
the Large dataset, or one second per repository, which is within 1.3 days of the extrapolated
analysis time of 20.2 days.

PHANTOM reduced the hardware requirements over reaper by two orders of magnitude.
Reaper analysed the Large dataset using a computer cluster of 200 nodes, while PHANTOM
achieved the same using a desktop computer.15 Furthermore, the authors found that the
hardware resources were not exhausted (RAM, CPU), spending most of the time idle. The
majority of analysis time is spent waiting for downloads to complete, rather than Git log
extraction. However, the bandwidth was not a limiting factor in the analysis. The bandwidth
available to the machine on which PHANTOM ran was 1 Gbps. The authors observed the
download speed, which rarely exceeded 40 Mbps. This shows that bandwidth was not the
constraint one might expect it to be, but it was rather the speed at which repositories can be
downloaded from GitHub.

Taking into account the reduction in requirements on both processing time and hardware
with respect to reaper that used a cluster of computers, we can conclude that PHANTOM
performs well on commodity hardware, even at large scale.

15Computer hardware and operating system used in this study: Intel i5 CPU, 1Gbps Ethernet, 1TB HDD,
16GB DDR3 RAM, Lubuntu 17.10.

Empirical Software Engineering (2020) 25:2897–29292922

When both PHANTOM and reaper are applied to the Large dataset (unlabelled data), the
best models obtained similar accuracy ca. 0.70. When PHANTOM and reaper were unan-
imous in their predictions, they were usually correct. We also observed that there were ca.
6% of instances for which the models provided strongly contradict predictions and have the
accuracy similar to random guessing. Finally, the best-performing models provided similar
predictions of the number of engineered projects hosted on GitHub, being 19% and 24%.
However, the remaining PHANTOM models, that were only slightly less accurate than the
best-performing model, estimated this ratio to 38–55%.

To summarisse the discussion, we present a side-by-side comparison between PHAN-
TOM and reaper in Table 17.

We applied PHANTOM to curate 100 repositories owned by two companies and learned
that the models calibrated on the open-source datasets were able to correctly identify
repositories containing projects developed for customers. Unfortunately, we have also
observed that the method is not able to recognise the repositories being “forks” or to dis-
tinguish between the code of software applications and the documentation written using the
markdown language. Still, we did not find any repositories that would contain only docu-
mentation in the analysed sample of 250 repositories from the Large dataset. Therefore, the
impact of the latter issue on the results of our study could be considered as negligible.

Based on the results, we cannot firmly state which of the measures provide the best capa-
bilities of filtering engineered projects. Therefore, it is worth considering using ensembles
of PHANTOM models (e.g. use the majority voting). We also recommend setting the corre-
lation threshold between 0.75 and 0.90 since the resulting models should have very similar
accuracy.

6.1 Threats to validity

Since we mostly base our study on the datasets published by the baseline study, we are
exposed to similar threats to validity.

Constructs validity The general definition of “engineered software project” refers to prac-
tices leveraged by a software project while the customised definition proposed by Munaiah

Table 17 Comparison between reaper and PHANTOM

Aspect reaper PHANTOM

Data Collection Time >1 month 3 weeks

Hardware Requirements Computer cluster (200 nodes) Desktop computer

Measures 7 measures 1 measure

Data Sources GHTorrent, source code Git

Sample Size 1,857,423 1,771,167

Machine Learning approach Supervised Unsupervised

F-Measure (Organization) 68% 77%

F-Measure (Utility) 84% 76%

Percentage engineered 24% 19%

Programming Languages Supported C, C#, C++, Java, PHP, Any

Python, Ruby

Implementation Languages Python Python, Rust

Empirical Software Engineering (2020) 25:2897–2929 2923

et al. is based on the notion of similarity between software repositories. Although Munaiah
et al. were investigating the quality of project artefacts in seven dimensions while construct-
ing the reference Organization and Utility datasets, it does not prove the equivalence of both
definitions.

In our study, we use five measures (Integration Frequency, Commit Frequency, Integrator
Frequency, Committer Frequency, and Merge Frequency) that are taken from Git logs and
have the form of time series (measurement performed in time). Therefore, they could reflect
the ways of working in the projects, also revealing some periodic behaviour. However, none
of these measures can be used to evaluate the quality of artefacts (e.g. quality of code or
software documentation).

Internal validity These five measures we use in the study have been selected by the authors
and may not provide full characteristics of the repositories. In addition, feature vectors con-
tain 42 features, which are also chosen by the researchers. Although attention has been paid
to choose features that are reflective of the time series, no rigorous process was followed to
ensure they were so.

The procedure of determining the ground truth for the datasets published in the baseline
study by Munaiah et al. and for the Industry dataset differ. For the latter dataset, we base it
on the opinion of the companies’ employees. Although we believe that the employees had
enough information to judge whether the predictions made by PHANTOM were correct (i.e.
having direct access to the code and other project’s artefacts, knowledge about the projects
and processes used in the companies), we interviewed only one representative from each
company to verify the predictions. Finally, we used different versions of the PHANTOM
tool to analyze the datasets published by Munaiah et al. and the Industry dataset. Therefore,
there could be some differences in the feature-extraction algorithm between the versions
that could influence the results. However, since we use different feature sets, the impact of
these differences should be minor and negligible.

External validity The ground truth of the dataset published by Munaiah et al. (2017),
which is based on a description of 300 engineered and 150 not engineered repositories may
not agree with other collections of repositories. Although the authors cannot confirm the
correctness of the ground truth, PHANTOM uses unsupervised models that were able to
rediscover the ground truth by using only the features space. The produced clusters agree
with the ground truth to a large degree, which supports its correctness. That being said,
the possibility also exists that both PHANTOM and the ground truth are wrong and this
agreement is coincidental. However, the additional studies performed on a new sample of
repositories from the Large dataset and the study performed on the Industry dataset showed
that the method could be used in different contexts.

Also, we have to accept the fact that the statements about the download speed may not
be relevant to researchers with different hardware, Internet connection, or an alternative
agreement with GitHub.

Finally, the predicted number of engineered projects in the Large dataset differs between
PHANTOM models. A similar observation was made in the baseline study, for which the
predicted percentage of engineered projects for the Large dataset ranged between 6% and
70%. However, the predictions made by two best-performing models in both studies pro-
vided similar estimates. Nevertheless, we believe that the predictions made by both studies
should be taken with caution since the level of uncertainty is high.

Empirical Software Engineering (2020) 25:2897–29292924

6.2 Ethical considerations

The most important ethical consideration concerns the Git logs published as part of this
paper, which contain the names and emails of GitHub users. Although these are publicly
available, the authors have anonymised this data to protect the users’ privacy, in accordance
with GitHub terms and conditions. Therefore, the published Git logs contain placeholder
names and emails which neither hinder analysis nor leak sensitive information.

A further ethical consideration is the collection of repositories from GitHub. Although
the repositories are publicly available, mining data on the scale seen in this paper is not
generally acceptable behaviour according to GitHub’s terms of service (GitHub 2018). The
authors came to an agreement with GitHub about the duration and use of GitHub’s servers,
and how the collection should be carried out. GitHub has requested that the details of this
agreement should not be published, because it is specific between GitHub and the authors.
It is important to emphasise that contacting GitHub before mining is a necessity for ethical
research, due to the terms of service. This extends (beyond cloning from GitHub) to using
the GitHub API.

7 Conclusions

The amount of available software repositories rises everyday; between January 2014 and
March 2018 the number of GitHub repositories rose from 10.6 million to over 80 million,
an increase of 780%. This dramatic increase has not been matched by analysis methods so
far. In order to make use of this large corpus of data, it is essential to filter out undesirable
repositories, however as Munaiah et al. (2017) puts it: “there are limited means of sepa-
rating the signal (e.g. repositories containing engineered software projects) from the noise
(e.g. repositories containing homework assignments).”

The problem with the majority of applied filtering techniques when mining software
repositories is that they are inaccurate or unproven. (Munaiah et al. 2017) introduced a
new method(reaper) that achieves high accuracy, but requires the computing power of a
computer cluster, and cannot be applied to all repositories as it is based on static analysis of
code.

In this study, we proposed a new method called PHANTOM that improves on exist-
ing methods with respect to analysis time and hardware requirements, without sacrificing
accuracy. Therefore, the barrier for researchers, who often do not have access to expen-
sive hardware, is removed. PHANTOM achieves this by using a time-series representation
as input to create feature vectors describing properties of the time-series (e.g. the number
of peaks). These time-series are based on information from the development history and
are transformed to feature vectors that can be used with machine learning algorithms for
smarter comparison. In particular, this makes the time-series compatible with a standard k-
means algorithm, which is used to cluster the repositories into two groups; engineered and
not engineered. As a result, PHANTOM allows researchers to automatically and inexpen-
sively filter large datasets of unknown quality and remove repositories that are undesirable
for further more specific analysis.

In the performed validation, PHANTOM was able to rediscover a ground truth of 450
repositories, with the best k-means models achieving up to 1.0 Precision and Recall. When
applied to new, unseen data, the best models in PHANTOM achieved up to 0.87 Preci-
sion or 0.94 Recall. The MCC of the best models was overall positive, with the highest
being 0.65. This is competitive to the best supervised classifiers from the baseline study by

Empirical Software Engineering (2020) 25:2897–2929 2925

Munaiah et al. (2017) that reported 0.88 Precision and 0.99 Recall on the same datasets.
PHANTOM obtained the metadata of 1,786,601 GitHub repositories in 21.5 days, which is
over 33% faster than reaper, and reduced the hardware requirements by two orders of mag-
nitude. The best-performing model predicted that 19% of the analysed GitHub repositories
contain engineered projects, compared to 24% reported in the baseline study. Finally, we
applied PHANTOM to curate 100 repositories owned by two companies and learned that
the model is capable of recognising external products as engineered projects. However, we
also identified some limitations of the method in correctly identifying forked repositories
and repositories containing documentation as engineered software projects.

Because of the limitations of existing curating methods, many studies mining software
repositories use inaccurate or unproven filtering approaches (e.g. popularity). PHANTOM
could be applied in such studies to improve the data curation process. For example, Rob-
les et al. (2017) published a collection of 24,000 repositories, for which PHANTOM could
be useful to filter out undesirable repositories. Such use cases are possible because PHAN-
TOM is not dependent on mirroring services like GHTorrent. Any Git repository, not just
those available through such services, can be analysed, making PHANTOM also suitable for
research on private, or very specific collections of repositories. Furthermore, PHANTOM
is programming language agnostic.

Acknowledgements This research has been supported by Software Center (www.software-center.se),
Chalmers | University of Gothenburg, and the statutory funds of Poznan University of Technology.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

Casalnuovo C, Devanbu P, Oliveira A, Filkov V, Ray B (2015) Assert use in github projects. In: Proceedings
of the 37th international conference on software engineering-volume 1, IEEE Press, pp 755–766

Cito J, Schermann G, Wittern JE, Leitner P, Zumberi S, Gall HC (2017) An Empirical Analysis of the
Docker Container Ecosystem on GitHub. In: IEEE international working conference on mining software
repositories, pp 323–333. https://doi.org/10.1109/MSR.2017.67

Cosentino V, Canovas Izquierdo JL, Cabot J (2017) A systematic mapping study of software development
with GitHub. IEEE Access. https://doi.org/10.1109/ACCESS.2017.2682323

Deng H, Runger G, Tuv E, Vladimir M (2013) A time series forest for classification and feature extraction.
Inf Sci 239:142–153. https://doi.org/10.1016/j.ins.2013.02.030, arXiv:1302.2277v2

Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: A language and infrastructure for analyzing ultra-
large-scale software repositories. In: Proceedings of the 2013 international conference on software
engineering, pp 422-431. IEEE Press

Esling P, Agon C (2012) Time-series data mining. ACM Comput Surv (CSUR) 45(1):1–34.
https://doi.org/10.1145/2379776.2379788. http://dl.acm.org/citation.cfm?doid=2379776.2379788%5Cn
http://dl.acm.org/citation.cfm?id=2379788

Eyolfson J, Tan L, Lam P (2014) Correlations between bugginess and time-based commit characteristics.
Empir Softw Eng 19(4):1009–1039

Feldt R, Staron M, Hult E, Liljegren T (2013) Supporting software decision meetings: Heatmaps for visu-
alising test and code measurements. In: Proceedings - 39th Euromicro Conference Series on Software
Engineering and Advanced Applications, SEAA. https://doi.org/10.1109/SEAA.2013.61

Empirical Software Engineering (2020) 25:2897–29292926

http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1109/MSR.2017.67
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1016/j.ins.2013.02.030
http://arxiv.org/abs/1302.2277v2
https://doi.org/10.1145/2379776.2379788
http://dl.acm.org/citation.cfm?doid=2379776.2379788{%}5Cn
http://dl.acm.org/citation.cfm?id=2379788
https://doi.org/10.1109/SEAA.2013.61

Fulcher BD, Jones NS (2014) Highly comparative feature-based time-series classification. IEEE Trans Knowl
Data Eng 26(12):3026–3037. https://doi.org/10.1109/TKDE.2014.2316504, 1401.3531

Gabel M, Su Z (2010) A study of the uniqueness of source code. In: Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of software engineering - FSE ’10, pp 147. http://
portal.acm.org/citation.cfm?doid=1882291.1882315

Gharehyazie M, Ray B, Keshani M et al (2019) Cross-project code clones in GitHub. Empir Software Eng
24:1538–1573. https://doi.org/10.1007/s10664-018-9648-z

GitHub (2018) Github terms of service - user documentation. https://help.github.com/articles/
github-terms-of-service/#c-acceptable-use

Gonzalez D, Santos JC, Popovich A, Mirakhorli M, Nagappan M (2017) A Large-Scale Study on the Usage of
Testing Patterns That Address Maintainability Attributes: Patterns for Ease of Modification, Diagnoses,
and Comprehension. In: IEEE International Working Conference on Mining Software Repositories, pp
391–401. https://doi.org/10.1109/MSR.2017.8, 1704.08412

Gousios G (2013) The ghtorrent dataset and tool suite. In: Proceedings of the 10th working conference on
mining software repositories. IEEE Press, Piscataway, MSR ’13, pp 233–236. http://dl.acm.org/citation.
cfm?id=2487085.2487132

Guo C (2008) Time series clustering based on ICA for stock data analysis pp 1–4
Hebig R, Quang TH, Chaudron MR, Robles G, Fernandez MA (2016) The quest for open source projects

that use uml: Mining github. In: Proceedings of the ACM/IEEE 19th international conference on model
driven engineering languages and systems, ACM, pp 173–183

Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Quart
28(1):75–105

Kalliamvakou E, Damian D, Blincoe K, Singer L, German DM (2015) Open source-style collaborative
development practices in commercial projects using github. In: Proceedings of the 37th International
Conference on Software Engineering-Volume 1, IEEE Press, pp 574–585

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2016) An in-
depth study of the promises and perils of mining GitHub. Empir Softw Eng 21(5):2035–2071.
https://doi.org/10.1007/s10664-015-9393-5. 2597073.2597074

Kolassa C, Riehle D, Salim MA (2013) The empirical commit frequency distribution of open source projects.
In: Proceedings of the 9th international symposium on open collaboration, ACM, pp 18

Macho C, McIntosh S, Pinzger M (2017) Extracting Build Changes with BUILDDIFF. In: IEEE international
working conference on mining software repositories, pp 368–378. https://doi.org/10.1109/MSR.2017.65,
1703.08527

Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating GitHub for engineered software projects. Empir
Softw Eng 22(6):3219–3253. https://doi.org/10.1007/s10664-017-9512-6

Noten J, Mengerink JG, Serebrenik A (2017) A data set of OCL expressions on GitHub.
In: IEEE international working conference on mining software repositories, pp 531–534.
https://doi.org/10.1109/MSR.2017.52

Nuñez-Varela AS, Pérez-Gonzalez HG, Martı́nez-Perez FE, Soubervielle-Montalvo C (2017)
Source code metrics: A systematic mapping study. Journal of Systems and Software.
https://doi.org/10.1016/j.jss.2017.03.044

Padhye R, Mani S, Sinha VS (2014) A study of external community contribution to open-source projects
on github. In: Proceedings of the 11th working conference on mining software repositories, ACM, pp
332–335

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830

Ratanamahatana C, Keogh E (2004) Everything you know about dynamic time warp-
ing is wrong. 3rd workshop on mining temporal and sequential data pp 22–25.
https://doi.org/10.1097/01.CCM.0000279204.24648.44. http://spoken-number-recognition.googlecode.
com/svn/trunk/docs/Dynamictimewarping/DTW myths.pdf

Rausch T, Hummer W, Leitner P, Schulte S (2017) An Empirical Analysis of Build Failures in the Con-
tinuous Integration Workflows of Java-Based Open-Source Software. In: IEEE International Working
Conference on Mining Software Repositories, pp 345–355. https://doi.org/10.1109/MSR.2017.54

Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of programming languages and code
quality in github. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations
of software engineering, ACM, pp 155–165

Robles G, Ho-Quang T, Hebig R, Chaudron MR, Fernandez MA (2017) An extensive dataset of UML mod-
els in GitHub. IEEE international working conference on mining software repositories, pp 519–522.
https://doi.org/10.1109/MSR.2017.48

Empirical Software Engineering (2020) 25:2897–2929 2927

https://doi.org/10.1109/TKDE.2014.2316504
http://portal.acm.org/citation.cfm?doid=1882291.1882315
http://portal.acm.org/citation.cfm?doid=1882291.1882315
https://doi.org/10.1007/s10664-018-9648-z
https://help.github.com/articles/github-terms-of-service/#c-acceptable-use
https://help.github.com/articles/github-terms-of-service/#c-acceptable-use
https://doi.org/10.1109/MSR.2017.8
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1109/MSR.2017.65
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1109/MSR.2017.52
https://doi.org/10.1016/j.jss.2017.03.044
https://doi.org/10.1097/01.CCM.0000279204.24648.44
http://spoken-number-recognition.googlecode.com/svn/trunk/docs/Dynamic timewarping/DTW{_}myths.pdf
http://spoken-number-recognition.googlecode.com/svn/trunk/docs/Dynamic timewarping/DTW{_}myths.pdf
https://doi.org/10.1109/MSR.2017.54
https://doi.org/10.1109/MSR.2017.48

Russell PH, Johnson RL, Ananthan S, Harnke B, Carlson NE (2018) A large-scale analysis of bioinformatics
code on github. PloS One 13(10):e0205898

Sadat M, Bener AB, Miranskyy A (2017) Rediscovery datasets: Connecting duplicate reports.
In: IEEE international working conference on mining software repositories, pp 527–530.
https://doi.org/10.1109/MSR.2017.50, 1703.06337

Sajnani H, Saini V, Ossher J, Lopes CV (2014) Is popularity a measure of quality? an analysis of maven
components. In: 2014 IEEE international conference on software maintenance and evolution, IEEE, pp
231–240

Shimagaki J, Kamei Y, McIntosh S, Pursehouse D, Ubayashi N (2016) Why are commits being reverted?:
a comparative study of industrial and open source projects. In: 2016 IEEE international conference on
software maintenance and evolution, ICSME. IEEE, pp 301–311

Silva D, Tsantalis N, Valente MT (2016) Why we refactor? confessions of github contributors. In: Proceed-
ings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering,
ACM, pp 858–870

Staron M, Hansson J, Feldt R, Meding W, Henriksson A, Nilsson S, Hȯglund C (2013a) Measuring and visu-
alizing code stability - A case study at three companies. In: Proceedings - joint conference of the 23rd
international workshop on software measurement and the 8th international conference on software pro-
cess and product measurement, IWSM-MENSURA. https://doi.org/10.1109/IWSM-Mensura.2013.35

Staron M, Meding W, Hoglund C, Eriksson P, Nilsson J, Hansson J (2013) Identifying implicit architectural
dependencies using measures of source code change waves. In: Proceedings - 39th Euromicro conference
series on software engineering and advanced applications, SEAA. https://doi.org/10.1109/SEAA.2013.9

Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V (2015) Quality and productivity outcomes relating to con-
tinuous integration in github. In: Proceedings of the 2015 10th joint meeting on foundations of software
engineering, ACM, pp 805–816

Wang X, Smith K, Hyndman R (2006) Characteristic-based clustering for time series data. Data Min Knowl
Disc 13(3):335–364. 10.1007/s10618-005-0039-x

Wieringa R (2014) Design science methodology for information systems and software engineering.
https://doi.org/10.1145/1810295.1810446. http://portal.acm.org/citation.cfm?doid=1810295.1810446

Yu Y, Wang H, Filkov V, Devanbu P, Vasilescu B (2015) Wait for it: Determinants of pull request evaluation
latency on github. In: 2015 IEEE/ACM 12th working conference on mining software repositories, IEEE,
pp 367–371

Zhao Y, Serebrenik A, Zhou Y, Filkov V, Vasilescu B (2017) The impact of continuous integration on other
software development practices: a large-scale empirical study. In: Proceedings of the 32nd IEEE/ACM
international conference on automated software engineering, IEEE Press, pp 60–71

Zhu C, Li Y, Rubin J, Chechik M (2017) A dataset for dynamic discovery of semantic changes in version
controlled software histories. In: IEEE international working conference on mining software repositories,
pp 523–526. https://doi.org/10.1109/MSR.2017.49

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Empirical Software Engineering (2020) 25:2897–29292928

https://doi.org/10.1109/MSR.2017.50
https://doi.org/10.1109/IWSM-Mensura.2013.35
https://doi.org/10.1109/SEAA.2013.9
https://doi.org/10.1145/1810295.1810446
http://portal.acm.org/citation.cfm?doid=1810295.1810446
https://doi.org/10.1109/MSR.2017.49

Affiliations

Peter Pickerill1 ·Heiko Joshua Jungen1 ·Mirosław Ochodek2 ·Michał Maćkowiak2 ·
Miroslaw Staron3

Peter Pickerill
peterpi@student.chalmers.se

Heiko Joshua Jungen
jungen@student.chalmers.se

Michał Maćkowiak
michal.mackowiak@cs.put.poznan.pl

Miroslaw Staron
Miroslaw.Staron@cse.gu.se

1 Department of Computer Science and Engineering, Chalmers University of Technology,
Gothenburg, Sweden

2 Poznan University of Technology, Poznan, Poland
3 Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden

Empirical Software Engineering (2020) 25:2897–2929 2929

mailto: peterpi@student.chalmers.se
mailto: jungen@student.chalmers.se
mailto: michal.mackowiak@cs.put.poznan.pl
mailto: Miroslaw.Staron@cse.gu.se

	PHANTOM: Curating GitHub for engineered software projects using time-series clustering
	Abstract
	Introduction
	Related Work
	Research Methodology
	Problem investigation
	Treatment validation

	PHANTOM—A Developed Artefact
	Validation Results
	All measures must be extractable from the Git log (Req1)
	Time-series must be characterised by feature vectors accurately (Req2)
	The established ground truth can be discovered using unsupervised learning (Req3)
	The method performs well on commodity hardware at large-scale (Req4)
	The method provides comparable accuracy to supervised methods (Req5)
	The method can be used to filter projects in different contexts (Req6)

	Discussion
	Threats to validity
	Constructs validity
	Internal validity
	External validity

	Ethical considerations

	Conclusions
	References
	Affiliations

