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Abstract

Software developers in big and medium-size companies are working with millions of lines
of code in their codebases. Assuring the quality of this code has shifted from simple defect
management to proactive assurance of internal code quality. Although static code analy-
sis and code reviews have been at the forefront of research and practice in this area, code
reviews are still an effort-intensive and interpretation-prone activity. The aim of this research
is to support code reviews by automatically recognizing company-specific code guidelines
violations in large-scale, industrial source code. In our action research project, we con-
structed a machine-learning-based tool for code analysis where software developers and
architects in big and medium-sized companies can use a few examples of source code lines
violating code/design guidelines (up to 700 lines of code) to train decision-tree classifiers to
find similar violations in their codebases (up to 3 million lines of code). Our action research
project consisted of (i) understanding the challenges of two large software development
companies, (ii) applying the machine-learning-based tool to detect violations of Sun’s and
Google’s coding conventions in the code of three large open source projects implemented
in Java, (iii) evaluating the tool on evolving industrial codebase, and (iv) finding the best
learning strategies to reduce the cost of training the classifiers. We were able to achieve
the average accuracy of over 99% and the average F-score of 0.80 for open source projects
when using ca. 40K lines for training the tool. We obtained a similar average F-score of 0.78
for the industrial code but this time using only up to 700 lines of code as a training dataset.
Finally, we observed the tool performed visibly better for the rules requiring to understand a
single line of code or the context of a few lines (often allowing to reach the F-score of 0.90
or higher). Based on these results, we could observe that this approach can provide mod-
ern software development companies with the ability to use examples to teach an algorithm
to recognize violations of code/design guidelines and thus increase the number of reviews
conducted before the product release. This, in turn, leads to the increased quality of the final
software.
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1 Introduction

Software developers in big and medium-size software development companies and organi-
zations are working with codebases that are usually of several millions of lines of code. To
cope with this code size and at the same time comply with the agile and lean paradigms, e.g.
continuous delivery, developers have access to tools that help them with the code review
management. Code reviews tools (e.g. static, dynamic, automatic, manual, purchased/own
developed review tools) are important for maximizing the quality of the software product
that is under development.

Violations in coding guidelines lead to a double negative effect. On the one hand, having
to check for inconsistent styles and violated guidelines requires time and slows down the
reviewers—taking away time for finding serious mistakes or bad smells. On the other hand,
it is known that inconsistent styles make it harder for reviewers to read and understand the
code (Maruping et al. 2009; Smit et al. 2011).

Many companies adopted fast-feedback loops where the source code is reviewed per
commit, in small chunks and often outside of the compiler environment (Mclntosh et al.
2014). Tools like Gerrit are used for managing these reviews, but they need integration with
tools checking for violations of code/design guidelines.

These code analysis tools and style checkers have the potential to support code reviews.
These techniques have advanced significantly during the recent years and can provide over
90% accuracy in finding potential code guideline violations for pre-defined rules. Also, they
have been shown to trigger the right discussions during the code review. Singh et al. (2017)
showed that 73% of the suggestions from the static analysis led to discussions and, in turn,
improvements of the source code quality.

However, continuous integration with its fast-feedback loops poses a challenge for the
adoption of these tools in the industry. Source code is often too large to be compiled com-
pletely for each commit, and tools like Gerrit even promote the review at the level of code
commit differences. In addition, coding styles, and thus code/design guidelines, are often
company or even project-specific (Torunski et al. 2017), and evolve as the product matures.
For example, some conventions used by our industry partners can be found in widely
accepted standards or coding conventions, such as camel case variable naming. Others can
become very specific to the companies programming environment, concerning aspects such
as build time variants. Thus, static code analysis tools and style checkers need to be con-
stantly extended to capture the new rules' and the evolution of the existing rules. Both the
need for analyzing incomplete code and flexibility in evolution are not well supported by
existing tools. This construction can require significant effort as it requires practitioners to
learn specific APIs (Ochodek et al. 2017). Finally, our industrial partners develop and use
their custom Domain Specific Languages (DSLs) for which static code analysis tools do
not exist and since they are mostly proprietary and company-specific there are not enough
resources to develop and maintain dedicated static code analysis tools.

"'We will use the term “rule” interchangeably with the term “guideline” since the guidebooks of our industrial
partners and most of the commonly adhered coding conventions are composed as sets of rules.
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In this paper, we address the problem of How fo support new ways of reviewing code in
continuous integration in large and medium-size software companies? We present an action
research study (Susman and Evered 1978; Baskerville and Wood-Harper 1996) that aimed
at investigating the possibilities of supporting code reviews by automatically recognizing
company-specific code guidelines violations in large and medium scale, industrial source
code, without the need to learn new ways of specifying the rules —i.e. by example.

Our action research study was designed in four cycles, which gradually progressed from
theoretical studies and theory-building into industrial practice and action-taking, follow-
ing the organizational change model by Goodman et al. (1980). In the first cycles, we
follow the “research as action” principle and we gradually shift to “change as action” in
the last cycles, as practiced often in collaborative action research as prescribed by Masters
(1995). We worked with two companies which develop embedded software in Scandinavia:
a large infrastructure provider and provider of consumer products in the embedded software
domain. Both companies allowed us to analyze the source code of their products and pro-
vided access to architects and designers—all with over 10 years (partially over 20 years) of
experience in the domains.

As a result, we developed a method and implemented a machine learning-based (ML-
based) tool to recognize violations of code/design guidelines that is trained on a small
number of examples, is language-agnostic, and does not require the code being analyzed
to compile. In the method developed together with our industrial partners, instead of defin-
ing and developing rules, the software architects recognize violations in the code, mark the
code and teach the tool to recognize similar patterns. Over time, the examples evolve as the
codebase evolves, which reduces the need for manual management of rules, and in the end,
leads to automation of code reviews using company-specific coding guidelines. The opin-
ion of the practitioners from the cooperating companies is the tool in its current version can
complement static code analysis tools they use (e.g., to perform quick or partial codebase
quality checks before the complex static code analysis tools are run to analyze the whole
codebases) or fill the existing gap by enabling analyzing code written in programming lan-
guage for which such static code analyzers do not exist or code that does not compile.
Ultimately, the example-based approach could potentially evolve to automatically learn to
recognize poor quality code from the automatic code reviews. However, at this stage, we
focus on training the tool to detect violations of existing company-specific guidelines.

The contributions from the study are:

— we found that by using machine learning (ML) to perform a line-level code analysis
it is possible to match the accuracy of static code analysis when identifying violations
of guidelines requiring to understand a limited code context (i.e., a single line or a few
lines of code),

— we show that using active learning for sampling training data provides the most accu-
rate results in recognizing violations of company-specific coding guidelines and allows
reducing the effort required to train the ML-based tool (a smaller number of training
examples was needed to achieve the same (or higher) prediction quality as in the case
of manual selection of examples),

— we show that the frequencies of tokens are a valuable source of information while rec-
ognizing code violations and allow to perform this task without the need for parsing or
compiling the code,

— we show that the approach works both on industry-wide standards applied to open
source and on the company-specific, proprietary guidelines applied to professionally
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developed code from two large companies. Therefore, using the ML-based tool can
help to reduce the effort of manual code review, and

— we report observations from the in sifu application of ML to analyze code in indus-
trial environments that could help practitioners to adopt ML-based approaches in their
companies (i.e., the strategies to minimize the effort of labeling data, the effect that the
guidelines and code evolution can have on the accuracy of an ML-based tool).

The rest of the paper is structured as follows. Section 2 outlines the most important
related research in the area of code reviews and applying machine learning for this task.
In Section 3, we present a machine-learning based code analyzer. Section 4 describes the
research methodology applied and our research design. The results of each of the four
action-research cycles are presented in Section 5. Section 6 discusses threats to validity of
our study. Finally, we summarize the findings in Section 7.

2 Related Work

Code reviews have been studied extensively and we started first with the overview of the
existing works in this area. We review the related work from two perspectives—comparison
between static code analysis/style checker tools and from the perspective of academic and
using machine learning for static code analysis.

2.1 Comparison Between Tools

Static code analysis tools and style checkers are widely used development tools with over
hundreds of tools listed alone in Wikipedia. The compare a sample of these tools for this
paper, we decided on a set of comparison criteria inspired by the taxonomy of Novak et al.
(2010):

Supported Languages: Due to the needs of our industry partners, we will focus on tools
for C and C++.

Compilation Requirements: This criterion is inspired by Novak’s fechnology and input
dimensions. The focus is on the tool’s requirements on the syntactic correctness and
completeness of the code. Possible values are: “parsing” (code needs to be syntactically
correct)”, “linking” (code needs to be complete to run the analysis), and “robust” (robust
against most syntactical errors, no linking required).

Extensibility: The criterion is a refined dimension from Novak et al. (2010) and describes
whether the tool can be extended with additional rules/checks. Possible values are: “no”
(extensible only by feature request), “imperative” (extensible by writing imperative code,
e.g. in plug-ins), “declarative by rule” (extensible by declarative specification of rules), and
“declarative by example” (extensible by declaration of valid and invalid code examples).

Configurability: The category refines Novak’s dimension with the focus on the subject of
the configuration. Possible values are: “no” (rules cannot be configured), “rules by param-
eter” (single rules can be configured via parameters), “rules by example” (single rules can
be configured via examples), “ruleset” (Selection of what rules should be applied - single
rules or sets of rules), and “other” (other configuration options).
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Interoperability: The category is inspired by Novak’s user experience dimension and
focuses on how the tool can be used in a tool environment. Possible values are: “stand-alone”
(the tool has a stand-alone version), “IDE” (there are IDE/Editor plug-ins available), and
“collab. tools” (Integration to collaborative development tools, such as Github and Gerrit is
available).

Access to Results: The category captures, inspired by Novak’s output dimension, whether
the tool’s results can be accessed externally or exported. Possible values are: “no external”
(the results cannot be exported easily), “API” (the results can be accessed via an API, e.g.
via web services), and “file-export” (Results can be exported to file formats such as HTML
or text).

Static Code Analysis Tools for C/C++ In the following paragraphs, we discuss a sample of
static code analysis tools for C and C++ with regards to the criteria above (see Table 1).
We selected the sample by starting with the tools that are discussed in known comparative
studies on static code analysis tools, namely the works of Fatima et al. (2018), Emanuelsson
and Nilsson (2008), Mantere et al. (2009), and Shaukat et al. (2018), and (Brar and Kaur
2015).

In the end we chose to select the 6 tools addressed by most of these studies: Coverity
Scan?, KlocWork?, PolySpace®, Splint>, CPPcheck® and Flawfinder’. All of these tools are
mostly targeting the detection of errors and security issues in the code.

Most of the static code analysis tools require the code to parse and link, due to their anal-
ysis methods: Coverity Scan and KlocWork perform data-flow analysis, PolySpace uses
formal methods, and Splint uses theorem proving. Some of these tools can run on a sin-
gle source file but perform a shallow analysis, based on assumptions on the missing code,
only. The exception is Flawfinder, which can handle code that is incomplete and does not
necessarily parse, due to the token-based analysis.

Coverity Scan (according to Emanuelsson and Nilsson (2008)) and KlocWork can both
be extended with new checkers imperatively. Splint, CPPCheck, and Flawfinder can be
extended as well by the declaration of new rules. This happens in the form of regular expres-
sions in CPPCheck, which is not easy as internal variables need to be known. Flawfinder
allows exchanging the database with new pattern specifying invalid situations. None of these
extension mechanisms is trivial to use.

KlocWork allows to configure single rules, e.g. by defining metric thresholds, and to
define rulesets (called “taxonomies”) and PolySpace allows a selection of the rules to be
applied. CPPcheck allows to configure the used language version and Flawfinder allows to
exclude code-lines from the analysis.

With the exception of Splint, each tool can be integrated into at least one IDE or code
editor, such as Eclipse, Rhapsody UML, VIM or emacs, or offer integration to collaboration
tools, such as Hudson or Jenkins. CPPcheck and Flawfinder allow a. export of results to
HTML and Coverity Scan and KlocWork provide APIs.

2Coverity Scan https:/scan.coverity.com/users/sign_in

3KlocWork https://support.roguewave.com/documentation/klocwork/en/10-x/whichtypeofcheckertocreateka
storpath/

4PolySpace https://se.mathworks.com/discovery/static-code-analysis.htm]

SSplint http://www.splint.org/

SCPPcheck http://cppcheck.sourceforge.net/

7Flawfinder https://www.dwheeler.com/flawfinder/
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Style Checkers for C/C++ In contrast to static code analysis tools, style checkers mainly
focus on aspects of the code that do not directly impact the behavior of the system. Nonethe-
less, having a consistent style can significantly improve readability of the code and with
that maintainability and quality. In the following, we discuss for well known examples for
Style Checkers that target C or C++: CodeCheck®, Uncrustify”, KWStyle!?, and C++ Style
Checker Tool'!.

CodeCheck and Uncrustify both parse the code, while KWStyle and C++ Style Checker
Tool also require the code to be linked. Only CodeCheck can be extended by writing new
checkers. The checks of Uncrustify and KWstyle cannot be extended without extending the
tools themselves. However, both tools allow configuring single rules, e.g. by specifying the
allowed length of a code line. The C++ Style Checker Tool enables a selection of rules/rule-
sets to be applied.

Uncrustify has a plug-in for the UniversallndentGUI and exports rule configurations.
KWStyle can be integrated into Git. Finally, CodeCheck and C++ Style Checker Tool both
allow to export results, e.g. into HTML or XML.

2.2 Machine Learning for Static Code Analysis

There are numerous studies applying ML algorithms to evaluate code quality. However,
according to our best knowledge, none of them solely focus on recognizing company-
specific code guidelines violations in code using examples. Also, most of these tools are at
the early stages of development and are not ready to be integrated into industrial code-review
pipelines.

Among these studies, there are some that localize defects at the level of code lines or
statements. For instance, Brun and Ernst (2004) proposed a fault invariant classifier that uses
a dynamic (runtime) analysis to extract semantic properties of the program’s computation
as features describing the code.

Axelsson et al. (2009) proposed to use Normalised Compression Distance to find poten-
tial string overflows, null pointer references, memory leaks, and incorrect API usage.
Chappelly et al. (2017) reported findings on using machine learning techniques to detect
defects in C programs at Oracle. They used neural networks and a large corpus of pro-
grams to compare the prediction quality of ML-based classifier against four static program
analysis tools, including Parfait used internally at Oracle. Their conclusion was that the ML-
based tools were not suitable replacements for static program analysis tools due to the low
precision of the results.

Allamanis et al. (2014) and (Torunski et al. 2017), present with Naturalize!? and a code
style analytics tool, two approaches that adapt style checking to a code-base by configuring
rules according to what is typical for that codebase.

Torunski et al. (2017) bases the configuration on an assessment of metrics, such as
method lengths, number of CamelCase variables, or number of opening braces on the same
line for loops.

8CodeCheck http://www.abxsoft.com/

9Uncrustify http://uncrustify.sourceforge.net/

10K WStyle https://kitware.github.io/KWStyle/

C44 Style Checker Tool http:/www.semdesigns.com/Products/StyleChecker/CppStyleChecker.html?
Home=StyleChecker

12Naturalize http:/groups.inf.ed.ac.uk/naturalize/
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Recently, Mi et al. (2018) studied the possibility of classifying source code depending on
its readability. They used three Convolution Neural Networks operating on different levels
of granularity (character-level, token-level, and AST-Tree nodes level). The accuracy of
the proposed DeepCRM+ConvNets method was evaluated on the open source code since
training the networks required large amounts of labeled data.

Finally, the tool we use in this study is called Flexible Code Counter/Classifier (CCFlex).
It was developed by the authors of this paper and used to perform software size measurement
in one of the previous studies (Ochodek et al. 2017). However, since the tool is a general-
purpose code classifier, it could be adapted to detect violations of coding-style guidelines.

2.3 Machine Learning for Code-Smell Detection

Fontana et al. (2016) and Fontana et al. (2013) presented an experiment to compare how
good different machine learning algorithms would be in learning to detect code smells.
While Fontana et. al. report on reaching an accuracy of 95%, Di Nucci et al. (2018) chal-
lenged these results with a replication study. The replication shows that the selection of the
dataset including the balance of violations with none-violations as well as an unrealistic
characteristic of violation cases can lead to an up to 90% too high precision.

Although the aforementioned studies use the same classification algorithms as we do
in our study (e.g., decision trees, random forest), they differ in the approach to feature
extraction. The studies on code-smell detection use code metrics to describing units of
code (e.g., metrics of size, complexity, cohesion, coupling, encapsulation, or inheritance),
while in this study, we extract linguistic features (e.g. number of “if” statements, which
words/variables/statements were used in a line) directly from the source code in a similar
way as it is done in the field of natural language processing (e.g., by using the bag-of-words
model).

Also, code smells are typically concerning architectural aspects and larger chunks of
code than coding guideline violations. However, it is nonetheless interesting to compare
progress in applying machine learning in the two fields. We especially expect the rele-
vance of realistic data in training and evaluation to be valid for machine learning of coding
guideline violations.

2.4 Summary

As shown in Table 1, most existing static code analysis tools and style checkers need to
parse the code and often even link it to fully apply their analysis. This also holds for most of
the ML-based approaches. The only exceptions are Flawfinder and CCFlex, which are both
robust, due to token- or text-based analysis.

Extensibility is never trivial. Even when a declaration of rules is allowed, there is a steep
learning curve to understand the declaration languages. CCFlex and DeepCRM+ConvNets
provide an alternative approach, allowing developers to define extensions, by listing
examples in the language they usually work in.

The other ML-based approaches are limited with regards to the type of violations that
can be found. This is something that also holds for Flawfinder for which the specialization
on security seems to limit the type of extensions possible.

Finally, most of the ML-based tools (e.g., DeepCRM+ConvNets) are experimen-
tal/research tools at the early stages of development. Therefore, they lack documentation
and usability features what makes them hard to use by practitioners.
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3 The CCFlex Tool

The CCFlex tool (Flexible Code Counter/Classifier) was initially designed to perform soft-
ware size measurement (Ochodek et al. 2017). In this study, we adapted the tool to detect
code guidelines violations in the code. Since the tool evolved over the course of the study,
here, we describe its final design to give the reader a complete overview of how the tool
operates. The tool is distributed as Open Source and available on GitHub.'3

3.1 Architecture

The version of CCFlex used in the previous study was implemented as a monolithic Java
application. In the course of this study, we decided to redesign the tool so it is possible to
change the processing pipeline without the need for recompiling or redeploying the tool. We
used the pipes-and-filters architecture style, where we use a number of independent com-
ponents (filters) that could be organized into processing pipelines. We also switched to the
Python ML technological stack to implement the tool. However, filters can be implemented
in any programming languages as long as they accept input and produce output in the agreed
format. The total size of the Python code is around 5K source lines of code (SLOC) with the
average size of a filter of ca. 140 SLOC. The full documentation of the filters is available
on the project’s GitHub page.

A typical processing pipeline used in this study is presented in Fig. 1. Before the train-
ing begins, we need to prepare a training codebase with labels. The lines violating coding
guidelines are labeled by adding a configurable prefix to each of them. For instance, if
we configured the prefix to be “@!”, then the line “@! int MyVAR = 10;” would be
recognized as a line violating the coding guideline.

The first filter used in the pipeline presented in the figure is called lines extractor. It
traverses through a codebase, extracts each line, its class label, and stores the results in a
CSV file. The output file can be passed any of the available feature extractors. Each extractor
adds column(s) (extracted features describing each of the lines) to the CSV file. The output
files produced by feature extractors can be merged using specialized filters (they are omitted
in Fig. 1 for the sake of brevity). On top of that, we can use feature selection filters to reduce
the dimensionality of the feature space using the algorithms available in Python sklearn
library. Features selection is performed on training codebase and then also applied to code
that is going to be evaluated by dropping rejected features. Finally, the produced CSV file
can be loaded by one of the filters that train a classifier and use it to classify the new lines.
The results are stored in an output CSV file and can be passed to one of the report-generation
filters.

In addition to the filters, CCFlex provides a suite of standalone tools allowing to perform
independent tasks, like the selection of lines to label using Active Learning (AL) (Fu et al.
2013) or checking the consistency of line labels provided by a human (i.e., identifying lines
having similar representation in the feature space but different labels).

3.2 Feature-Extraction Filters

The feature extractors implemented in CCFlex can be divided into three categories:
predefined features extractors, vocabulary-based extractor, and block-feature extractors.

13CCFlex https://github.com/mochodek/py-ccflex
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CodeToClassify.cpp TrainingCode.cpp

Lines extractor Lines extractor Filter
(source files segmentation to lines) (source files segmentation to lines)
Predefined features extractor Predefined features extractor Pipe
(text properties, regular expressions, keywords) (text properties, regular expressions, keywords)
oS Vocabulary-based feature extractor
S i :
- (bag of words, token signatures, n-grams)
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(e.g. CART, Random Forest)

|

Identified

« Multi-line context

Feature selection

code violations

Fig. 1 An example of a typical CCFlex processing pipeline

Predefined features extractors process lines of code and extract the features defined by
the user, e.g., counts occurrences of a given substring in a line or number of characters or
words. For instance, one could configure a filter to count the number of string “for” in a line
and extract it as a feature.

Vocabulary-based extractors use the bag-of-words (BOW) model to extract features.
Bag-of-words uses a vocabulary that can be either automatically extracted from the train-
ing examples or predefined (CCFlex supports both approaches). When the vocabulary is
extracted from the training code it has to be passed as an input to the filter extracting features
using BOW on the code to be evaluated (see Fig. 1). BOW counts the occurrences of tokens
in the code that are in the vocabulary (the code is tokenized). Also, it can count occurrences
of sequences of tokens called n-grams (e.g., bi-gram or tri-grams). N-grams are a valuable
source of information for finding code guidelines violations since it is often important to
understand the context in which a given token appears (e.g., int a vs. class a).

We introduced several modifications to a commonly used bag-of-words extraction algo-
rithm. Firstly, we introduced an alternative tokenizer that split each line to tokens using not
only white but also special characters: ()[]{}! @#$%"&*-=;:""\|*",.<>/?. The split strings
are also preserved as tokens since the represent constructs used by many programming lan-
guages. Another difference is that we convert each token to what we call token signature
before creating a vocabulary. This allows reducing the size of vocabulary, and consequently,
the number of features and help in preventing overfitting to specific names of variables or
methods while training.
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To create a token signature, we firstly replace each uppercase letter with “A”, each low-
ercase letter with “a”, and each digit with “0”, while special characters are left unchanged
(e.g., “_”). Then, each subsequence of the same characters is shrunk to a single character
only (e.g., aaa to a or __to _). The same is repeated for pairs and triples of characters (e.g.,
AaAa is converted to Aa). An example of how a token signature and bag-of-words model

are constructed for a line is presented in Fig. 2.

Block-feature extractors use heuristic approaches that allows identifying features span-
ning through multiple lines. We have two variants of such tools. The first one is based on
the already extracted features. Each block feature is defined by providing the features that
need to be present in a line (their values have to be greater than zero) to treat the line as
start or end of the block. Similarly, it is possible to define forbidding features. If any of the
forbidding features are present in a line (its value is greater than zero) the line cannot be

Extracting a block feature based on other features

Block feature block_comment definition:
start =/ * (bigram)

end =*/ (bigram)

forbidding feature = null

block comment

1 petween the start and end of the block

< Py

l1e——

block start

0 block end

Extracting a predefine feature

The number of characters

11211 1 0 bgg of M{ords
uni and bigrams
chars 11170 0 1 «—
3 -« ¢l ‘/ E3L
18 <«——¢2(This is a comment.
2 -« ¢3|*/ ¢
0 -« ¢4
20 <+—¢5|int myVariable = 12;
Base vocabulary:
int
int aRa = 0; o
all tokens that are not in the base vocabulary | >
are replaced by token signatures <space>
int| aAa| = |<space>| 0|;|int aAa|
1|1|1| 3 |1|1| 1 |
]
uni-grams bi-grams

Bag of words with token signatures and n-grams

Fig. 2 An example of extracting bag-of-words (with and example of generating token signature), block
feature, and a predefined feature for a fragment of code

@ Springer



Empirical Software Engineering (2020) 25:220-265 231

considered as a start or end of the block. All the lines between the start and end of a block
belong to that block (the value of the block feature is set to one). An example of extracting
a block-comment feature is presented in Fig. 2. The second variant of block-feature extrac-
tion is based on training and using a separate classifier to identify the starts and ends of
block features.

3.3 Classification Algorithms

While designing ML-based filters, we took into account two observations made while ana-
lyzing the coding guidelines and discussing them with our partners. Firstly, we had to accept
the fact that the size of a training sample would be very small since the code guidelines used
by our industrial partners included only a limited number of examples (additional examples
would have to be provided by the users). Secondly, the traceability of the decision made
would be welcomed. Therefore, we preferred to use ML-algorithms that provide explana-
tions of how the decision is made. We decided to use decision trees since they are commonly
considered as interpretable models (Freitas 2014). Consequently, we have integrated into
CCFlex and used in this study a set of decision-tree-based algorithms, such as CART, C5.0
Decision Trees, and Random Forest.

3.4 Active Learning

Active learning (AL) aims at training an accurate prediction model with minimum cost
by labeling most informative instances (Fu et al. 2013). In essence, AL is an iterative and
interactive process of performing two steps: measuring the uncertainty of classification and
using this information to guery unlabeled instances.

There are many ways to measure uncertainty and strategies to query for labels. In our
study, we use the query by committee (QBC) strategy (the implementation available in the
modAL!* Python library using committee of decision trees (CART), K-Nearest Neighbours
(KNN), and Random Forests as base learners. In the QBC strategy, when an instance is
queried, each member of the committee votes on the class label of the instance. The final
predictions are the majority voting of the members. The most informative instance is the
one with the most disagreement in the prediction of the committee classifiers.

The AL tool available in CCFlex allows for interactive labeling of code with the use of the
selected querying strategy (either QBC or single classifier uncertainty sampling). The user is
presented with a line of code in its context (a few proceeding and following lines) and asked to
label the line (decide whether the line violates a coding guideline or not). Then, the line is added
to the training codebase and another query is performed to select the next line to be labeled.

‘When using this tool in our study, we always started from creating an initial training dataset
by adding positive and negative examples available in the companies’ coding guidebooks
and then used the QBC querying strategy to poll more lines for labeling from the codebase.

4 Research Methodology and Design

The study of the violations of the coding guidelines needs to be conducted in the industrial
context, where the interaction between the researchers and the studied organization stim-

14modAL https:/github.com/cosmic-cortex/modAL.
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ulates learning for both sides. For the theory development (research), the learning of the
practical side of constructing coding/design guidelines, recognizing the violations and the
acceptance of accuracy are important. For the application (industry), the learning of how the
limitations and their impact on how to check guidelines automatically are important. For this
kind of context, action research is the most suitable research methodology, as it emphasizes
the learning and theory development from empirical observations in the industrial context
(Baskerville and Wood-Harper 1996).

We use the opportunity to work closely with two industrial partners, which provided the
context of our research and allowed us to work on their premises, with their codebase and
software engineers. Both companies were present in discussing the results of all action-
research cycles and deeply involved in the cycles when the researchers worked on their
premises.

Company A is a leading provider of consumer products in the embedded software
domain. The company has a tradition of collaboration with software engineering researchers
and being part of action research projects. The company allowed us to analyze their platform
code used in a large number of their products and provided access to a software architect,
and three designers which have formulated the rules which have been as learning input—all
with over 10 years experience in the domain.

Company B is a leading provider of infrastructure products in the embedded software
domain. The company has a long tradition of collaborating with software engineering
researchers and over ten years of experience in running action research projects. The
company provided us with the access to their source code and collaboration with two archi-
tects with over 20 years of experience with the company’s products and with design/code
quality.

Both companies are involved in the development of the tool as their operations moved
towards continuous deployment and their intention is to increase the automation of software
development by increasing the use of machine learning and autonomous computing tech-
niques for software engineering tasks. The intention is to find methods to identify violations
of their proprietary guidelines with as little manual work as possible.

In Table 2, we summarize each of the action research cycles. The details of the results
are presented in Section 5.

As the essence of action research projects is that they combine the learning with the
design of the study, thus being a flexible research design (Robson and McCartan 2016), we
detail the choices we made for each cycle in the following section, including the results
from each of the action research steps.

5 Execution and Results

In this section, we present the evaluating and learning activities from the action research
cycles.

5.1 Action Research Cycle 1 - What Coding Guidelines are used by our Industrial
Partners?

5.1.1 Cycle Goal and Research Procedure

The goal of the cycle was to investigate the coding guidelines of our industrial partners. In
particular, we wanted to:
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— understand the types of rules that are in the companies’ guidebooks,
— check the quality of the rules (whether they are unambiguous and their violations can
be found by analyzing code).

We investigated rules in the Company A and B guidebooks and categorize them based
on the information required to identify their violations. We assessed the quality of the rules
and consulted our findings with software engineers from both companies.

5.1.2 Cycle Execution and Results

After reviewing the literature, we learned that there is no agreed taxonomy that could be
used to categorize coding guidelines (and their violations). For instance, Novak et al. (2010)
compared four static code analysis tools and showed that each of the tools uses a differ-
ent set of categories, and even within a single taxonomy multiple criteria are often used to
define these categories. For instance, some categories refer to syntax and programming con-
cepts (e.g., naming conventions, code layout, exceptions handling) while others are defined
by referring to quality attributes of software products that could be affected by certain
violations (e.g., maintainability, security, or performance problems).

Since we wanted to automatically identify lines of code violating coding guidelines, we
proposed a different taxonomy that categorizes violations based on the information that is
required to recognize them in the code. The taxonomy is presented in Fig. 3. It groups
guidelines into three main categories.

The first root category groups “semantical” coding guidelines. Finding violations of such
rules requires understanding the meaning of a text in its context. Depending on the size
of the context, we distinguish four sub-categories: a uni-line context—we need to under-
stand the meaning of the tokens/words in a single line (e.g., the rule stating that there can

Rules in this class
require understanding
that there is a specific
meaning to the text
(e.g. m_iX is different
from fX())

Semantical

Finding a pattern in one line with understanding that
certain words are more important than others, e.g.
Space must be used between binary operators and
parameters

Uni-line context
Multi-line context

Finding a pattern in a line in a context of another line,
does not require to find a specific keyword, e.g.
Argument lists split over several lines should not have
more than one argument per line

Finding a pattern in one line requires understanding
the code that could be located in a different file or
the type of a file in which it is located in, e.g.

Unused functions must be deleted

Files context

Coding Rules in this class Finding a pattern where we need to understand the
videline require finding a specific Design semantics design, not only the code, e.g.
8 pattern in a line without Design patterns should be used

understanding that the
context (e.g. applying
regular expressions for
each line)

Rules in this class refer
to how programming is
done, e.g. consulting a
guidebook

Process

Fig.3 Taxonomy of code guidelines violations

Finding a line with a given property, e.g.
Lines must not exceed 120 characters

Line properties

Finding a line containing a given word/keyword or
their combination, e.g.
#define cannot be used
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be only one statement in a line), multi-line context—we need to understand the meaning of
words/tokens in a sequence of lines (e.g., braces must be used for all compound statements),
files context—we need to be able to relate the code in different files or understand file
properties (e.g., unused functions must be deleted), and design context which goes beyond
understanding code constructs and requiring recognizing the design intent (e.g., design pat-
terns should be used). For uni-line context we do not take into account the possibility of
intentionally breaking the line in the middle of statement.

The second root category groups “semantic-free” coding guidelines. Finding violations
of such rules requires recognizing the presence of some patterns in a line of code (without
the need for understanding the role or meaning of particular tokens or words). We distin-
guish two sub-categories: line properties—a guideline refers to a quantifiable property of
text (e.g., the number of characters in a line shall not exceed 120 characters) and keyword-
based guidelines—we need to find a keyword or combination of keywords (or lack of such)
in the text (e.g., union types shall not be used—we need to find the keyword union).

The remaining root category is called “process” coding guidelines. The guidelines
belonging to this category regards the development process (e.g., the necessity of consulting
a guidebook).

We used the proposed taxonomy to categorize the coding guidelines of our industrial
partners. The guidebook provided by Company A contained 45 coding guidelines while
the one used by Company B included 66 rules. The distribution of the rules between the
categories of our taxonomy is presented in Fig. 4.

When classifying the rules into the categories, we identified three groups of outlying
rules:

— rules as documentation: no style-related coding guidelines, but rather hints about what
libraries or interfaces to use or what protocols to follow when calling an interface,
— optional rules: either a whole rule or its part is optional to follow,
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—  rules on external information: rules that require information outside of the studied code,
e.g. user requirements.

Rules that serve as documentation and rules on external information might be extremely
difficult to identify and certainly have special needs to the static code analysis approach,
such as consideration of multiple files at once. On the other hand, optional rules might as
well be ignored by any approach. Therefore, we defined these three types of rules to be out
of scope for the further investigation.

We also observed that some rules were imprecise and could have different interpretations.
We consulted each of such rules with the companies, and as a consequence, some rules were
indicated as to be improved.

The performed analysis resulted in narrowing our study to rules belonging to four cate-
gories: semantical uni-/multi-line context and semantic-free line properties and keywords.
We observed that the rules belonging to the three remaining categories were either not
related to code (process rules), violations could not be mapped to particular lines (design
semantics, e.g., usage of design patterns), examples were not available in the guidebook
and would be very difficult to get (design semantics) or span through multiple source files
(semantical files context, e.g., unused functions should be deleted).

5.2 Action Research Cycle 2 - Selecting a Tool Capable of Recognizing Code
Guidelines Violations of our Partners

5.2.1 Cycle Goal and Research Procedure

The goal of the second cycle of our action research study was to find a tool capable of
recognizing violations of our partners’ coding guidelines while also meeting the quality
attribute requirements they perceived as important, namely:

— the proposed solution needs to be easy to extend or modify without the need of learning
any API or having a deep understanding of static code analysis techniques,
— running the code analysis should not require parsing or compiling the code.

The rationale behind the first requirement is that the code guidelines are specific to each
company and can evolve or change in time. Therefore, the tool needs to be easy and cost-
effective to maintain. The second requirement is motivated by the fact that some of the code
of our partners might not compile when taken outside of the runtime environment. Also, at
some stage, it is expected that the tool could be integrated into code-reviewing tools such
as Gerrit and be able to recognize the violations in fragments of code being reviewed that
might not parse as well (e.g., in form of Git diffs).

We planned to review the tools for C/C++ code analysis and ML-based tools. Based on
the results of the analysis we wanted to select a tool to be used in the next cycles of the study.

We then planned to perform a simulation study to preliminarily evaluate the accuracy
of the tool in finding lines violating two well-known coding standards—Google Java Style
Guide!d and Sun Java Code Conventions'® in the code of open-source projects. Since it was
supposed to be a feasibility study, we wanted to consider a simpler but similar problem to the

15Google Java Style Guide http://checkstyle.sourceforge.net/reports/google-java-style-20170228.html

16Code Conventions for the Java Programming Language: Contents http://www.oracle.com/technetwork/
java/javase/documentation/codeconvtoc- 136057.html
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one of recognizing code guidelines violations in the code of our partners. Java programs are
generally easier to parse than programs written in C++, which is considered an extremely
difficult language to parse (Irwin and Churcher 2001). Secondly, both coding standards
focus on coding style/formatting issues (similarly to many of the rules of our partners) and
cover all semantical and semantic-free subcategories of our taxonomy (see Tables 3 and 4).
We assumed that if the tool cannot effectively recognize violations of guidelines in such
settings, its tuning would not likely lead us to achieve satisfactory results for our partners’
code and rules.

5.2.2 Cycle Execution and Results

Our comparison of the existing tools in Section 2 showed, that there are only two tools that
are robust with regards to the defined quality requirements, i.e., Flawfinder and CCFlex.
However, Flawfinder’s is specialized to recognize security-related problems and its exten-
sibility is limited to similar types of issues (still, extending the tool requires understanding
and modifying a built-in database of patterns). On contrary, CCFlex allows extending the
tool to support a new rule by providing examples of lines following and violating the rule.
Therefore, it does not require learning any API or implementing any algorithms. How-
ever, the original tool was designed to solve a different problem of recognizing lines to be
counted while measuring the physical size of software products. Therefore, we decided to
first investigate if the CCFlex tool can be effectively used to recognize code guidelines vio-
lations before making the final decision of presenting it to industrial partners and adapting
it to recognize violations of their coding guidelines.

As a feasibility study, we investigated how effective the CCFlex tool in recognizing lines
of code violating coding guidelines depending on the number of labeled lines used for train-
ing. We assumed that when using an ML-based tool, such as CCFlex, instead of a static
code analysis tools there could be a trade-off between the accuracy of the tool and its exten-
sibility. We took the CCFlex tool and used Checkstyle!” to find lines violating Google Java
Style Guide and Sun Java Code Conventions.

We performed validation on a dataset containing samples of code from three Java open-
source projects: Eclipse Platform, Jasper Reports, and Spring Framework. For each project,
we randomly sampled source code files that in total consisted of around 15K SLOC (Eclipse
Platform 15,588 SLOC, Jasper Reports 14,845, and Spring Framework 14,869 SLOC). The
whole datasets contained 45,302 SLOC. We perceived the code of Eclipse Platform and
Spring Framework as being well documented and convergent with the coding standards
for Java. Contrary, the code of Jasper Reports seemed to violate the basic rules of the
conventions (e.g., placing an opening curly bracket of a compound statement in a new line).

The Checkstyle tool was used as an oracle to automatically label the lines that were
violating code-style any of the rules proposed by each of these standards. As a result, we
initially constructed eight datasets:

—  All-Sun (Count: 10,821, Ignore: 34,481)
—  Eclipse-Sun (Count: 3,003, Ignore: 12,585)
—  Jasper-Sun (Count: 5,046, Ignore: 9,799)
—  Spring-Sun (Count: 2,772, Ignore: 12,097)

17Checkstyle: http://checkstyle.sourceforge.net.
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Table 3 The percentage of lines violating Sun Java Coding Conventions (Checkstyle)
Violation of the Sun’s guidelines All% Eclipse% Jasper% Spring%
Line is longer than 80 characters 40.70 55.04 20.13 62.59
(Line properties)
Parameter should be final (Uni-line 19.41 26.37 11.79 25.72
context)
’{* should be on the previous line 13.67 29.31
(Multi-line context)
Missing a Javadoc comment 10.67 12.52 9.77 10.32
(Multi-line context)
Class designed for extension with- 9.03 6.93 12.88 4.29
out Javadoc (Design semantics)
Line has trailing spaces (Uni-line 8.78 18.83
context)
Expected @param tag (Multi-line 5.73 9.26 2.93 7.00
context)
Hidden field (Files context) 3.90 2.73 3.03 6.75
Variable must be private and have 2.73 1.76 4.68 0.22
accessor methods (Multi-line con-
text)
Symbol is not followed by whites- 2.50 2.30 3.94 0.07
pace (Uni-line context)
File contains tab characters (this is 2.40 3.40 1.35 3.25
the first instance) (Keyword)
Expected an @return tag (Multi- 2.27 0.07 1.45 6.17
line context)
’}’ should be on the same line as the 1.72 0.33 1.01 4.51
next part of a multi-block statement
(Multi-line context)
Avoid inline conditionals (Uni-line 1.45 2.36 0.55 2.09
context)
’if” construct must use *{}’s (Multi- 0.85 3.06
line context)
Expected @throws tag (Multi-line 0.69 0.87 1.12
context)
First sentence should end with a 0.61 1.20 0.02 1.05
period (Multi-line context)
Symbol should be on a new line 0.52 0.10 1.84
(Multi-line context)
Symbol is followed by whitespace 0.50 0.87 0.55
(Uni-line context)
Name must match pattern *[A- 0.46 0.67 0.42 0.32
Z][A-Z0-91*(_[A-Z0-9]+)*$ (Uni-
line context)
Redundant ’final” modifier (Multi- 0.34 1.23
line context)
Symbol is not preceded with 0.34 0.77 0.26 0.04
whitespace (Uni-line context)
Unused import (Multi-line context) 0.34 0.20 0.10 0.94
Redundant ~ ’public’  modifier 0.30 0.60 0.18 0.18

(Multi-line context)
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Table3 (continued)

Violation of the Sun’s guidelines All% Eclipse% Jasper% Spring%
Symbol is preceded with whites- 0.29 0.03 0.57 0.04
pace (Uni-line context)

Magic number (Uni-line context) 0.20 0.47 0.06 0.18
for’  construct must use ’{}’s 0.14 0.50

(Multi-line context)

’static’ modifier out of order with 0.10 0.27 0.04 0.04
the JLS suggestions (Uni-line con-

text)

File does not end with a newline 0.10 0.30 0.04

(Multi-line context)

Class should be declared as final 0.08 0.30

(Uni-line context)

Avoid nested blocks (Multi-line 0.07 0.03 0.14

context)

Extra HTML tag found (Multi-line 0.06 0.17 0.07
context)

Utility classes should not have 0.05 0.17

a public or default constructor
(Design semantics)

Unused @param tag (Multi-line 0.04 0.13

context)

Inner assignments should be 0.03 0.10

avoided (Multi-line context)

Unclosed HTML tag found (Multi- 0.03 0.03 0.07
line context)

Unknown tag (Uni-line context) 0.03 0.10

‘else’ construct must use ’{}’s 0.02 0.07

(Multi-line context)

Expression can be simplified 0.02 0.07

(Multi-line context)

Method length greater than 150 0.02 0.07

(Multi-line context)

Unable to get class information for 0.02 0.07
@throws tag (Checkstyle error)

’protected’ modifier out of order 0.01 0.03

with the JLS suggestions (Uni-line

context)

’public’ modifier out of order with 0.01 0.03

the JLS suggestions (Uni-line con-

text)

Array brackets at illegal position 0.01 0.03

(Uni-line context)

Comment matches to-do format 0.01 0.03

"TODO:’ (Multi-line context)

Redundant  ’private’  modifier 0.01 0.02
(Multi-line context)

Switch without “default” clause 0.01 0.02

(Multi-line context)

@ Springer



Empirical Software Engineering (2020) 25:220-265 241
Table 4 The percentage of the lines violating Google Java Style Guide (Checkstyle)
Violation of the Google Java style All% Eclipse% Jasper% Spring%
Line contains a tab character (Key- 98.83 99.42 97.91 99.16
word)
Incorrect indentation level (Multi- 59.48 55.05 69.01 53.82
line context)
’{* should be on the previous line 4.81 14.02
(Multi-line context)
Line is longer than 100 characters 3.83 3.47 2.66 5.66
(Line properties)
First sentence of Javadoc is incom- 1.36 1.18 2.36 0.40
plete (period is missing) or not
present (Multi-line context)
At-clause should have a non-empty 1.03 243 0.41 0.01
description (Uni-line context)
<p> tag should be preceded with 0.75 0.18 0.08 2.24
an empty line (Multi-line context)
’}’ should be on the same line as the 0.61 0.09 0.48 1.39
next part of a multi-block statement
(Multi-line context)
’package’ should be separated from 0.31 0.25 0.63 0.01
previous statement (Uni-line con-
text)
’if” construct must use ’{}’s (Multi- 0.30 0.82
line context)
Whitespace around a symbol is not 0.28 0.46 0.33
followed by whitespace (Uni-line
context)
Abbreviation in name must contain 0.22 0.04 0.60
no more than ’2’ consecutive capi-
tal letters (Uni-line context)
Missing a Javadoc comment 0.18 0.11 0.40 0.02
(Multi-line context)
Symbol should be on a new line 0.18 0.05 0.55
(Uni-line context)
Wrong lexicographical order for 0.16 0.14 0.22 0.11
import (Uni-line context)
Whitespace around a symbol is not 0.12 0.21 0.12 0.01
preceded by whitespace (Uni-line
context)
Member name must match pat- 0.11 0.12 0.19
tern *"[a-z][a-z0-9][a-zA-Z0-9]*$’
(Uni-line context)
<p> tag should be placed immedi- 0.10 0.20 0.09
ately before the first word. with no
space after (Uni-line context)
’)’ is preceded with whitespace 0.10 0.01 0.27
(Uni-line context)
’(’ is followed by whitespace (Uni- 0.09 0.01 0.27
line context)
*for’ construct must use *’s (Multi- 0.05 0.13

line context)
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Table4 (continued)

Violation of the Google Java style All% Eclipse% Jasper% Spring%

*static’ modifier out of order with 0.04 0.07 0.02 0.01
the JLS suggestions (Uni-line con-

text)

Empty line should be followed by 0.04 0.04 0.04 0.03
<p;, tag on the next line (Multi-line

context)

Overload methods should not be 0.04 0.01 0.08 0.02
split (Multi-line context)

Empty catch block (Multi-line con- 0.03 0.07 0.01
text)

Javadoc comment has parse error 0.02 0.04 0.03
(Multi-line context)

At-clauses have to appear in 0.02 0.04 0.01
the order ’[@param. @return.

@throws. @deprecated]’

(Multi-line context)

Distance between variable declara- 0.02 0.04

tion and its first usage is more than

’3’ (Multi-line context)

"METHOD_DEF’ should be sep- 0.01 0.04
arated from previous statement

(Multi-line context)

Single-line  Javadoc  comment 0.01 0.04
should be multi-line (Uni-line

context)

Local variable name  must 0.01 0.03

match  pattern  "[a-z]([a-z0-

9][a-zA-Z0-91%)?$’ (Multi-line

context)

else’ construct must use ’{}’s 0.01 0.02

(Multi-line context)

Each variable declaration must be 0.01 0.02

in its own statement (Uni-line con-

text)

Parameter must match pattern > [a- 0.01 0.02
z]([a-z0-9][a-zA-Z0-91*)?$* (Uni-

line context)

’CTOR_DEF’ should be separated 0.00 0.01

from previous statement (Multi-line

context)

’protected” modifier out of order 0.00 0.01

with the JLS suggestions (Uni-line

context)

’public’ modifier out of order with 0.00 0.01

the JLS suggestions (Uni-line con-

text)

Array brackets at illegal position 0.00 0.01

(Uni-line context)

Catch parameter name must 0.00 0.01

match  pattern  *"[a-z]([a-z0-

9][a-zA-Z0-91%)2%’ (Uni-line

context)
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Table4 (continued)

Violation of the Google Java style All% Eclipse% Jasper% Spring%
GenericWhitespace ’>’ is followed 0.00 0.01

by whitespace (Uni-line context)

Redundant <p> tag (Multi-line 0.00 0.01
context)

Top-level class BookmarkStack has 0.00 0.01

to reside in its own source file (Files

context)

Switch without “default” clause 0.00 0.01

(Multi-line context)

— All-Google (Count: 30,727, Ignore: 14,575)

—  Eclipse-Google (Count: 11,157, Ignore: 4,431)
—  Jasper-Google (Count: 10,546, Ignore: 4,299)
—  Spring-Google (Count: 9,024, Ignore: 5,845)

All the datasets seemed unbalanced with respect to the number of lines belonging to the
considered decision classes (violation and non-violation). The percentage of lines violating
certain rules of both standards are presented in Tables 3 and 4. The data presented in the
latter table shows that nearly all the lines violated the Google’s rule stating that developers
shall avoid using tabular characters (97.91-99.42%) and more than half of the lines used
wrong indentation levels (53.82-69.01%). The frequency of the other rules violations was
visibly lower. Therefore, we decided to introduce another variant of each data set by exclud-
ing the two over-represented types of violations to avoid making the problem too trivial (we
denoted this sets as Google’):

—  All-Google’ (Count: 4,423, Ignore: 40,879)

— Eclipse-Google’ (Count: 1,066, Ignore: 14,522)
— Jasper-Google’ (Count: 2,365, Ignore: 12,480)

Table 5 The results of the prediction quality evaluation — lines violating any of the coding convention’s
rules (averages and standard deviations)

Guidelines Dataset Accuracy % Precision Recall F-score

Sun All 99.54+0.11 1.00+0.00 1.00+£0.00 1.00+£0.00
Sun Eclipse 99.05+0.27 0.99+0.00 0.99+0.00 0.99-+0.00
Sun Jasper 99.55+0.20 1.00+£0.00 1.00+£0.00 1.00+£0.00
Sun Spring 99.15+0.22 0.99+0.00 0.99+0.00 0.99-+0.00
Google All 99.87+0.06 1.00+0.00 1.00+0.00 1.0040.00
Google Eclipse 99.931+0.06 1.00+0.00 1.0010.00 1.0040.00
Google Jasper 99.70+0.14 1.00=£0.00 1.00+£0.00 1.00+£0.00
Google Spring 99.88+0.11 1.00+£0.00 1.00+£0.00 1.00+£0.00
Google’ All 98.98+0.17 0.99+0.00 0.99+0.00 0.99-+0.00
Google’ Eclipse 99.26+0.29 0.99+0.00 0.99+0.00 0.99-+0.00
Google’ Jasper 99.03£0.26 0.99+0.00 0.99+0.00 0.99+0.00
Google’ Spring 98.91+0.29 0.99+0.00 0.9940.00 0.99+0.00
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Fig.5 Learning curves showing impact of the dataset size on Accuracy

—  Spring-Google’ (Count: 992, Ignore: 13,877)

We performed ten runs of 10-fold cross-validation procedure. We evaluated the predic-
tion quality of the classifier based on a set of commonly used measures, such as Accuracy,
Precision, Recall, and F-score.

The results of the cross-validation are presented in Table 5. The accuracy for the Sun’s
coding standard ranged between 99.05% and 99.55%. For the Google and Google’ cod-
ing standards, the accuracy ranged between 99.70-99.93% and 98.91-99.26%, respectively.
The observed accuracy seemed stable between the runs of the cross-validation procedure
(the maximum standard deviation for accuracy was equal to 0.29%). We also did not observe
any visible differences between Precision and Recall, which ranged between 0.99 and 1.00.

The learning curves for the accuracy are presented in Fig. 5. We observed that even for
a small dataset consisting of 2% of the whole dataset, the observed Accuracy was high—
95.64% for Sun Java Coding Conventions, and 99.22% / 95.05% for the Google / Google’
Java Style Guides. We also noticed that the variability the results was visibly higher for the
smaller datasets.

After finishing the last cycle of our study, we decided to revisit this analysis and extend
it to learn more about the accuracy of CCFlex when detecting violations of different types
of coding rules.'® This time, we trained separate binary classifiers (decision trees) for each
of the rules in the Sun’s and Google’s coding conventions and evaluated their accuracy by
performing 10-runs of 10-fold cross-validation. We used stratified sampling to create folds
to avoid the situation when some of the training datasets would not contain any violations.
Since this part of the analysis was performed after the last cycle of our study, we used the
final version of the CCFlex tool with all the features presented in Section 3.

The prediction quality for the rules that have at least 10 violations in the dataset are pre-
sented in the Table 6 (Sun Java Coding Conventions) and Table 7 (Google Java Style Guide).
The observed prediction quality was high with the average F-score around 0.80 (for 50%
of the rules, F-score was 0.90 or higher). It seems that the easiest to detect were violations
of the rule belonging to the keyword category. Also, a high prediction quality was observed
for the rules belonging to the line-properties category (F-score equal to 0.947 and 0.996).
These rules regarded the maximum number of characters in a line. The tool was not able
to achieve the perfect F-score although there was a feature *number of characters’ that was

18The replication package for this analysis is available at https:/github.com/mochodek/
py-ccflex-java-sun-google.
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solely sufficient to recognize violations of these rules. However, after further investigation,
we have learned that Checkstyle ignores lines with package and import statements while
recognizing violations of these rules what increases the complexity of the rules and explains
the difficulties in learning to recognize violations of these rules.

For the multi-line-context rules, we observed that the tool was effective in recognizing
their violations as long as the rules required to “understand” the context of a few lines (e.g.
’{’ should be on the previous line, 'for’ construct must use ’{}’s, "Missing a Javadoc com-
ment’). At the same time, it had difficulties in learning to recognize violations of multi-line
rules that required capturing relationships between the lines in larger chunks of code (e.g.,
’Expected @param tag’, or ’Expected an @return tag’). The worst accuracy was observed
for the rule requiring to recognize “unused imports” (F-score = 0.03) and the rule stating
that the overloaded methods should be kept together (F-score = 0.00). However, this was
not a surprising result taking into account that CCFlex does not extract features allowing to
capture such dependencies in the code.

For the uni-line-context rules, one of the two rules that were most difficult to learn was
the rule disallowing using so-called 'magic numbers’ (F-score = 0.32). Magic numbers are
numeric literals that are not defined as constants, however, Checkstyle does not consider the
numbers -1, 0, 1, and 2 to be magic numbers. Unfortunately, since we used token signatures
in our analysis, all of the numbers in the code were simplified to 0’ making it difficult to
learn the rule.

There was only one rule belonging to the design-semantics category in the considered
coding conventions (‘Class designed for extension without Javadoc’). We observed a high
prediction quality for this rule (F-score = 0.95), however, this could be caused by the fact
that it is a specific case of the "Missing a Javadoc comment’ rule.

We observed a moderately high prediction quality for the rule *Hidden field’ that belongs
to the files-context category (F-score = 0.75). The rule states that a local variable or a
parameter shall not shadow a field that is defined in the same class. Achieving such a high
accuracy was a surprising result since we were not able to find any features extracted by
CCFlex that could allow us to detect shadowing of fields. However, there might some cor-
relations or coexistence of code structures in the considered source code that allowed the
tool to indirectly learn to recognize lines violating this rule.

Finally, we repeated the analysis for different sub-samples of the original dataset to
observe how the size of the training dataset affects the prediction quality of the classi-
fiers. We used stratified sampling to create sub-samples containing 5% (2,265 SLOC), 10%
(4,530 SLOC), 20% (9,060 SLOC), 30% (13,591 SLOC), 40% (18,121 SLOC), and 50%
(22,651 SLOC) of the lines from the original dataset. The obtained learning curves for dif-
ferent categories of coding guidelines are presented in Fig. 6.1° The observations are similar
to those from the previous analysis. In most cases, the accuracy increases while variance
decreases with the increase of the dataset size.

Based on the results of this analysis we made the following observations:

— CCFlex was able to achieve high accuracy of identifying lines violating the coding
guidelines for the simplified problem of recognizing lines violating any of the rules
and for the problem of identifying violations of particular rules. However, for the lat-
ter problem, we observed rules for which the tool failed to learn to recognize their
violations.

19T0 have at least two violations of the rules in each of the smallest 5% datasets (one line for training and the
second one for the validation), we included only the rules that had at least 40 violations in the code.
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Fig.6 Learning curves showing impact of the dataset size on Accuracy of predicting certain violations types
(only the rules having at least 40 violations are presented)

— CCFlex was able to achieve high accuracy even for the smallest datasets. Therefore, it
seemed that the CCFlex could also be used to identify lines violating similar coding
standards even if the lines had to be labeled manually.

— Sun’s and Google’s guidelines could be mapped to the proposed taxonomy. However,
by comparing these guidelines and Java Open Source code to guidelines and C/C++
code of our industrial partners, the latter seemed to be more complicated and richer
when it comes to syntax and language constructs being used. Therefore, we perceived
the accuracy observed in this study as an upper bound of what we could expect for the
study on the code of our partners.

5.3 Action Research Cycle 3 — how can we Recognize the Violations Provided
by the Industrial Partners?

5.3.1 Cycle Goal and Research Procedure

When diagnosing the problem of how to recognize the violations provided by industrial
partners, we studied their coding/design guidelines.

Once we understood that we can recognize the same violations as a popular style check-
ing tool, we set off to recognize the violations of the coding/design guidelines at Company
A. Company A has 45 coding guidelines and a codebase distributed over several source
code repositories. Each of the repositories contains a dedicated part of the product and is
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ca. 50,000 SLOC in size. The code is written in C. The goal of this cycle was to explore
whether it is possible to recognize violations of different types of rules in the industrial con-
text. In particular, we were interested in studying how different coding styles can influence
the accuracy of the ML-based tool. Our constraints were that we set off to spend two work-
ing days at the company site. We obtained coding guidelines beforehand, but we were not
able to obtain access to the source code until we arrived at the company site.

In Company A, we planned the evaluation of three coding guidelines belonging to dif-
ferent categories of our taxonomy. The company provided us with the unique possibility
to study designated codebases developed at three different time periods — (i) long before
the guidelines were defined, (ii) in the same period when guidelines were being defined,
and (iii) long after the guidelines were defined. This provided us with the opportunity to
study the question: What is the influence of the difference between programming styles of
the training and classified codebase? In particular, we wanted to understand whether the
evolution of the codebase requires the evolution of the examples used to train our machine
learning and which configurations of CCFlex parameters provide best results in terms of
finding violations.

In our plan, we decided to recognize the following guidelines:

—  Pre-processor directives must be placed at the beginning of an empty line, and must
never be indented (semantics, uni-line context). We chose this rule because it requires
understanding the position of specific tokens in a line.

— For public enumerations, the members of enum should follow the pattern, i.e.,
the name of the component, underscore, and the value name, for example
ComponentName_ValueOne = 0 (semantics, multi-line context). We chose this
rule because it requires to understand the context, i.e. recognition of the lines within
“enum” blocks. We expected that this type of recognition could be difficult for CCFlex
as it is primarily designed for one-line rules.

— Names of the variables should follow the so-called camel case format — each word or
abbreviation in the middle of the name begins with a capital letter (semantics, uni-line
context). We expected that this type of recognition could be difficult for CCFlex as it
requires to understand the concept of lower and upper cases and the fact that the token
represents the variable name.

We planned to conduct as many exploratory trials as possible within the two days com-
pany visit. We planned to experiment with the following configurations of CCFlex (and
their combinations):

— Bag of words — to explore whether this way of providing meaning to the constructs
allows teaching the tool quicker.

— Active Learning — to explore the ease-of-use of providing examples line-by-line
(suggested by active learning) rather than manually.

— Adding new features — to explore how important it is to have the right set of features
for the decision tree (CART) algorithm used in CCFlex; in particular whether it is better
to rely on bag-of-words or on adding the ability to recognize specific keywords.

During each trial we took three measurements: (i) number of lines in the training file,
(ii) number of lines found as violations (true-positives + false-positives) and (iii) number of
correct violations (true-positives).

Based on these trials, we wanted to learn how to prepare the evaluation strategy for the
next cycle at Company B. We wanted to explore which strategies work best, what Recall we
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can achieve and differences between these parameters, types or guidelines and the Recall
measure.

Since we intended to use this action research cycle to learn the practical challenges of
recognizing violations in the real product source code, we did not have an oracle in terms
of tools to recognize these violations. The company used manual reviews as one of the
quality assurance techniques, and therefore we followed the same principle—we studied the
identified violations and focused on the ratio between the true-positives and false-positives
since we would not be able to manually verify all the negatives.

5.3.2 Cycle Execution and Results

Execution: Pre-processor macros The results from the evaluation are presented in Fig. 7.
It shows that the first trial resulted in the highest number of violations found and the highest
number of correct violations (true-positives). The legacy code was developed before the
coding guidelines were in place and designers could not follow them; the size of the legacy
code during this evaluation was 40,010 LOC. For this trial, we used a sample from the legacy
codebase for training. We classified 291 lines of code as the training set (based on one file
from the legacy codebase, example of code from the coding guidelines, and variations of
these).

In the second trial, we used the same training set and we applied the classifier to a new
codebase, which was developed after the guidelines were in place; therefore the guidelines
should be followed. The size of that code was 41,704 LOC. As Fig. 7 shows, the num-
ber of correctly classified violations was significantly lower. However, there were multiple
cases where the classifier found violations incorrectly (false-positives). The incorrectly clas-
sified violations were caused by the change in the company’s style for writing constants
as preprocessor directives. In the legacy codebase, the preprocessor constants were often
defined using small letters, while the enum values were defined using capital letters. In the
new codebase, the preprocessor constants were defined using capital letters, which intro-
duced false-positives in the evaluation. CCFlex recognized these pre-processor constants
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310 77 800
300 600
290 - & - Ja 385336 400
400 418

280 200
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1-legacy code  2-new code 3-transition 4-new code 5-new code

# LOC count # correct # LOC in training file

Fig.7 Size of the training set for each trial at Company A — recognizing preprocessor macros
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as violations of the rule since their name did not have the corresponding context, e.g. no
corresponding module name was present in the succeeding lines.

In the third trial, we used the same training set and applied the classifier to the transition
codebase. It was the codebase which was developed at the same time when coding guide-
lines were defined, so it could contain violations. The size of this codebase was 55,026
LOC. The industrial partners provided us with this codebase with the motivation that “it
resembles a situation when someone did not always follow the guidelines.” As Fig. 7 shows,
there were more violations and the classifier was more correct in finding the violations.

In the fourth trial, we used the same training set, but included the statistics of the most
commonly used words as features (bag-of-words). When applied to the same new codebase
as in trail 2, this decreased the number of false-positives.

In the fifth trial, we added 40 lines as examples from the new codebase, which resulted
in a visible decrease in the number of false-positives. The percentage of correctly identified
violations was 87%.

For the evaluation part, we conducted a workshop with four representatives at the
company site, who are architects, designers, and managers. We presented them with the
identified violations and noted their reflections. During the discussion with the architects
from Company A, they assessed these results as valuable from the practical perspective.

From these five trials, we could learn that it is important to use the same program-
ming style for the training and the validation set. We learned that, although from the same
company, the coding style evolves significantly over time and this has an impact on the cor-
rectness of the identification (if the training set does not evolve together with the coding
style). We have also learned that the size of the training set can be small: 291 — 331 SLOC
to achieve a satisfactory prediction quality for a basic semantic, uni-line context guideline.

Execution: Enums For this guideline, we were provided the following example of a code
that follows it.

typedef enum
ComponentName ValueOne = 0,
ComponentName ValueTwo,
ComponentName ValueThree

} ComponentName MyEnum;

Based on this guideline we could provide the following example of a violation to
bootstrap the training of CCFlex.

typedef enum

{ valueOne = 0,
VALUETWO,
three

} ComponentName MyEnum;

These guidelines require to understand the multi-line context of the line, i.e. that the
guideline applies to the content of an enum and is not just a standard variable declaration.
Therefore, in this trial, we tested the ability of CCFlex to recognize violations requiring to
understand the context, both in terms of the name of the component (name of the enum) and
the name of the enum constant.
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Fig.8 Size of the training set for each trial at Company A — recognizing enums

The results from recognizing violations of naming of enums is presented in Fig. 8. We use
the same measurements as previously—the number of lines in the training set, the number
of lines classified as violations and the number of lines correctly classified as violations.

For the first trial, we used the same training set as for the first trial of the recognizing
pre-processor macros, removed the previous labeling and added the example and coun-
terexample of the guideline for enums. The training set contained 352 lines. We used the
bag-of-words parameter in the first trial and no bag-of-words in the second trial. The number
of lines violating the guideline was 1398 and 1338 respectively, with 81 correct instances in
both cases.

For the third trial, we changed the codebase for validation and the number of correctly
identified dropped to 0, which was caused by the same issue as for pre-processor macros—
the company changed the naming conventions. In order to reduce that problem, we used
active learning, which resulted in adding 245 lines in the training set. The number of cor-
rectly identified violations increased to 66, and the number of all instances classified as
violations increased to 407 lines.

For the fifth trial, we repeated the set-up of the third trial but changed the codebase
to transition code. We did not capture any violations correctly, and 162 lines were falsely
identified as violations. Using the same training set in the sixth trial as for the fourth trial,
i.e. 597 lines mixed from the legacy code and the new code, we correctly identified 541
violations and 1798 lines in total as violations. For the last, the eight trial, we started with
the 352 lines of the training set and used active learning to complement with 245 lines, we
increased the number of identified violations to 2010 and the correctly identified violations
to 676.

Execution: Camel cases For the last guideline, we used the same base training set and
complemented it with 16 examples of correctly and incorrectly used camel cases. Also, we
labeled the lines in the base training set where the rules were not followed.

The results are presented in Fig. 9, with the same measurements as for the previous two
guidelines.
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Fig.9 Size of the training set for each trial at Company A — recognizing camel cases

For the first trial, with 288 lines in the training set, we identified 2841 lines as violations,
with 1396 correct instances. Increasing the number of lines in the training set decreased the
number of correctly identified instances and the total number of instances to 80 and 559,
respectively. This was a deterioration, as we had established that there are 1396 violations
in the first trial. Therefore, in the third trial, we applied active learning and increased the
number of lines in the training set to 339 from the original 288. This resulted in the increase
of the correctly identified instances, but only to 228. In the fourth trial, we used the bag-
of-words, which decreased the number of instances found, consistent with our previous
observations for recognizing enum naming violations. In the fifth trial, we increased the
number of lines in the training set, providing more examples from the false-positives found
in the fourth trial. However, there was even a decrease in the number of instances classified
correctly.

Finally, we applied the algorithm trained on the old code, with active learning using lines
from the transitional code, on the transitional code. The training set contained 450 lines and
we found 1595 violations, out of which 172 were correctly recognized as violations, the rest
was false-positives. Due to the fact that the company visit was limited in time, that was the
last trial we could perform.

We learned that the original set-up of CCFlex at that time did not allow to find violations
of camel case guideline with a satisfactory Recall. We identified the need to use bi-grams,
block features, and token signatures in the next version of CCFlex and applying it to the
next company.

5.4 Action Research Cycle 4 - how much Training of CCFlex is Required to Reduce
the Percentage of False-Positives?

5.4.1 Cycle Goal and Research Procedure
In the last cycle of our action research, we used Company B as the case, where we had the
opportunity to study 66 coding guidelines. We focused on the understanding of how much

training data and iterations are needed to train a classifier for different types of rules from
our taxonomy. We chose seven guidelines to evaluate:
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— 120 characters—line length must not exceed 120 characters (semantics-free, line
properties).

— Braces in compound statements—braces must be used for all compound statements
(semantics, multi-line context)—this rule helps to control the readability of the code
and thus minimize programming mistakes.

— Do not use variants—software units must not have variants at build-time (semantics-
free, keyword)—this rule helps to assure that #ifdef pre-processor statements are
used scarcely to minimize the need for understanding which code is compiled during
each build.

— Named constants—named constants must be used (semantics, uni-line context)—
instead of using untyped #define pre-processor directive, this rule helps to enforce
usage of constants, which are typed.

— One statement per line—only one statement per line of code is allowed (semantics,
uni-line context)—this rule helps to enforce the simplicity of the code and reduce the
cognitive burden when reading the code.

— Use Enum classes—C++11 Enum classes must be used instead of traditional enum
types (semantics-free, keyword)—instead of enum types, the code should use enum
classes, which can enforce constructors, typing, and destructors.

—  Use constants instead of macros—C++ constructs must be used instead of pre-processor
macros (semantics-free, keyword).

Based on the observations from the previous action-research cycle, we made two modi-
fications to the research procedure. Firstly, we designed oracles for the research purposes,
i.e. dedicated, heuristic scripts implemented to recognize violations of specific rules. We
needed that script in order to be able to calculate the Precision, Recall and F-score measures.
Secondly, we found a source codebase without the gradual progression of quality like it was
in the case of Company A; all code in the codebase should follow the coding guidelines.

We set the following stop criteria for each trial: 90% in Precision or Recall (on the module
from which we polled the training examples) or seven training iterations (but a minimum of
three trials to verify that the observed prediction quality is stable). The second criterion was
important as we wanted to limit our training set to less than 800 LOC in order to assure that
it is not very time consuming for practitioners to classify the code.

5.4.2 Cycle Execution and Results

The summary of the Precision, Recall, and F-score for all rules for Company B is presented
in Fig. 10.

The summary shows that for simple coding guidelines, like the guideline “Line length
must not exceed 120 characters”, the training took only three iterations. However, for the
most complex guidelines, like ”Braces must be used for all compound statements”, even
seven iterations did not result in high Precision, Recall and F-score.

The summary for the F-score, per rule and per training trial is presented in Fig. 11. Each
line represents one rule and the number of trials differs per rule because not all rules required
the same number of lines in the training set to reach the stop criteria. Although the goal was
to add 100 lines to the training set for each trial, some rules required context and therefore
we needed to add extra lines to close blocks (for example for enum or comment).

The figure shows that there is a big difference between the achieved F-score per rule,
which is consistent with the results presented in Fig. 10. The F-score for the entire codebase
(ca. 3M SLOC) is usually lower than the F-score for the last training trial on the module
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Fig. 10 Precision, Recall and F-score for all trials at Company B

from which we polled the examples to the training set. The reason is that the code in the
module used for training trials did not contain all possible language constructs which were
present in the entire codebase.

In order to understand the impact of using active learning, we performed the same trials,
adding the lines to the training set using pool-based active learning. We tried two querying
strategies (i) uncertainty sampling and (ii) committee-based vote entropy sampling (Dagan
and Engelson 1995) (a committee of random forest, CART, and k-nearest neighbors classi-
fiers). However, the latter strategy turned out to be superior. The results for committee-based
sampling are presented in Fig. 11.

Figure 11 shows that the F-score is higher if we use active learning. Therefore, we rec-
ommend this strategy as the main strategy compared to the manual selection of lines for the
training set.

The rule with the lowest F-score, “Brackets must be used for all compound statements,”
was the most difficult one for CCFlex. The lowest score is based on low Recall, which
means that CCFlex provided too many false-positives. However, when developing the oracle
for this rule, we also noticed that it was difficult to assess which line is indeed a false-
positive and which is not even when writing a dedicated tool for this purpose—simply
because of the way the code was written at Company B (e.g., using many of the advanced
features of C++ 11 and local code optimizations).

5.5 Summary of the Results

The outcomes of each of four action-research cycles provided us with valuable insights into
using an ML-based tool to recognize company-specific code guidelines violations in code.

From the second cycle, we have learned that the ML-based tool, such as CCFlex, can
achieve a high prediction quality for Java coding-style/formatting guidelines when enough
examples are provided (CCFlex was able to detect lines violating Sun Coding Conventions
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Fig. 11 F-score per trial when selecting the lines to the training set manually and with active learning for a
module from which training samples were polled and for entire codebase

and Google Java Style Guide, without determining the type of violation, with the Accuracy
around 99% and with Recall and Precision ranging between 0.99 and 1.00).

The following third and fourth cycles revealed some pros and cons of using such a tool in
an industrial environment. We trained the CCFlex tool to recognize violations of ten guide-
lines from the guidebooks of our partners and were able to achieve 0.97 and higher Recall
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for all the rules we were able to calculate the measure for (Company B). Unfortunately, for
some of the guidelines, high Recall was achieved by sacrificing Precision, which ranged
from 0.35 to 1.00 depending on the rule.

When combining the results from the cycles two to four, we can state that a pleasant
property of ML-based tools for recognizing code violations is that a single tool can be used
to detect violations for different programming languages without the need of modifying the
code of the tool (of course, it has to be trained for each of the applications).

When it comes to training strategies, we have observed that for most of the rules, we were
able to achieve a high Recall even if the training dataset contained only around 300 SLOC.
We initially tried to compose training sets by selecting examples from guidebooks and
manually adding positive and negative examples from a sample of the codebase, however,
we observed that using Active Learning resulted in better accuracy. The general observa-
tion was that the rules requiring understanding multi-line context were more difficult to
train, while the rules based on text properties or keywords tend to be easier to tackle with.
Although we were able to achieve a high Recall (0.97 and more) for all types of rules, Pre-
cision was visibly lower for the multi-line context rules (0.21 and 0.33). The rule regarding
line properties was the easiest to train (even with a small training dataset of ca. 100 lines).
However, this seems possible only when the property in question is used as a feature (in
this case the number of characters in the line). Finally, we experienced that the difficulty of
training a classifier can also be determined by other factors such as the inherent complexity
of the code, i.e., the richness of the programming-language syntax, overloaded operators,
local code optimizations, etc.

Finally, we made some observations regarding the maintainability of ML-based tools for
code analysis. Firstly, we have learned that designing custom, specialized features can help
in recognizing violations when the considered training sample is small. For instance, we
were successful in using our token signatures or predefined, keyword or short-pattern based
features. We have also learned that the coding style can evolve over time and this could have
an impact on the correctness of the violations recognition (if the training set does not evolve
together with the coding style). Therefore, when maintaining an ML-based code detector,
one has to maintain a list of examples and re-train the tool over time instead of maintaining
the source code of the detector, as it is in the case of static-code-analysis tools.

6 Validity Evaluation

In our action research study, we evaluated a number of validity threats, based on the
framework provided by Wohlin et al. (2000).

The main construct validity threats which we identified are related to the choice of cod-
ing/design rules and the stop criteria. To mitigate the risk that we bias the evaluation by
selecting a very similar, narrow group of coding guidelines to train CCFlex, we based our
choices on the taxonomy of coding guidelines that group guidelines based on the context
that need be understood to find violations of guidelines. We covered four categories of
coding guidelines: semantic uni-/multi-line context and semantic-free line properties and
keywords. The remaining three categories were either outside of our interests for this study
(process-level rules) or we were not able to describe the contextual information at the level
of a single line of code (multiple files context or design decisions). The choice of the stop
criteria was arbitrary in cycle 4, which was a deliberate choice as we wanted to understand
whether it is possible to achieve satisfactory results with a low number of training instances
(lines of code). The alternative would be to continue the Active Learning trials beyond the
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seven trials to achieve 90% F-score, but we left this as an open issue for our further work
aimed at studying the minimum sufficient set of training examples balanced with the size
of the feature set.

Also, it is important to emphasize that the coding style violations do not have to strongly
correlate with code faults or product quality. When analyzing the coding guidelines of our
industrial partners, we observed that most of the rules in their guidebooks were there to
improve code readability and communication between software developers. However, there
were also examples of guidelines that forced (or forbade) using some code constructs that
could affect the performance of the systems or cause memory management problems (and
consequently lead to defects).

The main internal validity threat is the fact that in many cases it was not obvious whether
a violation found by CCFlex was indeed a violation. For example, for recognizing camel
case styled functions, it was not easy to find which of the following two is correct: (i)
isECUPresent () or (ii) isEcuPresent (). Consulting the practitioners led to diverse
opinions. For these cases, we chose to include the second version as correct. For all cases
like this, we consulted the practitioners and discussed them in our research team to minimize
the researcher bias.

The main conclusion validity threat is the fact that for we created the oracles in cycle 4
ourselves. The oracles are mainly based on pattern matching and simple parsers. Therefore,
they should be treated as heuristics (the scripts are available in CCFlex Github repository).
Although we tested the tools manually, we did not provide validation against any industrial
tool, this is a threat we need to accept. However, based on the cycle 2, where we evaluated
the ability of CCFlex to find violations similar to industry-grade tools, we believe that this
threat does not bias our conclusions. Since CCFlex’s ability to ”mimic” another tool was above
95%, we believe that the accuracy differs by as much as 5% and therefore can be neglected.

Finally, in order to minimize external validity threats of being unrepresentative, we diver-
sified our study by including both open source and proprietary codebases. We chose to use
oracles that are used in industry (Checkstyle) and own oracles. We evaluated the tool at two
different companies, with different coding/design guidelines and different contexts.

Although the results found in the initial study on open source Java projects were slightly
better than those in the industrial C/C++ projects, this cannot be taken as a prove that there
is a difference in the accuracy of the tool between programming languages because of the
visible differences in the study setup, e.g., such as the size of the datasets, the set of guide-
lines used, detecting lines violating the rules vs. determining the types of violations, or
differences in the character of open source and closed source systems.

Finally, we compared various static analysis and style checkers to CCFlex. The observed
promising results for C, C++, and Java indicate that similar results might be expected for
other imperative languages as well as other companies and other codebases.

7 Conclusions

In this paper, we presented the results of an action research study that aimed to support
code reviews by automatically recognizing company-specific code guidelines violations in
large-scale, industrial source code. The study was performed in the collaboration with two
large companies located in Scandinavia developing software-intensive products where we
worked on premises of these companies to analyze their code and code/design guidelines.
The study was divided into four action-research-study cycles. In the first cycle, we ana-
lyzed the coding guidelines of our partners and proposed a taxonomy to categorize coding
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rules depending on the information required to automatically recognize their violations in
code. We also identified some requirements and constraints for violation-detecting software
tools, which were the ease of adapting the tool to handle new or altered rules, as well as
the possibility of processing the code without the need of parsing or compiling it. Based on
the conducted literature review study, we learned that nearly all of the existing tools do not
meet these requirements. The most promising tools were machine-learning-based ones as
they allow for flexible evolution as requested by our industrial partners.

In the second cycle, we performed a preliminary validation of one of the machine-
learning-based tools called CCFlex on the codebase of three Java open source products. We
looked for violations of Google Java Style Guide and Sun Java Code Conventions, which
are two widely accepted coding style/formatting guidelines for Java to learn that the tool
was able to detect the lines violating any of the guidelines as well as the lines violating spe-
cific rules with the average accuracy of ca. 99% and and the average F-score of ca. 0.80.
Although the overall accuracy was high, we observed that the tool had difficulties in detect-
ing violations of the rules that required to understand the context of multiple lines (e.g.,
finding unused imports).

In the following two cycles, we investigated the possibility of training the tool to recog-
nize lines violating 10 rules from our industrial partners’ coding guidebooks. As a result of
these studies, we found that:

— we were able to train the ML-based tool by using the maximum of around 700 SLOC
to achieve the average F-score of 0.78. Although we obtained a high Recall (0.97 or
higher) for all of the rules (often by using only 300 SLOC), it was usually at the cost of
high false-positive rates (Precision ranged from 0.21 to 1.00 depending on the rule). The
best results were obtained for the rules requiring understanding the context of a single line
(semantical uni-line context, semantic-free line properties, and keywords) while the rules
requiring to understand the context of multiple lines were far more difficult to train.

— the ML-based tool was able to recognize code guidelines violations by using features
extracted directly from the text (e.g., frequencies of tokens) without the need for parsing
or compiling the code,

— we observed that the best strategy for training the tool to recognize violations of
company-specific guidelines was to start with the examples provided in the compa-
nies’ code guidebook and then use Active Learning to poll lines from a sample of the
codebase to label.

— we have learned that using ML-based code analysis tools bring new challenges when it
comes to maintenance in comparison to static-code-analysis tools (that require source
code modification) which is maintaining examples in training codebase.

Finally, our study showed that the same ML-based tool can be trained to recognize viola-
tions of different coding guidelines and even for different programming languages (C, C++,
and Java).

Future Work Our further work includes the integration of our tool with Gerrit—a modern
code review tool used in industry (and train the tool on the commit-level) and further studies
of industry-wide standard rules like MISRA C++.

We also want to further investigate how rules that serve as documentation, rules on
external information, and optional rules (see Section 5.1) can be captured with our approach
in future.

Furthermore, many static code analysis tools, e.g. Splint and CPPCheck, style checkers,
e.g. CodeCheck, and approaches for code smell detection, e.g. DECOR by Moha et al.
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(2010) and BOA by Dyer et al. (2013), offer the option to formulate new rules, often using
their own languages. What motivated the use of machine learning in this paper is that it
enables the industrial users to formulate new rules without having to learn a new language
and not having to verify whether the newly written rules are doing what they are supposed to
do. In future work, we plan to further investigate whether specifying rules with our approach
is really easier and/or less time consuming for practitioners than writing rules with DECOR,
BOA, Splint, or CodeCheck.

Acknowledgements The research was conducted in Software Center, Chalmers, University of Gothenburg,
Ericsson, and Grundfos. The authors would like to thank all architects, designers, and managers for help and
support for this work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Allamanis M, Barr ET, Bird C, Sutton C (2014) Learning natural coding conventions. In: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM, pp 281-
293

Axelsson S, Baca D, Feldt R, Sidlauskas D, Kacan D (2009) Detecting defects with an interactive code review
tool based on visualisation and machine learning. In: The 21st international conference on software
engineering and knowledge engineering (SEKE)

Baskerville R, Wood-Harper AT (1996) A critical perspective on action research as a method for information
systems research. J Inf Technol 11(2):235-246

Brar HK, Kaur PJ (2015) Static analysis tools for security: a comparative evaluation. International Journal
5(7):1085-1089

Brun Y, Ernst MD (2004) Finding latent code errors via machine learning over program executions. In:
Proceedings of the 26th International Conference on Software Engineering, ICSE ’04. IEEE Computer
Society, Washington, pp 480—490. http://dl.acm.org/citation.cfm?id=998675.999452

Chappelly T, Cifuentes C, Krishnan P, Gevay S (2017) Machine Learning for finding bugs: An initial report.
In: IEEE Workshop on Machine learning techniques for software quality evaluation (maLTeSQue).
IEEE, pp 21-26

Dagan I, Engelson SP (1995) Committee-based sampling for training probabilistic classifiers. In: Machine
Learning Proceedings 1995. Elsevier, pp 150-157

Di Nucci D, Palomba F, Tamburri DA, Serebrenik A, De Lucia A (2018) Detecting code smells using
machine learning techniques: are we there yet?. In: 2018 IEEE 25Th international conference on software
analysis, evolution and reengineering, SANER. IEEE, pp 612-621

Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: a language and infrastructure for analyzing ultra-
large-scale software repositories. In: Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, pp 422431

Emanuelsson P, Nilsson U (2008) A comparative study of industrial static analysis tools. Electron Notes
Theor Comput Sci 217:5-21

Fatima A, Bibi S, Hanif R (2018) Comparative study on static code analysis tools for c/c++. In: 2018 15th
International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, pp 465469

Fontana FA, Zanoni M, Marino A, Mantyla MV (2013) Code smell detection: Towards a machine learning-
based approach. In: 2013 29th IEEE International Conference on Software Maintenance (ICSM). IEEE,
pp 396-399

Fontana FA, Méntyld MV, Zanoni M, Marino A (2016) Comparing and experimenting machine learning
techniques for code smell detection. Empir Softw Eng 21(3):1143-1191

Freitas AA (2014) Comprehensible classification models: a position paper. ACM SIGKDD Explor Newslett
15(1):1-10

Fu Y, Zhu X, Li B (2013) A survey on instance selection for active learning. Knowl Inf Syst 35(2):249-283

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://dl.acm.org/citation.cfm?id=998675.999452

Empirical Software Engineering (2020) 25:220-265 263

Goodman PS, Bazerman M, Conlon E (1980) Institutionalization of planned organizational change. In:
Research in Organizational Behavior, JAI Press,Greenwich, pp 215-246

Irwin W, Churcher N (2001) A generated parser of c++. NZ J Comput 8(3):26-37

Mantere M, Uusitalo I, Roning J (2009) Comparison of static code analysis tools. In: 2009. SECUR-
WARE’09, Third International Conference on Emerging security information, systems and technologies.
IEEE, pp 15-22

Maruping LM, Zhang X, Venkatesh V (2009) Role of collective ownership and coding standards in
coordinating expertise in software project teams. Eur J Inf Syst 18(4):355-371

Masters J (1995) The history of action research. Action Res Electron Read 22:2005

Mclntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review coverage and code review
participation on software quality: A case study of the qt, vtk, and itk projects. In: Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, pp 192-201

Mi Q, Keung J, Xiao Y, Mensah S, Gao Y (2018) Improving code readability classification using
convolutional neural networks. Inf Softw Technol 104:60-71

Moha N, Gueheneuc YG, Duchien AF et al (2010) Decor: a method for the specification and detection of
code and design smells. IEEE Trans Softw Eng (TSE) 36(1):20-36

Novak J, Krajnc A, Ontar R (2010) Taxonomy of static code analysis tools. In: MIPRO, 2010 Proceedings of
the 33rd International Convention. IEEE, pp 418422

Ochodek M, Staron M, Bargowski D, Meding W, Hebig R (2017) Using machine learning to design a flex-
ible loc counter. In: IEEE Workshop on Machine learning techniques for software quality evaluation
(maLTeSQue). IEEE, pp 14-20

Robson C, McCartan K (2016) Real world research. Wiley, New York

Shaukat R, Shahoor A, Urooj A (2018) Probing into code analysis tools: A comparison of c# supporting static
code analyzers. In: 2018 15th International Bhurban Conference on Applied Sciences and Technology
(IBCAST). IEEE, pp 455-464

Singh D, Sekar VR, Stolee KT, Johnson B (2017) Evaluating how static analysis tools can reduce code review
effort. In: 2017 IEEE Symposium on Visual languages and human-centric computing (VL/HCC). IEEE,
pp 101-105

Smit M, Gergel B, Hoover HJ, Stroulia E (2011) Maintainability and source code conventions: An analysis
of open source projects. University of Alberta, Department of Computing Science, Tech Rep TR11-06

Susman G, Evered R (1978) An assessment of the scientific merits of action research. J Admin Sci Q
23(4):582-603

Torunski E, Shafiqg MO, Whitehead A (2017) Code style analytics for the automatic setting of formatting
rules in ides: a solution to the tabs vs. spaces debate. In: 2017 Twelfth International Conference on
Digital information management (ICDIM). IEEE, pp 6-14

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software
engineering: an introduction. Kluwer Academic Publisher, Boston

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Miroslaw Ochodek is an assistant professor at Poznan University of
Technology. His research interests are measurement and predictions,
requirements engineering, and empirical software engineering.

@ Springer



264

Empirical Software Engineering (2020) 25:220-265

@ Springer

Regina Hebig is an Associate Professor in Software Engineering
at Chalmers and the University of Gothenburg. She did her PhD at
the University of Potsdam, Germany in 2014. Her research interests
include software evolution, software modelling, and software pro-
cesses. Currently, Regina is the director of the master education in
software engineering at Chalmers and the University of Gothenburg.

Wilhelm Meding is a senior measurement program leader. Leads a
metrics team and an analytics team. 20% of his time is spent on soft-
ware metrics research. Has published one book and more than 50
papers.

Gert Frost is a DevOps Project Manager with a long record of
working with Software in the mechanical and industrial engineer-
ing industry. Working areas are Agile SW Development, Software
Product Line Engineering, Continuous Integration/Continuous Deliv-
ery, Automatic Testing, Metrics and Data Visualization preferably in
collaborating with external partners and academia both in DK and
abroad. I prefer to work in areas where leadership and management
goes hand in hand with strategy and execution, for driving the devel-
opment and changes to always become smarter and better in what we
deliver for our customers.



Empirical Software Engineering (2020) 25:220-265 265

Miroslaw Staron is Professor in the Department of Computer Sci-
ence and Engineering at the University of Gothenburg, Sweden. He
has published extensively on software metrics, model-driven software
development and empirical software engineering and cooperates with
Ericsson, Volvo and other telecom companies and car manufacturers.
He has written two books about automotive software development
and about measurement.

Affiliations

Miroslaw Ochodek'2 © . Regina Hebig3 - Wilhelm Meding* - Gert Frost® -
Miroslaw Staron3

Poznan University of Technology, Poznan, Poland
University of Gothenburg, Gothenburg, Sweden

Computer Science and Engineering Department, Chalmers | University of Gothenburg, Gothenburg,
Sweden

Ericsson AB, Gothenburg, Sweden
Grundfos, Bjerringbro, Denmark

@ Springer


http://orcid.org/0000-0002-9103-717X

	Recognizing Lines of Code Violating Company-Specific
	Abstract
	Introduction
	Related Work
	Comparison Between Tools
	Supported Languages:
	Compilation Requirements:
	Extensibility:
	Configurability:
	Interoperability:
	Access to Results:
	Static Code Analysis Tools for C/C++
	Style Checkers for C/C++


	Machine Learning for Static Code Analysis
	Machine Learning for Code-Smell Detection
	Summary

	The CCFlex Tool
	Architecture
	Feature-Extraction Filters
	Predefined features extractors
	Vocabulary-based extractors
	Block-feature extractors


	Classification Algorithms
	Active Learning

	Research Methodology and Design
	Execution and Results
	Action Research Cycle 1 – What Coding Guidelines are used by our Industrial Partners?
	Cycle Goal and Research Procedure
	Cycle Execution and Results

	Action Research Cycle 2 – Selecting a Tool Capable of Recognizing Code Guidelines Violations of our Partners
	Cycle Goal and Research Procedure
	Cycle Execution and Results

	Action Research Cycle 3 – how can we Recognize the Violations Provided by the Industrial Partners?
	Cycle Goal and Research Procedure
	Cycle Execution and Results
	Execution: Pre-processor macros
	Execution: Enums
	Execution: Camel cases


	Action Research Cycle 4 – how much Training of CCFlex is Required to Reduce the Percentage of False-Positives?
	Cycle Goal and Research Procedure
	Cycle Execution and Results

	Summary of the Results

	Validity Evaluation
	Conclusions
	Future Work

	References
	Affiliations




