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Abstract

Background: In this study, we further developed an artificial intelligence (Al)-based
method for the detection and quantification of tumours in the prostate, lymph nodes
and bone in prostate-specific membrane antigen (PSMA)-targeting positron emission
tomography with computed tomography (PET-CT) images.

Methods: A total of 1064 ['®FIPSMA-1007 PET-CT scans were used (approximately
twice as many compared to our previous Al model), of which 120 were used as test
set. Suspected lesions were manually annotated and used as ground truth. A convolu-
tional neural network was developed and trained. The sensitivity and positive predic-
tive value (PPV) were calculated using two sets of manual segmentations as reference.
Results were also compared to our previously developed Al method. The correlation
between manually and Al-based calculations of total lesion volume (TLV) and total
lesion uptake (TLU) were calculated.

Results: The sensitivities of the Al method were 85% for prostate tumour/recurrence,
91% for lymph node metastases and 61% for bone metastases (82%, 86% and 70%

for manual readings and 66%, 88% and 71% for the old Al method). The PPVs of the Al
method were 85%, 83% and 58%, respectively (63%, 86% and 39% for manual read-
ings, and 69%, 70% and 39% for the old Al method). The correlations between manual
and Al-based calculations of TLV and TLU ranged from r=0.62 to r=0.96.

Conclusion: The performance of the newly developed and fully automated Al-based
method for detecting and quantifying prostate tumour and suspected lymph node
and bone metastases increased significantly, especially the PPV. The Al method is freely
available to other researchers (www.recomia.org).

Keywords: Prostate cancer, PET-CT, Artificial intelligence, PSMA, CNN

Background

Prostate cancer is one of the most common cancers and one of the most common causes
of cancer deaths among men worldwide [1]. For correct management, risk stratifica-
tion is crucial. Imaging plays an important role in the work-up of prostate cancer. Mul-
tiparametric magnetic resonance imaging is often performed in patients with elevated
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prostate-specific antigen (PSA) levels and has been found to accurately select who will
benefit from a prostate biopsy [2]. In patients with a confirmed high-risk disease or with
a rising PSA after a curative treatment, other imaging methods are available. The intro-
duction of prostate-specific membrane antigen (PSMA)-targeted positron emission
tomography (PET) imaging has improved the detection of loco-regional and metastatic
disease [3—7]. In recent years, it has emerged as the preferred method for staging newly
diagnosed high-risk prostate cancer, finding sites of recurrence and evaluating eligibility
for treatment with ['”’Lu]Lu-PSMA-617 and analogues [8—10].

For diagnostic purposes, several different PSMA agents have been introduced, such as
[*Ga]Ga-PSMA-11, ['*F]DCFPyL and ["*F]PSMA-1007 [11-14]. The widespread adop-
tion of PSMA PET-CT has significantly increased the workload for nuclear medicine
departments and nuclear medicine physicians. Artificial intelligence (AI) algorithms,
particularly deep learning such as convolutional neural networks (CNN), have demon-
strated progress in image-recognition tasks. Integrating an Al application within the
imaging workflow could potentially increase efficiency, reduce errors and reduce inter-
individual variations [15-17].

Previously, we developed a fully automated Al-based method that can detect and
quantify prostate cancer-related tumours and metastases in PSMA PET-CT scans [18,
19]. Our previous studies showed that the Al-based method obtained a sensitivity on
par with that of nuclear medicine physicians. However, the Al-based method had a
higher number of false positive lesions compared to nuclear medicine physicians, espe-
cially for the detection of suspected lymph node metastases (on average 2.8 false positive
lesions per patient for the Al-based method and 0.5 for physicians) and bone metasta-
ses (on average 3 false positive lesions per patient for the Al-based method and 1.8 for
physicians). The correlations of total lesion volume (TLV) and total lesion uptake (TLU)
between Al-based and manual calculations were moderate to strong. Previous studies
were performed with a training and validation group of 540 and 120, respectively. We
hypothesise that the performance of the Al-based method can be improved with a larger
training group and alterations in the CNN method.

The aim of the present study was to develop an Al-based method for detecting and
quantifying tumour lesions (prostate tumour, prostate recurrence, as well as metasta-
ses in lymph nodes and bone) in [**F]JPSMA-1007 PET-CT images and to compare the
results to experienced nuclear medicine physicians. Secondary aims were to address the
individual contributions of the additional data and the newly developed training pipe-
line, and to make the AI method freely available for future research.

Methods

Patients

Patients admitted for clinically indicated [**F]PSMA-1007 PET-CT to Department of
Clinical Physiology and Nuclear Medicine, Skane University Hospital, Lund or Malmo,
Sweden, were eligible for inclusion. Indications for PSMA PET-CT referrals at our hos-
pital included primary staging of high-risk prostate cancer or secondary staging after
biochemical recurrence. The lower PSA limit for PSMA PET-CT referrals due to bio-
chemical recurrence at our hospital was 0.2 ng/ml. A total of 1064 patients, who were
scanned from December 2019 to December 2021, were included. All 660 patients from



Tragardh et al. EJINMMI Physics (2025) 12:78 Page 30f 18

the study conducted by Tragardh et al. [19] were included as well as an additional 404
consecutive patients between May 2021 and December 2021. The study was approved by
the ethics committee at Lund University (#2016/417, #2018/753 and #2021-05734-02)
and followed the principles of the Declaration of Helsinki. All patients provided written
informed consent.

Imaging

Patients were injected with 4 MBq/kg of [\*F]PSMA-1007 and after two hours imaged
on a Discovery MI PET-CT (GE Healthcare, Milwaukee, W1, USA) from the base of the
skull to the mid-thigh. The acquisition time was two minutes per bed position. Images
were reconstructed with a block-sequential regularisation expectation maximisation
algorithm (Q.Clear; GE Healthcare, Milwaukee, W1, USA) with a beta factor of 800 [20].
Time-of-flight, point spread function modelling, a 256 X 256 matrix with pixel size of
2.7%2.7 mm? and a slice thickness of 2.8 mm were used. Either a low-dose or a diagnos-
tic CT with oral and intravenous contrast was performed and used for attenuation cor-
rection and anatomic correlation.

Manual segmentations for training

Two experienced nuclear medicine physicians segmented a suspected prostate tumour
or local recurrence, suspected lymph node metastases and suspected bone metastases
in the PSMA PET-CT images. One of the readers segmented 921 of the scans, and the
other reader segmented the remaining 143 scans. The cloud-based annotation platform
RECOMIA (www.recomia.org) was used for the manual segmentations. The RECOMIA
platform includes basic display features for PET-CT images and segmentation tools
[21]. Of the full set of 1064 studies, 120 were used as a test set and 120 as a validation set.
The test and validation sets were the same as in the Tragardh et al. study [19]. In the test
set, approximately 60% of the patients were referred due to primary staging and 40% due
to biochemical recurrence. The remaining 824 studies were used as the training set.

Al model

At the core of our Al solution, a four-level U-Net [22] was implemented and trained
using the MONAI framework [23]. Inference and training were both performed on
patches of size 192X 192 x 192 pixels.

Input to the network consisted of the CT image and the SUV image calculated from
the PET image. Both images were resampled to a pixel size of 1.33x1.33.% 3.0 mm, and
intensities were clamped and normalised to [0, 1]. The CT image was clamped to [-1024,
3072], and the SUV image was clamped to [0, 100] before normalisation.

Compared to the Tragardh et al. study [19], the most important differences were.

« Deeper U-Net Using a deeper U-Net allows for a larger receptive field and more pow-
erful modelling capacity.

+ Same padding Zero-padding the input of each convolutional layer such that the out-
put retains the same spatial dimensions as the input. This typically leads to more effi-
cient training and much faster inference.

+ Deep supervision An auxiliary loss was applied to lower levels of the network.


http://www.recomia.org
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Sampling

For each training image, a sample mask, where each foreground class was weighted
equally, was constructed. In addition, the total weight of all foreground pixels was
equal to the total weight of all background pixels. In other words, each foreground
sampled equally often, and half of the samples were background samples.

All pixels within each class were sampled at the same frequency. However, after
each 20-epoch interval, the sampling was updated based on the pixelwise loss of the
current model. This was done assure that ‘hard’ background pixels were sufficiently
sampled. More specifically, 50% of the training images were randomly selected and
had their sample masks updated. For the loss sample mask, all background pixels
were weighted proportionally to the pixelwise loss up to an allowed maximum value
(500 times the average sample probability). The new sample mask was then created by
taking the average of the old sample mask and the loss sample mask in each pixel. This
enabled more sampling of the background pixels where the model struggled while
keeping the foreground sampling and the foreground to background sampling ratio
fixed.

Note that the samples drawn from the sample mask specified the centre pixel of the
input patch. This means that even though a foreground pixel was sampled, the corre-
sponding patch contained many background samples.

Training
The model was trained using mixed half precision on an NVIDIA RTX 3090 GPU.
During training, an epoch was defined as 10,000 samples and the model was trained
for 200 epochs. The model was optimised using Nadam [24] with an initial learning
rate set to 5x 107°. The learning rate was multiplied by 0.985 after each completed
epoch. Weighted categorical-cross entropy was used as a loss function with weight
1.0 for background and 25.0 for foreground. In addition, deep supervision [25] was
applied to lower levels of the network with weights of 0.5, 0.25 and 0.125.

Every 40 epochs, a model was saved, and the model with the best performance on
the validation set was chosen (the one that had trained for 80 epochs).

Augmentation

As with most medical applications, data was limited. To address this limitation and
enhance the dataset’s variability as well as the resulting model’s robustness, data aug-
mentation was used. The patches were spatially augmented by applying a randomised
affine transformation with the following randomisation ranges.

o Scaling: —20% to 20%.

+ Rotation: up to 15°.

« Shear:—0.05 to+0.05.

+ Translation: move center to anywhere in input patch.

Additionally, the CT intensities were randomly augmented:
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+ 25% chance to apply smoothing using a Gaussian kernel with standard deviation
drawn uniformly from the range 0.25 to 1.0 for each dimension.

+ 50% chance to add Gaussian noise. The mean value for the distribution was drawn
uniformly from — 50 to 50 and the standard deviation was drawn uniformly from 0
to 100.

+ 25% chance to apply intensity scaling. The intensities were scaled with a factor

drawn uniformly from [0.95, 1.05]

Note that each probability was independent, and that some patches received no

intensity augmentation.

Inference
Inference was performed using a sliding window with the same input patch size as for
the training, i.e. 192192 x 192 pixels. With same padding, an output was produced
for each pixel in the input patch, but results for pixels close to the patch boundary
were less reliable, as their receptive field was reduced. Hence input patches generated
with an overlap of 94 pixels, and for pixels where multiple outputs were computed,
the one with the largest receptive field was used.

The average inference time on the test set images were 42.5 s on a computer with a
NVIDIA RTX 3090 GPU and an AMD Ryzen 9 5900X 12-Core Processor.

Reference model training

For comparison, a nnU-Net model [26] was also trained on the same dataset using
the publicly available training pipeline. Initial training with the default "3d_fullres"
configuration led to rapid convergence to a degenerate solution that predicted only
background. To address this, a modified training strategy was employed: the model
was first pretrained on a small, handpicked subset of the data consisting exclusively
of studies containing all target classes and a lot of foreground. This pretrained model
was then used to initialize the full training. Additionally, the “oversample foreground”
percent parameter was increased to 0.66 to further mitigate the risk of background-

only predictions. Dice score, sensitivity and PPV were compared.

Ablation study of pipeline and data contributions
An ablation study was conducted to assess the individual contributions of the newly
developed training pipeline and the expanded training dataset. Three configurations

were evaluated:

1. Baseline model, as described in Trigardh et al. [19], using the training pipeline and
dataset from their paper,

2. Pipeline-only model, in which the new training pipeline was applied to the dataset
from [19],

3. Model trained on the expanded dataset with the new training pipeline.
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Through this setup, the relative contributions of the training pipeline improvements
and data expansion were isolated and quantified. Dice score, sensitivity and PPV were
compared.

Model evaluation

To compare the results of this updated Al-based method to previous results, we
employed a similar evaluation method as described by Tragardh et al. [19]. The perfor-
mance of the Al-based method was assessed using the test set of 120 patients and two
sets of ‘expert readers.

Reading A was conducted by an experienced nuclear medicine physician who also per-
formed most of the manual segmentations for the model training. Reading B was con-
ducted by five other physicians (three board certified nuclear medicine physicians and
two residents in nuclear medicine), each segmenting suspected tumours and metastases
in 24 cases from the test set. Their experience with PET-CT readings ranged from 5 to
over 10 years. The readers were instructed to mark all suspected malignant lesions in the
prostate and seminal vesicles in patients with a prostate, and suspicious recurrence in
the prostate bed in patients without a prostate (after prostatectomy). They also marked
suspected lymph node metastases and bone metastases, using the E-PSMA grading sys-
tem as guidance [27].

The Al-based method was evaluated on a lesion-based level (see below), focusing on
suspected prostate tumour/recurrence, suspected lymph node metastases and suspected
bone metastases. To assess inter-reader variability, comparisons were made between the
expert readers. Readings A and B were alternately used as the reference (‘gold standard’)
and compared to either the other human reading or the Al-based method.

True positive lesions were defined as lesions with either partial or full segmenta-
tion overlap with the reference reading. Lesions detected by the Al-based method or a
human reading without segmentation overlap with the reference reading were regarded
as a false positive. False negative lesions were defined as a lesion detected by the ref-
erence reading, but not by the Al-based method or a human reading. Sensitivity was
calculated as the proportion of suspected lesions detected by a human reading or the
Al-based method of those detected by the reference human reading. The positive pre-
dictive value (PPV) was calculated as the proportion of true positive lesions for a human
reading or the AI method compared to the reference reading, divided by the sum of false
positive and true positive lesions compared to the same reference reading.

Tumour burden was measured as TLV (cm®) and TLU (cm?®). TLV was calculated by
summing the volume of all positive voxels identified by manual or Al-based segmenta-
tions. TLU was calculated by multiplying the SUVmean by the TLV for each lesion and
then summing all lesion TLUs to provide a total TLU.

Statistical analysis

Sensitivity and PPV were calculated for the Al-based method and the human readings,
as described above. The correlations of the tumour burden (TLV and TLU) measured
by the Al model and Reading A were evaluated with Bland Altman plots, as well as with
scatter plots and the Spearman rank correlation with a two-tailed test. A significance
level of p=0.05 was used. The correlation was considered very strong for Spearman’s
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coefficient r>0.8, strong if the value was between 0.6 and 0.8, moderate for values
between 0.4 and 0.6 and weak for values below 0.4.

For each lesion type the new AI model was also compared to the one from Trigardh
et al. [19] using two sign tests. For each image the number of false positives (negatives)
for the two models provided a pair of observations. The sign test was used to test the
hypothesis that the two models were equally likely to produce more false positives (neg-
atives) for an image. A significance level of p =0.05 was used. The statistical analysis was
carried out in R, version 4.0.3.

Results

Detection of suspected tumour lesions

When all tumours/metastases were grouped together, Reading A noted a total of 622
suspected lesions (average 5.2 per patient), to be compared to 780 (6.5 per patient) for
Reading B, 691 (5.8 per patient) for the Al method and 1293 (10.8 per patient) for the old
Al method. The sensitivity for the Al method compared to Reading A was 85% and the
PPV was 72%.

For prostate tumour/recurrence, Reading A detected suspected tumour(s) in 79 (66%)
of the patients. On average, 0.8 prostate tumour/recurrence was detected per patient
for Reading A. The sensitivity for the AI method for detecting prostate tumour/recur-
rence was 95% when Reading A was used as reference, while the PPV was 84%. This can
be compared to a sensitivity of 94% and a PPV of 55% for our previously developed Al
method. The new Al method had fewer false positives than the older method in 41 of the
test images and more in three of the test images, which showed a significant difference
(p<0.001). The number of false negatives was equal in all test images.

For lymph node metastases, Reading A detected suspected metastases in 42 (35%) of
the patients. On average, Reading A detected 2.1 lymph node metastases per patient. The
sensitivity for the AI method was 90% compared to Reading A, and the PPV was 64%.
This can be compared to a sensitivity of 88% and a PPV of 39% for our previously devel-
oped Al method. The new Al method had fewer false positives than the older method in
71 of the test images and more in 14 of the test images, which indicated a significant dif-
ference (p <0.001). The difference in false negatives was not significant (p=0.75).

For bone metastases, Reading A detected suspected metastases in 39 (33%) of the
patients, corresponding to an average of 2.4 suspected bone metastases per patient.
The sensitivity for the AI method was 74% and the PPV was 71% when Reading A was
used as reference. In comparison, our previously developed Al method had a sensitivity
of 88% and a PPV of 39%. The new Al method had fewer false positives than the older
method in 63 of the test images and more in 13 of the test images, which was a signifi-
cant difference (p <0.001). The difference in false negatives was not significant (p =0.55).

Comparisons of sensitivity and PPV for different locations for the new and old Al
method as well as the human readings can be found in Figs. 1 and 2. The number of
false positive lesions were considerably lower for the new Al method compared to the
old, which is detailed in Tables 1, 2 and 3. The sensitivity for the new Al method was
worse for bone metastases compared to the old AI method and the human readers. The
new Al method had worse PPVs compared to human readings for detecting lymph node
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Fig. 1 Sensitivity of the new and the old Al models as well as the human readings, when using Reading A
and Reading B as references, respectively

metastases and worse PPV compared to Reading A for prostate tumour/recurrence and
bone metastases when Reading A was used as reference.

Table 4 presents a comparison between the AI method and the reference nnU-Net
model. The nnU-Net model achieved higher PPV across all three classes. However, this
came at the cost of low sensitivity, significantly lower compared to the proposed Al
method.

Table 5 presents an ablation study conducted to evaluate the individual contributions
of the additional training data and the newly developed training pipeline, in comparison
to the approach presented by Tragardh et al. [19]. Based on the component-wise Dice
scores, the new training pipeline demonstrated improved performance over the original
method. As expected, further performance gains were observed when the model was
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Fig. 2 PPV of the new and the old Al models as well as the human readings, when using Reading A and

Reading B as references, respectively

trained on the expanded dataset. It should be noted that the Dice scores reported were
calculated at the component level and can be interpreted as the harmonic mean of posi-
tive predictive value (PPV) and sensitivity, thereby reflecting a balance between these

two metrics.

Quantification of tumour burden

The tumour burden, measured as TLV and TLU, is shown in Table 6. The correlations
for TLV and TLU between the new Al method and Reading A ranged between 0.73
and 0.96; for the Al method and Reading B between 0.62 and 0.93; and between the
two manual readings between 0.76 and 0.93. All correlations were highly significant
(p<0.001) (Table 7). Scatter plots are shown in supplementary Figs. 1 and 2. Bland
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Table 1 Sensitivity, positive predictive value (PPV), true and false positive lesions (TP/FP), and false
negative lesions (FN) for detection of prostate tumour/recurrence. Average is shown when one
Reading at a time was used as reference

n =120 patients Al vs reading Reading vs reading Old Al vs reading
Sensitivity (%) 84.9% 82.3% 68.7%
PPV (%) 85.0% 82.6% 57.7%
TP (n)

Total 935 90.5 95

Per patient 0.78 0.75 0.79
FP (n)

Total 16.5 21 70

Per patient 0.14 0.18 0.58
FN (n)

Total 18 21 16.5

Per patient 0.15 0.18 0.14

Table 2 Sensitivity, positive predictive value (PPV), true and false positive lesions (TP/FP), and false
negative lesions (FN) for detection of suspected lymph node metastases. Average is shown when
one Reading at a time was used as reference

n =120 patients Al vs reading Reading vs reading Old Al vs reading
Sensitivity (%) 90.7% 86.1% 87.9%
PPV (%) 63.0% 86.1% 38.5%
TP (n)

Total 2205 209 2135

Per patient 1.84 1.74 1.78
FP (n)

Total 1295 34 3415

Per patient 1.08 0.28 2.85
FN (n)

Total 225 34 29.5

Per patient 0.19 0.28 0.25

Table 3 Sensitivity, positive predictive value (PPV), true and false positive lesions (TP/FP), and false
negative lesions (FN) for detection of suspected bone metastases. Average is shown when one
Reading at a time was used as reference

n =120 patients Al vs reading Reading vs reading Old Al vs reading
Sensitivity (%) 60.6% 69.8% 71.3%
PPV (%) 69.2% 70.2% 38.5%
TP (n)

Total 204.5 235 240

Per patient 1.70 1.96 2.00
FP (n)

Total 91 1185 3835

Per patient 0.76 0.99 3.20
FN (n)

Total 149 118.5 1135

Per patient 124 0.99 0.95
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Table 4 Dice score, sensitivity and PPV for detection of prostate tumour/recurrence, lymph node
metastasis and bone metastasis. nnU-Net refers to results obtained using the standard nnUN-et
configuration with default settings. nnU-Net* denotes a modified version, where adjustments were
made to ensure convergence to a non-trivial solution

Al vs reading NnU-Net* vs NnU-Net vs Reading vs
reading reading reading
Prostate Dice 0.846 0.789 0 0.812
Sensitivity (%) 84.9% 67.7% 0 82.3%
PPV (%) 85.0% 95.4% - 82.6%
Lymph node Dice 0.744 0.760 0 0.860
Sensitivity (%) 90.7% 65.2% 0 86.1%
PPV (%) 63.0% 91.1% - 86.1%
Bone Dice 0.640 0.521 0 0.665
Sensitivity (%) 60.6% 36.3% 0 69.8%
PPV (%) 69.2% 95.3% - 70.2%

Table 5 Dice score, sensitivity and PPV for detection of prostate tumour/recurrence, lymph node
metastasis and bone metastasis. Al old data is a model trained on the training set of Trdgdrdh
et al. [19] but with the training pipeline presented in this work. Note that these results are on the
validation set

Al vs reading

Al old data vs readingOld Al vs reading

Prostate Dice 0.866 0.798 0.727
Sensitivity (%) 94.9% 91.9% 89.9%
PPV (%) 79.7% 70.5% 61.0%
Lymph node Dice 0.703 0.685 0437
Sensitivity (%) 87.2% 87.9% 90.1%
PPV (%) 58.6% 56.1% 28.9%
Bone Dice 0.705 0.637 0511
Sensitivity (%) 92.5% 95.8% 97.5%
PPV (%) 56.9% 47.7% 34.6%
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Fig. 3 Bland Altman plots of the relationship between TLV in prostate tumour/recurrence, suspected lymph
node metastases and bone metastases measured by the Al and human readings
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Fig. 4 Bland Altman plots of the relationship between TLU in prostate tumour/recurrence, suspected lymph
node metastases and bone metastases measured by the Al and human readings

Without segmentations Reading A Reading B

(B & & (%

> — o—
TV
Prostate tumour 18.4 12.7 16.2
Lymph node metastases 1.0 0.4 0.3
Bone metastases 0 0 0

Fig. 5 A patient example of segmentations performed by the Al method, Reading A and Reading B.

Suspected tumours/metastases are indicated by the arrows. The TLV for the different tumour locations are
noted

Altman plots are displayed in Figs. 3 and 4. The bias was close to 0 in all comparisons.
Limits of agreement for TLV were smaller when comparing the AI method to reading
A than when the manual readings were compared for both prostate lesions and bone
lesions. Limits of agreement for TLU were wider when the AI method was compared
with Reading A than when the manual readings were compared. Examples of segmen-

tations performed by the AI method, Reading A and Reading B are shown in Figs. 5
and 6.

Discussion

In this study, we further advanced a fully automatic Al-based method for detection
and quantification of tumour and suspected metastases on [**F]PSMA-1007 PET-CT
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Without segmentations Al Reading A Reading B
L & L3 &

L 4
TV
Prostate tumour 34.0 28.2 42.8
Lymph node metastases 1.9 0.7 0.9
Bone metastases 234 123 14.8

Fig. 6 A patient example of segmentations performed by the Al method, Reading A and Reading B.
Suspected tumours/metastases are indicated by the arrows. The TLV for the different tumour locations are
noted

Table 6 Median (range) values of tumour burden, measured as TLV and TLU for the prostate
tumour/recurrence, suspected lymph node metastases and bone metastases for the new and old Al,
as well as for the two different manual Readings

Al Reading A Reading B Old Al

TLV Prostate tumour 1.7 (0-613) 1.2 (0-641) 2.0 (0-640) 1.6 (0-491)
TLV Lymph nodes 0.2 (0-342) 0(0-207) 0(0-174) 0.8 (0-224)
metastases

TLV Bone metastases 0.2 (0-602) 0 (0-559) 0 (0-669) 0.5 (0-495)
TLU Prostate tumour 8.5 (0-6509) 6.4 (0-7291) 12.6 (0-7326) 11.3 (0-5903)
TLU Lymph nodes 0.5 (0-3358) 0(0-2433) 0(0-2390) 4.0 (0-2810)
metastases

TLU Bone metastases 1.0 (0-5635) 0 (0-6768) 0 (0-6570) 1.5(0-5199)

images in patients with prostate cancer. The main results demonstrate that the sensi-
tivity of the new model remained comparable to that of nuclear medicine physicians,
while the PPV had significantly improved compared to our previously developed Al
method [19]. For example, the false positive rate per patient for suspected lymph
node metastases decreased from 2.85 to 1.08. Although the overall performance was
better for the new AI method compared to the old, the sensitivities of the new Al
method were worse for bone metastases compared to the old Al method and the
human readers.

Recent systematic reviews have summarized the research on Al applications in
PSMA PET-CT imaging for prostate cancer [28, 29]. Different attempts have been
made with different purposes, ranging from detection of tumours and metastases,
lesion classification, tumour quantification and prediction/prognostication, by using
CNN or classical machine learning techniques, for example, on radiomics mod-
els. Approximately ten studies published in recent years have focused on Al-based
methods for detecting and/or quantifying PSMA PET-CT images [29]. Overall, Al
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methods can detect suspected lymph node metastases and bone metastases with sen-
sitivities ranging between 62 and 97%. The reported PPV in previous research is gen-
erally low and widely variable. The improved PPV of our new Al method compared
to our previous study can be attributed to the larger training set, deep supervision
and a larger field of view for the model. The ablation study (Table 5) indicates that the
performance improvements over our previous method [19] result from both architec-
tural and training pipeline enhancements, as well as the inclusion of additional train-
ing data.

Jafari et al. [30] recently developed an Al-based method that obtained a sensitivity
of 88-95% and a PPV of 98-100% at a lesion level. Their study did not differentiate
between the prostate tumour and metastases, but all tumour-related findings were
marked using a single label. They found strong correlations between automated and
manual measurements of TLV and TLU. Their study used [**Ga]Ga-PSMA-11 images
and had mostly patients with recurrence (89% in the training group and 81-89% in
the test groups, compared with approximately 40% in our test group). The number
of negative scans in their study were very low (none in the training group, 11% in the
test groups). In our test set, 12% were negative examples, but when regarding only
patients without lymph node or bone metastases, we had 46% negative examples for
Reading A and 49% for Reading B. Thus, the patient cohort and distribution of disease
burden are not comparable between the studies. For their study, Jafari et al. [30] used
the publicly available nnU-Net [26], an Al training pipeline, which is commonly used
as an out-of-the-box solution to provide a baseline for comparison. The nnU-Net
[26] training pipeline was also applied to the dataset used in the present study; how-
ever, initial training attempts were unsuccessful. This is probably due to the relatively
high number of negative examples in the training set of this study. When trained on
the full dataset using the default configuration, the nnU-Net rapidly converged to a
solution in which all voxels were classified as background. With modifications to the
training pipeline, convergence to a meaningful segmentation outcome was eventu-
ally achieved. Nevertheless, the sensitivity of the resulting model was unacceptably
low. Attempts to improve sensitivity by adjusting the foreground probability thresh-
old were ineffective, as the model’s output probabilities were highly polarized, tending
toward values close to zero or one for nearly all voxels.

To date, only one CE- and FDA-approved product exists for PSMA PET-CT inter-
pretation, trained on ['®F]DCFPyL PET and low-dose CT scans [31]. The software
aPROMISE offers quantitative analysis of hotspots and standardised reporting of PSMA

Table 7 Spearman correlation coefficients (r,) of the Al-method and the two manual readings

Al vs reading A Al vs reading B Reading Avs B
TLV Prostate tumour 0.94 0.89 0.88
TLV Lymph node metastases  0.77 0.75 0.80
TLV Bone metastases 0.75 0.62 0.75
TLU Prostate tumour 0.96 0.93 0.93
TLU Lymph node metastases  0.76 0.75 0.83

TLU Bone metastases 0.73 0.61 0.76
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PET-CT scans. In a retrospective study [31], the sensitivity for detecting suspicious
lesions was high, ranging between 87% (bone) and 92% (regional lymph nodes), using
manually selected lesions as reference. The number of false positive lesions in this study
was high, ranging from eight instances per patient for suspected bone metastases to 90
for suspected lymph node metastases. It is not known how the software performed on
other PSMA radiopharmaceuticals or if a diagnostic CT with intravenous contrast was
used.

Our AI tool is freely available for research at www.recomia.org. Another research
group has also released an Al model for automatic segmentations of intraprostatic
tumour lesions on [*®Ga]Ga-PSMA PET-CT [32].

Quantitative metrics such as TLV and TLU have recently gained interest for the evalu-
ation of [*”Lu]Lu-PSMA-617 therapy and have also been found to correlate to overall
survival [33-35]. Seifert et al. [35] found that TLV for the total tumour burden, pelvic
lymph node metastases, distant lymph node metastases, bone metastases and visceral
metastases were all significantly correlated to overall survival in a cohort of patients with
varying indications for performing the PSMA PET-CT, including primary staging, bio-
chemical recurrence, castration-sensitive metastatic disease and metastasised castra-
tion-resistant prostate cancer. Thus, it may be increasingly important in the future to
obtain fully automatic calculations of tumour burden at different locations. Our method
obtained measurements of TLV and TLU for all tumour locations that were strongly or
very strongly correlated with manual measurements and in similar ranges as the correla-
tions between two manual measurements.

Some limitations exist. This study was only trained on [*F]JPSMA-1007 PET-CT
scans, and performance of the Al model if other radiopharmaceuticals are used is not
known. The PET-CT scans all came from a single hospital, which limits the generalis-
ability of the model. Most of the manual segmentations used for training of the AI model
were performed by one nuclear medicine physician. In addition, we have not trained the
Al model to detect very rare locations of metastases, for example, lung or liver metasta-
ses (too few examples in our study group). Most of the patients in our training group had
a low-disease burden. Our AI model might perform worse in patients with a very high
tumour burden. Finally, no prospective evaluation of the AI model exists. We are cur-
rently working on an even larger Al-based model, including PET-CT scans with other
PSMA radiopharmaceuticals scanned at other hospitals.

Conclusions

By doubling the training dataset and refining the CNN architecture, we achieved a sub-
stantial improvement in the performance of our fully automated Al-based method for
detecting and quantifying prostate tumour and suspected lymph node and bone metas-
tases on ['*F]PSMA-1007 PET-CT images. In particular, the PPV increased markedly,
presenting a critical advancement toward clinical applicability. To promote transparency
and facilitate further research, we have made our AI model freely available to the sci-
entific community at www.recomia.org. We encourage independent validation across
diverse clinical settings and imaging protocols to assess generalizability and support
future integration into clinical workflows.


http://www.recomia.org
http://www.recomia.org
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Abbreviations

Al Artificial intelligence

CNN Convolutional neural network

(@) Computed tomography

PET Positron emission tomography

PPV Positive predictive value

PSA Prostate specific antigen

PSMA  Prostate specific membrane antigen
LV Total lesion volume

TLU Total lesion uptake

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/540658-025-00786-9.

[ Additional file1 }

Acknowledgements
We would like to thank Ulrika Bitzén, Fredrik Hedeer, Sabine Garpered and Erland Hvittfeldt for annotating the images in
the test set.

Author contributions

All authors participated in the design of the project and the relevant literature search. JU, OE and ML developed the Al
model. ET and KV performed manual annotations of images. ET and OE performed the statistical analyses. DM helped
with data collection and data management. ET, JU and ML drafted the primary manuscript and all authors edited and
reviewed it.

Funding

Open access funding provided by Lund University. We acknowledge the Knut and Alice Wallenberg Foundation, the
Medical Faculty at Lund University, Region Skéne, Malmé General Hospital Foundation, the Swedish Cancer Founda-
tion and the Cancer Research Foundation at the Department of Oncology, Malmé University Hospital and the Swedish
Prostate Cancer Foundation for their generous financial support.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable request.
The Al-based model developed in this study is freely available for research at www.recomia.org.

Declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. The study was approved by the Ethics
Committee at Lund University (#2016/417, #2018/753) and the Swedish Ethical Review Authority (#2021-05734-02).
Informed consent was obtained from all individual participants included in the study.

Consent for publication
The authors affirm that the research participants provided informed consent for publication of images.

Competing interests

JU, OE and ML are stockholders of Eigenvision AB, a company specialising in research and development in automated
image analysis, computer vision and machine learning. JU and OE also serve on the company’s board. The other authors
declare that they have no conflict of interest.

Received: 23 July 2024 Accepted: 16 July 2025

Published online: 20 August 2025

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram |, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49.

2. Drost FH, Osses DF, Nieboer D, Steyerberg EW, Bangma CH, Roobol MJ, et al. Prostate MRI, with or without MRI-
targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev. 2019;4(4):
Cd012663.

3. Ingvar J, Hvittfeldt E, Tragardh E, Simoulis A, Bjartell A. Assessing the accuracy of [(18)FJPSMA-1007 PET/CT for
primary staging of lymph node metastases in intermediate- and high-risk prostate cancer patients. EINMMI Res.
2022;12(1):48.

4. Maurer T, Gschwend JE, Rauscher |, Souvatzoglou M, Haller B, Weirich G, et al. Diagnostic efficacy of (68)gallium-
PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130
consecutive patients with intermediate to high risk prostate cancer. J Urol. 2016;195(5):1436-43.


https://doi.org/10.1186/s40658-025-00786-9
http://www.recomia.org

Tragardh et al. EJINMMI Physics (2025) 12:78 Page 17 of 18

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

Herlemann A, Wenter V, Kretschmer A, Thierfelder KM, Bartenstein P, Faber C, et al. (68)Ga-PSMA positron emis-
sion tomography/computed tomography provides accurate staging of lymph node regions prior to lymph
node dissection in patients with prostate cancer. Eur Urol. 2016;70(4):553-7.

Rowe SP, Macura KJ, Mena E, Blackford AL, Nadal R, Antonarakis ES, et al. PSMA-based [(18)FIDCFPyL PET/CT is
superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol Imaging
Biol. 2016;18(3):411-9.

Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela |, Thomas P, et al. Prostate-specific membrane antigen
PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a
prospective, randomised, multicentre study. Lancet. 2020;395(10231):1208-16.

Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, et al. EAU-ESTRO-SIOG guidelines on pros-

tate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol.
2017;71(4):630-42.

Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on pros-
tate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71(4):618-29.

. Perera M, Papa N, Christidis D, Wetherell D, Hofman MS, Murphy DG, et al. Sensitivity, specificity, and predictors

of positive (68)Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate
cancer: a systematic review and meta-analysis. Eur Urol. 2016;70(6):926-37.

. Huvittfeldt E, Bjoersdorff M, Brolin G, Minarik D, Svegborn SL, Oddstig J, et al. Biokinetics and dosimetry of (18)

F-PSMA-1007 in patients with prostate cancer. Clin Physiol Funct Imag. 2022;42(6):443-52.

. Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, et al. F-18 labelled PSMA-1007: biodistribu-

tion, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J
Nucl Med Mol Imag. 2017;44(4):678-88.

. Afshar-Oromieh A, Hetzheim H, Kubler W, Kratochwil C, Giesel FL, Hope TA, et al. Radiation dosimetry of (68)

Ga-PSMA-11 (HBED-CC) and preliminary evaluation of optimal imaging timing. Eur J Nucl Med Mol Imag.
2016;43(9):1611-20.

. Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, et al. Initial evaluation of [(18)F]IDCFPyL for

prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol.
2015;17(4):565-74.

. Fazal MI, Patel ME, Tye J, Gupta Y. The past, present and future role of artificial intelligence in imaging. Eur J Radiol.

2018;105:246-50.

. Derwael C, Lavergne O, Lovinfosse P, Nechifor V, Salve M, Waltregny D, et al. Interobserver agreement of [(68)Ga]Ga-

PSMA-11 PET/CT images interpretation in men with newly diagnosed prostate cancer. EJNMMI Res. 2020;10(1):15.

. Toriihara A, Nobashi T, Baratto L, Duan H, Moradi F, Park S, et al. Comparison of 3 interpretation criteria for (68)Ga-

PSMAT11 PET based on inter- and intrareader agreement. J Nucl Med. 2020;61(4):533-9.

. Tragardh E, Enqvist O, Ulen J, Hvittfeldt E, Garpered S, Belal SL, et al. Freely available artificial intelligence for pelvic

lymph node metastases in PSMA PET-CT that performs on par with nuclear medicine physicians. Eur J Nucl Med
Mol Imag. 2022;49(10):3412-8.

. Tragardh E, Enqvist O, Ulen J, Jogi J, Bitzen U, Hedeer F, et al. Freely available, fully automated Al-based analysis of

primary tumour and metastases of prostate cancer in whole-body [(18)F]-PSMA-1007 PET-CT. Diagnostics. 2022.
https://doi.org/10.3390/diagnostics12092101.

Tragardh E, Minarik D, Brolin G, Bitzen U, Olsson B, Oddstig J. Optimization of [(18)FIPSMA-1007 PET-CT using regu-
larized reconstruction in patients with prostate cancer. EJINMMI Phys. 2020;7(1):31.

Tragardh E, Borrelli P Kaboteh R, Gillberg T, Ulen J, Engvist O, et al. RECOMIA-a cloud-based platform for artificial
intelligence research in nuclear medicine and radiology. EJINMMI Phys. 2020;7(1):51.

Cicek O, Abdulkadir A, Lienkamp S, Brox T, Ronneberger O. 3D U-NET: Learning dense volumetric segmentation
from sparse annotation. In: Ourselin S, Joskowicz L, Sabunco M, Unal G, Wells W, editors. Medical image computing
and computer-assisted intervension—MICCAI 2016: Springer; 2016.

Cardoso W, Li R, Brown N, Ma E, Kerfoot Y, Wang B, et al. Monai: An open-source framework for deep learning in
healthcare. arXiv preprint arXiv:21102701. 2022.

Dozat T. Incorporating Nesterov Momentum into Adam. In: Proceedings of the 4th international conference on
learning representations; 2016. pp. 1-4.

Lee C-Y, Xie S, Gallagher P, Zhang Z, Tu Z. Deeply-Supervised Nets. In: Guy L, Vishwanathan SVN, editors. Proceedings
of the Eighteenth International Conference on Artificial Intelligence and Statistics; Proceedings of Machine Learning
Research: PMLR; 2015. pp. 562--70.

Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. NnU-net: a self-configuring method for deep learning-
based biomedical image segmentation. Nat Methods. 2021;18(2):203-11.

Ceci F, Oprea-Lager DE, Emmett L, Adam JA, Bomaniji J, Czernin J, et al. E-PSMA: the EANM standardized reporting
guidelines v1.0 for PSMA-PET. Eur J Nucl Med Mol Imag. 2021;48(5):1626-38.

Lindgren Belal S, Frantz S, Minarik D, Enqvist O, Wikstrom E, Edenbrandt L, et al. Applications of artificial intelligence
in PSMA PET/CT for prostate cancer imaging. Semin Nucl Med. 2024;54(1):141-9.

Liu J, Cundy TP, Woon DTS, Lawrentschuk N. A systematic review on artificial intelligence evaluating metastatic pros-
tatic cancer and lymph nodes on PSMA PET scans. Cancers (Basel). 2024. https://doi.org/10.3390/cancers16030486.
Jafari E, Zarei A, Dadgar H, Keshavarz A, Manafi-Farid R, Rostami H, et al. A convolutional neural network-based
system for fully automatic segmentation of whole-body [(68)Ga]Ga-PSMA PET images in prostate cancer. Eur J Nucl
Med Mol Imag. 2024;51(5):1476-87.

Johnsson K, Brynolfsson J, Sahlstedt H, Nickols NG, Rettig M, Probst S, et al. Analytical performance of aPROMISE:
automated anatomic contextualization, detection, and quantification of [(18)FIDCFPyL (PSMA) imaging for stand-
ardized reporting. Eur J Nucl Med Mol Imag. 2022;49(3):1041-51.

Ghezzo S, Mongardi S, Bezzi C, Samanes Gajate AM, Preza E, Gotuzzo |, et al. External validation of a convolutional
neural network for the automatic segmentation of intraprostatic tumor lesions on (68)Ga-PSMA PET images. Front
Med (Lausanne). 2023;10:1133269.


https://doi.org/10.3390/diagnostics12092101
https://doi.org/10.3390/cancers16030486

Tragardh et al. EINMMI Physics (2025) 12:78 Page 18 of 18

33. Kind F, Eder AC, Jilg CA, Hartrampf PE, Meyer PT, Ruf J, et al. Prognostic value of tumor volume assessment on PSMA
PET after (177)Lu-PSMA radioligand therapy evaluated by PSMA PET/CT consensus statement and RECIP 1.0. J Nucl
Med. 2023;64(4):605-10.

34, Seifert R, Kessel K, Schlack K, Weber M, Herrmann K, Spanke M, et al. PSMA PET total tumor volume predicts out-
come of patients with advanced prostate cancer receiving [(177)Lu]Lu-PSMA-617 radioligand therapy in a bicentric
analysis. Eur J Nucl Med Mol Imag. 2021,48(4):1200-10.

35. Seifert R, Rasul S, Seitzer K, Eveslage M, Rahbar Nikoukar L, Kessel K, et al. A prognostic risk score for prostate cancer
based on PSMA PET-derived organ-specific tumor volumes. Radiology. 2023;307(4): €222010.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



	A fully automated AI-based method for tumour detection and quantification on [18F]PSMA-1007 PET–CT images in prostate cancer
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Patients
	Imaging
	Manual segmentations for training
	AI model
	Sampling
	Training
	Augmentation
	Inference
	Reference model training
	Ablation study of pipeline and data contributions
	Model evaluation
	Statistical analysis

	Results
	Detection of suspected tumour lesions
	Quantification of tumour burden
	Discussion

	Conclusions
	Acknowledgements
	References


