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A fully automated AI‑based method 
for tumour detection and quantification on [18F]
PSMA‑1007 PET–CT images in prostate cancer
Elin Trägårdh1,2*   , Johannes Ulén3, Olof Enqvist3,4, Måns Larsson3, Kristian Valind1,2, David Minarik1,5 and 
Lars Edenbrandt6,7 

Abstract 

Background:  In this study, we further developed an artificial intelligence (AI)-based 
method for the detection and quantification of tumours in the prostate, lymph nodes 
and bone in prostate-specific membrane antigen (PSMA)-targeting positron emission 
tomography with computed tomography (PET–CT) images.

Methods:  A total of 1064 [18F]PSMA-1007 PET–CT scans were used (approximately 
twice as many compared to our previous AI model), of which 120 were used as test 
set. Suspected lesions were manually annotated and used as ground truth. A convolu-
tional neural network was developed and trained. The sensitivity and positive predic-
tive value (PPV) were calculated using two sets of manual segmentations as reference. 
Results were also compared to our previously developed AI method. The correlation 
between manually and AI-based calculations of total lesion volume (TLV) and total 
lesion uptake (TLU) were calculated.

Results:  The sensitivities of the AI method were 85% for prostate tumour/recurrence, 
91% for lymph node metastases and 61% for bone metastases (82%, 86% and 70% 
for manual readings and 66%, 88% and 71% for the old AI method). The PPVs of the AI 
method were 85%, 83% and 58%, respectively (63%, 86% and 39% for manual read-
ings, and 69%, 70% and 39% for the old AI method). The correlations between manual 
and AI-based calculations of TLV and TLU ranged from r = 0.62 to r = 0.96.

Conclusion:  The performance of the newly developed and fully automated AI-based 
method for detecting and quantifying prostate tumour and suspected lymph node 
and bone metastases increased significantly, especially the PPV. The AI method is freely 
available to other researchers (www.​recom​ia.​org).

Keywords:  Prostate cancer, PET–CT, Artificial intelligence, PSMA, CNN

Background
Prostate cancer is one of the most common cancers and one of the most common causes 
of cancer deaths among men worldwide [1]. For correct management, risk stratifica-
tion is crucial. Imaging plays an important role in the work-up of prostate cancer. Mul-
tiparametric magnetic resonance imaging is often performed in patients with elevated 
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prostate-specific antigen (PSA) levels and has been found to accurately select who will 
benefit from a prostate biopsy [2]. In patients with a confirmed high-risk disease or with 
a rising PSA after a curative treatment, other imaging methods are available. The intro-
duction of prostate-specific membrane antigen (PSMA)-targeted positron emission 
tomography (PET) imaging has improved the detection of loco-regional and metastatic 
disease [3–7]. In recent years, it has emerged as the preferred method for staging newly 
diagnosed high-risk prostate cancer, finding sites of recurrence and evaluating eligibility 
for treatment with [177Lu]Lu-PSMA-617 and analogues [8–10].

For diagnostic purposes, several different PSMA agents have been introduced, such as 
[68Ga]Ga-PSMA-11, [18F]DCFPyL and [18F]PSMA-1007 [11–14]. The widespread adop-
tion of PSMA PET–CT has significantly increased the workload for nuclear medicine 
departments and nuclear medicine physicians. Artificial intelligence (AI) algorithms, 
particularly deep learning such as convolutional neural networks (CNN), have demon-
strated progress in image-recognition tasks. Integrating an AI application within the 
imaging workflow could potentially increase efficiency, reduce errors and reduce inter-
individual variations [15–17].

Previously, we developed a fully automated AI-based method that can detect and 
quantify prostate cancer-related tumours and metastases in PSMA PET–CT scans [18, 
19]. Our previous studies showed that the AI-based method obtained a sensitivity on 
par with that of nuclear medicine physicians. However, the AI-based method had a 
higher number of false positive lesions compared to nuclear medicine physicians, espe-
cially for the detection of suspected lymph node metastases (on average 2.8 false positive 
lesions per patient for the AI-based method and 0.5 for physicians) and bone metasta-
ses (on average 3 false positive lesions per patient for the AI-based method and 1.8 for 
physicians). The correlations of total lesion volume (TLV) and total lesion uptake (TLU) 
between AI-based and manual calculations were moderate to strong. Previous studies 
were performed with a training and validation group of 540 and 120, respectively. We 
hypothesise that the performance of the AI-based method can be improved with a larger 
training group and alterations in the CNN method.

The aim of the present study was to develop an AI-based method for detecting and 
quantifying tumour lesions (prostate tumour, prostate recurrence, as well as metasta-
ses in lymph nodes and bone) in [18F]PSMA-1007 PET–CT images and to compare the 
results to experienced nuclear medicine physicians. Secondary aims were to address the 
individual contributions of the additional data and the newly developed training pipe-
line, and to make the AI method freely available for future research.

Methods
Patients

Patients admitted for clinically indicated [18F]PSMA-1007 PET–CT to Department of 
Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund or Malmö, 
Sweden, were eligible for inclusion. Indications for PSMA PET–CT referrals at our hos-
pital included primary staging of high-risk prostate cancer or secondary staging after 
biochemical recurrence. The lower PSA limit for PSMA PET–CT referrals due to bio-
chemical recurrence at our hospital was 0.2 ng/ml. A total of 1064 patients, who were 
scanned from December 2019 to December 2021, were included. All 660 patients from 
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the study conducted by Tragardh et al. [19] were included as well as an additional 404 
consecutive patients between May 2021 and December 2021. The study was approved by 
the ethics committee at Lund University (#2016/417, #2018/753 and #2021–05734-02) 
and followed the principles of the Declaration of Helsinki. All patients provided written 
informed consent.

Imaging

Patients were injected with 4 MBq/kg of [18F]PSMA-1007 and after two hours imaged 
on a Discovery MI PET–CT (GE Healthcare, Milwaukee, WI, USA) from the base of the 
skull to the mid-thigh. The acquisition time was two minutes per bed position. Images 
were reconstructed with a block-sequential regularisation expectation maximisation 
algorithm (Q.Clear; GE Healthcare, Milwaukee, WI, USA) with a beta factor of 800 [20]. 
Time-of-flight, point spread function modelling, a 256 × 256 matrix with pixel size of 
2.7 × 2.7 mm2 and a slice thickness of 2.8 mm were used. Either a low-dose or a diagnos-
tic CT with oral and intravenous contrast was performed and used for attenuation cor-
rection and anatomic correlation.

Manual segmentations for training

Two experienced nuclear medicine physicians segmented a suspected prostate tumour 
or local recurrence, suspected lymph node metastases and suspected bone metastases 
in the PSMA PET–CT images. One of the readers segmented 921 of the scans, and the 
other reader segmented the remaining 143 scans. The cloud-based annotation platform 
RECOMIA (www.​recom​ia.​org) was used for the manual segmentations. The RECOMIA 
platform includes basic display features for PET–CT images and segmentation tools 
[21]. Of the full set of 1064 studies, 120 were used as a test set and 120 as a validation set. 
The test and validation sets were the same as in the Tragardh et al. study [19]. In the test 
set, approximately 60% of the patients were referred due to primary staging and 40% due 
to biochemical recurrence. The remaining 824 studies were used as the training set.

AI model

At the core of our AI solution, a four-level U-Net [22] was implemented and trained 
using the MONAI framework [23]. Inference and training were both performed on 
patches of size 192 × 192 × 192 pixels.

Input to the network consisted of the CT image and the SUV image calculated from 
the PET image. Both images were resampled to a pixel size of 1.33 × 1.33. × 3.0 mm, and 
intensities were clamped and normalised to [0, 1]. The CT image was clamped to [–1024, 
3072], and the SUV image was clamped to [0, 100] before normalisation.

Compared to the Tragardh et al. study [19], the most important differences were.

•	 Deeper U-Net Using a deeper U-Net allows for a larger receptive field and more pow-
erful modelling capacity.

•	 Same padding Zero-padding the input of each convolutional layer such that the out-
put retains the same spatial dimensions as the input. This typically leads to more effi-
cient training and much faster inference.

•	 Deep supervision An auxiliary loss was applied to lower levels of the network.

http://www.recomia.org
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Sampling

For each training image, a sample mask, where each foreground class was weighted 
equally, was constructed. In addition, the total weight of all foreground pixels was 
equal to the total weight of all background pixels. In other words, each foreground 
sampled equally often, and half of the samples were background samples.

All pixels within each class were sampled at the same frequency. However, after 
each 20-epoch interval, the sampling was updated based on the pixelwise loss of the 
current model. This was done assure that ‘hard’ background pixels were sufficiently 
sampled. More specifically, 50% of the training images were randomly selected and 
had their sample masks updated. For the loss sample mask, all background pixels 
were weighted proportionally to the pixelwise loss up to an allowed maximum value 
(500 times the average sample probability). The new sample mask was then created by 
taking the average of the old sample mask and the loss sample mask in each pixel. This 
enabled more sampling of the background pixels where the model struggled while 
keeping the foreground sampling and the foreground to background sampling ratio 
fixed.

Note that the samples drawn from the sample mask specified the centre pixel of the 
input patch. This means that even though a foreground pixel was sampled, the corre-
sponding patch contained many background samples.

Training

The model was trained using mixed half precision on an NVIDIA RTX 3090 GPU. 
During training, an epoch was defined as 10,000 samples and the model was trained 
for 200 epochs. The model was optimised using Nadam [24] with an initial learning 
rate set to 5 × 10–5. The learning rate was multiplied by 0.985 after each completed 
epoch. Weighted categorical-cross entropy was used as a loss function with weight 
1.0 for background and 25.0 for foreground. In addition, deep supervision [25] was 
applied to lower levels of the network with weights of 0.5, 0.25 and 0.125.

Every 40 epochs, a model was saved, and the model with the best performance on 
the validation set was chosen (the one that had trained for 80 epochs).

Augmentation

As with most medical applications, data was limited. To address this limitation and 
enhance the dataset’s variability as well as the resulting model’s robustness, data aug-
mentation was used. The patches were spatially augmented by applying a randomised 
affine transformation with the following randomisation ranges.

•	 Scaling: − 20% to 20%.
•	 Rotation: up to 15°.
•	 Shear: − 0.05 to + 0.05.
•	 Translation: move center to anywhere in input patch.

Additionally, the CT intensities were randomly augmented:
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•	 25% chance to apply smoothing using a Gaussian kernel with standard deviation 
drawn uniformly from the range 0.25 to 1.0 for each dimension.

•	 50% chance to add Gaussian noise. The mean value for the distribution was drawn 
uniformly from − 50 to 50 and the standard deviation was drawn uniformly from 0 
to 100.

•	 25% chance to apply intensity scaling. The intensities were scaled with a factor 
drawn uniformly from [0.95, 1.05]

Note that each probability was independent, and that some patches received no 
intensity augmentation.

Inference

Inference was performed using a sliding window with the same input patch size as for 
the training, i.e. 192 × 192 × 192 pixels. With same padding, an output was produced 
for each pixel in the input patch, but results for pixels close to the patch boundary 
were less reliable, as their receptive field was reduced. Hence input patches generated 
with an overlap of 94 pixels, and for pixels where multiple outputs were computed, 
the one with the largest receptive field was used.

The average inference time on the test set images were 42.5 s on a computer with a 
NVIDIA RTX 3090 GPU and an AMD Ryzen 9 5900X 12-Core Processor.

Reference model training

For comparison, a nnU-Net model  [26] was also trained on the same dataset using 
the publicly available training pipeline. Initial training with the default "3d_fullres" 
configuration led to rapid convergence to a degenerate solution that predicted only 
background. To address this, a modified training strategy was employed: the model 
was first pretrained on a small, handpicked subset of the data consisting exclusively 
of studies containing all target classes and a lot of foreground. This pretrained model 
was then used to initialize the full training. Additionally, the “oversample foreground” 
percent parameter was increased to 0.66 to further mitigate the risk of background-
only predictions. Dice score, sensitivity and PPV were compared.

Ablation study of pipeline and data contributions

An ablation study was conducted to assess the individual contributions of the newly 
developed training pipeline and the expanded training dataset. Three configurations 
were evaluated:

1.	 Baseline model, as described in Trägårdh et al. [19], using the training pipeline and 
dataset from their paper,

2.	 Pipeline-only model, in which the new training pipeline was applied to the dataset 
from [19],

3.	 Model trained on the expanded dataset with the new training pipeline.



Page 6 of 18Trägårdh et al. EJNMMI Physics           (2025) 12:78 

Through this setup, the relative contributions of the training pipeline improvements 
and data expansion were isolated and quantified. Dice score, sensitivity and PPV were 
compared.

Model evaluation

To compare the results of this updated AI-based method to previous results, we 
employed a similar evaluation method as described by Tragardh et al. [19]. The perfor-
mance of the AI-based method was assessed using the test set of 120 patients and two 
sets of ‘expert readers’.

Reading A was conducted by an experienced nuclear medicine physician who also per-
formed most of the manual segmentations for the model training. Reading B was con-
ducted by five other physicians (three board certified nuclear medicine physicians and 
two residents in nuclear medicine), each segmenting suspected tumours and metastases 
in 24 cases from the test set. Their experience with PET–CT readings ranged from 5 to 
over 10 years. The readers were instructed to mark all suspected malignant lesions in the 
prostate and seminal vesicles in patients with a prostate, and suspicious recurrence in 
the prostate bed in patients without a prostate (after prostatectomy). They also marked 
suspected lymph node metastases and bone metastases, using the E-PSMA grading sys-
tem as guidance [27].

The AI-based method was evaluated on a lesion-based level (see below), focusing on 
suspected prostate tumour/recurrence, suspected lymph node metastases and suspected 
bone metastases. To assess inter-reader variability, comparisons were made between the 
expert readers. Readings A and B were alternately used as the reference (‘gold standard’) 
and compared to either the other human reading or the AI-based method.

True positive lesions were defined as lesions with either partial or full segmenta-
tion overlap with the reference reading. Lesions detected by the AI-based method or a 
human reading without segmentation overlap with the reference reading were regarded 
as a false positive. False negative lesions were defined as a lesion detected by the ref-
erence reading, but not by the AI-based method or a human reading. Sensitivity was 
calculated as the proportion of suspected lesions detected by a human reading or the 
AI-based method of those detected by the reference human reading. The positive pre-
dictive value (PPV) was calculated as the proportion of true positive lesions for a human 
reading or the AI method compared to the reference reading, divided by the sum of false 
positive and true positive lesions compared to the same reference reading.

Tumour burden was measured as TLV (cm3) and TLU (cm3). TLV was calculated by 
summing the volume of all positive voxels identified by manual or AI-based segmenta-
tions. TLU was calculated by multiplying the SUVmean by the TLV for each lesion and 
then summing all lesion TLUs to provide a total TLU.

Statistical analysis

Sensitivity and PPV were calculated for the AI-based method and the human readings, 
as described above. The correlations of the tumour burden (TLV and TLU) measured 
by the AI model and Reading A were evaluated with Bland Altman plots, as well as with 
scatter plots and the Spearman rank correlation with a two-tailed test. A significance 
level of p = 0.05 was used. The correlation was considered very strong for Spearman’s 
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coefficient r > 0.8, strong if the value was between 0.6 and 0.8, moderate for values 
between 0.4 and 0.6 and weak for values below 0.4.

For each lesion type the new AI model was also compared to the one from Trägårdh 
et al. [19] using two sign tests. For each image the number of false positives (negatives) 
for the two models provided a pair of observations. The sign test was used to test the 
hypothesis that the two models were equally likely to produce more false positives (neg-
atives) for an image. A significance level of p = 0.05 was used. The statistical analysis was 
carried out in R, version 4.0.3.

Results
Detection of suspected tumour lesions

When all tumours/metastases were grouped together, Reading A noted a total of 622 
suspected lesions (average 5.2 per patient), to be compared to 780 (6.5 per patient) for 
Reading B, 691 (5.8 per patient) for the AI method and 1293 (10.8 per patient) for the old 
AI method. The sensitivity for the AI method compared to Reading A was 85% and the 
PPV was 72%.

For prostate tumour/recurrence, Reading A detected suspected tumour(s) in 79 (66%) 
of the patients. On average, 0.8 prostate tumour/recurrence was detected per patient 
for Reading A. The sensitivity for the AI method for detecting prostate tumour/recur-
rence was 95% when Reading A was used as reference, while the PPV was 84%. This can 
be compared to a sensitivity of 94% and a PPV of 55% for our previously developed AI 
method. The new AI method had fewer false positives than the older method in 41 of the 
test images and more in three of the test images, which showed a significant difference 
(p < 0.001). The number of false negatives was equal in all test images.

For lymph node metastases, Reading A detected suspected metastases in 42 (35%) of 
the patients. On average, Reading A detected 2.1 lymph node metastases per patient. The 
sensitivity for the AI method was 90% compared to Reading A, and the PPV was 64%. 
This can be compared to a sensitivity of 88% and a PPV of 39% for our previously devel-
oped AI method. The new AI method had fewer false positives than the older method in 
71 of the test images and more in 14 of the test images, which indicated a significant dif-
ference (p < 0.001). The difference in false negatives was not significant (p = 0.75).

For bone metastases, Reading A detected suspected metastases in 39 (33%) of the 
patients, corresponding to an average of 2.4 suspected bone metastases per patient. 
The sensitivity for the AI method was 74% and the PPV was 71% when Reading A was 
used as reference. In comparison, our previously developed AI method had a sensitivity 
of 88% and a PPV of 39%. The new AI method had fewer false positives than the older 
method in 63 of the test images and more in 13 of the test images, which was a signifi-
cant difference (p < 0.001). The difference in false negatives was not significant (p = 0.55).

Comparisons of sensitivity and PPV for different locations for the new and old AI 
method as well as the human readings can be found in Figs.  1 and 2. The number of 
false positive lesions were considerably lower for the new AI method compared to the 
old, which is detailed in Tables 1, 2 and 3. The sensitivity for the new AI method was 
worse for bone metastases compared to the old AI method and the human readers. The 
new AI method had worse PPVs compared to human readings for detecting lymph node 
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metastases and worse PPV compared to Reading A for prostate tumour/recurrence and 
bone metastases when Reading A was used as reference.

Table  4 presents a comparison between the AI method and the reference nnU-Net 
model. The nnU-Net model achieved higher PPV across all three classes. However, this 
came at the cost of low sensitivity, significantly lower compared to the proposed AI 
method.

Table 5 presents an ablation study conducted to evaluate the individual contributions 
of the additional training data and the newly developed training pipeline, in comparison 
to the approach presented by Trägårdh et al. [19]. Based on the component-wise Dice 
scores, the new training pipeline demonstrated improved performance over the original 
method. As expected, further performance gains were observed when the model was 

Fig. 1  Sensitivity of the new and the old AI models as well as the human readings, when using Reading A 
and Reading B as references, respectively
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trained on the expanded dataset. It should be noted that the Dice scores reported were 
calculated at the component level and can be interpreted as the harmonic mean of posi-
tive predictive value (PPV) and sensitivity, thereby reflecting a balance between these 
two metrics.

Quantification of tumour burden

The tumour burden, measured as TLV and TLU, is shown in Table 6. The correlations 
for TLV and TLU between the new AI method and Reading A ranged between 0.73 
and 0.96; for the AI method and Reading B between 0.62 and 0.93; and between the 
two manual readings between 0.76 and 0.93. All correlations were highly significant 
(p < 0.001) (Table  7). Scatter plots are shown in supplementary Figs.  1 and 2. Bland 

Fig. 2  PPV of the new and the old AI models as well as the human readings, when using Reading A and 
Reading B as references, respectively
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Table 1  Sensitivity, positive predictive value (PPV), true and false positive lesions (TP/FP), and false 
negative lesions (FN) for detection of prostate tumour/recurrence. Average is shown when one 
Reading at a time was used as reference

n = 120 patients AI vs reading Reading vs reading Old AI vs reading

Sensitivity (%) 84.9% 82.3% 68.7%

PPV (%) 85.0% 82.6% 57.7%

TP (n)

 Total 93.5 90.5 95

 Per patient 0.78 0.75 0.79

FP (n)

 Total 16.5 21 70

 Per patient 0.14 0.18 0.58

FN (n)

 Total 18 21 16.5

 Per patient 0.15 0.18 0.14

Table 2  Sensitivity, positive predictive value (PPV), true and false positive lesions (TP/FP), and false 
negative lesions (FN) for detection of suspected lymph node metastases. Average is shown when 
one Reading at a time was used as reference

n = 120 patients AI vs reading Reading vs reading Old AI vs reading

Sensitivity (%) 90.7% 86.1% 87.9%

PPV (%) 63.0% 86.1% 38.5%

TP (n)

 Total 220.5 209 213.5

 Per patient 1.84 1.74 1.78

FP (n)

 Total 129.5 34 341.5

 Per patient 1.08 0.28 2.85

FN (n)

 Total 22.5 34 29.5

 Per patient 0.19 0.28 0.25

Table 3  Sensitivity, positive predictive value (PPV), true and false positive lesions (TP/FP), and false 
negative lesions (FN) for detection of suspected bone metastases. Average is shown when one 
Reading at a time was used as reference

n = 120 patients AI vs reading Reading vs reading Old AI vs reading

Sensitivity (%) 60.6% 69.8% 71.3%

PPV (%) 69.2% 70.2% 38.5%

TP (n)

 Total 204.5 235 240

 Per patient 1.70 1.96 2.00

FP (n)

 Total 91 118.5 383.5

 Per patient 0.76 0.99 3.20

FN (n)

 Total 149 118.5 113.5

 Per patient 1.24 0.99 0.95
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Table 4  Dice score, sensitivity and PPV for detection of prostate tumour/recurrence, lymph node 
metastasis and bone metastasis. nnU-Net refers to results obtained using the standard nnUN-et 
configuration with default settings. nnU-Net* denotes a modified version, where adjustments were 
made to ensure convergence to a non-trivial solution

AI vs reading NnU-Net* vs 
reading

NnU-Net vs 
reading

Reading vs 
reading

Prostate Dice 0.846 0.789 0 0.812

Sensitivity (%) 84.9% 67.7% 0 82.3%

PPV (%) 85.0% 95.4% – 82.6%

Lymph node Dice 0.744 0.760 0 0.860

Sensitivity (%) 90.7% 65.2% 0 86.1%

PPV (%) 63.0% 91.1% – 86.1%

Bone Dice 0.640 0.521 0 0.665

Sensitivity (%) 60.6% 36.3% 0 69.8%

PPV (%) 69.2% 95.3% – 70.2%

Table 5  Dice score, sensitivity and PPV for detection of prostate tumour/recurrence, lymph node 
metastasis and bone metastasis. AI old data is a model trained on the training set of Trägårdh 
et al. [19] but with the training pipeline presented in this work. Note that these results are on the 
validation set

AI vs reading AI old data vs readingOld AI vs reading

Prostate Dice 0.866 0.798 0.727

Sensitivity (%) 94.9% 91.9% 89.9%

PPV (%) 79.7% 70.5% 61.0%

Lymph node Dice 0.703 0.685 0.437

Sensitivity (%) 87.2% 87.9% 90.1%

PPV (%) 58.6% 56.1% 28.9%

Bone Dice 0.705 0.637 0.511

Sensitivity (%) 92.5% 95.8% 97.5%

PPV (%) 56.9% 47.7% 34.6%

Fig. 3  Bland Altman plots of the relationship between TLV in prostate tumour/recurrence, suspected lymph 
node metastases and bone metastases measured by the AI and human readings
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Altman plots are displayed in Figs. 3 and 4. The bias was close to 0 in all comparisons. 
Limits of agreement for TLV were smaller when comparing the AI method to reading 
A than when the manual readings were compared for both prostate lesions and bone 
lesions. Limits of agreement for TLU were wider when the AI method was compared 
with Reading A than when the manual readings were compared. Examples of segmen-
tations performed by the AI method, Reading A and Reading B are shown in Figs. 5 
and 6.

Discussion

In this study, we further advanced a fully automatic AI-based method for detection 
and quantification of tumour and suspected metastases on [18F]PSMA-1007 PET–CT 

Fig. 4  Bland Altman plots of the relationship between TLU in prostate tumour/recurrence, suspected lymph 
node metastases and bone metastases measured by the AI and human readings

Fig. 5  A patient example of segmentations performed by the AI method, Reading A and Reading B. 
Suspected tumours/metastases are indicated by the arrows. The TLV for the different tumour locations are 
noted
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images in patients with prostate cancer. The main results demonstrate that the sensi-
tivity of the new model remained comparable to that of nuclear medicine physicians, 
while the PPV had significantly improved compared to our previously developed AI 
method [19]. For example, the false positive rate per patient for suspected lymph 
node metastases decreased from 2.85 to 1.08. Although the overall performance was 
better for the new AI method compared to the old, the sensitivities of the new AI 
method were worse for bone metastases compared to the old AI method and the 
human readers.

Recent systematic reviews have summarized the research on AI applications in 
PSMA PET–CT imaging for prostate cancer [28, 29]. Different attempts have been 
made with different purposes, ranging from detection of tumours and metastases, 
lesion classification, tumour quantification and prediction/prognostication, by using 
CNN or classical machine learning techniques, for example, on radiomics mod-
els. Approximately ten studies published in recent years have focused on AI-based 
methods for detecting and/or quantifying PSMA PET–CT images [29]. Overall, AI 

Table 6  Median (range) values of tumour burden, measured as TLV and TLU for the prostate 
tumour/recurrence, suspected lymph node metastases and bone metastases for the new and old AI, 
as well as for the two different manual Readings

AI Reading A Reading B Old AI

TLV Prostate tumour 1.7 (0–613) 1.2 (0–641) 2.0 (0–640) 1.6 (0–491)

TLV Lymph nodes 
metastases

0.2 (0–342) 0 (0–207) 0 (0–174) 0.8 (0–224)

TLV Bone metastases 0.2 (0–602) 0 (0–559) 0 (0–669) 0.5 (0–495)

TLU Prostate tumour 8.5 (0–6509) 6.4 (0–7291) 12.6 (0–7326) 11.3 (0–5903)

TLU Lymph nodes 
metastases

0.5 (0–3358) 0 (0–2433) 0 (0–2390) 4.0 (0–2810)

TLU Bone metastases 1.0 (0–5635) 0 (0–6768) 0 (0–6570) 1.5 (0–5199)

Fig. 6  A patient example of segmentations performed by the AI method, Reading A and Reading B. 
Suspected tumours/metastases are indicated by the arrows. The TLV for the different tumour locations are 
noted
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methods can detect suspected lymph node metastases and bone metastases with sen-
sitivities ranging between 62 and 97%. The reported PPV in previous research is gen-
erally low and widely variable. The improved PPV of our new AI method compared 
to our previous study can be attributed to the larger training set, deep supervision 
and a larger field of view for the model. The ablation study (Table 5) indicates that the 
performance improvements over our previous method [19] result from both architec-
tural and training pipeline enhancements, as well as the inclusion of additional train-
ing data.

Jafari et al. [30] recently developed an AI-based method that obtained a sensitivity 
of 88–95% and a PPV of 98–100% at a lesion level. Their study did not differentiate 
between the prostate tumour and metastases, but all tumour-related findings were 
marked using a single label. They found strong correlations between automated and 
manual measurements of TLV and TLU. Their study used [68Ga]Ga-PSMA-11 images 
and had mostly patients with recurrence (89% in the training group and 81–89% in 
the test groups, compared with approximately 40% in our test group). The number 
of negative scans in their study were very low (none in the training group, 11% in the 
test groups). In our test set, 12% were negative examples, but when regarding only 
patients without lymph node or bone metastases, we had 46% negative examples for 
Reading A and 49% for Reading B. Thus, the patient cohort and distribution of disease 
burden are not comparable between the studies. For their study, Jafari et al. [30] used 
the publicly available nnU-Net [26], an AI training pipeline, which is commonly used 
as an out-of-the-box solution to provide a baseline for comparison. The nnU-Net 
[26] training pipeline was also applied to the dataset used in the present study; how-
ever, initial training attempts were unsuccessful. This is probably due to the relatively 
high number of negative examples in the training set of this study. When trained on 
the full dataset using the default configuration, the nnU-Net rapidly converged to a 
solution in which all voxels were classified as background. With modifications to the 
training pipeline, convergence to a meaningful segmentation outcome was eventu-
ally achieved. Nevertheless, the sensitivity of the resulting model was unacceptably 
low. Attempts to improve sensitivity by adjusting the foreground probability thresh-
old were ineffective, as the model’s output probabilities were highly polarized, tending 
toward values close to zero or one for nearly all voxels.

To date, only one CE- and FDA-approved product exists for PSMA PET–CT inter-
pretation, trained on [18F]DCFPyL PET and low-dose CT scans [31]. The software 
aPROMISE offers quantitative analysis of hotspots and standardised reporting of PSMA 

Table 7  Spearman correlation coefficients (rs) of the AI-method and the two manual readings

AI vs reading A AI vs reading B Reading A vs B

TLV Prostate tumour 0.94 0.89 0.88

TLV Lymph node metastases 0.77 0.75 0.80

TLV Bone metastases 0.75 0.62 0.75

TLU Prostate tumour 0.96 0.93 0.93

TLU Lymph node metastases 0.76 0.75 0.83

TLU Bone metastases 0.73 0.61 0.76
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PET–CT scans. In a retrospective study [31], the sensitivity for detecting suspicious 
lesions was high, ranging between 87% (bone) and 92% (regional lymph nodes), using 
manually selected lesions as reference. The number of false positive lesions in this study 
was high, ranging from eight instances per patient for suspected bone metastases to 90 
for suspected lymph node metastases. It is not known how the software performed on 
other PSMA radiopharmaceuticals or if a diagnostic CT with intravenous contrast was 
used.

Our AI tool is freely available for research at www.​recom​ia.​org. Another research 
group has also released an AI model for automatic segmentations of intraprostatic 
tumour lesions on [68Ga]Ga-PSMA PET–CT [32].

Quantitative metrics such as TLV and TLU have recently gained interest for the evalu-
ation of [177Lu]Lu-PSMA-617 therapy and have also been found to correlate to overall 
survival [33–35]. Seifert et al. [35] found that TLV for the total tumour burden, pelvic 
lymph node metastases, distant lymph node metastases, bone metastases and visceral 
metastases were all significantly correlated to overall survival in a cohort of patients with 
varying indications for performing the PSMA PET–CT, including primary staging, bio-
chemical recurrence, castration-sensitive metastatic disease and metastasised castra-
tion-resistant prostate cancer. Thus, it may be increasingly important in the future to 
obtain fully automatic calculations of tumour burden at different locations. Our method 
obtained measurements of TLV and TLU for all tumour locations that were strongly or 
very strongly correlated with manual measurements and in similar ranges as the correla-
tions between two manual measurements.

Some limitations exist. This study was only trained on [18F]PSMA-1007 PET–CT 
scans, and performance of the AI model if other radiopharmaceuticals are used is not 
known. The PET–CT scans all came from a single hospital, which limits the generalis-
ability of the model. Most of the manual segmentations used for training of the AI model 
were performed by one nuclear medicine physician. In addition, we have not trained the 
AI model to detect very rare locations of metastases, for example, lung or liver metasta-
ses (too few examples in our study group). Most of the patients in our training group had 
a low-disease burden. Our AI model might perform worse in patients with a very high 
tumour burden. Finally, no prospective evaluation of the AI model exists. We are cur-
rently working on an even larger AI-based model, including PET–CT scans with other 
PSMA radiopharmaceuticals scanned at other hospitals.

Conclusions
By doubling the training dataset and refining the CNN architecture, we achieved a sub-
stantial improvement in the performance of our fully automated AI-based method for 
detecting and quantifying prostate tumour and suspected lymph node and bone metas-
tases on [18F]PSMA-1007 PET–CT images. In particular, the PPV increased markedly, 
presenting a critical advancement toward clinical applicability. To promote transparency 
and facilitate further research, we have made our AI model freely available to the sci-
entific community at  www.​recom​ia.​org. We encourage independent validation across 
diverse clinical settings and imaging protocols to assess generalizability and support 
future integration into clinical workflows.

http://www.recomia.org
http://www.recomia.org
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