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Minimal bases classes of generic factorizations according to the degree prop-
Normal rank erties of the factors and that all of them are of the form
L(A)R(X), where the degrees of the r columns of L()) differ
at most by one, the degrees of the r rows of R(\) differ at
most by one, and, for each ¢ = 1,...,r, the sum of the de-
grees of the ith column of L(\) and of the ith row of R(\)
is equal to d. Finally, we show how these sets of polynomial
matrices with generic factorizations are related to the sets of
polynomial matrices with generic eigenstructures.
© 2025 The Authors. Published by Elsevier Inc. This is an
open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Given an m X n matrix A with complex entries and rank r, it is often useful to express
A as the product of three factors A = LER of sizes m X r, r X r and r X n, respectively,
or as the product of two factors A = LR of sizes m x r and r X n, respectively. Such
factorizations are sometimes called rank-revealing factorizations, or rank factorizations
for short, since the sizes of the factors reveal the rank of the matrix. The singular value
decomposition is probably the best known example of a rank-revealing factorization,
though several other rank-revealing factorizations exist and are used in practice. Rank-
revealing factorizations have many applications. Among them, data compression when
r < min{m, n} plays an important role [19]. Another relevant application is to use rank-
revealing factorizations as compact representations, or parametrizations, of the elements
in the manifold of m x n matrices with rank r that allow for the efficient solution of some
optimization problems on this manifold [4, Secs. 2.6, 2.8, 7.5]. It is well-known that a

rank-revealing factorization A = LR is equivalent to expressing A as a sum of r rank-1

T

matrices A = viul + -+ v.ul, where vy,...,v, are the columns of L and u?, ... ul

are the rows of R. The concepts mentioned in this introduction are revised in Section 2.

The main goal of this paper is to investigate rank-revealing factorizations of m x
n polynomial matrices P()A), of normal rank r and degree d, into products of three,
P(\) = LIN)E(M\)R(N), or two, P(A\) = L(A)R(X), polynomial matrices. We will see
that this problem is very different from the corresponding one for constant matrices and
that it requires the use of completely different tools. These differences come essentially
from two facts. First, from the constraint that the factors must be also polynomial
matrices and, second, from the notion of degree, and the non-trivial question of how
the degree of P()\) is related to the degrees (of the entries) of the factors. For instance,
the naive idea that the sum of the degrees of the polynomial factors is equal to the
degree of P()) is not valid because there exist polynomial matrices for which none of
their rank-reveling factorizations satisfy such relation (see, for instance, Example 3.22
and Lemma 3.4). Observe in this respect that the degrees of the factors play a key role
for data compression since the matrix coefficients of P(\) = Z?:o P;\' require to store
(d + 1)mn numbers, while to store the coefficients of the factors in a rank-revealing
factorization P(A\) = L(A\)R(\) requires to store up to (dr, +1)mr + (dg + 1)nr numbers,
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where dy, and dg are the degrees of L(\) and R(\) respectively. Clearly, high values
of d;, and dg are not desirable in terms of data compression. These difficulties extend
to the possible use of rank-revealing factorizations of polynomial matrices as compact
representations or parametrizations of the elements of the set of polynomial matrices
of degree d and normal rank r, because it is not clear which are the possible degrees
that can be assigned to each factor and, so, it is not clear how to develop economic
representations or how many of them are needed.

These degree problems motivate us to focus on rank-revealing factorizations of poly-
nomial matrices where L(\) is a minimal basis [17] of the column space of P()) and/or
R()) is a minimal basis of the row space of P(\). We call these factorizations minimal
rank factorizations. We prove that these factorizations have three important advantages.
In the first place, the very same definition of minimal bases in [17] implies that they
are the most economical bases of a rational subspace in terms of data storage. Combin-
ing this property with the fact that for any rank-revealing factorization of P()\), L())
is a basis of the column space of P(\) and R(\) is a basis of the row space of P())
(see Lemma 3.2), we see that minimal rank factorizations are optimal in terms of data
compression. This property is particularly relevant in the important generic case of rank
deficient polynomial matrices without eigenvalues (see Theorem 3.19), since in this case
a middle factor E(X) is not necessary. The second key property of minimal rank fac-
torizations is that they allow us to relate in a very clear way the degree of P(\) with
certain matching properties of the degrees of the entries of the factors (see Corollary 3.17
in general and Theorem 3.19 for polynomial matrices without eigenvalues). Finally, in
the case of polynomial matrices P()) with eigenvalues, their minimal rank factorizations
with three factors and with L(\) and R(X) both minimal bases guarantee that the middle
factor E(\) contains all the finite eigenvalues of P()\) with their partial multiplicities
(see Theorem 3.11-(i) and Remark 3.13). Observe that if » < max{m,n}, the r x r factor
E()) is much smaller than P()).

Despite the advantages described in the previous paragraph, minimal rank factor-
izations still allow for a lot of freedom on the possible degrees of the columns of L(\)
and the rows of R(\), except when d and r are both small (see the discussion at the
end of Section 3). Thus, further work is needed for finding a small number of compact
parametrizations via factorizations of (a dense subset of) the set of polynomial matrices
of degree d and normal rank r that might potentially allow us, for instance, to solve
efficiently optimization problems on this set. Such compact parametrizations are related
to some results available in the literature which are discussed in the next paragraph.

It is well-known [14] that generic m x n polynomial matrices with normal rank r <
min{m,n} and degree at most d, over the complex field, do not have eigenvalues and have
minimal indices with very particular properties. More precisely, the m — r left minimal
indices differ at most by one and the same happens with the n —r right minimal indices.
These properties combined with the Index Sum Theorem [10] (see also Theorem 2.7
below) give rise to the existence of only rd + 1 different generic complete eigenstructures
in the set (C[)\]Z?TX” of m x n complex polynomial matrices with normal rank at most
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r and degree at most d, and allow us to express C[A]]'" as the union of the closures

of the rd 4+ 1 sets (usually called orbits) of all polynomial matrices with such generic
eigenstructures (see Theorem 2.12 below).

The generic results described above motivate us, in the first place, to study in detail
the minimal rank factorizations of polynomial matrices without eigenvalues and, in the
second place, to look for alternative descriptions of the set (C[)\]ZZTX" in terms of the
union of the closures of a few sets of polynomial matrices which have generic rank-
revealing factorizations with very specific properties, instead of in terms of a few generic
eigenstructures. In this line, we prove that, generically, the polynomials in C[A]}' ™ can be
factorized in only rd+ 1 different ways according to the degree properties of the factors.
More precisely, among other results, we prove that generically for P(\) € C[AJ7" a
factorization of P(\) = L(A)R(A) into two polynomial matrices of sizes m X r and r X n
satisfies that the degrees of the r columns of L(\) differ at most by one, the degrees of the
r rows of R()\) differ at most by one, and, for each i = 1,...,r, the sum of the degrees of
the ith column of L(A) and of the ith row of R(A) is equal to d, and that there are only
rd + 1 different ways to choose the involved column and row degrees (see Definition 4.7
and Theorem 4.8-(iii) among other results in this spirit). We emphasize that each of
such rd + 1 sets of polynomial matrices with these specific factorizations can be easily
and efficiently parameterized using the vector coefficients of the columns of L(\) and the
rows of R(A). In this context, we also study how the orbits of the polynomial matrices
with the generic eigenstructures identified in [14] (see also Theorem 2.12) are related
to the polynomial matrices with the generic factorizations that we identify in this work
(see Theorem 4.17). These two generic views of the set C[A]7"/" are complementary. The
generic orbits provide geometrical insights into the structure of C [/\]Z”TX" But in order to
use such insights for solving certain problems numerically, e.g., optimization or distance
problems related to low rank polynomial matrices with given degree, parametrizations of
these orbits are needed. The generic factorizations presented in this work provide such
parametrizations for the closures of the generic orbits. In summary, these factorizations
help us to bridge the geometry and numerics for low rank matrix polynomials of given
degree.

We are not aware of other similar results available in the literature, dealing with rank-
revealing factorizations of polynomial matrices of degree larger than one. However, there
exist factorizations of this type in the case of degree at most one, that is, in the case
of matrix pencils. In fact, rank-revealing factorizations expressed as the sum of matrix
pencils with rank one exist for unstructured pencils [6-8] and also for matrix pencils
with symmetry structures [13]. We will explore in Remark 4.14, Example 4.15, and
Remark 4.19 the relationship between the results previously obtained for unstructured
pencils and the new ones for unstructured polynomial matrices of degree larger than one
developed in this work.

It is worth to point out that rank-revealing factorizations of matrix pencils have played
a fundamental role in the study of the generic effect of low rank perturbations on the
eigenstructure of a given regular matrix pencil. More precisely, in [7] the authors express
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the set of all possible perturbations, i.e., (C[)\]’f;”7 as the union of r 4+ 1 sets of pencils

whose elements have rank-revealing factorizations with very specific properties (see [7,
Lemma 3.1] or [8, Lemma 4]). After that, they define r + 1 surjective smooth maps
Oy, Py, ..., D, from C3™ onto each of these sets using the specific forms of the factors of
the elements of these sets [7, Definition 3.2]. Finally, it is proved in 7, Theorem 3.4] that
there exist r + 1 generic subsets Go, G1,...,G, of C3™ such that all the perturbation
pencils in the sets ®¢(Go), P1(G1), - .., ®-(G,) produce the same “generic” effect on the
eigenstucture of the unperturbed regular pencil. We hope that this strategy combined
with the results developed in this paper about expressing C [A}Zf" as the union of the
closures of rd+1 sets of polynomial matrices having rank-revealing factorizations with the
very specific properties described above will have applications in the study of the generic
effect of low rank perturbations on the eigenstructure of a given regular polynomial
matriz of degree larger than one, which is a problem that remains open in the literature.

We emphasize that the rank-revealing factorizations of matrix pencils in [6-8,13] have
been obtained by using the Kronecker canonical form of pencils under strict equivalence
[18], or structured versions of this form. Since a canonical form of this type does not exist
for polynomial matrices of degree larger than one, the problem for polynomial matrices
is harder than for matrix pencils, requires different tools, and yields results weaker than
those for pencils (see the discussions in Remark 4.14, Example 4.15, and Remark 4.19).

The paper is organized as follows. Section 2 includes some known concepts and re-
sults that are important for obtaining the main results of this paper. Rank-revealing
factorizations and minimal rank factorizations of polynomial matrices are introduced in
Section 3, where their properties are also studied. Section 4 establishes the generic prop-
erties of rank-revealing factorizations and minimal rank factorizations. Finally, Section 5
presents some conclusions and possible lines of future research.

2. Preliminaries

This section summarizes the notation and some of the results previously published
in the literature, that will be used in the paper. Many of the results in this paper are
valid over an arbitrary field F while others are only valid over the field C of complex
numbers. This will be clearly indicated in the text by using either F or C. F[A] stands for
the ring of polynomials in the variable A with coefficients in F and F () stands for the
field of fractions of F[)], i.e., rational functions in the variable A with coefficients in F.
A polynomial vector is a vector with entries in F[A]. F[A]"*™ and F(A\)™*™ denote the
sets of m X n polynomial matrices and of m X n rational matrices, respectively, over F.
The degree of a polynomial vector, g(A), or of a polynomial matrix, P(\), is the highest
degree of all of its entries and is denoted by deg(q) or deg(P). The degree of the zero
polynomial is defined to be —oo. The set of m x n polynomial matrices of degree at
most d is denoted by F[A]7*". Given a list d = (d1,da, .. .,d,) of nonnegative integers,
FA5 " denotes the set of m x n polynomial matrices whose ith row has degree at most
d; for i = 1,...,m. We also use F for the algebraic closure of F, I,, for the n x n identity
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matrix, and 0,,x, for the m X n zero matrix, where the sizes are omitted when they are
clear from the context. We need to use very often the ith row or the jth column of a
polynomial matrix P(\) and we adopt the following compact notations for them: P, (),
or simply P, denotes the ith row of P(\) and P,;()), or simply P,;, denotes the jth
column of P(\).

The normal rank of a polynomial or rational matrix P(\), denoted as rank(P), is
the rank of P()A) considered as a matrix over the field F(\), or the size of the largest
non-identically zero minor of P(\). The reader can find more information on polynomial
and rational matrices in the books [18,20].

The set of m x n polynomial matrices with degree at most d and normal rank at most
7 is denoted by F[A]7". In the case F = C and r < min{m,n}, new results about
factorizations of the elements of this set will be presented in Section 4. In order to avoid
trivialities, every time that the symbol F[A]7"" is written it should be understood that
the integers d and r satisfy d > 1 and r > 1.

The well-known Smith form of a polynomial matrix plays a very important role in this
work and the corresponding result is presented in Theorem 2.1 [18]. It requires the use
of unimodular polynomial matrices, that is, square polynomial matrices with constant
nonzero determinant.

Theorem 2.1. (Smith form) Let P(\) € F[A]™*" with rank(P) = r. Then there exist
a unique diagonal matriz S(A) € F[A]™*™ and unimodular matrices U(X\) € F[A]™*™,
V() € FIN™™ such that

0 62()\) ’ :
i Orx(n—r)
P =UNSNVA), SN:=1| + . "~ 9 QY
0 ... 0 e(N)
L O(mfr)xr O(mfr)x(nfr) i
where each polynomial e;(\) € F[A] is monic and divides ej11(\) for j=1,...,r —1.

The unique matrix S(A) in (1) is the Smith form of P(A\) and the expression
P(X) =U(M)S(A)V(N) is called a Smith factorization of P(\). Smith factorizations are
not unique. The polynomials e; () are called the invariant polynomials of P(\) and those
that are equal to 1 are called trivial invariant polynomials. For any « € [, the invariant
polynomials can be uniquely factorized as e;(\) = (A — a)%p;(\), with p;(A) € F[\],
pj(a) #0 and 0; € N ={0,1,2,...}, for j = 1,...,r. The sequence o1 < --- < g, is
called the partial multiplicity sequence of P()) at . A root 8 € FF of any of the invariant
polynomials e;(A) of P(A) is called a finite eigenvalue of P()). Equivalently, 8 € F is
a finite eigenvalue of P(\) if and only if the partial multiplicity sequence of P()) at
contains at least one nonzero term.
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The partial multiplicity sequence at co of P(A) € F[A]]"*" is defined to be the partial
multiplicity sequence at 0 of AP(1/\) € F[\]}" and it is said that P(A) has an
eigenvalue at oo if its partial multiplicity sequence at co contains at least one nonzero
term, or, equivalently, if zero is an eigenvalue of AP(1/)). It is easy to prove that the
first term of the partial multiplicity sequence at oo and the degree of the polynomial
matrix are related as follows.

Lemma 2.2. [1, Lemma 2.6] Let P(\) € F[A|]"*" with rank(P) = r and partial multiplic-
ity sequence at 0o equal to 0 <y < y9 < -+ < y,.. Then 1 = d — deg(P).

We remark that if a polynomial matrix P(X) € F[A]7*", then P()\) € F[A**™ for
any e > d. Thus, the definition above of the partial multiplicity sequence at oo and of
eigenvalue at oo of P()\) depends on the choice of the set to which P(\) belongs, though
such dependence is trivial via the shift e — d of the sequence. Therefore, every time we
mention the eigenvalue at oo of a polynomial matrix, we will specify the set F[A]]*" to
which the polynomial belongs. This dependence of the partial multiplicity sequence at
oo on the chosen set F[A]]"*™ is rather extensively discussed in the literature. In fact,
the set F[A]]"*" is what is called in [24] the vector space of m x n polynomial matrices
of grade d, its elements are said to have grade d, independently of the degree they may
have, and their partial multiplicity sequences at oo are defined with respect to d. The
grade and the corresponding definition of eigenvalue at oo have been used very often
for solving several problems on polynomial matrices as, for instance, genericity problems
[5,14,15], the analysis of certain structured polynomial matrices [23], and in M&bius and
more general rational transformations [24,25].

Next, we recall the concept of minimal bases of a rational subspace [17]. Let us consider
the vector space F(A)™ over the field F()A). A subspace V of F(A)" is called a rational
subspace. By clearing out denominators, one can see that every rational subspace V
has bases consisting entirely of polynomial vectors, which are called polynomial bases of
V. Following Forney [17], we say that a minimal basis of V is a polynomial basis of V
consisting of vectors whose sum of degrees is minimal among all polynomial bases of V.
A key property [17] is that the ordered list of degrees of the polynomial vectors in any
minimal basis of V is always the same. These degrees are called the minimal indices of
V. Observe that if dimV = p and the degrees of the vectors in a polynomial basis B of
V are dy,da, ..., dp, then n> "  (d; + 1) scalars of F are needed to store B. Therefore,
the minimal bases of V are optimal from the point of view of data storage among the
polynomial bases of V, as we pointed out in Section 1. Minimal bases and indices also
satisfy the following “Strong Minimality Property of Minimal Indices”.

Theorem 2.3. [21, Thm. 4.2] Let V C F(A)" be a p-dimensional rational subspace with
minimal indices €1 < ey < --- <gp and let dy < dy < --- < d,, be the ordered degrees of
the vectors in a polynomial basis B of V. Then, ¢; < d; fori=1,...,p.
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The minimal bases of any rational subspace can be characterized in different important
ways [17, p. 495] (see also [20]). Among them, we emphasize the characterization in
Theorem 2.5, which leads us to introduce Definition 2.4.

Definition 2.4. [31, Def. 2.5.6, p. 27] Let d},...,d!, be the degrees of the columns of
N(A) € F[A™*". The highest-column-degree coefficient matrix of N (), denoted by
Npe, is the m x n constant matrix whose jth column is the vector coefficient of 2 in
the jth column of N (). The polynomial matrix N()) is said to be column reduced if
Npe has full column rank.

Similarly, let dy, ..., d,, be the degrees of the rows of M (\) € F[A\]"*™. The highest-
row-degree coefficient matrix of M (), denoted by My, is the m X n constant matrix
whose jth row is the vector coefficient of A% in the jth row of M()). The polynomial
matrix M () is said to be row reduced if Mj, has full row rank.

Theorem 2.5. [17, Main Thm. 2, p. 495] The columns (resp., rows) of a polynomial matriz
N(A) € F[A™*™ are a minimal basis of the rational subspace they span if and only if
N(Xo) has full column (resp., row) rank for all \o € F, and N(X) is column (resp., row)
reduced.

Next, we define four rational subspaces associated with a polynomial matrix P(\).
Definition 2.6. (Rational subspaces of a polynomial matrix) Let P(X) € F[A]™*™. Then

(i) Ne(P) = {y(\) € FO)P>*™ : y(A)P(X) = 0} C F(A\)*™ is the left nullspace of
P,

(i) No(P) = {z(A) € F(N)™ : P(AN)z(A\) = 0} € F(A\)™*! is the right nullspace of
P,

(iii) Row(P)

(iv) Col(P) =

= {w(\)P(A) : w(A) € F(A\)1*™} C F(A\)P*" is the row space of P()),
{P(\)v(A) = v(A) € F(AN)™1} CF(X\)™*! is the column space of P()).

Observe that if rank(P) = r, then dimNy(P) = m — r, dimN,.(P) = n — r and
dim Row(P) = dimCol(P) = r, by the rank-nullity theorem [18, Vol. I, p. 64]. Thus,
N(P) has m — r minimal indices, N;.(P) has n — r minimal indices, and Row(P) and
Col(P) have each of them r minimal indices.

Given a polynomial matrix P(\) € F[A]*", the set formed by its invariant polyno-
mials, by its partial multiplicity sequence at oo, by the minimal indices of Ay(P) and
by the minimal indices of N,.(P) is often called the complete eigenstructure of P (M)
[12,29]. Observe that the minimal indices of Row(P) and Col(P) are not included in the
complete eigenstructure of P()).

The complete eigenstructure of a polynomial matrix satisfies the well-known index
sum theorem (see [30, Theorem 3] for the original version for rational matrices, and [10]
for the more specific polynomial matrix case).
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Theorem 2.7. (Index Sum Theorem) Let P(\) € F[A]]"" be a polynomial matriz of

normal rank r, with invariant polynomials of degrees d1,...,6,, with partial multiplicity
sequence at oo equal to 1, ..., yr, with minimal indices of Ne(P) equal to 11, ..., Nm—r
and with minimal indices of N;-(P) equal to ¢1,...,en_r. Then,

m—r n—r T r
ZEDIED YIRS S 313
i=1 j=1 k=1 (=1
2.1. Dual minimal bases and related properties

We now recall the concept of dual minimal bases as defined in [11], which are closely
linked to the classical dual rational subspaces introduced in [17, Section 6]. For brevity,

mX" is a minimal basis

we often say in this paper that a polynomial matrix M () € F[)]
if its rows form a minimal basis of the rational subspace they span when n > m or if its

columns form a minimal basis of the rational subspace they span when m > n.

Definition 2.8. Two polynomial matrices M()\) € F[A]™** and N()\) € F[\]"** are dual
minimal bases if they are minimal bases satisfying m +n = k and M(\) N(\)T = 0.

Observe that the dual minimal bases in Definition 2.8 satisfy that the rows of M (X)
form a minimal basis of Ny(N(A)T) and that the columns of N(A\)T form a minimal basis
of N;.(M()N)). As a consequence, the minimal indices of AV,.(M())) are the degrees of the
rows of N()\) and the minimal indices of NV;(N(\)T) are the degrees of the rows of M ().

Dual minimal bases satisfy Theorem 2.9, whose “direct part” was proved in [17, p.
503] (see other proofs in [11, Remark 2.14] and in [12, Lemma 3.6]) and whose “converse
part” was proved in [11, Theorem 6.1].

Theorem 2.9. Let M(\) € F[N™*("+) gnd N(X) € F[N™ "+ be dual minimal bases
with the degrees of their rows equal to (dy, ... ,dy) and to (d},...,d.), respectively. Then

D _di =) d;. (2)
i=1 j=1

Conversely, given any two lists of nonnegative integers (di,...,dn) and (dy,...,d.)
satisfying (2), there exists a pair of dual minimal bases M () € F[A]™*(m+7) and N(\) €
F N> +7) such that the degrees of the rows of M()\) and N(X) are (di,...,dy,,) and
(dy,...,d,), respectively.

r'n

A corollary of Theorem 2.9 is the following result.

Corollary 2.10. Let P(\) € F[N"™*™ be a polynomial matriz of normal rank r, with
minimal indices of Ny(P) equal to ni, ..., Mm—r, with minimal indices of N,.(P) equal
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to €1,. .., En—r, with minimal indices of Row(P) equal to p1,...,pr, and with minimal
indices of Col(P) equal to c1,...,c.. Then

Zmzzci and ZEi:Zpi.
=1 i=1 =1

i=1

Proof. We only prove the first equality, since the second one follows from applying the
first to P(A)T. Let us arrange a minimal basis of A%(P) as the rows of a matrix M()\) €
F[A](=7) %™ and a minimal basis of Col(P) as the columns of a matrix N(\)T € F[\]™*".
Then M(A)N (AT = 0, which implies that M () and N()\) are dual minimal bases and
the first equality follows from Theorem 2.9. 0O

Combining Theorem 2.7 and Corollary 2.10, we obtain the following dual version of
the Index Sum Theorem.

Corollary 2.11. (Dual version of the Index Sum Theorem) Let P(\) € F[A]*" be a
polynomial matriz of normal rank r, with invariant polynomials of degrees 61, ..., d,, with
partial multiplicity sequence at oo equal to 1, ...,7., with minimal indices of Row(P)
equal to p1,...,pr and with minimal indices of Col(P) equal to c1,...,c.. Then,

T T T T
rd=>"ci+ > pi+ Y W+ 0
i=1 =1 k=1 =1

mxn

2.2. Generic complete eigenstructures in C[A]7')

We recall in this subsection the main results of [14]. For that, we need to introduce
some concepts. First, we introduce a distance in the vector space (over the field C)
C[A7"*™ in terms of the Frobenius matrix norm of complex matrices as follows: Given
PA) = XPy+- -+ AP+ Py € CAI7™ and Q(\) = MQq+- -+ AQ1+ Qo € C[A]J*",
where P;, Q; € C™*" for i = 0,...,d, the distance between P(\) and Q(\) is

dist(P, Q) : <Z|P Q1|F> . (3)

This makes C[A]]'*" a metric space and allows us to define in it limits, open and closed
sets, closures of sets and any other topological concept. The closure of any subset A of
C[A]}*™ will be denoted by A.

Given P(X\) € C[A]]"*", we define the orbit of P(X), denoted by O(P), as the set of

[A7*™ with the same complete eigenstructure as P(X). The

polynomial matrices in C
closure of O(P) is denoted by O(P). Observe that all the polynomial matrices in O(P)

have the same rank, since the complete eigenstructure determines the rank, and the
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same degree, since the first term in the partial multiplicity sequence at co determines
the degree according to Lemma 2.2.

The main result in [14] describes C[A]7'" in terms of closures of orbits of certain
polynomial matrices with very particular complete eigenstructures. It is stated in the
next theorem when r < min{m,n}.

Theorem 2.12. [14, Theorem 3.2] Let m,n,r and d be integers such that m,n > 2, d >
1 and 1 < r < min{m,n}. Define rd + 1 complete eigenstructures K, of polynomial

matrices in CAJ7")"

with r invariant polynomials all equal to one, with all the terms of
the partial multiplicity sequence at 0o equal to zero (equivalently, without finite or infinite
eigenvalues), with m —r minimal indices of the left null space equal to § and B+ 1, and

with n — r minimal indices of the right null space equal to a and o+ 1, as follows:

K,:{a+1,...;a+1a,...,0,8+1,...,8+1,8,...,5} (4)
—_— — Y Y—
s n—r—s t m—r—t

fora=0,1,...,rd, where « = [a/(n—7)], s=a mod (n—r), B=|(rd—a)/(m—71)],
and t = (rd —a) mod (m —r). Then,
(i) There exists a polynomial matriz K,(\) € CA|7 " of degree exactly d and normal

rank exactly r with the complete eigenstructure K, for a =0,1,...,rd;

(ii) For every polynomial matriz M(X) € C[NF' ", there ewists an integer a such that
O(K,) 2 O(M);

(iii) _( 2) (9( o) = 0 whenever a # a;

(iv) CA| " = U O(K,) and C[AJG ™ is a closed subset of C[A]7"*".

0<a<rd

Moreover, it was proved in [14, Corollary 3.3] that for each a = 0,1,...,rd, the orbit

mXxn

O(K,) is an open subset of C[A]"" (in the subspace topology of C[A ] correspond-
ing to the distance (3)). This means that (Jj<,<,q O(K,) is an open and dense subset
of C[AJg')", which justifies to term the complete eigenstructures in (4) as the generic
eigenstructures of the polynomial matrices in C[A]7'". As we have explained in Sec-
tion 1, one of the main objectives of this paper is to provide an alternative description
of C[AJ7")™ when r < min{m,n} in terms of the union of the closures of some sets of
polynomial matrices that can be factorized in certain specific ways and to relate this
description with that in Theorem 2.12-(iv). This is done in Section 4.

Next we consider the generic eigenstructures in the limiting full rank case r =
min{m,n}, which is not covered by Theorem 2.12. Note that in this case C[N]7')" =
C[A]]"*™ is just the whole set of m x n polynomial matrices of degree at most d. If

m = n, there is only one generic eigenstructure in C[\ ]"X”

which obviously corresponds
to regular matrix polynomials, i.e., they do not have minimal indices at all, of degree
exactly d and with all their nd eigenvalues distinct. If m < n (resp., m > n), there is

only one generic eigenstructure which has been described in [14, Theorem 3.7] (resp.,
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[14, Theorem 3.8]). For brevity, we only state the corresponding result for m < n, since
the result for m > n is analogous and can be obtained by transposition.

Theorem 2.13. [14, Theorem 3.7] Let m,n, m < n, and d be positive integers and define
the complete eigenstructure K., of polynomial matrices in C[A]]*™ without finite or
infinite eigenvalues, without left minimal indices, and with n —m minimal indices of the
right null space equal to a and a4+ 1 as follows:

Ky :{a+1,...,a0+1,a,...,a},
—_— —
S n—m-—s

where « = |md/(n —m)], s =md mod (n —m). Then,

mXxn

(i) There exists a polynomial matriz K,, € C[\]] of degree exactly d and normal

rank ezactly m with the complete eigenstructure K, ;

(i) CAT*™ = O(K,p).

Observe that every polynomial in O(K,,) is, according to Theorem 2.5, an m X n
minimal basis with the degrees of all its rows equal to d, and with the minimal indices of
its right null space differing at most by one. Thus, when m # n, the polynomial matrices
in C[A];"*™ are generically minimal bases with the degrees of their rows all equal to d,
if m < n, or with the degrees of their columns all equal to d, if m > n.

2.3. Generic polynomial matrices in C[A ]ZX (r+s)

The last subsection in these preliminaries presents a result from [16] that describes
the generic polynomial matrices in the vector space (over the field C) C[A ]QX (r+s) , where

r,s > 0. Observe that if d = (dy,ds, ... d,) and d = max;<;<, d;, then C[A]”“*”

a subspace of (C[)\]TX(TH) and we can use the distance (3) in (C[)\]T (%) Moreover,

this allows us to define naturally the partial multiplicity sequence at oo of any M(\) €
C[)\]SX(H_S) as the partial multiplicity at 0 of A4P(1/)).

rXx(r+s)

Next, we define an important subset of C[\ } , which is proved to be generic in

Theorem 2.15.

g ("+2) where

Deﬁmtlon 2.14. Let r, s > 0 be two positive integers, consider the set C
= (dy,da,...,d,) is a list of nonnegative integers, and define

" d; i
k’{izl_“-‘ and sk':Zdith, where 0 < t < s.
S s
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Then G[A ]rX (rte) CA ]TX(HS) is the set of polynomial matrices whose ith row has
degree exactly d;, for i = 1,...,r, whose rows form a minimal basis, and such that their
right nullspaces have s minimal indices, t of them equal to &’ — 1 and s — ¢ equal to &'

Theorem 5.3 in [16] implies that G[A ]TX(HS) is equal to the set of the polynomial
matrices that have full-trimmed-Sylvester rank (the reader can see in [16, Definition
5.1], the definition of this concept, though it is not used in this paper). Combining this
fact with [16, Theorem 6.2], we obtain the following result.

Theorem 2.15. G[\ ]TX(H_S) is an open and dense subset of C[A ]iX(H'S)
3. Minimal rank factorizations of polynomial matrices

We consider in this section factorizations of a polynomial matrix P()) into products
of other polynomial matrices that reveal the normal rank and the degree of P(\).

Definition 3.1. Let P(\) € F[A\|"*" with rank(P) = r > 0. A factorization of P(\) as
P(X) = LINEA)R(N) with L(X) € FA*", E(X) € FA]"*" and R(\) € F[A\]"*" is
called a rank factorization of P(\).

The name “rank factorization” in the definition above reminds us that the sizes of the
factors L(A), E()), and R(A) reveal the rank of P()\). Standard linear algebra proper-
ties of matrices over the field F()), in particular, the inequality rank(L(X)E(AN)R(N)) <
min{rank(L), rank(E), rank(R)}, immediately imply the following simple well-known re-
sults.

Lemma 3.2. Let P(X\) € F[A]™*™ with rank(P) =r > 0 and P(A\) = LIA)E(A\)R(A) be a
rank factorization of P(X). Then,

(i) rank(L) = rank(FE) = rank(R) = r and, in particular, E(X) is nonsingular
(i) Ne(P) = Ny(L),
N, (P) =N, (R),

(iv

)
)
(i)
)
(v)

Row(P) = Row(R), and the rows of R(\) are a polynomial basis of Row(P),
(P) =Col(L), and the columns of L(X\) are a polynomial basis of Col(P).

The following simple lemma is valid for rational matrices (and, so, for constant and
polynomial matrices).

Lemma 3.3. Let L(\) € F(\)™*", E(A) € F(A)™" and R(\) € F(X\)™*™ with rank(L) =
rank(R) =7 > 0. Then rank(L(A)E(A)R(N)) = rank(E(N)).

Proof. It follows from combining the equalities N;.(L(A\)E(A\)R(\)) = N,.(E(A)R(M)) and
Ne(E(AN)R(N)) = Ne(E(N)) with the rank-nullity theorem. O
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We will often consider rank factorizations with E(\) = I,.. In this case a rank factor-
ization is expressed as the product of just two factors as P(\) = L(A)R()\).

Lemma 3.2-(iv)-(v) combined with Theorem 2.3 immediately imply the following lower
bound for the sum of the degrees of the factors of any rank factorization of P()).

Lemma 3.4. Let P(X\) € F[A]™*"™ with rank(P) =r > 0 and P(A\) = LIA)E(A)R(X) be a
rank factorization of P(\). Let pmaz be the largest minimal index of Row(P) and ¢paqx
be the largest minimal index of Col(P). Then

deg(L) + deg(E) + deg(R) > deg(L) + deg(R) > pmaz + Cmaz-

Thus, if pmaz + Cmaz > deg(P), then no rank factorization of P(X), with three or two
factors, satisfies that the sum of the degrees of the factors is equal to the degree of P()).

An example of a rank factorization of a polynomial matrix can be obtained from trun-
cating the Smith factorization and from elementary properties of matrix multiplication.
This is stated in the next lemma.

Lemma 3.5. Let P(X\) € F[A]™*™ with rank(P) = r > 0 and Smith factorization P(\) =
UMN)SA)V(N) as in (1). Let L(X\) € F[\™*" be the polynomial matriz whose columns
are the first r columns of U(N), E(X) € F[A]"*" be the diagonal polynomial matriz whose
diagonal entries are the first r diagonal entries of S(A\), and R(\) € F[A]"*™ be the
polynomial matriz whose rows are the first r rows of V(A). Then, P(\) = L(AN)E(A)R(X)
is a rank factorization of P()).

Definition 3.6. A factorization P(A) = L(A)E(A)R(A) as in Lemma 3.5 is called a Smith
rank factorization of P()\).

Smith rank factorizations P(A) = L(A)E(A)R()\) reveal the invariant polynomials of
P()\) in E()), which is a very important information, in addition to the rank of P()).
However, in general, the columns of L(\) are not a minimal basis of Col(P) and the rows
of R(\) are not a minimal basis of Row(P). Moreover, the degree properties of a Smith
rank factorization of P(\) are not optimal in general. The next example illustrates these
facts.

Example 3.7. Let

X000
PA) = | AS+1 =27 =) | . (5)
1 =T —X8

Then,
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X8 X211 0 0] [1-AT M
PO =|M+110]|]oatol|o 2 1 |,
1 00 000 0 1 0

A8 A2

i VT _\5
PO = [A4+1 1 (1”?1] [(1) AAQ f ] — LOVEN R (6)
1 0 L

are, respectively, a Smith factorization and a Smith rank factorization of P()\). Note
that according to Theorem 2.5 neither L(A) nor R()\) are minimal bases because their
highest-column-degree and highest-row-degree coefficients are, respectively,

11
Lhc:[O 0] and RhT.:[g " 8},
0 0

which do not have full column and full row rank, respectively. Observe that the degree
of P(\) is 8 and that is not equal to the sum of the degrees of the three factors in (6),
which is 26. This inequality is expected because the entries with highest degrees in each
factor do not interact when the product L(A)E(A)R()) is computed. But note also that
if (6) is expanded into a sum of rank one matrices as follows

t A2
PO = [ +1 | [1][1=am =]+ | 1| A ] [oxe ], (7)
1

then the degrees of both terms are equal to 15, again much larger than deg(P) =8. O

In the rest of this section, we explore other rank factorizations, different from Smith
rank factorizations, of a polynomial matrix P(\) whose factors provide minimal bases of
Col(P) and/or Row(P) and reveal the degree of P(\). We emphasize that, in general,
such factorizations do not reveal explicitly the invariant polynomials of P(\).

We will need in the sequel the two auxiliary Lemmas 3.8 and 3.9. Lemma 3.8 implies,
in particular, that any rank factorization of a polynomial matrix P(A) with normal rank
equal to one reveals the degree of P()) via the sum of the degrees of the three factors.
The simple proof of this lemma is omitted.

Lemma 3.8. Let L(\) € F[N™! E(\) € FNY™L R\ € FA™" and P()) =
L(ME(MNR(N). Then deg(P) = deg(L) + deg(E) 4 deg(R).

Lemma 3.9 is a consequence of [31, Theorem 2.5.7], which introduces an algorithm
for transforming any polynomial matrix with full column rank into a column reduced
polynomial matrix via multiplication on the right by unimodular matrices. In order to
be self-contained, we include a short proof of this lemma.
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Lemma 3.9.

(i) Let L(X) € F[A]™*" be a polynomial matriz such that the constant matriz L(X\o) has
full column rank r for all \g € F. Then, L()\) can be factorized as L(\) = L.(A\)V(X),
where the columns of L.(\) € F[N™*" form a minimal basis of Col(L) and V(\) €
F[A]"*" is unimodular. Hence, the degrees of the columns of L.(\) are the minimal
indices of Col(L).

(ii) Let R(X\) € F[A]"*"™ be a polynomial matriz such that the constant matriz R(X\o) has
full row rank v for all \g € F. Then, R(\) can be factorized as R(\) = U(N)R,.(N),
where the rows of R,.(\) € F[A]"*™ form a minimal basis of Row(R) and U(X) €
F[A]™*" is unimodular. Hence, the degrees of the rows of R,()\) are the minimal
indices of Row(R).

Proof. We only prove item (i), since item (ii) is obtained from item (i) by transposition.
The columns of L(\) are a basis of Col(L). If the columns of L.(\) are any minimal basis
of Col(L), then L(\) = L.(A\)V(XA), with V/(X\) an X7 polynomial matrix according to [17,
p. 495]. In addition, V(\) must be unimodular since, otherwise, L(Ag) = L.(Ao)V (Ao)
would have rank strictly smaller than r for any root Ag of det Vi(A\g). O

The next example illustrates Lemma 3.9.

Example 3.10. The matrices L(A) and R(A) in (6) can be factorized as follows:

A2 [o a2 Lo

M+1 1| = lAG L= L.V (N, (8)
1 0

12 x| [1=»]|[100

Theorem 2.5 implies that the columns of L.(\) are a minimal basis, as well as the rows
of R,(A). Obviously V(A) and U(A) are unimodular matrices. 0O

Theorem 3.11 presents for each polynomial matrix three different types of rank fac-
torizations, with E(A) = I, in the case of items (ii) and (iii).

Theorem 3.11. Let P(\) € F[A]™*"™ with rank(P) = r > 0. Then, P(\) can be factorized
as follows:

(i) P(\) = LJ{ANEMNR-(N), where L.(\) € F[N™*", E(A\) € FI\™*", R.(\) €
F[A]"*", the columns of L.(\) form a minimal basis of Col(P), the rows of R.(\)
form a minimal basis of Row(P), and the invariant polynomials of E(X) are the
invariant polynomials of P(\).
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(ii) P(A) = Le(A)R(A), where Lo.(X) € F[A]™*", R(A\) € F[A]"*", the columns of L.(\)
form a minimal basis of Col(P) and the invariant polynomials of R(X\) are the
invariant polynomials of P(\).

(iii) P(A) = L(A)R,(X), where L(X\) € F[N]"™*", R.(A\) € F[N"*", the rows of R.()\)
form a minimal basis of Row(P), and the invariant polynomials of L(\) are the
invariant polynomials of P(\).

Proof. Let P(\) = L(A)E(A)R()\) with L()\) € F]N™*", E(\) € F[A]"*", and R()\) €
F[A]"", be a Smith rank factorization as in Lemma 3.5. Therefore, L(\o) and R()\o)
have, respectively, full column rank and full row rank for all Ay € IF, because they are
formed by columns and rows, respectively, of unimodular matrices. Then using the factor-
izations in Lemma 3.9 applied to z(/\) and E()\), we get the following three expressions,

PA) = LX) (VINENU ) Br(X), (10)
P() = Lc(\) (VINEMNR(), (11)
P(N) = (LAVEAUMN) R (A). (12)

The factorization in (10) proves item (i) with E(X) = V(A)E(A)U(X), because the r diag-
onal entries of E()\) are the invariant polynomials of P(\) and they do not change under
multiplications by unimodular matrices. The statements about Col(P) and Row(P) fol-
low from Lemma 3.2.

The factorization in (11) proves item (ii) with R(\) = V(A)E(A)R(A). Note that
R() is formed by the first r rows of a unimodular matrix V() € F[A]"*", according to
Lemma 3.5. Thus,

and indeed the invariant polynomials of R(A) are the same of those of E()), which in
turn are those of P(\). The statement about Col(P) follows again from Lemma 3.2.
Analogously, the factorization in (12) proves item (iii). O

Definition 3.12. Any of the three factorizations introduced in Theorem 3.11 is called a
minimal rank factorization of P()).

The name “minimal rank factorization” in Definition 3.12 reminds us that these fac-
torizations display a minimal basis of Col(P) and/or a minimal basis of Row(P), in
addition to the rank of P(\).

Remark 3.13. The minimal rank factorizations in Theorem 3.11 are not unique. In fact
L.()\) can be any of all possible minimal bases of Col(P) and R,.(\) can be any of all
possible minimal bases of Row(P). However, note that once L.(\) and/or R,(\) are
chosen, E()\) in item (i) is uniquely determined by this choice, R(A) in item (ii) is
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uniquely determined by this choice, and L(\) in item (iii) is uniquely determined by this
choice. This follows from the fact that L.(A) has a polynomial left inverse and R,.()\) has
a polynomial right inverse.

Remark 3.14. (Numerical computation of minimal rank factorizations) If F = R or C,
minimal rank factorizations of a polynomial matrix P(\) can be computed by using any
of the existing algorithms that compute efficiently minimal bases of the null spaces of a
polynomial matrix by applying unitary transformations on constant matrices. There are
different families of such algorithms. For instance, some are based on Sylvester resultant
matrices [2] and others are based on computing minimal bases of the null spaces of a
linearization of P(\) via the staircase algorithm [3,26,28] and recovering the minimal
bases of the null spaces of P(\) from those of the linearization [9]. Then, a minimal basis
L.(X\) of Col(P) can be computed in two steps as follows: (1) Compute a minimal basis
Q(N) of Ng(P); (2) Compute a minimal basis L.(\) of V,.(Q) = Col(P). Then, R()) in
Theorem 3.11-(ii) can be computed by solving a system of linear equations with unique
solution for its coefficients. Applying this procedure to R(\)? yields the factorization
in Theorem 3.11-(i). The factorization in Theorem 3.11-(iii) can be obtained in a sim-
ilar manner. Finally, we mention that the algorithm summarized in [27, Theorem 4.3]
computes directly a factorization that is “almost” the same as the one in Theorem 3.11-
(ii) using a unitary decomposition of a generalized state-space model of P(A). The only
missing property is that the computed L.(\) is not guaranteed to be column reduced. It
remains as an open problem to adapt the algorithm in [27] to ensure the column reduced

property.

Remark 3.15. (Minimal rank factorizations of full rank polynomial matrices) If P(\) €
F[A]™*™ has full rank » = min{m, n}, the minimal rank factorizations in Theorem 3.11
are simpler. Note that if 7 = m (resp., 7 = n), then Col(P) = F(\)"™*! (resp., Row(P) =
F(A\)2*"). Therefore, if r = m, then the minimal basis L.(\) € F™*™ in Theorem 3.11
must be a constant m X m invertible matrix, that may be taken equal to any of such
matrices. In particular, one can take L.(\) = I,,. Analogously, if = n, then the minimal
basis R,.(A) € F™*™ in Theorem 3.11 must be a constant n x n invertible matrix, that
may be taken equal to any of such matrices. In particular, one can take R,.(\) = I,,.

The next example illustrates Theorem 3.11.
Example 3.16. In this example, the Smith rank factorization in (6) is combined with the

factorizations in (8) and (9) to obtain the following minimal rank factorizations of P())
in (5):

0
PN =11 l; OAS] [(1) AOQ (1)] = L. A\ F(\R,(N), (13)
10



754 A. Dmytryshyn et al. / Linear Algebra and its Applications 721 (2025) 736-774

[0 A2
L —AT =X°
PO = 1 [Af; & = LR, (14)
e 0
PO = |20+ [(1) AOQ?] — LO)R, (V). (15)
1A

The factorizations in (13), (14) and (15) illustrate, respectively, items (i), (ii) and (iii) of
Theorem 3.11. Observe that none of them reveals by inspection the invariant polynomials
1 and A of P()\) in (5). However, the degree of P()), which is 8, is revealed as the largest
degree of the terms in each of the expansions of P()) into a sum of rank one matrices
stemming from (13), (14) and (15). These expansions are the following ones:

.- 32

P =[] 1] [too]+ |1f[=x][ox1]+ | 1| [»][100]

1 0
[ a8 0

= [ X641 [100}+ N [0)31].
1 )5

The term with highest degree in each of these expansions has degree 8, which is precisely
the degree of the polynomial. This behavior is in contrast with the degrees of the terms
in the expansion (7) coming from the Smith rank factorization (6). This result about
degrees holds for any minimal rank factorization and will be proved in Corollary 3.17. O

Example 3.16 motivates us to state, in Corollary 3.17, some degree properties of
products of two and three polynomial matrices which are direct consequences of the
classical “predictable-degree property” for column reduced and row reduced matrices,
and, so, for minimal bases [17, Condition 4(b), p. 495 and Remark 3, p. 497] and [20,
Thm. 6.3-13, p. 387]. Recall the following notation introduced in Section 2: X,; denotes
the ith column of the matrix X and Y}, denotes the ith row of Y.

Corollary 3.17. (Predictable-degree properties for matrix products).

(i) Let P(A\) = L(A)R(N), where L(A) € F[A]™*" and R(\) € F[A]"*"™. If L(\) is column
reduced or R(\) is row reduced, then

deg(P) = max {deg(Lu;) + deg(Rix)}-
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(i) Let P(A) = LONEMR(N), where L(\) € FIN™", E(A) € FIA™** and R(\) €
F[A]**™. If L(X\) is column reduced and R(\) is row reduced, then

deg(P) = max {deg(L.;) + deg(es;) + deg(R;.)}.
1<+ <r

1<j<s

Proof. Proof of item (i). Consider first that L(A) is column reduced. Then, the clas-
sical predictable degree property in [20, Thm. 6.3-13, p. 387] ensures that deg(P.;) =
maxi<;<r{deg(Ly;) + deg(R;;)}, from which the result follows by taking the maximum
over 1 < j <mn.If R(\) is row reduced, the sought equality is deduced from applying to
P(M)T the result just proved when the first factor is column reduced.

Proof of item (ii). Define Q(\) := L(A)E(X) and express P(\) = Q(A)R(A). Since R(\)
is row reduced, item (i) implies that deg(P) = maxi<;j<s{deg(Q.;) + deg(R;)}. More-
over, since L(\) is column reduced, item (i) also implies deg(Q+;) = maxi<;<,{deg(L.;)+
deg(e;j)}. The result in item (ii) follows from combining both equalities. O

Remark 3.18. Observe that P(A) in item (i) of Corollary 3.17 can be expanded as
a sum of rank one polynomial matrices as P(X) = >.'_; L.;(\) Rix(X), while P(X)
in item (ii) can be expanded as a sum of rank one polynomial matrices as P(\) =
Dozt 2g=1 Lxi(N) €5(A) Rjx (). Thus, taking into account Lemma 3.8, Corollary 3.17
states that the degree of P(\) is precisely the degree of the term(s) with highest degree
in such expansions.

In the last part of this section, we study minimal rank factorizations of polynomial
matrices that have no finite or infinite eigenvalues. The motivation for this study comes
from Theorem 2.12, which shows that rank deficient polynomial matrices have no finite
or infinite eigenvalues, generically, when F = C. We will see that the minimal rank
factorizations have stronger properties in this case.

Theorem 3.19. Let P(A\) € F[A]*" and r be an integer such that 0 < r < min{m,n}.
P(X) has normal rank r, degree exactly d, and has no finite or infinite eigenvalues if and
only if P(\) can be factorized as

P(X\)=L(\R()\), L) eFN™*", R(\) eF\™", (16)

where the columns of L(X) are a minimal basis, the rows of R(\) are a minimal basis,
and

deg(L.;) +deg(Rix) =d, fori=1,...,r. (17)

Proof. Sufficiency. If P(\) satisfies (16) and (17) with L(A) and R(A\) minimal bases,
then rank(P) = r follows from Lemma 3.3 with E(\) = I, and deg(P) = d follows
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from Corollary 3.17. Lemma 3.2 implies that the degrees of the columns of L(\) are the
minimal indices of Col(P) and that the degrees of the rows of R(A) are the minimal
indices of Row(P), and (17) implies that the sum of all these minimal indices is equal
to rd. Combining this fact with Corollary 2.11, we see that all the terms of the partial
multiplicity sequence at oo of P(\) must be zero, as well as all the degrees of the invari-
ant polynomials of P()). This is equivalent to state that P(A) has no finite or infinite
eigenvalues.

Necessity. If P(A) has normal rank r, degree d and has no finite or infinite eigenvalues,
then we start from a minimal rank factorization of P(\) given by Theorem 3.11-(ii). That
is, P(\) = L(A)R()\), where the columns of L(\) € F[A]™*" form a minimal basis of
Col(P) and the degrees of these columns, denoted by ¢1, ..., ¢, are the minimal indices
of Col(P). Note also that Lemma 3.2 guarantees that the rows of R(\) € F[A]"*" form
a basis of Row(P). Let p1,...,p, be the degrees of the rows of ﬁ()\), which are not
necessarily the minimal indices Row(P). Therefore, their sum is larger than or equal to
the sum of the minimal indices p1, ..., p, of Row(P) by the definition of minimal basis.
That is

DI (18)
i=1 i=1
and, simultaneously, from Corollary 3.17-(i),
d>c; + p; fori=1,...,r. (19)

On the other hand Corollary 2.11 implies

Z ¢+ Z p; =rd, (20)
i=1 j=1

since P(A) has no finite or infinite eigenvalues, which is equivalent to >, _; v+ ,_; 6¢ =

0. The combination of (18), (19) and (20) leads to

IS DIES S JIERVES RS SN
j=1 i=1 j=1 i=1 j=1

i=1

Therefore, Y_, pi = S'_, p;i, which implies that R()) is a minimal basis of Row(P).
Moreover, (21) implies 37, ¢; + 3, pj = rd, which combined with (19) yields

Ci—f—ﬁi:d, izl,...,T.

This completes the proof. O
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Remark 3.20. Observe that the hypothesis that P()\) € F[A];"*" has degree exactly d
in Theorem 3.19 is redundant, because Lemma 2.2 combined with the hypothesis that
P(A) has not eigenvalues at oo implies that deg(P) = d. We have included this redun-
dant hypothesis for emphasizing this key property of the polynomial matrices satisfying
Theorem 3.19.

We remark that the proof of the mecessity in Theorem 3.19 proves, in fact, that
for any minimal rank factorization as in Theorem 3.11-(ii) of a polynomial matrix
P(X\) € F[A];*™ with normal rank r, with degree exactly d, and without finite or infinite
eigenvalues, the factor R(A\) must be a minimal basis and that the degree constraints
(17) must be satisfied. A complementary result can be proved for any minimal rank
factorization as in Theorem 3.11-(iii) just by transposing the argument above. These
discussions can be formalized into the following theorem.

Theorem 3.21. Let P(\) € FA]]™" be a polynomial matriz with normal rank r > 0,
with degree exactly d, and without eigenvalues, finite or infinite. Then, the following
statements hold:

(i) If the minimal rank factorization P(A) = L(A)E(MN)R(M) satisfies the properties

~

in Theorem 3.11-(i), then the rows of R(\) = E(AN)R(N\) form a minimal basis of
Row(P) and the columns of L(A\) = L(AN)E(X) form a minimal basis of Col(P).
Moreover,

deg(Ly;) + deg(R;,) = deg(Ly;) + deg(Riy) =d, fori=1,...r.

(ii) If the minimal rank factorization P(X) = L(A)R(\) satisfies the properties in The-
orem 3.11-(ii), then the rows of R(X\) form a minimal basis of Row(P). Moreover,

deg(Ls;) +deg(Ri) =d, fori=1,...r.

(iii) If the minimal rank factorization P(X) = L(A)R(\) satisfies the properties in Theo-
rem 3.11-(%i), then the columns of L(\) form a minimal basis of Col(P). Moreover,

deg(Ly;) + deg(Rix) =d, fori=1,...r.

The next example illustrates that polynomial matrices without finite nor infinite eigen-
values have rank factorizations that are not minimal, that do not satisfy the degree
conditions (17) and whose factors can have arbitrarily large degrees. Thus, for polyno-
mial matrices without eigenvalues, minimal rank factorizations are clearly preferable.

Example 3.22. Consider the following polynomial matrix P(\) € C[A]2*? with rank(P) =
2 and its following factorizations:
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oo 0] [¥olr g,
PA)= X XN+1 X| =12\ [0A41]7 (22)
0 A 1 0 1
[ X 0
A 1 0
— p+2 2 2
A )\p+1/\1 [_/\p—‘rl AP 4\ 1]’ (23)

where p > 3 is an integer. Both factors in the factorization (22) are minimal bases,
according to Theorem 2.5, and they satisfy (17). This proves that P(\) has no finite or
infinite eigenvalues. In contrast, the left and right factors in (23) are not, respectively,
column and row reduced polynomial matrices. So, they are not minimal bases. Neverthe-
less, the factorization in (23) is a rank factorization of P(X). Its factors have arbitrarily
high degrees for arbitrarily large values of p. Lemma 3.4 applied to the polynomial ma-
trix P()A) in this example yields a lower bound piaz + Cmae = 9 > 6 = deg(P), which
implies that no rank factorization of P(\) satisfies that the sum of the degrees of the
factors is equal to the degree of P(A). O

By Theorem 2.12, rank deficient complex polynomial matrices have, generically, no
finite or infinite eigenvalues. Combining this with Theorem 3.19, we obtain that, gener-
ically, rank deficient complex polynomial matrices have minimal rank factorizations as
simple as those appearing in Theorem 3.19. However, the degree condition (17) still al-
lows for a lot of freedom for the possible degrees of the columns of L()) and the rows of
R(\), except when d and r are very small. More precisely, taking into account that the
degrees of the columns of L(\) are determined by the degrees of the rows of R(\) and
that the order of the columns of L(A) and the rows of R(A) does not affect the product
L(A)R(A), the number of different degree distributions in (16) is equal to the number
of r-combinations with repetitions from the set of d + 1 possible values of the degree
of each row of R(\). This amounts to (djr) different degree distributions. This number
is huge except for very small values of d and r and makes it unfeasible to develop a
set of parametrizations for the generic set of m X n polynomial matrices of degree at
most d without eigenvalues. However, in the next section, we prove that, generically, the
degrees are considerably more constrained and that there are only rd 4+ 1 different ways
to distribute the degrees, all of them characterized by the fact that the degrees of the
columns of L(A) differ at most by one and the degrees of the rows of R(A) also differ at
most by one, in addition to satisfy (17).

4. Generic minimal rank factorizations in C [A]Zf,f(" and related results

In this section, for r < min{m,n}, we prove that arbitrarily close (in the distance
defined in (3)) to any polynomial matrix P(\) € C[A]7" there is another poly-
nomial matrix Q(A) € C[A7™ that can be factorized as Q(\) = L(A)R()), with
L(\) € CIA™*", R(A\) € C[N]"*™, with the degrees of the columns of L(\) differing
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at most by one, with the degrees of the rows of R()\) also differing at most by one, and
satisfying (17). Moreover, we prove that generically only rd + 1 different degree distri-

butions with such properties are necessary or, equivalently, we prove that C[A]}' <" is

,T

the union of the closures of rd + 1 sets of polynomial matrices which have rank-revealing
factorizations with these very specific degree properties. In addition, we will see that

L(A) and R(A) can be chosen to be minimal bases. Finally, we will relate the sets of
polynomial matrices in C[A]7"" that can be factorized in these specific ways with the
orbits O(K,) of Theorem 2.12.

In contrast with Section 3, we assume throughout this section that r < min{m,n},
i.e., the full rank case is not considered. The reason is that this section deals with generic

results and, as explained in the last paragraph of Subsection 2.2, if r = min{m,n} and

mXxn

i are minimal bases with
,

m # n, then generically the polynomial matrices in C[)]
the degrees of their columns all equal to d when m > n or with the degrees of their
rows all equal to d when m < n. Therefore, they satisfy automatically (16) with one
of the factors equal to the identity matrix and it makes no sense to look for minimal
rank factorizations of these matrices. If r = min{m,n} and m = n, then generically the
polynomial matrices in C[A]7"/" = C[A]7™" are regular with degree exactly d (see again
Subsection 2.2) and their minimal rank factorizations reduce to a triviality according to
Remark 3.15.

Before stating the first result in this section, we recall that the degree of the zero
polynomial has been defined to be —co. Therefore, an expression as deg(L.;)+deg(R;.) =
d for the ith column and row of the factors in Q(A\) = L(A)R(A) implies that L.;()\) # 0,
Rix(N\) # 0, 0 < deg(Ly;) < d, and 0 < deg(R;x) < d. In contrast, an expression as
deg(L.;) + deg(Rix) < d without further conditions does not imply that deg(L.;) < d
and deg(R;«) < d, because it might be possible that deg(L.;) = —oo and deg(R;.) is
arbitrarily large, or vice versa.

The first result in this section is a simple consequence of the results in Section 3
and states that every polynomial matrix in F[)\]mrx" can be factorized into two factors
that reveal the maximum possible rank r and such that the sums of the degrees of their

corresponding columns and rows are bounded by d.

Theorem 4.1. Let m,n,r and d be integers such that m,n > 2, d > 1 and 0 < r <
min{m,n}. Then

IE‘[ ]m><r R( ) [)\]rxn,
FiNg " = § R - deg( ) <d, deg(Ri) < d, @
L.;) +de ( i) <d, fori=1,...,r

Proof. Let S be the set in the right-hand side of (24).

Proof of F[A7',™ C S. If P(A) € F[A]7)" and P(A\) = 0, then trivially P()\) =
OmxrOpxn € S. If P(A) € F[A7™ and P(X) # 0, then 0 < deg(P) = d < d and
0 < rank(P) = 7 < r. Then, Theorem 3.11-(ii) and Corollary 3.17-(i) imply that P(X)
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can be factorized as P(\) = L(A)R()), with L(X) € F[A]™*", R(\) € F[\]"*", and
0 < deg(Lx;) + deg(R )<d<dfori=1,...,7. If ¥ =r, this proves that P(\) € S. If
7 < r, then we pad L()\) and R()\) with zeros and define

R(\)

L\ ::[E(A)O]EF[/\]’”” and R(N) = | 0

c ]F[A}T‘Xn ,

which satisfy P(A\) = L(A)R(M), with deg(L.;) < d, deg(Rix) < d, and deg(L.;) +
deg(R;.) < dfor i =1,...,r. Therefore, P(\) € S. This proves F[\]7")" C S.

Proof of § C IF[)\]mX" If P(\) = L(A)R(N) € S, then rank(P) < min{rank(L),
rank(R)} < r. In addition, the expansion P(\) = >"'_, L.;(A\)R;x(\) and Lemma 3.8
imply deg(P) < maxi<i<r{deg(L.;) + deg(Ri.)} < d. Thus P(\) € F[A7')", and the

proof is completed. O

The rest of the results of this section are valid only over the field C since they use limits
and topological concepts with respect to the distance in (3). This will allow us to prove

that every polynomial matrix in C[A }an

is the limit of a sequence of polynomial matrices
in C[AJ’" that can be factorized into two factors such that the degrees of their columns
and rows have very specific properties when compared with those in Theorem 4.1. The

first result in this direction is Theorem 4.2.

Theorem 4.2. Let m,n,r and d be integers such that myn > 2, d > 1 and 0 < r <
min{m,n} and define the sets

n _L() € CI™T, R(\) € AP,
b {L()\)R(A) " deg(Lyi) +deg(Ri) =d, fori=1,...,r } '

Then
I = A

Proof. From Theorem 4.1 it is obvious that A7' " C C[AJ7"/". Moreover, C[A]7")" is a

closed subset of C[A]}"*"™ and the closure of AmX” is the smallest closed set that contains

A <™. Therefore, A7X" C A’”X" C CNZ™

In the rest of the proof, we prove that C[A|7'" C .AZLTX" If P(\) € C[A]g})", then
Theorem 4.1 implies that P(A) = L(A)R(N) with L(X) € C[\™*", R(\) € C[A"™*",
deg(L.;) < d, deg(R;x) < d, and deg(L.;) + deg(R;x) < d, for i = 1,...,r. Moreover,
without loss of generality, we take L.;(A\) = 0 whenever R;,(A) = 0. If deg(L.;) +
deg(R;x) =d, for i = 1,...,r, then P()\) € AZ?TX" C AZ?". Otherwise, let us consider
the set of indices corresponding to strict inequalities, that is,

TZ:={j:1<j<rand deg(L,;)+ deg(R;.) < d}.
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Then, consider any two sequences of constant nonzero vectors {vg}ren C C™*! such
that limy_ 00 v = 0 and {wy, }reny € CY*™ such that limy_,o wy, = 0, and construct the
following two sequences of polynomial matrices: (1) Li(A\) = L(A\) + Fi(\), where the
columns of Fj(A) are constructed as follows

0, ifj ¢z,
(Fi)uj(A) = { Addee(Bi)y, if j € T and Rj.(N) # 0,
Moy, if j € Z and Rj.(\) =0,

and (2) Ri(A) = R(A) + Gr(N), where the rows of G (\) are constructed as follows

0, ifj¢T,
(Gr)jx(A\) = ¢ 0, if j € Z and Rj.(\) #0,

wg, if j € Z and R, (X)) = 0.
Then, Py(\) = Lp(A)Re(A) € AZ')" and limgeo Pr(A) = P()), which implies that
P(\) € A7Y". O

Next, we consider some subsets of the set A]'*" introduced in Theorem 4.2 that will

be fundamental auxiliary tools for getting the main results of this section. More precisely,

m><n mxn

as the union of such subsets, and C[A]7’;

we express in the next theorem the set
as the union of their closures.

Theorem 4.3. Let .Amx" be the set defined in Theorem 4.2 and for each natural number
a=0,1,...,rd deﬁne the following subsets of C[A ]an

e {L(/\)R(A) . LOOR € A7 } .

Yimy deg(Riv) = a

Then

M) A= J Az

0<a<rd
(i) = J AL
0<a<rd
(iii) for every P(X) € C[N7)", there exists an integer a such that P()\) € A7’ "

Proof. Item (i). Let us prove first that A7 " C Uyc,crg Adra - If P(A) € AZ™, then

d,r,a "

P()\) = L(AN)R(N) with L()\) € C[N\]™*7, R( ) € CIA™ ", and deg(L.;) + deg(R;.) = d,
for i = 1,...,7. So, Y.i_,deg(Ls;) + >.;_, deg(Rix) = rd, which implies that 0 <
>, deg(Rix) < rd. Therefore, P(\) € A7'*" for some a = 0,1,...,rd and P(\) €

d,r,a
U Aan
0<a<rd¥“d,r,a*
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. . X X ey
The reverse inclusion U0§a§rd Agfr’: - AZ?T " holds by definition.

Item (ii). It is an immediate consequence of Theorem 4.2, item (i), and the basic fact
that “the closure of the union of a finite number of sets is the union of the closures of
such sets”.

Item (iii) is just another expression of item (ii). O

We present next the key technical result of this section, Theorem 4.5, which deals

mXn

drq that are introduced in Definition 4.4.

with some subsets of A
Definition 4.4. Let m,n,r and d be integers such that m,n > 2, d > 1 and 0 < r <
min{m,n}, a be an integer such that 0 < a <rd, (p1,...,p.) be any list of integers such
that 0 < p; < d, fori = 1,2,...,7, and >_,_, p; = a, and Ag' e be the set defined in
Theorem 4.3. The following subsets of polynomial matrices are defined

d,r,a’

CLV)R(N) € ATxn
' deg(Rz*) = Pi, deg(L*i) Zd—pi, for i = 1,...,r '

Z?;j:(pla ce 7pr> = {L()\)R(}\)

Theorem 4.5. Let A" be the set defined in Theorem 4.3 and A" (p1,...,pr) be any

d,r,a d,r,a

of the sets defined in Definition /J./. Then the following statements hold:

(i) If (o1,...,0.) is any permutation of (1,...,r), then

mxn mXn

dﬁ-,a(pl?"'?p’f‘): d,r7a(p0'13"'3p07‘)'

(i) If pj — pr > 2, then

mXxn

da (PUs s Py vy Phs e pr) S AGTH (o1, pi = Lo spe+ 1,000 pr).

(iii) If dgr = |a/7] and tg = a mod r, then

mXxn

d,r,a(p17"‘7pr) - mxn(dR—l—17...,dR+17dR,...,dR).

d,r,a

tr r—tRr

Proof. Proof of item (i). If L(A\)R(\) € A7 " (p1,...,pr) and ITis an 7 X 7 permutation

d,r,a

matrix such that the ith row of IIR()) is the o;th row of R(A), for ¢ = 1,...,r, then
LINR(N) = (LIV)IT)(TTIR(N)) € AL (Poys -y Po, ). Therefore, AT "(p1,...,pr) C
gfrx)g(pgl, ..+, P, ). The “reverse” inclusion is proved in a similar manner using the
“reverse” permutation.
Proof of item (ii). As a consequence of item (i), we can assume without loss of general-

ity that j = 1 and k = 2. Let P(\) = L(A)R(\) € A7 " (p1, p2, - - -, pr) With p1 —pa > 2.

d,r,a
Then, the first row of R(A) and the second column of L()A) can be written as follows:
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Ri (X)) = Mo, + Ri.(N), with 0 # v,, € C'*" and deg(Ry.) < p1, (25)
Luo(A) = X7P2w4_ 4+ Lao(N),  with 0 # wg_,, € C™*! and deg(L.2) < d — po.
(26)

Next, for any sequence {ex}reny C C of nonzero numbers such that limy_, o € = 0, we
define two sequences of polynomial matrices { Ly (A)}ren C C[A]™*" and {R;(A\) }ren C
C[A]™*™ (via their columns and rows, respectively) as follows

(L)1 () == =X P wg_p, + L (N), (Ri)2«(A) i= ex A2, + Rou (M),

(Le)eiN) = Ly(\), 1<i<r, (Ro)w(\) = R (), ig21<i<r 7

From these sequences, we define the sequence {Pi(A\)}ren = {Li(A)Rr(N)}ren C
C[A]™*™, which obviously satisfies limy_,oc Px(A) = P(A). In the rest of the proof, we
will prove that there exists an index kg such that for every k > kg,

Pi(A) = Le(NRe(N) € AZV 3 (p1 — 1, p2+ L ps, .., pr),

which implies that P(A\) € A7 "(p1 — 1,p2 + 1, p3, ..., p,). For this purpose, we define

d,r,a

1 —L yp1i—p2—1
Di(N) := €k I. o,
k(A) [0 1 © Lr—2
whose inverse is
1 L \pr—p2—1
D(N)7ti=| e I_s.
k(A) [0 1 @ 2
Therefore,
Pre(X) = (Li(N) D (A) ) (Dr(N) Ri(N)). (28)

The ith row of (D (A)Ri(A)) is equal to the ith row of R (\) for ¢ = 2,...,r, and, taking
into account (25) and (27), the first row is

~ 1
(De(AN)Rp(A)1x = Ria () — ;/\p“”rle*(A),
which has degree p; —1 for ¢ sufficiently close to zero or equivalently for all k£ sufficiently
large. In summary, there exists an index k' such that for all k& > &’

the degrees of the rows of Di(A\)Rr(\) are p1 — 1,p2 + 1,03, pay -, pr - (29)

On the other hand, the ith column of Li(\)Dy(A\)~! is equal to the ith column of Ly (\)
for i =1,3,4...,r, and, taking into account (26) and (27), the second column is
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1 ~
(Lk()‘)Dk(A)_l)*Q = 6_)\91—/)2—1 L*l()‘) + L*Z()‘)7
k
which has degree d — pa — 1 for ¢ sufficiently close to zero or equivalently for all &
sufficiently large. In summary, there exists an index k” such that for all &k > k"

the degrees of the columns of Ly (\)Dy(A\)~! are (30)
d*leFlvd*PQ*17d*P3ad*P47~-~7d*Pr-

Combining (28), (29), and (30) we get that

Pk()\) = Lk()\)Rk()\) € AmXﬂ(pl - 17[)2 + 17p37 AR apT)

d,r,a

for all k > max{k’, k" } = kg and the proof is completed.
Proof of item (iii). Observe that item (ii) and the fact that “the closure of a set is the
smallest closed set that includes it” imply

gj;jg(pl,--.,pj,...,pk7..-,pr) gAZ?;f:(pl,...,pj—1,...,pk+1,...7pr>.
Therefore, we can apply again this result to the set on the right hand side of the equation
above (permuting if necessary the indices by using the result in item (i)) as long as for
at least two of the indices in (p1,...,p;—1,...,pr+1,..., p,) the absolute value of their
difference is larger than or equal to two. We can construct in this way a chain of subset
inclusions until the indices p; differ at most by one unit, that is,

mXxXn

d,r,a(p17"'7pj7'~'7pka~~~7pr> - Zﬁ:(plv'~'vpja"'7pk7"'7p7‘)

C AT S (prsespj =L pe+ 1,00 pr)

C---CAV™Mdr+1,...,dgp +1,dR,...,dR) .

d,r,a

tr r—tRr

We emphasize that the values of dr and tr are completely determined by the fact that
the sum of the r indices of all the subsets in the chain above is always a and that the
indices in the last subset differ at most by one (in absolute value). O

Example 4.6. In order to illustrate the proof and the statement of Theorem 4.5, we
consider the following polynomial matrix

02 1 A2 00
P(\) = L 0 o] =] 1 A1 eA%(20) cCN3. (31)
0 A2 1

Since a = 2 and r = 2, the quantities in Theorem 4.5-(iii) are dg = 1 and tg = 0. One
might wonder whether P(A) might be factorized in a form different from the one in (31)
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in such a way that P()\) € Agéé(l, 1). However, it is easy to see that P()) ¢ .A%XQ?’Q( 1)
as follows. Observe first that in the factorization P(A) = L(A)R(\) given in (31) both
factors are minimal bases by Theorem 2.5. Thus, the minimal indices of Row(P) are 2
and 0. If P(\) € A3%%(1,1), then there would exist a factorization P(\) = LR\
with L(A) € C[APP*2 and R(A) € C[A]2*3 with the degrees of both rows of R()\) equal
to 1 and, since rank(P) = 2, Lemma 3.2-(iv) would imply that the rows of R()) form
a polynomial basis of Row(P) with the sum of the degrees of its vectors equal to 2.
Therefore, the rows of R(\) would be a minimal basis of Row(P) and the minimal
indices of this rational subspace would be 1 and 1, which contradicts that the minimal
indices of Row(P) are 2 and 0.

Consider any sequence {€x }ren of nonzero numbers with limy_, o, € = 0 and construct
from P(\) the following sequence of polynomial matrices via the strategy in (27):

76}6/\ /\2 0 )\2 1 )\2 0 76}6/\
P.(\) = 1 1 L /\01— 1 M+ear 1 |,
1 0 ck 0 A2 1

which satisfies limg_, o0 Pr(A) = P(\). Proceeding as in (28), Py(\) can be written as:

o 2
FANT T T —2a o a2 1
PN=| 1 1 o e
0 1 0 1 1exd 0
1 0
—Ek)\ 0 1
—1x 01
= 1 Iasr|| T € AVE,(1,1) CcCEY. O
1 kL)\ 1 A0
L €k

The set in Theorem 4.5-(iii) plays a crucial role in the main results of this section.
Therefore, we adopt the following short notation for it B?f: = erx Hdp+1,...,dp+
1,dR,...,dr), and we define it explicitly in Definition 4.7 for future reference.

Definition 4.7. Let m,n,r and d be integers such that m,n > 2, d > 1l and 0 < r <
min{m,n}, and a be an integer such that 0 < a < rd. Let us define dr := |a/r],
tg := a mod r and the following subset of polynomial matrices

L(A) € CIA™", R(A) € CIA]"™™,
deg(R;x) =dgp+1, fori=1,... tg,
deg(R;x) =dg, fori=tp+1,...,r,
deg(L.;) =d —deg(Ri), fori=1,...,r

Bl i= ¢ LIAR(N) -

d,r,a

C CAZ".

As a simple consequence of the developments above, we prove the first main result of
this section.
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Theorem 4.8. Let A7 "™ and B'*™ be the sets of polynomial matrices defined in Theo-

d,r,a d,r,a
rem 4.3 and in Definition 4.7, respectively. Then,

(i) Byra CAGSy fora=0,1,...,rd,

d,r.a
(ii) B?TX’; = ZZTX#:L fora=0,1,... rd,
(iii) CNT" = | ByXr, and
0<a<rd
(iv) for every P(X\) € C[A]g})", there exists an integer a such that P()\) € W
Proof. Ttem (i) is obvious by definition. Item (i) implies @ - m Next, suppose
LR € A7)0 Then L(NR(A) € A7 (p1,..., pr) for some integers (p1,...,pr)

such that 0 < p; < d, for i = 1,...,r, and > ._, p; = a, and, by Theorem 4.5-(iii),
L(NR(N) € B . Therefore, ATX" C B'*" which implies A7} " C BJ'*". This
proves item (ii). Finally, items (iii) and (iv) follow from item (ii) and the items (ii) and

(iii), respectively, of Theorem 4.3. O

We know that there are polynomial matrices for which none of their rank factoriza-
tions satisfies that the sum of the degrees of the factors is equal to the degree of the
polynomial. Recall Lemma 3.4 and Example 3.22. However, a corollary of Theorem 4.8
is that generically the polynomials in C[A]7"" have factorizations with the sum of the
degrees of the factors not larger than d + 1. The reason is that if L(\)R(\) € By 7,

then deg(L) + deg(R) = d+ 1 if tg > 0 and deg(L) + deg(R) = d if tg = 0. We state
this result as a corollary for future reference.

Corollary 4.9. Let

L(X\) € C[A]™ ", R(\) € C[A]"™*",
Si "= S LANR(A) ¢ deg(L) 4 deg(R) < d +1, C CIAEm,
LVR() € CI"

Then CAJ7) " =Sy

Theorem 4.8 proves the promised result that arbitrarily close to any polynomial matrix
P(\) € C[A]7) ", there is another polynomial matrix Q(A) € C[AJ7" that can be
factorized as Q(A) = L(A)R(A), with the degrees of the columns of L(\) differing at
most by one, with the degrees of the rows of R()) also differing at most by one, and, for
eachi=1,...,r, the sum of the degrees of the ith column of L(\) and of the ith row of
R(\) is equal to d. Moreover, we have proved that only rd+1 different degree distributions
with these properties are necessary. However, the factorization of Q(\) is not necessarily
a minimal rank factorization, according to the definition of Bgfﬁf . Next, we prove in
Theorem 4.11 that arbitrarily close to any polynomial matrix P(/\) € CAJ7 " there
is a polynomial matrix Q(\) that can be factorized as Q(A) = L(A)R(\) with factors
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satisfying the conditions of Theorem 3.19, and, moreover, with the degrees of the columns
of L()\) differing at most by one and with the degrees of the rows of R(X) also differing
at most by one. In addition, the minimal indices of My(Q) and N,.(Q) are as those in
Theorem 2.12. For that purpose we introduce first the following definitions.

Definition 4.10. Let m,n,r and d be integers such that m,n > 2,d > 1 and 0 < r <
min{m,n}, a be an integer such that 0 < a < rd, and BZLTX(? be the set in Definition 4.7.

Let us define « := |a/(n —71)], s := @ mod (n —r), B := [(rd — a)/(m — r)], and
t:= (rd —a) mod (m —r) and the following subsets of C[A]7"*"

L(ANR(N) e B <"
= S LR dra’
Mdv“a { (MEQ) L(A) and R(\) are minimal bases

LO)R(N) € Mmxn

d,r,a’
Ne(L) has minimal indices {8 +1,...,8+1,8,...,8},
mxn —_——— —
MHd,;fa = L()‘)R()‘) : t m—r—t
N.(R) has minimal indices {a+1,...,a+1,q,...,a}
——— ——
S n—r—s

With respect to the definition of MH'"*" it is important to recall that Lemma 3.2

d,r,a”

implies that Np(L) = Ny(L(A)R())) and that N,.(R) = N.(L(A)R(N)).

Theorem 4.11. Let By, M7 """ and M”Hg}lrx; be the sets of polynomial matrices in-

troduced in Definitions /.7 and 4.10. Then,

(i) MHIXT C M C BT*™ fora=0,1,...,rd,

d,r,a d,r,a = ~d,r,a
11 mXn mXn M Xn
(ii) MHG e =My s =8By fora=0,1,...,rd,
mxn __ mXn __ mXn
(iif) CAlG " = dra = U dira> A0
0<a<rd 0<a<rd
(iv) for every P(X) € C[N')X", there exists an integer a such that P(\) € MH' " =
mXn
d,r,a *

Proof. Item (i) is obvious from the definitions of the involved sets.
Proof of item (ii). First note that item (i) implies immediately that

MHmX'Il C men C Bmxn.

d,r,a d,r,a = ~d,r,a

With this result at hand, observe that if we prove Bj';' € MMy ", then By " C

MHT " immediately follows, which implies MHJ' " = B'X", which in turn implies

the result in item (ii). Therefore, we focus on proving B, ™ C MM " If LIN)R(N) €

d,r,a d,r,a
B then
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L( ) G(C[ ]r><m’ Wlthf—(d dr —1,. d—dR—Ld—dR,...,d—dR), (32)

tr r—tr

()\) S (C[)\]rxn’ with g= (dR +1,...,dr + 1,dg,.. .,dR). (33)

tr r—tr

Therefore, Theorem 2.15 applied to L(\) and R(\) implies that there exist sequences of
polynomial matrices {Lg(A) }reny C C[A]™ " and {Rk(A) }ren € C[A]"*", such that

(1) limg—yoo Lr(N) = L(A) and limy_, o0 Ri(A) = R(A),
(2) each polynomial matrix Ly()) is a minimal basis, Np(L) has minimal indices equal
to{f+1,...,86+1,5,...,5}, and deg((Ly)+i) =d —dr —1fori=1,...,tg, and
—_— ——

t m—r—t
deg((Lg)wi) =d—dg fori=tp+1,...,r,
(3) each polynomial matrix Ry () is a minimal basis, N;.(Ry) has minimal indices equal

to {a+1,...,a+1,a,...,a}, and deg((Rg)ix) = dg + 1 for ¢ = 1,...,tg, and
—_—— — —

deg((Rk)ix) =dg fori=tp+1,...,r

This means that {Ly(A)Re(A\)}ren C MH]X? and that limg_oo Li(A\)Ri(N) =

d,r,a

LINR(N). So, LAR(N) € MHTX™ and BT C MHT ™ is proved.

d,r,a d,r,a d,r,a

Items (iii) and (iv) follow from item (ii) and items (iii) and (iv) in Theorem 4.8. O

To compare the results we are obtaining for polynomial matrices with degree at most
d, where d > 1, with those in [8] for matrix pencils, that is, for d = 1, we introduce some
additional sets of polynomial matrices and prove for them a result similar to Theorem 4.8.

Definition 4.12. Let m,n,r and d be integers such that m,n > 2, d > 1 and 0 < r <
min{m,n}, and a be an integer such that 0 < a < rd. Let us define dg := |a/r],

mxn
d,r

tr := a mod r, and the following subset of C[}]
L(A) € CI™T, R(A) € CAI™™,
deg(R;.) <dg+1, fori=1,..., tg,
Cova = LNR(A) : deg(Rix) <dgr, fori=tp+1,...,r,
deg(L.;) <d—dr—1, fori=1,...,tg,
deg(L.;) <d—dg, fori=tr+1,...,r

Theorem 4.13. Let B;”TX: and CLTTX(:L be the sets of polynomial matrices introduced in

Definitions 4.7 and 4.12, respectively. Then,

() BmxnCcmxnfora:071,...,7’d;

d,r,a d,r,a

( ) BmXn — omxn fO’I"a:O71""7Td’

d,r,a d,r,a
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(i) CA = |J ¢, and

d,r,a’
0<a<rd
(iv) for every P(X) € C[N| )", there ewists an integer a such that P(\) € Cy' .

d,r,a

Proof. Item (i) is obvious from the definitions of the involved sets.

mxn

Proof of item (ii). From item (i), we get that By’ " C Cj';". Next, we prove that
Cor e C Bt Let LINR(N) € CI' X" but L(AN)R(N) ¢ B'X". This means that the

d,r,a d,r,a d,r,a d,r,a
degrees of some rows of R(\) and/or of some columns of L(\) are strictly less than the
corresponding quantities dg+1, dr, d—dr —1, d—dpg appearing in Definition 4.12. Using
any sequences of constant nonzero vectors {vg}reny C C™*! and/or {wy}reny C CHX7,
such that limg_, o, v = 0 and limg_, o, wi = 0, we sum to the rows of R(A) with degrees
strictly less than dgr + 1 and/or dg polynomial vectors A?&*1wy and/or A*2wy,, and
sum to the columns of L(\) with degrees strictly less than d — dgr — 1 and/or d — dr
polynomial vectors A\¥~?&~1y; and/or \¥~ry,. This allows us to construct a sequence

{Le(N)Re(N) }ren € BJ'X™ such that limg oo L (A)Rk(A) = L(A)R(A). This proves

d,r,a
LNR(N) € By and Cp'X 0t € By X", which implies Cj")" € By ", This proves item

(ii).

Items (iii) and (iv) follow from item (ii) and items (iii) and (iv) in Theorem 4.8. O

Remark 4.14. (Comparisons with results for matrix pencils) For d = 1, i.e., for matrix
pencils, the sets C{’frfa", fora=0,1,...,r, in Definition 4.12 are exactly the sets C’ in [8,
Lemma 4]. However, by using the Kronecker canonical form of pencils, Lemma 4 in [8]
proves that C[N|}")" = U Cy" ', which is a result stronger than Theorem 4.13-(iii)
<a<

because it does not invgl_vae_glosures. This raises the question whether for d > 2 the
closures can be removed in Theorem 4.13-(iii). Unfortunately, this is not possible as the
next example shows.

Example 4.15. Consider the polynomial matrix P(\) € (C[A]g,xf in (31). We are going to
show that P(A) ¢ Uy<u<4 Cgéi For this purpose, we follow an argument similar to that
in Example 4.6. Note first that the two factors L(\) and R()) of P(\) in (31) are minimal
bases. Thus, the minimal indices of Col(P) are 2 and 0 and the minimal indices of Row(P)
are also 2 and 0. Moreover, since rank(P) = 2, any factorization P()\) = L(A)R()\) with
L(A) € CAP*2 and R(\) € C[A]2*3 must satisfy rank(L) = rank(R) = 2 and, so, the
columns of L(A) are a polynomial basis of Col(P) and the rows of R()) are a polynomial
basis of Row(P). This means that the sum of the degrees of the columns of L(\) must
be larger than or equal to 2 and that the sum of the degrees of the rows of fi()\) must
be larger than or equal to 2. Therefore, P(\) ¢ CSE?O and P(\) ¢ Cgéi, because in
both cases the sum of the degrees of the rows of E()\) would be smaller than 2, and
also that P(\) ¢ Cg’é% and P(\) ¢ CSE?’47 because in both cases the sum of the degrees
of the columns of L(\) would be smaller than 2. Then, the only remaining option is
P\ € CS’E?’Q but in this case dg = 1 and ¢t = 0, which implies that both rows of R())
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must have degree exactly 1, and that they will be a minimal basis of Row(P), which is
impossible because the minimal indices of Row(P) are 2 and 0. O

4.1. Relation between factorizations and generic complete eigenstructures in (C[)\]gf;("

A glance to the results in Theorems 2.12, 4.3, 4.8, 4.11 and 4.13 hints a relationship
between the closures of the orbits O(K,) of polynomial matrices with generic eigenstruc-
tures and those of the sets defined before in Section 4. To establish this relationship, we
characterize O(K,) as a set of factorized polynomial matrices in the next theorem.

Theorem 4.16. Let m,n,r and d be integers such that m,n > 2, d > 1 and 0 < 7 <
min{m,n}, and a be an integer such that 0 < a < rd. Let us define o := |a/(n —r)],
s:=a mod (n—r), B:=|(rd—a)/(m—7)], and t := (rd—a) mod (m—r). Let O(K,)

be the orbit of polynomial matrices in C[A]] "™ appearing in Theorem 2.12. Then

L(X) € CIA\™*", R(\) € C[N\™*™,
L(XA) and R(\) are minimal bases,
Ne(L) has minimal indices {8+ 1,...,6+1,8,...,8},
O(Kq) = ¢ LVR() - t m—r—t
N (R) has minimal indices {a+1,...,a+1,q,...,a},
—_—

n—r—s

deg(L.;) + deg(Rix) =d, fori=1,...,r

Proof. The result is an immediate corollary of Theorem 3.19 and the facts that Ny(L) =
Ne(L(AN)R(N)) and N,.(R) = N, (L(A)R()N)) according to Lemma 3.2. O

With this result at hand, we get the next theorem.

Theorem 4.17. Let A7 X" Bl M MHT X" and C'° T be the sets of polynomial

d,r,a’ ~d,r,a’ d,r,a’ d,r,a d,r,a
matrices introduced in Theorem /.3 and in Definitions 4.7, 4.10 and 4.12. Let O(K,) be

the orbit of polynomial matrices in (C[/\]gff" appearing in Theorem 2.12. Then,

(i) O(K.) CAG Y fora=0,1,...,rd,
(i) MHT " C O(K,) fora=0,1,...,rd,

d,r,a

(iil) O(FK,) = MHIX™ = MIPXN = BIXn _ gmxXn _ qmxXn forq (.1, rd.

d,r,a d,r,a d,r,a d,r,a d,r,a

Proof. Proof of item (i). If P(\) € O(K,), then P(A\) = L(A)R(X) with the factors L(\)
and R()\) satisfying the properties described in Theorem 4.16. These properties imply
that the degrees of the rows of R(\) are the minimal indices of Row(P) by Lemma 3.2.
Combining this result with the fact that N, (R) = N,.(P), again by Lemma 3.2, and with
Corollary 2.10, we get
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g deg(Rix) = s(a+1)+(n—r—s)a=mn—-r)a+s=a.
i=1

This implies that P(\) € A7 and, so, item (i).

d,r,a
Item (ii) follows from the definitions of the involved sets.

Proof of item (iii). Item (i) implies O(K,) C Ag' ). Combining this inclusion with
Theorems 4.8-(ii), 4.11-(ii) and 4.13-(ii), we get

m g M mxn _ mxn Bmxn men — m><n'

d,r,a d,r,a — ~d,ra d,r,a d,r,a

On the other hand, item (i) implies MH7*" C O(K,), which combined with the

d,r,a
equation above yields the result in item (iii). O

The inclusion relationships presented in Theorem 4.17-(i) and (ii) between O(K,)
and the other sets involved in this theorem are the only ones that hold in general. We
illustrate this statement in the next example.

Example 4.18. Consider the following polynomial matrix

0 O 1 1 1 0
0 0 A2 A A2 0|0 0o 1 1

P()‘): 1 A2 204 M = )\4 1 1 A2 )4 0 =: L()\)R()\) (34)
1 A2 X 0 0 1

P(\) belongs to C[)\]ﬁf;". Moreover, the factors L(\) and R(\) are minimal bases by
Theorem 2.5. Consider also the following polynomial matrices

A0

R INESY: ~ A2 -1 00

L=, | and R(A)_l 0 g 1]. (35)
0 1

It is easy to check that the columns of L()) are a minimal basis of N,(R) = N, (P) and
that the rows of ﬁ()\) are a minimal basis of Ny(L) = N;(P). Therefore, P(\) € O(Ky),
by Theorem 4.16. However, P(\) ¢ B35, P(A) ¢ M1%5Y, P(A) ¢ MHy5", and P()) ¢
023744. To see this, we need to check that no factorization of P(\) as P(\) = L(A)R(),
with L(A) € C[AJ**2 and R(\) € C[N2**, satisfies the conditions of the definitions
of these sets. Note that in any of these factorizations P(A) = L(A)R(A) the rows of
R()) are a polynomial basis of Row(P). Therefore, combining Theorem 2.3 with the
fact that the minimal indices of Row(P) are 0,4, we obtain that deg(R) > 4. But,
dr = |a/r] = |4/2] = 2 and tg = 0, which implies that any polynomial matrix in
any of the sets By’s%, M15Y, MHSY and Ci3% can be factorized as Lg(A)Rg(\) with
Ls(\) € C[N**2, Rg(\) € C[\]?** and deg(Rs) < 2. Thus, P()\) does not belong to
any of these sets.
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Next, consider the polynomial matrix

A2 0 AL )2 0 0
—1 22| [X2 =1 00 “AZ A 41 =2 )2

Q@A) = 0 -1 l 0 N\ —1 1] o 0 —)\2 1 -1’ (36)
0 1 0 X2 -1 1

which has been constructed as Q(A) = L(A\)R(A) with the matrices in (35). Observe that
Q) € M3X244 C 83244 C Cffé and Q(\) € 3@?4. However, Q(A\) ¢ O(K,) because the
minimal indices of N,.(R) = N,(Q) are 0 and 4, since the columns of L() in (34) are a
minimal basis of N,(R). O

Remark 4.19. (Comparisons with results for matrix pencils) For d = 1, it was proved in
8, Theorem 6] that O(K,) = C™*™ while Theorem 4.17 only proves the weaker result

1,r,a >
O(K,) = C{"TX;L For d > 2, the result O(K,) = Zzan: cannot be improved, since, in
general, O(K,) # Cg“:f;l . The polynomial matrix in (34) illustrates this inequality.

5. Conclusions

We have established many results on rank factorizations and minimal rank factor-
izations of polynomial matrices, which, as far as we know, are completely new in the
literature. In addition, the generic degree properties in the set (C[/\}gff" of complex
m X n polynomial matrices of degree at most d and rank at most r of such factorizations
have been carefully studied and several dense subsets of factorized polynomial matrices
have been identified. Some of these subsets allow us to approximate any polynomial
matrix in (C[)\]mf” as the limit of a sequence of factorized polynomial matrices that
can be easily and efficiently generated due to the particular degree properties of their
factorizations, which have left factors with columns whose degrees differ at most by one
and right factors with rows whose degrees differ at most by one. Apart from their fun-
damental nature in the theory of polynomial matrices, we hope that these results will
have applications in the solution of different nearness problems involving polynomial
matrices in C[A]7",". Possible lines of future research include exploring the development
of structured rank factorizations and minimal rank factorizations of classes of structured
polynomial matrices appearing in applications [22], and verifying if some of the dense

subsets of polynomial matrices in Section 4 are also open in C[\]]""
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