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We investigate rank revealing factorizations of m × n poly
nomial matrices P (λ) into products of three, P (λ) =
L(λ)E(λ)R(λ), or two, P (λ) = L(λ)R(λ), polynomial ma
trices. Among all possible factorizations of these types, we 
focus on those for which L(λ) and/or R(λ) is a minimal basis, 
since they have favorable properties from the point of view of 
data compression and allow us to relate easily the degree of 
P (λ) with some degree properties of the factors. We call these 
factorizations minimal rank factorizations. Motivated by the 
well-known fact that, generically, rank dficient polynomial 
matrices over the complex field do not have eigenvalues, we 
pay particular attention to the properties of the minimal rank 
factorizations of polynomial matrices without eigenvalues. We 
carefully analyze the degree properties of generic minimal 
rank factorizations in the set of complex m × n polynomial 
matrices with normal rank at most r < min{m,n} and degree 
at most d, and we prove that there are only rd + 1 different 
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Minimal bases
Normal rank

classes of generic factorizations according to the degree prop
erties of the factors and that all of them are of the form 
L(λ)R(λ), where the degrees of the r columns of L(λ) differ 
at most by one, the degrees of the r rows of R(λ) differ at 
most by one, and, for each i = 1, . . . , r, the sum of the de
grees of the ith column of L(λ) and of the ith row of R(λ)
is equal to d. Finally, we show how these sets of polynomial 
matrices with generic factorizations are related to the sets of 
polynomial matrices with generic eigenstructures.

© 2025 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Given an m×n matrix A with complex entries and rank r, it is often useful to express 
A as the product of three factors A = LER of sizes m× r, r× r and r× n, respectively, 
or as the product of two factors A = LR of sizes m × r and r × n, respectively. Such 
factorizations are sometimes called rank-revealing factorizations, or rank factorizations 
for short, since the sizes of the factors reveal the rank of the matrix. The singular value 
decomposition is probably the best known example of a rank-revealing factorization, 
though several other rank-revealing factorizations exist and are used in practice. Rank
revealing factorizations have many applications. Among them, data compression when 
r � min{m,n} plays an important role [19]. Another relevant application is to use rank
revealing factorizations as compact representations, or parametrizations, of the elements 
in the manifold of m×n matrices with rank r that allow for the efficient solution of some 
optimization problems on this manifold [4, Secs. 2.6, 2.8, 7.5]. It is well-known that a 
rank-revealing factorization A = LR is equivalent to expressing A as a sum of r rank-1 
matrices A = v1u

T
1 + · · · + vru

T
r , where v1, . . . , vr are the columns of L and uT

1 , . . . , u
T
r

are the rows of R. The concepts mentioned in this introduction are revised in Section 2.
The main goal of this paper is to investigate rank-revealing factorizations of m ×

n polynomial matrices P (λ), of normal rank r and degree d, into products of three, 
P (λ) = L(λ)E(λ)R(λ), or two, P (λ) = L(λ)R(λ), polynomial matrices. We will see 
that this problem is very different from the corresponding one for constant matrices and 
that it requires the use of completely different tools. These differences come essentially 
from two facts. First, from the constraint that the factors must be also polynomial 
matrices and, second, from the notion of degree, and the non-trivial question of how 
the degree of P (λ) is related to the degrees (of the entries) of the factors. For instance, 
the naive idea that the sum of the degrees of the polynomial factors is equal to the 
degree of P (λ) is not valid because there exist polynomial matrices for which none of 
their rank-reveling factorizations satisfy such relation (see, for instance, Example 3.22
and Lemma 3.4). Observe in this respect that the degrees of the factors play a key role 
for data compression since the matrix coefficients of P (λ) =

∑d
i=0 Piλ

i require to store 
(d + 1)mn numbers, while to store the coefficients of the factors in a rank-revealing 
factorization P (λ) = L(λ)R(λ) requires to store up to (dL +1)mr+(dR +1)nr numbers, 
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where dL and dR are the degrees of L(λ) and R(λ) respectively. Clearly, high values 
of dL and dR are not desirable in terms of data compression. These difficulties extend 
to the possible use of rank-revealing factorizations of polynomial matrices as compact 
representations or parametrizations of the elements of the set of polynomial matrices 
of degree d and normal rank r, because it is not clear which are the possible degrees 
that can be assigned to each factor and, so, it is not clear how to develop economic 
representations or how many of them are needed.

These degree problems motivate us to focus on rank-revealing factorizations of poly
nomial matrices where L(λ) is a minimal basis [17] of the column space of P (λ) and/or 
R(λ) is a minimal basis of the row space of P (λ). We call these factorizations minimal 
rank factorizations. We prove that these factorizations have three important advantages. 
In the first place, the very same definition of minimal bases in [17] implies that they 
are the most economical bases of a rational subspace in terms of data storage. Combin
ing this property with the fact that for any rank-revealing factorization of P (λ), L(λ)
is a basis of the column space of P (λ) and R(λ) is a basis of the row space of P (λ)
(see Lemma 3.2), we see that minimal rank factorizations are optimal in terms of data 
compression. This property is particularly relevant in the important generic case of rank 
dficient polynomial matrices without eigenvalues (see Theorem 3.19), since in this case 
a middle factor E(λ) is not necessary. The second key property of minimal rank fac
torizations is that they allow us to relate in a very clear way the degree of P (λ) with 
certain matching properties of the degrees of the entries of the factors (see Corollary 3.17
in general and Theorem 3.19 for polynomial matrices without eigenvalues). Finally, in 
the case of polynomial matrices P (λ) with eigenvalues, their minimal rank factorizations 
with three factors and with L(λ) and R(λ) both minimal bases guarantee that the middle 
factor E(λ) contains all the finite eigenvalues of P (λ) with their partial multiplicities 
(see Theorem 3.11-(i) and Remark 3.13). Observe that if r � max{m,n}, the r×r factor 
E(λ) is much smaller than P (λ).

Despite the advantages described in the previous paragraph, minimal rank factor
izations still allow for a lot of freedom on the possible degrees of the columns of L(λ)
and the rows of R(λ), except when d and r are both small (see the discussion at the 
end of Section 3). Thus, further work is needed for finding a small number of compact 
parametrizations via factorizations of (a dense subset of) the set of polynomial matrices 
of degree d and normal rank r that might potentially allow us, for instance, to solve 
efficiently optimization problems on this set. Such compact parametrizations are related 
to some results available in the literature which are discussed in the next paragraph.

It is well-known [14] that generic m × n polynomial matrices with normal rank r <

min{m,n} and degree at most d, over the complex field, do not have eigenvalues and have 
minimal indices with very particular properties. More precisely, the m− r left minimal 
indices differ at most by one and the same happens with the n− r right minimal indices. 
These properties combined with the Index Sum Theorem [10] (see also Theorem 2.7
below) give rise to the existence of only rd+1 different generic complete eigenstructures 
in the set C[λ]m×n

d,r of m × n complex polynomial matrices with normal rank at most 
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r and degree at most d, and allow us to express C[λ]m×n
d,r as the union of the closures 

of the rd + 1 sets (usually called orbits) of all polynomial matrices with such generic 
eigenstructures (see Theorem 2.12 below).

The generic results described above motivate us, in the first place, to study in detail 
the minimal rank factorizations of polynomial matrices without eigenvalues and, in the 
second place, to look for alternative descriptions of the set C[λ]m×n

d,r in terms of the 
union of the closures of a few sets of polynomial matrices which have generic rank
revealing factorizations with very specific properties, instead of in terms of a few generic 
eigenstructures. In this line, we prove that, generically, the polynomials in C[λ]m×n

d,r can be 
factorized in only rd+1 different ways according to the degree properties of the factors. 
More precisely, among other results, we prove that generically for P (λ) ∈ C[λ]m×n

d,r a 
factorization of P (λ) = L(λ)R(λ) into two polynomial matrices of sizes m× r and r× n

satifies that the degrees of the r columns of L(λ) differ at most by one, the degrees of the 
r rows of R(λ) differ at most by one, and, for each i = 1, . . . , r, the sum of the degrees of 
the ith column of L(λ) and of the ith row of R(λ) is equal to d, and that there are only 
rd + 1 different ways to choose the involved column and row degrees (see Definition 4.7
and Theorem 4.8-(iii) among other results in this spirit). We emphasize that each of 
such rd + 1 sets of polynomial matrices with these specific factorizations can be easily 
and efficiently parameterized using the vector coefficients of the columns of L(λ) and the 
rows of R(λ). In this context, we also study how the orbits of the polynomial matrices 
with the generic eigenstructures identfied in [14] (see also Theorem 2.12) are related 
to the polynomial matrices with the generic factorizations that we identify in this work 
(see Theorem 4.17). These two generic views of the set C[λ]m×n

d,r are complementary. The 
generic orbits provide geometrical insights into the structure of C[λ]m×n

d,r . But in order to 
use such insights for solving certain problems numerically, e.g., optimization or distance 
problems related to low rank polynomial matrices with given degree, parametrizations of 
these orbits are needed. The generic factorizations presented in this work provide such 
parametrizations for the closures of the generic orbits. In summary, these factorizations 
help us to bridge the geometry and numerics for low rank matrix polynomials of given 
degree.

We are not aware of other similar results available in the literature, dealing with rank
revealing factorizations of polynomial matrices of degree larger than one. However, there 
exist factorizations of this type in the case of degree at most one, that is, in the case 
of matrix pencils. In fact, rank-revealing factorizations expressed as the sum of matrix 
pencils with rank one exist for unstructured pencils [6--8] and also for matrix pencils 
with symmetry structures [13]. We will explore in Remark 4.14, Example 4.15, and 
Remark 4.19 the relationship between the results previously obtained for unstructured 
pencils and the new ones for unstructured polynomial matrices of degree larger than one 
developed in this work.

It is worth to point out that rank-revealing factorizations of matrix pencils have played 
a fundamental role in the study of the generic effect of low rank perturbations on the 
eigenstructure of a given regular matrix pencil. More precisely, in [7] the authors express 
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the set of all possible perturbations, i.e., C[λ]n×n
1,r , as the union of r + 1 sets of pencils 

whose elements have rank-revealing factorizations with very specific properties (see [7, 
Lemma 3.1] or [8, Lemma 4]). After that, they dfine r + 1 surjective smooth maps 
Φ0,Φ1, . . . ,Φr from C3rn onto each of these sets using the specific forms of the factors of 
the elements of these sets [7, Definition 3.2]. Finally, it is proved in [7, Theorem 3.4] that 
there exist r + 1 generic subsets G0, G1, . . . , Gr of C3rn such that all the perturbation 
pencils in the sets Φ0(G0),Φ1(G1), . . . ,Φr(Gr) produce the same ``generic'' effect on the 
eigenstucture of the unperturbed regular pencil. We hope that this strategy combined 
with the results developed in this paper about expressing C[λ]n×n

d,r as the union of the 
closures of rd+1 sets of polynomial matrices having rank-revealing factorizations with the 
very specific properties described above will have applications in the study of the generic 
effect of low rank perturbations on the eigenstructure of a given regular polynomial 
matrix of degree larger than one, which is a problem that remains open in the literature.

We emphasize that the rank-revealing factorizations of matrix pencils in [6--8,13] have 
been obtained by using the Kronecker canonical form of pencils under strict equivalence 
[18], or structured versions of this form. Since a canonical form of this type does not exist 
for polynomial matrices of degree larger than one, the problem for polynomial matrices 
is harder than for matrix pencils, requires different tools, and yields results weaker than 
those for pencils (see the discussions in Remark 4.14, Example 4.15, and Remark 4.19).

The paper is organized as follows. Section 2 includes some known concepts and re
sults that are important for obtaining the main results of this paper. Rank-revealing 
factorizations and minimal rank factorizations of polynomial matrices are introduced in 
Section 3, where their properties are also studied. Section 4 establishes the generic prop
erties of rank-revealing factorizations and minimal rank factorizations. Finally, Section 5
presents some conclusions and possible lines of future research.

2. Preliminaries

This section summarizes the notation and some of the results previously published 
in the literature, that will be used in the paper. Many of the results in this paper are 
valid over an arbitrary field F while others are only valid over the field C of complex 
numbers. This will be clearly indicated in the text by using either F or C. F [λ] stands for 
the ring of polynomials in the variable λ with coefficients in F and F(λ) stands for the 
field of fractions of F [λ], i.e., rational functions in the variable λ with coefficients in F . 
A polynomial vector is a vector with entries in F [λ]. F [λ]m×n and F(λ)m×n denote the 
sets of m× n polynomial matrices and of m× n rational matrices, respectively, over F . 
The degree of a polynomial vector, q(λ), or of a polynomial matrix, P (λ), is the highest 
degree of all of its entries and is denoted by deg(q) or deg(P ). The degree of the zero 
polynomial is dfined to be −∞. The set of m × n polynomial matrices of degree at 
most d is denoted by F [λ]m×n

d . Given a list d = (d1, d2, . . . , dm) of nonnegative integers, 
F [λ]m×n

d denotes the set of m×n polynomial matrices whose ith row has degree at most
di for i = 1, . . . ,m. We also use F for the algebraic closure of F , In for the n×n identity 
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matrix, and 0m×n for the m× n zero matrix, where the sizes are omitted when they are 
clear from the context. We need to use very often the ith row or the jth column of a 
polynomial matrix P (λ) and we adopt the following compact notations for them: Pi∗(λ), 
or simply Pi∗, denotes the ith row of P (λ) and P∗j(λ), or simply P∗j , denotes the jth 
column of P (λ).

The normal rank of a polynomial or rational matrix P (λ), denoted as rank(P ), is 
the rank of P (λ) considered as a matrix over the field F(λ), or the size of the largest 
non-identically zero minor of P (λ). The reader can find more information on polynomial 
and rational matrices in the books [18,20].

The set of m×n polynomial matrices with degree at most d and normal rank at most
r is denoted by F [λ]m×n

d,r . In the case F = C and r < min{m,n}, new results about 
factorizations of the elements of this set will be presented in Section 4. In order to avoid 
trivialities, every time that the symbol F [λ]m×n

d,r is written it should be understood that 
the integers d and r satisfy d ≥ 1 and r ≥ 1.

The well-known Smith form of a polynomial matrix plays a very important role in this 
work and the corresponding result is presented in Theorem 2.1 [18]. It requires the use 
of unimodular polynomial matrices, that is, square polynomial matrices with constant 
nonzero determinant.

Theorem 2.1. (Smith form) Let P (λ) ∈ F [λ]m×n with rank(P ) = r. Then there exist 
a unique diagonal matrix S(λ) ∈ F [λ]m×n and unimodular matrices U(λ) ∈ F [λ]m×m, 
V (λ) ∈ F [λ]n×n such that

P (λ) = U(λ)S(λ)V (λ), S(λ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1(λ) 0 . . . 0

0 e2(λ)
. . .

...
...

. . . . . . 0
0 . . . 0 er(λ)

0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where each polynomial ej(λ) ∈ F [λ] is monic and divides ej+1(λ) for j = 1, . . . , r − 1.

The unique matrix S(λ) in (1) is the Smith form of P (λ) and the expression 
P (λ) = U(λ)S(λ)V (λ) is called a Smith factorization of P (λ). Smith factorizations are 
not unique. The polynomials ej(λ) are called the invariant polynomials of P (λ) and those 
that are equal to 1 are called trivial invariant polynomials. For any α ∈ F , the invariant 
polynomials can be uniquely factorized as ej(λ) = (λ − α)σjpj(λ), with pj(λ) ∈ F [λ], 
pj(α) �= 0 and σj ∈ N = {0, 1, 2, . . .}, for j = 1, . . . , r. The sequence σ1 ≤ · · · ≤ σr is 
called the partial multiplicity sequence of P (λ) at α. A root β ∈ F of any of the invariant 
polynomials ej(λ) of P (λ) is called a finite eigenvalue of P (λ). Equivalently, β ∈ F is 
a finite eigenvalue of P (λ) if and only if the partial multiplicity sequence of P (λ) at β
contains at least one nonzero term.
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The partial multiplicity sequence at ∞ of P (λ) ∈ F [λ]m×n
d is dfined to be the partial 

multiplicity sequence at 0 of λdP (1/λ) ∈ F [λ]m×n
d and it is said that P (λ) has an 

eigenvalue at ∞ if its partial multiplicity sequence at ∞ contains at least one nonzero 
term, or, equivalently, if zero is an eigenvalue of λdP (1/λ). It is easy to prove that the 
first term of the partial multiplicity sequence at ∞ and the degree of the polynomial 
matrix are related as follows.

Lemma 2.2. [1, Lemma 2.6] Let P (λ) ∈ F [λ]m×n
d with rank(P ) = r and partial multiplic

ity sequence at ∞ equal to 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γr. Then γ1 = d− deg(P ).

We remark that if a polynomial matrix P (λ) ∈ F [λ]m×n
d , then P (λ) ∈ F [λ]m×n

e for 
any e > d. Thus, the definition above of the partial multiplicity sequence at ∞ and of 
eigenvalue at ∞ of P (λ) depends on the choice of the set to which P (λ) belongs, though 
such dependence is trivial via the shift e− d of the sequence. Therefore, every time we 
mention the eigenvalue at ∞ of a polynomial matrix, we will specify the set F [λ]m×n

d to 
which the polynomial belongs. This dependence of the partial multiplicity sequence at 
∞ on the chosen set F [λ]m×n

d is rather extensively discussed in the literature. In fact, 
the set F [λ]m×n

d is what is called in [24] the vector space of m× n polynomial matrices 
of grade d, its elements are said to have grade d, independently of the degree they may 
have, and their partial multiplicity sequences at ∞ are dfined with respect to d. The 
grade and the corresponding definition of eigenvalue at ∞ have been used very often 
for solving several problems on polynomial matrices as, for instance, genericity problems 
[5,14,15], the analysis of certain structured polynomial matrices [23], and in Möbius and 
more general rational transformations [24,25].

Next, we recall the concept of minimal bases of a rational subspace [17]. Let us consider 
the vector space F(λ)n over the field F(λ). A subspace V of F(λ)n is called a rational 
subspace. By clearing out denominators, one can see that every rational subspace V
has bases consisting entirely of polynomial vectors, which are called polynomial bases of 
V. Following Forney [17], we say that a minimal basis of V is a polynomial basis of V
consisting of vectors whose sum of degrees is minimal among all polynomial bases of V. 
A key property [17] is that the ordered list of degrees of the polynomial vectors in any 
minimal basis of V is always the same. These degrees are called the minimal indices of 
V. Observe that if dimV = p and the degrees of the vectors in a polynomial basis B of 
V are d1, d2, . . . , dp, then n

∑p
i=1(di + 1) scalars of F are needed to store B. Therefore, 

the minimal bases of V are optimal from the point of view of data storage among the 
polynomial bases of V, as we pointed out in Section 1. Minimal bases and indices also 
satisfy the following ``Strong Minimality Property of Minimal Indices''.

Theorem 2.3. [21, Thm. 4.2] Let V ⊆ F(λ)n be a p-dimensional rational subspace with 
minimal indices ε1 ≤ ε2 ≤ · · · ≤ εp and let d1 ≤ d2 ≤ · · · ≤ dp be the ordered degrees of 
the vectors in a polynomial basis B of V. Then, εi ≤ di for i = 1, . . . , p.
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The minimal bases of any rational subspace can be characterized in different important 
ways [17, p. 495] (see also [20]). Among them, we emphasize the characterization in 
Theorem 2.5, which leads us to introduce Definition 2.4.

Definition 2.4. [31, Def. 2.5.6, p. 27] Let d′1, . . . , d′n be the degrees of the columns of 
N(λ) ∈ F [λ]m×n. The highest-column-degree coefficient matrix of N(λ), denoted by 
Nhc, is the m × n constant matrix whose jth column is the vector coefficient of λd′

j in 
the jth column of N(λ). The polynomial matrix N(λ) is said to be column reduced if 
Nhc has full column rank.

Similarly, let d1, . . . , dm be the degrees of the rows of M(λ) ∈ F [λ]m×n. The highest
row-degree coefficient matrix of M(λ), denoted by Mhr, is the m × n constant matrix 
whose jth row is the vector coefficient of λdj in the jth row of M(λ). The polynomial 
matrix M(λ) is said to be row reduced if Mhr has full row rank.

Theorem 2.5. [17, Main Thm. 2, p. 495] The columns (resp., rows) of a polynomial matrix 
N(λ) ∈ F [λ]m×n are a minimal basis of the rational subspace they span if and only if 
N(λ0) has full column (resp., row) rank for all λ0 ∈ F , and N(λ) is column (resp., row) 
reduced.

Next, we dfine four rational subspaces associated with a polynomial matrix P (λ).

Definition 2.6. (Rational subspaces of a polynomial matrix) Let P (λ) ∈ F [λ]m×n. Then

(i) N�(P ) = {y(λ) ∈ F(λ)1×m : y(λ)P (λ) = 0} ⊆ F(λ)1×m is the left nullspace of 
P (λ),

(ii) Nr(P ) = {x(λ) ∈ F(λ)n×1 : P (λ)x(λ) = 0} ⊆ F(λ)n×1 is the right nullspace of 
P (λ),

(iii) Row(P ) = {w(λ)P (λ) : w(λ) ∈ F(λ)1×m} ⊆ F(λ)1×n is the row space of P (λ),
(iv) Col(P ) = {P (λ)v(λ) : v(λ) ∈ F(λ)n×1} ⊆ F(λ)m×1 is the column space of P (λ).

Observe that if rank(P ) = r, then dimN�(P ) = m − r, dimNr(P ) = n − r and 
dimRow(P ) = dim Col(P ) = r, by the rank-nullity theorem [18, Vol. I, p. 64]. Thus, 
N�(P ) has m − r minimal indices, Nr(P ) has n − r minimal indices, and Row(P ) and 
Col(P ) have each of them r minimal indices.

Given a polynomial matrix P (λ) ∈ F [λ]m×n
d , the set formed by its invariant polyno

mials, by its partial multiplicity sequence at ∞, by the minimal indices of N�(P ) and 
by the minimal indices of Nr(P ) is often called the complete eigenstructure of P (λ)
[12,29]. Observe that the minimal indices of Row(P ) and Col(P ) are not included in the 
complete eigenstructure of P (λ).

The complete eigenstructure of a polynomial matrix satifies the well-known index 
sum theorem (see [30, Theorem 3] for the original version for rational matrices, and [10] 
for the more specific polynomial matrix case).
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Theorem 2.7. (Index Sum Theorem) Let P (λ) ∈ F [λ]m×n
d be a polynomial matrix of 

normal rank r, with invariant polynomials of degrees δ1, . . . , δr, with partial multiplicity 
sequence at ∞ equal to γ1, . . . , γr, with minimal indices of N�(P ) equal to η1, . . . , ηm−r

and with minimal indices of Nr(P ) equal to ε1, . . . , εn−r. Then,

rd =
m−r∑
i=1 

ηi +
n−r∑
j=1 

εj +
r∑

k=1

γk +
r∑

�=1 
δ�.

2.1. Dual minimal bases and related properties

We now recall the concept of dual minimal bases as dfined in [11], which are closely 
linked to the classical dual rational subspaces introduced in [17, Section 6]. For brevity, 
we often say in this paper that a polynomial matrix M(λ) ∈ F [λ]m×n is a minimal basis 
if its rows form a minimal basis of the rational subspace they span when n ≥ m or if its 
columns form a minimal basis of the rational subspace they span when m ≥ n.

Definition 2.8. Two polynomial matrices M(λ) ∈ F [λ]m×k and N(λ) ∈ F [λ]n×k are dual 
minimal bases if they are minimal bases satisfying m + n = k and M(λ) N(λ)T = 0.

Observe that the dual minimal bases in Definition 2.8 satisfy that the rows of M(λ)
form a minimal basis of N�(N(λ)T ) and that the columns of N(λ)T form a minimal basis 
of Nr(M(λ)). As a consequence, the minimal indices of Nr(M(λ)) are the degrees of the 
rows of N(λ) and the minimal indices of N�(N(λ)T ) are the degrees of the rows of M(λ).

Dual minimal bases satisfy Theorem 2.9, whose ``direct part'' was proved in [17, p. 
503] (see other proofs in [11, Remark 2.14] and in [12, Lemma 3.6]) and whose ``converse 
part'' was proved in [11, Theorem 6.1].

Theorem 2.9. Let M(λ) ∈ F [λ]m×(m+n) and N(λ) ∈ F [λ]n×(m+n) be dual minimal bases 
with the degrees of their rows equal to (d1, . . . , dm) and to (d′1, . . . , d′n), respectively. Then

m ∑
i=1 

di = 
n ∑

j=1 
d′j . (2)

Conversely, given any two lists of nonnegative integers (d1, . . . , dm) and (d′1, . . . , d′n)
satisfying (2), there exists a pair of dual minimal bases M(λ) ∈ F [λ]m×(m+n) and N(λ) ∈
F [λ]n×(m+n) such that the degrees of the rows of M(λ) and N(λ) are (d1, . . . , dm) and 
(d′1, . . . , d′n), respectively.

A corollary of Theorem 2.9 is the following result.

Corollary 2.10. Let P (λ) ∈ F [λ]m×n be a polynomial matrix of normal rank r, with 
minimal indices of N�(P ) equal to η1, . . . , ηm−r, with minimal indices of Nr(P ) equal 
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to ε1, . . . , εn−r, with minimal indices of Row(P ) equal to ρ1, . . . , ρr, and with minimal 
indices of Col(P ) equal to c1, . . . , cr. Then

m−r∑
i=1 

ηi =
r∑

i=1 
ci and

n−r∑
i=1 

εi =
r∑

i=1 
ρi .

Proof. We only prove the first equality, since the second one follows from applying the 
first to P (λ)T . Let us arrange a minimal basis of N�(P ) as the rows of a matrix M(λ) ∈
F [λ](m−r)×m and a minimal basis of Col(P ) as the columns of a matrix N(λ)T ∈ F [λ]m×r. 
Then M(λ)N(λ)T = 0, which implies that M(λ) and N(λ) are dual minimal bases and 
the first equality follows from Theorem 2.9. �

Combining Theorem 2.7 and Corollary 2.10, we obtain the following dual version of 
the Index Sum Theorem.

Corollary 2.11. (Dual version of the Index Sum Theorem) Let P (λ) ∈ F [λ]m×n
d be a 

polynomial matrix of normal rank r, with invariant polynomials of degrees δ1, . . . , δr, with 
partial multiplicity sequence at ∞ equal to γ1, . . . , γr, with minimal indices of Row(P )
equal to ρ1, . . . , ρr and with minimal indices of Col(P ) equal to c1, . . . , cr. Then,

rd =
r∑

i=1 
ci +

r∑
j=1 

ρj +
r∑

k=1

γk +
r∑

�=1 
δ�.

2.2. Generic complete eigenstructures in C[λ]m×n
d,r

We recall in this subsection the main results of [14]. For that, we need to introduce 
some concepts. First, we introduce a distance in the vector space (over the field C) 
C[λ]m×n

d in terms of the Frobenius matrix norm of complex matrices as follows: Given 
P (λ) = λdPd+ · · ·+λP1 +P0 ∈ C[λ]m×n

d and Q(λ) = λdQd + · · ·+λQ1 +Q0 ∈ C[λ]m×n
d , 

where Pi, Qi ∈ Cm×n, for i = 0, . . . , d, the distance between P (λ) and Q(λ) is

dist(P,Q) :=
(

d ∑
i=0 

||Pi −Qi||2F

) 1
2

. (3)

This makes C[λ]m×n
d a metric space and allows us to dfine in it limits, open and closed 

sets, closures of sets and any other topological concept. The closure of any subset A of 
C[λ]m×n

d will be denoted by A.
Given P (λ) ∈ C[λ]m×n

d , we dfine the orbit of P (λ), denoted by O(P ), as the set of 
polynomial matrices in C[λ]m×n

d with the same complete eigenstructure as P (λ). The 
closure of O(P ) is denoted by O(P ). Observe that all the polynomial matrices in O(P )
have the same rank, since the complete eigenstructure determines the rank, and the 
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same degree, since the first term in the partial multiplicity sequence at ∞ determines 
the degree according to Lemma 2.2.

The main result in [14] describes C[λ]m×n
d,r in terms of closures of orbits of certain 

polynomial matrices with very particular complete eigenstructures. It is stated in the 
next theorem when r < min{m,n}.

Theorem 2.12. [14, Theorem 3.2] Let m,n, r and d be integers such that m,n ≥ 2, d ≥
1 and 1 ≤ r < min{m,n}. Dfine rd + 1 complete eigenstructures Ka of polynomial 
matrices in C[λ]m×n

d,r with r invariant polynomials all equal to one, with all the terms of 
the partial multiplicity sequence at ∞ equal to zero (equivalently, without finite or ifinite 
eigenvalues), with m− r minimal indices of the left null space equal to β and β + 1, and 
with n− r minimal indices of the right null space equal to α and α + 1, as follows:

Ka : {α + 1, . . . , α + 1︸ ︷︷ ︸
s 

, α, . . . , α︸ ︷︷ ︸
n−r−s 

, β + 1, . . . , β + 1︸ ︷︷ ︸
t 

, β, . . . , β︸ ︷︷ ︸
m−r−t 

} (4)

for a = 0, 1, . . . , rd, where α = 	a/(n− r)
, s = a mod (n− r), β = 	(rd− a)/(m− r)
, 
and t = (rd− a) mod (m− r). Then,

(i) There exists a polynomial matrix Ka(λ) ∈ C[λ]m×n
d,r of degree exactly d and normal 

rank exactly r with the complete eigenstructure Ka for a = 0, 1, . . . , rd;
(ii) For every polynomial matrix M(λ) ∈ C[λ]m×n

d,r , there exists an integer a such that 
O(Ka) ⊇ O(M);

(iii) O(Ka)
⋂
O(Ka′) = ∅ whenever a �= a′;

(iv) C[λ]m×n
d,r =

⋃
0≤a≤rd

O(Ka) and C[λ]m×n
d,r is a closed subset of C[λ]m×n

d .

Moreover, it was proved in [14, Corollary 3.3] that for each a = 0, 1, . . . , rd, the orbit 
O(Ka) is an open subset of C[λ]m×n

d,r (in the subspace topology of C[λ]m×n
d,r correspond

ing to the distance (3)). This means that 
⋃

0≤a≤rd O(Ka) is an open and dense subset 
of C[λ]m×n

d,r , which justfies to term the complete eigenstructures in (4) as the generic 
eigenstructures of the polynomial matrices in C[λ]m×n

d,r . As we have explained in Sec
tion 1, one of the main objectives of this paper is to provide an alternative description 
of C[λ]m×n

d,r when r < min{m,n} in terms of the union of the closures of some sets of 
polynomial matrices that can be factorized in certain specific ways and to relate this 
description with that in Theorem 2.12-(iv). This is done in Section 4.

Next we consider the generic eigenstructures in the limiting full rank case r =
min{m,n}, which is not covered by Theorem 2.12. Note that in this case C[λ]m×n

d,r =
C[λ]m×n

d is just the whole set of m × n polynomial matrices of degree at most d. If 
m = n, there is only one generic eigenstructure in C[λ]n×n

d , which obviously corresponds 
to regular matrix polynomials, i.e., they do not have minimal indices at all, of degree 
exactly d and with all their nd eigenvalues distinct. If m < n (resp., m > n), there is 
only one generic eigenstructure which has been described in [14, Theorem 3.7] (resp., 
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[14, Theorem 3.8]). For brevity, we only state the corresponding result for m < n, since 
the result for m > n is analogous and can be obtained by transposition.

Theorem 2.13. [14, Theorem 3.7] Let m,n, m < n, and d be positive integers and dfine 
the complete eigenstructure Krp of polynomial matrices in C[λ]m×n

d without finite or 
ifinite eigenvalues, without left minimal indices, and with n−m minimal indices of the 
right null space equal to α and α + 1 as follows:

Krp : {α + 1, . . . , α + 1︸ ︷︷ ︸
s 

, α, . . . , α︸ ︷︷ ︸
n−m−s 

} ,

where α = 	md/(n−m)
, s = md mod (n−m). Then,

(i) There exists a polynomial matrix Krp ∈ C[λ]m×n
d of degree exactly d and normal 

rank exactly m with the complete eigenstructure Krp;
(ii) C[λ]m×n

d = O(Krp).

Observe that every polynomial in O(Krp) is, according to Theorem 2.5, an m × n

minimal basis with the degrees of all its rows equal to d, and with the minimal indices of 
its right null space differing at most by one. Thus, when m �= n, the polynomial matrices 
in C[λ]m×n

d are generically minimal bases with the degrees of their rows all equal to d, 
if m < n, or with the degrees of their columns all equal to d, if m > n.

2.3. Generic polynomial matrices in C[λ]r×(r+s)
d

The last subsection in these preliminaries presents a result from [16] that describes 
the generic polynomial matrices in the vector space (over the field C) C[λ]r×(r+s)

d , where 

r, s > 0. Observe that if d = (d1, d2, . . . , dr) and d = max1≤i≤r di, then C[λ]r×(r+s)
d is 

a subspace of C[λ]r×(r+s)
d and we can use the distance (3) in C[λ]r×(r+s)

d . Moreover, 
this allows us to dfine naturally the partial multiplicity sequence at ∞ of any M(λ) ∈
C[λ]r×(r+s)

d as the partial multiplicity at 0 of λdP (1/λ).
Next, we dfine an important subset of C[λ]r×(r+s)

d , which is proved to be generic in 
Theorem 2.15.

Definition 2.14. Let r, s > 0 be two positive integers, consider the set C[λ]r×(r+s)
d , where 

d = (d1, d2, . . . , dr) is a list of nonnegative integers, and dfine

k′ =
⌈∑r

i=1 di
s 

⌉
and s k′ =

r∑
i=1 

di + t, where 0 ≤ t < s.
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Then G[λ]r×(r+s)
d ⊂ C[λ]r×(r+s)

d is the set of polynomial matrices whose ith row has 
degree exactly di, for i = 1, . . . , r, whose rows form a minimal basis, and such that their 
right nullspaces have s minimal indices, t of them equal to k′ − 1 and s− t equal to k′.

Theorem 5.3 in [16] implies that G[λ]r×(r+s)
d is equal to the set of the polynomial 

matrices that have full-trimmed-Sylvester rank (the reader can see in [16, Definition 
5.1], the definition of this concept, though it is not used in this paper). Combining this 
fact with [16, Theorem 6.2], we obtain the following result.

Theorem 2.15. G[λ]r×(r+s)
d is an open and dense subset of C[λ]r×(r+s)

d .

3. Minimal rank factorizations of polynomial matrices

We consider in this section factorizations of a polynomial matrix P (λ) into products 
of other polynomial matrices that reveal the normal rank and the degree of P (λ).

Definition 3.1. Let P (λ) ∈ F [λ]m×n with rank(P ) = r > 0. A factorization of P (λ) as 
P (λ) = L(λ)E(λ)R(λ) with L(λ) ∈ F [λ]m×r, E(λ) ∈ F [λ]r×r and R(λ) ∈ F [λ]r×n is 
called a rank factorization of P (λ).

The name ``rank factorization'' in the definition above reminds us that the sizes of the 
factors L(λ), E(λ), and R(λ) reveal the rank of P (λ). Standard linear algebra proper
ties of matrices over the field F(λ), in particular, the inequality rank(L(λ)E(λ)R(λ)) ≤
min{rank(L), rank(E), rank(R)}, immediately imply the following simple well-known re
sults.

Lemma 3.2. Let P (λ) ∈ F [λ]m×n with rank(P ) = r > 0 and P (λ) = L(λ)E(λ)R(λ) be a 
rank factorization of P (λ). Then,

(i) rank(L) = rank(E) = rank(R) = r and, in particular, E(λ) is nonsingular,
(ii) N�(P ) = N�(L),
(iii) Nr(P ) = Nr(R),
(iv) Row(P ) = Row(R), and the rows of R(λ) are a polynomial basis of Row(P ),
(v) Col(P ) = Col(L), and the columns of L(λ) are a polynomial basis of Col(P ).

The following simple lemma is valid for rational matrices (and, so, for constant and 
polynomial matrices).

Lemma 3.3. Let L(λ) ∈ F(λ)m×r, E(λ) ∈ F(λ)r×r and R(λ) ∈ F(λ)r×n with rank(L) =
rank(R) = r > 0. Then rank(L(λ)E(λ)R(λ)) = rank(E(λ)).

Proof. It follows from combining the equalities Nr(L(λ)E(λ)R(λ)) = Nr(E(λ)R(λ)) and 
N�(E(λ)R(λ)) = N�(E(λ)) with the rank-nullity theorem. �
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We will often consider rank factorizations with E(λ) = Ir. In this case a rank factor
ization is expressed as the product of just two factors as P (λ) = L(λ)R(λ).

Lemma 3.2-(iv)-(v) combined with Theorem 2.3 immediately imply the following lower 
bound for the sum of the degrees of the factors of any rank factorization of P (λ).

Lemma 3.4. Let P (λ) ∈ F [λ]m×n with rank(P ) = r > 0 and P (λ) = L(λ)E(λ)R(λ) be a 
rank factorization of P (λ). Let ρmax be the largest minimal index of Row(P ) and cmax

be the largest minimal index of Col(P ). Then

deg(L) + deg(E) + deg(R) ≥ deg(L) + deg(R) ≥ ρmax + cmax.

Thus, if ρmax + cmax > deg(P ), then no rank factorization of P (λ), with three or two 
factors, satifies that the sum of the degrees of the factors is equal to the degree of P (λ).

An example of a rank factorization of a polynomial matrix can be obtained from trun
cating the Smith factorization and from elementary properties of matrix multiplication. 
This is stated in the next lemma.

Lemma 3.5. Let P (λ) ∈ F [λ]m×n with rank(P ) = r > 0 and Smith factorization P (λ) =
U(λ)S(λ)V (λ) as in (1). Let L(λ) ∈ F [λ]m×r be the polynomial matrix whose columns 
are the first r columns of U(λ), E(λ) ∈ F [λ]r×r be the diagonal polynomial matrix whose 
diagonal entries are the first r diagonal entries of S(λ), and R(λ) ∈ F [λ]r×n be the 
polynomial matrix whose rows are the first r rows of V (λ). Then, P (λ) = L(λ)E(λ)R(λ)
is a rank factorization of P (λ).

Definition 3.6. A factorization P (λ) = L(λ)E(λ)R(λ) as in Lemma 3.5 is called a Smith 
rank factorization of P (λ).

Smith rank factorizations P (λ) = L(λ)E(λ)R(λ) reveal the invariant polynomials of 
P (λ) in E(λ), which is a very important information, in addition to the rank of P (λ). 
However, in general, the columns of L(λ) are not a minimal basis of Col(P ) and the rows 
of R(λ) are not a minimal basis of Row(P ). Moreover, the degree properties of a Smith 
rank factorization of P (λ) are not optimal in general. The next example illustrates these 
facts.

Example 3.7. Let

P (λ) =

⎡⎢⎣ λ8 0 0
λ6 + 1 −λ7 −λ5

1 −λ7 −λ5

⎤⎥⎦ . (5)

Then,
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P (λ) =

⎡⎢⎣ λ8 λ2 1
λ6 + 1 1 0

1 0 0

⎤⎥⎦
⎡⎢⎣ 1 0 0

0 λ11 0
0 0 0

⎤⎥⎦
⎡⎢⎣ 1 −λ7 −λ5

0 λ2 1
0 1 0

⎤⎥⎦ ,

P (λ) =

⎡⎢⎣ λ8 λ2

λ6 + 1 1
1 0

⎤⎥⎦[
1 0
0 λ11

][
1 −λ7 −λ5

0 λ2 1

]
=: L(λ)E(λ)R(λ) (6)

are, respectively, a Smith factorization and a Smith rank factorization of P (λ). Note 
that according to Theorem 2.5 neither L(λ) nor R(λ) are minimal bases because their 
highest-column-degree and highest-row-degree coefficients are, respectively,

Lhc =
[1 1

0 0
0 0

]
and Rhr =

[
0 −1 0
0 1 0

]
,

which do not have full column and full row rank, respectively. Observe that the degree 
of P (λ) is 8 and that is not equal to the sum of the degrees of the three factors in (6), 
which is 26. This inequality is expected because the entries with highest degrees in each 
factor do not interact when the product L(λ)E(λ)R(λ) is computed. But note also that 
if (6) is expanded into a sum of rank one matrices as follows

P (λ) =

⎡⎢⎣ λ8

λ6 + 1
1

⎤⎥⎦[
1
] [

1 −λ7 −λ5
]

+

⎡⎢⎣ λ2

1
0

⎤⎥⎦[
λ11

] [
0 λ2 1

]
, (7)

then the degrees of both terms are equal to 15, again much larger than deg(P ) = 8. �
In the rest of this section, we explore other rank factorizations, different from Smith 

rank factorizations, of a polynomial matrix P (λ) whose factors provide minimal bases of 
Col(P ) and/or Row(P ) and reveal the degree of P (λ). We emphasize that, in general, 
such factorizations do not reveal explicitly the invariant polynomials of P (λ).

We will need in the sequel the two auxiliary Lemmas 3.8 and 3.9. Lemma 3.8 implies, 
in particular, that any rank factorization of a polynomial matrix P (λ) with normal rank 
equal to one reveals the degree of P (λ) via the sum of the degrees of the three factors. 
The simple proof of this lemma is omitted.

Lemma 3.8. Let L(λ) ∈ F [λ]m×1, E(λ) ∈ F [λ]1×1, R(λ) ∈ F [λ]1×n and P (λ) =
L(λ)E(λ)R(λ). Then deg(P ) = deg(L) + deg(E) + deg(R).

Lemma 3.9 is a consequence of [31, Theorem 2.5.7], which introduces an algorithm 
for transforming any polynomial matrix with full column rank into a column reduced 
polynomial matrix via multiplication on the right by unimodular matrices. In order to 
be self-contained, we include a short proof of this lemma.
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Lemma 3.9. 

(i) Let L(λ) ∈ F [λ]m×r be a polynomial matrix such that the constant matrix L(λ0) has 
full column rank r for all λ0 ∈ F . Then, L(λ) can be factorized as L(λ) = Lc(λ)V (λ), 
where the columns of Lc(λ) ∈ F [λ]m×r form a minimal basis of Col(L) and V (λ) ∈
F [λ]r×r is unimodular. Hence, the degrees of the columns of Lc(λ) are the minimal 
indices of Col(L).

(ii) Let R(λ) ∈ F [λ]r×n be a polynomial matrix such that the constant matrix R(λ0) has 
full row rank r for all λ0 ∈ F . Then, R(λ) can be factorized as R(λ) = U(λ)Rr(λ), 
where the rows of Rr(λ) ∈ F [λ]r×n form a minimal basis of Row(R) and U(λ) ∈
F [λ]r×r is unimodular. Hence, the degrees of the rows of Rr(λ) are the minimal 
indices of Row(R).

Proof. We only prove item (i), since item (ii) is obtained from item (i) by transposition. 
The columns of L(λ) are a basis of Col(L). If the columns of Lc(λ) are any minimal basis 
of Col(L), then L(λ) = Lc(λ)V (λ), with V (λ) an r×r polynomial matrix according to [17, 
p. 495]. In addition, V (λ) must be unimodular since, otherwise, L(λ0) = Lc(λ0)V (λ0)
would have rank strictly smaller than r for any root λ0 of detV (λ0). �

The next example illustrates Lemma 3.9.

Example 3.10. The matrices L(λ) and R(λ) in (6) can be factorized as follows:⎡⎢⎣ λ8 λ2

λ6 + 1 1
1 0

⎤⎥⎦ =

⎡⎢⎣ 0 λ2

1 1
1 0

⎤⎥⎦[
1 0
λ6 1

]
=: Lc(λ)V (λ), (8)

[
1 −λ7 −λ5

0 λ2 1

]
=

[
1 −λ5

0 1

][
1 0 0
0 λ2 1

]
=: U(λ)Rr(λ). (9)

Theorem 2.5 implies that the columns of Lc(λ) are a minimal basis, as well as the rows 
of Rr(λ). Obviously V (λ) and U(λ) are unimodular matrices. �

Theorem 3.11 presents for each polynomial matrix three different types of rank fac
torizations, with E(λ) = Ir in the case of items (ii) and (iii).

Theorem 3.11. Let P (λ) ∈ F [λ]m×n with rank(P ) = r > 0. Then, P (λ) can be factorized 
as follows:

(i) P (λ) = Lc(λ)E(λ)Rr(λ), where Lc(λ) ∈ F [λ]m×r, E(λ) ∈ F [λ]r×r, Rr(λ) ∈
F [λ]r×n, the columns of Lc(λ) form a minimal basis of Col(P ), the rows of Rr(λ)
form a minimal basis of Row(P ), and the invariant polynomials of E(λ) are the 
invariant polynomials of P (λ).
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(ii) P (λ) = Lc(λ)R(λ), where Lc(λ) ∈ F [λ]m×r, R(λ) ∈ F [λ]r×n, the columns of Lc(λ)
form a minimal basis of Col(P ) and the invariant polynomials of R(λ) are the 
invariant polynomials of P (λ).

(iii) P (λ) = L(λ)Rr(λ), where L(λ) ∈ F [λ]m×r, Rr(λ) ∈ F [λ]r×n, the rows of Rr(λ)
form a minimal basis of Row(P ), and the invariant polynomials of L(λ) are the 
invariant polynomials of P (λ).

Proof. Let P (λ) = L̃(λ)Ẽ(λ)R̃(λ) with L̃(λ) ∈ F [λ]m×r, Ẽ(λ) ∈ F [λ]r×r, and R̃(λ) ∈
F [λ]r×n, be a Smith rank factorization as in Lemma 3.5. Therefore, L̃(λ0) and R̃(λ0)
have, respectively, full column rank and full row rank for all λ0 ∈ F , because they are 
formed by columns and rows, respectively, of unimodular matrices. Then using the factor
izations in Lemma 3.9 applied to L̃(λ) and R̃(λ), we get the following three expressions,

P (λ) = Lc(λ) (V (λ)Ẽ(λ)U(λ)) Rr(λ), (10)

P (λ) = Lc(λ) (V (λ)Ẽ(λ)R̃(λ)), (11)

P (λ) = (L̃(λ)Ẽ(λ)U(λ)) Rr(λ). (12)

The factorization in (10) proves item (i) with E(λ) = V (λ)Ẽ(λ)U(λ), because the r diag
onal entries of Ẽ(λ) are the invariant polynomials of P (λ) and they do not change under 
multiplications by unimodular matrices. The statements about Col(P ) and Row(P ) fol
low from Lemma 3.2.

The factorization in (11) proves item (ii) with R(λ) = V (λ)Ẽ(λ)R̃(λ). Note that 
R̃(λ) is formed by the first r rows of a unimodular matrix Ṽ (λ) ∈ F [λ]n×n, according to 
Lemma 3.5. Thus,

R(λ) = V (λ)
[
Ẽ(λ) 0

]
Ṽ (λ),

and indeed the invariant polynomials of R(λ) are the same of those of Ẽ(λ), which in 
turn are those of P (λ). The statement about Col(P ) follows again from Lemma 3.2.

Analogously, the factorization in (12) proves item (iii). �
Definition 3.12. Any of the three factorizations introduced in Theorem 3.11 is called a 
minimal rank factorization of P (λ).

The name ``minimal rank factorization'' in Definition 3.12 reminds us that these fac
torizations display a minimal basis of Col(P ) and/or a minimal basis of Row(P ), in 
addition to the rank of P (λ).

Remark 3.13. The minimal rank factorizations in Theorem 3.11 are not unique. In fact 
Lc(λ) can be any of all possible minimal bases of Col(P ) and Rr(λ) can be any of all 
possible minimal bases of Row(P ). However, note that once Lc(λ) and/or Rr(λ) are 
chosen, E(λ) in item (i) is uniquely determined by this choice, R(λ) in item (ii) is 
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uniquely determined by this choice, and L(λ) in item (iii) is uniquely determined by this 
choice. This follows from the fact that Lc(λ) has a polynomial left inverse and Rr(λ) has 
a polynomial right inverse.

Remark 3.14. (Numerical computation of minimal rank factorizations) If F = R or C, 
minimal rank factorizations of a polynomial matrix P (λ) can be computed by using any 
of the existing algorithms that compute efficiently minimal bases of the null spaces of a 
polynomial matrix by applying unitary transformations on constant matrices. There are 
different families of such algorithms. For instance, some are based on Sylvester resultant 
matrices [2] and others are based on computing minimal bases of the null spaces of a 
linearization of P (λ) via the staircase algorithm [3,26,28] and recovering the minimal 
bases of the null spaces of P (λ) from those of the linearization [9]. Then, a minimal basis 
Lc(λ) of Col(P ) can be computed in two steps as follows: (1) Compute a minimal basis 
Q(λ) of N�(P ); (2) Compute a minimal basis Lc(λ) of Nr(Q) = Col(P ). Then, R(λ) in 
Theorem 3.11-(ii) can be computed by solving a system of linear equations with unique 
solution for its coefficients. Applying this procedure to R(λ)T yields the factorization 
in Theorem 3.11-(i). The factorization in Theorem 3.11-(iii) can be obtained in a sim
ilar manner. Finally, we mention that the algorithm summarized in [27, Theorem 4.3] 
computes directly a factorization that is ``almost'' the same as the one in Theorem 3.11
(ii) using a unitary decomposition of a generalized state-space model of P (λ). The only 
missing property is that the computed Lc(λ) is not guaranteed to be column reduced. It 
remains as an open problem to adapt the algorithm in [27] to ensure the column reduced 
property.

Remark 3.15. (Minimal rank factorizations of full rank polynomial matrices) If P (λ) ∈
F [λ]m×n has full rank r = min{m,n}, the minimal rank factorizations in Theorem 3.11
are simpler. Note that if r = m (resp., r = n), then Col(P ) = F(λ)m×1 (resp., Row(P ) =
F(λ)1×n). Therefore, if r = m, then the minimal basis Lc(λ) ∈ Fm×m in Theorem 3.11
must be a constant m × m invertible matrix, that may be taken equal to any of such 
matrices. In particular, one can take Lc(λ) = Im. Analogously, if r = n, then the minimal 
basis Rr(λ) ∈ Fn×n in Theorem 3.11 must be a constant n × n invertible matrix, that 
may be taken equal to any of such matrices. In particular, one can take Rr(λ) = In.

The next example illustrates Theorem 3.11.

Example 3.16. In this example, the Smith rank factorization in (6) is combined with the 
factorizations in (8) and (9) to obtain the following minimal rank factorizations of P (λ)
in (5):

P (λ) =

⎡⎢⎣ 0 λ2

1 1
1 0

⎤⎥⎦[
1 −λ5

λ6 0

][
1 0 0
0 λ2 1

]
=: Lc(λ)F (λ)Rr(λ), (13)
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P (λ) =

⎡⎢⎣ 0 λ2

1 1
1 0

⎤⎥⎦[
1 −λ7 −λ5

λ6 0 0

]
=: Lc(λ)R(λ), (14)

P (λ) =

⎡⎢⎣ λ8 0
λ6 + 1 −λ5

1 −λ5

⎤⎥⎦[
1 0 0
0 λ2 1

]
=: L(λ)Rr(λ). (15)

The factorizations in (13), (14) and (15) illustrate, respectively, items (i), (ii) and (iii) of 
Theorem 3.11. Observe that none of them reveals by inspection the invariant polynomials 
1 and λ11 of P (λ) in (5). However, the degree of P (λ), which is 8, is revealed as the largest 
degree of the terms in each of the expansions of P (λ) into a sum of rank one matrices 
stemming from (13), (14) and (15). These expansions are the following ones:

P (λ) =

⎡⎢⎣ 0
1
1

⎤⎥⎦[
1
] [

1 0 0
]

+

⎡⎢⎣ 0
1
1

⎤⎥⎦[
−λ5

] [
0 λ2 1

]
+

⎡⎢⎣ λ2

1
0

⎤⎥⎦[
λ6

] [
1 0 0

]

=

⎡⎢⎣ 0
1
1

⎤⎥⎦[
1 −λ7 −λ5

]
+

⎡⎢⎣ λ2

1
0

⎤⎥⎦[
λ6 0 0

]

=

⎡⎢⎣ λ8

λ6 + 1
1

⎤⎥⎦[
1 0 0

]
+

⎡⎢⎣ 0
−λ5

−λ5

⎤⎥⎦[
0 λ2 1

]
.

The term with highest degree in each of these expansions has degree 8, which is precisely 
the degree of the polynomial. This behavior is in contrast with the degrees of the terms 
in the expansion (7) coming from the Smith rank factorization (6). This result about 
degrees holds for any minimal rank factorization and will be proved in Corollary 3.17. �

Example 3.16 motivates us to state, in Corollary 3.17, some degree properties of 
products of two and three polynomial matrices which are direct consequences of the 
classical ``predictable-degree property'' for column reduced and row reduced matrices, 
and, so, for minimal bases [17, Condition 4(b), p. 495 and Remark 3, p. 497] and [20, 
Thm. 6.3-13, p. 387]. Recall the following notation introduced in Section 2: X∗i denotes 
the ith column of the matrix X and Yi∗ denotes the ith row of Y .

Corollary 3.17. (Predictable-degree properties for matrix products).

(i) Let P (λ) = L(λ)R(λ), where L(λ) ∈ F [λ]m×r and R(λ) ∈ F [λ]r×n. If L(λ) is column 
reduced or R(λ) is row reduced, then

deg(P ) = max
1≤i≤r

{deg(L∗i) + deg(Ri∗)}.
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(ii) Let P (λ) = L(λ)E(λ)R(λ), where L(λ) ∈ F [λ]m×r, E(λ) ∈ F [λ]r×s and R(λ) ∈
F [λ]s×n. If L(λ) is column reduced and R(λ) is row reduced, then

deg(P ) = max
1 ≤ i ≤ r

1 ≤ j ≤ s

{deg(L∗i) + deg(eij) + deg(Rj∗)}.

Proof. Proof of item (i). Consider first that L(λ) is column reduced. Then, the clas
sical predictable degree property in [20, Thm. 6.3-13, p. 387] ensures that deg(P∗j) =
max1≤i≤r{deg(L∗i) + deg(Rij)}, from which the result follows by taking the maximum 
over 1 ≤ j ≤ n. If R(λ) is row reduced, the sought equality is deduced from applying to 
P (λ)T the result just proved when the first factor is column reduced.

Proof of item (ii). Dfine Q(λ) := L(λ)E(λ) and express P (λ) = Q(λ)R(λ). Since R(λ)
is row reduced, item (i) implies that deg(P ) = max1≤j≤s{deg(Q∗j) + deg(Rj∗)}. More
over, since L(λ) is column reduced, item (i) also implies deg(Q∗j) = max1≤i≤r{deg(L∗i)+
deg(eij)}. The result in item (ii) follows from combining both equalities. �
Remark 3.18. Observe that P (λ) in item (i) of Corollary 3.17 can be expanded as 
a sum of rank one polynomial matrices as P (λ) =

∑r
i=1 L∗i(λ) Ri∗(λ), while P (λ)

in item (ii) can be expanded as a sum of rank one polynomial matrices as P (λ) =∑r
i=1

∑s
j=1 L∗i(λ) eij(λ) Rj∗(λ). Thus, taking into account Lemma 3.8, Corollary 3.17

states that the degree of P (λ) is precisely the degree of the term(s) with highest degree 
in such expansions.

In the last part of this section, we study minimal rank factorizations of polynomial 
matrices that have no finite or ifinite eigenvalues. The motivation for this study comes 
from Theorem 2.12, which shows that rank dficient polynomial matrices have no finite 
or ifinite eigenvalues, generically, when F = C. We will see that the minimal rank 
factorizations have stronger properties in this case.

Theorem 3.19. Let P (λ) ∈ F [λ]m×n
d and r be an integer such that 0 < r ≤ min{m,n}. 

P (λ) has normal rank r, degree exactly d, and has no finite or ifinite eigenvalues if and 
only if P (λ) can be factorized as

P (λ) = L(λ)R(λ), L(λ) ∈ F [λ]m×r, R(λ) ∈ F [λ]r×n, (16)

where the columns of L(λ) are a minimal basis, the rows of R(λ) are a minimal basis, 
and

deg(L∗i) + deg(Ri∗) = d, for i = 1, . . . , r. (17)

Proof. Sufficiency. If P (λ) satifies (16) and (17) with L(λ) and R(λ) minimal bases, 
then rank(P ) = r follows from Lemma 3.3 with E(λ) = Ir, and deg(P ) = d follows 
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from Corollary 3.17. Lemma 3.2 implies that the degrees of the columns of L(λ) are the 
minimal indices of Col(P ) and that the degrees of the rows of R(λ) are the minimal 
indices of Row(P ), and (17) implies that the sum of all these minimal indices is equal 
to rd. Combining this fact with Corollary 2.11, we see that all the terms of the partial 
multiplicity sequence at ∞ of P (λ) must be zero, as well as all the degrees of the invari
ant polynomials of P (λ). This is equivalent to state that P (λ) has no finite or ifinite 
eigenvalues.

Necessity. If P (λ) has normal rank r, degree d and has no finite or ifinite eigenvalues, 
then we start from a minimal rank factorization of P (λ) given by Theorem 3.11-(ii). That 
is, P (λ) = L(λ)R̂(λ), where the columns of L(λ) ∈ F [λ]m×r form a minimal basis of 
Col(P ) and the degrees of these columns, denoted by c1, . . . , cr, are the minimal indices 
of Col(P ). Note also that Lemma 3.2 guarantees that the rows of R̂(λ) ∈ F [λ]r×n form 
a basis of Row(P ). Let ρ̂1, . . . , ρ̂r be the degrees of the rows of R̂(λ), which are not 
necessarily the minimal indices Row(P ). Therefore, their sum is larger than or equal to 
the sum of the minimal indices ρ1, . . . , ρr of Row(P ) by the definition of minimal basis. 
That is

r∑
i=1 

ρ̂i ≥
r∑

i=1 
ρi (18)

and, simultaneously, from Corollary 3.17-(i),

d ≥ ci + ρ̂i for i = 1, . . . , r. (19)

On the other hand Corollary 2.11 implies

r∑
i=1 

ci +
r∑

j=1 
ρj = rd, (20)

since P (λ) has no finite or ifinite eigenvalues, which is equivalent to 
∑r

k=1 γk+
∑r

�=1 δ� =
0. The combination of (18), (19) and (20) leads to

r∑
i=1 

ci +
r∑

j=1 
ρ̂j ≥

r∑
i=1 

ci +
r∑

j=1 
ρj = rd ≥

r∑
i=1 

ci +
r∑

j=1 
ρ̂j . (21)

Therefore, 
∑r

i=1 ρ̂i =
∑r

i=1 ρi, which implies that R̂(λ) is a minimal basis of Row(P ). 
Moreover, (21) implies 

∑r
i=1 ci +

∑r
j=1 ρ̂j = rd, which combined with (19) yields

ci + ρ̂i = d, i = 1, . . . , r .

This completes the proof. �
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Remark 3.20. Observe that the hypothesis that P (λ) ∈ F [λ]m×n
d has degree exactly d

in Theorem 3.19 is redundant, because Lemma 2.2 combined with the hypothesis that 
P (λ) has not eigenvalues at ∞ implies that deg(P ) = d. We have included this redun
dant hypothesis for emphasizing this key property of the polynomial matrices satisfying 
Theorem 3.19.

We remark that the proof of the necessity in Theorem 3.19 proves, in fact, that 
for any minimal rank factorization as in Theorem 3.11-(ii) of a polynomial matrix 
P (λ) ∈ F [λ]m×n

d with normal rank r, with degree exactly d, and without finite or ifinite 
eigenvalues, the factor R(λ) must be a minimal basis and that the degree constraints 
(17) must be satified. A complementary result can be proved for any minimal rank 
factorization as in Theorem 3.11-(iii) just by transposing the argument above. These 
discussions can be formalized into the following theorem.

Theorem 3.21. Let P (λ) ∈ F [λ]m×n
d be a polynomial matrix with normal rank r > 0, 

with degree exactly d, and without eigenvalues, finite or ifinite. Then, the following 
statements hold:

(i) If the minimal rank factorization P (λ) = L(λ)E(λ)R(λ) satifies the properties 
in Theorem 3.11-(i), then the rows of R̂(λ) = E(λ)R(λ) form a minimal basis of 
Row(P ) and the columns of L̂(λ) = L(λ)E(λ) form a minimal basis of Col(P ). 
Moreover,

deg(L∗i) + deg(R̂i∗) = deg(L̂∗i) + deg(Ri∗) = d, for i = 1, . . . r.

(ii) If the minimal rank factorization P (λ) = L(λ)R(λ) satifies the properties in The
orem 3.11-(ii), then the rows of R(λ) form a minimal basis of Row(P ). Moreover,

deg(L∗i) + deg(Ri∗) = d, for i = 1, . . . r.

(iii) If the minimal rank factorization P (λ) = L(λ)R(λ) satifies the properties in Theo
rem 3.11-(iii), then the columns of L(λ) form a minimal basis of Col(P ). Moreover,

deg(L∗i) + deg(Ri∗) = d, for i = 1, . . . r.

The next example illustrates that polynomial matrices without finite nor ifinite eigen
values have rank factorizations that are not minimal, that do not satisfy the degree 
conditions (17) and whose factors can have arbitrarily large degrees. Thus, for polyno
mial matrices without eigenvalues, minimal rank factorizations are clearly preferable.

Example 3.22. Consider the following polynomial matrix P (λ) ∈ C[λ]3×3
6 with rank(P ) =

2 and its following factorizations:



758 A. Dmytryshyn et al. / Linear Algebra and its Applications 721 (2025) 736--774 

P (λ) =

⎡⎣λ6 λ5 0
λ λ6 + 1 λ2

0 λ4 1

⎤⎦ =

⎡⎢⎣ λ5 0
1 λ2

0 1

⎤⎥⎦[
λ 1 0
0 λ4 1

]
, (22)

=

⎡⎢⎣ λ5 0
λp+2 + 1 λ2

λp 1

⎤⎥⎦[
λ 1 0

−λp+1 −λp + λ4 1

]
, (23)

where p > 3 is an integer. Both factors in the factorization (22) are minimal bases, 
according to Theorem 2.5, and they satisfy (17). This proves that P (λ) has no finite or 
ifinite eigenvalues. In contrast, the left and right factors in (23) are not, respectively, 
column and row reduced polynomial matrices. So, they are not minimal bases. Neverthe
less, the factorization in (23) is a rank factorization of P (λ). Its factors have arbitrarily 
high degrees for arbitrarily large values of p. Lemma 3.4 applied to the polynomial ma
trix P (λ) in this example yields a lower bound ρmax + cmax = 9 > 6 = deg(P ), which 
implies that no rank factorization of P (λ) satifies that the sum of the degrees of the 
factors is equal to the degree of P (λ). �

By Theorem 2.12, rank dficient complex polynomial matrices have, generically, no 
finite or ifinite eigenvalues. Combining this with Theorem 3.19, we obtain that, gener
ically, rank dficient complex polynomial matrices have minimal rank factorizations as 
simple as those appearing in Theorem 3.19. However, the degree condition (17) still al
lows for a lot of freedom for the possible degrees of the columns of L(λ) and the rows of 
R(λ), except when d and r are very small. More precisely, taking into account that the 
degrees of the columns of L(λ) are determined by the degrees of the rows of R(λ) and 
that the order of the columns of L(λ) and the rows of R(λ) does not affect the product 
L(λ)R(λ), the number of different degree distributions in (16) is equal to the number 
of r-combinations with repetitions from the set of d + 1 possible values of the degree 
of each row of R(λ). This amounts to 

(
d+r
r

)
different degree distributions. This number 

is huge except for very small values of d and r and makes it unfeasible to develop a 
set of parametrizations for the generic set of m × n polynomial matrices of degree at 
most d without eigenvalues. However, in the next section, we prove that, generically, the 
degrees are considerably more constrained and that there are only rd+ 1 different ways 
to distribute the degrees, all of them characterized by the fact that the degrees of the 
columns of L(λ) differ at most by one and the degrees of the rows of R(λ) also differ at 
most by one, in addition to satisfy (17).

4. Generic minimal rank factorizations in C[λ]m×n
d,r and related results

In this section, for r < min{m,n}, we prove that arbitrarily close (in the distance 
dfined in (3)) to any polynomial matrix P (λ) ∈ C[λ]m×n

d,r there is another poly
nomial matrix Q(λ) ∈ C[λ]m×n

d,r that can be factorized as Q(λ) = L(λ)R(λ), with 
L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n, with the degrees of the columns of L(λ) differing 



A. Dmytryshyn et al. / Linear Algebra and its Applications 721 (2025) 736--774 759

at most by one, with the degrees of the rows of R(λ) also differing at most by one, and 
satisfying (17). Moreover, we prove that generically only rd + 1 different degree distri
butions with such properties are necessary or, equivalently, we prove that C[λ]m×n

d,r is 
the union of the closures of rd+1 sets of polynomial matrices which have rank-revealing 
factorizations with these very specific degree properties. In addition, we will see that 
L(λ) and R(λ) can be chosen to be minimal bases. Finally, we will relate the sets of 
polynomial matrices in C[λ]m×n

d,r that can be factorized in these specific ways with the 
orbits O(Ka) of Theorem 2.12.

In contrast with Section 3, we assume throughout this section that r < min{m,n}, 
i.e., the full rank case is not considered. The reason is that this section deals with generic 
results and, as explained in the last paragraph of Subsection 2.2, if r = min{m,n} and 
m �= n, then generically the polynomial matrices in C[λ]m×n

d,r are minimal bases with 
the degrees of their columns all equal to d when m > n or with the degrees of their 
rows all equal to d when m < n. Therefore, they satisfy automatically (16) with one 
of the factors equal to the identity matrix and it makes no sense to look for minimal 
rank factorizations of these matrices. If r = min{m,n} and m = n, then generically the 
polynomial matrices in C[λ]m×n

d,r = C[λ]n×n
d are regular with degree exactly d (see again 

Subsection 2.2) and their minimal rank factorizations reduce to a triviality according to 
Remark 3.15.

Before stating the first result in this section, we recall that the degree of the zero 
polynomial has been dfined to be −∞. Therefore, an expression as deg(L∗i)+deg(Ri∗) =
d for the ith column and row of the factors in Q(λ) = L(λ)R(λ) implies that L∗i(λ) �= 0, 
Ri∗(λ) �= 0, 0 ≤ deg(L∗i) ≤ d, and 0 ≤ deg(Ri∗) ≤ d. In contrast, an expression as 
deg(L∗i) + deg(Ri∗) ≤ d without further conditions does not imply that deg(L∗i) ≤ d

and deg(Ri∗) ≤ d, because it might be possible that deg(L∗i) = −∞ and deg(Ri∗) is 
arbitrarily large, or vice versa.

The first result in this section is a simple consequence of the results in Section 3
and states that every polynomial matrix in F [λ]m×n

d,r can be factorized into two factors 
that reveal the maximum possible rank r and such that the sums of the degrees of their 
corresponding columns and rows are bounded by d.

Theorem 4.1. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <

min{m,n}. Then

F [λ]m×n
d,r =

⎧⎪⎨⎪⎩L(λ)R(λ) : 
L(λ) ∈ F [λ]m×r, R(λ) ∈ F [λ]r×n,

deg(L∗i) ≤ d, deg(Ri∗) ≤ d,

deg(L∗i) + deg(Ri∗) ≤ d, for i = 1, . . . , r

⎫⎪⎬⎪⎭ . (24)

Proof. Let S be the set in the right-hand side of (24).
Proof of F [λ]m×n

d,r ⊆ S. If P (λ) ∈ F [λ]m×n
d,r and P (λ) = 0, then trivially P (λ) =

0m×r0r×n ∈ S. If P (λ) ∈ F [λ]m×n
d,r and P (λ) �= 0, then 0 ≤ deg(P ) = d̃ ≤ d and 

0 < rank(P ) = r̃ ≤ r. Then, Theorem 3.11-(ii) and Corollary 3.17-(i) imply that P (λ)
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can be factorized as P (λ) = L̃(λ)R̃(λ), with L̃(λ) ∈ F [λ]m×r̃, R̃(λ) ∈ F [λ]r̃×n, and 
0 ≤ deg(L̃∗i) + deg(R̃i∗) ≤ d̃ ≤ d for i = 1, . . . , r̃. If r̃ = r, this proves that P (λ) ∈ S. If 
r̃ < r, then we pad L̃(λ) and R̃(λ) with zeros and dfine

L(λ) :=
[
L̃(λ) 0

]
∈ F [λ]m×r and R(λ) :=

[
R̃(λ)

0

]
∈ F [λ]r×n ,

which satisfy P (λ) = L(λ)R(λ), with deg(L∗i) ≤ d, deg(Ri∗) ≤ d, and deg(L∗i) +
deg(Ri∗) ≤ d for i = 1, . . . , r. Therefore, P (λ) ∈ S. This proves F [λ]m×n

d,r ⊆ S.
Proof of S ⊆ F [λ]m×n

d,r . If P (λ) = L(λ)R(λ) ∈ S, then rank(P ) ≤ min{rank(L), 
rank(R)} ≤ r. In addition, the expansion P (λ) =

∑r
i=1 L∗i(λ)Ri∗(λ) and Lemma 3.8

imply deg(P ) ≤ max1≤i≤r{deg(L∗i) + deg(Ri∗)} ≤ d. Thus P (λ) ∈ F [λ]m×n
d,r , and the 

proof is completed. �
The rest of the results of this section are valid only over the field C since they use limits 

and topological concepts with respect to the distance in (3). This will allow us to prove 
that every polynomial matrix in C[λ]m×n

d,r is the limit of a sequence of polynomial matrices 
in C[λ]m×n

d,r that can be factorized into two factors such that the degrees of their columns 
and rows have very specific properties when compared with those in Theorem 4.1. The 
first result in this direction is Theorem 4.2.

Theorem 4.2. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <

min{m,n} and dfine the sets

Am×n
d,r :=

{
L(λ)R(λ) : L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,

deg(L∗i) + deg(Ri∗) = d, for i = 1, . . . , r

}
.

Then

C[λ]m×n
d,r = Am×n

d,r .

Proof. From Theorem 4.1 it is obvious that Am×n
d,r ⊆ C[λ]m×n

d,r . Moreover, C[λ]m×n
d,r is a 

closed subset of C[λ]m×n
d and the closure of Am×n

d,r is the smallest closed set that contains 
Am×n

d,r . Therefore, Am×n
d,r ⊆ Am×n

d,r ⊆ C[λ]m×n
d,r .

In the rest of the proof, we prove that C[λ]m×n
d,r ⊆ Am×n

d,r . If P (λ) ∈ C[λ]m×n
d,r , then 

Theorem 4.1 implies that P (λ) = L(λ)R(λ) with L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n, 
deg(L∗i) ≤ d, deg(Ri∗) ≤ d, and deg(L∗i) + deg(Ri∗) ≤ d, for i = 1, . . . , r. Moreover, 
without loss of generality, we take L∗j(λ) = 0 whenever Rj∗(λ) = 0. If deg(L∗i) +
deg(Ri∗) = d, for i = 1, . . . , r, then P (λ) ∈ Am×n

d,r ⊆ Am×n
d,r . Otherwise, let us consider 

the set of indices corresponding to strict inequalities, that is,

I := {j : 1 ≤ j ≤ r and deg(L∗j) + deg(Rj∗) < d}.
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Then, consider any two sequences of constant nonzero vectors {vk}k∈N ⊂ Cm×1 such 
that limk→∞ vk = 0 and {wk}k∈N ⊂ C1×n such that limk→∞ wk = 0, and construct the 
following two sequences of polynomial matrices: (1) Lk(λ) = L(λ) + Fk(λ), where the 
columns of Fk(λ) are constructed as follows

(Fk)∗j(λ) =

⎧⎪⎨⎪⎩
0, if j / ∈ I,
λd−deg(Rj∗)vk, if j ∈ I and Rj∗(λ) �= 0,
λdvk, if j ∈ I and Rj∗(λ) = 0,

and (2) Rk(λ) = R(λ) + Gk(λ), where the rows of Gk(λ) are constructed as follows

(Gk)j∗(λ) =

⎧⎪⎨⎪⎩
0, if j / ∈ I,
0, if j ∈ I and Rj∗(λ) �= 0,
wk, if j ∈ I and Rj∗(λ) = 0.

Then, Pk(λ) := Lk(λ)Rk(λ) ∈ Am×n
d,r and limk→∞ Pk(λ) = P (λ), which implies that 

P (λ) ∈ Am×n
d,r . �

Next, we consider some subsets of the set Am×n
d,r introduced in Theorem 4.2 that will 

be fundamental auxiliary tools for getting the main results of this section. More precisely, 
we express in the next theorem the set Am×n

d,r as the union of such subsets, and C[λ]m×n
d,r

as the union of their closures.

Theorem 4.3. Let Am×n
d,r be the set dfined in Theorem 4.2 and for each natural number 

a = 0, 1, ...., rd dfine the following subsets of C[λ]m×n
d,r

Am×n
d,r,a :=

{
L(λ)R(λ) : L(λ)R(λ) ∈ Am×n

d,r ,∑r
i=1 deg(Ri∗) = a

}
.

Then

(i) Am×n
d,r =

⋃
0≤a≤rd

Am×n
d,r,a ,

(ii) C[λ]m×n
d,r =

⋃
0≤a≤rd

Am×n
d,r,a ,

(iii) for every P (λ) ∈ C[λ]m×n
d,r , there exists an integer a such that P (λ) ∈ Am×n

d,r,a .

Proof. Item (i). Let us prove first that Am×n
d,r ⊆

⋃
0≤a≤rd Am×n

d,r,a . If P (λ) ∈ Am×n
d,r , then 

P (λ) = L(λ)R(λ) with L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n, and deg(L∗i) + deg(Ri∗) = d, 
for i = 1, . . . , r. So, 

∑r
i=1 deg(L∗i) +

∑r
i=1 deg(Ri∗) = rd, which implies that 0 ≤∑r

i=1 deg(Ri∗) ≤ rd. Therefore, P (λ) ∈ Am×n
d,r,a for some a = 0, 1, . . . , rd and P (λ) ∈⋃

0≤a≤rd Am×n
d,r,a .
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The reverse inclusion 
⋃

0≤a≤rd Am×n
d,r,a ⊆ Am×n

d,r holds by definition.

Item (ii). It is an immediate consequence of Theorem 4.2, item (i), and the basic fact 
that ``the closure of the union of a finite number of sets is the union of the closures of 
such sets''.

Item (iii) is just another expression of item (ii). �
We present next the key technical result of this section, Theorem 4.5, which deals 

with some subsets of Am×n
d,r,a that are introduced in Definition 4.4.

Definition 4.4. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <

min{m,n}, a be an integer such that 0 ≤ a ≤ rd, (ρ1, . . . , ρr) be any list of integers such 
that 0 ≤ ρi ≤ d, for i = 1, 2, . . . , r, and 

∑r
i=1 ρi = a, and Am×n

d,r,a be the set dfined in 
Theorem 4.3. The following subsets of polynomial matrices are dfined

Am×n
d,r,a (ρ1, . . . , ρr) := 

{
L(λ)R(λ) : L(λ)R(λ) ∈ Am×n

d,r,a ,

deg(Ri∗) = ρi, deg(L∗i) = d− ρi, for i = 1, . . . , r

}
.

Theorem 4.5. Let Am×n
d,r,a be the set dfined in Theorem 4.3 and Am×n

d,r,a (ρ1, . . . , ρr) be any 
of the sets dfined in Definition 4.4. Then the following statements hold:

(i) If (σ1, . . . , σr) is any permutation of (1, . . . , r), then

Am×n
d,r,a (ρ1, . . . , ρr) = Am×n

d,r,a (ρσ1 , . . . , ρσr
).

(ii) If ρj − ρk ≥ 2, then

Am×n
d,r,a (ρ1, . . . , ρj , . . . , ρk, . . . , ρr) ⊆ Am×n

d,r,a (ρ1, . . . , ρj − 1, . . . , ρk + 1, . . . , ρr) .

(iii) If dR = 	a/r
 and tR = a mod r, then

Am×n
d,r,a (ρ1, . . . , ρr) ⊆ Am×n

d,r,a (dR + 1, . . . , dR + 1︸ ︷︷ ︸
tR

, dR, . . . , dR︸ ︷︷ ︸
r−tR

) .

Proof. Proof of item (i). If L(λ)R(λ) ∈ Am×n
d,r,a (ρ1, . . . , ρr) and Π is an r× r permutation 

matrix such that the ith row of ΠR(λ) is the σith row of R(λ), for i = 1, . . . , r, then 
L(λ)R(λ) = (L(λ)ΠT )(ΠR(λ)) ∈ Am×n

d,r,a (ρσ1 , . . . , ρσr
). Therefore, Am×n

d,r,a (ρ1, . . . , ρr) ⊆
Am×n

d,r,a (ρσ1 , . . . , ρσr
). The ``reverse'' inclusion is proved in a similar manner using the 

“reverse'' permutation.
Proof of item (ii). As a consequence of item (i), we can assume without loss of general

ity that j = 1 and k = 2. Let P (λ) = L(λ)R(λ) ∈ Am×n
d,r,a (ρ1, ρ2, . . . , ρr) with ρ1−ρ2 ≥ 2. 

Then, the first row of R(λ) and the second column of L(λ) can be written as follows:



A. Dmytryshyn et al. / Linear Algebra and its Applications 721 (2025) 736--774 763

R1∗(λ) = λρ1vρ1 + R̃1∗(λ), with 0 �= vρ1 ∈ C1×n and deg(R̃1∗) < ρ1, (25)

L∗2(λ) = λd−ρ2wd−ρ2 + L̃∗2(λ), with 0 �= wd−ρ2 ∈ Cm×1 and deg(L̃∗2) < d− ρ2.

(26)

Next, for any sequence {εk}k∈N ⊂ C of nonzero numbers such that limk→∞ εk = 0, we 
dfine two sequences of polynomial matrices {Lk(λ)}k∈N ⊆ C[λ]m×r and {Rk(λ)}k∈N ⊆
C[λ]r×n (via their columns and rows, respectively) as follows

(Lk)∗1(λ) := −εkλ
d−ρ1+1wd−ρ2 + L∗1(λ),

(Lk)∗i(λ) := L∗i(λ), 1 < i ≤ r,

(Rk)2∗(λ) := εkλ
ρ2+1vρ1 + R2∗(λ),

(Rk)i∗(λ) := Ri∗(λ), i �= 2, 1 ≤ i ≤ r.
(27)

From these sequences, we dfine the sequence {Pk(λ)}k∈N := {Lk(λ)Rk(λ)}k∈N ⊆
C[λ]m×n, which obviously satifies limk→∞ Pk(λ) = P (λ). In the rest of the proof, we 
will prove that there exists an index k0 such that for every k ≥ k0,

Pk(λ) = Lk(λ)Rk(λ) ∈ Am×n
d,r,a (ρ1 − 1, ρ2 + 1, ρ3, . . . , ρr),

which implies that P (λ) ∈ Am×n
d,r,a (ρ1 − 1, ρ2 + 1, ρ3, . . . , ρr). For this purpose, we dfine

Dk(λ) :=
[

1 − 1 
εk

λρ1−ρ2−1

0 1

]
⊕ Ir−2,

whose inverse is

Dk(λ)−1 :=
[

1 1 
εk

λρ1−ρ2−1

0 1

]
⊕ Ir−2 .

Therefore,

Pk(λ) = (Lk(λ)Dk(λ)−1)(Dk(λ)Rk(λ)). (28)

The ith row of (Dk(λ)Rk(λ)) is equal to the ith row of Rk(λ) for i = 2, . . . , r, and, taking 
into account (25) and (27), the first row is

(Dk(λ)Rk(λ))1∗ = R̃1∗(λ) − 1 
εk

λρ1−ρ2−1R2∗(λ),

which has degree ρ1−1 for εk sufficiently close to zero or equivalently for all k sufficiently 
large. In summary, there exists an index k′ such that for all k ≥ k′

the degrees of the rows of Dk(λ)Rk(λ) are ρ1 − 1, ρ2 + 1, ρ3, ρ4, . . . , ρr . (29)

On the other hand, the ith column of Lk(λ)Dk(λ)−1 is equal to the ith column of Lk(λ)
for i = 1, 3, 4 . . . , r, and, taking into account (26) and (27), the second column is
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(Lk(λ)Dk(λ)−1)∗2 = 1 
εk

λρ1−ρ2−1 L∗1(λ) + L̃∗2(λ),

which has degree d − ρ2 − 1 for εk sufficiently close to zero or equivalently for all k
sufficiently large. In summary, there exists an index k′′ such that for all k ≥ k′′

the degrees of the columns of Lk(λ)Dk(λ)−1 are

d− ρ1 + 1, d− ρ2 − 1, d− ρ3, d− ρ4, . . . , d− ρr .
(30)

Combining (28), (29), and (30) we get that

Pk(λ) = Lk(λ)Rk(λ) ∈ Am×n
d,r,a (ρ1 − 1, ρ2 + 1, ρ3, . . . , ρr)

for all k ≥ max{k′, k′′} = k0 and the proof is completed.
Proof of item (iii). Observe that item (ii) and the fact that ``the closure of a set is the 

smallest closed set that includes it'' imply

Am×n
d,r,a (ρ1, . . . , ρj , . . . , ρk, . . . , ρr) ⊆ Am×n

d,r,a (ρ1, . . . , ρj − 1, . . . , ρk + 1, . . . , ρr) .

Therefore, we can apply again this result to the set on the right hand side of the equation 
above (permuting if necessary the indices by using the result in item (i)) as long as for 
at least two of the indices in (ρ1, . . . , ρj−1, . . . , ρk +1, . . . , ρr) the absolute value of their 
difference is larger than or equal to two. We can construct in this way a chain of subset 
inclusions until the indices ρi differ at most by one unit, that is,

Am×n
d,r,a (ρ1, . . . , ρj , . . . , ρk, . . . , ρr) ⊆ Am×n

d,r,a (ρ1, . . . , ρj , . . . , ρk, . . . , ρr)

⊆ Am×n
d,r,a (ρ1, . . . , ρj − 1, . . . , ρk + 1, . . . , ρr)

⊆ · · · ⊆ Am×n
d,r,a (dR + 1, . . . , dR + 1︸ ︷︷ ︸

tR

, dR, . . . , dR︸ ︷︷ ︸
r−tR

) .

We emphasize that the values of dR and tR are completely determined by the fact that 
the sum of the r indices of all the subsets in the chain above is always a and that the 
indices in the last subset differ at most by one (in absolute value). �
Example 4.6. In order to illustrate the proof and the statement of Theorem 4.5, we 
consider the following polynomial matrix

P (λ) =

⎡⎢⎣ 0 λ2

1 1
1 0

⎤⎥⎦[
0 λ2 1
1 0 0

]
=

⎡⎢⎣ λ2 0 0
1 λ2 1
0 λ2 1

⎤⎥⎦ ∈ A3×3
2,2,2(2, 0) ⊂ C[λ]3×3

2,2 . (31)

Since a = 2 and r = 2, the quantities in Theorem 4.5-(iii) are dR = 1 and tR = 0. One 
might wonder whether P (λ) might be factorized in a form different from the one in (31)
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in such a way that P (λ) ∈ A3×3
2,2,2(1, 1). However, it is easy to see that P (λ) / ∈ A3×3

2,2,2(1, 1)
as follows. Observe first that in the factorization P (λ) = L(λ)R(λ) given in (31) both 
factors are minimal bases by Theorem 2.5. Thus, the minimal indices of Row(P ) are 2
and 0. If P (λ) ∈ A3×3

2,2,2(1, 1), then there would exist a factorization P (λ) = L̃(λ)R̃(λ)
with L̃(λ) ∈ C[λ]3×2 and R̃(λ) ∈ C[λ]2×3 with the degrees of both rows of R̃(λ) equal 
to 1 and, since rank(P ) = 2, Lemma 3.2-(iv) would imply that the rows of R̃(λ) form 
a polynomial basis of Row(P ) with the sum of the degrees of its vectors equal to 2. 
Therefore, the rows of R̃(λ) would be a minimal basis of Row(P ) and the minimal 
indices of this rational subspace would be 1 and 1, which contradicts that the minimal 
indices of Row(P ) are 2 and 0.

Consider any sequence {εk}k∈N of nonzero numbers with limk→∞ εk = 0 and construct 
from P (λ) the following sequence of polynomial matrices via the strategy in (27):

Pk(λ) =

⎡⎢⎣−εkλ λ2

1 1
1 0

⎤⎥⎦[
0 λ2 1
1 εkλ 0

]
=

⎡⎢⎣ λ2 0 −εkλ

1 λ2 + εkλ 1
0 λ2 1

⎤⎥⎦ ,

which satifies limk→∞ Pk(λ) = P (λ). Proceeding as in (28), Pk(λ) can be written as:

Pk(λ) =

⎡⎢⎣−εkλ λ2

1 1
1 0

⎤⎥⎦[
1 1 

εk
λ

0 1

][
1 − 1 

εk
λ

0 1

][
0 λ2 1
1 εkλ 0

]

=

⎡⎢⎣−εkλ 0
1 1 

εk
λ + 1

1 1 
εk
λ

⎤⎥⎦[
− 1 

εk
λ 0 1

1 εkλ 0

]
∈ A3×3

2,2,2(1, 1) ⊂ C[λ]3×3
2,2 . �

The set in Theorem 4.5-(iii) plays a crucial role in the main results of this section. 
Therefore, we adopt the following short notation for it Bm×n

d,r,a = Am×n
d,r,a (dR + 1, . . . , dR +

1, dR, . . . , dR), and we dfine it explicitly in Definition 4.7 for future reference.

Definition 4.7. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <

min{m,n}, and a be an integer such that 0 ≤ a ≤ rd. Let us dfine dR := 	a/r
, 
tR := a mod r and the following subset of polynomial matrices

Bm×n
d,r,a :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩L(λ)R(λ) : 

L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,

deg(Ri∗) = dR + 1, for i = 1, . . . , tR,
deg(Ri∗) = dR, for i = tR + 1, . . . , r,
deg(L∗i) = d− deg(Ri∗), for i = 1, . . . , r

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⊂ C[λ]m×n
d,r .

As a simple consequence of the developments above, we prove the first main result of 
this section.
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Theorem 4.8. Let Am×n
d,r,a and Bm×n

d,r,a be the sets of polynomial matrices dfined in Theo
rem 4.3 and in Definition 4.7, respectively. Then,

(i) Bm×n
d,r,a ⊆ Am×n

d,r,a for a = 0, 1, . . . , rd,
(ii) Bm×n

d,r,a = Am×n
d,r,a for a = 0, 1, . . . , rd,

(iii) C[λ]m×n
d,r =

⋃
0≤a≤rd

Bm×n
d,r,a , and

(iv) for every P (λ) ∈ C[λ]m×n
d,r , there exists an integer a such that P (λ) ∈ Bm×n

d,r,a .

Proof. Item (i) is obvious by definition. Item (i) implies Bm×n
d,r,a ⊆ Am×n

d,r,a . Next, suppose 
L(λ)R(λ) ∈ Am×n

d,r,a . Then L(λ)R(λ) ∈ Am×n
d,r,a (ρ1, . . . , ρr) for some integers (ρ1, . . . , ρr)

such that 0 ≤ ρi ≤ d, for i = 1, . . . , r, and 
∑r

i=1 ρi = a, and, by Theorem 4.5-(iii), 
L(λ)R(λ) ∈ Bm×n

d,r,a . Therefore, Am×n
d,r,a ⊆ Bm×n

d,r,a , which implies Am×n
d,r,a ⊆ Bm×n

d,r,a . This 
proves item (ii). Finally, items (iii) and (iv) follow from item (ii) and the items (ii) and 
(iii), respectively, of Theorem 4.3. �

We know that there are polynomial matrices for which none of their rank factoriza
tions satifies that the sum of the degrees of the factors is equal to the degree of the 
polynomial. Recall Lemma 3.4 and Example 3.22. However, a corollary of Theorem 4.8
is that generically the polynomials in C[λ]m×n

d,r have factorizations with the sum of the 
degrees of the factors not larger than d + 1. The reason is that if L(λ)R(λ) ∈ Bm×n

d,r,a , 
then deg(L) + deg(R) = d + 1 if tR > 0 and deg(L) + deg(R) = d if tR = 0. We state 
this result as a corollary for future reference.

Corollary 4.9. Let

Sm×n
d,r :=

⎧⎪⎨⎪⎩L(λ)R(λ) : 
L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,

deg(L) + deg(R) ≤ d + 1,
L(λ)R(λ) ∈ C[λ]m×n

d,r

⎫⎪⎬⎪⎭ ⊂ C[λ]m×n
d,r .

Then C[λ]m×n
d,r = Sm×n

d,r .

Theorem 4.8 proves the promised result that arbitrarily close to any polynomial matrix 
P (λ) ∈ C[λ]m×n

d,r , there is another polynomial matrix Q(λ) ∈ C[λ]m×n
d,r that can be 

factorized as Q(λ) = L(λ)R(λ), with the degrees of the columns of L(λ) differing at 
most by one, with the degrees of the rows of R(λ) also differing at most by one, and, for 
each i = 1, . . . , r, the sum of the degrees of the ith column of L(λ) and of the ith row of 
R(λ) is equal to d. Moreover, we have proved that only rd+1 different degree distributions 
with these properties are necessary. However, the factorization of Q(λ) is not necessarily 
a minimal rank factorization, according to the definition of Bm×n

d,r,a . Next, we prove in 
Theorem 4.11 that arbitrarily close to any polynomial matrix P (λ) ∈ C[λ]m×n

d,r there 
is a polynomial matrix Q(λ) that can be factorized as Q(λ) = L(λ)R(λ) with factors 
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satisfying the conditions of Theorem 3.19, and, moreover, with the degrees of the columns 
of L(λ) differing at most by one and with the degrees of the rows of R(λ) also differing 
at most by one. In addition, the minimal indices of N�(Q) and Nr(Q) are as those in 
Theorem 2.12. For that purpose we introduce first the following definitions.

Definition 4.10. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <

min{m,n}, a be an integer such that 0 ≤ a ≤ rd, and Bm×n
d,r,a be the set in Definition 4.7. 

Let us dfine α := 	a/(n − r)
, s := a mod (n − r), β := 	(rd − a)/(m − r)
, and 
t := (rd− a) mod (m− r) and the following subsets of C[λ]m×n

d,r

Mm×n
d,r,a :=

{
L(λ)R(λ) : L(λ)R(λ) ∈ Bm×n

d,r,a ,

L(λ) and R(λ) are minimal bases

}
,

MHm×n
d,r,a :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L(λ)R(λ) : 

L(λ)R(λ) ∈ Mm×n
d,r,a ,

N�(L) has minimal indices {β + 1, . . . , β + 1︸ ︷︷ ︸
t 

, β, . . . , β︸ ︷︷ ︸
m−r−t 

},

Nr(R) has minimal indices {α + 1, . . . , α + 1︸ ︷︷ ︸
s 

, α, . . . , α︸ ︷︷ ︸
n−r−s 

}

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

With respect to the definition of MHm×n
d,r,a , it is important to recall that Lemma 3.2

implies that N�(L) = N�(L(λ)R(λ)) and that Nr(R) = Nr(L(λ)R(λ)).

Theorem 4.11. Let Bm×n
d,r,a , Mm×n

d,r,a and MHm×n
d,r,a be the sets of polynomial matrices in

troduced in Definitions 4.7 and 4.10. Then,

(i) MHm×n
d,r,a ⊆ Mm×n

d,r,a ⊆ Bm×n
d,r,a for a = 0, 1, . . . , rd,

(ii) MHm×n
d,r,a = Mm×n

d,r,a = Bm×n
d,r,a for a = 0, 1, . . . , rd,

(iii) C[λ]m×n
d,r =

⋃
0≤a≤rd

MHm×n
d,r,a =

⋃
0≤a≤rd

Mm×n
d,r,a , and

(iv) for every P (λ) ∈ C[λ]m×n
d,r , there exists an integer a such that P (λ) ∈ MHm×n

d,r,a =
Mm×n

d,r,a .

Proof. Item (i) is obvious from the definitions of the involved sets.
Proof of item (ii). First note that item (i) implies immediately that

MHm×n
d,r,a ⊆ Mm×n

d,r,a ⊆ Bm×n
d,r,a .

With this result at hand, observe that if we prove Bm×n
d,r,a ⊆ MHm×n

d,r,a , then Bm×n
d,r,a ⊆

MHm×n
d,r,a immediately follows, which implies MHm×n

d,r,a = Bm×n
d,r,a , which in turn implies 

the result in item (ii). Therefore, we focus on proving Bm×n
d,r,a ⊆ MHm×n

d,r,a . If L(λ)R(λ) ∈
Bm×n
d,r,a , then
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L(λ)T ∈ C[λ]r×m
f , with f = (d− dR − 1, . . . , d− dR − 1︸ ︷︷ ︸

tR

, d− dR, . . . , d− dR︸ ︷︷ ︸
r−tR

), (32)

R(λ) ∈ C[λ]r×n
g , with g = (dR + 1, . . . , dR + 1︸ ︷︷ ︸

tR

, dR, . . . , dR︸ ︷︷ ︸
r−tR

). (33)

Therefore, Theorem 2.15 applied to L(λ) and R(λ) implies that there exist sequences of 
polynomial matrices {Lk(λ)}k∈N ⊂ C[λ]m×r and {Rk(λ)}k∈N ⊂ C[λ]r×n, such that

(1) limk→∞ Lk(λ) = L(λ) and limk→∞ Rk(λ) = R(λ),
(2) each polynomial matrix Lk(λ) is a minimal basis, N�(Lk) has minimal indices equal 

to {β + 1, . . . , β + 1︸ ︷︷ ︸
t 

, β, . . . , β︸ ︷︷ ︸
m−r−t 

}, and deg((Lk)∗i) = d − dR − 1 for i = 1, . . . , tR, and 

deg((Lk)∗i) = d− dR for i = tR + 1, . . . , r,
(3) each polynomial matrix Rk(λ) is a minimal basis, Nr(Rk) has minimal indices equal 

to {α + 1, . . . , α + 1︸ ︷︷ ︸
s 

, α, . . . , α︸ ︷︷ ︸
n−r−s 

}, and deg((Rk)i∗) = dR + 1 for i = 1, . . . , tR, and 

deg((Rk)i∗) = dR for i = tR + 1, . . . , r.

This means that {Lk(λ)Rk(λ)}k∈N ⊂ MHm×n
d,r,a and that limk→∞ Lk(λ)Rk(λ) =

L(λ)R(λ). So, L(λ)R(λ) ∈ MHm×n
d,r,a and Bm×n

d,r,a ⊆ MHm×n
d,r,a is proved.

Items (iii) and (iv) follow from item (ii) and items (iii) and (iv) in Theorem 4.8. �
To compare the results we are obtaining for polynomial matrices with degree at most 

d, where d ≥ 1, with those in [8] for matrix pencils, that is, for d = 1, we introduce some 
additional sets of polynomial matrices and prove for them a result similar to Theorem 4.8.

Definition 4.12. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <

min{m,n}, and a be an integer such that 0 ≤ a ≤ rd. Let us dfine dR := 	a/r
, 
tR := a mod r, and the following subset of C[λ]m×n

d,r

Cm×n
d,r,a :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L(λ)R(λ) : 

L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,

deg(Ri∗) ≤ dR + 1, for i = 1, . . . , tR,
deg(Ri∗) ≤ dR, for i = tR + 1, . . . , r,
deg(L∗i) ≤ d− dR − 1, for i = 1, . . . , tR,
deg(L∗i) ≤ d− dR, for i = tR + 1, . . . , r

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Theorem 4.13. Let Bm×n
d,r,a and Cm×n

d,r,a be the sets of polynomial matrices introduced in 
Definitions 4.7 and 4.12, respectively. Then,

(i) Bm×n
d,r,a ⊆ Cm×n

d,r,a for a = 0, 1, . . . , rd,
(ii) Bm×n

d,r,a = Cm×n
d,r,a for a = 0, 1, . . . , rd,
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(iii) C[λ]m×n
d,r =

⋃
0≤a≤rd

Cm×n
d,r,a , and

(iv) for every P (λ) ∈ C[λ]m×n
d,r , there exists an integer a such that P (λ) ∈ Cm×n

d,r,a .

Proof. Item (i) is obvious from the definitions of the involved sets.
Proof of item (ii). From item (i), we get that Bm×n

d,r,a ⊆ Cm×n
d,r,a . Next, we prove that 

Cm×n
d,r,a ⊆ Bm×n

d,r,a . Let L(λ)R(λ) ∈ Cm×n
d,r,a , but L(λ)R(λ) / ∈ Bm×n

d,r,a . This means that the 
degrees of some rows of R(λ) and/or of some columns of L(λ) are strictly less than the 
corresponding quantities dR+1, dR, d−dR−1, d−dR appearing in Definition 4.12. Using 
any sequences of constant nonzero vectors {vk}k∈N ⊂ Cm×1 and/or {wk}k∈N ⊂ C1×n, 
such that limk→∞ vk = 0 and limk→∞ wk = 0, we sum to the rows of R(λ) with degrees 
strictly less than dR + 1 and/or dR polynomial vectors λdR+1wk and/or λdRwk, and 
sum to the columns of L(λ) with degrees strictly less than d − dR − 1 and/or d − dR
polynomial vectors λd−dR−1vk and/or λd−dRvk. This allows us to construct a sequence 
{Lk(λ)Rk(λ)}k∈N ⊂ Bm×n

d,r,a such that limk→∞ Lk(λ)Rk(λ) = L(λ)R(λ). This proves 
L(λ)R(λ) ∈ Bm×n

d,r,a and Cm×n
d,r,a ⊆ Bm×n

d,r,a , which implies Cm×n
d,r,a ⊆ Bm×n

d,r,a . This proves item 
(ii).

Items (iii) and (iv) follow from item (ii) and items (iii) and (iv) in Theorem 4.8. �
Remark 4.14. (Comparisons with results for matrix pencils) For d = 1, i.e., for matrix 
pencils, the sets Cm×n

1,r,a , for a = 0, 1, . . . , r, in Definition 4.12 are exactly the sets Cr
a in [8, 

Lemma 4]. However, by using the Kronecker canonical form of pencils, Lemma 4 in [8] 
proves that C[λ]m×n

1,r =
⋃

0≤a≤r

Cm×n
1,r,a , which is a result stronger than Theorem 4.13-(iii) 

because it does not involve closures. This raises the question whether for d ≥ 2 the 
closures can be removed in Theorem 4.13-(iii). Unfortunately, this is not possible as the 
next example shows.

Example 4.15. Consider the polynomial matrix P (λ) ∈ C[λ]3×3
2,2 in (31). We are going to 

show that P (λ) / ∈
⋃

0≤a≤4 C3×3
2,2,a. For this purpose, we follow an argument similar to that 

in Example 4.6. Note first that the two factors L(λ) and R(λ) of P (λ) in (31) are minimal 
bases. Thus, the minimal indices of Col(P ) are 2 and 0 and the minimal indices of Row(P )
are also 2 and 0. Moreover, since rank(P ) = 2, any factorization P (λ) = L̃(λ)R̃(λ) with 
L̃(λ) ∈ C[λ]3×2 and R̃(λ) ∈ C[λ]2×3 must satisfy rank(L̃) = rank(R̃) = 2 and, so, the 
columns of L̃(λ) are a polynomial basis of Col(P ) and the rows of R̃(λ) are a polynomial 
basis of Row(P ). This means that the sum of the degrees of the columns of L̃(λ) must 
be larger than or equal to 2 and that the sum of the degrees of the rows of R̃(λ) must 
be larger than or equal to 2. Therefore, P (λ) / ∈ C3×3

2,2,0 and P (λ) / ∈ C3×3
2,2,1, because in 

both cases the sum of the degrees of the rows of R̃(λ) would be smaller than 2, and 
also that P (λ) / ∈ C3×3

2,2,3 and P (λ) / ∈ C3×3
2,2,4, because in both cases the sum of the degrees 

of the columns of L̃(λ) would be smaller than 2. Then, the only remaining option is 
P (λ) ∈ C3×3

2,2,2 but in this case dR = 1 and tR = 0, which implies that both rows of R̃(λ)
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must have degree exactly 1, and that they will be a minimal basis of Row(P ), which is 
impossible because the minimal indices of Row(P ) are 2 and 0. �
4.1. Relation between factorizations and generic complete eigenstructures in C[λ]m×n

d,r

A glance to the results in Theorems 2.12, 4.3, 4.8, 4.11 and 4.13 hints a relationship 
between the closures of the orbits O(Ka) of polynomial matrices with generic eigenstruc
tures and those of the sets dfined before in Section 4. To establish this relationship, we 
characterize O(Ka) as a set of factorized polynomial matrices in the next theorem.

Theorem 4.16. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <

min{m,n}, and a be an integer such that 0 ≤ a ≤ rd. Let us dfine α := 	a/(n − r)
, 
s := a mod (n−r), β := 	(rd−a)/(m−r)
, and t := (rd−a) mod (m−r). Let O(Ka)
be the orbit of polynomial matrices in C[λ]m×n

d,r appearing in Theorem 2.12. Then

O(Ka) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
L(λ)R(λ) : 

L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,

L(λ) and R(λ) are minimal bases,
N�(L) has minimal indices {β + 1, . . . , β + 1︸ ︷︷ ︸

t 

, β, . . . , β︸ ︷︷ ︸
m−r−t 

},

Nr(R) has minimal indices {α + 1, . . . , α + 1︸ ︷︷ ︸
s 

, α, . . . , α︸ ︷︷ ︸
n−r−s 

},

deg(L∗i) + deg(Ri∗) = d, for i = 1, . . . , r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Proof. The result is an immediate corollary of Theorem 3.19 and the facts that N�(L) =
N�(L(λ)R(λ)) and Nr(R) = Nr(L(λ)R(λ)) according to Lemma 3.2. �

With this result at hand, we get the next theorem.

Theorem 4.17. Let Am×n
d,r,a , Bm×n

d,r,a , Mm×n
d,r,a , MHm×n

d,r,a and Cm×n
d,r,a be the sets of polynomial 

matrices introduced in Theorem 4.3 and in Definitions 4.7, 4.10 and 4.12. Let O(Ka) be 
the orbit of polynomial matrices in C[λ]m×n

d,r appearing in Theorem 2.12. Then,

(i) O(Ka) ⊆ Am×n
d,r,a for a = 0, 1, . . . , rd,

(ii) MHm×n
d,r,a ⊆ O(Ka) for a = 0, 1, . . . , rd,

(iii) O(Ka) = MHm×n
d,r,a = Mm×n

d,r,a = Bm×n
d,r,a = Cm×n

d,r,a = Am×n
d,r,a for a = 0, 1, . . . , rd.

Proof. Proof of item (i). If P (λ) ∈ O(Ka), then P (λ) = L(λ)R(λ) with the factors L(λ)
and R(λ) satisfying the properties described in Theorem 4.16. These properties imply 
that the degrees of the rows of R(λ) are the minimal indices of Row(P ) by Lemma 3.2. 
Combining this result with the fact that Nr(R) = Nr(P ), again by Lemma 3.2, and with 
Corollary 2.10, we get
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r∑
i=1 

deg(Ri∗) = s(α + 1) + (n− r − s)α = (n− r)α + s = a.

This implies that P (λ) ∈ Am×n
d,r,a and, so, item (i).

Item (ii) follows from the definitions of the involved sets.
Proof of item (iii). Item (i) implies O(Ka) ⊆ Am×n

d,r,a . Combining this inclusion with 
Theorems 4.8-(ii), 4.11-(ii) and 4.13-(ii), we get

O(Ka) ⊆ MHm×n
d,r,a = Mm×n

d,r,a = Bm×n
d,r,a = Cm×n

d,r,a = Am×n
d,r,a .

On the other hand, item (ii) implies MHm×n
d,r,a ⊆ O(Ka), which combined with the 

equation above yields the result in item (iii). �
The inclusion relationships presented in Theorem 4.17-(i) and (ii) between O(Ka)

and the other sets involved in this theorem are the only ones that hold in general. We 
illustrate this statement in the next example.

Example 4.18. Consider the following polynomial matrix

P (λ) =

⎡⎢⎣0 0 1 1
0 0 λ2 λ2

1 λ2 2λ4 λ4

1 λ2 λ4 0

⎤⎥⎦ =

⎡⎢⎣ 1 0
λ2 0
λ4 1
0 1

⎤⎥⎦[
0 0 1 1
1 λ2 λ4 0

]
=: L(λ)R(λ). (34)

P (λ) belongs to C[λ]4×4
4,2 . Moreover, the factors L(λ) and R(λ) are minimal bases by 

Theorem 2.5. Consider also the following polynomial matrices

L̂(λ) =

⎡⎢⎢⎢⎣
λ2 0
−1 λ2

0 −1
0 1

⎤⎥⎥⎥⎦ and R̂(λ) =
[
λ2 −1 0 0
0 λ2 −1 1

]
. (35)

It is easy to check that the columns of L̂(λ) are a minimal basis of Nr(R) = Nr(P ) and 
that the rows of R̂(λ) are a minimal basis of N�(L) = N�(P ). Therefore, P (λ) ∈ O(K4), 
by Theorem 4.16. However, P (λ) / ∈ B4×4

4,2,4, P (λ) / ∈ M4×4
4,2,4, P (λ) / ∈ MH4×4

4,2,4 and P (λ) / ∈
C4×4
4,2,4. To see this, we need to check that no factorization of P (λ) as P (λ) = L̃(λ)R̃(λ), 

with L̃(λ) ∈ C[λ]4×2 and R̃(λ) ∈ C[λ]2×4, satifies the conditions of the definitions 
of these sets. Note that in any of these factorizations P (λ) = L̃(λ)R̃(λ) the rows of 
R̃(λ) are a polynomial basis of Row(P ). Therefore, combining Theorem 2.3 with the 
fact that the minimal indices of Row(P ) are 0, 4, we obtain that deg(R̃) ≥ 4. But, 
dR = 	a/r
 = 	4/2
 = 2 and tR = 0, which implies that any polynomial matrix in 
any of the sets B4×4

4,2,4, M4×4
4,2,4, MH4×4

4,2,4 and C4×4
4,2,4 can be factorized as LS(λ)RS(λ) with 

LS(λ) ∈ C[λ]4×2, RS(λ) ∈ C[λ]2×4 and deg(RS) ≤ 2. Thus, P (λ) does not belong to 
any of these sets.
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Next, consider the polynomial matrix

Q(λ) =

⎡⎢⎢⎢⎣
λ2 0
−1 λ2

0 −1
0 1

⎤⎥⎥⎥⎦
[
λ2 −1 0 0
0 λ2 −1 1

]
=

⎡⎢⎢⎢⎣
λ4 −λ2 0 0

−λ2 λ4 + 1 −λ2 λ2

0 −λ2 1 −1
0 λ2 −1 1

⎤⎥⎥⎥⎦ , (36)

which has been constructed as Q(λ) = L̂(λ)R̂(λ) with the matrices in (35). Observe that 
Q(λ) ∈ M4×4

4,2,4 ⊆ B4×4
4,2,4 ⊆ C4×4

4,2,4 and Q(λ) ∈ A4×4
4,2,4. However, Q(λ) / ∈ O(K4) because the 

minimal indices of Nr(R̂) = Nr(Q) are 0 and 4, since the columns of L(λ) in (34) are a 
minimal basis of Nr(R̂). �
Remark 4.19. (Comparisons with results for matrix pencils) For d = 1, it was proved in 
[8, Theorem 6] that O(Ka) = Cm×n

1,r,a , while Theorem 4.17 only proves the weaker result 
O(Ka) = Cm×n

1,r,a . For d ≥ 2, the result O(Ka) = Cm×n
d,r,a cannot be improved, since, in 

general, O(Ka) �= Cm×n
d,r,a . The polynomial matrix in (34) illustrates this inequality.

5. Conclusions

We have established many results on rank factorizations and minimal rank factor
izations of polynomial matrices, which, as far as we know, are completely new in the 
literature. In addition, the generic degree properties in the set C[λ]m×n

d,r of complex 
m×n polynomial matrices of degree at most d and rank at most r of such factorizations 
have been carefully studied and several dense subsets of factorized polynomial matrices 
have been identfied. Some of these subsets allow us to approximate any polynomial 
matrix in C[λ]m×n

d,r as the limit of a sequence of factorized polynomial matrices that 
can be easily and efficiently generated due to the particular degree properties of their 
factorizations, which have left factors with columns whose degrees differ at most by one 
and right factors with rows whose degrees differ at most by one. Apart from their fun
damental nature in the theory of polynomial matrices, we hope that these results will 
have applications in the solution of different nearness problems involving polynomial 
matrices in C[λ]m×n

d,r . Possible lines of future research include exploring the development 
of structured rank factorizations and minimal rank factorizations of classes of structured 
polynomial matrices appearing in applications [22], and verifying if some of the dense 
subsets of polynomial matrices in Section 4 are also open in C[λ]m×n

d,r .
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