CHAL

UNIVERSITY OF TECHNOLOGY

QuTiP 5: The Quantum Toolbox in Python

Downloaded from: https://research.chalmers.se, 2025-11-30 19:47 UTC

Citation for the original published paper (version of record):

Lambert, N., Giguere, E., Menczel, P. et al (2026). QuTiP 5: The Quantum Toolbox in Python.
Physics Reports, 1153: 1-62. http://dx.doi.org/10.1016/j.physrep.2025.10.001

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Physics Reports 1153 (2026) 1-62

journal homepage: www.elsevier.com/locate/physrep

Contents lists available at ScienceDirect

PHYSICS REPORTS |

Physics Reports

Review article

QuTiP 5: The Quantum Toolbox in Python R)

Check for

Neill Lambert **, Eric Giguére °, Paul Menczel **, Boxi Li ¢, Patrick Hopf®¢, ipcize,
Gerardo Suarez ¢, Marc Gali', Jake Lishman &, Rushiraj Gadhvi ",

Rochisha Agarwal ?, Asier Galicia', Nathan Shammah ¥, Paul Nation',

J.R.Johansson ™, Shahnawaz Ahmed ", Simon Cross °, Alexander Pitchford?,

Franco Nori #9*

2 Quantum Information Physics Theory Research Team, RIKEN Center for Quantum Computing, RIKEN,

Wakoshi, Saitama 351-0198, Japan

b Institut quantique, Université de Sherbrooke, Sherbrooke J1K 2R1, Quebec, Canada
¢ Peter Griinberg Institute -Quantum Control (PGI-8), Forschungszentrum Jiilich GmbH, D-52425 Jiilich, Germany

d Technical University of Munich, Munich, Germany

€ International Centre for Theory of Quantum Technologies (ICTQT), University of Gdansk, 80-308 Gdansk, Poland

fGlobal Research and Development Center for Business by Quantum-Al Technology (G-QuAT), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

& IBM Quantum, IBM Research Europe, Hursley, United Kingdom

" Plaksha University, Mohali, India

i peter Griinberg Institute -Functional Quantum Systems (PGI-13), Forschungszentrum fiilich GmbH, D-52425 Jiilich, Germany
I Unitary Fund, 505 Montgomery St, San Francisco, CA 94111, USA

K Unitary Fund France, 1 Impasse Du Palais, 37000 Tours, France

'IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA

™ Data and Al Division, Rakuten, Tokyo, Japan

" Wallenberg Centre for Quantum Technology, Department of Microtechnology and Nanoscience, Chalmers University of

Technology, 412 96 Gothenburg, Sweden
© Zurich Instruments, Zurich, Switzerland

P Department of Mathematics, Aberystwyth University, Penglais Campus, Aberystwyth, SY23 3BZ, Wales, United Kingdom
9 Quantum Research Institute and Physics Department, University of Michigan, Ann Arbor, MI 48109-1040, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 11 April 2025

Received in revised form 11 September 2025
Accepted 8 October 2025

Editor: Jiangbin Gong

Keywords:

Open quantum systems
Open source software
Quantum Information
Quantum biology
Quantum dynamics

QuTiP, the Quantum Toolbox in Python (Johansson et al., 2012, Johansson et al., 2013),
has been at the forefront of open-source quantum software for the past 13 years. It is
used as a research, teaching, and industrial tool, and has been downloaded millions of
times by users around the world. Here we introduce the latest developments in QuTiP
v5, which are set to have a large impact on the future of QuTiP and enable it to be
a modern, continuously developed and popular tool for another decade and more. We
summarize the code design and fundamental data layer changes as well as efficiency
improvements, new solvers, applications to quantum circuits with QuTiP-QIP, and new
quantum control tools with QuTiP-QOC. Additional flexibility in the data layer underlying
all “quantum objects” in QuTiP allows us to harness the power of state-of-the-art
data formats and packages like JAX, CuPy, and more. We explain these new features
with a series of both well-known and new examples. The code for these examples is
available in a static form on GitHub (https://github.com/qutip/qutip-paper-v5-examples)

* Corresponding author at: Quantum Information Physics Theory Research Team, RIKEN Center for Quantum Computing, RIKEN, Wakoshi, Saitama

351-0198, Japan.

E-mail addresses: nwlambert@riken.jp (N. Lambert), paul@menczel.net (P. Menczel), fnori@riken.jp (F. Nori).

https://doi.org/10.1016/j.physrep.2025.10.001

0370-1573/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.physrep.2025.10.001
https://www.elsevier.com/locate/physrep
https://www.elsevier.com/locate/physrep
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physrep.2025.10.001&domain=pdf
https://github.com/qutip/qutip-paper-v5-examples
mailto:nwlambert@riken.jp
mailto:paul@menczel.net
mailto:fnori@riken.jp
https://doi.org/10.1016/j.physrep.2025.10.001
http://creativecommons.org/licenses/by/4.0/

N. Lambert, E. Giguére, P. Menczel et al.

Physics Reports 1153 (2026) 1-62

and as continuously updated and documented notebooks in the qutip-tutorials package

(https://github.com/qutip/qutip-tutorials).

© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

Contents
1. Introduction..
1.1. QuTiP v5 .
1.1.1. A new flexible data layer..........
1.1.2. Additional substantial changes.
2. The QUTIP PIOJECE..uicirreeirreeieertreeteestessssesteestssessessssessssssesastssesassstensssensasantesensessssensstenssensesesssensensssenes
3. Core features .
3.1. Quantum objects anNd the data JaYer....ccceceeeeeecreeeee e ste ettt e e se e et e e s s
3.1.1. The Qobj class.......
3.1.2. The QODIEVO ClASS weueereeiereerteietetereetsesteseste e sesesesssesssestesesesassansssessesensesensssensensssanes
3.2. Solvers .
3.2.1. A new solver class .. .
3.2.2. Solver and integrator options...
3.2.3. mesolve part 1: A master equation solve1 f01 Lmdblad dynamlcs and beyond
3.24. mesolve part 2: Time-dependent systems...
3.2.5. mesolve part 3: JAX and GPU acceleration with lefrax
3.2.6. steadystate : A steady-state solver for master equations
3.2.7. mcsolve : A Monte Carlo solver for quantum trajectories
3.2.8. nm_mcsolve : A Monte Carlo solver for non-Markovian Bathsc.eecccecerreeseseninnecrteeeeeeseeeee e
3.2.9. brmesolve : Bloch-Redfield master equation solver.......
3.2.10. Floquet methods: the FIOQUEL DaSiS.....cceecereerrreeiererirreererirrestrestesestesessesssesessestesessesesssnsssassssessesessesssensesensssessssensenes
3.2.11. smesolve : Stochastic master equation solver
3.2.12. HEOMSolver : Hierarchical equations of MOtiON.......cccceeeveeeecerreceerecirereecesee e ee e
3.2.13. Visualization of solver results...
3.3, Additional features in QUTIP V5uiiiiiiiceieireereeteeteseeeeessresseseseessessessessesssesessssssesssssessessensessessensessessseseesssssensensensessassones
3.3.1. Excitation number restricted states
3.3.2. Automatic differentiation: JAX ...
3.3.3. MPI support for high performance computing
4. QuTiP’s other main packages...........
4.1. Optimal control: QuTiP-QOC
4.1.1. The GRAPE algorithm
4.1.2. The CRAB algorithm
4.1.3. The GOAT algorithm .
4.14. Integration with QuTiP-JAX.......
4.2. Quantum circuits: QuTiP-QIP
421, CITCUIL VISUAIIZATION weveueuitrereeueetetsieseeete et ettt e ettt e e ettt e s et te s s s ese sttt bese e et et e b eae et st et e seue e st seebeneasateseseaeas
42.2. Simulating Hamiltonian dynamlcs
4.2.3. Simulating master eqUAtiON AYNAIMICSecceveeeerertrreererertesesesseestssessessstessssessssassssessssessessssessesensesessssessassssessesensesassass
5. QuTiP’s community
5.1. The admin team and govemance
52. RIKEN
5.3. NumFOCUS and Google Summe1 of code
5.4. The Unitary Foundation.......
5.5. Packages that use QuTiP........
6. Future development.......
6.1. QuTiP’s role in the quantum computmg 1evolut10r1
6.2. QuTiP’s role in fundamental scientific research..........
7. Conclusion..

CRediT authorship contrlbutlon statement
Declaration of competing interest.....

Acknowledgments et

Appendix A. Tables.........

Appendix B. Summary of tutorials and examp]e notebooks

B.1. Time-evolution tutorials

B.1.1. 0001_gobjevo...........

B.1.2. 0002_larmor-precession

B.1.3. 0003_qubit-dynamics

B.1.4. 0004_rabi-oscillations

OOy u N NDNWW

https://github.com/qutip/qutip-tutorials
http://creativecommons.org/licenses/by/4.0/

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

B.1.5. 0005_SPiN-Chaincceceeuererurrenrererrererreseerereeenaene
B.1.6. 0006_photon_birth_deathcececerrerurerurennnne
B.1.7. 0007_brmesolve_tls.........cccereerrrereererrererereerennene
B.1.8. 0008_brmesolve_time_dependence.................
B.1.9. 0009_brmesolve_cavity-QED.......
B.1.10. 0010_brmesolve_phonon_interaction
B.1.11. 0011_floquet_solver........ccccceereruennn
B.1.12. 0012_floquet_formalisSmceceereruerererreruerenns
B.1.13. 0013_nonmarkovian_monte_carlo...................
B.1.14. 0015_smesolve-heterodyne..........ccceevevvrerereenns
B.1.15. 0016_smesolve-inefficient-detection
B.1.16. 0016_smesolve-jc-photocurrentceeveevenne
B.1.17. 0018_measures-trajectories-cats-kerr .
B.1.18. 0019_optomechanical-steadystatecceceeerreeurnencs
B.1.19. 0020_homodyned-Jaynes-Cummings-emission......
B.1.20. 0021_quasi-steadystate-driven-system...........
B.2. LECLUIES ceveeeeeeeeeertetrteteeeecre ettt neeeane
B.3. Quantum circuits and pulse-level-circuit-simulation..
B4, ViSUQIZATION ettt ettt ettt se e et
B.5. HEOM: Hierarchical equations of motion...
B.6. Miscellaneous........ccceceverueeverenene
B.7. QuTiP-notebooks.......ccccerrueuenen.
Referencescceveeveereverreseseecneenenennnns

1. Introduction

Open-source software plays an important role across a range of scientific disciplines, and is important for repro-
ducibility in scientific research [1], enabling scientific education, and the transfer of academic ideas into industrial
applications. Examples include the KWANT library for condensed matter physics [2], Quantum ESPRESSO for density
functional theory [3], MDTraj for molecular dynamics [4], and The Astropy Project for astrophysics [5], to name just a
few. With the increasing interest in quantum computing, the need for open-source tools for the study of quantum noise,
quantum dynamics and quantum circuits has exploded [6-10]. Among these tools, QuTiP, the Quantum Toolbox in Python,
has remained one of the most widely used, consistently maintained, and academically independent.

In its first release about 13 years ago [11,12], QuTiP originally aimed to reproduce, in Python, the functionality of the
famous Quantum Toolbox for Matlab [13]. QuTiP’s initial design approach was focused around a flexible “quantum object”
class which represents quantum states, operators and superoperators, and which allows the user to quickly and easily
solve many of the standard problems that occur in the fields of quantum optics and open quantum systems [14,15].
For this purpose, it relied - and still relies - on the extensive scientific computing infrastructure available in Python,
including libraries such as SciPy [16], NumPy [1], Cython [17], and MatPlotLib [18]. Many of QuTiP’s original examples
focused on traditional models from cavity quantum electrodynamics, like Lindblad master equation simulations of the
open Jaynes-Cummings, Rabi and Dicke models, and tools to quickly calculate standard observable quantities associated
with such systems, such as the Wigner function or the photonic g®(t) function.

Continuous development over the last 13 years by a large team of international contributors expanded the scope of
QuTiP beyond traditional quantum optics, adding important features like:

optimal control methods,

quantum circuit simulators [19],

a solver for the hierarchical equation of motion that describe non-Markovian dynamics [20],
a solver that takes advantage of permutational symmetries [21],

stochastic master equation solvers,

Floquet methods

and more. Many of these improvements were done by students and first-time developers at Franco Nori’s group in RIKEN,
including some who were supported by the Google Summer of Code program [22]. For a more detailed overview of this
era of QuTiP’s development history, we refer to Section 2 below.

1.1. QuTiP v5

In the last several years, the development team has pushed towards a new milestone release for QuTiP, v5, which
combines multiple deep changes to the internals of QuTiP. These changes were originally designed and spearheaded in
a project by Jake Lishman under the supervision of Eric Giguére and Alex Pitchford. The changes primarily focus on a

3

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

generalization of the QuTiP data layer, which previously only supported a single data format: the Compressed Sparse
Row (CSR) format. This format is a good choice for many applications, but other formats had to be introduced in an
ad-hoc way sometimes. An example is QuTiP’s optimal control library, where the exponentiation and multiplication of
many small matrices can be performed more efficiently with a dense data format.

1.1.1. A new flexible data layer

It was thus recognized that a flexible data format would make significant performance improvements possible, and
that it would also allow for the use of packages like CuPy, JAX, and cuQuantum, which make integration with GPU and
XLA hardware easier and provide powerful features like automatic differentiation. For example, an earlier effort [23] to
make use of JAX had required sweeping changes throughout the entire QuTiP repository, which implied having to copy
and maintain the code in parallel.

In QuTiP v5, a new flexible data layer takes center stage and facilitates new features to be included easily and quickly. At
the time of the release of QuTiP v5, it already supports several new data formats in addition to the existing CSR format: the
native “Dia” and “Dense” formats (for diagonal sparse matrices and for dense matrices, respectively), and two JAX-based
formats for diagonal sparse and dense matrices provided through the QuTiP-JAX optional sub-package. In this article, we
will carefully demonstrate, using a variety of examples and benchmarks, the circumstances in which these different data
formats can be used and taken advantage of.

1.1.2. Additional substantial changes

In addition to a flexible data layer, QuTiP v5 includes a solver class interface, new methods for the integration
of differential equations, updated tutorials and examples (in the form of Jupyter notebooks), and a large amount of
miscellaneous improvements and bug fixes identified by new unit tests. Furthermore, starting with QuTiP v4.7, there has
been a concerted effort to reduce the complexity and weight of the core QuTiP package by moving feature-rich aspects into
their own sub-packages. This is exemplified by QuTiP-QIP and QuTiP-QOC, which now contain the most recent versions
of the circuit simulator and optimal control libraries, respectively. This strategy reduces the maintenance cost of the core
package, and the chance that dependencies in these sub-packages will break or interrupt core features.

The aim of this article is to provide a detailed explanation, with examples, of existing and new features of QuTiP. We
chose examples which either demonstrate unusual use cases for QuTiP not covered already in the documentation, or ones
which allow us to compare the regime of validity of different solvers. We end with an outlook and strategy for the future
development of QuTiP into the next decade.

2. The QuTiP project

QuTiP began more than ten years ago as a collaborative project between Robert Johansson and Paul Nation, then two
postdoctoral researchers in the group of Franco Nori in RIKEN, Japan. At that time, well-maintained and easy-to-use open
source software packages for implementing common numerical methods in the fields of open quantum systems, quantum
optics and quantum information were limited. One of the most widely known packages was the Quantum Toolbox for
Matlab, developed by Sze M. Tan at the University of Auckland. However, it had not seen active development since 2002,
and relied on the commercial closed-source Matlab environment.

The programming language Python has seen extensive adoption across academia, particularly in the data science
community. Its easy-to-read philosophy and its quickly increasing support for scientific calculations through packages
like SciPy and NumPy made it very appealing as a platform for the development of a modern re-implementation of the
Quantum Toolbox. To make the new package appealing to the community, its developers adopted the philosophy of
mirroring the feature set and some of the syntax of the Quantum Toolbox in Matlab (nowadays, new packages like the
quantumtoolbox.jl library for the Julia programming language are, in turn, being built to mirror QuTiP). This culminated
in the first release of QuTiP in 2012 with a feature-set comparable to Matlab’s toolbox [11].

Only one year later, QuTiP v2 was released [12]. Alongside API and efficiency improvements, it included solvers
supporting arbitrary time-dependent Hamiltonians and collapse operators, and new solvers for Bloch-Redfield and
Floquet-Markov master equations.

QuTiP v3 was released in 2014, including stochastic master equation and stochastic Schrédinger equation solvers, a
broader range of methods for finding steady states, and the first version of a circuit simulator called qutip.qip.

The road from QuTiP v3 to v4 took more time, with the release of version 4.0 occurring only in late 2016. Minor releases
in between introduced important new features like a hierarchical equations of motion (HEOM) solver and a new module
for optimal control. The optimal control module, then named qutip.control, included support for the powerful gradient
ascent pulse engineering (GRAPE) and chopped random basis (CRAB) algorithms.

After the release of version 4.0, the development of QuTiP underwent a transition to a series of many minor
releases. In addition, the development team grew to a larger international team including full-time developers, volunteers
contributing specialized functionality (like improvements of the optimal control and HEOM modules, or the permutational
invariant quantum solver) and students who joined the team through internships at RIKEN or through Google Summer
of Code projects.

Significant releases during this time include:

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

a time-dependent Bloch-Redfield equation solver in v4.2 (2017),

the permutational invariant quantum solver (PIQS [21]) in v4.3.1 (2018),
the introduction of the Q0bjEvo class in v4.4 (2019) and

the first major update to the circuit simulator QuTiP-QIP in v4.5 (2020).

QuTiP v4.6 (2021) saw:

o further improvements to QuTiP-QIP,

o OpenQASM support,

e and the release of binary wheels on pip, which made continued support for Windows and other platforms much
easier.

Finally, QuTiP v4.7 (2022) brought:

e a major update to the HEOM solver and
e the introduction of a Krylov subspace solver.

In February 2023, the first alpha pre-release version of QuTiP v5 was published.

As described earlier, version 5 is a substantial new release. It includes deep and far-reaching changes to many of the
core components of QuTiP. To avoid bugs or errors plaguing users, or incompatibility with old code, the pre-alpha and
alpha development stages stretched over all of 2023. In March 2024, a large QuTiP developer’s workshop was held in
Franco Nori’s group at RIKEN and, during this workshop, QuTiP v5 was finally fully released. It represents a substantial
reinvention of what QuTiP can achieve and validates the success of the academic support of open-source science, of
programs like JST Moonshot and GSoC, and of non-profit organizations such as NumFOCUS and the Unitary Foundation.

3. Core features
3.1. Quantum objects and the data layer

At its core, QuTiP is a library for manipulating arbitrary quantum objects and for solving the time evolution of both open
and closed quantum systems. Its aim is to remove burdens from the researcher and to give them interactive programmatic
access to descriptive objects and solvers.

During its history, it has generally aspired to versatility and ease of use rather than optimization or keeping up with
state-of-the-art benchmarks. However, as the community using quantum software has grown and demands for the support
of high-performance computing platforms have risen, a fundamental change in QuTiP’s concept of a quantum object was
needed to remain competitive and useful. Towards this goal, QuTiP v5’s design enables the support of arbitrary data
formats through a flexible and powerful data layer, which features dynamic conversion between data types. This means
automatic conversion when objects of different type are combined together, and the option to choose the data type that
is optimal for a particular task.

3.1.1. The gobj class

To understand this fundamental change, we have to introduce the cornerstone of QuTiP, the Python class Qobj, which
provides an intuitive way to store and manipulate commonly used quantum objects. In most instances, Qobjs are used
to store quantum states (vectors), operators or super-operators, and manipulate them according to the rules of linear
algebra.

For example, a Pauli-Z matrix can be simply defined either using the built-in function sigmaz() or by constructing a
Qobj () from a matrix:

import qutip as qt

sz = qt.Qobj([[1, 0], [0, -111)

print (sz)

‘ Quantum object: dims=[[2], [2]], shape=(2, 2), type=’oper’, dtype=Dense, isherm=True
| Qobj data =

| tr1. 0.3

| Lo -1.1]

This Qobj is an operator, as indicated by its type, the shape of its matrix representation, and its dimensions (dims). The
dimensions allow us to keep track of subsystems and indirectly infer the type of the quantum object itself. For example, in
this case the object is an operator on a single sub-system, and can be thought of as a map which takes vectors to vectors.

Compare the output above to a tensor product of two Pauli operators:

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

Table 1
Summary of methods to change the data-layer in a Qobj.
Method Description
qobj.to(x) Change the data layer to the format specified by the string x, which may be "dense", "csr", or
ndia". If QUTiP-JAX is installed, "jax" and "jaxdia" are also available.
dtype=x When creating quantum objects, most functions allow the user to specify the data-layer type
x (allowed values described above).
qt.CoreOptions(default_dtype=x) Setting this option will cause quantum objects created with most internal functions to use
the same data-layer type x (allowed values described above) by default.
qobj.data_as () Returns the raw data defining the quantum object in its current format.

sz = qt.Qobj([[1, 0], [0, -111)

sz2 = sz & sz

print (sz2)
‘ Quantum object: dims=[[2, 2], [2, 2]], shape=(4, 4), type=’oper’,
‘ dtype=Dense, isherm=True

bj data =

1 0. 0. 0.]

0. -1. 0. -0.]

0 0. -1. -0.1]

0

| B0
|
| ¢
|
| [o.-0.-0. 1.1]

Here, we used the & operator introduced in version 5, which denotes the tensor product (instead, we could also have
used the tensor () function like in earlier versions of QuTiP). We see that the dimensions have the structure [[2,2], [2,2]],
which implies that the operator acts on vectors that live in the tensor product of two 2-state subsystems. In contrast, an
operator acting on a single 4-state system would have the dimensions [[4], [4]1]. A more complex version of this sub-
system labeling can be seen with superoperators, which map operators to operators, and will be explored later when the
Lindblad master equation solver is introduced.

In previous versions of QuTiP, the data actually defining the quantum object, a vector or matrix of complex numbers,
was usually represented in terms of SciPy’s implementation of the “Compressed Sparse Row” (CSR) matrix format for
complex numbers. This was a convenient format for many problems in open quantum systems, where density operators
and superoperators are often naturally sparse, since the CSR format provides a fast matrix-vector product. However, for
studying the dynamics of small quantum systems or performing computations on specialized hardware like GPUs, other
types of data formats are preferred.

QuTiP v5 introduces a new data layer which allows for custom data formats. The standard formats included and
available in v5 are CSR, Dense and Dia (diagonal sparse). For example, the operator we defined earlier was constructed
from dense data provided by the user and is hence in the Dense format, as indicated by the dtype in the output above. It
can be converted to another format with .to():

print (sz.data)

‘ Dense (shape=(2, 2), fortran=False)
print (sz.to(’CSR’).data)

‘ CSR(shape=(2, 2), nnz=2)

Here, the parameter fortran refers to the layout of the dense data in the computer memory, and the parameter nnz
to the number of non-zero entries in the sparse matrix.

When combining data formats, such as multiplying a sparse matrix with a dense vector, QuTiP performs conversions
automatically. When new data formats are added, it is sufficient to define conversion methods between that new data
format and only one existing format. QuTiP will then automatically use a graph of conversion methods to allow operations
between that new format and any existing one. However, converting between data formats is generally not numerically
optimal, and it is good practice to restrict oneself to the format that is most useful for the problem at hand. Specific
examples will be provided later.

The true power of this approach lies in allowing new flexible data formats to be developed in the future. As an example,
together with QuTiP v5 we are also releasing QuTiP-JAX [24], which takes advantage of the powerful JAX library for GPU-
based performance enhancements and automatic differentiation [25]. Data formats for CuPy [26], TensorFlow [27] and
tensor networks [28] have also been explored, and alpha versions of these data layer implementations are available. They
will be expanded upon in future releases. We refer to Table 1 for a summary of methods to convert between data layer
formats.

N. Lambert, E. Giguére, P. Menczel et al.

Overview of QuTiP

© QuTiP-Core

Qobj Data Layers Functions
Dense, CSR (compressed sparse Eigenstates, Matrix elements,
Data row) and DIA (diagonal) Norms, etc.
= Utility Functions
ype Entanglement measures, Distances,
Hermitian? Superoperator representations (Choi, Kraus, etc.), Channels, ENR states,
Qobj | . Two-time correlation functions and spectra, MPI support, etc.
I Dimensions .
s = e Environment class
P Flexible environment parameterization (Bosonic and Fermionic)
Solvers mesolve krylovsolve
Lindblad master equation Krylov subspace solver
System mcsolve + nm_mcsolve smesolve
o+ Monte-Carlo master equation Stochastic master equation
Environment
brmesolve HEOMsolver
Initial Q Bloch-Redfield master equation Hierarchical equations of motion
#q. Result

State fmmesolve PIQS

Floquet master equation Permutational invariant systems

Physics Reports 1153 (2026) 1-62

@ QuTiP-Packages

Packages

Extension

QuTiP

QIP: Pulse-based Quantum Circuit Simulator
allows circuits to be run on different hardware backend simulations at the
level of time-dependent pulses and noise.

QOC: Quantum Optimal Control Package
supports for CRAB, GRAPE and GOAT algorithms.

\ JAX: JAX Data Layer

supports the popular JAX package, allowing for GPU and autograd.

Fig. 1. A schematic overview of the QuTiP project, describing qobj and its features/functions, solvers, and QuTiP sub-packages. For a complete list
of Qobj methods and attributes see Table A.11, for a list of libraries which QuTiP uses see Table 2, for a glossary of terms commonly used in QuTiP
see Table 3, and for a list of state, operator, superoperator, entanglement measure and metric functions see Tables 4, 5, A.12, A.13 and A.14.

Note that the Array API consortium [29] aims to solve a similar problem (to standardize functionality available across
Python libraries and frameworks), but our custom approach to this problem offers several benefits. Firstly, it enables
incremental development of new data formats (if some solver or function does not support that new format, the dispatcher
will convert to a format which is supported). Secondly, it enables interaction between different data formats; for example,
it supports sparse-dense matrix-vector multiplication, which can be an optimal choice for some solvers. Finally, both of
these features are powered by a multiple-dispatch system which, to our knowledge, is a unique innovation. For example, it
goes beyond Julia’s multiple-dispatch system, which has “promote” rules that cannot handle the arbitrary heterogeneous
data inputs of QuTiP’s implementation.

In addition to storing the data describing a quantum object, the Qobj class has a large range of built-in utility
functions to calculate common properties of quantum systems. For example, eigenstates() computes the eigenvalues and
eigenstates of an operator, expm() takes the matrix exponential, norm() finds the norm of states and operators, and so on.
We provide a full list of these functions in Table A.11 and lists of commonly used functions to create states, operators and

7

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

Table 2
Glossary of acronyms and terms for libraries used by QuTiP.
Acronym Description
NumPy Numerical Python: A library for the Python programming language that provides support for large, multi-dimensional

arrays and matrices, along with a collection of mathematical functions to operate on these arrays.

SciPy Scientific Python: A Python library used for scientific and technical computing, building on the capabilities of NumPy.
It includes functions for optimization, integration, interpolation, eigenvalue problems, and other advanced
mathematical operations.

Matplotlib A plotting library for the Python programming language, used for creating static, interactive, and animated
visualizations.

JAX A library developed by Google for high-performance numerical computing that is particularly useful for machine
learning and scientific computing, with automatic differentiation capabilities.

Diffrax Differential Equations in JAX: A library that provides numerical solvers for differential equations, compatible with JAX
for high-performance computation.

MKL Math Kernel Library: A library developed by Intel that provides optimized mathematical routines.
MPI Message Passing Interface: A standardized and portable message-passing system used for parallel computing.
Table 3
Glossary of acronyms and terms for large subpackages and methods available in QuTiP.

Term Description

CSR Compressed Sparse Row: A SciPy data format for sparse matrices.

ENR States Excitation Number Restricted States: Quantum states where the total number of excitations across subsystems is
restricted, reducing the Hilbert space dimension size drastically.

Floquet Floquet theory is a tool for the description of periodically driven systems. Some QuTiP solvers are based on Floquet theory.

HEOM Hierarchical Equations of Motion: A formalism used in quantum dynamics to describe non-Markovian open quantum
systems.

ODE Ordinary Differential Equation: The QuTiP solvers allow users to choose from various numerical ODE integration methods.

PIQs Permutationally Invariant Quantum Solver [21]: A solver in QuTiP for efficiently simulating systems that have
permutational symmetry, reducing computational complexity.

QuTiP-JAX QuTiP-JAX: A module in QuTiP that leverages JAX, allowing the use of GPUs and automatic differentiation.

QuTiP-QIP QuTiP Quantum Information Processing: A module in QuTiP that provides tools for simulating quantum circuits, quantum
algorithms, and other aspects of quantum information processing.

QuTiP-QOC QuTiP Quantum Optimal Control: A module in QuTiP for designing and optimizing quantum control pulses, allowing users
to find control solutions for specific quantum dynamics tasks.

GRAPE Gradient Ascent Pulse Engineering: A numerical algorithm used in quantum optimal control. It uses time discretization in
order to identify the optimal control pulses for quantum systems.

CRAB Chopped Random Basis: A method for quantum optimal control that uses a randomly truncated basis to optimize control
pulses.

GOAT Gradient Optimization of Analytic Controls: An optimal control method that uses analytical functions for the available
controls.

superoperators in Tables 4, 5 and A.12. Examples of commonly used utility functions to calculate entropies, entanglement
measurements, and distances between states are given in Tables A.13 and A.14.

3.1.2. The QobjEvo class

The QobjEvo class provides a useful extension of the Qobj class to describe time-dependent quantum objects and
to optimize their use by QuTiP’s solvers. As we will demonstrate later, when calling a solver with a time-dependent
Hamiltonian or time-dependent bath operators, we typically specify the time-dependent operator by a list of tuples. Each
tuple defines an operator and its time-dependent prefactor in the form of a Python function, an array or a string. This list
of tuples is then internally converted into the QobjEvo class, which involves optimization in preparation for their use by
the solvers.

However, QobjEvo objects can also be manually created and manipulated by the user, and they provide a flexible
framework for dealing with multiple time-dependent systems that have their time-dependence specified in different
ways. For example, they can be instantiated from continuously defined functions or from discrete time-dependent data.
In the latter case, times in between data points, where the dependence is undefined, are filled in using a cubic spline
interpolation. Different QobjEvo objects can be added, multiplied, etc., with each other and with constant Qobj and
scalar objects. They also support many of the utility methods available to Qobjs like dag() (Hermitian conjugation) or

8

N. Lambert, E. Giguére, P. Menczel et al.

Table 4
List of commonly used functions to create pre-defined states.
Function Description
basis(N,n) Generates the vector representation of a Fock state, |n) in an N-dimensional Hilbert space. Also supports lists

qutrit_basis()

bra(x)

ket (x)
fock(N,n)

coherent (N, «)

spin_state(j,m)
spin_coherent (j, 0, ¢)

projection(N,n,m)

maximally_mixed_dm(N)
fock_dm(N,n)
coherent_dm(N, «)
thermal_dm(N,n)

for construction of tensor spaces.

Returns a list of basis states for a qutrit (three-level) system.

Produces a bra state given a list or string of excitation numbers. For example, x = “01010” produces the bra

state (01010]|.

Produces a ket state given a list or string, as with bra.
Bosonic Fock (number) state. Same as basis.

Generates a coherent state with eigenvalue « for a harmonic oscillator in an N-dimensional truncated Hilbert

space.

Generates the spin state with the quantum numbers j and m.
Generates the spin coherent state |0, ¢) for a spin-j system.

Generates the projection operator from state m onto state n, i.e., [n) (m|, for a system with Hilbert space
dimension N.

Generates the maximally mixed density matrix for dimension N.

Density matrix representation of the Fock state.

Density matrix representation of the coherent state.

Density matrix for the thermal state of a harmonic oscillator in an N-dimensional truncated Hilbert space.

Physics Reports 1153 (2026) 1-62

singlet_state() Returns the singlet state |S) = %(|01> —110)).

triplet_states() Returns a list of the triplet states |11), %(\01) +110)) and |00).

'rE?(l);:st':\;f,(o) Returns tlhe selected Bell state, |By) = %(|oo> + [11)), |Bo1) = %(\om —|11)), |Byo) = %(wl) +110)),
’ ’ ’ Bi1) = 75 (101) — 10)).

ghz_state () Produces the N-qubit GHZ-state, e.g., %(lOOOO) +1111)) for 4 qubits.

w_state () Returns the W state of N qubits, ﬁ(noo. +0) +1010---0) + -+ +[00--- 1)).

conj() (complex conjugation). Further, they support tensor products with other objects and they can be converted into
superoperators. We will demonstrate the utility of these features later.

3.2. Solvers

Armed with the Qobj and QobjEvo classes, one can simulate a large range of open quantum system dynamics using the
solvers provided by QuTiP. These simulations are, for the most part, initial-value ordinary differential equation problems:
given an initial state for a system, a Hamiltonian (possibly time-dependent) describing its energy and interactions, and
an environment described for example in terms of rates or coupling strengths (depending on the solver), QuTiP uses
numerical integration (either a custom method or one provided by SciPy) to find the evolution of the system as a function
of time.

These solvers are also employed as needed in other QuTiP packages like QuTiP-QIP or QuTiP-QOC. For general tasks,
one should consider the effects of the environment on the system under study and choose the solver based on the level of
approximation one wishes to take. This concept, core to QuTiP and to open quantum systems in general, will be developed
step by step in the following sections. A brief guide to the solvers, their fields of application and their memory usage is
provided in Table 6.

3.2.1. A new solver class

A convenient change in QuTiP v5 is the introduction of a unified class interface to control how a user interfaces with
the solvers. Using this class interface is optional, but useful when reusing the same Hamiltonian data with different initial
conditions, time steps or options. This procedure usually provides only a minor numerical advantage, but the speed-up
can be significant if the solver is reused many times.

When a solver is instantiated, one first supplies only the Hamiltonian and the operators defining the bath (e.g., collapse
operators for a Lindblad master equation). Then, the initial condition and time steps are passed to the Solver.run()
method, which performs the time evolution. Alternatively, one can also use the Solver.start() and Solver.step()
methods in order to manually control the spacing of the time steps during the simulation.

We will first illustrate the usage of the solvers with an elementary example that builds upon the concepts introduced
in the section on the Qobj class. We consider two interacting qubits, which are not interacting with an environment and
thus are entirely defined by their Hamiltonian:

€ €
H = ?102“) + 5202(2) -I—g(r,f”(r,gz). (1)

N. Lambert, E. Giguére, P. Menczel et al.

Table 5

Physics Reports 1153 (2026) 1-62

List of commonly used functions to create pre-defined operators.

Function

Description

commutator (A,B)

identity(dimensions)

qeye(dimensions)

qeye_like(qobj)

create(N), destroy(N)

momentum(N), position(N)

num (N)

displace(N,)

squeeze (N, z)

squeezing(al,a2,z)

fcreate(n,m), fdestroy(n,m)

sigmax (), sigmay(), sigmaz()

sigmam(), sigmap()
spin_Jx(j), ...

spin_Jm(j), spin_Jp(j)

jmat(j, which)

Computes the commutator (or anti-commutator, given an additional optional argument) of two
operators A and B.

Returns the identity operator for a single or multipartite system described by the integer or list

dimensions.
Alias for identity(dimensions).

Generates the identity operator with the same dimensions and type as the reference quantum
object qobj.

Generates the creation (raising) or annihilation (lowering) operator for an N-dimensional Fock-space.
The momentum or position operator of a single N-dimensional harmonic oscillator, i.e.,

p= ﬁ(a—af) or x = %(a-‘,—a*).

Generates the number operator of a single N-dimensional harmonic oscillator, i.e., n = afa.
Generates the displacement operator for a distance « in a single N-dimensional Fock space, i.e.,
D(a) = exp(aat — a*a).

Generates the single-mode squeezing operator in a single N-dimensional Fock space, i.e.,

S(z) = exp| (z*a® — za™?)/2].

Generates the two-mode squeezing operator for two harmonic oscillators predefined with
annihilation operators a1 and a2, i.e., $y(z) = exp[(z*a1a; — zafa;“)/z].

Generates the fermionic creation or annihilation operator using the Jordan-Wigner transformation.
Returns the mth fermionic operator out of n total fermions.

Generates the Pauli-x, y or z operator.

Generates the lowering or raising operator for Pauli spins.
Generates the spin-j, x, y or z operator.

Generates the spin-j lowering or raising operator.

Alias for spin_Jx(j), spin_Jy(j), spin_Jz(j), spin_Jm(j) OI spin_Jp(j), depending on which €

Ny, g o g

= 1.0 #qubit 1 energy
= 1.0 #qubit 2 energy

.1 #coupling strength

epsiloni
epsilon2
g =20

sx1 = qt
sx2 = qt
szl = qt
sz2 = qt

.sigmax () & qt.qeye(2)
.qeye(2) & qt.sigmax()
.sigmaz () & qt.qeye(2)
.qeye(2) & qt.sigmaz()

#Hamiltonian

H = (epsilonl / 2)

print (H)

‘ Quantum object: dims=[[2, 2],
| dtype=CSR,

‘ Qobj data =

| trt. o 0. 0.1

| To 0. 0.1 o.

| ro. 0.1 0. 0.1

| [o.1 0. 0. -1.1]

* szl + (epsilon2 / 2)

[2,

* sz2 + g * sx1 * sx2

2]], shape=(4, 4), type=’oper’,

isherm=True

The Hamiltonian is an operator with the same dimensions that we saw earlier, acting on the tensor product of two
2-state Hilbert spaces. We can see that the sparse CSR data format is used now, since we used the built-in functions
sigmaz() and geye () to construct the operator.

The dynamics of a pure state of this system obeys the Schrédinger equation

. d
ther V) =HIY) .

Here, the Hamiltonian H is the matrix in the code snippet above. The initial condition |{/(t = 0)) and the final time ¢t
must be provided to the solver at run time. For example, with the traditional approach (that is, without using the class
interface), we would use the Schrédinger equation solver sesolve () with:

(2)

10

N. Lambert, E. Giguére, P. Menczel et al.

Table 6

Physics Reports 1153 (2026) 1-62

Overview of most solvers in QuTiP. The last column is the dimensionality of the dynamical generator, which (for dense generators) asymptotically
equals the space complexity, that is, the memory usage of the simulation. Here, d is the Hilbert space dimension.

Solver When to use Memory
sesolve Closed system evolution following Schrodinger’s equation. d?
mesolve Describes completely positive (CP) Lindblad evolution. Used for Markovian environments with at
a flat spectral density and typically at weak system-environment coupling.
This solver can also be used to simulate arbitrary quantum master equations with
superoperator generators.
brmesolve Also used for Markovian environments. In contrast to mesolve, No secular approximation is d*
made, leading to non-CP dynamics.
This solver can automatically diagonalize time-dependent system Hamiltonians at each time
step, as required by the Born-Markov approximation.
mcsolve Monte Carlo Wavefunction method. Converges to mesolve for large number of trajectories Nr. Nr d?
Use to simulate statistical transport properties, or if mesolve consumes too much memory.
nm_mcsolve Like mcsolve, but can be applied to non-CP master equations. Nr d?
ssesolve To simulate systems subject to continuous (homodyne or heterodyne) measurement. Can Nr d?
include measurement feedback.
smesolve Like ssesolve, supports additional deterministic decay channels. Nrd*
. 4 (Ne+Np+Ni\ 2
heomsolve Open quantum systems with Gaussian, bosonic or fermionic environments at arbitrary d (i)
coupling strength and temperature.
In the right column, N., Nz and N; are the hierarchy cutoff and the number of real and
imaginary exponents, see Section 3.2.12.
FloquetBasis Periodically driven closed systems. One driving period is discretized into N; time steps. N.d?

psi0 = qt.basis(2,

tlist =
result =

0) & qt.basis(2, 1) #initial state

np.linspace (0, 40, 100) #time steps

qt.sesolve(H, psiO, tlist) #solver result

Note that we have used the function basis(N,n) to construct the initial condition. This function creates a vector in an
N-state Hilbert space with a 1 as the amplitude for the state |n) (note that for historical reasons, the operator sigmaz()
is defined such that vasis(2,0) is the excited state and basis(2,1) is the ground state, a convention which sometimes
confuses users). Alongside the standard rules of linear algebra and the use of the tensor function (or the equivalent &
operator), this allows us to create any desired state.

With the new solver class interface, we can perform the same calculation with the following:

solver =

qt.SESolver (H) #create solve object

result2 = solver.run(psiO, tlist) #get result from solver object

The result objects returned from both methods are equivalent. Since we did not specify any particular observables to
evaluate, the solver returns the state vector of the system at all time points specified in the t1ist (100 equally spaced
steps between t = 0 and t = 40).

Finally, the aforementioned manual stepping interface would be used as follows:

t =0

dt = 40 / 100

solver.start (psi0O, t)

while t
t =
psi
dt =

<
t

solver.step(t)

process the result psi and calculate the next time step

This interface is particularly useful if the Hamiltonian depends on external control parameters such as field strengths.
Such parameters can be updated in each step using the optional parameter args.

11

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

3.2.2. Solver and integrator options

The behavior and the output of the Schrédinger equation solver, and of all other solvers, can be finely controlled by
making use of the optional options argument. In contrast to earlier versions, the options in QuTiP v5 are now specified
by a Python dictionary instead of a custom class. This change increases the flexibility for future extensions and allows
different solvers to provide different sets of options more easily.

There is a large range of options available; a full list is provided in the online documentation for each solver. Frequently
used options include store_states, determining whether the system state at each time in the provided t1ist should be
included in the output, and store_final_state, determining whether the final state of the evolution should be included.
These states are then included in addition to the computed values of any requested observables, see below. Other
frequently used options are method, specifying the ODE integration algorithm, and specific options for that algorithm such
as the desired numerical precision and the maximum steps used in the solver:

options = {"store_states": True, "atol": 1le-12, "nsteps": 1000, "max_step": 0.1}
solver.options = options
result3 = solver.run(psiO, tlist) # Or: qt.sesolve(H, psiO, tlist, options=options)
print (result3)
<Result
Solver: sesolve
Solver stats:
method: ’scipy zvode adams’
init time: 3.5762786865234375e-05
preparation time: 0.0001609325408935547
run time: 0.007315397262573242
solver: ’Schrodinger Evolution’
Time interval: [0.0, 40.0] (100 steps)
Number of e_ops: O
States saved.

In addition to using the store_states option, we have here shown how to increase the precision (absolute tolerance)
atol, the maximum number nsteps of integration steps between two points in the tlist, and the maximum allowed
integration step max_step of the default Adams ODE integration method. The max_step option is often important in time-
dependent problems with periods of idling interspersed with short pulses; without setting a maximum time step for the
solver to take, these short pulses might be ignored when the ODE solver takes too large time steps.

3.2.3. mesolve part 1: A master equation solver for Lindblad dynamics and beyond

While the time-dependent Schrédinger equation in principle describes the dynamics of any quantum system, it is
often impossible to solve in practice when the number of constituent systems and the dimensionality of the Hilbert space
become too large (this issue is known as the exponential explosion problem of quantum mechanics). This is problematic
when we want to consider how a given finite quantum system is influenced by a large, perhaps even continuous,
environment. Decades of research have lead to tractable solutions to this problem in many parameter regimes, and in
QuTiP we aim to make many of these solutions readily and easily available to all.

Of these solutions, master equations are by far the most common. The term master equation generally refers
to a first-order linear differential equation for p(t), the reduced density operator describing the state of the finite
(open) quantum system. Such equations can be derived in numerous ways, for example from various approximation
schemes to microscopic system-bath models, from Hamiltonian-level stochastic noise approaches, or from abstract
mathematical considerations about the general properties of completely positive trace-preserving maps of quantum
states. In the latter context, the master equations take on a particularly nice form and are called Lindblad (or Gorini-
Kossakowski-Sudarshan-Lindblad) master equations. It is this form which is the most commonly used, and by default
implemented in QuTiP’s mesolve() function. However, mesolve() can also be applied to master equations that do not
have the Lindblad form, as we will show later.

The Lindblad master equation is an equation of motion for the density operator p(t) of the open quantum system. It
has the following form:

i 1
pt) = —%[H(r), p(t)] + Z 5 [2Gp(0)C] = (GG — G Gap(8)] - (3)

The use of a density operator instead of a state vector allows us to consider classical uncertainty in the description of the
system. The density operator

p= Pl Wil , (4)
k

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

where)", pr = 1, describes a classical mixture of possible quantum states |y) occurring with probabilities p. For
example, this kind of state describes a system in thermal equilibrium, where |y} are then the eigenstates of the system'’s
Hamiltonian and p, = exp[—hwy/(ksT)] /Z. Here, kgT is the thermal energy, hwy the eigenenergy, and Z the partition
function. This particular state often arises as the long-time steady-state of master equations obeying the detailed balance
condition (see below).

In addition to the system Hamiltonian, we see that the evolution (3) depends on so-called collapse operators, or jump
operators, G, = ,/¥nAn. Here, y, can generally be understood as rates describing the frequency of transitions between
the states connected by the operators A,. A standard way of deriving the Lindblad equation (3) from a microscopic
description is using the Born-Markov and secular approximations; in this case, A, is related to the environment coupling
operators of the microscopic description, and y,, is related to the square of the coupling strength. However, as mentioned
before, one can also arrive at the Lindblad equation by considering the most general possible time evolution for p that
is completely positive and trace preserving. This requirement means roughly that o will represent a physical state at all
times, having eigenvalues that are positive and sum to one (as needed for a physical probability distribution). From the
latter, mathematical point of view, A, could be arbitrary operators on the system Hilbert space and y; arbitrary positive
rates.

In QuTiP, the master equation solver mesolve() follows mostly the same syntax as the Schrédinger equation solver
discussed earlier. The main difference is that collapse operators C,, defining the dissipation due to contact with an
environment, can be specified. Using the same Hamiltonian, time steps, and initial condition as before, we can add
dissipation on both qubits by defining the following list of collapse operators: C; = ﬁa(_” and G, = ﬁaﬁz), where
oD is an operator which takes the qubit (i) from its excited state to its ground state.

sml qt.sigmam() & qt.qeye(2)

sm2 qt.geye(2) & qt.sigmam()

gam = 0.1 # dissipation rate

c_ops = [np.sqrt(gam) * sml, np.sqrt(gam) * sm2] #list of collapse operators for solver
psi0 = qt.basis(2, 0) & qt.basis(2, 1) #initial state (qubit 1 excitated)

tlist = np.linspace(0, 40, 100) #time steps

result_me = qt.mesolve(H, psiO, tlist, c_ops, e_ops=[szl, sz2]) #run mesolve

We have also provided a list of expectation operators in the argument e_ops. This argument tells the solver that we
want to evaluate and return the expectation values (E,) = tr [E,p(t)] for each observable E, in the list e_ops at every time
step in tlist. If the e_ops argument is provided, the list of system states will not be stored unless asked for by providing
the flag store_states in options.

In this example, the collapse operators were introduced phenomenologically and act locally, or independently, on
each qubit. However, different choices of collapse operators are possible; one can derive a variety of master equations
from microscopic models under different types of approximations. For example, assuming that the qubits are interacting
more strongly with each other than with the bath, one arrives at a so-called global master equation under the standard
Born-Markov-secular approximations. The global master equation involves collapse operators that act like annihilation
and creation operators on the total, coupled, eigenstates of the interacting two-qubit system,

A =[] .
and rates
vi = il d]| *S(4i) -

Here, the states |y;) are the eigenstates of H and A;; = E; — E; are differences of eigenenergies. Furthermore, d is the
coupling operator of the system to the environment. The power spectrum

S(@) = 2J(@)[nin(w) + 1]0(w) + 2J(—w)nm(—))f(-w), (7)

depends on details of the environment like its spectral density J(w) and its temperature through the Bose-Einstein
distribution ng(w). Here, 0 is the Heaviside function. These rates now obey the detailed balance condition

vi/vii = exp [Aj/(ksT)] . (8)

Assuming just a flat spectral density J(w) = y /2 and zero temperature gives S(w) = y0(w), i.e., only spontaneous decay
can occur, no stimulated decay or excitation can happen. In the following example, we implement this zero-temperature
environment manually for our two-qubit model using mesolve (). We see that the long-time evolution leads to a state that
is close to the coupled ground state of the two-qubit Hamiltonian:

13

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

def power_spectrum(w):
if w >= 0:
return gam #flat power spectrum
else:

return 0 #Zero temperature: only has support on positive frequencies

all_energy, all_state = H.eigenstates() #get eigenstates (ES)
Nmax = len(all_state)
collapse_list = []
for i in range (Nmax):
for j in range(Nmax):
delE = (all_energyl[j] - all_energylil) #energy splitting between ES
rate = power_spectrum(delE) * (
np.absolute (sx1.matrix_element (all_state[i].dag(), all_state[jl)) **x 2
+ np.absolute(sx2.matrix_element (all_state[il].dag(), all_state[jl)) #*x 2
) #Rates for both qubits
if rate > 0: #add to collapse operator list
collapse_list.append(np.sqrt(rate) * all_statel[i] * all_state[j].dag())

tlist_long = np.linspace(0, 1000, 100) #time steps

result_me_global = qt.mesolve(H, psi0, tlist_long, collapse_list) #run mesolve

fidelity = qt.fidelity(result_me_global.states[-1], all_state[0] @ all_state[0].dag())

print (f"Fidelity with ground-state: {fidelity:.6f}") #compare final state with ground state
‘ Fidelity with ground-state: 1.000000

In Fig. 2, we show the results of the local and dressed (global) Lindblad simulations and compare the results with the
Bloch-Redfield solver. The Bloch-Redfield solver, which will be explained later, is designed to automatically construct a
weak-coupling master equation from a given bath power spectrum, allowing for time-dependent system Hamiltonians and
arbitrary degrees of the secular approximation. If the secular approximation is fully implemented, using the Bloch-Redfield
solver is equivalent to the global master equation that we constructed above manually. We find that when the qubit-qubit
coupling is small, the results from the local and global master equations both agree well with the Bloch-Redfield solver. For
large qubit-qubit coupling, the local master equation produces deviating results from the global/Bloch-Redfield approach.

For advanced applications of QuTiP, it is important to understand how a Lindblad equation is constructed internally. In
order to start a simulation, the user must first pass a Hamiltonian and collapse operators to QuTiP, which are operators,
and an initial condition, which may be given as a vector (for a pure state) or an operator (for a mixed state). However,
internally, QuTiP uses the superoperator representation to solve the Lindblad equation (3). In short, this means that the
density matrix representing the system state is stacked, in column order, into a single large vector. The right-hand-side of
the Lindblad equation, called the Liouvillian or the Lindbladian, is a superoperator acting on this new larger vector space.
It can thus be represented as a large matrix, which multiplies the new larger state vector only from the left.

Formally, this representation takes advantage of the isomorphism between operators acting on a Hilbert space and
vectors in an enlarged space consisting of two copies of the original Hilbert space, £(#) = H ® H. One can visualize this
as mapping the component of a density operator corresponding to the basis projector |v;) (1//j| to a component in a new
vector on the double space corresponding to the basis vector |1/rj> ® |v¥;). Then, operators acting on the original density
operator element from the left and right, A |v;) (;| B, become operators acting just from the left as (Bf ® A)(|v;) ® [¥:)).

This construction makes the construction of the actual matrix describing the Lindbladian formally very simple, and it
is usually numerically more straightforward to solve an ODE in a matrix-vector format, as opposed to a matrix-matrix
format. However, it comes with the downside that the memory cost increases quadratically due to the doubling of the
Hilbert space. When this cost becomes prohibitive, one can consider employing the Monte-Carlo solver described in the
next section. In future QuTiP versions, we plan to implement more memory-efficient alternative ways of storing the
Lindbladian by avoiding vectorization (as done in the dynamiqs package [30]).

As noted before, QuTiP’s master equation solver is not restricted to just solving Lindblad equations like (3), but can also
be applied to any other master equation. The Liouvillian superoperators for other master equations must be constructed
by hand, for example using the built-in functions spre (), spost () and sprepost (), which convert operators on the original
Hilbert space to operators in the double space discussed earlier (see Table A.12 for a list of more superoperator-related
functions). These Liouvillians can be then passed directly to mesolve() in place of the system Hamiltonian. For example,
the Lindbladian corresponding to the master equation of the earlier example can be constructed manually via:

lindbladian = -1.0j * (qt.spre(H) - qt.spost(H)) #Hamiltonian term
for ¢ in c_ops:
lindbladian += (
qt .sprepost(c, c.dag()) - 0.5 * (qt.spre(c.dag() * c) + qt.spost(c.dag() * c))

) #Manual construction of Lindblad

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

s
A £YA VAV VG VRN

LO1y — Local Lindblad Loy — Local Lindblad
\ (a) Dressed Lindblad |] (b) Dressed Lindblad
\ «+«+ Bloch-Redfield i | «++ Bloch-Redfield
0.5 \ 0.51 ||| a
_ \ _ :||| a
=N | \ =N |I |
© 0.0 © 0.0 lll |
i
|

—0.51 —-0. | A
\\ v le'H
—1.01 ' ' . ..1-f‘f"_ - -4-'-'ﬁ-r‘.ﬁ_rj 10 ' ' ' ' '
0 10 20 30 40 0 10 20 30 40
tlert t/egt

Fig. 2. For the example problem of two interacting qubits, we compare the output of two mesolve() simulations. One uses local collapse operators
acting on the bare states of each qubit (local Lindblad equation), and the other uses dressed collapse operators acting on the global eigenstates
(global Lindblad equation). In addition, we include a simulation performed with the Bloch-Redfield solver (brmesolve()). Panel (a) shows weak
coupling between the qubits (g = 0.1¢;), where the local Lindblad description is sufficient from the perspective of detailed balance. Panel (b) shows
the dynamics with strong coupling (g = 2¢;), where local collapse operators predict a steady state that is not compatible with detailed balance. In
both cases, the qubits are resonant ¢; = €,.

In QuTiP v5, the master equation solver can be used with a new solver class interface, like we have seen earlier for
the Schrodinger equation solver. It has also been augmented with new options for ODE integration methods: Verner's
“most efficient” Runge-Kutta methods of order 7 and 9 are available as vern7 and vern9, and an approach based on
diagonalization for time-independent systems is available as diag. Furthermore, the solver has been updated to take
advantage of the new data layers. In Section 3.2.5, we will demonstrate how to use the QuTiP-JAX data layer to take
advantage of custom data layers to enhance mesolve() using GPUs.

3.2.4. mesolve part 2: Time-dependent systems

As mentioned in the earlier summary of the QobjEvo class, QuTiP and most of its solvers support time-dependent
quantum objects. The user may specify the time dependence in a variety of ways: as a Python function, as a string (which
will be compiled into machine code at the first usage), or as discrete time-dependent data which will be interpolated
with cubic splines by QuTiP.

Usually, the user does not need to deal with QobjEvo objects themselves, and can just directly provide the time-
dependence to the solver. Consider a standard example of a driven qubit with the time-dependent Hamiltonian

A A
H = —o, + = sin (wgt) oy, (9)
2 2
which experiences dissipation through contact with a zero-temperature bath with the coupling rate y. We model the
influence of the bath by a Lindblad equation with the collapse operator o_ in the undriven basis. The assumption that the
noise acts in the undriven basis is valid when the drive amplitude A is much smaller than the natural system frequency
A.
If we assume in addition that the driving is close to resonant, wg &~ A, we can perform the rotating wave approximation
to find, in a rotating frame,
H A — wq + A (10)
= ——0; —Oyx,
RWA P z 4 X
which reduces the problem to an undriven one. This is a useful consistency check on the driven results for this simple
example.
Defining the driven setup in QuTiP is easy; we first enter the driving field as a Python function:

def f(t):

return np.sin(omega_d * t)

Then the undriven and driven parts of the Hamiltonian can be defined with:

HO = Delta / 2.0 * qt.sigmaz()
H1 = [A / 2.0 * gt.sigmax (), f]
H = [HO, H1]

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

This specification of the time-dependent Hamiltonian can be passed to mesolve as usual:

c_ops_me = [np.sqrt(gamma) * qt.sigmam()]
me_result = qt.mesolve(H, psiO, tlist, c_ops=c_ops_me, e_ops=e_ops)

Note that, as mentioned, the collapse operator is constant in time, i.e., it acts on the undriven basis. Alternatively, we
could have entered the driving field as a string:

f = f"sin({omega_d} * t)"

or as time-dependent data:

f = np.sin(omega_d * tlist)

In the latter case, one has to take care that the spacing of the times in tlist is sufficiently smaller than the period
length.

To check the validity of a given model, it is useful to compare to other solvers. In this case, we will compare to the
Bloch-Redfield solver and to the solver for the hierarchical equations of motion (HEOM). More details on these will be
given later.

For the Bloch-Redfield solver, we need to specify the bath’s power spectrum, which captures how it affects the
system at different frequencies. As in the previous example, we will use a white-noise bath at zero temperature. For
the reader’s convenience, the following code snippet, which defines the power spectrum and invokes the Bloch-Redfield
solver, demonstrates also how a finite-temperature environment could be handled:

def nth(w): # Bose einstein distribution
if temp > O:
return 1 / (np.exp(w / temp) - 1)
else:

return 0

def power_spectrum(w):# Power spectrum
if w > 0: #Influences emission
return gamma * (nth(w) + 1)
elif w == 0:
return 0
else: #Influences absorption

return gamma * nth(-w)

a_ops = [[qt.sigmax(), power_spectrum]] #system operator which couples to bath, and
#bath power spectrum are needed

brme_result = qt.brmesolve(H, psi0O, tlist, a_ops=a_ops, e_ops=e_ops, sec_cutoff=-1)

Here, H is the same time-dependent system Hamiltonian that was defined before.

For the HEOM solver, the process is much more involved; we need to specify a multi-exponential decomposition of the
correlation functions of the bath. However, the correlation functions are non-exponential at zero temperature, requiring us
to apply a multi-exponential fit in order to use the HEOM approach. A full example of this process is given in the complete
code example available on GitHub [31]. In Fig. 3a, we show a comparison of the resonantly driven qubit simulated with
all three time-dependent solvers as well as the time-independent rotating wave approximation. As expected, all results
agree with each other very well.

A second example, to illustrate where using naive local-basis collapse operators can fail, is that of a single qubit whose
energies are adiabatically switched between positive and negative values,

A
H:ESin(a)dt)az. (11)

When the drive is slow, we expect the bath to be able to respond to this change. It should therefore always induce
transitions from the higher-energy state to the lower-energy one, extracting energy from the system. As we see in Fig. 3b,
a feature of the Bloch-Redfield solver and the HEOM method is that they can capture this switching effect automatically.
The naive approach, however, using a single constant collapse operator o_ fails and is insensitive to the drive. This latter
approach could be easily improved by defining more correct collapse operators, but we included the most simple choice
of collapse operator here in order to demonstrate a potential pitfall of using phenomenological Lindblad equations, and to
demonstrate the utility of QuTiP’s more advanced solvers in validating or invalidating one’s choice of approximate master
equation.

16

N. Lambert, E. Giguére, P. Menczel et al.

Physics Reports 1153 (2026) 1-62

1.07 ¢ —— mesolve (time-dep) 1.0
‘ (a) mesolve (rwa)
1 - = heomsolve
051 & n = = brmesolve 0.51 .
A oy o
— | | — * o Py .
S, ' ‘ I‘\ 64 * & g . .
=~ 0.0 ‘ 'Y /N N~ | 00 Yo ot
‘ t y \/I - <
{ A\ mesolve
() s heomsolve
-0.5 (W —0.51 brmesolve non-flat
Vv brmesolve
0 200 400 600 800 1000 10 20 30 40
t/A_]' t/A_l

Fig. 3. In panel (a), we show the dynamics of a resonantly driven qubit simulated with mesolve, brmesolve and the HEOM solver. We also compare the
results to a simulation of the time-independent RWA Hamiltonian, Eq. (10). The bath is chosen to have zero temperature and a flat spectral density
J(w) = y with a rate y = 0.005A/(27). The drive is assumed to be weak (A = 0.01A) and on resonance (wg = A). In panel (b), we show the second
example, where the energy of a qubit is adiabatically, sinusoidally modulated between positive and negative values with frequency wq = 0.054 and
amplitude A = A. The qubit is in contact with a flat zero-temperature bath with rate y = 0.05A4/(27). The naive mesolve implementation with a
single collapse operator that is not sensitive to the system’s energy predicts just exponential decay. The Bloch-Redfield and HEOM solvers predict
reversal of the decay when the energy changes sign, as a true zero-temperature bath can only remove energy from the system. The heomsolve result
differs slightly from the brmesolve result since the spectral density used in heomsolve is not flat. When the same spectral density used in the HEOM
method is used explicitly in the Bloch-Redfield solver both approaches agree. This is shown with the green dotted line which we called brmesolve
non-flat, Which uses the same spectral density as HEOM.

3.2.5. mesolve part 3: JAX and GPU acceleration with Diffrax

The use of graphical processing units (GPUs) to accelerate the solution of numerical tasks has become ubiquitous in
the last 10 years, with applications ranging from mining cryptocurrency to training large language models. Historically,
using GPUs for science required custom algorithm implementations in Cuda or OpenCL and was labor intensive, limiting
their use to only the most demanding of applications. However, in recent years, the use of GPUs also for scientific tasks
has greatly increased due to the availability of off-the-shelf packages like TensorFlow, CuPy, or JAX. With the flexible data
layer in QuTiP, these packages can be slotted in and used with minimal overhead for the user.

After some initial experimentation with CuPy [26] and TensorFlow [27], development has focused on a QuTiP-JAX [24]
data layer because of its powerful auto-differentiation capabilities and its mass adoption by the broader machine learning
community. We will discuss the auto-differentiation aspects later, and in this section just provide an example of how
QuTiP-JAX can be used for solving open quantum system dynamics on a GPU.

Before continuing, it is important to consider in which circumstances GPUs would actually accelerate such a task. GPUs
tend to shine when evaluating many small matrix-vector problems in parallel, so one expects it to help substantially
when integrating the behavior of a small system for many different parameters, such as for qiskit-dynamics [10], or
repeated multiplication of small matrices to the subspace of a large quantum state, as demonstrated in various quantum
circuit simulators such as yao.jl [32]. However, when solving a single ODE of a large system, whose integration involves
repeated matrix-vector products with very large matrices, the potential advantage is less clear. The sequential nature
of an ODE integrator makes it hard to parallelize. Although we expect that, for large matrices, it could be beneficial to
parallelize individual matrix-vector products themselves at the level of column-row products, this optimization would
require substantial modification of lower-level libraries. Here, we will show, with a practical example, that there is a
cross-over in the system size where it becomes advantageous to use a GPU in QuTiP nevertheless.

In order to use QuTiP-JAX, one must install it as well as the JAX package in addition to the core QuTiP package. It can
then be imported as follows:

import jax
import jax.numpy as jnp

import qutip_jax # noga: F401

Using import jax.numpy as jnp iS convenient as JAX mirrors all of the functionality of NumPy with equivalent functions
that can be used with JAX (for the purposes of auto-differentiation, for example). The import of the qutip_jax module
enables, as a side effect, the data layer formats ’jax’ and ’jaxdia’. The former is a dense format, while the latter is a
custom sparse diagonal format. An experimental CSR format is available within JAX, but currently not yet supported by
QuTiP.

N. Lambert, E. Giguére, P. Menczel et al.
print (qt.qeye(3, dtype=’jax’).dtype.__name__)
‘ JaxArray

print (qt.qeye(3, dtype=’jaxdia’).dtype.__name__)
‘ JaxDia

Physics Reports 1153 (2026) 1-62

To use the JAX data-layer within the master equation solver we need to use the diffrax ODE integrator, which
we select by passing the option "method":"diffrax" to the solver. A short-cut to this can be done with the new
qutip_jax.set_as_default() functionality, which enables us to switch all QuTiP objects’ data types to JAX and change

the solver method to diffrax in a single step:

Use JAX as the backend
qutip_jax.set_as_default ()

The following code can be used to revert this change:

qutip_jax.set_as_default(revert=True)

Apart from this, manipulating QuTiP-JAX objects and solving problems with the master equation solver proceeds as
with any other data format. To give a concrete example, and demonstrate an advantage of using GPUs, we consider a 1D

Ising spin chain model:

N N-1
H = Zgo O'Z(n) — Z_’O O')Sn)O')ErH—l) .
i=1 n=1

(12)

Here, N is the number of spins, gy the level splitting and J, a coupling constant. The end of the spin chain is in contact

with an environment, modeled as a Lindblad dissipator with the collapse operator

model can be defined and solved in QuTiP as follows:

def Ising_solve(N, g0, JO, gamma, tlist, options, data_type:’CSR’):

N : number of spins

g0 : splitting

JO : couplings

with qt.CoreOptions(default_dtype=data_type):

#Setup operators for individual qubits

sx_list, sy_list, sz_list = [], [], []

for i in range(N):
op_list = [qt.qgeye(2)] * N
op_list[i] = qt.sigmax ()
sx_list.append(qgt.tensor (op_list))
op_list[i] = qt.sigmay ()
sy_list.append(qt.tensor(op_list))
op_list[i] = qt.sigmaz ()
sz_list.append(gt.tensor (op_list))

Hamiltonian - Energy splitting terms
H=0.
for i in range(N):

H += g0 * sz_list[i]

Interaction terms
for n in range(N - 1):
H += -JO0 * sx_list[n] * sx_list[n + 1]

Collapse operator acting locally on single spin

c_ops = [gamma * sx_list[N-1]]

Initial state

state_list = [qt.basis(2, 1)] * (N-1)
state_list.append(qt.basis(2, 0))
psi0 = gt.tensor(state_list)

result = gqt.mesolve(H, psiO, tlist, c_ops, e_ops=sz_list, options=options)

return result, result.expectl[-1]

and the coupling rate y. This

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

Note that we used the qgt.CoreOptions(default_dtype=data_type) context manager so that objects created with most
internal functions use the same data format (overriding their default behavior). Note however that this currently does
not override the behavior of every function which can create a Qobj in QuTiP (e.g., PIQs and HEOMSolver do not support
this option).

With this definition, we can now compare solving the same problem with the default (sparse) data format on the CPU
and with JAX on the GPU. For example, to run the solver on the GPU one can do the following (see Fig. 4) :

from diffrax import PIDController, Tsith

with jax.default_device(jax.devices("gpu")[0]):
System parameters
N = 4 #number of spins
g0 = 1 #energy splitting of spins
JO = 1.4 #spin-spin coupling
gamma = 0.1 #dissipation rate

Simulation parameters

tlist = jnp.linspace(0, 5, 100) #times steps

options = {
"normalize_output": False,
"store_states": True,
"method": "diffrax",
"stepsize_controller": PIDController(rtol=qt.settings.core[’rtol’],

atol=qt.settings.core[’atol’]),
"solver": Tsit5 ()
}

result_ising, szl = Ising_solve(N, g0, JO, gamma, tlist, options, data_type=’jaxdia’)

By comparing the performance of simulating the dynamics of the Ising spin chain with the standard QuTiP CPU-bound
method (adams) and the equivalent diffrax method on a GPU, we observe a threshold in system size where the GPU
outperforms the CPU calculation by up to two orders of magnitude. Simulating systems of this size requires the use of
the jaxdia format to avoid memory limitations of the dense jax format. However, even with the jaxdia format and using
a state-of-the-art graphics card with 80 GB of RAM, the memory limit is reached already at 11 spins. For the same model
without dissipation, which can be solved with the Schrodinger equation solver, 22 spins are possible. To go beyond these
limits and harness large-scale high-performance computing requires us to distribute the ODE integration across multiple
GPU nodes. This is a challenging task that we plan to explore in future evolutions of GPU-focused data layers.

3.2.6. steadystate : A steady-state solver for master equations

When solving the dynamics of a closed Hamiltonian system with an initial condition that is not an eigenstate of the
system, one will typically observe persistent oscillations that never decay. However, when considering an open system
described with a master equation p(t) = Lp(t), where £ is the Liouvillian superoperator, the dissipation terms will
gradually suppress coherences (in certain bases) and push the system in the long time limit into a steady state. The
steady state satisfies the equation

dp(t — o0)
dt

i.e,, it does no longer change with time. The steady state is usually unique, but there can be multiple possible steady
states under certain conditions (dark states which are not affected by the dissipation, or non-connected subspaces). We
will here focus on the case where a unique steady state exists and mention some caveats about the degenerate case at the
end of this section. One should also note that the discussion above applies only to time-independent systems. Systems
with time-dependent driving typically have persistent oscillations around some fixed point in the long-time regime, which
can be found either by explicitly solving the dynamics of the master equation or by using QuTiP’s steadystate_floquet ()
function. This function will not be discussed further here, and we refer to the online documentation for more information.
For time-independent problems described by Lindblad or other master equations, QuTiP provides the steadystate()
function which supports various methods to solve the steady-state condition (13). Like mesolve(), steadystate() takes as
inputs either a Hamiltonian and collapse operators, or a Liouvillian superoperator constructed manually by the user.
The default solution method is called direct and directly solves (13) as a linear equation, using normalization as an
extra condition to obtain a uniquely solvable set of linear equations. Using the function’s solver parameter, the user can
select from a variety of linear equation solvers. For dense Liouvillians, there are the solvers solve and 1stsq based on
NumPy functions, and for sparse problems, many SciPy sparse linear equation solvers can be used: spsolve, gmres, 1gmres,
and bicgstab. Some of these use iterative algorithms that become useful when the memory cost of finding the full exact
solution is too high. Finally, there is an mkl_spsolve sparse solver which uses Intel’s Math Kernel Library. This can offer

=Lp(t - 00) =0, (13)

19

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

+] — GPU (Jaxdia) 2 10°| — GPU (Jaxdia) .
10 CPU (Jaxdia) /‘/ CPU (Jaxdia) /‘/
103] — CPU (SciPy) . — . CPU (SciPy) .
2 102 e
S S
o 10! Q
v v 1
(] 100 (0] 10
£ £
101
102
5 10 15 20 25 2 4 6 8 10 12
N N

Fig. 4. Benchmark of the time required to solve the dynamics of an Ising spin chain as a function of the number of spins N using the JAX data layer.
The simulation was performed on an NVIDIA A100 GPU with 80 GB of RAM. The CPU used for comparison was an AMD EPYC 7713 (64 cores). Panel
(a) shows a noiseless example for up to 22 spins (24 on CPU) using sesolve. Panel (b) shows the same problem in the presence of noise for up to 11
spins (12 on CPU) using mesolve. The Schrodinger equation solver is able to integrate more spins because of the memory cost of the superoperator
constructed by mesolve. In both cases, we see a crossover at a certain system size where the GPU solver becomes more performant, but the GPU
memory limit is reached shortly after. For the examples run on CPU we also differentiate between the default SciPy based solver and using JAX in
CPU mode. In all JAX examples we used the jaxdia data-layer. The dense Jax format runs out of memory much more quickly (not shown).

substantial performance benefits, particularly on Intel CPUs, but requires that the necessary libraries are installed on the
system.

The alternative method power also solves the linear equation (13), but it uses an additional iterative inverse power
step [33] which starts by assuming pg) = 1 and then solves Lpsg) = p~1 until [:,og) < &0 for some small tolerance
&0l Close to zero. With this method, the same solvers can be used as with the direct method discussed previously. Two
further methods are available: eigenvalue, which finds the zero eigenvector of £ iteratively, and svd, which use a dense
singular-value decomposition of the Liouvillian.

Generally speaking, the direct method with either an exact linear equation solver or an iterative one (for large system
sizes) are the most commonly employed methods. The optimal choice for a given situation tends to be problem specific.
For more details, a comprehensive analysis and benchmark of some of these methods for common quantum problems is
provided in [33], alongside a deeper explanation of the origin of the different approaches. Finally, in the situation where
multiple steady states exist, the different solvers can often produce very different results; some may fail, others may
produce linear combinations of possibilities, and so on. So far, QuTiP does not support an automated approach to dealing
with this issue; therefore, the onus is on the user to understand the connectivity and properties of their model, or to
check their results using long-time propagation of the dynamics with mesolve().

3.2.7. mcsolve : A Monte Carlo solver for quantum trajectories

The Lindblad master equation described in (3) describes the ensemble-averaged dynamics of a quantum system in
contact with an environment. In other words, it describes the expected results averaged over many repetitions of the
same “experiment”. Interestingly, this equation can be unraveled in terms of trajectories of possible outcomes of single
experiments. Each trajectory is assigned a classical probability, which is related to the likelihood of the environmental
behavior that is necessary to produce that trajectory.

The trajectory unraveling thus provides a theoretical way of describing the fluctuation of results between multiple
realizations of the experiment, and it sheds light on the physical interpretation of the Lindblad master equation. Further, it
is also interesting from the point of view of numerical efficiency, because we can sometimes unravel the master equation
in such a way that the density operator is written as an ensemble average of pure states which follow a non-linear
stochastic Schrédinger equation [34]. Therefore, it is not necessary to store the full super-operator form of the Lindbladian
generator in memory, and one can work with regular states instead of density operators. For large systems, this approach
can save both computing time and memory, in particular if many trajectories can be simulated in parallel.

The Monte Carlo solver in QuTiP is based on the Monte Carlo wave function (MCWF) technique, which is an unraveling
of the Lindblad equation in terms of pure states following quantum jump trajectories. These trajectories consist of periods
of coherent, deterministic time evolution described by the effective non-Hermitian Hamiltonian

i
Heff=H—§ZCJCn (14)

n

interspersed with discrete quantum jumps. Here, H and C, are the Hamiltonian and the collapse operators from the
Lindblad equation (3). The non-Hermitian evolution does not conserve the norm of the wave function, but causes it to
continuously decrease towards zero. The norm represents the survival probability, that is, the probability for the system

20

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

to still evolve along that trajectory without having undergone a quantum jump (some new insights on this unraveling
can be found in [35,36]). The decrease of the norm of the state within a time step hence represents the probability of the
system undergoing a quantum jump in that time step.

At a certain time, randomly chosen by considering the survival probability, a quantum jump occurs and the system
undergoes a transition described by one of the collapse operators C,. The probability that the jump at time t is described
by the nth collapse operator is proportional to (y(t)| C,ICn [y (t)), where |y(t)) is the trajectory state before that jump.
This process can be interpreted as the environment “measuring” the system, such that the system is projected into the
“target state” associated with the jump, and then re-normalized:

W) — (WOICC () () (15)

The record of these jumps can in principle be obtained by an experimenter monitoring the environment and marking when
they see the transition described by the collapse operator. For example, this transition might be the system emitting a
photon into the environment, or charge moving between discrete states.

Basic example. — The actual implementation of this method within QuTiP follows the algorithm outlined in [34,37,38] and
is described in the documentation. It is invoked with the function mcsolve(), which can be used exactly like mesolve ()
and returns an average over 500 trajectories by default. The number of trajectories can be adjusted using the parameter
ntraj.

result_mc = qt.mcsolve(H, psiO, tlist, c_ops, e_ops=[szl, sz2], ntraj=ntraj,

options={"map": "parallel", "keep_runs_results": True})

We used the option "map":"parallel" to automatically take advantage of multiple CPU cores to simulate different
trajectories in parallel, and the option "keep_runs_results":True, Which stores the results of the individual trajectories in
addition to the ensemble average. When the latter option is enabled, the runs_expect property of the result object returns,
for each expectation operator, a list of trajectories. Each of these trajectories is given as a time series for the expectation
value of that operator, with the entries of the time series corresponding to the times in the tlist given to the solver.
The average of the expectation values over all generated trajectories are returned in the average_expect property, and
their standard deviation is in std_expect. These two properties are available also if the keep_runs_results option is not
enabled.

Furthermore, if the option "store_states":True is used, the runs_states property returns the states for all trajectories
(if requested), while average_states contains their average. Given a sufficiently large number of trajectories, the states
in the average_states property of the Monte Carlo result will approximate the states returned by the regular master
equation solver (see Fig. 5).

Changes in v5. — Finally, in QuTiP v5, the result object gained a new photocurrent property, which saves the expectation
value of the photocurrent. This property replaces the photocurrent_sesolve() stochastic methods from earlier QuTiP
releases.

The finite sampling used by the Monte Carlo solver means that sometimes care must be taken to obtain a result close
to the true ensemble average. The solver provides several methods to decide at which point to stop generating more
trajectory samples. As mentioned previously, the option ntraj controls the maximum number of trajectories; calling
mcsolve With ntraj=1000 and no further options will thus use 1000 trajectories instead of the default 500. In addition, a
maximum computation time can be specified; for example, using the option timeout=60 will stop the solver after 60 s even
if the requested number of trajectories has not been reached yet. Finally, the target_tol option interrupts the computation
when the statistical error of the results reaches the given target value. For more fine-tuning, target values can be given for
both the absolute and the relative error, and it is also possible to use different target values for the different expectation
operators. How to specify these tolerances is explained in detail in the documentation.

In QuTiP v5, a class interface has been added to the Monte Carlo solver in analogy to the class interfaces for the other
solvers discussed above. Another addition in version 5 is an improved sampling algorithm, which can be enabled in the
options with "improved_sampling":True. This algorithm is particularly useful when the dissipation rates are very small.
In this case, with the default algorithm, many of the simulated trajectories may end up containing no jumps and only
deterministic evolution; all of these trajectories are thus identical. To avoid these redundant computations, the improved
sampling algorithm only runs the no-jump trajectory once and includes it in the final statistics with an appropriate
weighting.

Another improvement in the Monte Carlo solver in QuTiP v5 is the support for mixed initial states. Given a mixed
initial state, the solver runs trajectories for each pure initial state in the mixture, and correctly weights the results in
the final averaging. Users have the option to manually control the number of trajectories used for each initial state, or to
select this number automatically based on the requested total number of trajectories. When combined with the improved
sampling option, one no-jump trajectory will be generated for each initial state. Future improvements to the solver may
incorporate recent advances in optimizing the Monte Carlo method based around the waiting-time distribution [39].

21

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

1.0 © — mesolve
\ mcsolve average
P = mcsolve 1 run
0.5 \ «+= mcsolve 1 run
C‘éw 0.0 Y
_054
_10- :---L--.—-——-{::;.———-}J
0 10 20 30 40
Time

Fig. 5. Here we show the same example as Fig. 2 evaluated with the Monte-Carlo solver mcsolve. The average behavior is compared to the result from
mesolve, alongside two example trajectories showing discrete quantum jumps. The yellow shaded region indicates the convergence error based on
the standard deviation of the trajectories and the number of trajectories, oe; = 0/,/Nyj. Here, we use a smaller number of trajectories Ni,j = 100
than default, to amplify the error and make it more visible in this plot.

3.2.8. nm_mcsolve : A Monte Carlo solver for non-Markovian baths

If the time evolution of an open quantum system exhibits non-Markovian effects, the dynamics of its reduced density
matrix cannot be described by a Lindblad master equation. However, by applying the time-convolutionless (TCL) projection
operator technique, it is still possible to write the dynamics in the time-local form [14,40-42]

p(t) = —%{H(r), p(O)] + Z Ya(6) Dalp(t)] with

Dulp(0) = Arp(OA] — 3 [AlAp(0) + p(OAIA]. (16)

Here, H(t) is a system Hamiltonian and A, are jump operators but, in contrast to a Lindblad equation, the coupling rates
yn(t) may be negative at some or all times.

In the Monte Carlo wave function (MCWF) method implemented in QuTiP’s mcsolve, quantum jumps occur with
probabilities proportional to the coupling rates. In the present case, these probabilities would be negative; thus, the MCWF
cannot be immediately applied to master equations like (16). This problem can be navigated by mapping the dynamics
to an equivalent Lindblad master equation and applying the MCWF method to that Lindblad equation. For example, it is
known in general that time-local quantum master equations can always be mapped to Lindblad equations on the double
Hilbert space [43-45].

The non-Markovian Monte Carlo solver nm_mcsolve (), which was added to QuTiP in version 5, follows a similar
approach. By introducing a trajectory weighting called the “influence martingale”, a master equation of the type (16)
can be mapped to a Lindblad equation on the same Hilbert space, as shown in Refs. [42,46,47]. The formalism requires
that the jump operators satisfy a completeness relation of the form >, AlA, = a1 for some scalar @ > 0. The function
nm_mcsolve () automatically ensures that this relation is satisfied by adding, if necessary, an additional jump operator with
zero coupling rate. It then calculates the shift function

s(t) = 2 min{0, y1(t), y2(t), ... }I , (17)

which ensures that the shifted rates I,(t) = yn(t) + s(t) are non-negative. Finally, it uses the regular MCWF method to
generate trajectories |y(t)) for the completely positive Lindblad equation

PO =—2[HO, P (O] + Z L) Dalp' ()], (18)

such that p'(t) = E{|y(t)){y(t)|}, where E denotes averaging over the trajectory ensemble. The original state can then
be reconstructed through the average p(t) = E{u(t) [(t)) (¥ (t)|}, where

‘ ynk(tk)
= d 19
u(t) exp[a/o s(7) T]]:[Fnk(tk) (19)

is the influence martingale. The product runs over all jumps on the trajectory with jump channels n; and jump times
ty < t.

22

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

We note that the technique described above, and the non-Markovian Monte Carlo solver, are not limited to completely
positive dynamics and apply to any master equation of the form (16). Examples for non-positive dynamics described in
this form can be found, for example, in the study of Redfield equations [48] or of unitary evolution subject to classical
noise [49,50].

For an illustrating example, we consider the damped Jaynes-Cummings model, which describes a two-level atom
coupled to a damped cavity mode. The cavity mode can be mathematically eliminated, leaving us with the two-level
atom coupled to an effective environment with the power spectrum [14]

2
S(w) = ah . (20)
(wo— A— @)+ T2
Here, A is the atom-cavity coupling strength, wg the atom transition frequency, A the cavity detuning and I" the spectral
width. Under the rotating wave approximation and at zero temperature, the dynamics of the two-level atom can be shown
to follow the exact master equation [14]

A
50 = Wioro o0+ 70D 15(0), 1)

where D_ is the dissipator for the Lindblad operator o_. Further, o are the ladder operators for the atom, p(t) is the
atom state in the interaction picture, and y(t) and A(t) are the real and imaginary parts of the expression
. 2)\I" sinh (6t/2)

" 8cosh (8t/2) + (I' —iA)sinh (6t/2)’

y(t) + iA(t) (22)

with
§=[(I' —iAY —2AaI]V2. (23)

Depending on the choice of system parameters, the coupling rate y(t) may become negative at some times.
We now apply a variety of QuTiP’s solvers, including nm_mcsolve(), to this example. We first define the system
Hamiltonian and initial state,

H = qt.sigmap() * qt.sigmam() / 2 #Hamiltonian
initial_state = (qt.basis(2, 0) + qt.basis(2, 1)).unit() #initial state
tlist = np.linspace(0, 5, 500) #time steps

and the functions y(t) and A(t) as Python functions gamma and A. Despite y(t) being negative at some times, the exact
master Eq. (21) can be integrated using mesolve(). However, the Liouvillian superoperator must be constructed by hand,
since, by definition, dissipation terms added through the c_ops parameters cannot have negative rates:

unitary_gen = qt.liouvillian(H) #Hamiltonian term
dissipator = qt.lindblad_dissipator(qt.sigmam()) #Lindblad term (no rate included)
me_solution = qt.mesolve([[unitary_gen, A], [dissipator, gammal], initial_state, tlist)

We can now easily run the non-Markovian Monte Carlo simulation. Instead of a list of collapse operators c_ops, this
solver takes a list of pairs of jump operators and corresponding rates, which makes negative rates possible. Otherwise, it
accepts mostly the same parameters as mcsolve():

mc_solution = qt.nm_mcsolve([[H, A]l], initial_state, tlist,
ops_and_rates=[(qt.sigmam(), gamma)],
ntraj=1_000, options={’map’: ’parallel’})

The solvers used so far were based on the exact master equation (21). Additionally, we consider methods that will be
discussed below, that apply directly to a spin-boson model with the given power spectrum (20) and corresponding free
reservoir auto-correlation function

A .
C(t) = > exp [—i(lwg — A)t — Alt]] . (24)

We define the system Hamiltonian and system coupling operator Q = o + o_ in the Schrédinger picture,

H = omega_0 * qt.sigmap() * qt.sigmam() #Hamiltonian
Q = qt.sigmap() + qt.sigmam() #system operator which couples to the bath

where wy was chosen much larger than A to ensure validity of the rotating wave approximation. The HEOM solver can
be applied after decomposing the correlation function (24) into its real and imaginary parts:

23

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

P11 P01 (u—1)/1073
0.50 }\ mesolve ! x”; mesolve 15 Zero
VN S nm_mcsolve | .98 X \~\ x nm_mcsolve * nm_mcsolve <
\ ‘= = heomsolve \ ‘= = heomsolve 10 X XX
0.48 \ = brmesolve 0.96 \ = brmesolve x
z N,) ~. . X
\ ifxx‘ ~._ |o9af A f*ﬁx ~. 5 0000000000000
J & ~N ‘% ~N X
0.46 \ 7 \ 0.92 X % X x
‘§2§7 §< \fﬁxl AW 2 0 »«»«x«»«n&x XX
N 2% (090 X - x
Sore? Sos”
0.44 0.88 -5
0 2.5 5 0 2.5 5 0 2.5 5
t/A1 t/A1 t/A71

Fig. 6. Damped Jaynes-Cummings model. The figure shows results from the simulations described in Section 3.2.8, obtained with four different solvers
available in QuTiP, including the non-Markovian Monte Carlo solver. In all panels, the gray background indicates times where y(t) is negative. We
used I' =0.31, A =8I, and wg = 100\ + A.

ck_real = [gammaO * lamb / 4] * 2 #Real term prefactors

vk_real = [lamb - 1j * omega_c, lamb + 1j * omega_c] #Real term exponents
ck_imag = np.array([1j, -1j]) * gammaO * lamb / 4 #Imag term prefactors
vk_imag = vk_real #Imag term exponents

heom_bath = qt.heom.BosonicBath(Q, ck_real, vk_real, ck_imag, vk_imag) #create bath

heom_solution = qt.heom.heomsolve(H, heom_bath, 10, qt.ket2dm(initial_state), tlist)

Note that the parameter omega_c appearing here is w, = wg — A.
Finally, we compare with the Bloch-Redfield solver, which takes as its input the power spectrum (20):

def power_spectrum(w):

return gammaO * lamb**2 / ((omega_c - w)**2 + lamb*x2)

br_solution = qt.brmesolve(H, initial_state, tlist, a_ops=[(qt.sigmax(), power_spectrum)])

For comparison, the results obtained with the HEOM solver and the Bloch-Redfield solver must be transformed into
the interaction picture:

Us = [(-1j * H * t).expm() for t in tlist] #Transformation operator
heom_states = [U * state * U.dag() for (U, state) in zip(Us, heom_solution.states)]
br_states = [U * state * U.dag() for (U, state) in zip(Us, br_solution.states)]

The results of these simulations are shown in Fig. 6. Using only 1000 trajectories, the MCWF simulation reproduces
the exact solutions obtained with mesolve () and heomsolve() well. The Bloch-Redfield equation produces a very different
picture at the short time-scale considered here, showing that we are deep in the non-Markovian regime. The small
deviations between mesolve() and heomsolve() stem from the rotating wave approximation.

Fig. 6 shows that whenever y(t) is negative, coherence is restored in the atom state. It also shows the average value
of the influence martingale (19), which is stored in the mc_solution.trace field. The average influence martingale is an
estimator for tr p(t) = E{u(t)}. We see that it is constant when y(t) is positive but fluctuates otherwise. Its deviation
from the exact value tr p(t) = 1 can be used as an indicator for how well the Monte Carlo simulation has converged.

3.2.9. brmesolve : Bloch-Redfield master equation solver

Earlier, in Section 3.2.3, we discussed a master equation in Lindblad form, which described transitions between system
eigenstates with rates proportional to the power spectrum of an environment. Such master equations can be derived
microscopically from a system-bath model, where the power spectrum encodes the frequency-dependent coupling
strength and the temperature of the environment. The approximations used to derive the master equation in this form
are called the Born-Markov-Secular approximations. The Born and Markov approximations capture the weak-coupling
and memoryless nature of the environment, and the secular approximation assumes that certain high frequency terms
can be discarded.

24

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

A master equation derived through these approximations is called a Bloch-Redfield master equation, and it can
be conveniently constructed in QuTiP using the brmesolve() solver. A useful feature of this solver is that the secular
approximation can be relaxed to a specified degree, leading to a so-called non-secular and non-Lindblad equation of
motion. Despite not having strict Lindblad form, this generalized master equation is still capable of describing the reduced
state of the system in certain parameter regimes. Being able to soften the secular approximation can be important if the
bath has a certain structure, or if the dissipation rates or the temperature of the bath are large.

A full derivation can be found in the literature [14], and a short discussion of its most important steps is included in
the QuTiP documentation. The final equation implemented in QuTiP can be written as

sec

d

apab(t) = _iwab pab(t) + Xd: ERabcd pcd(t) . (25)
c,

The indices a, b refer to matrix-elements of operators in the eigenbasis of the system Hamiltonian Hyys with eigenenergies
wm and wqy = wg — wp. The system is coupled to one or more baths labeled by the index « through operators A%, with
matrix elements A% in the Hamiltonian eigenbasis. The bath is fully described by its power spectrum S,(w), which we
defined in (7).

Given these definitions, the Bloch-Redfield tensor can be written as

Ravca = — Y {800) AlyAl Supl@en) — AL AGSup(ca)
o,f n

+%Zﬂﬁ@ww—%mwm4, (26)
n
The sum in (25) refers to the degree to which the secular approximation is applied in the derivation of (26). Making the

secular approximation corresponds to removing certain terms in the sums over ¢ and d (which arise from fast oscillating
terms in the interaction picture).

In QuTiP, the Bloch-Redfield tensor can be calculated with the function bloch_redfield_tensor() and used directly
in mesolve (), akin to the manual Lindblad construction we showed earlier. These two steps can be combined by using
the brmesolve () solver interface directly. The secular approximation can be controlled using the sec_cutoff parameter,
with sec_cutoff=-1 implementing the complete non-secular tensor, and any positive float giving a partial secular
approximation (neglecting terms oscillating with frequencies |wq, — w¢4| larger than this value). The default value of 0.1
will give rise to a secular equation of motion in most cases.

The other powerful and important feature of this solver is its support for time-dependent Hamiltonians, which we
demonstrated earlier in Section 3.2.4. The assumption used here is that the environment always sees the system in its
‘instantaneous eigenbasis’ at any given time, so the above equation of motion applies, but with the eigenbasis used to
construct the Redfield tensor constantly changing. This feature of the time-dependent Bloch-Redfield equation is very
challenging numerically because the Hamiltonian must be diagonalized at every instance in time. The solver brmesolve ()
is optimized for this diagonalization, but it remains a challenging numerical problem.

An example of using brmesolve() is shown in Fig. 2 (see also Figs. 3 and 6), alongside the results from local and global
Lindblad equations solved with mesolve(). To define a problem for the brmesolve() solver, we must provide a list of
system operators that couple to an environment, and the power spectrum of that environment. The example in Fig. 2 is
constructed with:

def power_spectrum(w):
if w >= 0: #Zero-temperature, only has positive-frequency support
return gam
else:

return 0

result_BR = qt.brmesolve(H, psiO, tlist, e_ops=[szl, sz2],

a_ops=[[sx1, power_spectrum], [sx2, power_spectrum]])

The example for a driven problem, in Section 3.2.4, was defined there already, and demonstrated in Fig. 3.

Finally, we note that the definition in Eq. (26) allows for non-Hermitian coupling operators, as required by interacting
Fermionic systems which might obey an interaction Hamiltonian in the form H, =) Al ® B, + A, ® BY,. In QuTiP 5 this
is now supported through the use of a FermionicEnvironment to describe the bath, or brcrossterm() to manually build
custom interactions. An explicit example of how to use the Bloch-Redfield solver with the environment class is described
in 3.2.12.

25

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

3.2.10. Floquet methods: the Floquet basis

In previous sections we have seen different methods to solve time-dependent Hamiltonians, each of them suitable for
different scenarios. Here, we discuss Hamiltonians with a periodic time-dependence. In such cases, a natural approach is
using the Floquet theorem to tackle the problem, similar to how using the Bloch theorem (a particular application of the
Floquet theorem) greatly simplifies problems with spatial periodicity.

Literature on Floquet theory [51] and its application to quantum systems is extensive [52-54]. Here, for completeness,
we will only introduce the main results when applied to time-periodic Hamiltonians. Let H be a Hamiltonian periodic in
time with period T, such that

H(t)=H(t+T). (27)

The system state follows the time-dependent Schrodinger equation ih% [y (t)) = H(t) |w(t)). The Floquet theorem states
that there exist state solutions defined as

[Ya(t)) = exp (—ieat /h) | Do (1)), (28)
where ¢, are the quasi-energies and |®,(t)) = |®P4(t+ T)) the Floquet modes. Then, any solution |y (t)) of the
time-dependent Schrédinger equation can be written as a linear combination of the Floquet states such that

W) =D co (b)), (29)

o

where the constants ¢, are determined by the initial conditions.
By inserting (28) into the Schrédinger equation, one can define the Floquet Hamiltonian,

3
He(t) = H(t) — ih . (30)

which converts the time-dependent Schrodinger equation into a time-independent problem,
He(£) [@4(1)) = €4 [Da(t)) - (31)

Once we obtain the Floquet modes at ¢ € [0, T], using Eq. (28) we immediately know |/(t)) at any large t.

We now turn our attention to the application of Floquet theory in QuTiP. We first analyze the computational
performance of using the Floquet basis compared to the Schrédinger equation solver sesolve(). For this example, we
use the Hamiltonian of a two-level system driven by a periodic function,

€ A A .
H= —EO'Z - 50,(+ 3 sin (wqt) oy, (32)
where € is the energy-splitting, A the coupling strength and A the drive amplitude. As discussed earlier, this Hamiltonian
can be defined in QuTiP as follows.

HO = -1 / 2 * (epsilon * qt.sigmaz() + delta * qt.sigmax()) #Hamiltonian (static)
H1 = A / 2 * qt.sigmax() #Hamiltonian (driven part)

args = {’w’: omegal}

H = [HO, [H1, lambda t, w: np.sin(w * t)]] #Creates a QobjEvo Hamiltonian

Fig. 7(a) shows the speed comparison between the Floquet approach and direct integration of the Schrédinger equation.
One can see that the computational time needed using the Floquet method is, on average, independent of the time until
which we want to evolve our state. Because we always need to compute at least one full period to use the Floquet basis, the
overhead of the Floquet method is disadvantageous compared to sesolve() at short times. However, at large stroboscopic
times it becomes more efficient to use the Floquet basis, since we take advantage of the system periodicity in that way.
In QuTiP we could implement this using the fsesolve() solver, or manually as follows:

floquetbasis = qt.FloquetBasis(H, T, args)

Decomposing inital state into Floquet modes
f_coeff = floquetbasis.to_floquet_basis(psiO)
Obtain evolved state in the original basis

psi_t = floquetbasis.from_floquet_basis(f_coeff, t)

Fig. 7(b) shows the agreement between the two methods at arbitrary stroboscopic times.
A good example to analyze the dimensional scaling of the Floquet implementation is to study a one-dimensional Ising
spin chain under a periodic drive. The Hamiltonian of this system can be expressed as

N N-1 N
1 .
H=g0Y o —Joy oo™V + Asin(wst) Y o, (33)
n=1 n=1 n=1
26

N. Lambert, E. Giguére, P. Menczel et al.

Physics Reports 1153 (2026) 1-62

)
(0]
£
}_
©
C
°
s :
3_ -

. |
§10‘3 : —— Floquet lI ['|, [}
O * toross sesolve —1.0] ' ! |

0 1 2 3 4 5 6 7 8 9 10 0O 1 2 3 4 5 6 7 8 9 10
t/T t/T

Fig. 7. Two-level system driven periodically (Eq. (32)) with energy splitting € = 2, coupling strength A = 0.2 x 27, drive amplitude A = 2.5 x 27
and drive frequency wq = 2m. (a) Time to evolve the state from the initial state until the given time, using the Floquet method (solid blue line)
and sesolve() (orange dashed line). The dotted green line indicates the normalized time, t.oss, at which Floquet basis and sesolve() take the same
computational time to evolve the state. For times beyond this, direct integration with sesolve() is less efficient than using the Floquet basis. Note
that intermediate results such as the computed Floquet basis or the evolved state are not reused between data points. (b) Expected value of o, as
a function of time, computed using the Floquet method and sesolve().

(@ 90=1Jo=14,A=10 (b)
10
®
) ,’ II
“EJ 100 ', 60 7
S) 4
~ P ~ ’
Ta0 ‘ 40 P
S ~ 8 d
S P S K
8 ¢’ ’
8 10-2 e~ 20 ’
§ -==e"" ’
§ --- .
103 0 -t = == ~-""
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
N N

Fig. 8. Numerical study of the performance of Floquet basis and sesolve depending on the dimension of the system N. (a) Computational time
needed to reach the t.,oss depending on N. (b) Normalized time tcoss/T at which Floquet basis and sesolve require similar computational time versus
N. Discrete data points are shown as red dots, while dashed lines are included to facilitate visualization of the overall trend.

where g, is the level splitting, Jo is the coupling constant between nearest-neighbor spins and A is the drive strength.
In QuTiP, this Hamiltonian can be implemented similarly to the Ising Hamiltonian without drive used in Section 3.2.5,
except that here we additionally include the driving term.

In Fig. 8, we compare the performance of FloquetBasis() and sesolve() when studying the Ising spin chain under
a periodic drive, Eq. (33). Particularly, we are interested in comparing these two methods depending on the number of
particles in the system N. Fig. 8(b) shows, depending on the number of particles N, the crossover time toss at which the
Floquet method becomes more performant than the direct sesolve() method. Fig. 8(a) shows the computational time
required to evolve the system until that crossover time.

In addition to the Floquet basis transformation and the fsesolve() solver mentioned before, QuTiP includes the solver
fmmesolve () Which is capable of analyzing time-periodic Hamiltonians which are affected by a dissipative bath, i.e., quasi-
time-periodic Hamiltonians. We refer the reader to the QuTiP documentation for examples using this solver. When
applying it, the user must proceed with caution since a generalized Floquet method can give unphysical results if the
dissipation rate is too large compared to the pure eigenenergies of the periodic Hamiltonian. In a future work, we plan to
discuss the intricacies of generalized Floquet methods and this solver in particular. Moreover, another solver flimesolve(),
which also uses Floquet theory to approach open quantum systems, is currently being developed [55].

3.2.11. smesolve : Stochastic master equation solver

When modeling an open quantum system, classical stochastic noise can be used to simulate a large range of
phenomena. For example, classical noise can be used as a random term in the Hamiltonian as a means to simulate a
classical environment randomly changing some system property in each run of an experiment. Another example is the

27

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

| h’ m,
WYV Y

| \
—4 { (x)
= = (x) mesolve
-6
0.0 0.2 0.4 0.6 0.8 1.0
t/kt

Fig. 9. An example of solving the stochastic master equation for a dissipative cavity, with decay rate x and Hamiltonian H = Aafa, undergoing
homodyne monitoring of the output field. Here we plot the averaged homodyne current J, = (x) + dW/dt, the average system behavior (x) for 50
trajectories, and the average result for (x) predicted by mesolve for the same model (without resolving conditioned trajectories). In this example the
conditioned trajectories are only weakly affected by the noise, while the homodyne current remains noisy. Parameters used were A = 10k, and
initial condition of a coherent state with displacement o = 2.

Monte Carlo solver discussed earlier, where classical randomness is used to simulate the random chance of a quantum
jump occurring in a dissipative Lindblad process.

In the smesolve() solver that we will discuss in this section, noise appears because of a continuous measurement. The
solver allows us to generate the trajectory evolution of a quantum system conditioned on a noisy measurement record.
Historically, this type of solver was used by the quantum optics community to model homodyne (single quadrature) and
heterodyne (two-quadrature) detection of light emitted from a cavity. However, the solver is quite general, and can in
principle be also applied to other types of problems.

To demonstrate its use we will focus on the standard example of a stochastic master equation describing an optical
cavity whose output is subject to homodyne detection. The cavity obeys the general stochastic master equation,

dp(t) = —i[H, p(t)] dt + Dlalp(t)dt + H[alp dW(t) (34)

with Dlalp = apa’ — Jatap—] pa’a being the Lindblad dissipator and H = Aa'a the Hamiltonian, which together capture
the deterministic part of the system’s evolution. The term #[alp = ap + pal — tr [ap + ,oaT] represents the stochastic
part which captures the conditioning of a trajectory through continuous monitoring of the operator a. Here, dW(t) is the
increment of a Wiener process obeying E[dW] = 0 and E[dW?] = dt.

This equation can be easily implemented in smesolve() with

stoc_solution = qt.smesolve(
H, rho_0, times, c_ops=[], sc_ops=[np.sqrt(kappa) * al, e_ops=I[x],

ntraj=num_traj, options={"dt": 0.00125, "store_measurement": Truel}

We have chosen here an initial coherent state, and collect expectation values of the operator x = a + af. The
parameter sc_ops indicates which operators are being monitored, and stoc_solution.expect returns a list of the averaged
results, while stoc_solution.measurement returns a list of lists of individual measurement results of the operator J,(t) =
(x) + dW /dt. The optional c_ops can be a standard list of collapse operators describing additional, unmonitored, baths.
The results of this simulation are shown in Fig. 9. Interestingly, in this example the conditioned system trajectories are
only weakly affected by the noise, making it a useful example for tests of this solver.

3.2.12. HEOMSolver : Hierarchical equations of motion

While the other solvers in QuTiP largely rely on either perturbative approximations and/or assumptions about the
Markovianity of the environment a system is coupled to, the hierarchical equations of motion (HEOM) are a numerically
exact method [20,56,57] to solve the dynamics of an open quantum system, under a minimal set of assumptions. It
originated in the field of physical chemistry, where it was used to solve problems related to electronic energy transport in
photosynthetic light-harvesting. It has recently found utility in a broad range of other fields, from quantum information
to quantum electronics, and it is now used as a benchmark for developing other methods [58]. In QuTiP we provide a
solver for both bosonic and fermionic environments, which support arbitrary spectral densities and correlation functions
via built-in fitting procedures.

28

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

Table 7

Predefined environments: Table of predefined environments as given by their spectral density, and the internal QuTiP function to create them. The
fourth column indicates whether or not a Padé or Matsubara series expansion of the bath correlation functions is available. All baths require an
initial temperature (which can be zero, though this invalidates the series expansion for the correlation functions, and fitting should be used instead).
For the Fermionic Lorentzian bath we also need to provide a chemical potential (defined via the mu parameter).

Predefined Spectral density function Python function Padé or Matsubara Bosonic or
environment available Fermionic
type

Ohmic J(@) = a(e /of exp[w/wc] OhmicEnvironment (T, alpha, wc, s) X Bosonic
Drude-Lorentz J(w) = 2/\)/60/()/ +w) DrudeLorentzEnvironment (T, lam, gamma) Bosonic
Under-Damped]()=),21—'(1)/ (a) - (4)2)2 + I 2] UnderDampedEnvironment (T, lam, Gamma, wO) Bosonic
Lorentzian Jw) =]/WZ/[((U a)o)z + W2 LorentzianEnvironment (T, mu, gamma, W, wO) Fermionic

The minimal assumptions that the HEOM method relies on are that the bath is Gaussian, initially in an equilibrium
thermal state, and that the bath operator which couples to the system is linear. Using the Feynman-Vernon influence
functional, one can show that, under these assumptions, the influence of the environment is fully characterized by its
second order correlation function. For a bosonic environment, this correlation function can be expressed as (see [59] for
an explanation of the fermionic bath case, and [20,60] for applications)

C(t) = /w dwj(—w) (coth (’B—w> cos (wt) — isin (wt))) (35)
0 T 2

The derivation of the HEOM is also based on the Feynman-Vernon influence functional. The HEOM relies on the
assumption that the correlation function can be written as a sum of decaying exponentials like

C(t) = Ca(t) + iGi(t) with (36a)
t) = Z cf exp (—yt) and (36b)
k=1
N
= Z crexp (—yit) (36¢)

k=1

(though some variants of the technique have generalized this assumption [61]). By taking repeated derivatives of the
influence functional, in conjunction with the assumption (36), one arrives at the coupled HEOM differential equations

p(t) = —ilHs, p"()] =) Zn,mp (6) —:chan[Q pR()]

j=R,I k=1
+ chn,k{q P (t) }—IZZ[Q PUk(L)] (37)
Jj=R.I k=1
where n = (ng1, Nga, . . ., NN, M1, N2, - - ., Ny) is @ multi-index label of non-negative integers nj, and my (n]?,:) denotes

the multi-index with the selected entry reduced (increased) by one. Further, Q is the generic system operator which
couples to the bath. In practice, the a priori infinite hierarchy is truncated to nj < N, for a suitably chosen cutoff N.
While the label n = (0,0, ..., 0) corresponds to the system density matrix, operators p"(t) with n # (0,0, ..., 0) are
referred to as auxiliary density operators (ADOs), and encode correlations between system and bath.

To choose the value of the cutoff N., one typically starts with a small value which is then increased step by step until
convergence is found. Heuristic arguments indicate that a lower bound is given by [62]

1)

N> s (38)
miny Re[yk]

where ws is the largest system frequency and Re denotes the real part. In future versions of QuTiP, we are planning to

implement more efficient cutoff mechanisms, where ADOs are kept or discarded according to an importance criterion

[63-65].

The implementation of the HEOM in QuTiP is explained in greater detail in [20]. Following the release of QuTiP v5,
it is currently being enhanced to be more compatible with the other solvers (mesolve() and brmesolve()) with a generic
environment class that allows us to quickly compute the power spectrum. The logic of this new environment class, and
its functionality, are described in Fig. 11 and Tables 7, 8 and 9.

29

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

Table 8

Custom environments: Table of functions for defining custom environments from either their spectral density, power spectrum or correlation functions
(only custom bosonic environments are currently supported in this way, though fermionic ones can be done manually as shown in the final row in
the table). The parameter func can be a Python function or a list/array of points (requires a corresponding tlist or wlist optional parameter to be

provided). Both wMax and tMax should be chosen such that the function or array used is negligible for higher values of t or w.

Defined from:

Python Function

Important optional arguments

Spectral density

BosonicEnvironment.from_spectral_density(func)

T: temperature of the bath. wiist: array of
frequencies (if array-based). wMax: maximum
frequency used in Fourier-transform conversions.

Power Spectrum

BosonicEnvironment.from_power_spectrum(func)

As above

Correlation function

BosonicEnvironment

.from_correlation_function(func)

T: temperature of the bath. t1ist: array of times
(if array-based). tMax: maximum time used in
Fourier-transform conversions.

Correlation function from
exponential series (bosonic

or fermionic)

ExponentialBosonicEnvironment (ck_real, ck_imag,
vk_real,vk_imag) ExponentialFermionicEnvironment

(ck_plus, vk_plus, ck_minus, vk_minus)

T: temperature of the bath. combine: Boolean,
indicates whether common-frequency
compression is used (bosonic case only). mu:

Chemical potential (fermionic case only).

Table 9

Once an environment is created (see Tables 7 and 8), its correlations can then be approximated as an exponential series in a variety of ways.
This is done by the class method .approximate("type") Where "type" is a string defining the method desired, as listed in the first column of this
table. They take a variety of optional arguments to define fitting range or bounds, depending on the method used. Non-linear least squares fitting
(NLSQ), the method used in this section, might be performed on the spectral density, the power spectrum, or the correlation function, as specified
by the type strings “ps”, “sd”, and “cf”. “Arbitrary Functions” stands for the ability of approximating an arbitrary user-defined environment. “Allows
Constraints” stands for the ability to limit the range of values the parameters in Eq. (36), which is often useful when working with HEOM as it may
improve convergence. “No need of Extra Input” refers to the input that the algorithm needs to work properly: we consider a set of sampling points
as basic input, and other pieces of information required as extra input. “Optimization Convergence” refers to the fact that the approximation does
not get stuck in local minima preventing convergence, in some cases failing to provide any approximation. “Sampling Insensitive” refers to the fact
that changing the sampling points does not change the approximation. “Arbitrary Temperatures” refers to the method converging at arbitrarily low
temperatures. “Works on Noisy data” applies when the user defined spectral density comes from data that is noisy.

[v §
s £ 53 E w2 .2 5&
£8 ,F TE£ BB EE EE .3
E=] 25 S © 128 ac £a 2z =
25 25 % BEEEZ £E 8%
Method < & <O Z OES & E <= 2z Recommended when...
NLSQ X X X You have an idea about which exponents should be included
(ps.sd,cf) [66].
AAA X X You need high-accuracy in the steady-state and the spectral
density is not too structured.
Prony X X X The correlation function is noiseless and long lived.
Matsubara X X X X Doing high temperature simulations using the specific spectral
densities it is available for.
Pade X X X X The same cases as the Matsubara method. This is
recommended over Matsubara whenever available.
ESPIRA X X X Looking for a general-purpose method.
ESPRIT X X The correlation function is long lived.

Basic example. — To demonstrate how to use the HEOM solver in practice, let us consider the evolution of a qubit in a
thermal bosonic environment with the Hamiltonian

w A
H = 7062 + Eo'x + X’: wkazak + Xl:gkaz(ak + G;E) . (39)
K K
In the continuum limit, one can describe the couplings through the spectral density
(40)

J@)=7)" g8 — o).
k

Typically, bosonic HEOM solvers use either the overdamped Drude-Lorentz spectral density or the underdamped
Brownian motion spectral density. Let us for example consider the underdamped spectral density

(41)

J(©) Mo
w) = .
(w} — 0?)? + IMw?

30

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

We begin by initializing a bath, based upon the parameters in the spectral density:

env = UnderDampedEnvironment (lam=lam, gamma=gamma, T=T, wO=w0) #Create environment

bath = env.approximate("matsubara",Nk=5) #Approximate environment with Matsubara series

The env object contains the exact information about the bosonic bath, while the vath object is an approximated version
of env that is specifically designed for the HEOMSolver, which requires as input an exponential decomposition of the bath
correlation functions as described above. For this particular spectral density, Eq. (36) can be realized via the Matsubara or
Padé decompositions. These decompositions rely on a truncation parameter Ny that introduces an approximation to the
true bath dynamics by truncating the Matsubara or Padé decompositions into a finite number of exponentials. The QuTiP
implementation makes it easy to see the impact of the approximation, as it is straightforward to compute the exact and
approximated quantities that describe the bath (correlation function, spectral density and power spectrum)

env = UnderDampedEnvironment (lam=lam, gamma=gamma, T=T, wO=w0) #Exact environment
bath = env.approximate("matsubara",Nk=5) #Approximate environment
C = env.correlation_function(t) #Exact environment correlation functions

C2 = bath.correlation_function(t) #Approximate environment correlation functions

Similar notation is used for both the power spectrum and spectral density. The power spectrum can be used as quick
gateway to compare with the other available solvers. For example, we can solve the HEOM equations by using the bath
object (in a tuple, alongside which system operator q it couples to), the system Hamiltonian and the max_depth parameter
that specifies the cutoff N, of the hierarchy equations, with the HEOMSolver as follows:

-- HEOM --
solver = HEOMSolver (Hsys, (bath, Q), max_depth=9)
result_h = solver.run(rhoO, t)

Simultaneously, we can compare this to a Bloch-Redfield solution also using the bath object properties,

-- BLOCH-REDFIELD --
a_ops = [[Q, env]]
resultBR = brmesolve (Hsys, rhoO, t, a_ops=a_ops, sec_cutoff=-1)

See Fig. 10 for a comparison of the results.

Ohmic bath with exponential cutoff. — The QuTiP implementation of the HEOM allows for the simulation of more general
spectral densities: the user can create an arbitrary BosonicEnvironment from the spectral density, correlation function or
power spectrum. As the HEOM requires a decaying exponential representation of the correlation functions, we can either
fit the spectral density with one with a known analytical decomposition of its correlation function, or the correlation
functions themselves, as explained in [20,66]. Let us consider the simulation of a Ohmic bath, whose spectral density is
given by

J(w) = awexp (—|w|/w) . (42)

Because this spectral density is frequently used in the literature, a special class, OhmicEnvironment, has been added for
convenience. As mentioned, in order to use the HEOM solver, we must first choose between fitting either the correlation
function or the spectral density. The code snippet below shows how easy it is to set up simulations using these different
approaches:

-- FITTING PREDEFINED OHMIC CLASS--
w = np.linspace(0, 100, 2000) #Fitting range in frequency-domain

env_fs, _ = oh.approximate(”sd”,wlist:w, Nk=3, Nmax=3) #Fit spectral density

t = np.linspace(0, 10, 1000) #Fitting range in time-domain
env_fc, _ = oh.approximate("cf",tlist=t, Ni_max=5, Nr_max=4,

target_rmse=None, maxfev=int(1le9)) #Fit correlation functions

31

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

0.31 —— HEOMSolver 0] \ —— HEOMSolver
& mesolve mesolve
H brmesolve A ===+ brmesolve
0.2 i |
- | g02 f \
@ i T] 1!
{ @ F [{ A\
o1{ [| U .= / VA
¥V ° -0.41 i ¥
01 v
0 5 10 15 20 0 5 10 15 20
At At

Fig. 10. For the example of a standard spin-boson problem, we compare the output of the different master equation solvers available in QuTiP,
namely, the Lindblad master equation solver (mesolve()), the Bloch-Redfield equation solver (brmesolve()) and the hierarchical equations of motion
solver (HEOMSolver) for a spin coupled to a bosonic bath described by an underdamped Brownian motion spectral density. Left, (a), shows the evolution
of the qubit population for the different approaches. Notice that both brmesolve and mesolve coincide, but they differ substantially from the HEOM
result in this deeply non-Markovian regime. The right figure, (b), shows the dynamics of the coherence values. The parameters used to generate

these figures are: A =054, ' =0.1A, T =05A, Ny =5, No =6 and wg = %A.

The first output of the approximation by fitting is a BosonicEnvironment object, while the second output provides the
fit information. This is particularly useful when dealing with non-standard baths, where one often needs more exponents
to accurately describe the bath even when dealing with high temperatures, as the fit information helps one decide how
many exponents to take into consideration.

The bath obtained from the fitting can be passed to the solver to quickly obtain its dynamics

-- SOLVING DYNAMICS --
tlist = np.linspace(0, 10, 1000)
HEOM_corr_fit = HEOMSolver (Hsys, (env_fc, Q), max_depth=5)

Fig. 12 shows an example of fitting the Ohmic spectral density with exponential cut-off with a set of underdamped
Brownian motion spectral densities (sometimes called the Meier-Tannor fitting approach).

Zero temperature and the localization-delocalization phase transition. — One of the benefits of including these fitting
routines is to be able to simulate situations where the structure of the spectral density has non-trivial effects. An example
of such a situation is the localization-delocalization transition in the spin-boson model [67-70]. When the temperature
of the bath is T = 0, one expects the steady state of the system to be delocalized (o,(t — o0)) = 0. However, when
the coupling to the bath is increased the steady state goes from a completely delocalized state to what appears to be
a localized state for long-times (o,(t — o0)) # 0. To demonstrate this, we follow [69] and choose an Ohmic spectral
density with a polynomial cutoff of the form
Tow

J@)= — . (43)
2(1+(5207)
Due to this effect being present at T = 0, we fit the correlation function rather than the spectral density. Obtaining the
correlation function is straightforward once we create a BosonicEnvironment.

def J(w, alpha=1):
""" The Ohmic bath spectral density as a function
of w (and the bath parameters). """

return (np.pi/2) * w * alpha * 1 / (1+(w/wc)**2)**2

env

BosonicEnvironment.from_spectral_density(1ambda w: J(w, alpha), wMax=50, T=T)

For this example, let us consider the same system Hamiltonian as before, with wg = 0. Fig. 13 shows how by increasing
the coupling to the bath, the system goes from a delocalized state to a localized state. This is the so called spin-boson
localization-delocalization phase transition [67].

Apart from the method used above, the QuTiP environment class provides several different ways to decompose
arbitrary environments into a decaying exponential form as in Eq. (36), as needed for simulation with the HEOMSolver.

32

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

Environment Class Overview

N
Environment

©OLZ"9 Environment Class

)
=
[+

-defined e Custom

@ Bloch-Redfield @) HEOM

Environment

@ Choose Solver Simulate

1

/
@ Define Environment
a Pre-defined e Custom (Bosonic only)
* Ohmic (Bosonic) « Defined from function or array
« Drude-Lorentz (Bosonic) » Set from: Spectral density,
» Under-damped (Bosonic) power spectrum, or
 Lorentzian (Fermionic) correlation function
@ Choose Solver
0 Bloch-Redfield (weak coupling) e HEOM (exact)
* Input: « Input:
Power spectrum & Fit with}
system coupling operator an exponential series &
system coupling operator

Fig. 11. An overview of the environment class, which is now supported by the HEOM and Bloch-Redfield solvers. Details on how predefined and
custom environments can be made is provided in Tables 7 and 8, and the fitting methods that can be used to approximate the bath correlation
function for use in the HEOM solver are described in Table 9.

Table 9 provides a summary of the methods available. For details about the methods, we refer to the documentation or
Refs. [71,72]. At present, most of these methods only work for bosonic environments; however, fermionic environments
will be supported in the near future.

3.2.13. Visualization of solver results

QuTiP comes with a range of functions to visualize the results returned by its solvers. In addition to automated functions
for plotting expectation values with Matplotlib, QuTiP provides utility functions to calculate important and commonly used
representations of quantum states, including the Bloch-sphere for two-level systems and pseudo-probability functions,
such as the Wigner and Husimi functions, for harmonic systems like cavities.

In this section, we present a few examples to illustrate the utility and features of these plotting functions. Many more
examples can be found in the tutorial notebooks described in Appendix B.

For both learners and researchers, using the Bloch sphere to visualize the overlap of a qubit state with the Pauli matrices
in three-dimensional space can be useful to help understanding how the state evolves, particularly when combined with
QuTiP’s animation features. In QuTiP, a Bloch sphere is instantiated with b = Bloch(). Points can be added to it using

33

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

.21 .
0 A = Qriginal Ne=1
{ Ni=1 = = N=10
= = Ng=10 — N¢=15
i % N¢=15 3
| x
- P 501
3017 | \ j
= | \‘Y |
] \ §
] = l
: \\ |:m,_\, /-"\".\r
od ¢ w 0 r"l:";" ,’ \V4 Tr— ——
0 20 40 60 80 100 0 20 40 60 80 100

w w

Fig. 12. Approximation of the spectral density of an Ohmic Bath via fitting with three underdamped Brownian motion spectral density functions.
Importantly, when fitting spectral densities for the HEOM method, we must still expand each spectral density’s contribution to the total correlation
functions in terms of exponentials. To gain insight of the effectiveness of both the fit and the correlation function expansion, we can then use that
expansion, along with the temperature information of the bath, to reconstruct a total effective spectral density, which is what we show in this
plot. In the figure, we can see that the number N; of exponents kept per underdamped mode has an effect on the approximation of the resulting
effective bath spectral density. Ultimately one should aim to find the minimum number of exponents that make up a good approximation of the

spectral density. The parameters of the original Ohmic bath are » = 0.1, . =5,and T = 1.

1.01 (o,) =0 delocalized
] — a=0.1 N.=8
\ @=0.4 N.=8
. - =06 N.=8
0.5 \ a=0.9 N.=11
3 \. — a=12 N.=11
IS .
~ 0.0 ‘/\,-\,l:'.-—u—_——.__
-0.5

0 20 40 60 80 100 120

At

Fig. 13. This figure shows the spin-boson localization-delocalization phase transition. For the simulation, we used wy =0, o = 10A and T = 0.
The correlation function was fit with two exponents for the real part and one for the imaginary part.

coordinates, as in b.add_points([1/np.sqrt(3), 1/np.sqrt(3), 1/np.sqrt(3)]1), and the sphere plotted with b.render ().

Vectors can be added in a similar way, using b.add_vectors([0, 1, 01).

More commonly, one wants to visualize the output of solvers, which is provided in the form of state vectors or
density operators. These objects can be added to a sphere using the method b.add_states(state). The tutorial notebook
0004_qubit-dynamics, briefly summarized in Appendix B, demonstrates this feature using the example of a driven qubit,
both with and without noise, and the result is shown in Fig. 14.

Pseudo-probability functions are also commonly used to visualize data arising from continuous variable systems. In
QuTiP, such systems are truncated on finite dimensional Fock spaces, but these pseudo-probability functions can still be
used, given sufficient truncation. The Wigner function, for example, helps visualize the probability of the position and
momentum quadratures of cavities, and famously contains negative probabilities for non-classical states.

We can demonstrate the visualization of Wigner functions straightforwardly with another common example; a cavity
prepared in a “Schrédinger cat” state, i.e., a superposition ¥ = %(|a1) + |az)) of two coherent states (where N is a
normalization factor). The Wigner function, shown in Fig. 15, clearly shows the expected negative values for such a
highly non-classical state. The non-classicality is less apparent in the Husimi-Q function, also shown in Fig. 15, which
is non-negative by definition.

New in QuTiP v5 is a suite of tools to automate the animation of many of these commonly used functions. These can
be explored in the tutorial [73], and they include customized methods for the:

e Wigner function (anim_wigner and anim_wigner_sphere),
e Hinton plots (anim_hinton),
e sphere plots (anim_sphereplot),

34

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

Fig. 14. The left figure shows the Bloch sphere representation of the dynamics of a qubit undergoing unitary evolution under the Hamiltonian
H = A[cos (0) o, + sin (0) o] with 6 = 0.1x for an initially excited qubit. The middle figure shows the dynamics of the same system with added
dephasing, with a rate y, = 0.5 A/(27). The right figure shows the same model but with added relaxation at the rate y, = 0.5 A/(27).

0.12
0.08

0.04

Fig. 15. Left figure shows the Wigner function, a pseudo-probability distribution, of a cavity prepared in a Schrodinger cat state ¢ = % (Ja1) + la2)),
with @y = —2.0 — 2j and «2 = 2.0 + 2j. The right figure shows instead the Husimi-Q function for the same state.

histograms (anim_matrix_histogram),

Fock state distributions (anim_fock_distribution),

spin distributions (anim_spin_distribution),

Qubism plots (for plotting the states of many qudits, anim_qubism), and
Schmidt plots (for plotting matrix elements of a quantum state, anim_schmidt).

In addition, there is a new option (qutip.settings.colorblind_safe) to choose plotting colors from a palette of colorblind
safe colors.

3.3. Additional features in QuTiP v5

In addition to the new data layer and solver features described earlier, there are other new features in QuTiP v5, and
some of the previously existing features have received important updates. Below, we describe in detail three such new or
updated features: excitation number restricted states, which are crucial for the simulation of large composite systems, and
now have improved back-end support through a new dimensions class, the option of using the JAX auto-differentiation
functionality with the new JAX data layer, and support for the Message Passing Interface (MPI) in the parallelization of
various solvers, which enables the easy use of super-computing resources.

3.3.1. Excitation number restricted states

When modeling many interacting quantum systems, QuTiP does not by default apply any approximation apart from
truncating the individual systems’ Hilbert spaces. For example, when modeling the discrete Fock-space representation
of a quantum harmonic oscillator, we normally truncate the states at some finite number of excitations. This is clearly

35

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

demonstrated when defining the commonly used Jaynes-Cummings model from quantum optics, which describes a single
two-level atom interacting with a single-mode cavity under the rotating wave approximation:

N_cut = 2 #Number of Fock states to keep

psi0 = qt.basis(2, 0) & qt.basis(N_cut, 0) #initial state (qubit excitated)
sz = qt.sigmaz() & qt.geye(N_cut)
sm = qt.sigmam() & qt.qeye(N_cut)
a = qt.qeye(2) & qt.destroy(N_cut)

H_JC = (
0.5 * eps * sz + omega_c * a.dag() * a +
g * (a * sm.dag() + a.dag() * sm)

) #Jaynes-Cummings Hamiltonian

In this case the Hilbert space of the cavity is truncated at two Fock states, so the total number of states is four. However,
the Hamiltonian conserves the total number of excitations in the coupled system. With an initial condition containing at
most a single excitation, the double-excitation state, where the atom is excited and a photon is in the cavity, is therefore
decoupled from the dynamics. Using excitation number restricted (ENR) states, we can truncate the total Hilbert space to
exclude the double-excitation state:

N_exc = 1 #Number of total excitations in truncated system

dims = [2, N_cut] #0Original system dimensions (before ENR truncation)

psi0 = qt.enr_fock(dims, N_exc, [0, 0]) #Initial state in ENR space

sm, a = qt.enr_destroy(dims, N_exc) #operators in ENR space
sz = 2 * sm.dag() * sm - 1
H_enr (

0.5 * eps * sz + omega_c * a.dag() * a +
g * (sm.dag() * a + a.dag() * sm)

) #Jaynes-Cummings Hamiltonian

Here, N_exc=1 is the maximum number of excitations we wish to consider across the whole Hilbert space. The function
enr_destroy(dims, N_exc) returns a list of annihilation operators for each subsystem in dims which only act on a reduced
space including states with up to that total excitation number. In this example, the restricted Hilbert space is spanned by
|0, 0), |0, 1) and |1, 0). The first annihilation operator can be thought of as the operator |0, 0) (1, 0|, and the second one as
|0, 0) (0, 1|. With these constructions, we can then recreate the full Hamiltonian and dynamics of the Jaynes-Cummings
model, omitting the unimportant double occupation state.

The power of this approach lies in situations with many subsystems, where one only needs to consider a limited
number of excitations. One of the core QuTiP notebooks demonstrates this well, with a large chain of coupled Jaynes-
Cummings models [74]. But it can also be used as a powerful truncation tool in situations where the Hamiltonian is not
necessarily excitation-number conserving (see [75]).

It is important to note that since ENR states essentially compress the normal tensor structure of states and operators
onto one single reduced Hilbert space, annihilation and creation operators of different subsystems no longer commute.
Hence, care must be taken when representing operators on the ENR state space. Typically, when constructing Hamiltoni-
ans, one should order annihilation operators to the right and creation operators to the left. In addition, ENR states require
the use of a range of custom functions, like enr_fock(), and many standard utility functions in QuTiP will fail when used
with them. In v5 the addition of unique dimension objects for ENR states potentially allows these issues to be resolved,
but general compatibility is still ongoing work.

To demonstrate the utility of ENR states in a complex problem, we now consider an important example from the
literature; that of a qubit interacting with a one-dimensional waveguide [76] truncated by a mirror. Generally, this type
of problem involving time-delayed feedback is difficult to model numerically [77]. One common method to capture the
finite time delay of photons reaching the mirror and returning to the system is discretization of modes in the waveguide.
This discretization can be performed in multiple ways (see [76,78]), but the approach taken in [79,80] is particularly
amenable to using ENR states. In this approach, spatial discretization and temporal discretization of the waveguide are
done hand-in-hand, and open ends of the waveguide are truncated using a Monte Carlo-like measurement step. This
procedure still requires modeling a large number of waveguide modes, or “boxes”, which the authors of [79] were able
to achieve using an ENR-like truncation of their basis states (albeit done manually, not using QuTiP).

It is relatively straightforward to implement this procedure in QuTiP. However, following [79], we implement the time
evolution manually using a product of propagators for small discrete time steps rather than using one of the standard
QuTiP solvers directly. We refer readers to [79] for a complete description, but succinctly, one starts with the Hamiltonian

36

N. Lambert, E. Giguére, P. Menczel et al.

0.8

= With mirror, ¢ =m

With mirror, ¢ =0
Without mirror

Physics Reports 1153 (2026) 1-62

0.4 \~"

TLS Population

0
LI
",
"
Tt e asagaas

0 1 2 3 4 5
t(1/y)

Fig. 16. The dynamics of a two-level system, or qubit, interacting with a waveguide truncated at one end by a mirror. Here, we chose ¢ = 0 and
used N = 21 discrete waveguide modes, At = Ly/N, with Ly = yc = 1, with y = y; + y& so that the roundtrip time r = 1/y. The orange curve
shows the case with a mirror reflection with phase ¢ = 7, and the green dashed curve shows mirror reflection with phase ¢ = 0, both averaged
over 4000 trajectories. The red dotted curve shows the exponential decay expected from an open waveguide without mirror, and the blue dashed
line shows the expected population at the time the first emitted photon returns and interacts with the qubit again.

for the system coupled to a discrete-frequency waveguide:

N-1 2 N-1
H = gﬁz + Z Zwlfblt.abkﬂ + TJ: Z ZKa(wk) [O+bk,a +H'C-] .

ae{L,R} k=0 ae{L,R} k=0

(44)

Here, it was assumed that a mirror truncates the left side of the waveguide at some finite distance Ly/2, and the sums run
over left- and right-moving modes and over their discretized frequencies wy. The coupling terms are «;(w) = /y1/(27)
and k(@) = /yr/(27)e®e®", where y, are coupling constants, T = Ly/c is the total travel time of photons to the mirror
and back (with ¢ being the speed of light in the waveguide), and ¢ is an additional phase change incurred from the
reflection at the mirror. In other words, a photon can propagate to the left, hit the mirror, and then return as a right
propagating photon that then interacts with the system with an accumulated phase (wt + ¢).

The key step is to transform the discrete frequencies into spatially discretized modes with the discrete Fourier
transform

N—-1
B = (1/V/N)) biwexp[(+)aicxnAt] , (45)

k=0

where At = Ly/N is the time-domain sampling corresponding to the spatial discretization of the total travel length L.
The number of modes is N and, assuming linear dispersion, their frequencies are wy = 2wk/Ly (setting now ¢ = 1). Finally,
the sign in the exponent is “+” for right-moving and “—" for left-moving modes.

Under this transformation the model becomes one where photons emitted in a time interval At are then moved,
conveyor-belt-like, through these discrete modes (“boxes”) until they hit the mirror at time t/2 = NAt/2, and then
return in right-moving boxes until they again interact with the system at time 7. Photons emitted into the right side of
the waveguide never return, and can be accommodated by projecting, at each time step, the system onto the appropriate
state depending on whether a photon is observed in the right-most-box or not. As previously mentioned, this projection
technique has formal similarity with the Monte-Carlo wavefunction method.

Because the interaction between the qubit and the waveguide is assumed to be weak, and in a rotating wave
approximation, we can model the whole setup including the qubit and N modes efficiently using ENR states. In Fig. 16
we show, reproducing [79], the dynamics of the excited state population of the qubit with two different choices of phase,
¢ = 0 and ¢ = 7, demonstrating the effect of interference with the returning photons. Here we used N = 21, and only a
single excitation, which with ENR states can be presented with a very small state space of just 23 states (to be compared
to 2%2 states needed for a brute force calculation with a Fock space truncation of each mode of just 2, without ENR states).
Fig. 17 shows the occupation of the waveguide modes as a function of time, illustrating the linear transportation of the
excitation through the waveguide and the effect of the reflection phase ¢ on the waveguide populations.

3.3.2. Automatic differentiation: JAX

In an earlier section, we showed how QuTiP’s new JAX data layer can be used to run calculations on the GPU.
An additional feature of using the JAX data layer is access to automatic differentiation, or auto-differentiation. In
problems where derivatives are important, like optimization, we must often resort to numerical approximations, e.g., finite

37

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

BB,

n

.003

n 60 n 60
8o 2 g0 2

Fig. 17. Occupation of the waveguide modes BZB,., where we have increased the number of modes to 80. The time steps only extend to yt = 2, so
that in the left figure, for ¢ = 0, we can see the overall loss of population in the waveguide modes after around yt = 1, the round-trip time, while
in the right figure, for ¢ = 7, we see the saturation of the occupation.

difference, to evaluate them. When higher order derivatives are required, such approximations can be numerically costly
and inaccurate. Auto-differentiation relies on the concept that any numerical function is, at a low-level, expressible in
elementary analytical functions and operations. This can be exploited, via the chain rule, to give access to the derivative
of almost any higher-level function.

The JAX library makes it possible to conveniently and easily use auto-differentiation for a variety of applications. For
example, in the QuTiP-Qoc library we take advantage of this feature to find derivatives of a control objective with respect
to the control parameters in order to find the optimal pulse shape implementing a complex operation.

A full explanation and set of examples of automatic differentiation is beyond the scope of this work, but we will
showcase two basic examples here: one arising from the field of counting statistics, and the other relevant to Hamiltonian
control. In addition, the auto-differentiation capabilities of QuTiP-JAX will also be used in the section on the optimal
control package QuTiP-QOC.

Counting statistics of an open quantum system. — In the first example, we have an open quantum system in contact
with an environment, and there is a measurement device which keeps track of excitations flowing between system and
environment.

The measurement results of this process can be expressed in a variety of ways, but considerable insight can be gained
by thinking about the statistics of such events; the mean, variance, skewness, and so on, of the probability distribution
describing the number of excitations n that have been exchanged by a certain time t. This distribution P,(t) is called the
full counting statistics, and many common experimental observables such as current or shot noise can be extracted from
its properties.

When the interaction between a system and its environment is described by a Lindblad master equation, we can
obtain this distribution from a slightly modified definition of the density operator and said master equation. Succinctly,
one introduces the “tilted” density operator G(z,t) = Y, " p"(t), where p"(t) is the density operator of the system
conditioned on n jumps, or exchanges, occurring by time t and Tr[p"(t)] = Py(t). It obeys the tilted equation of motion,
which reads (in the case where the contact with the environment is just through a single jump operator C)

Gz, t) = —%[H(t), G(z, t)] + % [2¢°Cp(t)CT — p(t)CTC = CTCp(t)] . (46)

The dummy variable z introduced here is conventionally called a counting field. For z = 0, we obtain G(0, t) = p(t),
and Eq. (46) becomes the Lindblad equation (3). However, having access to G(z, t) gives us access to the moments of P,
through derivatives

dm
m m n

(n™)(t) = ;n Tr[p"(0)] = - Tr[G(z, O) =0 (47)
Normally, obtaining these derivatives would involve taking finite differences of Eq. (46), or writing explicit dynamic
equations of motion for the moments themselves and solving them simultaneously. With JAX and auto-differentiation
we can obtain them explicitly, as shown in the following example. We model a system with two levels, described by the
annihilation operator d. This system is coupled to two reservoirs via the rates I'; and I';. One of the couplings (governed
by the rate I';) is modified with a counting field as shown in Eq. (46); this is the channel whose counting statistics
we monitor. This simple model is often used to study the basic dynamics of charge being transported through a single

quantum dot.

38

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

ed = 1 #Quantum dot energy
Gammal = 1 #Transport rate from left reservoir

GammaR = 1 #Transport rate to right reservoir

with jax.default_device(jax.devices("gpu")[0]):
with qt.CoreOptions(default_dtype="jaxdia"):
d = qt.destroy(2)
H = ed * d.dag() * d #Dot Hamiltonian
c_op_L = jnp.sqrt(GammalL) * d.dag() #collapse operator for (input) left reservoir
c_op_R = jnp.sqrt(GammaR) * d #collapse operator for (output) right reservoir

Lo = (
qt.liouvillian(H) + qt.lindblad_dissipator(c_op_L)
- 0.5 * qt.spre(c_op_R.dag() * c_op_R)
- 0.5 * qt.spost(c_op_R.dag() * c_op_R)
) #Liouvillian without Jump term to right reservoir
#Jump term to right reservoir:
L1 = qt.sprepost(c_op_R, c_op_R.dag())
#Find steady state:
rho0 = qt.steadystate(LO + L1)

def rhoz(t, z): #returns final system state (counting field z)
L = LO + jnp.exp(z) * L1 # jump term with counting-field
tlist = jnp.linspace(0, t, 50)
result = qt.mesolve(L, rhoO, tlist, options=options)
return result.final_state.tr ()

first derivative
drhozdz = jax.jacrev(rhoz, argnums=1)
second derivative

d2rhozdz = jax.jacfwd(drhozdz, argnums=1)

The code above manually constructs the Lindbladian, with the counting field on the appropriate jump term, and then
solves the master equation using mesolve(). The solution is a function of two parameters, time and the counting field.
We can then find the first and second counting-field derivatives of the state at any time. In the long-time limit, analytical
expressions for the current I = (n(t))/t and the shot noise (variance) S = ((nz(t)) - (n(t))z) /t are well known; we
compare them to the output of the our numerical functions below. Note that JAX's auto-differentiation capabilities function
both on CPU and GPU; we used the command jax.default_device to run our calculations on a GPU with no further
modifications to the code required.

tf = 100
Itest = Gammal * GammaR / (Gammal + GammaR)
print ("Analytic current", Itest)
print ("Numerical current", drhozdz(tf, 0.) / tf)
print ("Analytical shot noise (2nd cumulant)",
Itest * (1 - 2 * GammalL * GammaR / (Gammal + GammaR) **2))
print ("Numerical shot noise (2nd cumulant)",
(d2rhozdz (tf, 0.) - drhozdz(tf, 0.)**x2) / tf)

Analytic current 0.5
Numerical current 0.4999
Analytical shot noise (2nd cumulant) 0.25

Numerical shot noise (2nd cumulant) 0.25125

Derivatives of a driven Rabi model. — To further demonstrate the utility of automatic differentiation, we show in the next
example how to take derivatives with respect to Hamiltonian parameters. We consider the driven Rabi model, which
describes the interaction of a two-level quantum system (qubit) with an external driving field. The system is described
by the time-dependent Hamiltonian
hw, h$2

H(t) = TOOZ + = cos (@) oy, (48)
where wy is the qubit energy splitting, £2 is the Rabi frequency, w is the driving frequency, and oy, are Pauli matrices. In
the presence of dissipation, the system’s evolution is governed by the Lindblad master equation, which includes energy
relaxation via collapse operators. We include the dissipation rate y with the collapse operator C = ,/yo_.

39

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

As we will discuss in the section on QuTiP-QOC, in quantum control and optimization tasks it is crucial to understand
how physical observables depend on system parameters. Automatic differentiation provides an efficient and accurate
way to compute gradients with respect to parameters such as the driving frequency w. This allows for gradient-based
optimization techniques to be applied, bypassing the inefficiencies and inaccuracies of finite differences.

In this example, we compute the gradient of the population of the excited state P.(t) = (e|p(t)|e) with respect to w.
By using JAX’s auto-differentiation tools in combination with QuTiP’s Monte Carlo solver mcsolve(), we can compute the
exact gradient of the final excited-state population with respect to the driving frequency. The example only showcases
the ability to compute the derivative; this ability could then be employed to aid with optimization tasks, such as achieving
maximum excitation of the qubit.

Below is the implementation in Python using QuTiP and JAX:

import jax

import jax.numpy as jnp
import qutip

import qutip_jax

Set JAX backend for QuTiP
qutip_jax.set_as_default ()

Define time-dependent driving function
Q@jax.jit
def driving_coeff (t, omega):

return jnp.cos(omega * t)

Define the system Hamiltonian

def setup_system(omega):
H_O = qutip.sigmaz() #Hamiltonian (time-independent)
H_1 = qutip.sigmax() #Hamiltonian (driven part, time-dependent)
H = [H_O0, [H_1, driving_coeff]] #Total Hamiltonian (QobjEvo)
return H

gamma = 0.1 # Dissipation rate
c_ops = [jnp.sqrt(gamma) * qutip.sigmam()]
psi0 = qutip.basis(2, 0) #Initial state

tlist = jnp.linspace(0.0, 10.0, 100) #time steps
e_ops = [qutip.projection(2, 1, 1)]

Objective function: simulate and return the population of the excited state at final time
def f(omega):

H = setup_system(omega)

result = qutip.mcsolve(H, psi0O, tlist, c_ops, e_ops, ntraj=100, args = {"omega": omegal)

return result.expect[0][-1]

Compute gradient of the excited-state population w.r.t. omega
grad_f = jax.grad(£f)(2.0)

3.3.3. MPI support for high performance computing

It is in the nature of the trajectory solvers mcsolve(), nm_mcsolve() and smesolve() that their simulations can be
easily parallelized. Previously, these functions accepted a map_func argument which could be set to either serial_map or
parallel_map to either simulate only one trajectory at a time, or multiple trajectories in parallel. The function parallel_map
utilizes Python’s multiprocessing module, which runs multiple processes on the same computer.

In QuTiP version 5, the map_func argument has given way to the "map" option, which may be set either to "serial" or
"parallel” in order to invoke serial_map() Or parallel_map(), Or to one of the new options "loky" or "mpi". The option
"loky" is mostly equivalent to "parallel" (but may be more performant in some situations). We will in the following
discuss the remaining option, "mpi".

The Message Passing Interface (MPI) is a standardized API facilitating parallel computations on multiple nodes of
parallel computing architectures such as high performance computing clusters. In Python, this API can be conveniently
accessed through the MPI for Python package [81-84]. When the option "mpi" is passed to one of QuTiP’s trajectory
solvers, an instance of this package’s MPIPoolExecutor class is created that QuTiP will rely on for the parallelization. It
is strongly recommended to also pass the option "num_cpus" which determines the number of worker processes to use.
The environment must therefore be configured to allow the application to use at least this number of processes, plus one
(for the parent process). The following code snippet demonstrates the use of this option with the Monte Carlo solver:

40

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

result = gt.mcsolve(
H, initial_state, tlist, collapse, ntraj=NUM_TRAJECTORIES,
options={"progress_bar": False, "map": "mpi", "num_cpus": NUM_WORKER_PROCESSES}

The exact procedure how to set up an environment in which MPI for Python can successfully interact with an MPI
implementation depends strongly on which versions of what MPI implementations and of what job schedulers are
available on the cluster. Providing a guide for this task goes beyond the scope of this text, and of the QuTiP project.
QuTiP simply assumes that the environment is set up correctly, and provides the additional option "mpi_options" through
which users may provide a dictionary with configuration options that will be passed directly to the constructor of the
MPIPoolExecutor.

We note that the MPIPoolExecutor class is based on the MPI_Comm_spawn routine, which may not be available in all
environments. For environments where it is not, MPI for Python provides a workaround where one replaces the normal
script invocation “python <FILE>" with

mpiexec -n <N> python -m mpi4dpy.futures <FILE>

The mpiexec command will then immediately spawn the requested number N of processes. MPI for Python handles the
management of these processes and behaves as if the MPIPoolExecutor had spawned the worker processes. The use of
this workaround should not necessarily harm the performance, but it means that the full number of worker processes
will live during the entire runtime of the application.

4. QuTiP’s other main packages

In QuTiP v5, the structure of the QuTiP library has changed, as we have chosen to move large, independent, features
into distinct sub-packages. Primarily, this choice was made to minimize the number of external dependencies of the core
of QuTiP, increasing its maintainability, but it also enables the development of data layer “plug-ins” like QuTiP-JAX and
other experimental ones. In this section, we will review the main sub-packages, QuTiP-QOC and QuTiP-QIP.

4.1. Optimal control: QuTiP-QOC

Quantum systems are generally sensitive to external perturbations. On the one hand, this sensitivity can be used to
perform precise measurements or operations, but on the other hand, it makes the implementation of quantum devices
difficult by introducing noise and errors. Therefore, finding the optimal control fields that achieve a desired quantum
operation under various objectives (e.g., minimum energy consumption or maximum robustness to noise) is a challenging
and important problem. In practice, there are often constraints on the control fields, such as bounds on their bandwidth,
amplitude or duration. These factors make quantum optimal control a complex and rich field of research, with diverse
methods and applications.

Among the most frequently used techniques for finding optimal control functions are the GRadient Ascent Pulse
Engineering (GRAPE) and Chopped RAndom Basis (CRAB) methods, which are both supported by the quantum optimal
control package of QuTiP v4, QuTiP-QTRL [85-87]. Along with the QuTiP v5 release comes the new family package QuTiP-
QOC [88], which includes both of these methods as well as two new ones. Further, it introduces a general control
framework to address pulse optimization in a customizable manner by providing keyword argument access to the
underlying QuTiP and SciPy functions. The new optimization techniques are the Gradient Optimization of Analytic conTrols
(GOAT) algorithm [89] and the JAX OPTimization (JOPT), which is based on the auto-differentiation [90] capabilities of
JAX and seamlessly integrates with QuTiP-JAX.

Both new techniques, GOAT and JOPT, work with analytic control functions and offer the possibility to treat the system
evolution time as a variable optimization parameter. Additionally, all pulse optimization routines now come with a global
and local parameter search, making it easier to escape local minima. See Table 10 for an overview of all supported features.

Basic example of optimal control: optimizing the Hadamard gate. — The following example shows how to use all of the
above-mentioned methods to find optimal control parameters to implement a Hadamard gate on a single qubit. In
general, the qubit might be subject to dissipation, captured in the Lindbladian formulation with the jump operator o_.
For simplicity we assume parameterized oy, o, and o, rotations for the control Hamiltonian

He(t) = cx(t)ox + Cy(t)ay + ¢ (t)oz, (49)
41

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62
where ¢(t), ¢,(t) and ¢,(t) are independent control functions. Furthermore, we model a constant drift Hamiltonian

1
Hq = E(a)az + Soy) (50)
with associated energy splitting @ and tunneling rate 8. The amplitude damping rate for the collapse operator C = ,/yo_
is denoted y. The total time evolution of the qubit is therefore assumed to have the form

i 1
p(t) = _%[Hd + He(). p(O1 + 5 [2Cp()CT = p()CTC = CTCp(t)] - (51)

By default, in the case of open system state transfer or map synthesis (as in this example), the optimization will
minimize the trace distance to the target state or channel. In the case of closed system state transfer or gate synthesis
objectives, it will minimize the overlap with the target vector or gate. Even though not explicitly shown in the following
example, all algorithms can be run with multiple objectives (list of qoc.0Objective instances), where each objective can
be supplied with an additional weight parameter.

import qutip_qoc as qoc

objective
initial = qt.qeye(2) # identity
target = qt.gates.hadamard_transform()

energy splitting, tunneling, amplitude damping
omega, delta, gamma = 0.1, 1.0, 0.1
sx, sy, sz = qt.sigmax(), qt.sigmay(), qt.sigmaz()

Hc = [sx, sy, sz] # control operator
Hc = [qt.liouvillian(H) for H in Hcl

Hd = 1 / 2 * (omega * sz + delta * sx) # drift term
Hd = qt.liouvillian(H=Hd, c_ops=[np.sqrt(gamma) * gt.sigmam()])

4.1.1. The GRAPE algorithm

The GRAPE algorithm, initially designed for nuclear magnetic resonance (NMR) pulse sequences, has applications
in various physical systems, including superconducting qubits, and can be used to optimize noisy quantum devices
in QuTiP [19,86,91]. By minimizing an infidelity loss function that measures how close the final state or unitary
transformation is to the desired target, the algorithm optimizes evenly spaced piecewise constant pulse amplitudes. The
random or educated initial guess control pulse is updated iteratively according to the derivative of the loss function.

combined operator list
H = [Hd, Hc[0], Hc[1], Hc[2]]

pulse time interval

times = np.linspace(0, np.pi/2, 100)

run the optimization
res_grape = qoc.optimize_pulses(
objectives=qoc.0Objective (initial, H, target),
control_parameters={
"ctrl_x": {
"guess" : np.sin(times),
"bounds": [-1, 1]

},

"ctrl_y": {
"guess" : np.cos(times),
"bounds": [-1, 1]

},

"ctrl_z": {
"guess" : np.tanh(times),
"bounds": [-1, 1]

}

},

tlist=times,

algorithm_kwargs={
"alg": "GRAPE",
"fid_err_targ": 0.01

42

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

Table 10
Support for parameterized analytic control functions, local and global parameter search, variable evolution time and
multi-objective optimization in the QuTiP v4 (QuTiP-QTRL) and v5 (QuTiP-QOC) packages.

Analytic Local Global Time Multi-objective
GRAPE No v4+ v5 No V5
CRAB v4+ v4+ v5 No v5
GOAT v5 v5 v5 v5 v5
JOPT v5 v5 v5 v5 v5

GRAPE concurrently updates the pulse amplitudes by calculating the derivatives using the discretized unitary forward
and backward evolution operators. This approach bears similarities with the Krotov method that is also available as
a QuTiP affiliated package, but instead updates the control intervals sequentially [92]. The QuTiP native Hamiltonian
formulation makes it easy to define even multiple objectives in a common fashion for low effort comparisons with the
Krotov library [92,93]. The GRAPE algorithm is capable of accommodating various constraints on control fields, such as
amplitude limits and offsets, for a range of default initial pulses (e.g., Gaussian, square, etc.), while striving to achieve the
desired target infidelity, specified by the fid_err_targ keyword.

4.1.2. The CRAB algorithm

The CRAB algorithm has been applied to a range of challenging problems, like phase transitions in many-body systems,
implementations of gates on transmon qubits, and entanglement generation for communication [94,95]. It is based on the
idea of expanding the control fields in a random basis and optimizing the expansion coefficients &. This has the advantage
of using analytical control functions c(a, t) on a continuous time interval, and is by default a Fourier expansion. Instead
of calculating the gradient with respect to individual time slots, the search space is reduced to the function parameters.
Typically, these parameters have one order of magnitude fewer dimensions and can efficiently be calculated through
direct search algorithms (like Nelder—-Mead). The basis function is only expanded for some finite number of summands
and the initial basis coefficients are usually picked at random.

The implementation in QuTiP-QOC also provides the possibility to balance multiple objectives in order to account for,
e.g., variations in the control fields. Even though the optimization is performed over the function basis parameters, it is
possible to initialize the overall pulse shape in the same way as with the GRAPE algorithm. On top of the original QuTiP-
QTRL implementation, the method can now also exploit domain knowledge by providing an initial frequency (enabled
through the fix_frequency keyword) and amplitudes for the Fourier expansion.

cO0 * sin(c2*t) + cl1 * cos(c2*t) + ...

n_params = 3 # adjust in steps of 3

run the optimization
res_crab = qoc.optimize_pulses(
objectives=qoc.0Objective (initial, H, target),
control_parameters={
"etrl_x": {

"guess" : [1 for _ in range(n_params)],
"bounds": [(-1, 1)] * n_params

},

"etrl_y": {
"guess" : [1 for _ in range(n_params)],
"bounds": [(-1, 1)] * n_params

},

"ectrl_z": {
"guess" : [1 for _ in range(n_params)],
"bounds": [(-1, 1)] * n_params

¥
3,
tlist=times,
algorithm_kwargs={

"alg": "CRAB",
"fid_err_targ": 0.01,
"fix_frequency": False

4.1.3. The GOAT algorithm

Similar to CRAB, this method also works with analytical control functions. By constructing a coupled system of
equations of motion, the derivative of the (time ordered) evolution operator with respect to the control parameters can be
calculated after numerical forward integration. In unconstrained settings, GOAT was found to outperform the previously
described methods in terms of convergence and fidelity achievement [96]. Our QuTiP implementation allows for arbitrary
control functions provided together with their respective derivatives in a common Python manner.

43

N. Lambert, E. Giguére, P. Menczel et al.

Physics Reports 1153 (2026) 1-62

Pulse amplitude c,(t)

5 075 S 06
& S
0.50
S 3 0.4
2 2
£ 0.25 =
g £ 0.2
© @©
g 0-00 2
9 2 0.0
&-0.25 a
-0.2
~0.50
00 05 10 15 0.0

Time t

0.5

0.5 1.0 1.5
Time t

Fig. 18. Optimized pulse amplitudes implementing the Hadamard operator for a single qubit system with the control Hamiltonian (49). The
amplitudes were obtained through the various algorithms provided by the quriP-qoc package. For this simple example, all algorithms quickly find
pulse shapes with the requested fidelity (greater than 0.99). Note that the GOAT and JOPT curves end early because optimization was also performed

over the final time.

def sin(t, c):
return c[0] * np.sin(c[1] * t)

def grad_sin(t, c, idx):
if idx == : # w.r.t. cO
return np.sin(c[1] * t)
if idx == 1: # w.r.t. cl
return c[0] * np.cos(c[1] * t) * t
if idx == 2: # w.r.t. time
return c[0] * np.cos(c[1] * t) * c[1]

For even faster convergence, it extends the original algorithm with the option to optimize controls with respect to the
overall time evolution, which can be enabled by specifying the additional time keyword argument.

similar to qutip.QobjEvo

H = [Hd] + [[hc, sin, {"grad": grad_sin}] for hc in Hc]

ctrl_parameters = {
id: {
"guess": [1, 0], # cO and c1
"bounds": [(-1, 1), (0, 2*np.pi)l
} for id in [’x’, ’y’, ’2’]
¥

magic kwrd to treat time as optimization variable
ctrl_parameters["__time__"] = {

"guess": times[len(times) // 2],

"bounds": [times[0], times([-1]],

run the optimization
res_goat = qoc.optimize_pulses/(
objectives=qoc.0Objective (initial, H, target),
control_parameters=ctrl_parameters,
tlist=times,
algorithm_kwargs={
"alg": "GOAT",
"fid_err_targ": 0.01,

4.1.4. Integration with QuTiP-JAX

As discussed earlier, QuTiP’s new JAX backend provides state-of-the-art automatic differentiation capabilities. Using the
chain rule of differentiation for elementary computer operations, automatic differentiation is almost as exact as symbolic

44

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

differentiation and is most commonly used in machine learning [97]. Recently it has also found its way into quantum
optimal control [98]. Through the JAX backend, these capabilities can be used with the new control framework. As with
QuTiP’'s GOAT implementation, any analytically defined control function can be handed to the algorithm. However, in
this method, JAX automatic differentiation abilities take care of calculating the derivative throughout the whole system
evolution. Therefore the user does not have to provide any derivatives manually. In the previous example, this simply
means to swap the control functions with their just-in-time compiled version:

import jax

Qjax.jit
def sin_x (t, c, #**kwargs):

return c[0] * jax.numpy.sin(c[1] * t)
same for sin_y and sin_z ...
H = [Hd] + [[Hc[0], sin_x], [Hc[1]l, sin_yl, [Hc[2], sin_z]]

res_jopt = qoc.optimize_pulses(
objectives=qoc.0Objective (initial, H, target),
control_parameters=ctrl_parameters,
tlist=times,
algorithm_kwargs={
"alg": "JOPT",
"fid_err_targ": 0.01,

After running the global and local optimization, one can compare the results obtained by the various algorithms
through a qoc.Result object, which provides common optimization metrics along with the optimized_controls (see
Fig. 18).

4.2. Quantum circuits: QuTiP-QIP

Quantum circuits are a common conceptual and visual tool to represent and manipulate algorithms running on
quantum computers. QuTiP supports this kind of language with the QuTiP-QIP [99] family package, which offers several
unique features. First, like the rest of QuTiP, it is one of the most popular fully independent and academically supported
packages for its task. Second, it allows seamless integration of the unitaries representing a given circuit with the rest of
QuTiP via the Qobj class. Finally, it integrates with both QuTiP-QTRL (soon QuTiP-QOC) and the various QuTiP open-system
solvers to allow for pulse-level simulation of quantum circuits, including realistic noise.

The full scope of this package was recently demonstrated in [19]. In this section, we first show the newly added circuit
visualization feature, then walk through a new example to demonstrate some of the unique features of QuTiP-QIP. To tie
into the earlier examples in this paper, and the general theme of QuTiP of modeling open quantum system dynamics, our
aim is to show: (i) How to construct a simple quantum circuit which simulates the dynamics of a given Hamiltonian (in
this case, Eq. (1)). (ii) How to simulate the dynamics of an open system, i.e., a Lindblad equation, using ancillas to induce
the correct noisy dynamics, Eq. (3). (iii) How to then run both simulations on a hardware backend, termed a processor,
that simulates itself the intrinsic noisy dynamics of a given quantum hardware implementation.

4.2.1. Circuit visualization

In parallel to the QuTiP v5 release, a recent release of QuTiP-QIP introduced enhanced circuit visualization capabilities
by extending the list of available renderers to include also Matplotlib-based and text-based renderers in addition to the
previously available LaTeX renderer. This update makes circuit visualization more accessible and reduces (heavy and
complex) reliance on external LaTeX dependencies. The Matplotlib renderer is particularly useful for generating visually
appealing and highly customizable quantum circuits, while the text-based renderer is designed for quick, lightweight
checks, ideal for development in command line interfaces or in environments with limited dependencies. Support for the
LaTeX renderer remains available.

Additionally, the visualization of quantum circuits has been significantly streamlined through the use of the draw API.
For instance, a quantum circuit can be defined as demonstrated below.

qc = QubitCircuit (2, num_cbits=1) #Circuit consists of two qubits + one classical register
qc.add_gate ("H", 0) #Add a Hadamard on qubit ’0’

qc.add_gate("H", 1) #Add a Hadamard on qubit ’1’

qc.add_gate ("CNOT", 1, 0) #Add a CNOT between 0 and 1

qc.add_measurement ("M", targets=[0], classical_store=0) #Add a measurement, store result in classical register

45

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

TeXRenderer TextRenderer MatRenderer
r | —
ql :— H }—| oNOT oo q1
| - | ‘T_J
@ i | i
q0 :— H | 1 { M| do
| I—
— A " : c

Fig. 19. The figure illustrates the visual output of three different quantum circuit renderers available in QuTiP-QIP: TeXRenderer (utilizes LaTeX for
rendering), TextRenderer (utilizes ASCII characters for lightweight visualization), and MatRenderer (leverages Matplotlib for customizable graphics).

Once defined, the circuit can be rendered using one of the following commands, depending on the desired output
format as illustrated in Fig. 19.

qc.draw("latex")
qc.draw ("text")
qc.draw("matplotlib")

Both new renderers utilize a layer-based system for gate placement, optimizing circuit compactness and enhancing
the clarity of parallel computation steps during simulation. Customization options range from basic changes such as
renaming gates or adjusting colors and titles to advanced features like modifying gate shapes, alignment, and spacing.
The MatRenderer provides customization flexibility at both the gate and circuit levels, enabling users to tailor circuit
representations to meet specific requirements.

4.2.2. Simulating Hamiltonian dynamics

In quantum simulation, one standard approach to simulating the dynamics of a quantum system is reducing the
propagation of the Schrédinger equation into a discrete set of short time steps [100,101] (though analog simulations
are also important in certain situations [102]). The propagator in one time step is approximated by “Trotterization”,

W(tf) — e_i(HA+HB)tf~(//(0) ~ [e—iHAdte—iHBdt]d 1//(0) i (52)

for sufficiently small time steps dt = tr/d, which are repeated d times (higher-order approximations can also be
performed, which allows for larger time steps).

The Hamiltonians H4 and Hg here should be chosen such that the individual unitaries e~489 can be easily mapped
to basic quantum gates in the circuit model. When the simulated system can be represented as spin operators with
some limited range of interactions, this mapping to qubits is straightforward [103,104], as with our simple example
below. Alternatively, in a more general context, if the problem is represented as an abstract set of N states, and N x N
operators, various mappings are possible [105-108]. A common approach is to map the N states to the states described
by n = log,(N) qubits. The N x N operators can then be mapped to strings of Pauli operators, for which efficient gate-
mappings are known [103]. However, the number of strings required will be exponential in n for dense problems, so some
degree of sparsity or structure, and efficient access to matrix elements, is needed.

The example of two interacting qubits defined in Eq. (1) can be expressed in the above formula, Eq. (52), with

Hy = Gziaz“) + %202(2) and (53)
Hp = ga)E])a)Ez) . (54)

In this case there is no difficulty with mapping the Hilbert space of the problem (two-level systems) being simulated to
the circuit model (qubits). In more complex cases, various mappings exist for e.g. fermions, bosons or large spins, but
they are not yet natively supported in QuTiP-QIP.

To implement (52), we simply need to construct a circuit consisting of two qubits and a set of gates Ay =
exp[—iqaz(])dt/Z], A = exp[—iezaz(z)dt/Z] and B = exp[—iga,ﬁ”a,fz)dt] acting repeatedly (d times) on a given initial
condition. The gates one can use to represent these operations depend on the operations available for the underlying
hardware. We use the predefined gates Rz defining a rotation around the Z axis, and a combination of Hadamard gate and
ZX rotation RZX gates to implement the XX interaction unitary, as these gates are native operations on the superconducting
qubits processor SCQubits.

To define this circuit and its constituent gates we use the QubitCircuit class:

trotter_simulation = QubitCircuit(2) #Create circuit consisting of 2 qubits

46

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

q1 —

qdo —

Fig. 20. Circuit model of a single Trotterization step of (53) and (54).

Here we initialize a circuit with just two qubits. We can also choose to have classical bits as well, which can be used
to store measurements and implement feedback. These are not needed here, however. We now add the gates which
implement the Trotterization of (53) for a small time step dt = t;/d

trotter_simulation.add_gate ("RZ", targets=[0], arg_value=(epsilonl * dt))
trotter_simulation.add_gate("RZ", targets=[1], arg_value=(epsilon2 * dt))

These Rz gates rotate both qubits around the Z axis by an angle given by arg_value. The interaction between the two
qubits, (54), can then be implemented with the gates:

trotter_simulation.add_gate("H", targets=[0]) #Hadamard on qubit 0
trotter_simulation.add_gate ("RZX", targets=[0, 1], arg_value=g * dt * 2) #RZX gate
trotter_simulation.add_gate("H", targets=[0]) #Hadamard on qubit 0

A full list of available gates can be found in the official documentation for QuTiP-QIP. In addition, custom gates can be
easily implemented. One important point however is that, currently, not all gates can be decomposed into a set of native
gates for a given hardware processor, as we will show below. Work is ongoing to have a gate decomposition graph for
all predefined gates. In addition, a feature we will not demonstrate here is the simulation of measurements. Instead, we
will just take the final output of the circuit and manipulate it as a standard quantum object.

We can directly visualize the circuit we just constructed, see Fig. 20. To construct a larger circuit to simulate more
time steps we can keep appending the same circuit we defined above, d times, until we simulate the full integration time
tr. Alternatively, we can repeatedly run the above circuit, saving the output and using it as the input for the same circuit
in the next iteration. For our purposes, the latter option is easier, as it allows us to save the state at all time steps:

Evaluate multiple iteration of a circuit
result_circ = init_state

state_trotter_circ = [init_state]

for dd in range(num_steps):
result_circ = trotter_simulation.run(state=result_circ) #Use previous result as start of next step

state_trotter_circ.append(result_circ)

The result of repeating this procedure d times (equivalent to the numsteps parameter in the code example) is shown
in Fig. 21. We compare the result to the exact integration solution and to the result from using a processor backend,
which includes noise and pulse-level simulation. Note that we chose the two qubits to be off-resonant to demonstrate
the effect of finite Trotterization error (which would be negligible on resonance). We can thus see the trade-off between
the Trotterization error and hardware errors: longer time steps in the simulation increase the Trotterization error but
reduce the number of gates and, hence, the influence of hardware errors.

To run a given quantum circuit on a processor, we simply initialize the desired processor and then load the circuit into
it. For example, here we use the superconducting circuit processor:

processor = SCQubits(num_qubits=2, t1=2e5, t2=2e5) #Superconducting cicuits processor
processor.load_circuit(trotter_simulation) #Load circuit into processor

Since SCQubit are modelled as qutrit, we need three-level systems here for initial condition:
init_state = tensor(basis(3, 0), basis(3, 1))

Similar to the direct simulation of the circuit, we define an initial condition and then run the processor with
processor.run_state(init_state). The output is now a Result object from the QuTiP solver being used. In this case, the
solver is mesolve() as we specified finite T; and T, times when initiating the processor. The processor itself is defined
internally by a Hamiltonian, available control operations and pulse shapes, T; and T, times and so on. It assumes a set
of default parameters, but these can be overwritten upon initialization (as with T; and T, above). We can see the pulse
shapes used in the solver by calling processor.plot_pulses(). An example of the compiled control pulse of the circuit
in Fig. 20 is given in Fig. 22. A discussion of the full potential of processors, and how to implement custom ones, can be
found in [19] and the package documentation.

47

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

— Ideal
=¢=Trotter circuit
== noisy hardware

(o)

0 5 10 15 20
Time

Fig. 21. Results for the simulation of the closed system dynamics of the system described with the Hamiltonian (1) for g = 0.3 €3, €; = 0.7 €5. The
circuit result, in blue, is the result of repeating the circuit described in Fig. 20 d = t;/dt times, with tf = 20¢, ', dt = 2¢, ' and d = 10. In the
processor simulation using a superconducting qubit backend, we set T, = T, = 2 x 10° € ! to see the influence of finite hardware noise on the
simulation while still obtaining a reasonable approximation to the full simulation.

% g o
% g—

ZX01 -

leO

Fig. 22. Pulse-level decomposition of the circuit in Fig. 20 as used by the superconducting qubits processor.

4.2.3. Simulating master equation dynamics

We now demonstrate a more complex example where we can take advantage of QuTiP-QIP’s easy integration with
standard Qobj objects. This example shows that, interestingly, noise-free unitary quantum circuits can be used to simulate
open noisy quantum systems. This type of simulation has a range of interesting applications, like dissipative state
engineering [109-113], dissipative error correction [114], and modeling many-body dissipative systems.

To realize the Lindblad master equation described in (3), we implement a recent proposal [115,116], which employs
a single ancilla, and measurements/resets, for each Lindblad collapse operator. At t = 0, we prepare the dilated state

[¥n(t = 0)) = [¥(t = 0)) ® |0)*" (55)

for the K total ancillas. At every time step dt, the system interacts with the ancillas for a time +/dt, after which the ancillas
are reset again to their ground-state. The unitary operation part of the interaction between system (i) and its associated
ancilla for collapse operator (k) is given by

U(V/dt) = exp [—i A A aff)a(_l())«/a] . (56)

The unitary U(+/dt) has a rather complex decomposition in terms of native gates for the backends used here, so instead
we impose another Trotter approximation and write

i .
U(+/dt) = exp |:—2(a)fl)cr,5k) + ay(')cry(k))\/ykdt]
i, i
A exp [_ZUB)U;E’()\/det] exp I:—zaé’)ay(k) ykdti| , (57)
and then we decompose

i . .
exp [—20,5”0,5") ykdt] = H Upzx(+/y1edt) HO (58)

48

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

as

q —

--@

Fig. 23. Circuit model of a single Trotterization step of (53) and (54), followed by the interaction with two ancillas implementing (56).
0 M A'_A_

o
% A

:
:

b

<
:

zx% A\ M\
leO

zx12 TN

Zx21

zx* M\ M\
zX32

Fig. 24. Pulse-level decomposition of the circuit in Fig. 23 as used by the spin-chain processor.

as before, and

i AN T 7\ @) b4
exp [—Zay('>ay<’<) ykdt] —ud (5) Ul <_§> Unox(v/74d) Ugx (—5) Ul (5) . (59)
After these operations have been applied, we trace out the ancillas, project them to their ground states, and use the

new state

[(de)) = Tre[l¥n(de)) (¥n(dt)l] ® 10) (0] (60)

for the next time step. We show the circuit which implements a single time step in Fig. 23. Note that to avoid unnecessary
two-qubit operations between non-neighboring states, we use the middle two qubits as the system qubits and the first
and last one as ancillas. The compiled pulse is shown in Fig. 24, which is much longer than the first one. Therefore, the
evolution will suffer more from the decoherence of the physical qubits. In Fig. 25, we show the results of a standard
mesolve () simulation, the Trotterized circuit simulation with ancillas, and the circuit simulation running on the same
spin-chain backend as before.

5. QuTiP’s community

QuTiP is an open source package that operates like an open-door community, with an active mailing list giving feedback
on common problems and applications. Community contributions to the QuTiP package are welcome, and only limited
by the free time of the largely voluntary development and administration team.

49

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

1.0 — |deal
' Trotter circuit

\‘ = noisy hardware

0.5
EbN

~ 0.0
-0.5

0 5 10 15 20

Time (1/e5)

Fig. 25. Results for the quantum simulation of open-system dynamics defined by the Hamiltonian (1). The Hamiltonian is the same as used in Fig.
21. The Lindblad noise, acting on both qubits with rate y = 0.03 €5, can be simulated by an additional interaction with two ancillas. The magnitude
of this interaction corresponds to simulating a time step +/dt for every full “coherent” time step dt (see [115,116]), then tracing out the ancillas
and resetting them to their ground states. The Trotter circuit (orange) reproduces quite well the results of mesolve (blue). The green curve, showing
the circuit run on a superconducting qubits processor, exhibits significantly more error than in Fig. 21 because of the much longer circuit depth.

5.1. The admin team and governance

The administration team, which reviews code, makes contributions, and decides on current and future development
plans, is made up of members from across the globe. Regular volunteers or students who show a perspicacity are
nominated by current administrators to join the team, which gives them authority to join monthly administration
meetings and approve pull requests. Other administration members are sometimes technical staff, directly hired by one
of the academic institutions supporting QuTiP. Particular note should be given to support from JST Moonshot program,
which supported several staff members in RIKEN, and Institute Quantique, which supported Eric Giguére in Sherbrooke.

The admin team relies on a governance body with five board members whose role is to resolve any serious conflicts
and to give objective feedback on any large-scale decisions about QuTiP’s future. Finally, we note that two members of the
current administration team are students who graduated from Google Summer of Code’s projects and decided to continue
contributing to QuTiP voluntarily. Such students have been a vital part of the development of QuTiP v5, keeping QuTiP
alive and flourishing.

5.2. RIKEN

As described in the introduction, QuTiP was originally developed in the group of Franco Nori in RIKEN. While the
development team has since become global, RIKEN still serves as a focus for continued development by research scientists,
technical staff, and intern students. Several recent important contributions of intern students include expansion of the
HEOM method, the new QuTiP-QOC library, a general environment class, and an experimental tensor network data layer. In
addition, members of the RIKEN team serve as mentors on GSOC projects and assist in the development and management
of new features across QuTiP.

5.3. NumFOCUS and Google Summer of code

QuTiP is affiliated to two non-profit organizations that provide support for development in various ways: NumFOCUS
and the Unitary Foundation (the latter will be discussed in a later section). NumFOCUS has a long history of supporting
open source projects, and primarily acts as an umbrella organization which enables QuTiP to apply to Google Summer
of Code as a mentoring organization. It also supports development with periodic mini-grants. Their support for Google
Summer of Code has been very useful, and enabled the QuTiP developers to mentor 2-3 students every year for the last
few years.

5.4. The Unitary Foundation

QuTiP is also affiliated with the Unitary Foundation, which focuses on the support and development of open source
software for quantum computing applications. The Unitary Foundation has supported QuTiP development through micro-
grants and Hackathon bounties, both of which have helped nascent volunteers to contribute to QuTiP and substantially
raised the visibility of QuTiP in this community. In addition, they operate a large Discord server through which people
can interface with the QuTiP admin team.

50

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62
5.5. Packages that use QuTiP

One of the most successful ingredients of QuTiP has been the flexibility and intuitive features of the qutip.Qobj class.
Based on its use for the representation of quantum operators and quantum states, several other packages have formed a
constellation of libraries. To date, 733 GitHub repositories and 83 released packages depend on QuTiP. A small selection
of popular examples are:

e Krotov [92]: As mentioned in the optimal control section, this QuTiP-affiliated library provides access to the Krotov
method for optimizing control of quantum systems.

e SCqubits [117]: A powerful and popular library for computing the energy spectra of common superconducting qubit
designs, that interfaces with QuTiP to perform time-evolution simulations.

e Sqcircuit [118]: An alternative to SCqubits that also models superconducting circuits, but has the added feature of
using an efficient choice of basis to perform diagonalization of complex circuits.

e Dynamigs [30]: An open systems solver deeply integrated with JAX. While lacking some of QuTiP’s features, it has a
robust and focused integration with the JAX library, and is compatible with QuTiP Qobj.

e Qibo [119], a hardware focused middleware API that supports a QuTiP backend.

Several commercially developed packages use QuTiP as well, including:

e NVIDIA CUDA-Q [120], which, for example, uses it for Bloch sphere visualization.
e Qiskit [10], which also uses QuTiP’s Bloch-sphere visualization and its parallel map function.
e Pasqal’s Pulser package [121] which supports a QuTiP backend.

6. Future development

Historically, QuTiP has been mostly used as an academic tool for research and education. It allows quick implementa-
tion and experimentation with theoretical models of closed and open quantum systems, and has made research both faster
and more reproducible for thousands of scientists around the world. With QuTiP v5, the focus has been on maintaining
that utility while also allowing for future expansion in terms of state-of-the-art performance and use of high-performance
distributed computing. Future development plans will continue in this regard.

In addition, recent developments in the field of quantum simulation software suggest another goal for QuTiP’s future
direction. QuTiP, and in particular QuTiP-QIP, remain one of the few academically independent platforms for simulating
quantum circuits and quantum computers in general. Other powerful platforms with comparable feature sets have arisen
from industrial efforts. Nevertheless, there is still an important role for QuTiP with its promise to be continually maintained
and developed, and fully open-source.

In this regard, there is a strong incentive to improve QuTiP’s support both for simulating quantum computing systems
and for supporting cloud computing services as backends. In the future, QuTiP could serve as a system-agnostic and
independent platform for development, with which one could access and use many hardware platforms (both industrial
and academic). Initial efforts to this end came from backend support added by IonQ developers for their hardware, and
we wish to continue in this direction by supporting as many hardware platforms as possible. On the question of academic
independence, we note that some members of the administration team, present and alumni, have moved into industrial
positions with companies like IBM, Zurich Instruments, and others. However, a robust board of mentors is in place to
prevent bias.

In addition to these two goals, state-of-the-art performance and cloud-hardware support, we must also consider issues
of maintainability. In that aspect, our strategy of QuTiP-family subpackages is working well, and we will continue with it
in the future. However, there is an inevitability that some features that are not part of QuTiP-core may become abandoned
or not well maintained, simply due to administrators or developers moving onto new tasks and fluctuations in academic
funding support. Finding solutions to this ongoing problem, common to many open-source software packages, is one of
the important future goals of the QuTiP administration team.

In addition to these broad strategic goals, in our recent workshop the following features were discussed for future
releases:

6.1. QuTiP’s role in the quantum computing revolution

Hamiltonian library. — A library of common models (Hamiltonians, master equations, and so on) for common physical
systems people encounter would be useful both for academics and educators. At first, we plan to include them within
the QuTiP core as Python functions and then consider later how they might be exported in a common format for use in
other libraries.

Simulating QPUs. — There are broad plans to extend the list of “processors”, or quantum processing units, available to
QuTiP-QIP to include a larger range of physical systems [122-125]. This extension would tie in with the Hamiltonian
library specified above, and the longer-term goal to support physical hardware QPUs through cloud API services.

51

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

QIP tutorials. — In addition to predefined processors or QPUs, we plan to build a set of tutorials for QuTiP-QIP, showing
explicitly how to create models of different types of quantum processors.

6.2. QuTiP’s role in fundamental scientific research

More and faster solvers. — We want to always support the state of the art in open quantum systems, identifying and
incorporating methods which provide utility for a broad range of problems, and overall continually work to make
all solvers faster and more efficient. New solvers currently being developed or considered are: methods to iteratively
construct equations of motions of operators (sometimes called a “cumulant expansion”), and a non-Markovian master
equation expansion based on time-convolutionless truncation of bath properties [50] (confusingly, sometimes also called
a “cumulant expansion”). Additionally, currently under active development is a new Floquet master equation solver which
features flexible levels of truncation of Floquet frequencies, a Dyson-expansion based solver for efficient simulation of
quickly driven systems [126], and new Krylov-space solvers.

GPU support, high-performance computing, and qutip-cuquantum. — Multiprocessing in QuTiP currently takes three forms:

o Support for GPU through custom data layers like JAX and the in-development cuQuantum data layer (see below),

e parallel use of multiple cores on a single CPU or node, instantiated either by explicitly using functions like
parallel_map() or implicitly in natural multi-task problems like the stochastic and Monte Carlo solvers, and

e the use of multiple cores by underlying libraries and methods such as Intel-MKL, which can help speed up ODE
solving and finding steady states.

Historically, we also supported OpenMP, but this support was removed with version 5 due to lack of use and heavy
maintenance. Recently, support for MPI was added, extending point (ii) above to multiple nodes.

A very recent project in development (in collaboration with NVIDIA) is support for multiple GPUs with the
qutip-cuquantum data layer [127], which takes advantage of the powerful cuQuantum library from NVIDIA them-
selves [128]. By incorporating a symbolic representation of the problem being modeled, dynamics simulations using both
mesolve and sesolve can be distributed across multiple GPUs, allowing for both speed-ups and larger scale simulations
over that available via single-core CPU and single-GPU simulations. Expanding support for such symbolic representations
across more parts of QuTiP is a planned core feature of our next release, QuTiP v6.

Tensor-network data layer. — Approximate or exact truncation methods (e.g., matrix product states (MPS), matrix product
operators (MPOs), and tensor networks (TN)) that take advantage of the algebraic structure of quantum operators for
specific problems (like one-dimensional spin chains) have proven very successfully in more efficiently analyzing and
simulating certain many-body problems (both closed and open) numerically. Motivated by this progress in the community,
early in the development of version 5, we began exploring a tensor-network data layer, which exists currently in a very
early alpha form. However, QuTiP has historically focused on providing solvers for arbitrary systems and its low-level data
layer operates on two dimensional matrices. The data layer is therefore not the correct level for describing these algebraic
structures. Work is underway to extend QuTiP with a symbolic operator description (akin to the early version being used in
qutip-cuquantum), which will allow these richer structures to be captured and for solvers to use this to efficiently compute
solutions for operators which have additional structure. Importantly, it will also enable easier integration with existing
packages for these methods, as well as developing our own implementations. We expect this to be a useful extension not
only for TN, MPS and MPOs but also for structuring problems for GPUs and HPCs where matching the problem description
to the hardware provides significant performance benefits.

QuTiP beyond python. — QuTiP is, and always will be, a Python orientated package. However, the popularity of QuTiP
means that it has led to the creation of QuTiP-like packages in other languages. One of these, written in Julia, Quan-
tumToolbox.jl [129], was recently incorporated into the QuTiP organization (and includes a recent Julia version of the
HEOM solver [65]). Being developed by Alberto Mercurio, Yi-Te Huang, and others, it aims to offer syntax compatibility
with QuTiP, and support the powerful distributed computing capabilities Julia is offering. In addition, an older and
alternative Julia package inspired by QuTiP is QuantumOptics.jl [130], which complements the efforts being made in
QuantumToolbox.jl.

7. Conclusion

QuTiP remains to be one of the most popular academically independent and fully open-source toolkits for simulating
open quantum systems. Its wide adoption by industry, education, and research has also helped support its continued
development, by attracting young and enthusiastic contributors. The release of v5 of QuTiP, particularly the substantial
changes to the data layer, enables QuTiP to remain relevant as the open-source quantum software community continues
to grow. The examples we provided in this work, demonstrating unique applications of both old and new solvers and
features of QuTiP, also serve an important purpose in exemplifying unique and new ways QuTiP can be used by the
community.

52

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62
CRediT authorship contribution statement

Neill Lambert: Writing - original draft, Supervision, Software, Project administration, Funding acquisition, Concep-
tualization. Eric Giguére: Writing - review & editing, Supervision, Software, Project administration, Conceptualization.
Paul Menczel: Writing - original draft, Supervision, Project administration, Software, Conceptualization . Boxi Li: Writing
- review & editing, Software, Project administration, Conceptualization. Patrick Hopf: Writing - original draft, Software.
Gerardo Suarez: Writing - original draft, Software. Marc Gali: Writing - original draft, Software. Jake Lishman: Writing -
review & editing, Software, Conceptualization. Rushiraj Gadhvi: Writing - review & editing, Software. Rochisha Agarwal:
Writing - review & editing, Software. Asier Galicia: Writing - review & editing, Project administration, Software. Nathan
Shammah: Supervision, Software, Project administration, Funding acquisition, Conceptualization . Paul Nation: Writing
- review & editing, Software, Conceptualization. J.R. Johansson: Supervision, Software, Conceptualization. Shahnawaz
Ahmed: Software, Supervision, Conceptualization. Simon Cross: Writing - review & editing, Supervision, Software,
Project administration, Conceptualization. Alexander Pitchford: Writing - review & editing, Supervision, Software, Project
administration, Conceptualization. Franco Nori: Writing - review & editing, Supervision, Funding acquisition, Project
administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

Over the past five years, the development of QuTiP has greatly benefited from the generous support of the Japan Science
and Technology Agency (JST) Moonshot R&D Grant Number JPMJMS2061, and we thank them for their kind support. We
wish to thank a large range of past contributors to QuTiP, particularly Arne Grismo, Cassandra Granade, Michael H. Goerz,
Anubhav Vardhan, Saumya Biswas, Sidhant Saraogi, Asad Raza, Felipe Bivort Haiek, Purva Thakre, Christian Staufenbiel,
Xavier Spronken, Shreyas Pradhan, Trent Fridey, Yuji Tamakoshi and Alessia Parato. We also thank Mana Lambert for
designing and contributing Fig. 1 and Fig. 11, Gavin Crowder for feedback on the waveguide example in Section 3.3.1, the
NVIDIA cuQuantum team for support in the development of the qutip-cuquantum data layer, and Maximilian Meyer-
Molleringhof for assistance in adapting the code examples into tutorial notebooks. F.N. is also supported in part by:
the Japan Science and Technology Agency (JST) [via the CREST Quantum Frontiers program Grant No. JPMJCR24I2, the
Quantum Leap Flagship Program (Q-LEAP)], and the Office of Naval Research (ONR) Global (via Grant No. N62909-23-1-
2074). N.L. is supported by the RIKEN Incentive Research Program and by MEXT KAKENHI Grant Numbers JP24H00816,
JP24H00820. P.M. performed this work as an International Research Fellow of the Japan Society for the Promotion of
Science (JSPS). M.G. is supported by the New Energy and Industrial Technology Development Organization (NEDO),
project code JPNP16007. E.G. is supported by the Ministére de I'Economie, de I'Innovation et de I'Energie du Québec.
We also acknowledge the Information Systems Division, RIKEN, for the use of their facilities. N.S. is partly supported
by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Accelerated
Research in Quantum Computing under Award Number DE-SC0025336, National Science Foundation POSE Phase II, award
number 2303643, by the European Union via project QLASS (“Quantum Glass-based Photonic Integrated Circuits” - Grant
Agreement No. 101135876).

Appendix A. Tables

Here we provide tables summarizing various useful methods, functions, and concepts in QuTiP.
Appendix B. Summary of tutorials and example notebooks

QuTiP has historically provided a large array of tutorials and example notebooks [132,133]. With v5, initiated through
the GSoC project of Christian Staufenbiel, these notebooks are going through an overhaul, to unify and modernize them,
make them more compact with a switch to markdown, and include rudimentary tests of their functionality (which also
acts as an additional check of QuTiP itself).

Here we provide a detailed summary of some of the updated notebooks for v5, including an abridged version of their
content which is useful and complementary to the main text.

B.1. Time-evolution tutorials

This set of tutorials can be seen as the core demonstration of QuTiP’s functionality and features [132].

53

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

B.1.1. 0001_gobjevo

In this tutorial we demonstrate the flexibility and power of the Qobjevo class for representing time-dependent objects.
This has largely been covered earlier in this work, but it is interesting to show some examples from that notebook. To
recap, when solvers in QuTiP are provided with a time dependent operator, typically in terms of a tuple containing the
quantum object and a representation of the time-dependence as a function, string, or array, internally this is converted
into Qobjevo, which compiles and optimizes the representation.

These objects can also be created and compiled manually with lists of objects and time-dependent coefficients [40,
[A1, £11, [A2, £2], ...] where A are quantum objects and f; either functions, strings, or arrays. Another flexible option
is to use the coefficient function to wrap the time-dependent function, string, or array, and then multiply it with a Qobj
as needed.

def cos_t(t):
return np.cos(t)

function_form = (n + (a + ad) * qutip.coefficient(cos_t))

String format representations should represent a valid Python function or expression that returns a complex number.
So for the above example, instead one could call string_form = QuTiP.QobjEvo([n, [a + ad, "cos(t)"11). Any NumPy or
scipy.special functions can be referred to with np or spe.

Finally, if one is using data to represent the time dependence of a given object one may pass an array of data points,
alongside a list of time steps at which those points are specified. Intermediate times will be interpolated with cubic
splines.

Table A.11
Methods of the qobj Class in QuTiP. We have omitted optional parameters for some of the methods; they can be found in the full online reference
together with more detailed explanations.

Method/Attribute Description

copy O Create a copy of the Qobj.

conj() Complex conjugate.

contract () Contract subspaces of the tensor structure that are 1D.
cosm() Matrix cosine of the Qobj.

dag() Adjoint (Hermitian conjugate) of the Qobj.

data_as(format, copy) Retrieve the data in the desired format.

diag() Diagonal elements of the Qobj.

dnorm() Diamond norm of the Qobj.

dual_chan() Obtain the dual channel of the Qobj.

eigenenergies () Eigenvalues of the Qobj.

eigenstates() Eigenvalues and eigenstates of the Qobj.

groundstate () Ground state eigenvalue and eigenvector.

expm() Matrix exponential of the Qobj.

full() Dense array representation of the Qobj data.

inv() Matrix inverse of the Qobj.

logm() Matrix logarithm of the Qobj.

matrix_element (bra, ket) Matrix element between the specified bra and ket vectors.
norm() Norm of the Qobj.

overlap(other) Overlap between two Qobjs.

permute (order) Reorder the tensor structure of a composite Qobj.

proj () Projector for a ket or bra vector.

ptrace(sel) Partial trace over the specified subsystems.

purity () Purity of the Qobj.

sinm() Matrix sine of the Qobj.

sqrtm() Matrix square root of the Qobj.

tidyup(atol) Remove small elements (with tolerance atol) from the Qobj.
tr() Trace of the Qobj.

trans () Transpose of the Qobj.

transform(input) Perform basis transformation defined by the input matrix.
trunc_neg() Remove negative eigenvalues.

unit () Normalizes the Qobj.

data The QuTiP-internal data-layer object storing the data.
dtype The data-layer type used for storing the data.

dims, shape, type Basic information about the Qobj, explained in the main text.
isherm, isunitary Indicates if the Qobj is a Hermitian/unitary operator.
isket, isbra, isoper, Indicates if the Qobj has the respective type.

issuper, isoperket, isoperbra

iscp, ishp, istp, iscptp Indicates if the Qobj is a map that is completely positive (CP)/hermiticity-preserving

(HP)/trace-preserving(TP)/CP and TP.

54

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

Table A.12
Table of commonly used functions for creating and manipulating superoperators.
Function Description
lindblad_dissipator(a,b) Generates the Lindblad dissipator for the given Lindblad operators,
Dla, blp = apb’ — 3atbp — 5 pa’b.
liouvillian(H, c_ops) Generates the Liouvillian superoperator for a given Hamiltonian and list of collapse operators.
spre(A) Generates the superoperator corresponding to left multiplication by the operator A.
spost (A) Generates the superoperator corresponding to right multiplication by the operator A.
sprepost (4,B) Generates the superoperator for left and right multiplication by operators A and B respectively.
operator_to_vector (op) Vectorizes an operator.
vector_to_operator (vec) Reshapes a vectorized operator back to its original matrix form.
Table A.13
Summary of entropy and entanglement measure functions in QuTiP.
Function Description
entropy_vn(rho, base) Computes the von Neumann entropy of a density matrix, defined as

S(p) = —Tr(p log, p),
where b is the logarithmic base (default is e).

entropy_linear (rho) Computes the linear entropy of a density matrix, given by
Sup) =1-Tr(p?).
entropy_mutual (rho, selA, selB) Calculates the quantum mutual information for a bipartite density matrix p, given by

I(A: B) = S(pa) + S(p8) — S(pas)
where p, and pg are the reduced density matrices. The parameters sela and selB specify the
subspaces A and B.

entropy_conditional (rho, selB) Computes the conditional entropy for a bipartite density matrix:
S(A|B) = S(pas) — S(pB)
where pyp is the bipartite density matrix, and pp is the reduced density matrix of B. The
parameter selB specifies the subspace B.

entropy_relative(rho, sigma, base) Calculates the relative entropy between two density matrices p and o, defined as
S(pllo) = Tr(p log, p) — Tr(p log, o),
where b is the logarithmic base (default is e). This quantifies the “distance” between the
quantum states p and o.

concurrence (rho) Calculates the concurrence of a two-qubit density matrix p, an entanglement measure:

Cp) = max (0, /i = VA2 = V/is = Va)

where }; are the eigenvalues of R = p(oy ® 0y)p*(0y ® oy).

negativity(rho, subsys) Computes the negativity of a bipartite quantum state p, defined as
o™ — 1
N(p) = -
where p'8 is the partial transpose and | - ||; the trace norm. The parameter subsys specifies

for which subsystem to compute the negativity.

Table A.14
Summary of commonly used metric functions in QuTiP.
Function Description
fidelity(rho, sigma) Computes the fidelity between two quantum states p and o, defined as

Fip.0) =7 |

Fidelity measures how close two quantum states are to each other.

tracedist(rho, sigma) Computes the trace distance between two density matrices p and o:
1

Du(p,0) = Sllp — o,

where || - ||; denotes the trace norm (sum of singular values).
hilbert_dist(A, B) Computes the Hilbert-Schmidt distance between two operators A and B:

Dus(A, B) = |/Tr[(A — B)T(A — B)].

This measures the “distance” between operators in Hilbert space.

bures_dist(rho, sigma) Calculates the Bures distance between two quantum states p and o:
Dgures(0, 0) = /2 (1 = F(p, o)),

where F(p, o) is the fidelity between p and o.

(continued on next page)

55

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

Table A.14 (continued).
Function Description

bures_angle(rho, sigma) Computes the Bures angle between two quantum states p and o:
Opures(p, o) = arccos (F(p, 0)) .
This provides an angular measure of the distance between states.

average_gate_fidelity(E, F) Computes the average gate fidelity between two quantum channels £ and F, using the definition from
[131].
process_fidelity(E, F) Calculates the process fidelity between two quantum channels £ and F, via their Choi matrices xg and

xF. Since QuTiP v5, this function uses the definition from [131].

dnorm(E, F) Computes the diamond norm distance between two channels £ and F:
le = Fllo = sup (e @ T)(p) — (F @ I)(P)ll1,
P

where the supremum is over all density matrices p on an extended Hilbert space, and I is the identity

map.

tlist = np.linspace(0, 10, 101)

values = np.cos(tlist)

array_form = (n + (a + ad) * qutip.coefficient(values, tlist=tlist))

Once defined, Qobevo functions can be called to return the value of the Qobj at that time, as well as manipulated with
the same mathematical rules as a Qobj and mixed with scalars, Qobj and other QobjEvo objects.

Even more powerfully, QobjEvo functions can take arguments that can be quite complex, including objects or values
that are derived from the solver they are used in. This allows one to directly implement both state and expectation-value
based feedback. More details are provided in the tutorial, but, for example, an argument that will capture the state of the
system during the evolution with mesolve can be instantiated with StateFeedback(), and that state can then be used to
inform the behavior of a function that is used in mesolve itself:

args = {"state": qutip.MESolver.StateFeedback(default=qutip.fock_dm(4, 2))}
def print_args(t, state):

print (f"’state’:\n{statel}")

return t + state.norm()

td_args = qutip.QobjEvo([Id, print_args], args=args)

B.1.2. 0002_larmor-precession

This tutorial demonstrates basic usage of the sesolve () function with an example of Larmor precession. It demonstrates
how to use in-built plotting functions to show the state of a spin on a Bloch sphere Fig. B.26. It then demonstrates how
to solve the dynamics of such a spin in the presence of a magnetic field in the Z direction, and obtain expectation value
of observables, with sesolve, and plot the state on the Bloch sphere.

The tutorial then demonstrates how to use Qobjevo to represent time-dependent magnetic fields, and use those with
sesolve.

B.1.3. 0003_qubit-dynamics

This tutorial shows how to model the dynamics of a qubit under the influence of noise using mesolve. Like the previous
example, it also demonstrates how to visualize these dynamics with a Bloch sphere. This is shown in Fig. 14 where unitary,
dephasing, and relaxation evolution are shown. For dephasing, the dynamics moves towards the center of the Bloch sphere,
while for relaxation, it moves to a point within the volume.

B.1.4. 0004_rabi-oscillations

This tutorial shows how to simulate the dynamics of the Rabi model, one of the most fundamental models of quantum
optics, which describes a single two-level atom interacting with a single cavity mode of light. The Hamiltonian for this
system is,

1
H = ho.ata + Ehwaaz + hg(a® + a)o_ +04) (B.1)
which can be simplified, for weak coupling, with the rotating-wave approximation:

1
Hrwa = hocata + Ehwaaz +hg(a'o_ +aoy), (B.2)

56

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

1)

Fig. B.26. Left shows the Bloch sphere representation of the state psi = (2.0 * basis(2, 0) + basis(2, 1)).unit(), while right shows the state at
various times while precessing under a constant magnetic field.

here w. and w, are the frequencies of the cavity and atom, while g is the interaction strength between light and matter.
This tutorial shows how to solve the dynamics of this model using mesolve when both the light and matter are in contact
with a noisy environment. The steps needed to do so are similar to other examples we have already described in this
paper, so we will not linger on this example, but just mention that the example in this tutorial is only valid for weak-
intermediate light-matter coupling, and in the ultra-strong light-matter regime, when g approaches w. and wg, one should
instead employ brmesolve, as described earlier for the interacting qubit example. This is explained in more detail in tutorial
“0009_brmesolve_cavity-QED".

B.1.5. 0005_spin-chain

This tutorial explains how to solve the dynamics of a Heisenberg spin-chain using mesolve. In construction it is similar
to the example for the 1D Ising model we used as a benchmark in the main text, but the Hamiltonian for the spin chain
instead takes the form,

1 N 1 N—-1
H= =23 hox(n) = 5 3 U oumon(n + 1)+ Moy (moy(n + 1) + JPoz(moz(n + 1], (B.3)
n n

where h,, is the magnetic field felt by spin n while j,((") describes the nearest neighbor interaction strength in direction k
for spin n. The example also includes dephasing on these spins, and demonstrates how to visualize dynamics of such a
complex system.

B.1.6. 0006_photon_birth_death

This tutorial is an example of how to use mcsolve, the Monte-Carlo solver, to simulate experimental results that
appeared in [134]. The tutorial demonstrates how to reproduce Fig. 3 from this work, by simulating the creation and
annihilation of photons inside an cavity, due to a thermal environment, when the cavity is initially prepared in the
single-photon Fock state.

The model is very simple, consisting of the Hamiltonian H = a’a, the aforementioned initial Fock state, and collapse
operators describing the creation/annihilation of photons are appropriately weighted rates: C; = /«k(1+ (n)) a and
C, = /x(n) af, where « is the bare rate and n is the thermal Bose-Einstein factor which depends on the temperature and
the cavity frequency. The tutorial then demonstrates how to solve this example using mcsolve and look at the dynamics
for different numbers of trajectories.

B.1.7. 0007_brmesolve_tls

This tutorial demonstrates the basic usage of the Bloch-Redfield solver brmesolve for a single two-level system (TLS).
This covers the same ground as our earlier explanation, but does mention one important feature we did not cover in
the main paper; the calculation of steady states. The function R, ekets = bloch_redfield_tensor (H, [a_op]) returns the
Bloch-Redfield tensor, i.e., the right-hand-side of the equation of motion in superoperator form. This can then be used with
the steadystate (R) function to find directly the steady-state solution of the Bloch-Redfield equation one is simulating.

57

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

B.1.8. 0008_brmesolve_time_dependence

This tutorial explains how to use both time-dependent Hamiltonians and time-dependent dissipation with the Bloch-
Redfield solver. The functionality is equivalent to using time-dependence in other solvers. One important point this tutorial
covers is that with the Bloch-Redfield solver, the coupling to the environment must be a Hermitian operator. Complex
time-dependence can be included by splitting the operator into two parts, so that something like

A = f(t)a+f(t)*a’ (B.4)

can be implemented with a_ops = [([[a, ’exp(1j*t)’], [a.dag(), ’exp(—1j*t)?]], f’kappa * (w >= 0)’)], under the
restriction that the second function is the complex conjugate of the first one, and the second operator is the Hermitian
conjugate of the first operator.

B.1.9. 0009_brmesolve_cavity-QED

In this tutorial, we present another example of when the Bloch-Redfield solver can be useful for constructing a more
physically accurate master equation than relying on local dissipation alone. The logic is similar to that in the main text
of this work for the two-interacting qubit example, but instead, in this tutorial, concentrates on the Rabi model from
quantum optics (described already in 0004_rabi-oscillations).

The tutorial demonstrates that for weak coupling between light and matter, including cavity dissipation using
brmesolve, or including local dissipation on the cavity alone via mesolve, produce similar results. However, for strong
coupling, the local Lindblad model can fail to produce physical results (in essence, we can see continuous emission out
of the cavity without any input; a perpetuum mobile).

B.1.10. 0010_brmesolve_phonon_interaction
This tutorial, contributed by K. A. Fischer from Stanford University, is a complex example of how to use brmesolve to
simulate the phonon-assisted initialization of a quantum dot, reproducing the results of an existing article [135].

B.1.11. 0011_floquet_solver
This tutorial describes the basic use of the Floquet Schrodinger and Master equation solvers, with an example akin to
the description we used in the main text.

B.1.12. 0012_floquet_formalism

This tutorial describes some of the underpinnings of the Schrodinger and Master equation Floquet solvers in terms of
the FloquetBasis and quasi-energies. It is a very useful starting point for users who wish to use these objects for more
niche applications.

B.1.13. 0013_nonmarkovian_monte_carlo

This tutorial expands upon the use of the nm_mcsolve() method for unraveling, in terms of Monte-Carlo trajectories, a
master equation with non-Markovian rates (i.e., rates which are time-dependent and sometimes negative).

As explained in the section on this solver, this is quite a nuanced method, and this tutorial provides several practical
examples to help users get accustomed to it: (1) a two-level atom in a photonic band-gap and (2) a two-qubit Redfield
equation derived from when two qubits interact with a common bath. It also describes how to employ the MPI feature
in qutip to solve these trajectories in parallel on a super-computing cluster.

B.1.14. 0015_smesolve-heterodyne

This example shows how to use smesolve to simulate heterodyne measurement of a cavity. In the earlier section on
smesolve a similar example for homodyne measurement was given. The key difference here is the measurement gives
information on both quadratures of the system being measured. The tutorial presents two approaches to defining and
solving this type of problem.

B.1.15. 0016_smesolve-inefficient-detection

This example demonstrates further utility of smesolve for modeling an important example from Wiseman and Milburn,
Quantum measurement and control, section. 4.8.1. In this example, a lossy cavity is monitored with an inefficient
photodetector. This means the system undergoes evolution with two noise channels, one where photons are successfully
detected, and one where they are not. This is easily formulated as a Monte-Carlo master equation for use with mcsolve.
Furthermore, if this inefficient detection is used as part of a homodyne detection protocol, this can also be formulated as
a stochastic master equation for use with smesolve.

B.1.16. 0016_smesolve-jc-photocurrent

This example generalizes the previous so that the system being monitored includes an atom interacting with a
cavity, as described by the Jaynes—Cummings model. The output of the cavity is imperfectly detecting with an inefficient
photodetector, which is again simulated with mcsolve.

58

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

B.1.17. 0018_measures-trajectories-cats-kerr

In this example, contributed by Fabrizio Minganti, reproduces published results in [136-138]. It is an extremely detailed
example of modeling a nonlinear Kerr resonator undergoing parametric two-photon driving. It demonstrates that how
the cavity is measured, either via photon counting (with mcsolve) or homodyne detection (with smesolve), effects ones
ability to understand the nature of the cavity state.

B.1.18. 0019_optomechanical-steadystate

This tutorial serves to demonstrate the varying steady-state solvers in QuTiP using an archetypical example from
optomechanics. As well as showing the physics of optomechanics systems, and how the steady-state of an oscillator
can be inspected for unphysical results, it demonstrates how the different methods and solvers in steadystate() can be
invoked.

B.1.19. 0020_homodyned-Jaynes—Cummings-emission

This example, contributed by K. A. Fisher and A. V. Domingues (reproducing results from [139]), demonstrates how to
obtain photonic correlation functions of a Jaynes-Cummings systems, with the purpose of probing the lowest-lying states
as an effective two-level system. It also shows how to obtain second-order correlation functions from mesolve() manually
(instead of using utility functions).

B.1.20. 0021_quasi-steadystate-driven-system

This notebook demonstrates the different ways steady-state information of periodically driven dissipative quantum
systems can be calculated. In particular, it demonstrates how properties of the periodically oscillating steady-state,
averaged over one period, can be obtained with either propagator_steadystate() Or steadystate_floquet().

B.2. Lectures

The set of tutorials are a series of Lectures from Robert Johansson detailing use of QuTiP, from basics to complex
applications. These were originally written for a taught invited course at Chalmers University in Sweden for an early
version of QuTiP. They have been updated and fixed to function with both QuTiP v4 and v5, and have proven to be a
valuable for students and researchers everywhere.

B.3. Quantum circuits and pulse-level-circuit-simulation

These two sets of tutorials detail use of QuTiP-QIP, from basic circuit simulations to complex pulse-level noise models.
They include basic examples, like a simple circuit implementing CNOT and Toffoli gates and a tutorial on how to export
and import openqasm circuits, and more complex examples of quantum algorithms like the Quantum Fourier transform
and the Deutsch-Josza algorithm.
B.4. Visualization

QuTiP includes many visualization tools for common ways to present a quantum state, like the Bloch sphere and
the Wigner Function. This set of tutorials demonstrates much of this functionality, alongside demonstrations of built-in
animation functions, process tomography functions, and more.

B.5. HEOM: Hierarchical equations of motion

The HEOM tutorials demonstrate how to use QuTiP’s hierarchical equations of motion solver for both fermionic and
bosonic baths. These examples have been explained in detail in our recent publication [20].

B.6. Miscellaneous

This repository is a place to include demonstrations of new QuTiP functionality, like the JAX backend, and more complex
physical examples.

B.7. QuTiP-notebooks

This older repository [133] contains many more examples and tutorials that have not yet been ported to v5. However,
they remain an important resource, and overtime we hope to have all relevant notebooks updated and included in the
official qutip-tutorials repository.

59

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

References

[1]
[2]
3]
[4]

5

[6]

[7]
[8]
[9]
[10]

[11]
[12]

[13]
[14]
[15]
[16]

[17]
[18]
[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]
[27]
[28]
[29]
[30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]
[45]

[46]
[47]

[48]
[49]
[50]

[51]
[52]

[53]
[54]

C.R. Harris, KJ. Millman, S.J. van der Walt, et al., Array programming with NumPy, Nature 585 (7825) (2020) 357.

C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, Kwant: a software package for quantum transport, New J. Phys. 16 (6) (2014) 063065.
P. Giannozzi, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens.
Matter. 21 (39) (2009) 395502.

R.T. McGibbon, K.A. Beauchamp, M.P. Harrigan, C. Klein, J.M. Swails, C.X. Hernandez, C.R. Schwantes, L.-P. Wang, T.J. Lane, V.S. Pande, Mdtraj:
A modern open library for the analysis of molecular dynamics trajectories, Biophys. J. 109 (8) (2015) 1528-1532.

The Astropy Collaboration, et al., The astropy project: Sustaining and growing a community-oriented open-source project and the latest major
release (v5.0) of the core package, Astrophys. J. 935 (2) (2022) 167.

W. Zeng, B. Johnson, R. Smith, N. Rubin, M. Reagor, C. Ryan, C. Rigetti, First quantum computers need smart software, Nat. News 549 (7671)
(2017) 149.
J. Dargan, The quantum insider: Top 35 open source quantum computing tools, 2024.

D.S. Steiger, T. Haner, M. Troyer, ProjectQ: an open source software framework for quantum computing, Quantum 2 (2018) 49.
JR. McClean, et al., OpenFermion: the electronic structure package for quantum computers, Quantum Sci. Technol. 5 (3) (2020) 034014.

A. Javadi-Abhari, M. Treinish, K. Krsulich, CJ. Wood,]. Lishman, J. Gacon, S. Martiel, P.D. Nation, L.S. Bishop, A.W. Cross, B.R. Johnson, J.M.
Gambetta, Quantum computing with Qiskit, 2024, arXiv:2405.08810 [Quant-Ph].
J.R. Johansson, P.D. Nation, F. Nori, Qutip: an open-source python framework for the dynamics of open quantum systems, Comput. Phys.
Comm. 183 (8) (2012) 1760.
J.R. Johansson, P.D. Nation, F. Nori, QuTiP 2: A python framework for the dynamics of open quantum systems, Comput. Phys. Comm. 184 (4)
(2013) 1234,

S.M. Tan, The quantum optics toolbox for MATLAB, 2002.

H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, 2002.

D.A. Lidar, Lecture notes on the theory of open quantum systems, 2019, arXiv:1902.00967 [Quant-Ph].

P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,]. Bright, et al., SciPy
1.0: fundamental algorithms for scientific computing in Python, Nat. Methods 17 (3) (2020) 261.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, K. Smith, Cython: The best of both worlds, Comput. Sci. Eng. 13 (2) (2011) 31.
].D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9 (3) (2007) 90.

B. Li, S. Ahmed, S. Saraogi, N. Lambert, F. Nori, A. Pitchford, N. Shammah, Pulse-level noisy quantum circuits with QuTiP, Quantum 6 (2022)
630.

N. Lambert, T. Raheja, S. Cross, P. Menczel, S. Ahmed, A. Pitchford, D. Burgarth, F. Nori, QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics, Phys. Rev.
Res. 5 (1) (2023).

N. Shammah, S. Ahmed, N. Lambert, S. De Liberato, F. Nori, Open quantum systems with local and collective incoherent processes: Efficient
numerical simulations using permutational invariance, Phys. Rev. A 98 (6) (2018) 063815.

Google Summer of Code, https://summerofcode.withgoogle.com/.

https://github.com/qgrad/qgrad.

https://github.com/qutip/qutip-jax.
J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,]. VanderPlas, S. Wanderman-Milne, Q. Zhang,
JAX: composable transformations of Python+NumPy programs, 2018.

https://github.com/qutip/qutip-cupy.

https://github.com/qutip/qutip-tensorflow.

https://github.com/qutip/qutip-tensornetwork.

https://data-apis.org/array-api/latest.

P. Guilmin, R. Gautier, A. Bocquet, E. Genois, Dynamigs: an open-source Python library for GPU-accelerated and differentiable simulation of
quantum systems, 2024.

https://github.com/qutip/qutip-paper-v5-examples.

X.-Z. Luo,].-G. Liu, P. Zhang, L. Wang, Yao.jl: Extensible, efficient framework for quantum algorithm design, Quantum 4 (2020) 341.

P.D. Nation, Steady-state solution methods for open quantum optical systems, 2015, arXiv:1504.06768 [Quant-Ph].
J. Dalibard, Y. Castin, K. Mglmer, Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68 (1992) 580-583.

C. Gneiting, A. Koottandavida, A.V. Rozhkov, F. Nori, Unraveling the topology of dissipative quantum systems, Phys. Rev. Res. 4 (2022) 023036.
C. Gneiting, A.V. Rozhkov, F. Nori, Jump-time unraveling of Markovian open quantum systems, Phys. Rev. A 104 (2021) 062212.

R. Dum, P. Zoller, H. Ritsch, Monte Carlo simulation of the atomic master equation for spontaneous emission, Phys. Rev. A 45 (1992) 4879-4887.
K. Mglmer, Y. Castin, J. Dalibard, Monte Carlo wave-function method in quantum optics, J. Opt. Soc. Am. B 10 (3) (1993) 524-538.

M. Radaelli, G.T. Landi, F.C. Binder, Gillespie algorithm for quantum jump trajectories, Phys. Rev. A 110 (2024) 062212.

H.-P. Breuer, Genuine quantum trajectories for non-Markovian processes, Phys. Rev. A 70 (1) (2004) 012106.
J. Piilo, S. Maniscalco, K. Hirkonen, K.-A. Suominen, Non-Markovian quantum jumps, Phys. Rev. Lett. 100 (18) (2008) 180402.

B.I.C. Donvil, P. Muratore-Ginanneschi, On the Unraveling of open quantum dynamics, Open Syst. Inf. Dyn. (2023).

H.-P. Breuer, B. Kappler, F. Petruccione, Stochastic wave-function method for non-Markovian quantum master equations, Phys. Rev. A 59 (2)
(1999) 1633-1643.

M.R. Hush, L. Lesanovsky, J.P. Garrahan, Generic map from non-Lindblad to Lindblad master equations, Phys. Rev. A 91 (3) (2015) 032113.
P. Menczel, K. Funo, M. Cirio, N. Lambert, F. Nori, Non-Hermitian pseudomodes for strongly coupled open quantum systems: Unravelings,
correlations, and thermodynamics, Phys. Rev. Res. 6 (2024) 033237.

B. Donvil, P. Muratore-Ginanneschi, Quantum trajectory framework for general time-local master equations, Nat Commun 13 (1) (2022) 4140.
B. Donvil, P. Muratore-Ginanneschi, Unraveling-paired dynamical maps recover the input of quantum channels, New J. Phys. 25 (5) (2023)
053031.

D. Davidovi¢, Completely positive, simple, and possibly highly accurate approximation of the redfield equation, Quantum 4 (2020) 326.

C. Gneiting, Disorder-dressed quantum evolution, Phys. Rev. B 101 (21) (2020) 214203.

P. Groszkowski, A. Seif,]. Koch, A.A. Clerk, Simple master equations for describing driven systems subject to classical non-Markovian noise,
Quantum 7 (2023) 972.

G. Floquet, Sur les équations différentielles linéaires a coefficients périodiques, Ann. Sci. de L'Ecole Norm. Supérieure 2e série, 12 (1883)
47-88.
J.H. Shirley, Solution of the Schrédinger equation with a Hamiltonian periodic in time, Phys. Rev. 138 (1965) B979-B987.

M. Grifoni, P. Hinggi, Driven quantum tunneling, Phys. Rep. 304 (5) (1998) 229-354.

C. Creffield, Location of crossings in the Floquet spectrum of a driven two-level system, Phys. Rev. B 67 (2003) 165301.

60

http://refhub.elsevier.com/S0370-1573(25)00270-4/sb1
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb2
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb3
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb3
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb3
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb4
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb4
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb4
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb5
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb5
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb5
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb6
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb6
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb6
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb7
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb8
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb9
http://dx.arXiv:2405.08810
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb11
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb11
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb11
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb12
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb12
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb12
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb13
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb14
http://dx.arXiv:1902.00967
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb16
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb16
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb16
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb17
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb18
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb19
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb19
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb19
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb20
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb20
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb20
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb20
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb20
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb21
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb21
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb21
https://summerofcode.withgoogle.com/
https://github.com/qgrad/qgrad
https://github.com/qutip/qutip-jax
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb25
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb25
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb25
https://github.com/qutip/qutip-cupy
https://github.com/qutip/qutip-tensorflow
https://github.com/qutip/qutip-tensornetwork
https://data-apis.org/array-api/latest
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb30
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb30
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb30
https://github.com/qutip/qutip-paper-v5-examples
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb32
http://dx.arXiv:1504.06768
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb34
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb35
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb36
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb37
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb38
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb39
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb40
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb41
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb42
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb43
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb43
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb43
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb44
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb45
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb45
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb45
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb46
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb47
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb47
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb47
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb48
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb49
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb50
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb50
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb50
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb51
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb51
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb51
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb52
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb53
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb54

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

[55]
[56]

[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]

[68]
[69]

[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]

[81]
[82]

[83]
[84]
[85]
[86]
[87]
[88]
[89]

[90]
[91]

[92]

[93]
[94]

[95]
[96]
[97]

[98]

F. Clawson, E.B. Flagg, Floquet-Lindblad master equation approach to open quantum system dynamics, 2024, arXiv:2410.18046 [Quant-Ph].
Y. Tanimura, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM), J. Chem. Phys. 153 (2)
(2020) 020901.

Y. Tanimura, R. Kubo, Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath, J. Phys. Soc. Japan 58
(1) (1989) 101-114.

M. Cygorek, E.M. Gauger, ACE: A general-purpose non-Markovian open quantum systems simulation toolkit based on process tensors, J. Chem.
Phys. 161 (7) (2024) 074111.

M. Cirio, N. Lambert, P. Liang, P.-C. Kuo, Y.-N. Chen, P. Menczel, K. Funo, F. Nori, Pseudofermion method for the exact description of fermionic
environments: From single-molecule electronics to the Kondo resonance, Phys. Rev. Res. 5 (2023) 033011.

P.-C. Kuo, N. Lambert, M. Cirio, Y.-T. Huang, F. Nori, Y.-N. Chen, Kondo QED: The Kondo effect and photon trapping in a two-impurity Anderson
model ultrastrongly coupled to light, Phys. Rev. Res. 5 (2023) 043177.

H. Rahman, U. Kleinekathofer, Chebyshev hierarchical equations of motion for systems with arbitrary spectral densities and temperatures, J.
Chem. Phys. 150 (24) (2019) 244104.

A. Ishizaki, G.R. Fleming, Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature, PNAS 106
(41) (2009) 17255-17260.

R. Hartle, G. Cohen, D.R. Reichman, AJ. Millis, Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through
interacting quantum dots: A hierarchical quantum master equation approach, Phys. Rev. B 88 (2013) 235426.

S. Wenderoth, J. Bitge, R. Hartle, Sharp peaks in the conductance of a double quantum dot and a quantum-dot spin valve at high temperatures:
A hierarchical quantum master equation approach, Phys. Rev. B 94 (2016) 121303.

Y.-T. Huang, P.-C. Kuo, N. Lambert, M. Cirio, S. Cross, S.-L. Yang, F. Nori, Y.-N. Chen, An efficient Julia framework for hierarchical equations of
motion in open quantum systems, Commun. Phys. 6 (1) (2023) 313.

N. Lambert, S. Ahmed, M. Cirio, F. Nori, Modelling the ultra-strongly coupled spin-boson model with unphysical modes, Nat. Commun. 10 (1)
(2019) 3721.

M. Xu, Y. Yan, Q. Shi, J. Ankerhold, J.T. Stockburger, Taming quantum noise for efficient low temperature simulations of open quantum systems,
Phys. Rev. Lett. 129 (23) (2022) 230601.

S. Wenderoth, H.-P. Breuer, M. Thoss, Non-Markovian effects in the spin-boson model at zero temperature, Phys. Rev. A 104 (1) (2021) 012213.
Y. Zhou, J. Shao, Solving the spin-boson model of strong dissipation with flexible random-deterministic scheme, J. Chem. Phys. 128 (3) (2008)
034106.

H. Wang, M. Thoss, From coherent motion to localization: dynamics of the spin-boson model at zero temperature, New]. Phys. 10 (11) (2008)
115005.

H. Takahashi, S. Rudge, C. Kaspar, M. Thoss, R. Borrelli, High accuracy exponential decomposition of bath correlation functions for arbitrary
and structured spectral densities: Emerging methodologies and new approaches,]J. Chem. Phys. 160 (20) (2024) 204105.

G. Sudrez, M. Horodecki, Making non-Markovian master equations accessible with approximate environments, 2025, arXiv:2506.
22346 [Quant-Ph].

https://github.com/qutip/qutip-tutorials/blob/main/tutorials-v5/visualization/animation-demo.md.
https://github.com/qutip/qutip-tutorials/blob/main/tutorials-v5/miscellaneous/excitation-number-restricted-states-jc-chain.md.

M. Lednev, FJ. Garcia-Vidal, J. Feist, Lindblad master equation capable of describing hybrid quantum systems in the ultrastrong coupling
regime, Phys. Rev. Lett. 132 (2024) 106902.

J. Roman-Roche, E. Sdnchez-Burillo, D. Zueco, Bound states in ultrastrong waveguide QED, Phys. Rev. A 102 (2020) 023702.

J. Zhang, Y.-x. Liu, R.-B. Wu, K. Jacobs, F. Nori, Quantum feedback: Theory, experiments, and applications, Phys. Rep. 679 (2017) 1-60.

A.L. Grimsmo, Time-delayed quantum feedback control, Phys. Rev. Lett. 115 (2015) 060402.

S. Arranz Regidor, G. Crowder, H. Carmichael, S. Hughes, Modeling quantum light-matter interactions in waveguide QED with retardation,
nonlinear interactions, and a time-delayed feedback: Matrix product states versus a space-discretized waveguide model, Phys. Rev. Res. 3
(2021) 023030.

G. Crowder, L. Ramunno, S. Hughes, Quantum trajectory theory and simulations of nonlinear spectra and multiphoton effects in waveguide-QED
systems with a time-delayed coherent feedback, Phys. Rev. A 106 (2022) 013714.

L. Dalcin, R. Paz, M. Storti, MPI for Python,]. Parallel Distrib. Comput. 65 (9) (2005) 1108-1115.

L. Dalcin, R. Paz, M. Storti,]. D’Elia, MPI for Python: Performance improvements and MPI-2 extensions, J. Parallel Distrib. Comput. 68 (5)
(2008) 655-662.

L.D. Dalcin, R.R. Paz, P.A. Kler, A. Cosimo, Parallel distributed computing using Python, New Computational Methods and Software Tools, Adv.
Water Resour. 34 (9) (2011) 1124-1139.

L. Dalcin, Y.-L.L. Fang, Mpidpy: status update after 12 years of development, Comput. Sci. Eng. 23 (4) (2021) 47-54.

T. Caneva, T. Calarco, S. Montangero, Chopped random-basis quantum optimization, Phys. Rev. A 84 (2011) 022326.

N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbriiggen, S.J. Glaser, Optimal control of coupled spin dynamics: design of NMR pulse sequences
by gradient ascent algorithms, J. Magn. Reson. 172 (2) (2005) 296-305.

https://github.com/qutip/qutip-qtrl.

https://github.com/qutip/qutip-qoc.

S. Machnes, E. Assémat, D. Tannor, F.K. Wilhelm, Tunable, flexible, and efficient optimization of control pulses for practical qubits, Phys. Rev.
Lett. 120 (2018) 150401.

M.H. Goerz, S.C. Carrasco, V.S. Malinovsky, Quantum optimal control via semi-automatic differentiation, Quantum 6 (2022) 871.

Z.Zong, Z. Sun, Z. Dong, C. Run, L. Xiang, Z. Zhan, Q. Wang, Y. Fei, Y. Wu, W. Jin, C. Xiao, Z. Jia, P. Duan, J. Wy, Y. Yin, G. Guo, Optimization of a
controlled-Z gate with data-driven gradient-ascent pulse engineering in a superconducting-qubit system, Phys. Rev. Appl. 15 (2021) 064005.
M.H. Goerz, D. Basilewitsch, F. Gago-Encinas, M.G. Krauss, K.P. Horn, D.M. Reich, C.P. Koch, Krotov: A python implementation of Krotov's
method for quantum optimal control, SciPost Phys. 7 (2019) 80.

T. Araki, F. Nori, C. Gneiting, Robust quantum control with disorder-dressed evolution, Phys. Rev. A 107 (2023) 032609.

M.M. Miiller, R.S. Said, F. Jelezko, T. Calarco, S. Montangero, One decade of quantum optimal control in the chopped random basis, Rep. Progr.
Phys. 85 (7) (2022) 076001.

H.A. Corti, L. Banchi, A. Cidronali, Robustness of a universal gate set implementation in transmon systems via chopped random basis optimal
control, Phys. Lett. A 438 (2022) 128119.

B. Riaz, C. Shuang, S. Qamar, Optimal control methods for quantum gate preparation: a comparative study, Quantum Inf. Process. 18 (4) (2019)
100.

A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res. 18 (153)
(2018) 1-43.

Y. Song, J. Li, Y.-J. Hai, Q. Guo, X.-H. Deng, Optimizing quantum control pulses with complex constraints and few variables through
autodifferentiation, Phys. Rev. A 105 (2022) 012616.

61

http://dx.arXiv:2410.18046
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb56
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb56
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb56
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb57
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb57
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb57
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb58
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb58
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb58
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb59
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb59
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb59
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb60
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb60
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb60
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb61
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb61
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb61
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb62
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb62
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb62
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb63
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb63
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb63
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb64
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb64
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb64
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb65
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb65
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb65
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb66
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb66
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb66
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb67
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb67
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb67
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb68
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb69
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb69
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb69
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb70
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb70
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb70
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb71
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb71
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb71
http://dx.arXiv:2506.22346
http://dx.arXiv:2506.22346
http://dx.arXiv:2506.22346
https://github.com/qutip/qutip-tutorials/blob/main/tutorials-v5/visualization/animation-demo.md
https://github.com/qutip/qutip-tutorials/blob/main/tutorials-v5/miscellaneous/excitation-number-restricted-states-jc-chain.md
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb75
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb75
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb75
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb76
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb77
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb78
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb79
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb79
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb79
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb79
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb79
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb80
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb80
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb80
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb81
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb82
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb82
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb82
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb83
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb83
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb83
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb84
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb85
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb86
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb86
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb86
https://github.com/qutip/qutip-qtrl
https://github.com/qutip/qutip-qoc
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb89
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb89
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb89
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb90
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb91
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb91
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb91
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb92
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb92
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb92
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb93
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb94
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb94
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb94
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb95
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb95
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb95
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb96
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb96
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb96
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb97
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb97
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb97
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb98
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb98
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb98

N. Lambert, E. Giguére, P. Menczel et al. Physics Reports 1153 (2026) 1-62

[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]

[108]
[109]

[110]
[111]
[112]

[113]
[114]

[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]
[123]
[124]
[125]
[126]

[127]
[128]

[129]
[130]
[131]
[132]
[133]
[134]

[135]

[136]
[137]
[138]

[139]

https://github.com/qutip/qutip-qip.

I. Buluta, F. Nori, Quantum simulators, Science 326 (5949) (2009) 108-111.

LM. Georgescu, S. Ashhab, F. Nori, Quantum simulation, Rev. Modern Phys. 86 (1) (2014) 153-185.

P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting
circuits, Rev. Modern Phys. 84 (2012) 1-24.

M.A. Nielsen, LL. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.

S. Lloyd, Universal quantum simulators, Science 273 (5278) (1996) 1073-1078.

D. Aharonov, A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, in: Proceedings of the Thirty-Fifth Annual ACM
Symposium on Theory of Computing, STOC '03, Association for Computing Machinery, New York, NY, USA, 2003, pp. 20-29.

AM. Childs, N. Wiebe, Hamiltonian simulation using linear combinations of unitary operations, Quantum Info. Comput. 12 (11-12) (2012)
901-924.

D.W. Berry, A.M. Childs, R. Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in: 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, 2015, pp. 792-809.

G.H. Low, LL. Chuang, Hamiltonian simulation by qubitization, Quantum 3 (2019) 163.

N. Lambert, M. Cirio, J.-D. Lin, P. Menczel, P. Liang, F. Nori, Fixing detailed balance in ancilla-based dissipative state engineering, Phys. Rev.
Res. 6 (2024) 043229.

X. Mi, et al., Stable quantum-correlated many-body states through engineered dissipation, Science 383 (6689) (2024) 1332-1337.

T.S. Cubitt, Dissipative ground state preparation and the dissipative quantum eigensolver, 2023, arXiv:2303.11962 [Quant-Ph].

M. Raghunandan, F. Wolf, C. Ospelkaus, P.0. Schmidt, H. Weimer, Initialization of quantum simulators by sympathetic cooling, Sci. Adv. 6 (10)
(2020) eaaw9268.

S. Polla, Y. Herasymenko, T.E. O’Brien, Quantum digital cooling, Phys. Rev. A 104 (2021) 012414.

Y. Zeng, Z.-Y. Zhou, E. Rinaldi, C. Gneiting, F. Nori, Approximate autonomous quantum error correction with reinforcement learning, Phys.
Rev. Lett. 131 (2023) 050601.

Z. Ding, X. Li, L. Lin, Simulating open quantum systems using Hamiltonian simulations, PRX Quantum 5 (2024).

R. Cleve, C. Wang, Efficient quantum algorithms for simulating Lindblad evolution, 2017, arXiv:1612.09512 [Quant-Ph].

P. Groszkowski, J. Koch, Scqubits: a Python package for superconducting qubits, Quantum 5 (2021) 583.

T. Rajabzadeh, Z. Wang, N. Lee, T. Makihara, Y. Guo, A.H. Safavi-Naeini, Analysis of arbitrary superconducting quantum circuits accompanied
by a Python package: SQcircuit, Quantum 7 (2023) 1118.

S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, D. Garcia-Martin, A. Garcia-Saez,].I. Latorre, S. Carrazza, Qibo: a framework
for quantum simulation with hardware acceleration, Quantum Sci. Technol. 7 (1) (2021) 015018.

https://developer.nvidia.com/cuda-q.

H. Silvério, S. Grijalva, A. Cornillot, L. Henriet, L. Ajdnik, P. Karalekas, L. Leclerc, C. de Terrasson, L. Vignoli, Jbrem, M. D’Arcangelo, C. Dalyac,
Louis-PaulHenry, A. Wennersteen, D. Gessa, L. Emmanuel, R. Dutta, N. Shammah, Codoscope, MatthieuMoreau, R. Tsai, Y. Gondhalekar, A.B.
Rava, A. Panigrahi, Harold, Julius, L.-]. Tallot, Oliver, Slimane33, WingCode, Pasqal-io/pulser: v1.1.0, 2024.

I. Buluta, S. Ashhab, F. Nori, Natural and artificial atoms for quantum computation, Rep. Progr. Phys. 74 (10) (2011) 104401.

X. Gu, AF. Kockum, A. Miranowicz, Y.-x. Liu, F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718-719 (2017)
1-102.

AF. Kockum, F. Nori, Quantum bits with josephson junctions, in: Fundamentals and Frontiers of the Josephson Effect, Springer International
Publishing, 2019, pp. 703-741.

B. Cheng, X.-H. Deng, X. Gu, Y. He, G. Hu, P. Huang,]. Li, B.-C. Lin, D. Lu, Y. Ly, C. Qiu, H. Wang, T. Xin, S. Yu, M.-H. Yung, J. Zeng, S. Zhang,
Y. Zhong, X. Peng, F. Nori, D. Yu, Noisy intermediate-scale quantum computers, Front. Phys. 18 (2) (2023) 21308.

R. Shillito, J.A. Gross, A. Di Paolo, E. Genois, A. Blais, Fast and differentiable simulation of driven quantum systems, Phys. Rev. Res. 3 (2021)
033266.

https://github.com/qutip/qutip-cuquantum.

H. Bayraktar, A. Charara, D. Clark, S. Cohen, T. Costa, Y.-L.L. Fang, Y. Gao, J. Guan, J. Gunnels, A. Haidar, A. Hehn, M. Hohnerbach, M. Jones, T.
Lubowe, D. Lyakh, S. Morino, P. Springer, S. Stanwyck, I. Terentyev, S. Varadhan,]J. Wong, T. Yamaguchi, CuQuantum SDK: A high-performance
library for accelerating quantum science, in: 2023 IEEE International Conference on Quantum Computing and Engineering, QCE, 01, 2023,
pp. 1050-1061.

A. Mercurio, Y.-T. Huang, L.-X. Cai, Y.-N. Chen, V. Savona, F. Nori, QuantumToolbox. jl: An efficient Julia framework for simulating open
quantum systems, Quantum 9 (2025) 1866.

S. Kramer, D. Plankensteiner, L. Ostermann, H. Ritsch, QuantumOptics. jl: A Julia framework for simulating open quantum systems, Comput.
Phys. Comm. 227 (2018) 109-116.

A. Gilchrist, N.K. Langford, M.A. Nielsen, Distance measures to compare real and ideal quantum processes, Phys. Rev. A 71 (2005) 062310.
https://github.com/qutip/qutip-tutorials.

https://github.com/qutip/qutip-notebooks.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. Busk Hoff, M. Brune, J.-M. Raimond, S. Haroche, Quantum jumps of light recording the
birth and death of a photon in a cavity, Nature 446 (7133) (2007) 297-300.

P.-L. Ardelt, L. Hanschke, KA. Fischer, K. Miiller, A. Kleinkauf, M. Koller, A. Bechtold, T. Simmet,]. Wierzbowski, H. Riedl, G. Abstreiter,].J.
Finley, Dissipative preparation of the exciton and biexciton in self-assembled quantum dots on picosecond time scales, Phys. Rev. B 90 (2014)
241404.

N. Bartolo, F. Minganti, J. Lolli, C. Ciuti, Homodyne versus photon-counting quantum trajectories for dissipative Kerr resonators with two-photon
driving, Eur. Phys. J. Spec. Top. 226 (12) (2017) 2705-2713.

F. Minganti, N. Bartolo, J. Lolli, W. Casteels, C. Ciuti, Exact results for Schrédinger cats in driven-dissipative systems and their feedback control,
Sci. Rep. 6 (1) (2016).

N. Bartolo, F. Minganti, W. Casteels, C. Ciuti, Exact steady state of a Kerr resonator with one- and two-photon driving and dissipation:
Controllable Wigner-function multimodality and dissipative phase transitions, Phys. Rev. A 94 (2016) 033841.

K.A. Fischer, Y.A. Kelaita, N.V. Sapra, C. Dory, K.G. Lagoudakis, K. Miiller,]J. Vuckovi¢, On-chip architecture for self-homodyned nonclassical
light, Phys. Rev. Appl. 7 (2017) 044002.

62

https://github.com/qutip/qutip-qip
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb100
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb101
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb102
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb102
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb102
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb103
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb104
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb105
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb105
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb105
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb106
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb106
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb106
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb107
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb107
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb107
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb108
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb109
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb109
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb109
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb110
http://dx.arXiv:2303.11962
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb112
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb112
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb112
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb113
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb114
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb114
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb114
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb115
http://dx.arXiv:1612.09512
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb117
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb118
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb118
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb118
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb119
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb119
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb119
https://developer.nvidia.com/cuda-q
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb121
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb121
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb121
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb121
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb121
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb122
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb123
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb123
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb123
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb124
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb124
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb124
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb125
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb125
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb125
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb126
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb126
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb126
https://github.com/qutip/qutip-cuquantum
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb128
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb128
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb128
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb128
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb128
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb128
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb128
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb129
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb129
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb129
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb130
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb130
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb130
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb131
https://github.com/qutip/qutip-tutorials
https://github.com/qutip/qutip-notebooks
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb134
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb134
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb134
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb135
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb135
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb135
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb135
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb135
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb136
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb136
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb136
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb137
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb137
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb137
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb138
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb138
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb138
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb139
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb139
http://refhub.elsevier.com/S0370-1573(25)00270-4/sb139

	QuTiP 5: The Quantum Toolbox in Python
	Introduction
	QuTiP v5
	A new flexible data layer
	Additional substantial changes

	The QuTiP project
	Core features
	Quantum objects and the data layer
	The Qobj class
	The QobjEvo class

	Solvers
	A new solver class
	Solver and integrator options
	mesolve part 1: A master equation solver for Lindblad dynamics and beyond
	mesolve part 2: Time-dependent systems
	mesolve part 3: JAX and GPU acceleration with Diffrax
	steadystate : A steady-state solver for master equations
	mcsolve : A Monte Carlo solver for quantum trajectories
	nm_mcsolve : A Monte Carlo solver for non-Markovian baths
	brmesolve : Bloch�Redfield master equation solver
	Floquet methods: the Floquet basis
	smesolve : Stochastic master equation solver
	HEOMSolver : Hierarchical equations of motion
	Visualization of solver results

	Additional features in QuTiP v5
	Excitation number restricted states
	Automatic Differentiation: JAX
	MPI support for high performance computing

	QuTiP's other main packages
	Optimal control: QuTiP-QOC
	The GRAPE algorithm
	The CRAB algorithm
	The GOAT algorithm
	Integration with QuTiP-JAX

	Quantum circuits: QuTiP-QIP
	Circuit Visualization
	Simulating Hamiltonian dynamics
	Simulating master equation dynamics

	QuTiP's community
	The admin team and governance
	RIKEN
	NumFOCUS and Google Summer of Code
	The Unitary Foundation
	Packages that use QuTiP

	Future development
	QuTiP's role in the quantum computing revolution
	QuTiP's role in fundamental scientific research

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Tables
	Appendix B. Summary of tutorials and example notebooks
	Time-evolution tutorials
	0001_qobjevo
	0002_larmor-precession
	0003_qubit-dynamics
	0004_rabi-oscillations
	0005_spin-chain
	0006_photon_birth_death
	0007_brmesolve_tls
	0008_brmesolve_time_dependence
	0009_brmesolve_cavity-QED
	0010_brmesolve_phonon_interaction
	0011_floquet_solver
	0012_floquet_formalism
	0013_nonmarkovian_monte_carlo
	0015_smesolve-heterodyne
	0016_smesolve-inefficient-detection
	0016_smesolve-jc-photocurrent
	0018_measures-trajectories-cats-kerr
	0019_optomechanical-steadystate
	0020_homodyned-Jaynes�Cummings-emission
	0021_quasi-steadystate-driven-system

	Lectures
	Quantum circuits and Pulse-level-circuit-simulation
	Visualization
	HEOM: Hierarchical Equations of Motion
	Miscellaneous
	QuTiP-notebooks

	References

