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Small- and wide-angle X-ray scattering tensor tomography are powerful

methods for studying anisotropic nanostructures in a volume-resolved manner

and are becoming increasingly available to users of synchrotron facilities. The

analysis of such experiments requires advanced procedures and algorithms,

which creates a barrier for the wider adoption of these techniques. Here, in

response to this challenge, we introduce the MUMOTT package. It is written in

Python, with computationally demanding tasks handled via just-in-time

compilation using both CPU and GPU resources. The package has been

developed with a focus on usability and extensibility, while achieving a high

computational efficiency. Following a short introduction to the common work-

flow, we review key features, outline the underlying object-oriented framework

and demonstrate the computational performance. By developing the MUMOTT

package and making it generally available, we hope to lower the threshold for

the adoption of tensor tomography and to make these techniques accessible to a

larger research community.

1. Introduction

The properties of numerous materials depend on the hier-

archical organization of their basic building blocks, ranging

from the nanometre to the micrometre scale. Examples

include plant materials assembled from cellulose and lignin

(Fratzl & Weinkamer, 2007), bone constructed of assemblies

of mineralized collagen fibrils (Reznikov et al., 2014), and

polymeric materials, such as semi-crystalline polymers

(Schrauwen et al., 2004; Stribeck et al., 2008; Tang et al., 2007)

and liquid-crystalline polymers composed of rigid macro-

molecules (Gantenbein et al., 2018). The study of structure–

property relationships of hierarchical materials for applica-

tions in biology, the biomedical field or polymer engineering

therefore relies on accurate structural characterization from a

wide range of techniques. Here, X-ray techniques are of

particular interest as they can provide volume-resolved

nanostructural information in macroscopic samples thanks to

their high penetration depth and non-destructive nature.

Methods such as X-ray absorption and phase contrast

computed tomography (CT) therefore play an important role

in providing high-resolution densimetric measurements of 3D

samples (Endrizzi, 2018; Ou et al., 2021).

In addition to the densimetric fields, the arrangement of

nanostructural elements, in particular their direction and

degree of alignment, is important for many mechanical and

functional properties on larger length scales. This situation

introduces a further methodological challenge: bridging the

length scales between nanostructural building blocks and the
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macroscopic specimen. One approach to this challenge

involves probing nanostructure orientation in a volume-

averaged manner using techniques based on polarization,

scattering, diffraction or magnetic relaxation (Georgiadis et

al., 2016). For spatially resolved information, X-ray and

neutron diffraction approaches can be used, including direc-

tional dark-field (DDF) imaging (Jensen et al., 2010; Busi et al.,

2023), which probes the orientation on the micrometre scale

through the integrated scattering signal, as well as scanning

small- and wide-angle scattering techniques, which probe the

nanoscale structures. Specifically, small-angle X-ray scattering

(SAXS) probes the spatial variation of the electron density,

providing information on structural elements with character-

istic length scales in the range of tens to hundreds of nano-

metres. It thus provides access to information regarding the

structural organization and orientation of the material at the

corresponding length scales, while X-ray diffraction (XRD)

(in this paper called wide-angle X-ray scattering, WAXS)

probes atomic distances and crystal structure. Whereas DDF

imaging comprises a family of full-field imaging methods,

SAXS and WAXS can be used as scanning imaging techniques

in which the sample is raster-scanned with a focused X-ray

beam, providing an image of the sample consisting of a 2D

diffraction pattern in each pixel. Tomographic reconstruction

of such measurements using isotropically scattering samples is

known as XRD-CT and is frequently used in both the SAXS

(Stribeck et al., 2006; Schroer et al., 2006) and WAXS (Kleuker

et al., 1998; Stock et al., 2008; Bleuet et al., 2008) regimes at

synchrotron X-ray sources.

To access the orientation information of the underlying

ultrastructure within a 3D specimen, tomographic methods

can be extended from the reconstruction of scalar fields to

tensor fields describing the directionality of the signal, which is

in general called tensor tomography (TT). The most estab-

lished technique in this category is diffusion magnetic reso-

nance imaging, also called diffusion tensor imaging, which is

widely used to study the 3D arrangement and orientation of

neurons. In the case of X-rays, TT has been demonstrated for

DDF (Malecki et al., 2014; Kim et al., 2020), SAXS (Liebi et al.,

2015; Schaff et al., 2015; Liebi et al., 2018; Gao et al., 2019;

Nielsen et al., 2023b) and WAXS (Grünewald et al., 2020).

Other related tomography approaches which can be consid-

ered as TT include probing magnetic field directions with

circularly polarized X-rays (Donnelly et al., 2017) or polarized

neutrons (Sales et al., 2017).

The acquisition and analysis of TT data is a non-trivial

undertaking, creating a barrier for the wider adoption of these

powerful techniques. In response to this challenge, specifically

with regard to the analysis of such data, we here introduce the

software package MUMOTT for the reconstruction of TT

data. While the current implementation supports the cases of

SAXS and WAXS, the framework offers the possibility of

including other modalities in the future. In the following, we

first provide a brief overview of the methodology (Section 2)

before describing the structure and functionality of

MUMOTT (Section 3). Finally, we give a short outlook on

potential future additions and developments (Section 4).

2. Methodology

SAXS- and WAXS-TT are conceptually similar to XRD-CT.

Specifically, in both techniques the sample is raster-scanned

through a focused beam to produce a number of 2D projec-

tions, varying the sample orientation between each projection.

Unlike XRD-CT, SAXS- and WAXS-TT work with azimuth-

ally regrouped detector images where the intensity of the

scattered X-rays in a number of azimuthal bins is recorded

rather than a single azimuthally integrated intensity. The width

of the azimuthal bins depends on the desired angular resolu-

tion of the reconstruction. The azimuthal regrouping can be

done with a number of freely available software tools such as

pyFAI (Kieffer et al., 2020) and matfraia (Jensen et al., 2022).

The experimental data thus form a five-dimensional data set

consisting of the tomographic rotation, the two directions of

the raster scan grid, the scattering angle 2� and the azimuthal

angle ’. MUMOTT deals with the transformation of such a

five-dimensional data set into a six-dimensional reconstruc-

tion, consisting of a three-dimensional voxel map containing a

three-dimensional reciprocal-space map (3D-RSM) in each

voxel.

We assume that the data have already been corrected for

various experimental errors pertaining to solid angle,

geometric distortions and polarization. To account for the

effect of absorption by the sample, the collected data can be

normalized by the transmitted intensity, as is common practice

in XRD-CT. Especially at small scattering angles, this makes it

possible to carry out reconstructions even with low sample

transmission coefficients (�1% has been demonstrated),

assuming sufficient incident flux. The measurement of the

transmitted beam intensity can be done using either a semi-

transparent beam stop, a diode mounted on the beam stop or a

fluorescence measurement (Pauw, 2013). Alternatively,

synthetic transmission data can be calculated via an absorp-

tion CT reconstruction (Grünewald et al., 2023).

The experiment is described in a coordinate system defined

by the voxel grid of the sample and the three orthogonal basis

vectors x̂, ŷ and ẑ. Typically, these vectors are chosen to

conform to the convention of the beamline where the

experiments were performed, such that the sample-fixed

coordinates correspond to the laboratory coordinates when

the goniometer angles are zeroed. The geometry of the

instrument is defined by specifying a number of unit vectors in

these laboratory coordinates. These vectors include the beam

direction p̂ (also called the projection vector), the two

orthogonal directions of the raster scan ĵ and k̂, and two

vectors describing the origin and the positive direction of the

azimuthal integration, q̂0 and q̂90, respectively, defined by the

equation

q̂ð’Þ ¼ cosð2�=2Þ ðcos ’ q̂0 þ sin ’ q̂90Þ � sinð2�=2Þ p̂

’ cos ’ q̂0 þ sin ’ q̂90: ð1Þ

This equation gives the normalized scattering vector q̂ð’Þ

probed by each detector segment as a function of the scat-

tering angle 2� and the detector azimuth angle ’. The second

line gives a useful approximation valid for small scattering

computer programs
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angles. The sample can be rotated by a goniometer, and the

rotation of the sample goniometer at a given setting labeled s

results in a rotation matrix Rs. Typically, the goniometer is

constructed of two orthogonal rotation stages: an inner

‘rotation’ stage and an outer ‘tilt’ stage. The full rotation is

then defined by a pair of rotation angles � and � with corre-

sponding rotation axes �̂ and �̂, such that Rs ¼ R
�̂
ð�ÞR�̂ð�Þ.

While all these vectors may be chosen freely in MUMOTT

(under the restriction that certain vectors are orthogonal to

certain other vectors), we work in a standard geometry in this

paper, given by the choices listed in Table 1 and visualized in

Fig. 1.

The scattering from a given voxel (x, y, z) is proportional to

a characteristic function f 3D
xyzðqÞ called the 3D-RSM. In the

context of SAXS-TT, the RSM is the Fourier transform of the

auto-correlation function of the electron density taken over a

small volume. For the purpose of reconstruction, we consider

one ‘shell’ of reciprocal space at a time, and the 3D-RSM is

built up by reconstructing and stacking successive 2D shells

[sketched in Fig. 2(d)]. For one such shell we consider the

function f 2D
xyzðq̂Þ, which depends only on the direction of the

scattering vector. This function is modeled by a sum of basis

functions,

f 2D
xyzðq̂Þ ¼

X

i

cxyziBiðq̂Þ; ð2Þ

where Biðq̂Þ are the basis functions (see Section 3.3 below) and

cxyzi are the unknown expansion coefficients that we want to

find.

The function f 2D
xyzðq̂Þ is described in sample-fixed coordinates

such that, at a rotation of the sample given by Rs, the detector

segment at the angle ’ measures the component f 2D
xyz½R

T
s q̂ð’Þ�,

where the superscript T denotes the matrix transpose. In the

normal setting, the detector is split into a number of evenly

spaced segments indexed by c, covering either the full 360� for

WAXS or 180� for SAXS. Each detector segment [Fig. 2(a)] is

defined by a start angle ’c, start and an end angle ’c, end. As

such, the detector segment probes the average of the scat-

tering function within this interval given by the integral

Ic /
1

’c;end � ’c;start

Z’c;end

’c;start

f 2D
xyz RT

s q̂ð’Þ
� �

d’:

By inserting equation (2) into the above, we define the

constants [Figs. 2(a) and 2(b)]

Bsc;i ¼
1

’c;end � ’c;start

Z’c;end

’c;start

Bi RT
s q̂ð’Þ

� �
d’; ð3Þ

which describe how much each basis function scatters in the

direction measured by a given detector segment, illustrated in

Fig. 2(a). This is an integral over a single scalar variable, which

can be numerically evaluated by standard methods of quad-

rature.

To complete the forward model, we have to sum the

intensity contributions from all voxels in the path of the

incident beam. At a given position of the raster scan and

computer programs
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Table 1
Unit vectors defining the experimental geometry and their values in the
standard geometry used in previous publications such as Liebi et al.
(2018).

Symbol Standard Field name

p̂ þẑ p_direction_0

ĵ þŷ j_direction_0

k̂ þx̂ k_direction_0

q̂0 þx̂ detector_direction_origin

q̂90 þŷ detector_direction_positive_90

�̂ þŷ inner_axis

�̂ þx̂ outer_axis

Figure 1
Illustration of vectors defining the experimental geometry in the
laboratory coordinates (i.e. at � = � = 0).

Figure 2
(a) Layout of vectors and angles on the detector. A single detector
segment is marked with a thick black line. (b) Integrated basis function
values Bsc, i plotted in a stereographic projection. The solid black arc
corresponds to the single detector segment marked in panel (a). (c)
Computed probing of each voxel by bilinear interpolation. (d) Splitting of
a 3D-RSM into a stack of 2D-RSMs at fixed q lengths.
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rotation of the goniometer, only the voxels that are illumi-

nated by the beam contribute to the measured scattering. A

given voxel is indexed by the three integers x, y and z. At a

given setting of the sample goniometer the position of the

voxel is

rxyz ¼ aRs x y z
� �T

� bð j � �jÞ ĵ � bðk � �kÞ k̂; ð4Þ

where j and k are integer indices of the raster scan, a is the step

size of the cubic voxel grid, b is the step size of the 2D raster

scan, and �j and �k are offsets caused by parasitic move-

ments of the sample stage during rotation. Typically, the

resolution of the reconstruction is matched with the raster

scan such that a = b.

Finally, to include the scattering from all probed voxels, we

introduce the factor Psjk, xyz which describes how much the xyz

voxel overlaps with the incoming beam at the position j, k of

the raster scan at the goniometer setting s. Psjk, xyz takes a

value between 0 and 1, with the value 0 for any voxel that does

not intersect the X-ray beam. Using this factor, we can now

write the scattered intensity as a sum over all voxels in the

voxel grid:

Ið’Þsjk ¼
X

xyz

Psjk;xyzf 2D
xyz RT

s q̂ð’Þ
� �

: ð5Þ

Fig. 2(c) gives a graphical interpretation of the Psjk, xyz

coefficients. By combining equations (2) and (5) we can now

write up the full forward model for TT:

Isjkc ¼
X

xyz

Psjk;xyz

X

i

Bsc;icxyzi ð6Þ

, I ¼ Ac; ð7Þ

where on the second line we have defined the data vector I,

the system matrix A and the coefficient vector c in order to

write the problem in linear algebra terms. The system matrix

has the block matrix structure

A ¼

½P0jk;xyz� � ½B0c;i�

½P1jk;xyz� � ½B1c;i�

..

.

½PNsjk;xyz� � ½BNsc;i�

2

6
6
6
4

3

7
7
7
5
; ð8Þ

where � is the Kronecker product. Note that the system

matrix does not factorize into a projection part and a reci-

procal-space part, as both the projection operator and the

basis function matrix depend on the orientation of the sample.

This structure highlights the difference between tensor

tomography and many other multi-modal tomography tech-

niques such as XRD-CT, X-ray fluorescence tomography (de

Jonge & Vogt, 2010), time-resolved tomography and spectral

tomography (Shikhaliev, 2008), where the real-space projec-

tion operation and the mapping of the other modalities are

decoupled. This prevents the use of many techniques that rely

on this factorization, such as principal component analysis

methods (Gao et al., 2021).

With the forward model defined, we can now formulate the

inversion as the solution of a minimization problem:

c� ¼ argmin
c

jjI � Acjjaa þ �jjDcjjbb þ . . .
� �

; ð9Þ

where jj � jja and jj � jjb are two, potentially identical, vector

norms, � is a regularization parameter, and D is a weight

matrix. The ellipsis indicates that more regularization terms of

the same form as �jjDcjjbb may be added.

3. Implementation

MUMOTT is written in Python, with performance-critical

parts implemented using the numba package (Lam et al., 2015)

for CPU and GPU acceleration in order to balance compu-

tational efficiency, portability and maintainability. It also

depends on NumPy (Harris et al., 2020), SciPy (Virtanen et al.,

2020), scikit-image (Van der Walt et al., 2014) and colorcet

(Kovesi, 2015). The package is extensively documented and

the documentation is available online at https://mumott.org

and at https://doi.org/10.5281/zenodo.7919448, including

various examples in the form of Jupyter notebooks.

A variety of common tasks pertaining to data alignment and

reconstruction are accessible via functions that provide a

rather simple yet customizable interface. These functions

represent ‘pipelines’ (Section 3.4) and are intended to serve as

the primary interface for most users.

The pipeline functions combine a number of individual

tasks and components, which are represented via objects and

are part of the underlying object-oriented framework (Section

3.5). Through the latter, advanced users and developers can

customize, adapt and extend the functionality of MUMOTT.

MUMOTT is released under the Mozilla Public License

Version 2.0 and developed as free and open source software,

inviting the contributions of other groups and developers.

In the following, we first provide a short demonstration of

the workflow (Section 3.1) before addressing basis sets

(Section 3.3), several common pipelines (Section 3.4), the

underlying object-oriented framework (Section 3.5) and

computational efficiency (Section 3.6).

3.1. Workflow

Figs. 3 and 4 show examples of simple workflows in

MUMOTT for reconstructing a voxel map of 2D-RSMs from

experimental data. In the following sections, we explain each

of the steps in this process.

computer programs
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Figure 3
Minimal example of a reconstruction workflow using the MITRA pipe-
line (Section 3.4.1).
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3.1.1. Loading the data

The acquired data (after beamline-specific preprocessing)

are handled using a DataContainer, which is created by

loading an HDF5 file (Table 2) that contains the azimuthally

regrouped data for one q bin of the experiment. While a full

experimental data set containing a detector frame for each

scan position can be quite large, commonly of the order of

hundreds of gigabytes, a single q bin of the azimuthally

regrouped data is usually hundreds of megabytes to a few

gigabytes. The prepared data files can contain the geometry

data and sample offset information or only the data.

3.1.2. Definition of the geometry

The geometry is defined by the vectors listed in Table 1,

which can be given in any consistent coordinate system. In the

examples shown, the full geometry data are already contained

in the data file (and hence the DataContainer), but in

general it is possible to override certain parameters after

loading.

3.1.3. Aligning the data

Before a meaningful reconstruction can be carried out the

data must be aligned, which means calculating the offsets

defined in equation (4). To this end, MUMOTT provides

several pipelines that use the transmission measurement or

the average scattering to correct misalignment between each

projection that occurs due to parasitic movements during

acquisition. In the examples shown here, we use the function

that implements the optical flow alignment procedure

(Odstrčil et al., 2019), which relies on center-of-mass and

tomographic consistency techniques. The alignment functions

return, most importantly, the shifts that are needed for

aligning the data. These values are then used to override the

offsets stored in the DataContainer object.

3.1.4. Defining the reconstruction model

The reconstruction model is defined by the choice of basis

functions, the form of the cost function and the regularization

terms. A large number of different algorithms can be

constructed by combining these three choices. The simplest

approach is to utilize one of the existing pipelines (Section

3.4), as illustrated by the first example (Fig. 3) in which the

modular iterative tomographic reconstruction algorithm

(MITRA) pipeline (Section 3.4.1) is used. Alternatively, one

can configure a reconstruction model using the individual

objects that represent the different components. This

approach is demonstrated by the second example (Fig. 4),

where we choose a basis of spherical harmonics in combina-

tion with a squared-difference loss function and Tikhonov

(L2) regularization.

3.1.5. Minimizing the loss function

Once the loss function is defined, the optimization problem

can be solved using one of a number of optimization routines.

While this step is included in the case of the predefined

reconstruction pipeline in the first example (Fig. 3), it needs to

be explicitly specified when constructing the workflow as in

the second example (Fig. 4), where we use the gradient-based

LBFGS (Liu & Nocedal, 1989) optimizer. In the case of

regularized models, one should then perform a sweep of the

regularization parameter space in order to determine (a)

sensible regularization parameter(s).

3.2. Deriving standard quantities from the output

The result of a tensor tomography reconstruction is an array

of optimized coefficients c� ¼ ½c�xyzi� which are the voxel-by-

computer programs
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Table 2
Outline of the HDF5 file format used by MUMOTT.

The indents indicate the hierarchy of entries; 0 is an entry in the group
projections, whereas data is an entry in the group 0 and so on.

Path Type

p_direction_0 float(3)
j_direction_0 float(3)
k_direction_0 float(3)

detector_direction_origin float(3)
detector_direction_positive_90 float(3)
inner_axis float(3)
outer_axis float(3)
volume_shape int(3)
detector_angles floatðn’Þ

projections Group
0 Group
data floatðnj; nk; n’Þ
diode floatðnj; nkÞ
inner_angle float(1)
j_offset float(1)
k_offset float(1)

outer_angle float(1)
weights floatðnj; nk; n’Þ

1 Group
..
.

Figure 4
Extended example of a reconstruction workflow using a Tikhonov (L2)
regularized least-squares model and spherical harmonics as basis func-
tions with the object-oriented interface (Section 3.5).
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voxel expansion coefficients of the local 2D-RSM shells in

terms of the specific basis functions. In general, the coefficients

can be interpreted using the corresponding basis set to

compute latitude–longitude maps of the 2D-RSM shells, and

reconstructions of several q bins can be combined to construct

3D-RSMs from these maps. A number of derived quantities

are conventionally used for evaluation and visualization

of reconstructions, and these can be calculated efficiently

from the coefficients without needing to compute latitude–

longitude maps. Note that we define here the derived quan-

tities which are part of the output structure of MUMOTT.

Additional quantities can be calculated from the array of

optimized coefficients, depending on the basis function.

The mean scattering intensity, also called the isotropic

intensity, is defined as

f ¼ f 2D
xyzðq̂Þ

� �

q̂
¼

1

4�

Z�

0

Z2�

0

f 2D
xyz½q̂ð�; �Þ� d�

8
<

:

9
=

;
sin � d�; ð10Þ

where � and � are a pair of polar coordinates for the unit

sphere.

A 2D-RSM can also be expanded in tensor components.

The rank-2 tensor is of particular interest because it allows

easy computing of primary directions given by the eigen-

vectors of the matrix. The second-moment tensor is a 3 � 3

matrix with elements

Mij ¼ qiqj f 2D
xyzðq̂Þ

� �

q̂
; ð11Þ

where qi are the x, y and z components of q̂ for i = 1, 2 and 3,

respectively.

For many samples, a main orientation, such as a fiber

symmetry axis of the nanostructure, can be defined for each

voxel. The rank-2 tensor provides a means of efficiently

computing this direction through its eigendecomposition.

However, the interpretation of the main orientation of the

nanostructure depends on its scattering characteristics. In

structures where a single direction of strong scattering is

expected at two opposite poles, the main orientation is the

eigenvector corresponding to the largest eigenvalue. Similarly,

for samples where a ring equatorial band with strong scat-

tering is observed (e.g. the structure displayed in Fig. 5) the

eigenvector corresponding to the smallest eigenvalue should

be chosen. This provides a fast and noise-tolerant approach to

finding the main nanostructure orientation, except in cases

where the rank-2 term vanishes. The latter can occur, e.g., in

Bragg scattering from cubic symmetric materials, where more

advanced approaches are needed.

Another quantity frequently used to describe the aniso-

tropy (Basser & Pierpaoli, 1996) of tensor tomography is the

fractional anisotropy (FA), which can be computed from the

eigenvalues of the 2nd moment tensor:

FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�1 � �2Þ
2
þ ð�2 � �3Þ

2
þ ð�3 � �1Þ

2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�2

1 þ �
2
2 þ �

2
3Þ

p : ð12Þ

Here, �1, �2 and �3 are the three eigenvalues of the second

moment tensor. FA = 0 for perfectly isotropic scattering, and it

reaches a maximum value of 1 when there is strong scattering

in one direction and the scattering goes to zero in the ortho-

gonal directions. Other values can be calculated from the

coefficients to describe the anisotropy, also referred to as the

degree of orientation, and these are described elsewhere

(Liebi et al., 2015; Nielsen et al., 2023b; Nielsen et al., 2024).

3.3. Basis sets

The most notable difference between different reconstruc-

tion algorithms is the choice of basis functions. Fig. 5 shows a

comparison of the optimized 2D-RSM shell of a single voxel of

the same sample using four different basis-set types.

3.3.1. Spherical harmonics

The spherical harmonics (SH) are a set of orthogonal

polynomials that derive from the solution to the Laplace

equation in spherical coordinates. Any function on the unit

sphere can be represented by an infinite expansion in spherical

harmonics, but in practice the expansion must be truncated at

some finite order. Such a finite expansion in spherical

harmonics is called a band-limited spherical function and can

be used to represent the 2D-RSM (Nielsen et al., 2023b). The

SH basis set is fully defined by the band limit ‘max at which the

expansion in spherical harmonics is truncated. This sets the

resolution of the narrowest diffraction features that can be

reconstructed to approximately 2�/‘max radians.

3.3.2. Nearest neighbors

A nearest-neighbors (NN) basis set uses a set of NN indi-

cator functions. This model is therefore defined by a grid of

orientations alone and the resolution is set by the distance

between grid points. This basis set can be used to emulate the

algorithm first presented by Schaff et al. (2015), which splits

the TT problem into a set of independent scalar tomography

problems.
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Figure 5
Comparison of (a) SH, (b) ZH, (c) NN and (d) GK basis sets. The upper
row shows a single basis function for each basis set. The lower row shows
the RSM at a single q of a single voxel of a reconstruction using each of
the four basis sets. The crosses in panels (c) and (d) show the grids which
are part of the definition of the NN and GK basis sets. The directions used
to define the NN model are the face centers of the truncated icosahedron.
The directions used in the GK model are given by a modified Kurihara
mesh. The circles in panel (b) indicate the symmetry axes.
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3.3.3. Gaussian kernels

Like the NN basis set, the Gaussian kernels (GK) basis set

is defined by a grid of orientations, but instead of indicator

functions it uses smooth spherical Gaussian functions, rotated

to be centered on the various grid orientations. It therefore

needs one extra parameter to define the basis set, namely the

width of the kernel. The GK basis set has many of the same

properties as the NN basis set but unlike the former results in

smooth RSMs. The resolution depends on both the distance

between grid points and the kernel width. Such spherical

kernels are commonly used in texture analysis, where the

specific function used is referred to as the Bunge normal

distribution (Bunge, 1969) to distinguish it from several other

Gaussian-shaped kernel functions that are frequently used.

3.3.4. Zonal harmonics

The axially symmetric method established by Liebi et al.

(2015) uses a zonal harmonics (ZH) basis set and thereby

differs from the other methods implemented in MUMOTT by

having a nonlinear forward model. This requires a separate

workflow involving a specialized calculator for the gradients

and optimizer. To enable high-order expansions, simplify the

code, and ensure interoperability between the ZH and SH

workflows, rotations and gradients are calculated in coefficient

space using Wigner D-matrices. This allows orders up to ‘max =

100 in the current implementation, although orders higher

than ‘max ’ 30 are difficult to handle in practice due to the

large number of coefficients. Details of the implementation

are given by Carlsen et al. (2024).

The nonlinearity of the forward model in the ZH approach

makes the loss function non-convex, which renders the opti-

mization problem more challenging. Approaches to over-

coming this difficulty include regularization of the angle

parameters and smoothing of the gradient (Liebi et al., 2018),

as well as the use of an ensemble of randomized starting points

(Nielsen et al., 2023b). In MUMOTT we use a starting guess

provided by a different reconstruction algorithm to determine

the symmetry direction.

3.4. Pipelines

MUMOTT provides various pipelines that implement

reconstruction and alignment workflows. The former include

both ‘standard’ and asynchronous pipelines. The standard

pipelines can be run using both CPU and GPU resources and

are usually highly customizable. The asynchronous pipelines

are optimized for GPU resources and thus speed, and are

usually slightly less adjustable. They employ asynchronous

execution on the GPU to avoid the overhead caused by

transferring data between the CPU and GPU.

3.4.1. Standard reconstruction pipelines

The simultaneous iterative reconstruction technique (SIRT)

is a popular reconstruction algorithm thanks to its inherent

regularizing properties that result from semi-convergence

(Elfving et al., 2012) and the small number of tunable para-

meters. It has previously been used for tensor tomography by

e.g. Schaff et al. (2015) and Kim et al. (2020). In MUMOTT a

traditional approach to SIRT is implemented in the SIRT

pipeline.

While the SIRT algorithm is not conventionally stated as a

minimization problem, it has been shown that it is equivalent

to a specific preconditioned gradient-descent weighted least-

squares optimization (Gregor & Fessler, 2015). Through this

re-formulation, the basic SIRT reconstruction becomes com-

patible with various regularizers. The weight-preconditioner

approach employed in this form of SIRT can also be extended

to the RSM given by equation (3). This approach is imple-

mented in the MITRA pipeline, which permits arbitrary

regularizers and basis sets to be used, as well as Nesterov

momentum acceleration.

The spherical integral geometric tensor tomography

(SIGTT) pipeline sets up the basic reconstruction model using

an SH basis set, a squared-difference loss function and regu-

larization via a finite-difference Laplacian filter (Nielsen et

al., 2023b). The optimization problem is solved with the

LBFGS-B algorithm and uses a stop criterion based on the

relative change in the loss function.

The discrete directions (DD) pipeline emulates the recon-

struction technique used by Schaff et al. (2015), which splits

the tensor reconstruction into a set of independent scalar

reconstructions using the NN basis set. The pipeline employs

the SIRT algorithm for the individual scalar reconstructions.

DD has the practical advantage of needing less VRAM than

methods which reconstruct the entire RSM at once, as it only

loads one scalar component onto the GPU at a time.

3.4.2. Asynchronous pipelines

These pipelines, optimized for GPU execution and speed,

include a tensor SIRT pipeline, which is similar to MITRA

without Nesterov momentum. In addition, there is momentum

total variation reconstruction (MOTR), which is essentially

the default MITRA pipeline with L1 and two-sided total

variation regularization. Finally, robust and denoised tensor

tomography (RADTT) optimizes for the Huber norm with

two-sided total variation regularization through Nesterov

accelerated gradient descent. This last pipeline requires fine-

tuning of the configuration in order to converge reasonably

well, but once an appropriate step size and smoothing terms

are found, it is relatively robust against noise.

There are also sparse versions of the asynchronous pipe-

lines, which use a modified version of the John transform that

calculates the reciprocal-space and real-space projection

operations simultaneously within one kernel, using a sparse

approximation to the reciprocal-space mapping. This is not

necessarily faster than computing the two mappings separately

(unless the representation is very sparse, such as only mapping

one basis function to each segment). It does, however, use less

VRAM, as it is not necessary to store the intermediate result

between carrying out the John transform and carrying out the

reciprocal-space mapping.
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3.4.3. Alignment

The objective of alignment is to determine the offsets �j

and �k of equation (4) that result from parasitic movement

and misalignment of the goniometer and drift during the

experiment (Frank et al., 1992). The alignment step is essential

in tomography, as any misalignment will be reflected as an

artifact in the tomographic reconstruction. There are many

algorithms to solve this problem, leading to sub-pixel align-

ment accuracy, taking into account various experimental

systems and data.

MUMOTT currently provides two alignment pipelines.

Both algorithms typically work with the transmitted intensity

data stored in the DataContainer or another isotropic

signal such as the azimuthally integrated intensity. They

iteratively update the offsets for each projection by recon-

structing the absorption tomogram via a projector. The overall

workflow is shown in Fig. 6.

The phase matching alignment pipeline is based on cross-

correlation and follows Guizar-Sicairos et al. (2008). Cross-

correlation alignment has been proven for continuous objects

in electron microscopy tomography by Guckenberger (1982)

and has been widely used since. The principle is to determine

the offsets by means of correlation functions formed from

image pairs of the projections, comparing the centers of mass

of the image pair correlation peaks. This method is fast and

can provide sub-pixel accuracy for data with small misalign-

ment.

When the data exhibit misalignment of multiple pixels, the

cross-correlation alignment alone can struggle to find the

appropriate coordinate transformation. For such cases,

MUMOTT provides the optical flow alignment pipeline, which

implements a toolbox algorithm based on the work of Odstrčil

et al. (2019). This approach uses multiple successive and

interconnected alignment procedures, including optical flow

projection, matching alignment, line vertical alignment and

weight centering. The method is tunable through various

parameters and filters and is therefore able to align extremely

misaligned data. It thereby provides an approach that is usable

for a larger variety of experimental data.

Examples of alignment results with the two pipelines are

shown in the case of a publicly available experimental data set

from trabecular bone in Fig. 7 (Nielsen et al., 2023a).

3.5. Object-oriented framework

The internal architecture of MUMOTT consists of an

object-oriented framework with some elements of functional

programming. The structure of the framework is described in

Fig. 8. Many objects are safely mutable after instantiation and

employ hashes of their mutable properties to track the state of

linked instances. This is used internally to trigger recomputing

of derived properties when required.

3.5.1. Data and geometry

The DataContainer is the owner of the input data,

which are stored in HDF5 format. The input (measurements

and geometry metadata) is stored as a list of projections,

indexed by the direction index s as given in equation (5), and

the measured tensor tomographic data can be accessed as a

computer programs
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Figure 6
Alignment pipeline workflow. Steps shown with dashed outlines apply
only for the optical flow alignment pipeline.

Figure 7
Slices from absorption reconstructions, (a) before alignment, and (b) and
(c) after alignment with (b) the phase matching method and (c) the
optical flow method. The projections have been sorted so that the
projection directions of neighboring projections are as close to each other
as possible. (d) Rotations and tilts. (e) and ( f ) Alignment offsets from (e)
the phase matching method and ( f ) the optical flow method. Note how
the rotations correlate with changes in �j, whereas the tilts correlate with
changes in �k. In this case the offsets result from misalignment of the
goniometer’s rotation axes with the sample center.
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four-dimensional array indexed by [s, j, k, i] as in equation (7).

The information related to geometry is stored in a Geometry

object, which is directly linked to the list of projections

attached to the DataContainer. Thus, if a projection is

removed from the list, this will be reflected in the corre-

sponding geometry data being removed from the Geometry

instance. The Geometry object stores the basis vectors of the

system, i.e. (p, j, k, q0, q90, �̂, �̂) listed in Table 1 and shown in

Fig. 1. The vectors must be specified in the laboratory coor-

dinate system, which coincides with the sample-fixed coordi-

nates (x, y, z) when R(s) = I, i.e. the identity transform. A

rotation operator is then specified, R(s), which may be given

as a rotation matrix or as an axis–angle quadruplet

½�̂; �ðsÞ; �̂; �ðsÞ�. Using the rotation operator, vectors in the

sample-fixed coordinates are dynamically computed for each

s. This information can be specified in the input data file or by

the user through direct modification of the Geometry object

(see e.g. Fig. 3).

3.5.2. Projectors and basis sets

The Projector and BasisSet classes contain the

methods and properties needed to compute the forward model

defined in equation (7) and its adjoint. The Projector

objects depend on a Geometry object and employ routines

implemented using the numba package (Lam et al., 2015) to

compute the spatial part of the transform, i.e. the matrix

elements Psjk, xyz in equation (5). This is implemented for both

CPU- and GPU-based computation, the latter using the

numba interface for CUDA. The implementation employs an

approach based on Joseph’s method (Joseph, 1982) using

bilinear interpolation of the field for the forward model and

the projection for the adjoint computation, respectively,

following the work of Xu et al. (2010) and Palenstijn et al.

(2011).

The BasisSet evaluates the constants Bsc,i in equation (3)

for the respective basis B (Section 3.3) using the provided

detector geometry and rotation operator RT
s . The integral is

evaluated using adaptive Newton–Cotes quadrature or

approximated using the central angle of each segment. In

addition, the BasisSet provides a routine for computing

various properties of reconstructed tensors, such as the

orientation as defined by the rank-2 tensor component of the

field, the spherical mean, the variance and the relative

anisotropy (the spherical standard deviation normalized by

the mean).

3.5.3. Residual calculation

The ResidualCalculator is a managing object which

takes a DataContainer, Projector and BasisSet

and uses them to compute residuals. It tracks the current

reconstruction, i.e. cxyzi. In other words, for the data Dsjkc and

the current reconstruction cxyzi it computes

r ¼ Ac � I; ð13Þ

where r and I are flattened vectors of the residual and data

matrices, respectively, using the notation introduced in equa-

tion (7). It also computes the gradient of a residual norm,

which is used by the gradient-based optimization algorithms

implemented in MUMOTT.

A special ZonalHarmonicsGradientCalculator

is defined to be used as a part of the ZH workflow. It is used to

map a list of ZH coefficients and two angle coordinates onto

the space of all spherical harmonics (up to a maximum order)

in the sample coordinate system and to compute gradients

with respect to the ZH coefficients and the angles.

3.5.4. Optimization

The goal of the optimization is to minimize aLossFunction

(also known as an objective function) by tuning the coeffi-

cients of the underlying model using an Optimizer. The

LossFunction combines a ResidualCalculator with

one or several Regularizer instances and can be given a

preconditioner to weight the gradient.

There are currently two types of loss function, which

support standard least-squares regression (SquaredLoss)

and robust regression via the Huber regressor (Huber, 1964)

(HuberLoss).

There are also various regularization options. One can e.g.

smooth the solution by minimizing the squared L2 norm of the

finite-difference Laplacian operator of the tensor field

(Laplacian). It is also possible to smooth the solution in a

more robust manner by minimizing the Huber norm of the

spatial gradient for each basis-set mode (TotalVariation).

While it can be more difficult to obtain convergence with more

robust terms, MUMOTT can also be configured to use the

Huber approximation for small values to improve conver-

gence.
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Figure 8
Outline of the object-oriented framework in MUMOTT. Orange boxes
show input parameters and data provided by the user, blue ovals show
objects, the green box shows the output, and arrows indicate instances of
objects interacting with one another.
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Other Regularizer classes are available to minimize the

L2 and L1 norms of the tensor field. While the L2 norm

(L2Norm) penalizes large values, which promotes rapid

convergence, the L1 norm (L1Norm) encourages sparse

solutions and tends to reduce noise in the solution. Finally, one

can also use the Huber norm of the tensor field (HuberNorm),

which acts as an L1Norm for large values and an L2Norm for

small values, converging more easily than L1Norm. When

applied with the SH basis set, the L1Norm and HuberNorm

are not rotational invariants and can bias the solution towards

certain directions.

In terms of optimizers, MUMOTT provides gradient

descent with a fixed step size (GradientDescent), with an

option to use Nesterov accelerated momentum, as well as the

LBFGS-B algorithm for quasi-Newton solution of the optimiza-

tion (LBFGS). For the ZH workflow (Section 3.3.4) there is

both a specialized optimizer (ZonalHarmonicsOptimizer)

and a gradient calculator (ZonalHarmonicsGradient-

Calculator). The former is a basic gradient descent opti-

mizer with a special heuristic rule to determine a safe step size

for the angle parameters. Because of the non-convexity of the

cost function, it requires a good starting guess for the angles in

order to converge to a solution.

3.6. Computational efficiency and resource requirements

The computational resources required to perform recon-

structions in MUMOTT are modest compared with previous

implementations due to efficient implementations of the John

transform and the use of memory-efficient solvers. The place

where a user is most likely to run into problems is the memory

requirement for the data set and solution vector, in addition to

a few extra similarly sized arrays needed by the solvers. The

memory requirement is around a few gigabytes in the most

common use cases, but increases with both the size of the

voxel grid and the directional resolution. In order to use the

GPU implementation, one requires a CUDA-compatible

GPU with sufficient VRAM to store an array the size of the

solution vector.

In general, the reconstruction is much less resource hungry

than the preceding data-reduction steps. However, when

conducting sweeps of regularization parameters and full q-

resolved 3D-RSM reconstructions, the reduced runtime from

GPU acceleration has a considerable impact.

Table 3 compares the run times for different pipelines,

platforms and configurations. Each configuration was run ten

times on each platform, and the result was obtained by aver-

aging the run times after discarding the first run, to enable on-

disk caching to take place. All runs were carried out with a

maximum of 20 iterations, although SIGTT converged in 14 or

fewer iterations in all cases.

The runs were carried out in separate sequentially run

processes, which means that just-in-time compiled kernels

were not reused beyond what is automatically cached on disk.

This has the largest effect on DD, which creates sub-

geometries for each basis function and therefore needs to

recompile code to carry out the John transform for each sub-

iteration. This adds approximately one second of overhead per

basis function. Therefore, DD can perform substantially better

than what is apparent from this table when the same geometry

is run multiple times in a single process, as may be done for q-

resolved reconstruction. The time required to load data was

not included in the timing to eliminate the dependency on the

file systems used for benchmarking.

4. Outlook

Various additions and improvements to MUMOTT are fore-

seen for the future. One of the main difficulties of performing

tensor tomography experiments at present is the interfacing of

the existing data analysis pipelines at the various synchrotron

end stations with the reconstruction pipeline. At present, such

an integration relies on two intermediate steps. In the first

step, the detector images are azimuthally regrouped, which

results in a number of new data files containing the azimuth-

ally regrouped intensities that are organized projection by

projection, mirroring the order in which the experiment was

performed. In the second step, the experimental data set is

sliced into MUMOTT-compatible HDF5 files as described in

Table 2, which contain the data organized by q bins. These

extra analysis steps are often slow as they require many read

and write operations. On-the-fly reconstructions would

require live azimuthal regrouping of detector images and a

more efficient data pipeline that allows fast slicing in the q

dimension.
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Table 3
Comparison of reconstruction times in seconds averaged across ten runs
each for a typical single-q data set consisting of 247 projections, each with
65 � 55 pixels and eight detector segments, using different reconstruction
pipelines and running on different computers.

N is the number of basis functions per voxel. In all cases, relative uncertainties
were smaller than 5% and are omitted to maintain ease of reading. The
workstation (WS) data were obtained using an AMD Ryzen 7 3700X

processor with eight physical cores, 64 GB of DDR4, 2666 MHz RAM and, for
the GPU-accelerated calculations, an Nvidia GeForce RTX 3060 GPU with
12 GB of VRAM. The high-performance computing (HPC) CPU timings were
generated using eight top-level threads on a 64-core Intel Xeon Platinum 8358
@ 2.0 GHz CPU with some operations utilizing lower-level multithreading.
The HPC GPU timings were obtained on an Nvidia A100 GPU with 40 GB of
VRAM and eight threads on 16 cores of a 64-core Intel Xeon Platinum 8358 @

2.0 GHz CPU.

CPU GPU

Pipeline N WS HPC WS HPC

SIGTT 6 23 18 9 9
20 45 29 18 14
72 108 69 60 36

MITRA 18 41 22 13 8

50 93 45 40 14
162 271 156 115 37

DD 18 81 72 40 43
50 156 157 101 111
162 334 392 290 346

MOTR 18 9 8
50 12 10
162 46 22
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At present, MUMOTT is able to compute various proper-

ties of reconstructions and save the results to HDF5 files. The

user then has the responsibility for analysis and visualization

of the reconstructed quantities. It will be useful to add the

option to write to formats compatible with common visuali-

zation software packages.

Nielsen et al. (2023b) used simulated data for the purpose of

validation and comparison of various reconstruction methods.

Being easily able to generate simulated data in MUMOTT

would be useful not just for validation but also to plan

experiments and to generate synthetic data for training

machine learning models.

The splitting of the tensor tomography reconstruction into

discrete 2D-RSM shells is a useful simplification that reduces

the size of individual reconstruction problems. It would,

however, often be advantageous to combine several q bins

into a single reconstruction to enforce certain types of prior

knowledge of the nanostructure on the reconstruction for

sample systems where an appropriate model is available. This

applies e.g. in the case of texture tomography (Frewein et al.,

2024) with Bragg scattering from nanocrystalline materials,

where the rotational symmetries of the crystal lattice can be

imposed on the reconstruction by performing a combined

reconstruction of several q bins at once. Also, in the case of

fiber scattering, different q ranges can contain scattering from

different sample orientations, and a combined approach to

reconstruction is expected to be able to alleviate missing

wedge artifacts in the reconstructions.
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