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Small- and wide-angle X-ray scattering tensor tomography are powerful
methods for studying anisotropic nanostructures in a volume-resolved manner
and are becoming increasingly available to users of synchrotron facilities. The
analysis of such experiments requires advanced procedures and algorithms,
which creates a barrier for the wider adoption of these techniques. Here, in
response to this challenge, we introduce the MUMOTT package. It is written in
Python, with computationally demanding tasks handled via just-in-time
compilation using both CPU and GPU resources. The package has been
developed with a focus on usability and extensibility, while achieving a high
computational efficiency. Following a short introduction to the common work-
flow, we review key features, outline the underlying object-oriented framework
and demonstrate the computational performance. By developing the MUMOTT
package and making it generally available, we hope to lower the threshold for
the adoption of tensor tomography and to make these techniques accessible to a
larger research community.

1. Introduction

The properties of numerous materials depend on the hier-
archical organization of their basic building blocks, ranging
from the nanometre to the micrometre scale. Examples
include plant materials assembled from cellulose and lignin
(Fratzl & Weinkamer, 2007), bone constructed of assemblies
of mineralized collagen fibrils (Reznikov et al, 2014), and
polymeric materials, such as semi-crystalline polymers
(Schrauwen et al., 2004; Stribeck et al., 2008; Tang et al., 2007)
and liquid-crystalline polymers composed of rigid macro-
molecules (Gantenbein et al., 2018). The study of structure—
property relationships of hierarchical materials for applica-
tions in biology, the biomedical field or polymer engineering
therefore relies on accurate structural characterization from a
wide range of techniques. Here, X-ray techniques are of
particular interest as they can provide volume-resolved
nanostructural information in macroscopic samples thanks to
their high penetration depth and non-destructive nature.
Methods such as X-ray absorption and phase contrast
computed tomography (CT) therefore play an important role
in providing high-resolution densimetric measurements of 3D
samples (Endrizzi, 2018; Ou et al., 2021).

In addition to the densimetric fields, the arrangement of
nanostructural elements, in particular their direction and
degree of alignment, is important for many mechanical and
functional properties on larger length scales. This situation
introduces a further methodological challenge: bridging the
length scales between nanostructural building blocks and the
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macroscopic specimen. One approach to this challenge
involves probing nanostructure orientation in a volume-
averaged manner using techniques based on polarization,
scattering, diffraction or magnetic relaxation (Georgiadis et
al., 2016). For spatially resolved information, X-ray and
neutron diffraction approaches can be used, including direc-
tional dark-field (DDF) imaging (Jensen et al., 2010; Busi et al.,
2023), which probes the orientation on the micrometre scale
through the integrated scattering signal, as well as scanning
small- and wide-angle scattering techniques, which probe the
nanoscale structures. Specifically, small-angle X-ray scattering
(SAXS) probes the spatial variation of the electron density,
providing information on structural elements with character-
istic length scales in the range of tens to hundreds of nano-
metres. It thus provides access to information regarding the
structural organization and orientation of the material at the
corresponding length scales, while X-ray diffraction (XRD)
(in this paper called wide-angle X-ray scattering, WAXS)
probes atomic distances and crystal structure. Whereas DDF
imaging comprises a family of full-field imaging methods,
SAXS and WAXS can be used as scanning imaging techniques
in which the sample is raster-scanned with a focused X-ray
beam, providing an image of the sample consisting of a 2D
diffraction pattern in each pixel. Tomographic reconstruction
of such measurements using isotropically scattering samples is
known as XRD-CT and is frequently used in both the SAXS
(Stribeck et al., 2006; Schroer et al., 2006) and WAXS (Kleuker
et al., 1998; Stock et al., 2008; Bleuet et al., 2008) regimes at
synchrotron X-ray sources.

To access the orientation information of the underlying
ultrastructure within a 3D specimen, tomographic methods
can be extended from the reconstruction of scalar fields to
tensor fields describing the directionality of the signal, which is
in general called tensor tomography (TT). The most estab-
lished technique in this category is diffusion magnetic reso-
nance imaging, also called diffusion tensor imaging, which is
widely used to study the 3D arrangement and orientation of
neurons. In the case of X-rays, TT has been demonstrated for
DDF (Malecki et al., 2014; Kim et al., 2020), SAXS (Liebi et al.,
2015; Schaff er al., 2015; Liebi et al., 2018; Gao et al., 2019;
Nielsen et al., 2023b) and WAXS (Griinewald et al., 2020).
Other related tomography approaches which can be consid-
ered as TT include probing magnetic field directions with
circularly polarized X-rays (Donnelly ef al., 2017) or polarized
neutrons (Sales et al., 2017).

The acquisition and analysis of TT data is a non-trivial
undertaking, creating a barrier for the wider adoption of these
powerful techniques. In response to this challenge, specifically
with regard to the analysis of such data, we here introduce the
software package MUMOTT for the reconstruction of TT
data. While the current implementation supports the cases of
SAXS and WAXS, the framework offers the possibility of
including other modalities in the future. In the following, we
first provide a brief overview of the methodology (Section 2)
before describing the structure and functionality of
MUMOTT (Section 3). Finally, we give a short outlook on
potential future additions and developments (Section 4).

2. Methodology

SAXS- and WAXS-TT are conceptually similar to XRD-CT.
Specifically, in both techniques the sample is raster-scanned
through a focused beam to produce a number of 2D projec-
tions, varying the sample orientation between each projection.
Unlike XRD-CT, SAXS- and WAXS-TT work with azimuth-
ally regrouped detector images where the intensity of the
scattered X-rays in a number of azimuthal bins is recorded
rather than a single azimuthally integrated intensity. The width
of the azimuthal bins depends on the desired angular resolu-
tion of the reconstruction. The azimuthal regrouping can be
done with a number of freely available software tools such as
pyFAI (Kieffer et al., 2020) and matfraia (Jensen et al., 2022).
The experimental data thus form a five-dimensional data set
consisting of the tomographic rotation, the two directions of
the raster scan grid, the scattering angle 26 and the azimuthal
angle ¢. MUMOTT deals with the transformation of such a
five-dimensional data set into a six-dimensional reconstruc-
tion, consisting of a three-dimensional voxel map containing a
three-dimensional reciprocal-space map (3D-RSM) in each
voxel.

We assume that the data have already been corrected for
various experimental errors pertaining to solid angle,
geometric distortions and polarization. To account for the
effect of absorption by the sample, the collected data can be
normalized by the transmitted intensity, as is common practice
in XRD-CT. Especially at small scattering angles, this makes it
possible to carry out reconstructions even with low sample
transmission coefficients (~1% has been demonstrated),
assuming sufficient incident flux. The measurement of the
transmitted beam intensity can be done using either a semi-
transparent beam stop, a diode mounted on the beam stop or a
fluorescence measurement (Pauw, 2013). Alternatively,
synthetic transmission data can be calculated via an absorp-
tion CT reconstruction (Griinewald et al., 2023).

The experiment is described in a coordinate system defined
by the voxel grid of the sample and the three orthogonal basis
vectors X, y and z. Typically, these vectors are chosen to
conform to the convention of the beamline where the
experiments were performed, such that the sample-fixed
coordinates correspond to the laboratory coordinates when
the goniometer angles are zeroed. The geometry of the
instrument is defined by specifying a number of unit vectors in
these laboratory coordinates. These vectors include the beam
direction p (also called the projection vector), the two
orthogonal directions of the raster scan i and k, and two
vectors describing the origin and the positive direction of the
azimuthal integration, q, and qq, respectively, defined by the
equation

q(p) = cos(26/2) (cos ¢ g, + sin ¢ qq,) — sin(26/2) p
2 oS ¢ Qg + Sin ¢ Q- 1

This equation gives the normalized scattering vector (¢)
probed by each detector segment as a function of the scat-
tering angle 26 and the detector azimuth angle ¢. The second
line gives a useful approximation valid for small scattering
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Table 1
Unit vectors defining the experimental geometry and their values in the
standard geometry used in previous publications such as Liebi et al
(2018).

Symbol Standard Field name

P +z p_direction_0

i +y j_direction_0

k +x k_direction_0

q +X detector_direction_origin

oo +y detector_direction_positive_ 90
a +y inner_axis

B +x outer_axis

angles. The sample can be rotated by a goniometer, and the
rotation of the sample goniometer at a given setting labeled s
results in a rotation matrix R,. Typically, the goniometer is
constructed of two orthogonal rotation stages: an inner
‘rotation’ stage and an outer ‘tilt’ stage. The full rotation is
then defined by a pair of rotation angles « and f with corre-
sponding rotation axes & and f, such that Ry = RB(ﬁ) R;(@).
While all these vectors may be chosen freely in MUMOTT
(under the restriction that certain vectors are orthogonal to
certain other vectors), we work in a standard geometry in this
paper, given by the choices listed in Table 1 and visualized in
Fig. 1.

The scattering from a given voxel (x, y, z) is proportional to
a characteristic function f(q) called the 3D-RSM. In the
context of SAXS-TT, the RSM is the Fourier transform of the
auto-correlation function of the electron density taken over a
small volume. For the purpose of reconstruction, we consider
one ‘shell’ of reciprocal space at a time, and the 3D-RSM is
built up by reconstructing and stacking successive 2D shells
[sketched in Fig. 2(d)]. For one such shell we consider the
function f72(q), which depends only on the direction of the
scattering vector. This function is modeled by a sum of basis
functions,

fR@ =) couBi@. @

=4
k
Figure 1

Illustration of vectors defining the experimental geometry in the
laboratory coordinates (i.e. at o = = 0).

where B;(q) are the basis functions (see Section 3.3 below) and
Cyyz; are the unknown expansion coefficients that we want to
find.

The function fxzylz (q) is described in sample-fixed coordinates
such that, at a rotation of the sample given by Ry, the detector
segment at the angle ¢ measures the component f2°[R] G(¢)],
where the superscript T denotes the matrix transpose. In the
normal setting, the detector is split into a number of evenly
spaced segments indexed by c, covering either the full 360° for
WAXS or 180° for SAXS. Each detector segment [Fig. 2(a)] is
defined by a start angle @, stare and an end angle @¢ eng. As
such, the detector segment probes the average of the scat-
tering function within this interval given by the integral

Pe,end

1 / DRTA
[ fo:|Rs 4(9) | dg.
(pc,end - (pc,slart YZ[ ]

Pe start
By inserting equation (2) into the above, we define the

constants [Figs. 2(a) and 2(b)]

Pe,end

B = B[R'4@]de. )

sc,i T
Peend — goc,start

Pe.start

which describe how much each basis function scatters in the
direction measured by a given detector segment, illustrated in
Fig. 2(a). This is an integral over a single scalar variable, which
can be numerically evaluated by standard methods of quad-
rature.

To complete the forward model, we have to sum the
intensity contributions from all voxels in the path of the
incident beam. At a given position of the raster scan and

0 1 100 102

Weight Amplitude

Figure 2

(a) Layout of vectors and angles on the detector. A single detector
segment is marked with a thick black line. (b) Integrated basis function
values B, ; plotted in a stereographic projection. The solid black arc
corresponds to the single detector segment marked in panel (a). (c)
Computed probing of each voxel by bilinear interpolation. (d) Splitting of
a 3D-RSM into a stack of 2D-RSMs at fixed g lengths.
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rotation of the goniometer, only the voxels that are illumi-
nated by the beam contribute to the measured scattering. A
given voxel is indexed by the three integers x, y and z. At a
given setting of the sample goniometer the position of the
voxel is

r,.=aR[x y z] —b(j—ADj — blk— Ak, (4

where j and k are integer indices of the raster scan, a is the step
size of the cubic voxel grid, b is the step size of the 2D raster
scan, and Aj and Ak are offsets caused by parasitic move-
ments of the sample stage during rotation. Typically, the
resolution of the reconstruction is matched with the raster
scan such that a = b.

Finally, to include the scattering from all probed voxels, we
introduce the factor Py ,. which describes how much the xyz
voxel overlaps with the incoming beam at the position j, k of
the raster scan at the goniometer setting s. Pgj ,. takes a
value between 0 and 1, with the value 0 for any voxel that does
not intersect the X-ray beam. Using this factor, we can now
write the scattered intensity as a sum over all voxels in the
voxel grid:

@)y = Y Py L2 [RIA(@)]. ®)
xyz
Fig. 2(c) gives a graphical interpretation of the Py .
coefficients. By combining equations (2) and (5) we can now
write up the full forward model for TT:

Isjkc = Z stk,xyz Z Bsc,icxyzi (6)

xyz i

& 1=Ac, (7)

where on the second line we have defined the data vector I,
the system matrix A and the coefficient vector ¢ in order to
write the problem in linear algebra terms. The system matrix
has the block matrix structure

[Pojsxyz] @ [Boe.]
[Pljk,xyz ® [Blc,i]
A = . ’ (8)

[PNJ.jk,xyz] ® [BNA.c,i]

where ® is the Kronecker product. Note that the system
matrix does not factorize into a projection part and a reci-
procal-space part, as both the projection operator and the
basis function matrix depend on the orientation of the sample.
This structure highlights the difference between tensor
tomography and many other multi-modal tomography tech-
niques such as XRD-CT, X-ray fluorescence tomography (de
Jonge & Vogt, 2010), time-resolved tomography and spectral
tomography (Shikhaliev, 2008), where the real-space projec-
tion operation and the mapping of the other modalities are
decoupled. This prevents the use of many techniques that rely
on this factorization, such as principal component analysis
methods (Gao et al., 2021).

With the forward model defined, we can now formulate the
inversion as the solution of a minimization problem:

¢ = argmin[|[I - Ac[[2 + x|[Dell} +...]. ()

where || - ||, and || - ||, are two, potentially identical, vector
norms, [ is a regularization parameter, and D is a weight
matrix. The ellipsis indicates that more regularization terms of
the same form as u||Dc| |Z may be added.

3. Implementation

MUMOTT is written in Python, with performance-critical
parts implemented using the numba package (Lam et al., 2015)
for CPU and GPU acceleration in order to balance compu-
tational efficiency, portability and maintainability. It also
depends on NumPy (Harris et al., 2020), SciPy (Virtanen et al.,
2020), scikit-image (Van der Walt et al., 2014) and colorcet
(Kovesi, 2015). The package is extensively documented and
the documentation is available online at https://mumott.org
and at https://doi.org/10.5281/zenodo.7919448, including
various examples in the form of Jupyter notebooks.

A variety of common tasks pertaining to data alignment and
reconstruction are accessible via functions that provide a
rather simple yet customizable interface. These functions
represent ‘pipelines’ (Section 3.4) and are intended to serve as
the primary interface for most users.

The pipeline functions combine a number of individual
tasks and components, which are represented via objects and
are part of the underlying object-oriented framework (Section
3.5). Through the latter, advanced users and developers can
customize, adapt and extend the functionality of MUMOTT.
MUMOTT is released under the Mozilla Public License
Version 2.0 and developed as free and open source software,
inviting the contributions of other groups and developers.

In the following, we first provide a short demonstration of
the workflow (Section 3.1) before addressing basis sets
(Section 3.3), several common pipelines (Section 3.4), the
underlying object-oriented framework (Section 3.5) and
computational efficiency (Section 3.6).

3.1. Workflow

Figs. 3 and 4 show examples of simple workflows in
MUMOTT for reconstructing a voxel map of 2D-RSMs from
experimental data. In the following sections, we explain each
of the steps in this process.

# Load data
data_container = DataContainer (’trabecular_bone.h57)

# Perform alignment

shifts, _, _ = run_optical_flow_alignment (
data_container, use_gpu=True)

data_container.geometry.j_offsets = shifts[:, 0]

data_container.geometry.k_offsets = shifts[:, 1]

# Execute reconstruction pipeline
result = run_mitra(data_container)

Figure 3
Minimal example of a reconstruction workflow using the MITRA pipe-
line (Section 3.4.1).
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3.1.1. Loading the data

The acquired data (after beamline-specific preprocessing)
are handled using a DataContainer, which is created by
loading an HDFS file (Table 2) that contains the azimuthally
regrouped data for one ¢ bin of the experiment. While a full
experimental data set containing a detector frame for each
scan position can be quite large, commonly of the order of
hundreds of gigabytes, a single ¢ bin of the azimuthally
regrouped data is usually hundreds of megabytes to a few
gigabytes. The prepared data files can contain the geometry
data and sample offset information or only the data.

3.1.2. Definition of the geometry

The geometry is defined by the vectors listed in Table 1,
which can be given in any consistent coordinate system. In the
examples shown, the full geometry data are already contained
in the data file (and hence the DataContainer), but in
general it is possible to override certain parameters after
loading.

3.1.3. Aligning the data

Before a meaningful reconstruction can be carried out the
data must be aligned, which means calculating the offsets
defined in equation (4). To this end, MUMOTT provides
several pipelines that use the transmission measurement or
the average scattering to correct misalignment between each
projection that occurs due to parasitic movements during
acquisition. In the examples shown here, we use the function
that implements the optical flow alignment procedure
(Odstréil et al., 2019), which relies on center-of-mass and
tomographic consistency techniques. The alignment functions
return, most importantly, the shifts that are needed for

# Load data
data_container = DataContainer (’trabecular_bone.h57)

# Perform alignment

shifts, _, _ = run_optical_flow_alignment (
data_container, use_gpu=True)

data_container.geometry.j_offsets = shifts[:, 0]

data_container.geometry.k_offsets = shifts[:, 1]

# Define forward model
projector = SAXSProjectorCUDA (
data_container.geometry)
basis_set = SphericalHarmonics(ell_max=8)
residual_calculator = GradientResidualCalculator (
data_container , basis_set, projector)
loss_function = SquaredLoss(residual_calculator)
12_norm = L2Norm()
loss_function.add_regularizer(
name=’12norm’, regularizer=12_norm,
regularization_weight=2e-6)

# Carry out reconstruction

optimizer = LBFGS(loss_function, maxiter=20)
result = optimizer.optimize ()
Figure 4

Extended example of a reconstruction workflow using a Tikhonov (L,)
regularized least-squares model and spherical harmonics as basis func-
tions with the object-oriented interface (Section 3.5).

Table 2
Outline of the HDFS5 file format used by MUMOTT.

The indents indicate the hierarchy of entries; 0 is an entry in the group
projections, whereas data is an entry in the group 0 and so on.

Path Type
p_direction_0 float(3)
j_direction_0 float(3)
k_direction_0 float(3)
detector_direction_origin float(3)
detector_direction_positive_90 float(3)
inner_axis float(3)
outer_axis float(3)
volume_shape int(3)
detector_angles float(ny)
projections Group
0 Group
data float(ny, n, ny)
diode float(n;, ny)
inner_angle float(l)
j_offset float(l)
k_offset float(l)
outer_angle float(l)
weights float(n;, ny, ny)
1 Group

aligning the data. These values are then used to override the
offsets stored in the DataContainer object.

3.1.4. Defining the reconstruction model

The reconstruction model is defined by the choice of basis
functions, the form of the cost function and the regularization
terms. A large number of different algorithms can be
constructed by combining these three choices. The simplest
approach is to utilize one of the existing pipelines (Section
3.4), as illustrated by the first example (Fig. 3) in which the
modular iterative tomographic reconstruction algorithm
(MITRA) pipeline (Section 3.4.1) is used. Alternatively, one
can configure a reconstruction model using the individual
objects that represent the different components. This
approach is demonstrated by the second example (Fig. 4),
where we choose a basis of spherical harmonics in combina-
tion with a squared-difference loss function and Tikhonov
(L,) regularization.

3.1.5. Minimizing the loss function

Once the loss function is defined, the optimization problem
can be solved using one of a number of optimization routines.
While this step is included in the case of the predefined
reconstruction pipeline in the first example (Fig. 3), it needs to
be explicitly specified when constructing the workflow as in
the second example (Fig. 4), where we use the gradient-based
LBFGS (Liu & Nocedal, 1989) optimizer. In the case of
regularized models, one should then perform a sweep of the
regularization parameter space in order to determine (a)
sensible regularization parameter(s).

3.2. Deriving standard quantities from the output

The result of a tensor tomography reconstruction is an array

of optimized coefficients ¢* = [c;‘yﬂ-] which are the voxel-by-
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voxel expansion coefficients of the local 2D-RSM shells in
terms of the specific basis functions. In general, the coefficients
can be interpreted using the corresponding basis set to
compute latitude—longitude maps of the 2D-RSM shells, and
reconstructions of several ¢ bins can be combined to construct
3D-RSMs from these maps. A number of derived quantities
are conventionally used for evaluation and visualization
of reconstructions, and these can be calculated efficiently
from the coefficients without needing to compute latitude—
longitude maps. Note that we define here the derived quan-
tities which are part of the output structure of MUMOTT.
Additional quantities can be calculated from the array of
optimized coefficients, depending on the basis function.

The mean scattering intensity, also called the isotropic
intensity, is defined as

f_<fxyz(q) / / xyz (9 ¢) d¢ sin@d@, (10)

where 6 and ¢ are a pair of polar coordinates for the unit
sphere.

A 2D-RSM can also be expanded in tensor components.
The rank-2 tensor is of particular interest because it allows
easy computing of primary directions given by the eigen-
vectors of the matrix. The second-moment tensor is a 3 x 3
matrix with elements

Mij = (qiqufyli(fl)%, (1)

where g; are the x, y and z components of q for i = 1, 2 and 3,
respectively.

For many samples, a main orientation, such as a fiber
symmetry axis of the nanostructure, can be defined for each
voxel. The rank-2 tensor provides a means of efficiently
computing this direction through its eigendecomposition.
However, the interpretation of the main orientation of the
nanostructure depends on its scattering characteristics. In
structures where a single direction of strong scattering is
expected at two opposite poles, the main orientation is the
eigenvector corresponding to the largest eigenvalue. Similarly,
for samples where a ring equatorial band with strong scat-
tering is observed (e.g. the structure displayed in Fig. 5) the
eigenvector corresponding to the smallest eigenvalue should
be chosen. This provides a fast and noise-tolerant approach to
finding the main nanostructure orientation, except in cases
where the rank-2 term vanishes. The latter can occur, e.g., in
Bragg scattering from cubic symmetric materials, where more
advanced approaches are needed.

Another quantity frequently used to describe the aniso-
tropy (Basser & Pierpaoli, 1996) of tensor tomography is the
fractional anisotropy (FA), which can be computed from the
eigenvalues of the 2nd moment tensor:

\/()“1 - )hz)z + (- )\3)2 + (A — )‘1)2

V2(A + A3+ 13)

FA =

(12)

Here, A1, A, and A3 are the three eigenvalues of the second
moment tensor. FA = 0 for perfectly isotropic scattering, and it
reaches a maximum value of 1 when there is strong scattering
in one direction and the scattering goes to zero in the ortho-
gonal directions. Other values can be calculated from the
coefficients to describe the anisotropy, also referred to as the
degree of orientation, and these are described elsewhere
(Liebi et al., 2015; Nielsen et al., 2023b; Nielsen et al., 2024).

3.3. Basis sets

The most notable difference between different reconstruc-
tion algorithms is the choice of basis functions. Fig. 5 shows a
comparison of the optimized 2D-RSM shell of a single voxel of
the same sample using four different basis-set types.

3.3.1. Spherical harmonics

The spherical harmonics (SH) are a set of orthogonal
polynomials that derive from the solution to the Laplace
equation in spherical coordinates. Any function on the unit
sphere can be represented by an infinite expansion in spherical
harmonics, but in practice the expansion must be truncated at
some finite order. Such a finite expansion in spherical
harmonics is called a band-limited spherical function and can
be used to represent the 2D-RSM (Nielsen e al., 2023b). The
SH basis set is fully defined by the band limit €, at which the
expansion in spherical harmonics is truncated. This sets the
resolution of the narrowest diffraction features that can be
reconstructed to approximately 27/{,,,x radians.

3.3.2. Nearest neighbors

A nearest-neighbors (NN) basis set uses a set of NN indi-
cator functions. This model is therefore defined by a grid of
orientations alone and the resolution is set by the distance
between grid points. This basis set can be used to emulate the
algorithm first presented by Schaff et al. (2015), which splits
the TT problem into a set of independent scalar tomography
problems.

a) SH d) GK
8
é Q B
8 g
1.0
4 \ > 8
o 00 £
. < > o5 £
~15

Figure 5

Comparison of (a) SH, (b) ZH, (c¢) NN and (d) GK basis sets. The upper
row shows a single basis function for each basis set. The lower row shows
the RSM at a single ¢ of a single voxel of a reconstruction using each of
the four basis sets. The crosses in panels (¢) and (d) show the grids which
are part of the definition of the NN and GK basis sets. The directions used
to define the NN model are the face centers of the truncated icosahedron.
The directions used in the GK model are given by a modified Kurihara
mesh. The circles in panel (b) indicate the symmetry axes.
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3.3.3. Gaussian kernels

Like the NN basis set, the Gaussian kernels (GK) basis set
is defined by a grid of orientations, but instead of indicator
functions it uses smooth spherical Gaussian functions, rotated
to be centered on the various grid orientations. It therefore
needs one extra parameter to define the basis set, namely the
width of the kernel. The GK basis set has many of the same
properties as the NN basis set but unlike the former results in
smooth RSMs. The resolution depends on both the distance
between grid points and the kernel width. Such spherical
kernels are commonly used in texture analysis, where the
specific function used is referred to as the Bunge normal
distribution (Bunge, 1969) to distinguish it from several other
Gaussian-shaped kernel functions that are frequently used.

3.3.4. Zonal harmonics

The axially symmetric method established by Liebi et al
(2015) uses a zonal harmonics (ZH) basis set and thereby
differs from the other methods implemented in MUMOTT by
having a nonlinear forward model. This requires a separate
workflow involving a specialized calculator for the gradients
and optimizer. To enable high-order expansions, simplify the
code, and ensure interoperability between the ZH and SH
workflows, rotations and gradients are calculated in coefficient
space using Wigner D-matrices. This allows orders up to £, =
100 in the current implementation, although orders higher
than £,,,,x =~ 30 are difficult to handle in practice due to the
large number of coefficients. Details of the implementation
are given by Carlsen et al. (2024).

The nonlinearity of the forward model in the ZH approach
makes the loss function non-convex, which renders the opti-
mization problem more challenging. Approaches to over-
coming this difficulty include regularization of the angle
parameters and smoothing of the gradient (Liebi et al., 2018),
as well as the use of an ensemble of randomized starting points
(Nielsen et al., 2023b). In MUMOTT we use a starting guess
provided by a different reconstruction algorithm to determine
the symmetry direction.

3.4. Pipelines

MUMOTT provides various pipelines that implement
reconstruction and alignment workflows. The former include
both ‘standard’ and asynchronous pipelines. The standard
pipelines can be run using both CPU and GPU resources and
are usually highly customizable. The asynchronous pipelines
are optimized for GPU resources and thus speed, and are
usually slightly less adjustable. They employ asynchronous
execution on the GPU to avoid the overhead caused by
transferring data between the CPU and GPU.

3.4.1. Standard reconstruction pipelines

The simultaneous iterative reconstruction technique (SIRT)
is a popular reconstruction algorithm thanks to its inherent
regularizing properties that result from semi-convergence
(Elfving et al., 2012) and the small number of tunable para-

meters. It has previously been used for tensor tomography by
e.g. Schaff et al. (2015) and Kim et al. (2020). In MUMOTT a
traditional approach to SIRT is implemented in the SIRT
pipeline.

While the SIRT algorithm is not conventionally stated as a
minimization problem, it has been shown that it is equivalent
to a specific preconditioned gradient-descent weighted least-
squares optimization (Gregor & Fessler, 2015). Through this
re-formulation, the basic SIRT reconstruction becomes com-
patible with various regularizers. The weight-preconditioner
approach employed in this form of SIRT can also be extended
to the RSM given by equation (3). This approach is imple-
mented in the MITRA pipeline, which permits arbitrary
regularizers and basis sets to be used, as well as Nesterov
momentum acceleration.

The spherical integral geometric tensor tomography
(SIGTT) pipeline sets up the basic reconstruction model using
an SH basis set, a squared-difference loss function and regu-
larization via a finite-difference Laplacian filter (Nielsen et
al., 2023b). The optimization problem is solved with the
LBFGS-B algorithm and uses a stop criterion based on the
relative change in the loss function.

The discrete directions (DD) pipeline emulates the recon-
struction technique used by Schaff er al. (2015), which splits
the tensor reconstruction into a set of independent scalar
reconstructions using the NN basis set. The pipeline employs
the SIRT algorithm for the individual scalar reconstructions.
DD has the practical advantage of needing less VRAM than
methods which reconstruct the entire RSM at once, as it only
loads one scalar component onto the GPU at a time.

3.4.2. Asynchronous pipelines

These pipelines, optimized for GPU execution and speed,
include a tensor SIRT pipeline, which is similar to MITRA
without Nesterov momentum. In addition, there is momentum
total variation reconstruction (MOTR), which is essentially
the default MITRA pipeline with L; and two-sided total
variation regularization. Finally, robust and denoised tensor
tomography (RADTT) optimizes for the Huber norm with
two-sided total variation regularization through Nesterov
accelerated gradient descent. This last pipeline requires fine-
tuning of the configuration in order to converge reasonably
well, but once an appropriate step size and smoothing terms
are found, it is relatively robust against noise.

There are also sparse versions of the asynchronous pipe-
lines, which use a modified version of the John transform that
calculates the reciprocal-space and real-space projection
operations simultaneously within one kernel, using a sparse
approximation to the reciprocal-space mapping. This is not
necessarily faster than computing the two mappings separately
(unless the representation is very sparse, such as only mapping
one basis function to each segment). It does, however, use less
VRAM, as it is not necessary to store the intermediate result
between carrying out the John transform and carrying out the
reciprocal-space mapping.
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3.4.3. Alignment

The objective of alignment is to determine the offsets Aj
and Ak of equation (4) that result from parasitic movement
and misalignment of the goniometer and drift during the
experiment (Frank et al., 1992). The alignment step is essential
in tomography, as any misalignment will be reflected as an
artifact in the tomographic reconstruction. There are many
algorithms to solve this problem, leading to sub-pixel align-
ment accuracy, taking into account various experimental
systems and data.

MUMOTT currently provides two alignment pipelines.
Both algorithms typically work with the transmitted intensity
data stored in the DataContainer or another isotropic
signal such as the azimuthally integrated intensity. They
iteratively update the offsets for each projection by recon-
structing the absorption tomogram via a projector. The overall
workflow is shown in Fig. 6.

The phase matching alignment pipeline is based on cross-
correlation and follows Guizar-Sicairos et al. (2008). Cross-
correlation alignment has been proven for continuous objects
in electron microscopy tomography by Guckenberger (1982)
and has been widely used since. The principle is to determine
the offsets by means of correlation functions formed from
image pairs of the projections, comparing the centers of mass
of the image pair correlation peaks. This method is fast and
can provide sub-pixel accuracy for data with small misalign-
ment.

When the data exhibit misalignment of multiple pixels, the
cross-correlation alignment alone can struggle to find the
appropriate coordinate transformation. For such cases,
MUMOTT provides the optical flow alignment pipeline, which
implements a toolbox algorithm based on the work of Odstré¢il
et al. (2019). This approach uses multiple successive and
interconnected alignment procedures, including optical flow
projection, matching alignment, line vertical alignment and

Raw data

Data Estimated shifts

Terminate
rue

AT T T T TN

,’ Weight centering :
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Synthetic aligned data

Figure 6
Alignment pipeline workflow. Steps shown with dashed outlines apply
only for the optical flow alignment pipeline.
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Figure 7

Slices from absorption reconstructions, (a) before alignment, and (b) and
(c) after alignment with (b) the phase matching method and (c) the
optical flow method. The projections have been sorted so that the
projection directions of neighboring projections are as close to each other
as possible. (d) Rotations and tilts. (¢) and (f) Alignment offsets from (e)
the phase matching method and (f) the optical flow method. Note how
the rotations correlate with changes in Aj, whereas the tilts correlate with
changes in Ak. In this case the offsets result from misalignment of the
goniometer’s rotation axes with the sample center.

weight centering. The method is tunable through various
parameters and filters and is therefore able to align extremely
misaligned data. It thereby provides an approach that is usable
for a larger variety of experimental data.

Examples of alignment results with the two pipelines are
shown in the case of a publicly available experimental data set
from trabecular bone in Fig. 7 (Nielsen et al., 2023a).

3.5. Object-oriented framework

The internal architecture of MUMOTT consists of an
object-oriented framework with some elements of functional
programming. The structure of the framework is described in
Fig. 8. Many objects are safely mutable after instantiation and
employ hashes of their mutable properties to track the state of
linked instances. This is used internally to trigger recomputing
of derived properties when required.

3.5.1. Data and geometry

The DataContainer is the owner of the input data,
which are stored in HDF5 format. The input (measurements
and geometry metadata) is stored as a list of projections,
indexed by the direction index s as given in equation (5), and
the measured tensor tomographic data can be accessed as a
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Measured data and metadata
including geometry information

DataContainer Bandwidth or resolution

BasisSet

ResidualCalculator
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Regularizer

Processed via
BasisSet

Tensor ﬁeld properties
(anisotropy, orientation ...)

Figure 8

Outline of the object-oriented framework in MUMOTT. Orange boxes
show input parameters and data provided by the user, blue ovals show
objects, the green box shows the output, and arrows indicate instances of
objects interacting with one another.

four-dimensional array indexed by [s, j, k, i] as in equation (7).
The information related to geometry is stored in a Geometry
object, which is directly linked to the list of projections
attached to the DataContainer. Thus, if a projection is
removed from the list, this will be reflected in the corre-
sponding geometry data being removed from the Geometry
instance. The Geome try object stores the basis vectors of the
system, Le. (p, j, k, qo, Qoo, @, B) listed in Table 1 and shown in
Fig. 1. The vectors must be specified in the laboratory coor-
dinate system, which coincides with the sample-fixed coordi-
nates (x, y, z) when R(s) = 1, i.e. the identity transform. A
rotation operator is then specified, R(s), which may be given
as a rotation matrix or as an axis—angle quadruplet
[a, a(s), B, B(s)]- Using the rotation operator, vectors in the
sample-fixed coordinates are dynamically computed for each
s. This information can be specified in the input data file or by
the user through direct modification of the Geome try object
(see e.g. Fig. 3).

3.5.2. Projectors and basis sets

The Projector and BasisSet classes contain the
methods and properties needed to compute the forward model
defined in equation (7) and its adjoint. The Projector
objects depend on a Geometry object and employ routines
implemented using the numba package (Lam et al., 2015) to
compute the spatial part of the transform, ie. the matrix
elements Py ., in equation (5). This is implemented for both
CPU- and GPU-based computation, the latter using the
numba interface for CUDA. The implementation employs an
approach based on Joseph’s method (Joseph, 1982) using
bilinear interpolation of the field for the forward model and
the projection for the adjoint computation, respectively,

following the work of Xu et al. (2010) and Palenstijn et al.
(2011).

The BasisSet evaluates the constants B, in equation (3)
for the respective basis B (Section 3.3) using the provided
detector geometry and rotation operator R!. The integral is
evaluated using adaptive Newton—Cotes quadrature or
approximated using the central angle of each segment. In
addition, the BasisSet provides a routine for computing
various properties of reconstructed tensors, such as the
orientation as defined by the rank-2 tensor component of the
field, the spherical mean, the variance and the relative
anisotropy (the spherical standard deviation normalized by
the mean).

3.5.3. Residual calculation

The ResidualCalculator is a managing object which
takes a DataContainer, Projector and BasisSet
and uses them to compute residuals. It tracks the current
reconstruction, i.e. ¢y,;. In other words, for the data D and
the current reconstruction c,,; it computes

r=Ac—1, (13)

where r and I are flattened vectors of the residual and data
matrices, respectively, using the notation introduced in equa-
tion (7). It also computes the gradient of a residual norm,
which is used by the gradient-based optimization algorithms
implemented in MUMOTT.

A special ZonalHarmonicsGradientCalculator
is defined to be used as a part of the ZH workflow. It is used to
map a list of ZH coefficients and two angle coordinates onto
the space of all spherical harmonics (up to a maximum order)
in the sample coordinate system and to compute gradients
with respect to the ZH coefficients and the angles.

3.5.4. Optimization

The goal of the optimization is to minimize a LossFunction
(also known as an objective function) by tuning the coeffi-
cients of the underlying model using an Optimizer. The
LossFunction combines a ResidualCalculator with
one or several Regularizer instances and can be given a
preconditioner to weight the gradient.

There are currently two types of loss function, which
support standard least-squares regression (SquaredLoss)
and robust regression via the Huber regressor (Huber, 1964)
(HuberLoss).

There are also various regularization options. One can e.g.
smooth the solution by minimizing the squared L, norm of the
finite-difference Laplacian operator of the tensor field
(Laplacian). It is also possible to smooth the solution in a
more robust manner by minimizing the Huber norm of the
spatial gradient for each basis-set mode (TotalVariation).
While it can be more difficult to obtain convergence with more
robust terms, MUMOTT can also be configured to use the
Huber approximation for small values to improve conver-
gence.
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Other Regularizer classes are available to minimize the
L, and L; norms of the tensor field. While the L, norm
(L2Norm) penalizes large values, which promotes rapid
convergence, the L; norm (L1Norm) encourages sparse
solutions and tends to reduce noise in the solution. Finally, one
can also use the Huber norm of the tensor field (HuberNorm),
which acts as an L1Norm for large values and an L2Norm for
small values, converging more easily than L1Norm. When
applied with the SH basis set, the L1Norm and HuberNorm
are not rotational invariants and can bias the solution towards
certain directions.

In terms of optimizers, MUMOTT provides gradient
descent with a fixed step size (GradientDescent), with an
option to use Nesterov accelerated momentum, as well as the
LBFGS-B algorithm for quasi-Newton solution of the optimiza-
tion (LBFGS). For the ZH workflow (Section 3.3.4) there is
both a specialized optimizer (ZonalHarmonicsOptimizer)
and a gradient calculator (ZonalHarmonicsGradient-
Calculator). The former is a basic gradient descent opti-
mizer with a special heuristic rule to determine a safe step size
for the angle parameters. Because of the non-convexity of the
cost function, it requires a good starting guess for the angles in
order to converge to a solution.

3.6. Computational efficiency and resource requirements

The computational resources required to perform recon-
structions in MUMOTT are modest compared with previous
implementations due to efficient implementations of the John
transform and the use of memory-efficient solvers. The place
where a user is most likely to run into problems is the memory
requirement for the data set and solution vector, in addition to
a few extra similarly sized arrays needed by the solvers. The
memory requirement is around a few gigabytes in the most
common use cases, but increases with both the size of the
voxel grid and the directional resolution. In order to use the
GPU implementation, one requires a CUDA-compatible
GPU with sufficient VRAM to store an array the size of the
solution vector.

In general, the reconstruction is much less resource hungry
than the preceding data-reduction steps. However, when
conducting sweeps of regularization parameters and full g-
resolved 3D-RSM reconstructions, the reduced runtime from
GPU acceleration has a considerable impact.

Table 3 compares the run times for different pipelines,
platforms and configurations. Each configuration was run ten
times on each platform, and the result was obtained by aver-
aging the run times after discarding the first run, to enable on-
disk caching to take place. All runs were carried out with a
maximum of 20 iterations, although SIGTT converged in 14 or
fewer iterations in all cases.

The runs were carried out in separate sequentially run
processes, which means that just-in-time compiled kernels
were not reused beyond what is automatically cached on disk.
This has the largest effect on DD, which creates sub-
geometries for each basis function and therefore needs to
recompile code to carry out the John transform for each sub-

Table 3

Comparison of reconstruction times in seconds averaged across ten runs
each for a typical single-g data set consisting of 247 projections, each with
65 x 55 pixels and eight detector segments, using different reconstruction
pipelines and running on different computers.

N is the number of basis functions per voxel. In all cases, relative uncertainties
were smaller than 5% and are omitted to maintain ease of reading. The
workstation (WS) data were obtained using an AMD Ryzen 7 3700X
processor with eight physical cores, 64 GB of DDR4, 2666 MHz RAM and, for
the GPU-accelerated calculations, an Nvidia GeForce RTX 3060 GPU with
12 GB of VRAM. The high-performance computing (HPC) CPU timings were
generated using eight top-level threads on a 64-core Intel Xeon Platinum 8358
@ 2.0 GHz CPU with some operations utilizing lower-level multithreading.
The HPC GPU timings were obtained on an Nvidia A100 GPU with 40 GB of
VRAM and eight threads on 16 cores of a 64-core Intel Xeon Platinum 8358 @
2.0 GHz CPU.

CPU GPU
Pipeline N WS HPC WS HPC
SIGTT 6 23 18 9 9
20 45 29 18 14
72 108 69 60 36
MITRA 18 41 22 13 8
50 93 45 40 14
162 271 156 115 37
DD 18 81 72 40 43
50 156 157 101 111
162 334 392 290 346
MOTR 18 9 8
50 12 10
162 46 22

iteration. This adds approximately one second of overhead per
basis function. Therefore, DD can perform substantially better
than what is apparent from this table when the same geometry
is run multiple times in a single process, as may be done for g-
resolved reconstruction. The time required to load data was
not included in the timing to eliminate the dependency on the
file systems used for benchmarking.

4. Outlook

Various additions and improvements to MUMOTT are fore-
seen for the future. One of the main difficulties of performing
tensor tomography experiments at present is the interfacing of
the existing data analysis pipelines at the various synchrotron
end stations with the reconstruction pipeline. At present, such
an integration relies on two intermediate steps. In the first
step, the detector images are azimuthally regrouped, which
results in a number of new data files containing the azimuth-
ally regrouped intensities that are organized projection by
projection, mirroring the order in which the experiment was
performed. In the second step, the experimental data set is
sliced into MUMOTT-compatible HDFS files as described in
Table 2, which contain the data organized by g bins. These
extra analysis steps are often slow as they require many read
and write operations. On-the-fly reconstructions would
require live azimuthal regrouping of detector images and a
more efficient data pipeline that allows fast slicing in the ¢
dimension.
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At present, MUMOTT is able to compute various proper-
ties of reconstructions and save the results to HDFS files. The
user then has the responsibility for analysis and visualization
of the reconstructed quantities. It will be useful to add the
option to write to formats compatible with common visuali-
zation software packages.

Nielsen et al. (2023b) used simulated data for the purpose of
validation and comparison of various reconstruction methods.
Being easily able to generate simulated data in MUMOTT
would be useful not just for validation but also to plan
experiments and to generate synthetic data for training
machine learning models.

The splitting of the tensor tomography reconstruction into
discrete 2D-RSM shells is a useful simplification that reduces
the size of individual reconstruction problems. It would,
however, often be advantageous to combine several g bins
into a single reconstruction to enforce certain types of prior
knowledge of the nanostructure on the reconstruction for
sample systems where an appropriate model is available. This
applies e.g. in the case of texture tomography (Frewein ef al.,
2024) with Bragg scattering from nanocrystalline materials,
where the rotational symmetries of the crystal lattice can be
imposed on the reconstruction by performing a combined
reconstruction of several g bins at once. Also, in the case of
fiber scattering, different g ranges can contain scattering from
different sample orientations, and a combined approach to
reconstruction is expected to be able to alleviate missing
wedge artifacts in the reconstructions.
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