CHAL

UNIVERSITY OF TECHNOLOGY

Stereochemistry-aware string-based molecular generation

Downloaded from: https://research.chalmers.se, 2025-11-26 19:17 UTC

Citation for the original published paper (version of record):

Tom, G., Yu, E., Yoshikawa, N. et al (2025). Stereochemistry-aware string-based molecular
generation. PNAS Nexus, 4(11). http://dx.doi.org/10.1093/pnasnexus/pgaf329

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



PNAS Nexus, 2025, 4, pgaf329

https://doi.org/10.1093/pnasnexus/pgaf329
Advance access publication 14 October 2025

Research Report

PNAS
2" NEXUS

Stereochemistry-aware string-based molecular
generation

a,c,d,e*

@b+ Edwin Yu?, Naruki Yoshikawa
a,b,cf,gh,x

Gary Tom b< Kjell Jorner

and Alan Aspuru-Guzik

#Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada

bVector Institute for Artificial Intelligence, 108 College Street, Toronto, ON M5G 0C6, Canada

“Department of Computer Science, University of Toronto, 40 St George Street, Toronto, ON M5S 2E4, Canada

dDepartment of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigarden 4, Gothenburg SE-412 96, Sweden

“Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich CH-8093, Switzerland
Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3ES, Canada

EDepartment of Materials Science & Engineering, University of Toronto, 184 College Street, Toronto, ON M5S 3E4, Canada

M ebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, ON M5G 1M1, Canada

*To whom correspondence should be addressed: Email: gary.tom@mail.utoronto.ca (G.T.); Email: kjell jorner@chem.ethz.ch (KJ.); Email: alan@aspuru.com (A.A.-G.)
Edited By Christopher Dupont

Abstract

This study investigates the impact of incorporating stereochemical information, a crucial aspect of computational drug discovery and
materials design, in molecular generative modeling. We present a detailed comparison of stereochemistry-aware and conventionally
stereochemistry-unaware string-based generative approaches, utilizing both genetic algorithms and reinforcement learning-based
techniques. To evaluate these models, we introduce novel benchmarks specifically designed to assess the importance of
stereochemistry-aware generative modeling. Our results demonstrate that stereochemistry-aware models generally perform on par
with or surpass conventional algorithms across various stereochemistry-sensitive tasks. However, we also observe that in scenarios
where stereochemistry plays a less critical role, stereochemistry-aware models may face challenges due to the increased complexity
of the chemical space they must navigate. This work provides insights into the trade-offs involved in incorporating stereochemical
information in molecular generative models and offers guidance for selecting appropriate approaches based on specific application
requirements.
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Significance Statement

This research explores the incorporation of stereochemistry—the relative 3D arrangement of atoms of the molecule—into machine
learning algorithms to better design molecules. We compare different modeling approaches, and their performance in optimizing
stereochemistry-sensitive properties, such as structure similarity, drug activity, and optical activity. We find that explicitly consider-
ing stereochemistry can improve optimization in certain tasks. This work provides a benchmark for evaluating and developing
stereochemistry-aware generative models for molecular design, and will help create more effective ways to find new medicines
and materials.

Introduction

Generative models have become increasingly prominent in the
fields of inverse design and molecular discovery, offering a com-
putational approach to explore vast chemical spaces efficiently
(1-10). These models employ machine learning techniques to gen-

criteria. Methods such as genetic algorithms define heuristics
for exploring the space of chemicals, while deep-learning meth-
ods learn the chemical space distribution from molecular data-
bases. The literature presents a diverse array of approaches in
this domain, including but not limited to variational autoencoders

erate molecular structures with targeted properties, potentially
expediting the traditionally lengthy and resource-intensive pro-
cess of molecular design (11-14). Generative models can propose
new and potentially viable compounds, adhering to specified

(VAESs) (2, 15-19), generative adversarial networks (GANs) (4, 20,
21), reinforcement learning (RL) (22-27), genetic algorithms
(GAs) (28-31), and transformer-based architectures (32-35).
These methodologies have demonstrated utility across various
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applications in drug discovery and materials science, facilitating
rapid in silico screening and optimization of molecular structures
(36).

The evaluation and benchmarking of generative models for
molecular discovery initially focused on determining the good-
ness of the reproduction of the structures in the dataset chemical
space—generation not conditioned on the functional properties of
the molecules. These metrics typically emphasize distribution
learning, examining the model'’s ability to capture and reproduce
the underlying distribution of the training data (3, 37-39). Other
evaluation criteria include the (i) novelty of generated molecules,
which measures the proportion of unique structures not present
in the training set; (ii) diversity, which assesses the structural vari-
ation among the generated molecules; and validity, which en-
sures that the proposed structures adhere to chemical feasibility
constraints (e.g. valid Lewis structures and valency constraints)
(18, 40).

While these metrics provide insights into a model’s generative
capabilities, there is a growing recognition of the need for more
realistic and task-specific benchmarks (41-44). The emphasis on
general distribution learning, while important, may not fully cap-
ture the model’'s performance in addressing specific chemical
challenges. Additionally, performances on task-oriented bench-
marks based on simple heuristic fitness functions, such as penal-
ized log water-octanol partition coefficient (2, 45), similarity/
rediscovery tasks (18, 40), or quantitative estimate of
drug-likeliness (QED) (46), are handily maximized by modern gen-
erative models (47-49), and even trivially satisfied by randomly in-
serting carbon atoms into the molecules (50). These simplistic
fitness functions often fail to capture chemical constraints, allow-
ing models to exploit failure modes by reward hacking, and gener-
ate molecules with high scores but undesirable properties, such as
chemical instability or synthetic infeasibility (51). As the field ad-
vances, there is an increasing demand for benchmarks that are
more closely aligned with real-world applications in drug discov-
ery, materials design, and other domains of chemistry (52). This
shift towards more targeted evaluation methods would provide
a more nuanced and practically relevant assessment of genera-
tive models, potentially accelerating their adoption and impact
in real-world molecular discovery scenarios.

Despite the advances in generative models for molecular de-
sign, the incorporation of stereochemical information and the re-
sulting effects on molecular optimization are often overlooked.
Molecular stereochemistry, the relative 3D arrangement of atoms
within a molecule, significantly influences its chemical properties
and biological activity (53). Many current methods either ignore
stereochemistry (2, 3, 40) or consider it as a postprocessing step
after molecule generation (16, 42, 44). This approach is subopti-
mal, as stereochemistry plays a crucial role in determining a mol-
ecule’'s properties and biological activity. While certain
graph-based generative methods are able to handle stereochem-
ical information (29, 54-56), the lack of realistic benchmarking
tasks that incorporate stereochemistry means that models are
not evaluated on their ability to produce stereochemically optimal
molecules. Furthermore, there is no direct comparison of meth-
ods with and without stereochemistry-awareness on these
stereochemistry-sensitive tasks.

The importance of stereochemistry is particularly evident in
drug discovery, where the spatial arrangement of atoms can signifi-
cantly influence a compound’s pharmacological properties (57, 58).
Properties such as binding affinity to target proteins, metabolic sta-
bility, and toxicity can be profoundly affected by stereochemistry.
For example, the synthesis of methadone produces racemic

mixtures of enantiomers—molecules that are mirror images of
each  other—(R)-methadone and (S)-methadone. While
(R)-methadone acts as an opioid for pain relief, (S)-methadone
has been identified to bind to the hERG protein and can lead to se-
vere side-effects, such as heart attacks or cardiac arrest (59). In ma-
terials science, stereochemistry can impact crystal packing, optical
properties, synthesis, and reactivity (60-63). By not explicitly ac-
counting for stereochemistry during the generative process, models
may overlook critical aspects of molecular behavior, potentially
leading to inefficiencies in the discovery pipeline and missed oppor-
tunities for identifying optimal candidates for a given application.
In our work, we study the effects of stereochemistry on string-
based generative models. We evaluate the models, both with and
without stereochemistry-awareness, on a variety of molecular de-
sign tasks that are sensitive to the stereochemistry of molecules.
Additionally, we explore different string representations of mo-
lecular graphs, and create a workflow for benchmarking the mod-
els, which includes a novel fitness function based on the circular
dichroism spectra of molecules. We find that stereo-aware models
perform as well as, or better than nonstereo models, but the per-
formance increase of the stereo models are dependent on the sen-
sitivity of the task to stereochemistry, and the additional
complexity in the chemical search space due to the inclusion of
stereoisomers. The models and the fitness functions are all avail-
able at https://github.com/aspuru-guzik-group/stereogeneration.

Results

To study the effects of stereochemistry on molecular generative
models, we implement RL and GA methods, which have been
shown to be strong baselines for molecular generation tasks (25,
31, 41). We modify the REINVENT (22) and JaNus (30) methods to
permit the representation of stereochemical information. In these
models, the molecular graphs are represented as strings, where
REINVENT uses Simplified Molecular-Input Line-Entry System
(SMILES) (64), and JaNUS uses SELF-Referencing Embedded
Strings (SELFIES) (65), or GroupSELFIES (66), which we dub
GroupJANUS. We choose to use string-based generative models
due to their expressiveness and flexibility in exploring chemical
space when compared to graph-based methods (38), and their na-
tive support of stereochemical string tokens. By directly compar-
ing the models with and without the stereochemistry-awareness
across the various tasks, we can elucidate the effect of stereo-
chemistry in the molecular generation process. Details of the
models are found in the Methods section.

Stereochemistry

We focus on two primary forms of stereoisomerism: E/Z geometric
diastereomers, arising from restricted rotation around double
bonds, and R/S diastereomers and enantiomers, determined by the
arrangement of substituents around chiral centers. Enantiomers
are nonsuperimposable mirror images of each other and often
have different optical activity and physical properties.
Diastereomers, stereoisomers that are not mirror images of each
other, also often exhibit different physical and chemical properties.

While we incorporate E/Z and R/S isomerism, we do not expli-
citly account for axial chirality, a type of chirality arising from hin-
dered rotation around single bonds (67), or ring isomers. This
omission limits our model’s ability to generate and differentiate
atropisomers, a specific class of axially chiral molecules. We
also do not account for nontetrahedral forms of isomerisms,

GZ0z 1aquianoN 9z uo Jasn (ABojouyoa] jo Alsianiun slewieyn) ejoysboy eysiuya) sisweyd Aq 9zz98z8/6zciebd/ | | /y/a1ome/snxauseud;wod dno-oiwapede//:sdijy woly papeojumoq


https://github.com/aspuru-guzik-group/stereogeneration

Tometal. | 3

which are mostly relevant for transition metals and are not within
the scope of our benchmark.

String representations

SMILES were initially created as a compact representation of mo-
lecular graphs for purposes of database retrieval, and substructure
searching. When used in generative models, SMILES of generated
molecules can sometimes violate the grammar of the representa-
tion, resulting in invalid SMILES. To address this, SELFIES made
use of overloaded tokens, and local definitions of rings and
branches to create a robust representation that will always trans-
late to a valid molecular graph. GroupSELFIES further extended
SELFIES by allowing for custom tokens which can encode groups
with specified attachment points. For more details on string repre-
sentations of molecules, we direct the readers to Krenn et al. (68).
We alsonote that there are other string representations that incorp-
orate stereochemistry which are not explored in this work (69).

All three representations natively encode stereochemical infor-
mation (Fig. 1). SMILES encode counter-clockwise and clockwise
chirality with “@” and “e@” tokens, respectively. E-Z stereoisomers
are denoted with “\” and “/” before the characters to indicate the
position of a bond relative to an adjacent double bond. The same
characters are used in the SELFIES stereochemical tokens, while
also maintaining the robustness of the representation.
GroupSELFIES defines E-Z stereoisomers in the same way as
SMILES and SELFIES but defines chirality through unique tokens
for each chiral center and for all possible attachment points.
The attachment points directly encode the chirality of the chiral
center, with different attachment indices in the tokens specifying
the order of substituents around the chiral center.

For all experiments, we use a subset of the ZINC15 database
that was randomly sub-sampled by Gomez-Bombarelli et al. (2,
70). This dataset is composed of about 250,000 commercially
available drug-like molecules. Stereoinformation is defined for
most molecules in the dataset. Any molecules with ambiguous
stereochemistry are assigned stereochemistry by randomly se-
lecting from a list enumerating all unspecified stereocenters using
RDKit cheminformatics software (71). For the nonstereo experi-
ments, the stereoinformation is discarded, and duplicates result-
ing from the loss of stereoinformation are removed.
Subsequently, the unique string tokens are collected to create
an alphabet, with stereo and nonstereo alphabets for each re-
presentation. The GroupSELFIES representation has an additional
essential set of chiral tokens, which are appended to the alphabet
generated from the dataset.

Experiments

We perform three stereochemistry-sensitive generative experi-
ments to benchmark the models. We study REINVENT, JANUS,

SMILES: [C/C=CNC[C@H] (C)Cl

SELFIES: [C]1[/C1[=C][\CI[C@H1][Branchl][C][C]I[C1]
Group  [CI[/C][=C][NCI[=0chiFal][Ringl] [C][pop]
SELFIES: [Ringl][Cl][pop]

Fig. 1. Example of isomeric molecule encoded with SMILES, SELFIES, and
GroupSELFIES.

and GroupJANUs with SMILES, SELFIES, and GroupSELFIES repre-
sentations, respectively. Both the sterec-aware and
nonstereo-aware models can generate molecules with unspeci-
fied stereocenters. For stereo-aware models, all unspecified ster-
eocenters are randomly assigned, while maintaining any
stereocenters that were specified by the model. The modified
string is then used as the input for the model in subsequent gen-
erations. For nonstereo models, molecules with undefined stereo-
centers are only assigned stereochemical information for fitness
evaluation, which simulates the postgeneration treatment of
stereochemistry. However, the stereochemistry is not fed back
into the nonstereo-aware generative model. While stereo models
can output molecules with stereochemical tokens, nonstereo
models cannot generate such tokens or distinguish between dif-
ferent stereoisomers with the same atomic connectivity. All mod-
els are not permitted to generate repeated compounds observed in
current or previous generations, hence, for the nonstereo model,
the assigned stereochemistry for a compound will not be
resampled.

We evaluate optimization performance by looking at the opti-
mization trace, which plots the cumulative top-1 score achieved
as a function of the generation of the campaign. We include cu-
mulative top-10 and top-100 traces as well in Figs. S10-S12. We
do this across the models, stereo- and nonstereo-aware, on the
aforementioned tasks. Further experimentation details provided
in Methods.

Additionally, we use the area-under-curve (AUC) of the opti-
mization traces as a quantitative measure of the optimization per-
formance. For the AUC calculation, the number of generations is
normalized from O to 1. For the rediscovery tasks, the similarity
score and the AUC are both bounded by 0 and 1. For the docking
and CD tasks, there is no maximum achievable score. Therefore,
we normalize the AUC scores by the best score in the initial
ZINC dataset. Higher AUC indicates the generation of higher scor-
ing molecules, and also earlier discovery of such molecules. The
AUC scores are found in Table 1. Alternatively, we report the max-
imum top-1 score and fraction of top-100 identified in Tables S1
and S2. We also report the AUC for the top-10 and top-100 opti-
mization traces in Tables S3 and S4, respectively.

Stereoisomer rediscovery task

Rediscovery tasks in molecular generative modeling benchmark-
ing aim to evaluate a model’s ability to recreate the structure of
known molecules. The structural similarity is measured by the
Tanimoto similarity of molecular fingerprints—typically, ex-
tended circular fingerprints (ECFPs), bit vectors based on the topo-
logical features of a certain radius in the molecular graph (72). The
model successfully rediscovers a target when the similarity is 1.0.
While rediscovery tasks are not useful in practice, since the target
molecules are known a priori, they serve as useful baselines to
study the generative capabilities of the models in directly optimiz-
ing molecular structures, rather than chemical function. Previous
benchmarking rediscovery tasks ignore the stereochemistry of the
molecular structures (40). We include the stereoinformation as
part of the target through the use of isomeric ECFPs. For this, we
chose to perform rediscovery of (R)-albuterol (used in asthma
treatment) and mestranol (used as estrogen medication for hor-
mone therapy), with one and five chiral centers, respectively.
The chemical structure of the compounds are shown in Fig. S1.
In the rediscovery scoring, nonstereo-aware methods first gen-
erate a molecule without explicit stereochemical information. To
assign a score, stereochemistry is then considered postgeneration
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Table 1. AUC of optimization traces for all tasks, for stereo and nonstereo-aware models.

Tasks REINVENT JANUS GroupJANUS

Nonstereo (R)-albuterol rediscovery 0.487 +0.058 0.790 +£0.105 0.840 +0.109
Mestranol rediscovery 0.292 +0.034 0.633 +0.031 0.672 +£0.032

1SYH docking 0.900 +0.020 1.033 £0.031 1.084 +0.053

10YT docking 0.954 +0.013 1.064 £ 0.028 1.068 +£0.028

6Y2F docking 0.987 +0.015 1.068 +£0.052 1.067 +£0.029

CD spectral peak score 0.413+0.117 2.007 +0.352 2.066 +0.761

Stereo (R)-albuterol rediscovery 0.403 + 0.053 0.931+0.044 0.923 +0.035
Mestranol rediscovery 0.280 £ 0.032 0.843 +0.087 0.918 +£0.074

1SYH docking 0.887 +0.011 1.065+£0.031 1.106 +0.070

10YT docking 0.940 + 0.021 1.099 £ 0.027 1.059 £ 0.035

6Y2F docking 0.979+0.023 1.088 +0.043 1.065 +0.042

CD task 0.385+0.111 2.884 +1.009 2.198 +£0.563

The mean and SD are reported. Statistically significantly better (higher) AUC scores between the nonstereo and stereo variants are bolded.

by randomly sampling one stereoisomer from all possible stereo-
isomers of the generated molecular graph. This approach means
that nonstereo-aware methods have the potential to achieve the
maximum rediscovery score if the randomly sampled stereoiso-
mer matches the target molecule.

The optimization traces for the rediscovery tasks are shown in
Fig. 2. The higher number of chiral centers in mestranol make it a
more difficult target for rediscovery. This is clearly shown in the
optimization traces of the REINVENT models—mestranol redis-
covery does not achieve similarity higher than the initial dataset.
When compared to rediscovery in other studies (27, 40, 41),
REINVENT optimization performance is greatly reduced when
stereochemistry is introduced. There are no statistically signifi-
cant differences in the performance of REINVENT when compar-
ing stereo and nonstereo models. Samples of the top generated
molecules of each method for (R)-albuterol and mestranol redis-
covery tasks are shown in Figs. S4 and S5, respectively.

The stereo-aware JANUS and GroupJANUS models significantly
outperform the nonstereo-aware models, indicating the ability of
the stereo model in learning specific stereochemistries in molecu-
lar structures. For (R)-albuterol, both stereo GAs successfully re-
discover the structure for all runs, with no significant
differences between JANUS and GroupJANUS. For mestranol, the
use of GroupSELFIES slightly improves the optimization for the
stereo-aware model, when compared to JANUS with SELFIES.

Protein-ligand docking task

Protein-ligand interactions are associated with the bioactivity of
drug molecules. Ligands are molecules that bind inside the pro-
tein binding pockets, forming intermolecular interactions with
the amino acids of the protein, activating or inhibiting biological
functions of the protein. For the benchmark, we use the high-
throughput docking score implemented in the Tartarus bench-
mark (44), which uses the smina software to simulate the pro-
tein-ligand binding affinity (74).

Because the scoring function takes in a 3D conformer of the
molecules, a conformer search is performed using RDKit to find
the lowest energy conformer, respecting all specified stereoinfor-
mation, followed by energy relaxation with the Merck Molecule
Force Field 94 (MMFF94) (75). The molecule is placed inside the
binding pocket to sample binding poses; the resulting docking
score is maximized. The binding pocket is defined as the bounding
box encompassing the volume occupied by the protein’s native
ligand with 3 A padding.

We perform the protein-ligand docking task for three different
targets, visualized in Fig. 3 with their respective bounding boxes.

Both 1SYH and 6Y2F are targets from Tartarus: 1SYH is associ-
ated with neurological diseases, and 6Y2F is responsible for the
translation of the SARS-CoV-2 virus RNA. We also include the
10YT protein, which is associated with blood coagulation (76),
and has a binding pocket with a volume between those of 1SYH
and 6Y2F. The structures for the native ligands of the proteins
are shown in Fig. S2.

Moving beyond simple structural reproduction, the protein-lig-
and docking task assesses the practical utility of generative mod-
els in a drug discovery context. The optimization traces for the
docking tasks are in Fig. 4. We again observe that REINVENT strug-
gles to improve upon the results of the ZINC dataset, with the ex-
ception of the 6Y2F protein. There are no differences between the
stereo and nonstereo variants of REINVENT.

Meanwhile, both GAs optimize better than REINVENT. For
JANUS, we observe consistent improvements in optimization per-
formance with stereo-aware models for generating ligands for
1SYH and 10YT. The faster optimization of the stereo GAs are
also reflected in the AUC score (Table 1). In the case of the 6Y2F
target, possessing a comparatively larger and more flexible bind-
ing pocket, the difference in performance between stereo and
nonstereo models was less pronounced. This observation implies
that for certain targets, the impact of stereochemistry on binding
affinity might be less critical, with other molecular features play-
ing a dominant role. The increasing size of the generated ligands
are seen in the chemical structures of the top scoring molecules,
shown for each method and protein target in Figs. S6-S8.

Circular dichroism task

We finally developed a task based on circular dichroism (CD),
which directly probes the chirality of structures, making it the
ideal task for studying the effects of stereoinformation in molecu-
lar generation. CD produces spectra of the absorption of left- and
right-handed polarized light in chemical species, and can be used
to study folding structures in proteins (77), or chiral optical prop-
erties of materials, which have light manipulation and photonics
applications (60, 78-80). Previous works have studied the ML pre-
diction of CD spectra of molecules (81) and proteins (82), and the
development of chiral molecular representations to predict the
interaction between circularly polarized light and chiral com-
pounds (83).

In this task, like before, the molecules are 3D embedded with
RDKit. The conformer search and geometry optimization is per-
formed using crest (84-86) and semiempirical extended tight-
binding (xTB) (87) at the GFN2 level of theory (88).
Representative spectra for example chiral molecules are shown
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Fig. 2. Optimization traces for rediscovery tasks. The cumulative top-1 similarity score to the target molecule as a function of generation of optimization.
Shaded regions indicate the 95% CI. The dashed line is the best score found in the starting dataset.

in Fig. S3. For a benchmark involving the generation and evaluation
of thousands of molecules, computational efficiency is important.
SsTDA-xTB offers a balance between realistic simulations of chirop-
tical properties and computational cost, making it feasible for high-
throughput screening within a generative model loop. While
higher-level calculations would provide more accurate spectra,
they would be computationally prohibitive for this scale of study.
This computational approach is therefore well-suited, as the
benchmark is explicitly stereochemistry-dependent and serves as
a task for comparing the effect of including stereochemistry in
the generation process.

The xTB calculation produces orbitals and orbital energies, which
can be treated using simplified Tamm-Dancoff approximated
(STDA) time-dependent density functional theory (TD-DFT). This
workflow, sTDA-xTB, produces CD spectra of the lowest energy con-
formers relatively quickly, even for molecular systems with hun-
dreds of atoms (89, 90). A peak score is defined as the signed area
under the spectrum for wavelengths 450-550 nm, a region where
small organic molecules can have CD signals, and is also within
the visible range for possible materials applications. Maximizing
the peak score produces chiral optically active materials within
the blue region of visible light.

The results of CD peak score optimization task are shown in Fig. 5.
The structures of the top scoring CD peak score molecules are shown
in Fig. S9. There are no differences between the nonstereo and stereo
REINVENT, which are unable to improve upon the scores of the initial

dataset. The GroupJANUS optimization also shows no difference be-
tween the stereo and nonstereo models. However, the stereo-aware
JANUS is capable of generating molecules with stronger CD signals
than the nonstereo-aware counterpart. The results indicate that
the CD task is a suitably stereochemistry-sensitive optimization
task for molecular generative modeling.

Discussion

While it might be hypothesized that incorporating more detailed
physical and chemical information, such as stereochemistry, would
lead to improved model performance on realistic chemical bench-
marks, our findings show the practical impact is moderated by
the task’s intrinsic sensitivity to this information and the model’s
ability to effectively navigate the increased complexity—including
an expanded search space and, for string-based methods, a larger
action space—that accompanies such representations. For explicit
optimization of molecular structures, stereo-aware GAs perform
better than nonstereo counterparts. In the docking task, we observe
that stereo GAs boost the optimization performance for 1SYH and
10YT. In the case of 6Y2F, the generated ligand molecules are lar-
ger, in order to fit in the bigger protein binding pocket. Larger struc-
tural changes such as additional of fragments and functional
groups allow the models to more quickly traverse the permitted
molecule space, while slight changes in stereochemistry only result
in small changes in the docking score. In these tasks, stereo models
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Fig. 3. Structures of proteins with native ligands. The structures are from the Protein Data Bank (73). The native ligand in the binding pocket is shown

inside a bounding box.

still perform as well as nonstereo models. The CD spectra task dir-
ectly probes the effects of chirality, and the spectra is less related to
specific molecular size or functional groups. In this task, stereo
JANUS outperforms nonstereo JANUS.

Except for the rediscovery tasks, unlike Janus, the stereo and
nonstereo variants of GroupJANUS perform similarly. This may
be due to inefficiencies of the GroupSELFIES representation of
stereochemistry. The addition of stereochemistry tokens increase
the alphabet size by almost 10 times. Also, all additional tokens
and group tokens are overloaded to ensure robustness. We hy-
pothesize that the increased number of tokens interferes with
the decoding of stereoisomeric GroupSELFIES, truncating mole-
cules at rings and branches.

Additionally, GAs perform better than the REINVENT model for
the same number of oracle calls, results which are consistent with
previous studies (31). The evolutionary approach of GAs will al-
ways select the members of the population that maximize the fit-
ness, meaning the GA cannot perform worse than the previous (or
initial) generations. GAs are also not encumbered by the prior
chemical space distribution of the training set, unlike deep learn-
ing methods like REINVENT, allowing the generation of more di-
verse molecules. Due to the prior model, the REINVENT agent
requires more oracle calls and more frequent retraining to condi-
tion for higher rewards. No improvement was observed for stereo
REINVENT. The expanded alphabet increases the number of pos-
sible actions the RL, requiring the model to learn a more complex
policy which may have impeded stereo REINVENT.

Conclusion

This study presents a detailed investigation into the incorporation
of stereochemical information within molecular generative mod-
els, focusing on established techniques such as string-based RL
and GAs. We aim to provide a nuanced understanding of the im-
pact of stereochemistry awareness by employing a suite of evalu-
ation metrics, including both conventional benchmarks and
newly designed tasks specifically tailored to assess the role of
stereochemistry. A key contribution of this work is the introduc-
tion of a novel CD-based task, which proved to be suitable for
probing the effects of chirality in the generated molecules.

Our findings highlight the importance of considering task-
specific requirements when deciding whether to include stereo-
chemical information within the generative process. In cases
where different stereoisomers can significantly influence the de-
sired molecular properties, the inclusion of stereochemistry led
to improved performance. Specifically, we observed that
stereochemistry-aware GA JANUS consistently outperformed
their nonstereo counterparts in generating molecules for stereo-
isomer rediscovery, docking to proteins 1SYH and 10YT, and CD
spectra peak optimization.

However, our results also suggest that the benefits of incorpor-
ating stereochemistry are less pronounced in tasks where other
molecular features, such as size or functional group presence,
may play a more dominant role. This was seen in the protein-lig-
and docking task for target 6Y2F, where the impact of stereochem-
istry was less substantial relative to larger structural molecular
changes, due to the bigger and less constraining binding pocket.
The increased number of atoms and bonds of the molecules gen-
erated for the 6Y2F pocket naturally have more possible stereo-
isomers. Consequently, larger structural modifications, such as
the addition of functional groups, can be more efficient in explor-
ing the chemical space than smaller stereochemical adjustments.
Specific to our string-based approaches, we observe that the add-
ition of stereochemical tokens considerably increases the action
space of the models, which may frustrate the optimization. For ex-
ample, in GroupJANUS, the inclusion of stereochemical groups
and chiral tokens increases the alphabet size by a factor of 10,
greatly increasing the number of possible mutations in the GA.
This observation underscores the need for a considered approach
when deciding on the necessity of stereochemical information in
generative models.

Extending the methodologies to encompass additional stereo-
chemical complexities represents a valuable direction for future
work. Itis important to note that our evaluation primarily focused
on E/Z and R/S isomerism. This scope was found to be sufficient
for the drug-like small organic molecules of the ZINC dataset
and the benchmarking tasks that we examined here. However,
the explicit handling of other isomerisms, such as axial chirality
or nontetrahedral isomerisms, was not within the scope of this
study.
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Fig. 4. Optimization traces for docking tasks. The cumulative top-1 docking score for protein targets as a function of generation of optimization. Shaded
regions indicate the 95% CI. The dashed line is the best score found in the starting dataset.

Further investigation into more efficient and robust represen-
tations and handling of stereochemistry is warranted. For in-
stance, while this study focused on string-based methods,
models using other molecular representations, such as graphs
(16, 29), voxel grids (91), or 3D representations (92, 93), offer
alterative approaches. Our benchmark provides realistic
stereochemistry-sensitive tasks to benchmark such models for
further development. Regardless of the specific generative meth-
od or molecular representation employed, the fundamental
trade-off observed—balancing the advantages in optimizing
stereochemistry-sensitive tasks against the challenges posed by

an expanded chemical space—will likely persist. Concurrently,
for string-based deep learning models such as REINVENT, the de-
velopment of architectures or training strategies better equipped
to handle the additional stereochemical tokens within molecular
strings may be necessary to fully harness their potential in stereo-
selective design.

In conclusion, this work offers insights into how string-based
generative models handle stereochemical information for mo-
lecular design, outlining their capabilities and limitations. Our
findings indicate that while incorporating such information can
be beneficial, particularly when 3D molecular structure is a key
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consideration, the decision should be guided by a careful assess-
ment of task-specific requirements and the trade-offs associated
with increased model complexity. Further investigation into
more efficient and robust representations of stereochemistry,
such as graph-based approaches, is a worthwhile direction for fu-
ture research to potentially improve these generative models.

Methods
Reinvent

REINVENT is an RL algorithm that uses a recurrent neural network
(RNN) pretrained on a dataset of SMILES as a chemical language
model agent (22, 23, 25). For this work, we follow the procedures
described in Olivecrona et al. (22). While later versions of
REINVENT have additional features, such as scaffold and linker
design using transformer models, the underlying RL method for
de novo design is unchanged. When provided a token from a
SMILES string, the RNN is trained to generate a conditional distri-
bution of the subsequent tokens in the sequence. A memory state
is passed into the model as well, retaining information about pre-
vious tokens of the sequence observed by the model. The RNN is
first pretrained on the initial ZINC dataset, allowing it to learn
the grammar of the stereo and nonstereo SMILES in the dataset,
producing 94 and 91% average validity of generated SMILES, re-
spectively. During the RL optimization, the prior RNNis fine-tuned
after each generation by a loss function augmented by the fitness
score achieved by the molecule S € [0, 1], with good candidates
scoring S=1, and poor candidates and invalid SMILES scoring
S = 0. Fitness functions that are outside of this range are scaled us-
ing a sigmoid function. With each iteration, the RL algorithm will
aim to optimize the molecules to maximize the fitness function.
Note that SELFIES can also be used with REINVENT, but previous
studies have demonstrated that the RNN model is sufficiently
capable of generating valid SMILES, and no significant perform-
ance gain is observed for SELFIES-REINVENT (41).

JANUS and GroupJANUS

JANUS admits only SELFIES-based representations. Leveraging the
robustness of SELFIES representation, JANUS can perform muta-
tion and crossover operations, as defined in the STONED

algorithm (94). JANUS maintains two separate populations for ex-
ploration and exploitation of chemical space. The exploration set
is generated by mutation and crossover operations within the en-
tire population, while the exploitation set is generated through a
series of mutations on the fittest molecules. The best candidates
found in the exploitation set are then exchanged with the worst
candidates in the exploration set. At each iteration, selection pres-
sure from the fitness function allows the model to converge to-
ward the optimum.

In our workflow, we implement the GroupSELFIES version of
JANUS, dubbed GroupJaNus, which operates in the same fashion
as JANUS. In order to isolate the effect of the stereochemical to-
kens, only the chiral group tokens are used in GroupJANUS; no
other groups are encoded in the GroupSELFIES grammar. For
both JaNUS and GroupJaNUS, the mutation operations depend
on the random sampling of tokens in the alphabet. For both mod-
els, the inclusion of stereochemical tokens greatly increases the
size of the alphabet, and structural tokens which are responsible
for encoding molecular rings and branches are less likely to be
sampled. To account for this imbalance, structural tokens—
such as [RingX], [BranchX], and the GroupSELFIES specific
[pop] tokens—are weighted such that they are sampled with
the same probability as in the nonstereo alphabet.

Experimental setup

For all tasks, the models are allotted 10,000 fitness oracle calls.
The GAs run 50 generations with a population size of 200 mole-
cules; the initial populations for the GA are fixed, starting with
the top 5,000 scoring molecules from the initial dataset.
REINVENT runs 100 generations of 100 molecules to allow for
more policy updates throughout the optimization. REINVENT is
fine-tuned on the same top 5,000 scoring molecules before
optimization.

Each experiment was repeated 10 times with different random
seeds, which affect the sampling operations within REINVENT and
the GAs, and in any random assignment of stereochemical infor-
mation. The reported mean and SD of the optimization trace AUC
are calculated over these 10 runs. Statistical significance was de-
termined using a two-sample Student’s t-test (P < 0.05), compar-
ing the stereo-aware and nonstereo-aware variants for each
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model and task based on the results from these independent runs.
The 95% CI shown in the figures are also derived from the inde-
pendent runs.
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