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Abstract
This study investigates the impact of incorporating stereochemical information, a crucial aspect of computational drug discovery and 
materials design, in molecular generative modeling. We present a detailed comparison of stereochemistry-aware and conventionally 
stereochemistry-unaware string-based generative approaches, utilizing both genetic algorithms and reinforcement learning-based 
techniques. To evaluate these models, we introduce novel benchmarks specifically designed to assess the importance of 
stereochemistry-aware generative modeling. Our results demonstrate that stereochemistry-aware models generally perform on par 
with or surpass conventional algorithms across various stereochemistry-sensitive tasks. However, we also observe that in scenarios 
where stereochemistry plays a less critical role, stereochemistry-aware models may face challenges due to the increased complexity 
of the chemical space they must navigate. This work provides insights into the trade-offs involved in incorporating stereochemical 
information in molecular generative models and offers guidance for selecting appropriate approaches based on specific application 
requirements.

Keywords: molecular generation, stereochemistry, generative modeling, drug design, machine learning

Significance Statement

This research explores the incorporation of stereochemistry—the relative 3D arrangement of atoms of the molecule—into machine 
learning algorithms to better design molecules. We compare different modeling approaches, and their performance in optimizing 
stereochemistry-sensitive properties, such as structure similarity, drug activity, and optical activity. We find that explicitly consider
ing stereochemistry can improve optimization in certain tasks. This work provides a benchmark for evaluating and developing 
stereochemistry-aware generative models for molecular design, and will help create more effective ways to find new medicines 
and materials.
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Introduction
Generative models have become increasingly prominent in the 
fields of inverse design and molecular discovery, offering a com
putational approach to explore vast chemical spaces efficiently 
(1–10). These models employ machine learning techniques to gen
erate molecular structures with targeted properties, potentially 
expediting the traditionally lengthy and resource-intensive pro
cess of molecular design (11–14). Generative models can propose 
new and potentially viable compounds, adhering to specified 

criteria. Methods such as genetic algorithms define heuristics 
for exploring the space of chemicals, while deep-learning meth

ods learn the chemical space distribution from molecular data

bases. The literature presents a diverse array of approaches in 

this domain, including but not limited to variational autoencoders 

(VAEs) (2, 15–19), generative adversarial networks (GANs) (4, 20, 

21), reinforcement learning (RL) (22–27), genetic algorithms 

(GAs) (28–31), and transformer-based architectures (32–35). 

These methodologies have demonstrated utility across various 
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applications in drug discovery and materials science, facilitating 
rapid in silico screening and optimization of molecular structures 
(36).

The evaluation and benchmarking of generative models for 
molecular discovery initially focused on determining the good
ness of the reproduction of the structures in the dataset chemical 
space—generation not conditioned on the functional properties of 
the molecules. These metrics typically emphasize distribution 
learning, examining the model’s ability to capture and reproduce 
the underlying distribution of the training data (3, 37–39). Other 
evaluation criteria include the (i) novelty of generated molecules, 
which measures the proportion of unique structures not present 
in the training set; (ii) diversity, which assesses the structural vari
ation among the generated molecules; and validity, which en
sures that the proposed structures adhere to chemical feasibility 
constraints (e.g. valid Lewis structures and valency constraints) 
(18, 40).

While these metrics provide insights into a model’s generative 
capabilities, there is a growing recognition of the need for more 
realistic and task-specific benchmarks (41–44). The emphasis on 
general distribution learning, while important, may not fully cap
ture the model’s performance in addressing specific chemical 
challenges. Additionally, performances on task-oriented bench
marks based on simple heuristic fitness functions, such as penal
ized log water-octanol partition coefficient (2, 45), similarity/ 
rediscovery tasks (18, 40), or quantitative estimate of 
drug-likeliness (QED) (46), are handily maximized by modern gen
erative models (47–49), and even trivially satisfied by randomly in
serting carbon atoms into the molecules (50). These simplistic 
fitness functions often fail to capture chemical constraints, allow
ing models to exploit failure modes by reward hacking, and gener
ate molecules with high scores but undesirable properties, such as 
chemical instability or synthetic infeasibility (51). As the field ad
vances, there is an increasing demand for benchmarks that are 
more closely aligned with real-world applications in drug discov
ery, materials design, and other domains of chemistry (52). This 
shift towards more targeted evaluation methods would provide 
a more nuanced and practically relevant assessment of genera
tive models, potentially accelerating their adoption and impact 
in real-world molecular discovery scenarios.

Despite the advances in generative models for molecular de
sign, the incorporation of stereochemical information and the re
sulting effects on molecular optimization are often overlooked. 
Molecular stereochemistry, the relative 3D arrangement of atoms 
within a molecule, significantly influences its chemical properties 
and biological activity (53). Many current methods either ignore 
stereochemistry (2, 3, 40) or consider it as a postprocessing step 
after molecule generation (16, 42, 44). This approach is subopti
mal, as stereochemistry plays a crucial role in determining a mol
ecule’s properties and biological activity. While certain 
graph-based generative methods are able to handle stereochem
ical information (29, 54–56), the lack of realistic benchmarking 
tasks that incorporate stereochemistry means that models are 
not evaluated on their ability to produce stereochemically optimal 
molecules. Furthermore, there is no direct comparison of meth
ods with and without stereochemistry-awareness on these 
stereochemistry-sensitive tasks.

The importance of stereochemistry is particularly evident in 
drug discovery, where the spatial arrangement of atoms can signifi
cantly influence a compound’s pharmacological properties (57, 58). 
Properties such as binding affinity to target proteins, metabolic sta
bility, and toxicity can be profoundly affected by stereochemistry. 
For example, the synthesis of methadone produces racemic 

mixtures of enantiomers—molecules that are mirror images of 
each other—(R)-methadone and (S)-methadone. While 
(R)-methadone acts as an opioid for pain relief, (S)-methadone 
has been identified to bind to the hERG protein and can lead to se
vere side-effects, such as heart attacks or cardiac arrest (59). In ma
terials science, stereochemistry can impact crystal packing, optical 
properties, synthesis, and reactivity (60–63). By not explicitly ac
counting for stereochemistry during the generative process, models 
may overlook critical aspects of molecular behavior, potentially 
leading to inefficiencies in the discovery pipeline and missed oppor
tunities for identifying optimal candidates for a given application.

In our work, we study the effects of stereochemistry on string- 
based generative models. We evaluate the models, both with and 
without stereochemistry-awareness, on a variety of molecular de
sign tasks that are sensitive to the stereochemistry of molecules. 
Additionally, we explore different string representations of mo
lecular graphs, and create a workflow for benchmarking the mod
els, which includes a novel fitness function based on the circular 
dichroism spectra of molecules. We find that stereo-aware models 
perform as well as, or better than nonstereo models, but the per
formance increase of the stereo models are dependent on the sen
sitivity of the task to stereochemistry, and the additional 
complexity in the chemical search space due to the inclusion of 
stereoisomers. The models and the fitness functions are all avail
able at https://github.com/aspuru-guzik-group/stereogeneration.

Results
To study the effects of stereochemistry on molecular generative 
models, we implement RL and GA methods, which have been 
shown to be strong baselines for molecular generation tasks (25, 
31, 41). We modify the REINVENT (22) and JANUS (30) methods to 
permit the representation of stereochemical information. In these 
models, the molecular graphs are represented as strings, where 
REINVENT uses Simplified Molecular-Input Line-Entry System 
(SMILES) (64), and JANUS uses SELF-Referencing Embedded 
Strings (SELFIES) (65), or GroupSELFIES (66), which we dub 
GroupJANUS. We choose to use string-based generative models 
due to their expressiveness and flexibility in exploring chemical 
space when compared to graph-based methods (38), and their na
tive support of stereochemical string tokens. By directly compar
ing the models with and without the stereochemistry-awareness 
across the various tasks, we can elucidate the effect of stereo
chemistry in the molecular generation process. Details of the 
models are found in the Methods section.

Stereochemistry
We focus on two primary forms of stereoisomerism: E/Z geometric 
diastereomers, arising from restricted rotation around double 
bonds, and R/S diastereomers and enantiomers, determined by the 
arrangement of substituents around chiral centers. Enantiomers 
are nonsuperimposable mirror images of each other and often 
have different optical activity and physical properties. 
Diastereomers, stereoisomers that are not mirror images of each 
other, also often exhibit different physical and chemical properties.

While we incorporate E/Z and R/S isomerism, we do not expli
citly account for axial chirality, a type of chirality arising from hin
dered rotation around single bonds (67), or ring isomers. This 
omission limits our model’s ability to generate and differentiate 
atropisomers, a specific class of axially chiral molecules. We 
also do not account for nontetrahedral forms of isomerisms, 
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which are mostly relevant for transition metals and are not within 
the scope of our benchmark.

String representations
SMILES were initially created as a compact representation of mo
lecular graphs for purposes of database retrieval, and substructure 
searching. When used in generative models, SMILES of generated 
molecules can sometimes violate the grammar of the representa
tion, resulting in invalid SMILES. To address this, SELFIES made 
use of overloaded tokens, and local definitions of rings and 
branches to create a robust representation that will always trans
late to a valid molecular graph. GroupSELFIES further extended 
SELFIES by allowing for custom tokens which can encode groups 
with specified attachment points. For more details on string repre
sentations of molecules, we direct the readers to Krenn et al. (68). 
We also note that there are other string representations that incorp
orate stereochemistry which are not explored in this work (69).

All three representations natively encode stereochemical infor
mation (Fig. 1). SMILES encode counter-clockwise and clockwise 
chirality with “@” and “@@” tokens, respectively. E–Z stereoisomers 
are denoted with “\” and “/” before the characters to indicate the 
position of a bond relative to an adjacent double bond. The same 
characters are used in the SELFIES stereochemical tokens, while 
also maintaining the robustness of the representation. 
GroupSELFIES defines E–Z stereoisomers in the same way as 
SMILES and SELFIES but defines chirality through unique tokens 
for each chiral center and for all possible attachment points. 
The attachment points directly encode the chirality of the chiral 
center, with different attachment indices in the tokens specifying 
the order of substituents around the chiral center.

For all experiments, we use a subset of the ZINC15 database 
that was randomly sub-sampled by Gomez-Bombarelli et al. (2, 
70). This dataset is composed of about 250,000 commercially 
available drug-like molecules. Stereoinformation is defined for 
most molecules in the dataset. Any molecules with ambiguous 
stereochemistry are assigned stereochemistry by randomly se
lecting from a list enumerating all unspecified stereocenters using 
RDKit cheminformatics software (71). For the nonstereo experi
ments, the stereoinformation is discarded, and duplicates result
ing from the loss of stereoinformation are removed. 
Subsequently, the unique string tokens are collected to create 
an alphabet, with stereo and nonstereo alphabets for each re
presentation. The GroupSELFIES representation has an additional 
essential set of chiral tokens, which are appended to the alphabet 
generated from the dataset.

Experiments
We perform three stereochemistry-sensitive generative experi
ments to benchmark the models. We study REINVENT, JANUS, 

and GroupJANUS with SMILES, SELFIES, and GroupSELFIES repre
sentations, respectively. Both the stereo-aware and 
nonstereo-aware models can generate molecules with unspeci
fied stereocenters. For stereo-aware models, all unspecified ster
eocenters are randomly assigned, while maintaining any 
stereocenters that were specified by the model. The modified 
string is then used as the input for the model in subsequent gen
erations. For nonstereo models, molecules with undefined stereo
centers are only assigned stereochemical information for fitness 
evaluation, which simulates the postgeneration treatment of 
stereochemistry. However, the stereochemistry is not fed back 
into the nonstereo-aware generative model. While stereo models 
can output molecules with stereochemical tokens, nonstereo 
models cannot generate such tokens or distinguish between dif
ferent stereoisomers with the same atomic connectivity. All mod
els are not permitted to generate repeated compounds observed in 
current or previous generations, hence, for the nonstereo model, 
the assigned stereochemistry for a compound will not be 
resampled.

We evaluate optimization performance by looking at the opti
mization trace, which plots the cumulative top-1 score achieved 
as a function of the generation of the campaign. We include cu
mulative top-10 and top-100 traces as well in Figs. S10–S12. We 
do this across the models, stereo- and nonstereo-aware, on the 
aforementioned tasks. Further experimentation details provided 
in Methods.

Additionally, we use the area-under-curve (AUC) of the opti
mization traces as a quantitative measure of the optimization per
formance. For the AUC calculation, the number of generations is 
normalized from 0 to 1. For the rediscovery tasks, the similarity 
score and the AUC are both bounded by 0 and 1. For the docking 
and CD tasks, there is no maximum achievable score. Therefore, 
we normalize the AUC scores by the best score in the initial 
ZINC dataset. Higher AUC indicates the generation of higher scor
ing molecules, and also earlier discovery of such molecules. The 
AUC scores are found in Table 1. Alternatively, we report the max
imum top-1 score and fraction of top-100 identified in Tables S1
and S2. We also report the AUC for the top-10 and top-100 opti
mization traces in Tables S3 and S4, respectively.

Stereoisomer rediscovery task
Rediscovery tasks in molecular generative modeling benchmark
ing aim to evaluate a model’s ability to recreate the structure of 
known molecules. The structural similarity is measured by the 
Tanimoto similarity of molecular fingerprints—typically, ex
tended circular fingerprints (ECFPs), bit vectors based on the topo
logical features of a certain radius in the molecular graph (72). The 
model successfully rediscovers a target when the similarity is 1.0. 
While rediscovery tasks are not useful in practice, since the target 
molecules are known a priori, they serve as useful baselines to 
study the generative capabilities of the models in directly optimiz
ing molecular structures, rather than chemical function. Previous 
benchmarking rediscovery tasks ignore the stereochemistry of the 
molecular structures (40). We include the stereoinformation as 
part of the target through the use of isomeric ECFPs. For this, we 
chose to perform rediscovery of (R)-albuterol (used in asthma 
treatment) and mestranol (used as estrogen medication for hor
mone therapy), with one and five chiral centers, respectively. 
The chemical structure of the compounds are shown in Fig. S1.

In the rediscovery scoring, nonstereo-aware methods first gen
erate a molecule without explicit stereochemical information. To 
assign a score, stereochemistry is then considered postgeneration 

Fig. 1. Example of isomeric molecule encoded with SMILES, SELFIES, and 
GroupSELFIES.
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by randomly sampling one stereoisomer from all possible stereo
isomers of the generated molecular graph. This approach means 
that nonstereo-aware methods have the potential to achieve the 
maximum rediscovery score if the randomly sampled stereoiso
mer matches the target molecule.

The optimization traces for the rediscovery tasks are shown in 
Fig. 2. The higher number of chiral centers in mestranol make it a 
more difficult target for rediscovery. This is clearly shown in the 
optimization traces of the REINVENT models—mestranol redis
covery does not achieve similarity higher than the initial dataset. 
When compared to rediscovery in other studies (27, 40, 41), 
REINVENT optimization performance is greatly reduced when 
stereochemistry is introduced. There are no statistically signifi
cant differences in the performance of REINVENT when compar
ing stereo and nonstereo models. Samples of the top generated 
molecules of each method for (R)-albuterol and mestranol redis
covery tasks are shown in Figs. S4 and S5, respectively.

The stereo-aware JANUS and GroupJANUS models significantly 
outperform the nonstereo-aware models, indicating the ability of 
the stereo model in learning specific stereochemistries in molecu
lar structures. For (R)-albuterol, both stereo GAs successfully re
discover the structure for all runs, with no significant 
differences between JANUS and GroupJANUS. For mestranol, the 
use of GroupSELFIES slightly improves the optimization for the 
stereo-aware model, when compared to JANUS with SELFIES.

Protein–ligand docking task
Protein–ligand interactions are associated with the bioactivity of 
drug molecules. Ligands are molecules that bind inside the pro
tein binding pockets, forming intermolecular interactions with 
the amino acids of the protein, activating or inhibiting biological 
functions of the protein. For the benchmark, we use the high- 
throughput docking score implemented in the Tartarus bench
mark (44), which uses the smina software to simulate the pro
tein–ligand binding affinity (74).

Because the scoring function takes in a 3D conformer of the 
molecules, a conformer search is performed using RDKit to find 
the lowest energy conformer, respecting all specified stereoinfor
mation, followed by energy relaxation with the Merck Molecule 
Force Field 94 (MMFF94) (75). The molecule is placed inside the 
binding pocket to sample binding poses; the resulting docking 
score is maximized. The binding pocket is defined as the bounding 
box encompassing the volume occupied by the protein’s native 
ligand with 3 Å padding.

We perform the protein–ligand docking task for three different 
targets, visualized in Fig. 3 with their respective bounding boxes. 

Both 1SYH and 6Y2F are targets from Tartarus: 1SYH is associ
ated with neurological diseases, and 6Y2F is responsible for the 
translation of the SARS-CoV-2 virus RNA. We also include the 
1OYT protein, which is associated with blood coagulation (76), 
and has a binding pocket with a volume between those of 1SYH 
and 6Y2F. The structures for the native ligands of the proteins 
are shown in Fig. S2.

Moving beyond simple structural reproduction, the protein–lig
and docking task assesses the practical utility of generative mod
els in a drug discovery context. The optimization traces for the 
docking tasks are in Fig. 4. We again observe that REINVENT strug
gles to improve upon the results of the ZINC dataset, with the ex
ception of the 6Y2F protein. There are no differences between the 
stereo and nonstereo variants of REINVENT.

Meanwhile, both GAs optimize better than REINVENT. For 
JANUS, we observe consistent improvements in optimization per
formance with stereo-aware models for generating ligands for 
1SYH and 1OYT. The faster optimization of the stereo GAs are 
also reflected in the AUC score (Table 1). In the case of the 6Y2F 
target, possessing a comparatively larger and more flexible bind
ing pocket, the difference in performance between stereo and 
nonstereo models was less pronounced. This observation implies 
that for certain targets, the impact of stereochemistry on binding 
affinity might be less critical, with other molecular features play
ing a dominant role. The increasing size of the generated ligands 
are seen in the chemical structures of the top scoring molecules, 
shown for each method and protein target in Figs. S6–S8.

Circular dichroism task
We finally developed a task based on circular dichroism (CD), 
which directly probes the chirality of structures, making it the 
ideal task for studying the effects of stereoinformation in molecu
lar generation. CD produces spectra of the absorption of left- and 
right-handed polarized light in chemical species, and can be used 
to study folding structures in proteins (77), or chiral optical prop
erties of materials, which have light manipulation and photonics 
applications (60, 78–80). Previous works have studied the ML pre
diction of CD spectra of molecules (81) and proteins (82), and the 
development of chiral molecular representations to predict the 
interaction between circularly polarized light and chiral com
pounds (83).

In this task, like before, the molecules are 3D embedded with 
RDKit. The conformer search and geometry optimization is per
formed using crest (84–86) and semiempirical extended tight- 
binding (xTB) (87) at the GFN2 level of theory (88). 
Representative spectra for example chiral molecules are shown 

Table 1. AUC of optimization traces for all tasks, for stereo and nonstereo-aware models.

Tasks REINVENT JANUS GroupJANUS

Nonstereo (R)-albuterol rediscovery 0.487 ± 0.058 0.790 ± 0.105 0.840 ± 0.109
Mestranol rediscovery 0.292 ± 0.034 0.633 ± 0.031 0.672 ± 0.032

1SYH docking 0.900 ± 0.020 1.033 ± 0.031 1.084 ± 0.053
1OYT docking 0.954 ± 0.013 1.064 ± 0.028 1.068 ± 0.028
6Y2F docking 0.987 ± 0.015 1.068 ± 0.052 1.067 ± 0.029

CD spectral peak score 0.413 ± 0.117 2.007 ± 0.352 2.066 ± 0.761
Stereo (R)-albuterol rediscovery 0.403 ± 0.053 0.931 ± 0.044 0.923 ± 0.035

Mestranol rediscovery 0.280 ± 0.032 0.843 ± 0.087 0.918 ± 0.074
1SYH docking 0.887 ± 0.011 1.065 ± 0.031 1.106 ± 0.070
1OYT docking 0.940 ± 0.021 1.099 ± 0.027 1.059 ± 0.035
6Y2F docking 0.979 ± 0.023 1.088 ± 0.043 1.065 ± 0.042

CD task 0.385 ± 0.111 2.884 ± 1.009 2.198 ± 0.563

The mean and SD are reported. Statistically significantly better (higher) AUC scores between the nonstereo and stereo variants are bolded.
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in Fig. S3. For a benchmark involving the generation and evaluation 
of thousands of molecules, computational efficiency is important. 
sTDA-xTB offers a balance between realistic simulations of chirop
tical properties and computational cost, making it feasible for high- 
throughput screening within a generative model loop. While 
higher-level calculations would provide more accurate spectra, 
they would be computationally prohibitive for this scale of study. 
This computational approach is therefore well-suited, as the 
benchmark is explicitly stereochemistry-dependent and serves as 
a task for comparing the effect of including stereochemistry in 
the generation process.

The xTB calculation produces orbitals and orbital energies, which 
can be treated using simplified Tamm-Dancoff approximated 
(sTDA) time-dependent density functional theory (TD-DFT). This 
workflow, sTDA-xTB, produces CD spectra of the lowest energy con
formers relatively quickly, even for molecular systems with hun
dreds of atoms (89, 90). A peak score is defined as the signed area 
under the spectrum for wavelengths 450–550 nm, a region where 
small organic molecules can have CD signals, and is also within 
the visible range for possible materials applications. Maximizing 
the peak score produces chiral optically active materials within 
the blue region of visible light.

The results of CD peak score optimization task are shown in Fig. 5. 
The structures of the top scoring CD peak score molecules are shown 
in Fig. S9. There are no differences between the nonstereo and stereo 
REINVENT, which are unable to improve upon the scores of the initial 

dataset. The GroupJANUS optimization also shows no difference be
tween the stereo and nonstereo models. However, the stereo-aware 
JANUS is capable of generating molecules with stronger CD signals 
than the nonstereo-aware counterpart. The results indicate that 
the CD task is a suitably stereochemistry-sensitive optimization 
task for molecular generative modeling.

Discussion
While it might be hypothesized that incorporating more detailed 
physical and chemical information, such as stereochemistry, would 
lead to improved model performance on realistic chemical bench
marks, our findings show the practical impact is moderated by 
the task’s intrinsic sensitivity to this information and the model’s 
ability to effectively navigate the increased complexity—including 
an expanded search space and, for string-based methods, a larger 
action space—that accompanies such representations. For explicit 
optimization of molecular structures, stereo-aware GAs perform 
better than nonstereo counterparts. In the docking task, we observe 
that stereo GAs boost the optimization performance for 1SYH and 
1OYT. In the case of 6Y2F, the generated ligand molecules are lar
ger, in order to fit in the bigger protein binding pocket. Larger struc
tural changes such as additional of fragments and functional 
groups allow the models to more quickly traverse the permitted 
molecule space, while slight changes in stereochemistry only result 
in small changes in the docking score. In these tasks, stereo models 

Fig. 2. Optimization traces for rediscovery tasks. The cumulative top-1 similarity score to the target molecule as a function of generation of optimization. 
Shaded regions indicate the 95% CI. The dashed line is the best score found in the starting dataset.
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still perform as well as nonstereo models. The CD spectra task dir
ectly probes the effects of chirality, and the spectra is less related to 
specific molecular size or functional groups. In this task, stereo 
JANUS outperforms nonstereo JANUS.

Except for the rediscovery tasks, unlike JANUS, the stereo and 
nonstereo variants of GroupJANUS perform similarly. This may 
be due to inefficiencies of the GroupSELFIES representation of 
stereochemistry. The addition of stereochemistry tokens increase 
the alphabet size by almost 10 times. Also, all additional tokens 
and group tokens are overloaded to ensure robustness. We hy
pothesize that the increased number of tokens interferes with 
the decoding of stereoisomeric GroupSELFIES, truncating mole
cules at rings and branches.

Additionally, GAs perform better than the REINVENT model for 
the same number of oracle calls, results which are consistent with 
previous studies (31). The evolutionary approach of GAs will al
ways select the members of the population that maximize the fit
ness, meaning the GA cannot perform worse than the previous (or 
initial) generations. GAs are also not encumbered by the prior 
chemical space distribution of the training set, unlike deep learn
ing methods like REINVENT, allowing the generation of more di
verse molecules. Due to the prior model, the REINVENT agent 
requires more oracle calls and more frequent retraining to condi
tion for higher rewards. No improvement was observed for stereo 
REINVENT. The expanded alphabet increases the number of pos
sible actions the RL, requiring the model to learn a more complex 
policy which may have impeded stereo REINVENT.

Conclusion
This study presents a detailed investigation into the incorporation 
of stereochemical information within molecular generative mod
els, focusing on established techniques such as string-based RL 
and GAs. We aim to provide a nuanced understanding of the im
pact of stereochemistry awareness by employing a suite of evalu
ation metrics, including both conventional benchmarks and 
newly designed tasks specifically tailored to assess the role of 
stereochemistry. A key contribution of this work is the introduc
tion of a novel CD-based task, which proved to be suitable for 
probing the effects of chirality in the generated molecules.

Our findings highlight the importance of considering task- 
specific requirements when deciding whether to include stereo
chemical information within the generative process. In cases 
where different stereoisomers can significantly influence the de
sired molecular properties, the inclusion of stereochemistry led 
to improved performance. Specifically, we observed that 
stereochemistry-aware GA JANUS consistently outperformed 
their nonstereo counterparts in generating molecules for stereo
isomer rediscovery, docking to proteins 1SYH and 1OYT, and CD 
spectra peak optimization.

However, our results also suggest that the benefits of incorpor
ating stereochemistry are less pronounced in tasks where other 
molecular features, such as size or functional group presence, 
may play a more dominant role. This was seen in the protein–lig
and docking task for target 6Y2F, where the impact of stereochem
istry was less substantial relative to larger structural molecular 
changes, due to the bigger and less constraining binding pocket. 
The increased number of atoms and bonds of the molecules gen
erated for the 6Y2F pocket naturally have more possible stereo
isomers. Consequently, larger structural modifications, such as 
the addition of functional groups, can be more efficient in explor
ing the chemical space than smaller stereochemical adjustments. 
Specific to our string-based approaches, we observe that the add
ition of stereochemical tokens considerably increases the action 
space of the models, which may frustrate the optimization. For ex
ample, in GroupJANUS, the inclusion of stereochemical groups 
and chiral tokens increases the alphabet size by a factor of 10, 
greatly increasing the number of possible mutations in the GA. 
This observation underscores the need for a considered approach 
when deciding on the necessity of stereochemical information in 
generative models.

Extending the methodologies to encompass additional stereo
chemical complexities represents a valuable direction for future 
work. It is important to note that our evaluation primarily focused 
on E/Z and R/S isomerism. This scope was found to be sufficient 
for the drug-like small organic molecules of the ZINC dataset 
and the benchmarking tasks that we examined here. However, 
the explicit handling of other isomerisms, such as axial chirality 
or nontetrahedral isomerisms, was not within the scope of this 
study.

Fig. 3. Structures of proteins with native ligands. The structures are from the Protein Data Bank (73). The native ligand in the binding pocket is shown 
inside a bounding box.

6 | PNAS Nexus, 2025, Vol. 4, No. 11

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/4/11/pgaf329/8286226 by C

halm
ers tekniska högskola (C

halm
ers U

niversity of Technology) user on 26 N
ovem

ber 2025



Further investigation into more efficient and robust represen
tations and handling of stereochemistry is warranted. For in
stance, while this study focused on string-based methods, 
models using other molecular representations, such as graphs 
(16, 29), voxel grids (91), or 3D representations (92, 93), offer 
alterative approaches. Our benchmark provides realistic 
stereochemistry-sensitive tasks to benchmark such models for 
further development. Regardless of the specific generative meth
od or molecular representation employed, the fundamental 
trade-off observed—balancing the advantages in optimizing 
stereochemistry-sensitive tasks against the challenges posed by 

an expanded chemical space—will likely persist. Concurrently, 
for string-based deep learning models such as REINVENT, the de
velopment of architectures or training strategies better equipped 
to handle the additional stereochemical tokens within molecular 
strings may be necessary to fully harness their potential in stereo- 
selective design.

In conclusion, this work offers insights into how string-based 
generative models handle stereochemical information for mo
lecular design, outlining their capabilities and limitations. Our 
findings indicate that while incorporating such information can 
be beneficial, particularly when 3D molecular structure is a key 

Fig. 4. Optimization traces for docking tasks. The cumulative top-1 docking score for protein targets as a function of generation of optimization. Shaded 
regions indicate the 95% CI. The dashed line is the best score found in the starting dataset.
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consideration, the decision should be guided by a careful assess
ment of task-specific requirements and the trade-offs associated 
with increased model complexity. Further investigation into 
more efficient and robust representations of stereochemistry, 
such as graph-based approaches, is a worthwhile direction for fu
ture research to potentially improve these generative models.

Methods
Reinvent
REINVENT is an RL algorithm that uses a recurrent neural network 
(RNN) pretrained on a dataset of SMILES as a chemical language 
model agent (22, 23, 25). For this work, we follow the procedures 
described in Olivecrona et al. (22). While later versions of 
REINVENT have additional features, such as scaffold and linker 
design using transformer models, the underlying RL method for 
de novo design is unchanged. When provided a token from a 
SMILES string, the RNN is trained to generate a conditional distri
bution of the subsequent tokens in the sequence. A memory state 
is passed into the model as well, retaining information about pre
vious tokens of the sequence observed by the model. The RNN is 
first pretrained on the initial ZINC dataset, allowing it to learn 
the grammar of the stereo and nonstereo SMILES in the dataset, 
producing 94 and 91% average validity of generated SMILES, re
spectively. During the RL optimization, the prior RNN is fine-tuned 
after each generation by a loss function augmented by the fitness 
score achieved by the molecule S ∈ [0, 1], with good candidates 
scoring S = 1, and poor candidates and invalid SMILES scoring 
S = 0. Fitness functions that are outside of this range are scaled us
ing a sigmoid function. With each iteration, the RL algorithm will 
aim to optimize the molecules to maximize the fitness function. 
Note that SELFIES can also be used with REINVENT, but previous 
studies have demonstrated that the RNN model is sufficiently 
capable of generating valid SMILES, and no significant perform
ance gain is observed for SELFIES-REINVENT (41).

JANUS and GroupJANUS
JANUS admits only SELFIES-based representations. Leveraging the 
robustness of SELFIES representation, JANUS can perform muta
tion and crossover operations, as defined in the STONED 

algorithm (94). JANUS maintains two separate populations for ex
ploration and exploitation of chemical space. The exploration set 
is generated by mutation and crossover operations within the en
tire population, while the exploitation set is generated through a 
series of mutations on the fittest molecules. The best candidates 
found in the exploitation set are then exchanged with the worst 
candidates in the exploration set. At each iteration, selection pres
sure from the fitness function allows the model to converge to
ward the optimum.

In our workflow, we implement the GroupSELFIES version of 
JANUS, dubbed GroupJANUS, which operates in the same fashion 
as JANUS. In order to isolate the effect of the stereochemical to
kens, only the chiral group tokens are used in GroupJANUS; no 
other groups are encoded in the GroupSELFIES grammar. For 
both JANUS and GroupJANUS, the mutation operations depend 
on the random sampling of tokens in the alphabet. For both mod
els, the inclusion of stereochemical tokens greatly increases the 
size of the alphabet, and structural tokens which are responsible 
for encoding molecular rings and branches are less likely to be 
sampled. To account for this imbalance, structural tokens— 
such as [RingX], [BranchX], and the GroupSELFIES specific 
[pop] tokens—are weighted such that they are sampled with 
the same probability as in the nonstereo alphabet.

Experimental setup
For all tasks, the models are allotted 10,000 fitness oracle calls. 
The GAs run 50 generations with a population size of 200 mole
cules; the initial populations for the GA are fixed, starting with 
the top 5,000 scoring molecules from the initial dataset. 
REINVENT runs 100 generations of 100 molecules to allow for 
more policy updates throughout the optimization. REINVENT is 
fine-tuned on the same top 5,000 scoring molecules before 
optimization.

Each experiment was repeated 10 times with different random 
seeds, which affect the sampling operations within REINVENT and 
the GAs, and in any random assignment of stereochemical infor
mation. The reported mean and SD of the optimization trace AUC 
are calculated over these 10 runs. Statistical significance was de
termined using a two-sample Student’s t-test (P < 0.05), compar
ing the stereo-aware and nonstereo-aware variants for each 

Fig. 5. Optimization traces for CD task. The cumulative top-1 CD peak score as a function of generation of optimization. Shaded regions indicate the 95% 
CI. The dashed line is the best score found in the starting dataset.
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model and task based on the results from these independent runs. 
The 95% CI shown in the figures are also derived from the inde
pendent runs.
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