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Literate Programming with LLMs? - A Study on
Rosetta Code and CodeNet

Simin Sun

Abstract—Literate programming, a concept introduced by Knuth
in 1984, emphasized the importance of combining human-
readable documentation with machine-readable code as writing
literate programs is a prerequisite for software quality. Our
objective with this paper is to evaluate whether generative Al
models, Large Language Models (LLM) like GPT-4, LLaMA
or Falcon, are capable of literate programming because of
their extensive use in software engineering. To truly achieve
literate programming, LLMs must generate natural language
descriptions and corresponding code with aligned semantics
based on user prompts. In addition, their internal representation
of programs should allow us to recognize both programming
languages and their descriptions. To evaluate their capabilities,
we conducted a study using the Rosetta Code and CodeNet
repositories. We perform four computational experiments using
the Rosetta Code repository, encompassing 1,228 tasks across 926
programming languages, and validate our findings on the larger
CodeNet dataset, which includes 55 tasks and 52 languages.
Our findings show that LLMs in the trillion-parameter class are
capable of literate programming, while models in the million- and
billion-parameter classes are better at recognizing programming
languages than tasks. Based on these results, we conclude that
modern LLMs inhibit a deeper ability to encode programming
languages and the semantics of programming tasks, bringing us
closer to realizing the full potential of literate programming.

Index Terms—Large Language Model(LLM), Literate Program-
ming, Computation Experiment, Code-related Tasks

I. INTRODUCTION

ITERATE programming started as an idea to write

programs that are understandable both by humans and
computers [1f]. Instead of writing programs that include com-
ments, programmers should write programs together with their
descriptions, for example, using a higher-level language called
WEB by Knuth. Such a description would then be input into
two processes: weaving, which generates a text, natural lan-
guage, description of the program, and tangle, which generates
a program source code. These two outputs are then compiled
into a text document (e.g., using the TeX compiler) and an
executable (e.g., using the Pascal compiler). The process is
illustrated on the left-hand side of Fig. [I]

Although this idea has been around since 1984, it has been
actualized with the introduction of Large Language Models
(LLMs), as this process resembles using LLMs for gen-
erative programming. The programmers provide a prompt
that the LLM completes with a program and (depending
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Fig. 1: The WEB system that implements the idea of literate
programming by Knuth (left-hand side) and its modification
in the context of LLMs (right-hand side). The grey back-
ground indicates that two different representations must be
semantically equivalent. The WEB systems description of the
programs is equivalent to the LLMs prompt, which starts
”producing” the outputs.

on the context) a description of the program/comments in
the program’s source code. The programmers do not write
the program entangled with the description, as in the WEB
system, but expect the LLM to describe the program that the
LLM generates from the prompt. The programmers rely on
the LLMs to generate and explain the code, which means
they rely on the model’s ability to explain the programs
sufficiently. Therefore, the gray background indicates that the
two forms must be equivalent. Therefore, we can formulate the
literate programming hypothesis for LLMs in the following
way: an LLM is literate in programming when we can use it
to explain/recognize the programming language used in the
program and the task that this program implements equally
well.

This hypothesis can be evaluated in two ways. The first
is to analyze embeddings: given a program, we derive its
programming language (PL) and programming task (PT) from
a predefined set of options. The quality of the embeddings
can then be assessed using a probing classifier, with classifi-
cation accuracy serving as the evaluation metric. The second
approach is to directly evaluate the outputs generated from the
prompts and then analyze the similarity of the generated text
to the original solution. We prefer the first one as the second
method introduces risks, since the prompts may leak informa-
tion already encoded in the embeddings and bias the results.
It also relies on identity functions for similarity, e.g., BLEU
or ROUGE scores. In addition, prompt engineering techniques
can substantially influence the results in a way which is hard to
control, as wording in prompts may bias the results to certain
programming languages as certain phrases may be used more
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often with certain programming tasks/languages. Since we do
not know the exact datasets used to train the LLMs, we cannot -
control for this prompting bias. To avoid these confounding
factors, our study focuses on the first approach: evaluating
embeddings derived from existing programming repositories,
where the PL and PT labels are explicitly defined.

Previously, studies on the ability of LLMs to explain the °
programs, e.g., as shown by the experiment by Shi et al. [2], :‘]'
indicated the ability of LLMs to explain the source code. i
The LLMs can provide outlines of the source code, but these "
explanations are on the level of lines or fragments of code; .
LLMs do not explain the algorithms implemented in these

programs. In this study, our aim is to explore this further and '°
investigate the ability of LLMs to explain programs at higher :
abstraction levels. We focus on the LLMs internal representa- o
tion of programs to achieve this goal — the embeddings of the *
programs in the latent space. i

The primary objective of this study is to design and conduct a ,,
series of computational experiments to investigate to what ex- >
tent LLMs support the concept of literate programming, using ’
Rosetta Code []_-] and CodeNet Repository El These languages -
range from highly obscure to simple and easy-to-understand :
ones. For example, Fig. 2] and Fig. [3] illustrate solutions to )
the task of calculating the Fibonacci sequence in COBOL and H:
JavaScript, respectively.

2

2

The probing classifiers [3]], which include a probing task and
a probing classifier, are used to evaluate whether a model
has learned the desired external properties by analyzing its i
internal representations. This technique is commonly used
to determine whether a pre-trained model embeds and thus
captures specific attributes by training a simple classifier on ;,
them. The performance of the classifier, usually measured
by precision, indicates the effectiveness of the test tasks and
provides information on the model’s ability to represent the
properties targeted [4]. Compared to higher-level evaluations,
which focus on the output of LLMs and cannot reveal what the
model internally represents, probing classifiers directly test the
information encoded in latent embeddings. We adopt probing |
classifiers, as they provide a measurable way to check whether >
certain properties can be deduced from the embedding vectors. °
In our case, this means that if a classifier can accurately predict
the programming task or the programming language, then the
embedding vectors contain information about the task or the
language (or both).

40

Given the extensive variety of programming languages and
tasks, this study aims to assess whether LLMs can compre-
hend both programming languages and their corresponding
descriptions as well. We evaluate multiple models’ capabilities
by training two classifiers on the hidden state embeddings of
programming code using two different labels (programming
languages and programming tasks). We analyze these clas-
sifiers to examine whether a given program is more closely
classified with its counterparts:

Uhttps://www.rosettacode.org
Zhttps://github.com/IBM/Project_CodeNet

Program-ID. Fibonacci-Sequence.
Data Division.

3 Working-Storage Section.

01 FIBONACCI-PROCESSING.
05 FIBONACCI-NUMBER PIC 9(36) VALUE O.
05 FIB-ONE PIC 9(36) VALUE 0.
05 FIB-TWO PIC 9(36) VALUE 1.
01 DESIRED-COUNT PIC 9(4).
01 FORMATTING.
05 INTERM-RESULT PIC Z(35)9.
05 FORMATTED-RESULT PIC X(36).
05 FORMATTED-SPACE PIC x(35).

Procedure Division.
000-START-PROGRAM.
Display "What place of the Fibonacci Sequence
would you like (<173)? " with no advancing.
Accept DESIRED-COUNT.
If DESIRED-COUNT is less than 1
Stop run.
If DESIRED-COUNT is less than 2
Move FIBONACCI-NUMBER to INTERM-RESULT
Move INTERM-RESULT to FORMATTED-RESULT
Unstring FORMATTED-RESULT delimited by all
spaces into FORMATTED-SPACE, FORMATTED-RESULT
Display FORMATTED-RESULT
Stop run.
Subtract 1 from DESIRED-COUNT.
Move FIBONACCI-NUMBER to INTERM-RESULT.
Move INTERM-RESULT to FORMATTED-RESULT.
Unstring FORMATTED-RESULT delimited by all
spaces into FORMATTED-SPACE, FORMATTED-RESULT.
Display FORMATTED-RESULT.
Perform 100-COMPUTE-FIBONACCI until
DESIRED-COUNT = zero.
Stop run.
100-COMPUTE-FIBONACCI.
Compute FIBONACCI-NUMBER =
Move FIB-TWO to FIB-ONE.
Move FIBONACCI-NUMBER to FIB-TWO.
Subtract 1 from DESIRED-COUNT.
Move FIBONACCI-NUMBER to INTERM-RESULT.
Move INTERM-RESULT to FORMATTED-RESULT.
Unstring FORMATTED-RESULT delimited by all
spaces into FORMATTED-SPACE, FORMATTED-RESULT.
Display FORMATTED-RESULT.

FIB-ONE + FIB-TWO.

Fig. 2: Code Implement (Programming Task: Fibonacci-
Sequence; Programming Language: COBOL)

function fib(n) {
return n<2?n:fib(n-1)+£fib (n-2);
}

Fig. 3: Code Implement (Programming Task: Fibonacci-
Sequence; Programming Language: JavaScript)

i) in the same programming language (PL) but addressing
different tasks (PT), or

ii) in different programming languages (PL) but addressing
the same task (PT).

Additionally, we also want to understand whether the hid-
den state embeddings of programming descriptions capture
the same semantics as those of programming code, thereby
determining whether LLMs can abstract the content of a given
program.

Finally, we explore whether code-specific models, specifi-
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cally models fine-tuned on programming code, exhibit similar
patterns of recognition and classification as general-purpose
LLMs.

The idea of studying this classification stems from the thesis
by Bentley and Knuth [5]], that when writing programs, one
“minimizes the distance between the problem-solving strate-
gies [...] and the program text”. In our case, problem-solving
strategies are approximated by programming descriptions, and
program text is approximated by the source code. Thus, we
study the following research question:

RQ1: To what extent do LLMs align with the principles of
literate programming?

RQ1.1: Whether the LLMs classify a given program as
more similar to its counterparts in [i)] or

RQ1.2: Would the LLMs be able to identify the pro-
gramming task as accurately from the description as
from the paired code?

RQ2: How do general-purpose models perform compared
to code-specific models in capturing representations?
Specifically, do fine-tuned models represent programming
languages more effectively than they represent program-
ming tasks?

We conducted computational experiments using 13 general
language models and 6 code-specific language models on data
from the Rosetta Code and CodeNet repositories’}

Our results reveal that model size (measured by the number
of parameters), maximum input size are critical factors influ-
encing an LLM’s ability to understand both code and natural
language. Only when the model size reaches the trillion-
parameter scale do LLMs effectively achieve literate program-
ming, demonstrating a strong ability to capture the semantics
of both natural languages and programming languages. At
this scale, models accurately predict both the task and the
programming language associated with a given code snippet.

In contrast, models with millions to billions of parameters do
not fully realize literate programming. Although increasing
the size of the model significantly improves programming
language recognition, it does not proportionally enhance the
ability to understand the purpose of a given code snippet
(task prediction). Similarly, for code-specific models, we did
not observe substantial improvement in task prediction as
the size of the model increased. However, once a certain
size threshold is surpassed, the distinction between general-
purpose LLMs and code-specific models diminishes. This
is because larger general LLMs also exhibit strong code-
recognition capabilities.

The remainder of the paper is structured as follows. Section
explores further the importance of the literate programming
for LLMs and the impact of it. Section [Il] summarizes the

3 All supplementary data supporting this study are openly available at jhttps:
//doi.org/10.5281/zenodo.17079423|

most recent developments in this area. Section [[V]explains the
methodology used and provides a comprehensive overview of
the experimental progress undertaken in our study. Section
presents the results from our experiments. Section
summarizes the findings, limitations, and future works, and
Section discusses the validity of our findings. Finally,
Section presents our conclusions.

II. MOTIVATION

Literate programming, as introduced by Knuth, aims to make
programs understandable not only to machines but also to
humans by embedding explanations of the design, purpose,
and reasoning directly within the code of a higher-level
language (called WEB, because it weaves explanations with
source code). Such an integration encourages good design
practices, makes poor design choices visible, and facilitates
comprehension and reuse of complex programs by other
developers. Knuth characterized literate programming as a
programmer-driven narrative, in which prose and code are
intentionally woven together to support human comprehension.
In his view, the narrative document is the central artifact, while
the source code it produces is secondary. When using LLMs
to generate programs, this concepts actualizes again, but in a
slightly different form.

In traditional software development, programmers implement
software from requirements. Literate programming extends
this process by requiring developers not only to write the
code but also to provide accompanying descriptions that make
the code understandable to others. In the era of LLMs, this
dual role is partially delegated to prompts: developers specify
requirements in natural language, and the model generates
both the code and, in some cases, explanations. Whether an
LLM can be considered literate in programming depends on
its ability to correctly interpret the requirements expressed
in the prompts and internally capture the nuances of dif-
ferent programming languages and programming tasks. This
distinction helps explain why most current LLMs excel at
programming language recognition but struggle with task
recognition, especially when programs are complex. It also
sheds light on the inconsistent behaviors often observed in
agentic Al systems, such as generating C++ code when C is
requested, or shifting languages mid-conversation.

The literate programming via LLMs also depends on the
model’s ability to recognize and explain existing code. A truly
literate model should be able to summarize a given snippet
by identifying both the programming task it solves beyond
documenting individual lines and the language in which it is
written. Such models would be particularly valuable for soft-
ware engineering tasks that rely on the bridging of code and
natural language, such as documentation, code summarization,
and educational tools. If a model cannot accurately summarize
the code, then it cannot be relied on when generating solutions,
i.e., source code, for new problems.

Like traditional software development, which is often diffi-
cult for others to understand, LLMs are black-box systems:
they generate code without exposing the reasoning process
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I Write a recursive fibonacci implementation in COBOL

Fig. 4: Prompt (Programming Task: Fibonacci-Sequence;
Instruction: Recursive Implementation; Target Language:
COBOL)

that led to their design. Although LLMs can produce code
accompanied by explanations, these explanations are typically
shallow, focusing on line-level commentary rather than higher-
level algorithms and problem-solving strategies. This raises
the question of whether LLMs possess the capacity to connect
programs with their intended tasks in a manner consistent with
the principles of literate programming. Importantly, LLMs
do not “understand” inputs in a human sense; instead, they
transform all inputs into embeddings within a latent space. The
similarity in this space allows the models to group or cluster
new content with concepts they have already encountered.
In our work, we use the term literate in this embedding-
based sense: an LLM can be considered ’literate’ if its latent
representations allow us to correctly recognize and categorize
code according to both the language it is written in and the
problem it solves.

This formulation parallels, but also departs from, Knuth’s
original idea. In the WEB system, semantic alignment between
documentation and code was ensured by the weaving and
tangling process explicitly authored by humans. In contrast, for
LLMs, this equivalence must be inferred from the alignment
of natural language and code in their latent space. Studying
this alignment provides a principled way to evaluate whether
LLMs move beyond code generation toward the literate pro-
gramming ideal. Thus, while our hypothesis captures an es-
sential dimension of Knuth’s vision: maintaining equivalence
between code and explanation, it substantially reframes literate
programming in the context of LLMs. Therefore, we clarify
that our goal is not to replicate Knuth’s original framework,
but to extend its underlying principles to assess whether LLMs
can achieve literate behavior through aligned representations
of code and natural language.

A. Importance

Literate programming is crucial for LLMs because these
models serve as the foundation for systems like ChatGPT and
GitHub Copilot. Programmers depend on these tools to per-
form specific tasks in the appropriate programming language.
If LLMs struggle to differentiate between tasks associated with
different programming languages, programmers cannot trust
the quality of their outputs. This dependence on LLMs can
jeopardize the quality of the generated software. For instance,
consider the prompt in Figure ] which includes both the task
description and the programming language specification.

The Fibonacci sequence is a well-known mathematical con-
cept, making it relatively easy to find reference implementa-
tions. The details are essential: the recursive implementation
and COBOL. We expect the LLM to provide us with the
correct implementation, which it often does. However, some-

times LLMs can answer in another programming language
(e.g., Python) or generate iterative calculations, rather than
recursive ones. For this prompt, it is easy to check the
correctness, but we want to use LLMs as assistants for much
more advanced tasks, where we do not have an oracle yet —
solving real programming issues in the software engineering
industry. Our focus lies on more complex tasks that require
advanced capabilities, such as Mixture-of-Experts models, to
solve them. This means that we need to depend on the models’
ability to differentiate between various tasks. So, literate LLMs
can provide the correct solution to the problem in the correct
programming language. In contrast, illiterate LLMs can give a
solution to a different problem or in a different programming
language. If an LLM is illiterate, then we cannot use it directly
to generate solutions, but we need additional technologies,
like RAGs (Reality Augmented Generation) to provide the
programmers with reliable solutions to advanced programming
problems.

III. RELATED WORK

We begin by exploring research and practices in the domain of
literate programming. Next, we examine studies on evaluating
LLMs, including their hypotheses and research methods. Since
how code-specific models enhance performance is also part
of the research scope, we review the development of these
models. Finally, we study research on code-related tasks that
could benefit from our study.

A. Literate Programming

Literate programming was introduced as an idea by Knuth [/1]]
and further elaborated in [5]. This concept asserts that pro-
gramming should be presented as a combination of explana-
tions in natural language and source code, making it com-
prehensible both to human readers and to computers. In the
early 2010s, Org-mode [6] was one of the initial attempts
to integrate this programming paradigm into the Emacs text
editor. The idea gained significant attention during the 2010s,
with the advent of notebook interfaces. These tools, which
facilitated literate programming, became increasingly popular
among programmers, particularly within the field of data
science [7]]. Codestrates [8]] is one such example that offers
collaborative and interactive notebook environments.

With the rise of generative Al, the implementation of literate
programming has taken new dimensions. As technology has
rapidly evolved, the concept of code literacy has gained greater
importance, especially since natural language interfaces are
used for programming [9]. The development of LLMs has
further expanded the scope of literate programming. Many
recent studies propose leveraging LLMs to generate natural-
language summaries of code snippets, echoing the principles of
literate programming. For instance, Natural Language Outlines
(NL outlines) [2] is a tool designed to divide code into
logical segments and provide natural language summaries
for each section. This represents a new dimension of liter-
ate programming, focusing on a fine-grained assessment of
code. By focusing on small code snippets, such tools excel
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at explaining localized functionality, but may overlook the
broader, abstract structure of the program, i.e., design patterns
or the task that is solved. As the interplay between natural
language and programming continues to evolve, these tools
highlight the shifting boundaries of what literate programming
can achieve in the era of generative Al. These works highlight
that literate programming has always been about aligning code
with explanation. Our study builds on this tradition but shifts
the focus: instead of humans deliberately weaving code and
prose, we investigate whether LLMs internally represent this
alignment. This motivates our “literate programming hypoth-
esis for LLMs.”

B. Evaluating LLMs

The evaluation of LLMs in software engineering has attracted
significant attention, with more than 1,000 publications in
2023 alone [10]. Although much of this work uses higher-
level evaluations to assess downstream performance (e.g., code
completion, generation), fewer studies examine what LLMs
internally represent.

Early research on the naturalness of software provides one
perspective. Hindle et al. [[11]] showed that source code, like
natural language, exhibits statistical regularities that can be
captured by simple n-gram models. However, such studies
focus on surface-level predictability and do not assess whether
models capture higher-level semantics or task-level features.
In our framing, naturalness reflects local regularities, whereas
literate programming requires models to align the code with
its underlying problem-solving intent.

A more direct method for evaluating internal representations
is probing classifiers, originally developed in NLP to test
whether embeddings capture linguistic properties. Probing
assesses pretrained models by analyzing the extent to which
they encode specific linguistic properties. Early studies [12],
[13] focused mainly on probing word embeddings, examining
properties such as referential knowledge, morphology, and
syntax. Subsequent research expanded to sentence embed-
dings, exploring their ability to encode syntactic structures [|14]]
and semantic properties [[15]. With the rise of code-specific
models, probing techniques were first applied to source code
by Karmakar and Robbes [4]. They evaluated four probing
tasks using four different pretrained models to analyze how
well these models capture various code properties. Later,
Troshin and Chirkova [16] extended this work by examining
the representations generated by multiple pretrained models in
eight diagnostic tests. Their findings suggest that, while these
models effectively capture surface-level information, such
as syntax, identifier usage, and namespace structures—they
struggle with more complex properties, such as semantic
equivalence. Additionally, they observed that training on code-
specific data significantly improves the models’ ability to
understand code constructs. Ahmed et al. [17] employ different
methods from probing to investigate LLMs’ semantic "under-
standing’. Instead of evaluating the representations obtained
for subsequent tasks, they directly explore the representations
acquired by the language models. They employ two identical

operators, operand swap and block swap, which alter the
code structure without altering its semantics. By masking
key elements of these alterations, they task the models with
predicting the masked segments. All models utilized in the
study successfully predict the masked operators, enabling a
direct assessment of the LLMs recognition of code regarding
format changes. However, the study’s scope is limited as the
operators employed are simplistic and do not substantially
alter the logic or variables within the code. However, Chen
et al. [18] showed that generating domain models in textual
forms is still challenging for LLMs. Even models like GPT-
3.5 and GPT-4 have low accuracy in generating relationships
(0.34) and moderate accuracy in generating classes (0.76) and
attributes (0.61).

Our work builds on this line of research, but diverges in
focus. Rather than probing for syntax, identifiers, or simple
structural changes, we evaluate whether LLM embeddings
capture programming languages and programming tasks, two
properties central to our definition of literate programming
for LLMs. Specifically, we use probing classifiers to test
whether a given program is more closely aligned with other
solutions written in the same language or with those solving
the same task (RQ1.1), and whether task information is equally
well represented in code and its natural language description
(RQ1.2). In this way, we extend the probing from surface-
level code properties to the higher-level semantic alignment
that underlies literate programming.

LLMs for Code: Transformer-based models such as GPT
and BERT are widely used in natural language processing
tasks such as sentiment classification, text generation, lan-
guage translation, question answering, and summarization.
Over time, as these models have evolved in architecture
and size, their performance in linguistic tasks has improved
significantly. However, concerns have arisen about how well
pretrained models can capture semantics of the source code.
While most models are designed to process natural language,
some are specifically developed to focus on capturing code
semantics.

Kanade et al. [19] introduced CuBERT, the first attempt to
train the BERT [20] model on source code. They trained
the model using Python code collected from GitHub, sig-
nificantly improving performance in five code-related tasks,
including Variable Misuse detection. Similarly, Feng et al. [21]]
developed CodeBERT, an extension of BERT trained on six
programming languages: Go, Java, JavaScript, PHP, Python,
and Ruby. CodeBERT functions as a bimodal model capa-
ble of processing both natural and programming language
structures. Karampatsis and Sutton [22] proposed SCELMo,
a model trained on ELMo [23] for bug detection. Their
work highlights the benefits of bidirectional token embeddings
in providing additional context for improved performance.
Guo et al. [24] introduced GraphCodeBERT, which enhances
pre-training by incorporating data flow instead of traditional
representations, capturing a deeper structural recognition of
code. This approach leads to significant performance gains in
various downstream tasks.
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These code-specific models highlight how domain-focused
pretraining enhances the capture of structural and semantic
code features. However, they are primarily evaluated through
downstream tasks, such as defect detection or code comple-
tion. In contrast, our study investigates whether such mod-
els, compared to general-purpose LLMs, better align code
with its underlying programming tasks and languages. This
directly addresses RQ2, which asks whether fine-tuned code-
specific models represent programming languages more ef-
fectively than they represent programming tasks. By framing
this evaluation through the lens of literate programming,
we move beyond performance on isolated tasks and instead
assess whether these models internally encode the semantic
alignment between code and its explanation.

Code-related Tasks: We aim to explore literate programming
through LLM due to the growing popularity of LLM-based
tools for code-related tasks, such as code generation and
summarization. Our goal is to determine which models can ef-
fectively solve these tasks while inhibiting a better recognition
of programming tasks and codes. These tasks rely heavily on
how well the models align code and natural language. A better
literate programming” ability would directly improve summa-
rization (code—description), generation (description—code)
and translation (interlanguage task recognition). Our probing
experiments thus provide foundational evidence for why LLMs
succeed or fail at such tasks.

Code generation involves converting natural language descrip-
tions or keywords into executable code. A significant amount
of research in this field has led to commercial tools like Copi-
lot, CodeAl, StarCode, and DeepCode. Early efforts [25]], [|26]]
focused on translating natural languages into an executable,
web-hosted or domain-specific languages. These approaches
were primarily token-based and struggled with recognizing
complex descriptions. Later advancements utilized Recurrent
Neural Networks (RNN) [27]] and reinforcement learning [|28]]
to enhance performance for various purposes. Lin et al. [27]]
used their model to generate shell commands, while 28] intro-
duced SEQ2SQL to generate SQL commands. More recently,
deep learning-based approaches have emerged [29], [30]. Le
et al. [29] extended CodeT5 with deep reinforcement learning,
improving pretraining, processing, and improving performance
on relevant benchmarks. Svyatkovskiy et al. [30] proposed In-
telliCode Compose, a multilingual code completion tool. They
further trained GPT on source codes in four programming
languages: Python, C#, JavaScript, and TypeScript.

Code summarization and code generation represent opposite
processes: the former translates source code into natural lan-
guage, while the latter converts natural language into source
code. According to Zhang et al., [31], code summarization
approaches can be categorized into four according to how
they represent the source code: token-based, tree-based, graph-
based, and others. Furthermore, based on the techniques em-
ployed, the code summarization can also be classified into
seq2seq [32]], [33[l, RNN [34]], [35], Bi-LSTM [36], [37], and
transformer [21]], [38]] based, etc.

Code translation, also called source code to source code

translation, involves the conversion of high-level programming
languages into another form. For instance, in 2015, Aggarwal
et al. [39] expanded the capabilities of Moses [40] to facilitate
the translation from Python 2 to Python 3. Similarly, as demon-
strated in [41]], there are tools that can convert CoffeeScript
to JavaScript. In particular, TransCoder [42]] represents an
unsupervised learning model adept at translating between C++
and Java.

IV. RESEARCH DESIGN

A. Experiments

In this paper, we investigate whether LLMs achieve literate
programming, defined as the ability to recognize both PL
and PT equally well from a given program. This definition
connects directly to the principles of literate programming:
code and its explanation must be semantically aligned. If an
LLM embedding encodes enough information to accurately
distinguish languages and tasks, this suggests that the model
is ’literate’ in the sense of simultaneously capturing syntactic
and semantic properties.

To evaluate this, we designed four complementary exper-
iments. Each experiment investigates a different aspect of
literate programming and contributes evidence to answer RQ1
and RQ?2. Our design follows three steps: (i) preprocess and
sample Rosetta Code data (and later validate on CodeNet), (ii)
extract code and text embeddings from each LLM, and (iii)
train probing classifiers to test whether embeddings capture PL
and PT distinctions. Fig. 5] illustrates the overall experimental
design.

o Experiment 1: General-purpose models for all lan-
guages and all tasks. Extract embedding representations
of code from various LLMs and use the corresponding
programming languages and tasks as labels. Train two
separate classifiers to determine whether a given program
is more closely associated with other programs written in
the same programming language but for different tasks or
with programs written in different languages but for the
same task.

o Experiment 2: General-purpose models but a limited
and balanced number of languages and tasks. Con-
struct a balanced subset of programming languages and
tasks, selecting sets of 5, 10, 20, 30, 40, and 50 languages
and tasks. Compare the classification performance across
these subsets with the results of Experiment 1 to assess
how the number of languages and tasks affects model
performance.

« Experiment 3: General-purpose models predict the task
descriptions using the PT classifier. Use the program-
ming task classifier trained in Experiment 1 to predict
embedding representations for the task description.

« Experiment 4: Language model trained on code.. Re-
peat Experiments 1, 2, and 3 using a set of code-specific
models.
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Fig. 5: Overview of Data Preparation and Hypothesis Evaluation. This process involves training classifiers (PL and PT) for
prediction in Experiment 1. In Experiment 2, a randomizer (red box) was added to choose a limited but balanced number of
records from the dataset. In Experiment 3, we assess the semantic alignment between code and natural language descriptions

using the PT classifier. In Experiment 4, we change the model

Experiment 1 investigated whether LLMs, using the same
code embedding representations, are better at identifying the
programming task that a code snippet is intended to solve or
the programming language in which it is written. We train two
classifiers: one to predict the programming language from code
embeddings, and another to predict the programming task.
This setup directly tests whether embeddings encode syntactic
information (PL) or semantic intent (PT), and how strongly.
The comparison between PL and PT accuracy is not about
one being “better” or “worse,” but about revealing the relative
strength of syntax vs. semantics in LLM embeddings. A model
that succeeds in PL but fails at PT may rely on surface-level
features rather than a deeper problem-solving alignment. This
experiment directly addresses RQ1.1.

Experiment 2 further examined the impact of corpus size on
model performance for programming languages and tasks. We
repeat Experiment 1 with balanced subsets of 5, 10, 20, 30,
40 and 50 tasks / languages. This controls for skew in Rosetta
Code (many languages with few examples each) and tests how
the scale and balance of the data set affect the discriminative
power of embeddings. This design allows us to disentangle
whether the performance differences are due to the capacity of
the model or the data distribution. It provides a more rigorous
test of RQI.1.

Experiment 3 reused the PT classifier from Experiment 1 to
classify embeddings of textual task descriptions. If perfor-
mance remains high, this indicates that the embeddings for
code and descriptions are semantically aligned, a core criterion
of literate programming. If performance collapses, it suggests
that the models rely mainly on syntactic cues. This experiment
evaluates RQ1.2, testing whether models represent code and

This work is licensed under a Creative Commons Attribution 4.0 License

to code-specific models, as marked in blue.

natural language tasks consistently.

Experiment 4 repeated Experiments 1 and 3 using models
pretrained specifically on code. This tests whether domain-
specific pretraining improves task alignment or simply rein-
forces syntactic pattern recognition. By comparing general-
purpose and code-specific LLMs, we address RQ2, asking
whether specialized training enhances literate programming
ability.

Together, these experiments form a coherent framework: Ex-
periment 1 contrasts syntax and semantics; Experiment 2
controls for dataset scale; Experiment 3 connects code and
natural language; and Experiment 4 compares general-purpose
and code-specific models. This layered design ensures that our
results speak directly to the literate programming hypothesis,
while also uncovering the conditions under which LLMs
succeed or fail to achieve it.

The foundation of our experimental design lies in ana-
lyzing the embedding representations of programming lan-
guages and natural language descriptions. Given the train-
ing dataset {Xirain_codes Ytrain_PT, Ytrain_pr} and test data
{Xtest_code7Xtest_textaytest_PTaytest_PL}’ we eXPIOTC their
representations by using them for classification. The embed-
ding can therefore be written as Equation Eirqin_code =
M (Xtrain_code), Where M stands for the model we used,
and Eyqin_code Tepresents the embeddings obtained from
the last hidden layer of the model. Using these em-
beddings, we train two separate classifiers: one using
(Xtrain, Ytrain_pr) to classify programming tasks, and the
other using (Xtrqin, Ytrain_pL) to classify programming lan-
guages. The performance of these classifiers is evaluated by
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comparing their predicted labels with the ground truth, yield-
ing accuracy scores ACCpr and ACCpy, respectively. Ad-
ditionally, to assess whether the embeddings of code capture
semantic similarities with their corresponding natural language
descriptions, we apply the classifier trained on (X¢yqin_codes
Ytrain_pT) to predict labels for text embeddings Xiest teqt and
get the accuracy scores AC'Cyc,¢. This enables us to determine
whether LLMs embed programming concepts in a way that
aligns with human-readable task descriptions.

We hypothesize that the population mean of the test accuracy
for classifiers trained in programming languages is approx-
imately equal to that of classifiers trained on programming
tasks. Furthermore, both should be approximately equal to the
accuracy of predicting the textual descriptions, as formulated
in Equation This formulation allows us to test whether
LLMs achieve a unified representation of code and text,
supporting the principles of literate programming.

(1a)
(1b)

HACCp;, = HACCpT
HACCewr = HACCPT

B. Datasets

We reviewed several existing datasets for code and pro-
gramming tasks, including HumanEval [43], HumanEval-
ET [44], HumanEval-XL [45], MBPP [46], MBPP-ET [44],
CodeNet [47]], PIE [48]], Transcoder [42], CodeSearchNet [49]],
and Rosetta Code [50]. A summary of these datasets is
provided in Table

To ensure fair comparisons, we established two main criteria
for selecting datasets: (1) the number of programming tasks
and programming languages should both be sufficiently large
and roughly balanced after processing, and (2) each program-
ming language and task should contain at least two records to
allow for a train-test split.

TABLE I: Statistics of Surveyed Datasets

Dataset #P_Language #P_Task Total
HumanEval 1 164 164
HumanEval-ET 1 164 164
MBPP 1 974 ~1K
MBPP-ET 1 974 ~1K
PIE 1 2,530 ~80K
Transcoder 3 524 ~3M
CodeSearchNet 6 2M ~6M
HumanEval-XL 12 820 ~22K
CodeNet 55 4,053 ~14M
Rosetta Code 926 1,228 114K

Based on these criteria, only CodeNet and Rosetta Code can
meet the requirements. Rosetta Code E] aims to gather solu-
tions for the same programming task implemented in various
programming languages. As of March 2024, it contains 1,228
tasks with implementations in 926 languages; any submissions
after this date were excluded. In contrast, CodeNet El intro-
duced by IBM as part of Project, and it includes approximately

4https://github.com/acmeism/RosettaCodeData
Shttps://github.com/IBM/Project_CodeNet

TABLE II: Statistics of the CodeNet and Rosetta Code
(Rosetta) Datasets and Processed Data

Name Rosetta  CodeNet

# Programming Tasks (PT) 1,228 1,406

# Programming Languages (PL) 926 55

# PT * PL Combinations 83,997 11,164

# Total Records 114,376 11,998,889
After processing

# Programming Tasks (PT) 532 55

# Programming Languages (PL) 525 52

# Records over all PT * PL Combinations

(if #Recordsper_combination = 1) 38,677 1,727,817

# Train 24,892 1,725,993

# Test 13,786 1,824

4,000 programming problems, each associated with multiple
solutions implemented in various programming languages. In
total, the dataset contains 55 programming languages.

In this study, we use Rosetta Code as the primary experimental
dataset and CodeNet for validation. This choice is motivated
by two considerations. First, Rosetta Code provides greater
diversity in both programming languages and tasks, making it
particularly suitable for evaluating the ability of LLMs to rec-
ognize the language and task of given code snippets. Second,
Rosetta Code contains fewer total records than CodeNet, and
its smaller scale enables the training of more classifiers within
feasible computational limits.

However, additional data processing is still necessary to further
filter the data and ensure a fair classification. Both datasets
provide information on the programming description (text),
the source code (code), and their associated languages (PL)
and tasks (PT). We restructure each record into the format
(Code, Text, PL, PT), where (Code, Text) represent the input
data and (PL,PT) serve as the corresponding labels.

C. Data Preparation

Table [TI] presents more details about both datasets, including
the count of tasks and languages. Note that each combina-
tion of programming languages and tasks may have multiple
solutions, while some have none. Considering the task of
calculating the Fibonacci sequence as an example, there are
a total of 445 solutions available for this task in the filtered
train dataset.

Data processing involved obtaining the necessary data and
consolidating it into a single comma-separated text file for
analysis. Given the substantial data in the original dataset, we
implemented a filtering mechanism based on the combination
of programming language and task. If multiple records were
found, we retained the data and partitioned it. One record
was designated as the test data, while the remaining were
allocated as training data. This procedure ensured adequate
data availability for each programming language and task
combination, facilitating accurate similarity assessment during
calculations.

As indicated in Table 38,677 Rosetta Code records and
1,727,817 CodeNet records meet the specified criteria. To
further understand the dataset, we analyzed the length of the
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TABLE III: Summary Statistics of Line and Token Counts per
Record

Line Token

Stat Rosetta  CodeNet Stat Rosetta  CodeNet
mean 17.76 41.36 mean  68.42 397.59
std 31.78 130.61 std 142.46  4,893.27
min 2 1 min 422.18 146
50% 8 25 90% 375 517
75% 19 42 95% 590 811
max 1,033 24,277 max 8,506 379,407

records to determine how many could fit within the model’s
maximum input length, informing our truncation and padding
strategy. The results, presented in Table indicate that 95%
of the data consists of fewer than 517 tokens.

D. Embeddings

After processing the data, we extract embeddings for each
record — code and textual description — using 19 different mod-
els. The statistics for these models are detailed in Table

These models can be categorized in three ways:

o By Purpose: Models are classified as either general-
purpose language models or those specifically designed
for code summary and generation.

« By Model Type: The models fall into two broad cat-
egories: pretrained language models (PLMs), such as
BERT and RoBERTa, and LLMs. Although both are
transformer-based models, as model sizes increase, tra-
ditional PLMs such as BERT are often not considered
LLMs. However, since there is no strict definition of
what constitutes an LLM in terms of parameter count,
we categorize such models as PLMs for clarity.

« By Scale: Based on the number of parameters, the models
are grouped into three tiers: million-scale models, billion-
scale models, and trillion-scale models, as outlined below.

— Million-scale models:

x BERT [20]: was utilized in the base uncased ver-
sion with 110M parameters.

* GPT2 [51]]: was used in its smallest version with
124M parameters.

* RoBERTa [52f: was utilized in its base version,
comprising 125M parameters and case sensitive.

% CodeBERT [21]]: the codebert-base model from
Hugging Face, trained on bimodal data covering six
programming languages: Python, Java, JavaScript,
PHP, Ruby, and Go. We expected it to improve
accuracy compared to BERT.

* CodeGPT [53]): the CodeGPT-Multilingual E]model
from Hugging Face, trained by Nadine Kuo on
source code in Java, Python, C++, Kotlin, Go,

Shttp://resolver.tudelft.nl/uuid:2b2386e8-f9a9-4d77-9ada-ade7a5208d38

and Julia. This choice was preferred over the
official CodeGPT2 released by Microsoft, which
only focuses on one programming language (Java
or Python), as it may not suffice compared to the
multilingual approach of CodeBERT.

— Billion-scale models:

+ Falcon [54]: The architecture of this model is
based on GPT3, with a few notable distinctions.
Specifically, we utilize the version with 7 billion
parameters tiiuae/falcon-7b and 40 billion param-
eters falcon-40b released in 2023 and their latest
model falcon-11b released in 2024 with extended
input size from 2048 to 8192.

* LLaMA-2 [55]]: This model was developed by Meta
and has three sizes; we evaluate LLaMA-2-7B-hf
and LLaMA-2-13B-hf.

x LLaMA-3.1 [56]: This is a newer version of the
LLaMA models that launched in 2024, and we
included two sizes: LLaMA-3.1-8B and LLaMA-
3.1-70B.

— Trillion-scale models:

* Text-Embedding-3 ﬂ OpenAls latest and most po-
tent embedding model. We include three mod-
els: Text-embedding-3-ada-002, Text-embedding-3-
small and Text-embedding-3-large. They have the
same maximum input sizes, but differ in the output
dimensions.

While getting the embeddings from the pretrained models,
inputs are truncated based on the maximum input length sup-
ported by the models, without applying padding. This decision
is justified by the observation that 90% of the records fit within
the input size limit of the smallest model used, BERT, which
has a maximum input length of 512 tokens. Furthermore, the
average input length for all records is only 68.42 and 397.59
tokens, as shown in Table Padding, even with masking,
would lead to inefficient computation by requiring the attention
mechanism to process many unnecessary padded tokens. To
optimize resource usage, we chose to truncate inputs that
exceed the maximum length instead of padding shorter ones.

The extracted embeddings are the last hidden states, and then
they are averaged across the sequence dimension, expressed as
last_hidden_state.mean(dim = 1). We deliberately avoided
using a pooler layer, since several models in our study
(e.g., GPT-2, CodeGPT2) do not provide one, and relying
on it would introduce inconsistencies. Averaging across the
sequence dimension ensures comparability across architectures
and has been shown to yield outcomes similar to those
obtained from pooler layers. We also considered whether in-
termediate layers might offer semantically richer embeddings.
However, our study spans a variety of architectures with
different depths and training strategies; selecting “middle lay-
ers” would introduce arbitrariness and potential bias into the

"https://platform.openai.com/docs/guides/embeddings/
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TABLE IV: Statistics of Chosen Models

Model Name Release Time  # Paramter Max. Input  Output Size
BERT 2018 110M 512 768
GPT2 2019 124M 1024 768
Million-scale models ~ RoBERTa 2019 125M 512 768
CodeBERT 2020 125M 512 768
CodeGPT2 2023 124M 1024 768
LLaMA-2-7B 2023 7B 4096 4096
LLaMA-3.1-8B 2024 8B 131072 4096
LLaMA-2-13B 2023 13B 4096 5120
LLaMA-3.1-70B 2024 70B 131072 8192
Falon7b 2023 7B 2048 4544
Billion-scale models ~ Falconl1b 2024 11B 8192 4096
Falcon40b 2023 40B 2048 8192
CodeLLaMa7b 2023 7B 16384 4096
CodeLLaMal3b 2023 13B 16384 5120
CodeLLaMa34b 2023 34B 16384 8192
CodeLLaMa70b 2023 70B 16384 8192
Text-embedding-3-ada-002 2022 ~trillion* 8196 1536
Trillion-scale models  Text-embedding-3-small 2024 ~trillion* 8196 1536
Text-embedding-3-large 2024 ~trillion* 8196 3072

*:Estimated number, the exact number of parameters is not revealed in public documentation to prevent

the disclosure of internal architectural details.

analysis. In contrast, the last hidden state represents the final
internal representation of the model before prediction, and av-
eraging across the sequence dimension produces embeddings
that are both general-purpose and architecture-agnostic. This
makes last-layer mean pooling the fairest and widely adopted
approach to cross-model probing. Another alternative strategy
is to use the embedding of the special classification token (e.g.,
[CLS] in BERT-like models). However, not all architectures in
our study implement such a token (e.g., GPT2, CodeLLaMA),
making it unsuitable for cross-model comparison. Moreover,
recent studies [57] have shown that the mean pooling of the
last hidden states can achieve equal or better performance
than relying solely on the [CLS] embedding, as it captures
information distributed across the entire sequence rather than
being tied to a single position. For these reasons, we adopt
the last hidden state averaging as the most fair and robust
approach for probing across diverse model families.

To visualize the embeddings we obtained and highlight their
features, we utilized t-SNE (t-Distributed Stochastic Neighbor
Embedding) [58], a widely used technique for reducing the
dimensionality of high-dimensional data and representing it in
a lower-dimensional space.

E. Classification

Following the extraction of the embeddings from a model,
we used them to train two distinct classifiers with two sets
of labels: one representing the programming languages of
the code and the other representing the programming tasks
associated with the code. After training both models, we
evaluated their performance on the test data, reporting the
accuracies as ACCpy, and ACCpr. Additionally, we assessed
the quality of task description embeddings by using the model
trained on programming tasks to classify task descriptions,
denoted as ACCjeye. If the code embeddings capture suffi-
cient information, they should enable effective differentiation
between task descriptions.

To evaluate the embeddings, we explored three classifiers: k-
nearest neighbors algorithm (KNN), support vector machines
(SVM), and Convolutional Neural Network (CNN). The se-
lection criteria for these classifiers were two-fold. First, a
probing classifier should be a simple model without hidden
layers, which serves as an essential diagnostic tool [4]. By
keeping the classifier simple and largely free of hidden layers,
we ensure that performance reflects the quality of the embed-
dings themselves, rather than the classifier’s capacity to learn
complex decision boundaries. For this reason, we excluded
sophisticated architectures such as LSTMs or BERT, which
could mask weaknesses in the embeddings by compensating
with their own representational power. Second, the classifiers
needed to handle high-dimensional feature spaces: our embed-
dings reach up to 8,192 dimensions, with labels spanning over
500 categories. This ruled out models such as Naive Bayes,
which are not well-suited for such conditions.

For CNN, we deliberately adopted a minimalistic architec-
ture consisting of two convolutional layers, each followed
by ReLU activation and max pooling. Although this design
constrains the absolute performance of the network, it aligns
with our diagnostic objective: to test whether the embeddings
alone contain discriminative features for the programming
language and task classification. Using a deeper or more
expressive CNN could have improved accuracy, but at the
cost of confounding whether performance gains arose from the
embeddings or from the classifier itself (overfitting). In our
design, the convolutional layers extract meaningful features,
while max pooling reduces spatial dimensions to mitigate
overfitting and improve computational efficiency. The fully
connected layers then map the extracted features to the final
classification output, with fully connected layers 1 contain-
ing 128 hidden units and fully connected layers 2 having
num_classes neurons for classification. We set the kernel size
to 3, padding to 1, and max pooling to 2, balancing feature
extraction with dimensionality reduction while using ReLU
activations to introduce non-linearity. To maintain a controlled
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evaluation, we only fine-tuned the learning rate and batch
size. We also excluded computationally expensive classifiers
such as random forests, since the combination of very high-
dimensional embeddings and hundreds of labels would have
required prohibitive training resources.

F. Computational Resource

To obtain embeddings from different LLMs, we employed a
range of GPU configurations:

« NVIDIA A40: 48 GB VRAM, 64 GB system memory
per GPU.

« NVIDIA A100: 40 GB VRAM, 128 GB system memory
per GPU.

« NVIDIA A100: 80 GB VRAM, 256 GB system memory
per GPU.

For classifier training, we used different setups depending
on the model type. KNN and SVM classifiers were trained
on a 16-core CPU with 256 GB system memory. For CNN
classifiers, we used an NVIDIA V100 with 32 GB VRAM
and 384 GB system memory per GPU.

V. RESULTS

A. Experiment 1

General-purpose models for all languages and all tasks: In
this experiment, we analyze the embeddings extracted from
13 models by training two classifiers and evaluating their
accuracy in predicting PL and PT. The results are presented in
Table Our analysis demonstrates that trillion-scale models,
particularly the Text-embedding-3 series, excel in predicting
PT, while the remaining models achieve higher accuracy in
predicting PL. Million-scale models, such as BERT, GPT-
2, and RoBERTa, generally underperform compared to more
recent billion-scale models like LLaMA and Falcon.

There is a notable accuracy gap between the predictions of
PL and PT, ranging from approximately 0.15 to 0.5 for most
models. This gap is less noticeable under the SVM classifier.
For example, LLaMA-3.1-8B achieved 0.8552 accuracy for PL
versus 0.7410 for PT with SVM, a gap of 0.11. In contrast,
CNN exhibited much larger disparities, frequently exceeding
0.3, as it performed reasonably well on PL classification but
consistently struggled with PT prediction.

As the size of the model increases, overall performance
improves in both tasks, with larger models consistently outper-
forming smaller ones. However, LLaMA-3.1-8B surpasses the
larger but older LLaMA-2-13B. In particular, LLaMA-3.1-8B
has a longer maximum input size and a shorter output size
compared to LLaMA-2-13B, suggesting that factors beyond
model size, such as maximum input length and architecture,
also influence performance.

Another exception is observed in the Text-embedding-3 series,
which achieves consistently high accuracy across both tasks
and ranks among the top three models for PL prediction (as

highlighted in bold in the table). Interestingly, despite their
strength in PT prediction, these models also perform compet-
itively in PL classification, sometimes ranking among the top
three models and consistently narrowing the performance gap
between PL and PT. Referring to our design in Equation [I]
this suggests a well-balanced capability across both tasks and
indicates progress toward achieving literate programming.

Looking at the three classifiers we compared, we notice that
SVM performs the best as it shows the highest accuracy
across all tasks and all models. Their ability to interpret high-
dimensional vector representation is better compared to KNN
and the simple CNN we are using. The CNN architecture
we are using might require further investigation or a fine-
tuning process, as it did well in predicting the programming
languages but not in the other two classification tasks.

B. Experiment 2

All models but a limited and balanced number of languages
and tasks: As demonstrated in Experiment 1 (Table [V), the
CNN struggled with the PT tasks (e.g., for LLaMA-3.1-70B,
PL ~ 0.82 vs. PT = 0.01) and relied heavily on the size of
the training data. Therefore, we did not include it in these
experiments. Tables and present the median accuracy
results from ten random trials using KNN and SVM classifiers
across different sample sizes.

Across models and sample sizes, SVM yields higher accuracy,
lower variance, and more stable behavior than KNN for both
PL and PT. For example, at size 10, LLaMA-3.1-8B achieves
0.9293 (PL) and 0.8916 (PT) with SVM (Table , compared
to 0.7856 (PL) and 0.5598 (PT) with KNN (Table [VI).
This pattern holds broadly, indicating the advantage of SVM
in finding margins in high-dimensional embedding spaces.
Consequently, the analyses below emphasize the SVM results.

With SVM, we observe mild degradation as the class set grows
(56—50), particularly for older/smaller models. For example,
for ROBERTa, the accuracy of PT decreases from 0.7998 (size
5) to 0.7095 (size 50); BERT PT decreases from 0.8670 to
0.7423 (Table|[VTI). This is expected: increasing the number of
classes raises the complexity of the decision while holding per-
class evidence fixed. In contrast, stronger models (e.g., LLa-
MA/CodeLLaMA, Text-embedding-3) remain robust, showing
smaller declines.

e Million-Scale Models (BERT, GPT-2, RoBERTa): These
models generally show a decreasing trend in both PL
and PT tasks as the sample size increases from 5 to
50. They also consistently underperform compared to
modern, specialized architectures such as LLaMA and
CodeLLaMA, highlighting the limitations of smaller-
scale models in capturing programming contexts.

« Billion-Scale Models: LLaMA-3.1-8B/70B sustain strong
PL with SVM across sizes (e.g., 8B: 0.9652—0.8891
PL, 0.9232—0.8621 PT from size 5—50), while Falcon-
11B/40B are competitive but slightly weaker on PT.
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Classifier KNN SVM CNN
Accuracy PL PT text PL PT text PL PT text
BERT 0.4544  0.2929 0.0583 0.7043 0.5641 0.1992 0.6029 0.3619 0.1387
GPT2 0.2138  0.0538 0.0056 0.4904 0.1504 0.0169 0.6746 0.2532 0.1172
RoBERTa 0.4288 0.1843 0.0244 0.7204 0.4779 0.1053 0.6303 0.3128 0.1230
Falon7b 0.5717 0.1873 0.0376 0.8240 0.7069 0.3571 0.7163  0.1479  0.0508
Falonl1b 0.6481 0.2658 0.0489 0.8292 0.7249  0.3797 0.7118 0.0117  0.0020
Falon40b 0.6435 0.2418 0.0395 0.8398 0.7249 0.3177 0.3234 0.0046  0.0020
General-purpose Models ~ LLaMA-2-7B 0.6468  0.2503 0.0771 0.8313 0.7149 0.4323 0.7612 0.4390 0.1953
LLaMA-3.1-8B 0.7239 02726  0.1673  0.8552 0.7410 0.5338 0.7878 04770  0.2578
LLaMA-2-13B 0.7063  0.2682  0.0940 0.8495 0.7385 0.4549 0.7851 0.4893 0.2617
LLaMA-3.1-70B 0.7423  0.2458 0.0714 0.8648 0.7452 0.4342 0.8157 0.0129  0.0020
Text-embedding-3-ada-002  0.5711  0.6956  0.8722 0.8453 0.8524 0.9361 0.6946 0.6533  0.7305
Text-embedding-3-small 0.4808 0.6928 0.8346 0.8122 0.8242 0.8929 0.6515 0.5527 0.6113
Text-embedding-3-large 0.5473  0.7661 0.9248 0.8544 0.8703 0.9624 0.7331 0.5967 0.6914
CodeBERT 0.4357 0.1465 0.0169 0.7149  0.4019 0.0733  0.5468 0.1531  0.0371
CodeGPT2 0.5344  0.2958 0.0414 0.7750 0.6401  0.2688 0.6801 0.4178 0.2012
Models for Code CodeLLaMa-7B 0.7141 02797 0.0714 0.8566  0.7562 0.4699 0.8018 0.5103  0.2422
CodeLLaMa-13B 0.7245 0.2782 0.0752 0.8642 0.7621 0.4887 0.7991 0.3013 0.1934
CodeLLaMa-34B 0.7249  0.2725 0.0470 0.8664 0.7634 0.3910 0.8293 0.0442  0.0098
CodeLLaMa-70B 0.7081  0.2581 0.0395 0.8660 0.7543 0.3910 0.8230 0.2184  0.0918

TABLE V: Experiment 1 Results: PL and PT Classification Accuracies Using Embeddings from General-Purpose Language
Models. Bold text highlight the top 3 highest accuracy for each classification task.

TABLE VI: Results of Experiment 2: Median Accuracy from Ten Random Selections across Six Sample Sizes Using KNN.
Bold text highlights the top 3 highest accuracy for each classification task.

KNN 5 10 20 30 40 50

Model PL PT PL PT PL PT PL PT PL PT PL PT
BERT 0.5269 0.5100 0.5283  0.4991 0.5143 04811 04715 04821 0.4887 0.4928 0.4830 0.4805
GPT2 0.4303 0.3797 02910 0.2571 0.2586 0.1956 0.2205 0.1777 0.2184 0.1682  0.2067 0.1648
RoBERTa 0.4836 0.4744  0.4299 04001 04346 04065 0.4111 03996 04226 03956 0.4141 0.3924
Falon7b 0.5484 0.4666  0.5826 0.3865 0.6035 0.3496 0.5822 0.3568 0.6024 03562 0.6086  0.3570
Falonl1b 0.6810 0.5666  0.7044 0.4983 0.7096 04756 0.6911 0.4689 0.7039  0.4650 0.6993  0.4647
Falon40b 0.6059 0.5682 0.6508 0.4402 0.6820 0.4492 0.6689 04255 0.6870 0.4221  0.6927 0.4277
LLaMA-2-7B 0.6125 0.5091  0.7051 0.4667 0.6990 04416 0.6878 0.4378 0.7059 0.4355 0.7067 0.4320
LLaMA-3.1-8B 0.7074 0.6038 0.7856  0.5598 0.7885 0.5005 0.7733 0.4970 0.7879 0.4850 0.7853 0.4768
LLaMA-2-13B 0.7111  0.6010  0.7547 0.5353  0.7707 0.4896  0.7521 0.4870 0.7715 0.4815 0.7616  0.4780
LLaMA-3.1-70B 0.6921 0.6108 0.7790 0.5492 0.7784 0.4893  0.7703 0.4918 0.7957 0.4761 0.7911 0.4673
Text-embedding-3-ada-002  0.6163  0.7439  0.6125 0.8011 0.5726 0.8479 0.5755 0.8255 0.5628 0.8496 0.5610  0.8421
Text-embedding-3-small 0.5296  0.7624 05142 0.8351 0.4786 0.8629 0.4740 0.8372 0.4545 0.8610 0.4734  0.8499
Text-embedding-3-large 0.6212  0.7868 0.6208 0.8540 0.5322 0.8880 0.5555 0.8760 0.5309 0.8853 0.5476  0.8860
CodeBERT 0.4230 0.4432 04771 03642 04576 0.3572 04577 03505 0.4499 03346 0.4605 0.3281
CodeGPT2 0.5985 0.5463  0.5655 0.5299 0.5538 0.5208 0.5611 05186 0.5759 0.5142 0.5641 0.5103
CodeLLaMa-7B 0.6218 0.6410 0.7303  0.5508 0.7747 04911 0.7611 0.4990 0.7628 0.4877 0.7645  0.4857
CodeLLaMa-13B 0.6565 0.5929 0.7315 05397 0.7842 0.4817 0.7458 0.4979 0.7635 0.4861 0.7593  0.4821
CodeLLaMa-34B 0.6249  0.5825 0.7255 0.5207 0.7565 0.4925 0.7469 04972 0.7552  0.4959 0.7627 0.4832
CodeLLaMa-70B 0.5546  0.5913  0.6869 0.5358 0.7216 04588 0.7138 04781 0.7226  0.4624 0.7371  0.4568

o Trillion-Scale Models (Text-embedding-3 Series): Similar
to billion-scale models, these models show a decreasing
trend in PL tasks, though the decline in PT performance
is slightly slower than the decline in PL performance. In
general, they perform consistently well on PT tasks, as
indicated in bold in the table, consistently ranking among
the top three models. Furthermore, they demonstrate sta-
ble and top-tier performance in PL prediction, suggesting
that embedding-based approaches effectively capture both

variance, and stronger performance across both PL and PT
tasks. In addition, the general trends and performances across
different classifiers for these models remain consistent.

RQL1.1:
models are more likely to capture linguistic fea-
tures. In contrast, trillion-scale models group
programs by task similarity, providing us with
the possibility to recognize the purpose of the

Million- and billion-scale language

the syntactic and semantic properties of code snippets.

The box plots in Fig. [] show a higher variance at smaller sizes
(5, 10) that decreases as the size increases, plus a consistently
lower variance for text-embedding-3 models, reinforcing their
stability. SVM curves show higher medians and tighter spreads
than KNN across models.

In conclusion, the Text-Embedding-3 models appear to be
the most effective models, achieving higher accuracy, lower

code.

C. Experiment 3

General-purpose models predict the task descriptions using
the PT classifier: As shown in the columns ’text’ of Table
the precision of various models is evaluated in three classifiers
(KNN, SVM, CNN) for three prediction tasks (PL, PT, and
text). Text-embedding-3 models consistently excel in text
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TABLE VII: Results of Experiment 2: Median Accuracy from Ten Random Selections across Six Sample Sizes Using SVM.
Bold text highlights the top 3 highest accuracy for each classification task.

SVM 5 10 20 30 40 50
Model PL PT PL PT PL PT PL PT PL PT PL PT
BERT 0.8981 0.8670 0.7960 0.8118 0.7946 0.7612 0.7546  0.7323 0.7566  0.7487  0.7394  0.7423
GPT2 0.5429 0.4491 04389 0.2936 0.4249 03081 0.4005 0.3147 04305 0.3294 0.4304 0.3487
RoBERTa 0.8417 0.7998 0.7776  0.7561  0.7933  0.7324  0.7709 0.7070 0.7840 0.7065 0.7675  0.7095
Falon7b 0.6698  0.5507 0.6669 0.4533  0.6871 0.5175 0.7102 0.5458 0.7361 0.5785 0.7396  0.6185
Falonl1b 09512 0.8995 0.8940 0.8742 0.8861 0.8540 0.8697 0.8409 0.8696 0.8550 0.8674  0.8498
Falon40b 0.9580 0.8467 0.8860 0.8449 0.8964 0.8326 0.8754 0.8279 0.8782 0.8468 0.8708  0.8403
LLaMA-2-7B 0.9497 0.8916 09115 0.8733 0.8845 0.8486 0.8752 0.8500 0.8738 0.8620 0.8677  0.8527
LLaMA-3.1-8B 0.9652 09232 09293 0.8916 09193 0.8662 09025 0.8583 0.8978 0.8764 0.8891 0.8621
LLaMA-2-13B 09789 09279 09212 0.8933 09127 0.8703 0.8925 0.8601 0.8880 0.8746 0.8844  0.8648
LLaMA-3.1-70B 0.9650 0.9233 0.9278 09036 09177 0.8606 0.9120 0.83576 0.9074 0.8781 0.8994  0.8613
Text-embedding-3-ada-002  0.9443  0.9768 09119 0.9471 09084 0.9378 0.8933 0.9161 0.8926 0.9284 0.8814  0.9239
Text-embedding-3-small 0.9024 09614 0.8724 09289 0.8706 0.9266 0.8569 0.9021 0.8513 0.9177 0.8363 0.9114
Text-embedding-3-large 0.9515 09768 09211 09629 0.9037 0.9478 09062 0.9290 0.8959 0.9349 0.8893  0.9387
CodeBERT 0.8179  0.7284 0.7569 0.6842 0.7879 0.6776  0.7584 0.6562 0.7764 0.6554 0.7687  0.6529
CodeGPT?2 0.9057 0.8836 0.8442 0.8504 0.8170 0.8287 0.7979 0.8102 0.8067 0.8118 0.7828 0.8118
CodelLLaMa-7B 09861 09349 09217 09038 09074 0.8713 09087 0.8627 0.8997 0.8857 0.8951 0.8754
Codel.LaMa-13B 0.9662 0.9236 0.9349 09018 0.9190 0.8776 0.9140 0.8747 0.8999 0.8841 0.9043 0.8797
CodelLLaMa-34B 0.9784 09353 09349 0.8998 09196 0.8608 09135 0.8732 0.9048 0.8882 0.9059  0.8800
CodeLLLaMa-70B 0.9668 09245 09187 0.8835 09119 0.8632 09099 0.8648 0.9012 0.8793 0.9047 0.8723
0.9
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Fig. 6: Accuracy from Ten Random Selections of Languages and Tasks for Falcon-7B and Text-embedding-3-large Embeddings

classification across all classifiers (bold numbers in the text
columns of the table), highlighting their strong ability to
understand both code and natural language representations.

Among the classifiers, SVM consistently outperforms KNN
and CNN in all three tasks (e.g., LLaMA-3.1-8B achieves
0.5338 accuracy in text classification with SVM, a signifi-
cant improvement over BERT’s 0.1192). This demonstrates
SVM’s effectiveness in feature separation for natural language
recognition. Notably, SVM achieves the highest accuracy in
text classification, further reinforcing its strength in handling
textual data. While million-scale models show only minor
improvements under SVM, billion-scale models benefit sig-
nificantly, particularly in text classification, narrowing the
performance gap among PL, PT, and text tasks.

Conversely, CNN performs the worst, particularly in PT and
text classification. While its PL accuracy is reasonable for
some models, it lags behind SVM. The poor text classification
accuracy of CNN suggests that our customized architecture

is not sufficiently advanced for the multidimensional embed-
dings.

Across all classifiers, a clear performance distinction is ob-
served among models of million-scale, billion-scale, and
trillion-scale sizes. As model size increases, text pre-
diction performance improves significantly. For example,
LLaMA-3.1-8B achieves 0.5338 in text classification using
SVM, a substantial improvement over BERT’s 0.1192. Text-
embedding-3 models consistently perform well across all
tasks, reinforcing their superior ability to capture both code
and natural language semantics.
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RQ1.2: Smaller LLMs encode programming
tasks more reliably from code than from de-
scriptions, revealing a gap in how they rep-
resent meaning across the two modalities. In
contrast, the text-embedding-3 models encode
code and descriptions in similar ways within
the latent space, creating a strong connection
between the two modalities and demonstrating
better semantic alignment.

RQ1: Overall, only trillion-scale models can
fully achieve literate programming. Factors af-
fecting performance may include, but are not
limited to, the size of models and the maximum
input length.

D. Experiment 4

Language model trained on code: As shown in Table
In contrast, code-specific models generally perform equally
well with general-purpose LLMs of the same size; their
improvements are more promising in predicting PT, whereas
text prediction accuracy shows a slight decline. Comparing
the best-performing code-specific models (bold number in the
table) with general-purpose models (Table at the same
scale, we only observe improvements in predicting PL (around
1% - 3%) but do not observe significant improvements in
text prediction, suggesting that domain-specific training does
not necessarily enhance text interpretation outside of code-
related contexts. Furthermore, when comparing code-specific
models to the top-performing general-purpose models, no
clear improvement is evident, as Text-embedding-3 series
models outperform all other models. For PLMs, CodeBERT
and CodeGPT2 exhibit mixed performance. CodeBERT per-
forms relatively poorly compared to modern models, while
CodeGPT2 shows noticeable improvement, particularly in PT
accuracy. This suggests that the effectiveness of code-specific
architectures depends on their training and fine-tuning at this
scale.

From Table [VI] and Table we observe that code-specific
models help narrow the gap between PL and PT, reducing
variance across tasks. For example, LLaMA-3.1-8B achieved
0.8552 accuracy on PL versus 0.7410 on PT with SVM, a gap
of 0.11, while CodeLLaMA-34B scored 0.8664 (PL) versus
0.7634 (PT), a gap of 0.10. This suggests that specialized
training enhances consistency in programming-related predic-
tions, but not for text prediction. Regarding the CodeLLaMA
series, these models perform exceptionally well in predicting
PL. CodeLLaMa-13B/34B/70B rank among the top three when
using SVM classifiers, compared to general-purpose models.
However, box plots reveal that improvements in other tasks
remain minor.

When comparing box plots of different models at the same
sizes, despite fluctuations in values, we do not observe distinct
patterns or trends for CodeLLaMA models. For BERT and

CodeBERT, CodeBERT introduces greater variation in the
plots, while BERT reduces the differences between PL and
PT as the sample size increases.

RQ2: Compared to general-purpose models,
code-specific models improved the accuracy
of predicting programming languages, tasks,
and program descriptions; however, the per-
formance gaps between these tasks remain
substantial. As model size increases, the Text-
embedding-3 series models consistently outper-
form all code-specific models, achieving signif-
icant gains across all tasks.

E. Validation: CodeNet

We validate our findings on the CodeNet dataset, which con-
tains 55 programming tasks and 52 programming languages,
but nearly 70 times more records than Rosetta Code. Due to
computational limitations, we restricted the parameter size for
KNN and were unable to train SVM classifiers on the full
dataset. The results have been summarized in Table

The overall patterns observed on CodeNet are broadly con-
sistent with those on Rosetta Code. First, larger or more
recent models such as the LLaMA and Falcon families consis-
tently outperform earlier architectures like BERT, GPT-2, and
RoBERTa,, reflecting the benefits of both scale and training
methodology. Second, the Text-embedding-3 series remains
dominant for tasks involving textual descriptions, confirming
that embedding-optimized objectives are more effective for
capturing semantic alignment across modalities. Finally, as
with Rosetta Code, programming language and programming
task classification are generally easier than textual description
prediction, underscoring the challenge of aligning natural
language with code semantics.

However, significant differences emerge when comparing the
validation results on CodeNet with the evaluation results on
Rosetta Code. These differences span across classifiers, where
the best-performing method shifts between datasets; dataset
characteristics, with accuracy generally higher on the larger-
scale CodeNet; and model types, where general-purpose and
code-specific LLMs exhibit distinct strengths.

With KNN classifiers, PL classification remains relatively
high across models, with billion-parameter LLMs approaching
similar accuracy regardless of architecture. This confirms that
larger models encode strong signals of programming language
identity. In contrast, PT classification is weaker and more
variable, reflecting the greater difficulty of capturing task
semantics.

A notable difference between datasets is the role of the
classifier. On Rosetta Code, SVM consistently yielded the
best performance, whereas on CodeNet, CNN achieved the
highest accuracy. This suggests that classifier effectiveness
depends strongly on dataset scale and distribution, rather than
being universally optimal. Accuracy levels were also much
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TABLE VIII: Validation of Experiment 1, 3, and 4: PL and PT Classification Accuracies Using Embeddings. Bold text highlights

the top 3 highest accuracy for each classification task.

Classifier KNN CNN
Accuracy PL PT text PL PT text
BERT 0.8520 0.7270  0.3636 09134  0.8421  0.1636
GPT2 0.6261 0.3931 0.0364 09386 0.7473  0.1818
RoBERTa 0.7982  0.6420 0.0364 0.9095 0.7368  0.0000
Falon7b 0.9084 0.6096 0.0545 09490 0.8213 0.4364
Falonl1b 09211 0.6458 0.1273 09441 0.8081 0.3273
Falon40b 09156  0.6310 0.0545 09457 0.7253  0.2727
General-purpose Models ~ LLaMA-2-7B 0.9221  0.6519 0.0909 09485 0.9123 0.3636
LLaMA-3.1-8B 09375 0.6721 0.2000 0.9534 09260 0.6364
LLaMA-2-13B 0.9298 0.6601 0.0545 0.9507 0.9309 0.6182
LLaMA-3.1-70B 09178  0.6228 0.1273  0.9386  0.8893  0.6000
Text-embedding-3-ada-002  0.8972  0.8384 0.9818 0.9379 09274 0.8182
Text-embedding-3-small 0.8980  0.7412  0.9636 09391 09134 0.7818
Text-embedding-3-large 0.8975 0.8492 0.9818 0.9430 0.9485 0.9273
CodeBERT 0.7971  0.5976  0.0727 0.8810  0.6968  0.2000
CodeGPT2 0.8843  0.6404 0.2000 0.9441 0.8575  0.2909
Models for Code CodeLLaMa-7B 09359 0.6617 0.0364 09518 0.9331 0.5455
CodeLLaMa-13B 09315 0.6557 0.0364 09518 0.9326  0.6000
CodelLLaMa-34B 09331 0.6393 0.0727 09539 0.9496 0.7455
CodeLLaMa-70B 0.9254 0.6299 0.0364 0.9561 0.9315 0.5818

higher in validation than in evaluation, showing that larger
datasets with more examples per class help models expose
their representational capacity more effectively.

Another key trend concerns model types. General-purpose
LLMs struggled heavily with text description classification
on Rosetta Code (often near 0), yet performed much better
on CodeNet, where training data richness may have allowed
embeddings to generalize. Code-specific models, especially
the CodeLLaMA series, scaled more effectively in validation,
achieving much higher CNN performance than on evalua-
tion. By contrast, the Text-embedding-3 series models main-
tained dominance in PT and textual classification across both
datasets, consistently ranking among the top three models.
Their embedding-optimized training objective appears to pro-
vide robust semantic alignment, a property central to our
definition of literate programming.

Taken together, these results reinforce three conclusions: (i)
PL classification is consistently easier than PT classification,
supporting RQ1.1; (ii) embedding-optimized models (Text-
embedding-3) outperform both general-purpose and code-
specific LLMs in task-related evaluations, supporting RQ1.2;
and (iii) code-specific models improve when scaled and val-
idated on larger datasets, but do not surpass embedding-
optimized models in semantic alignment, consistent with RQ?2.

We also evaluate Experiment 2 using the validation dataset.
Based on the ratio of randomly chosen programming lan-
guages and programming tasks, instead of 6 different sizes,
we only select two sizes: 5 and 10 for random choice.

We validated Experiment 2 (Table on the CodeNet dataset
using reduced random sample sizes (5 and 10). The reduced
random sample is due to the smaller size of programming
languages and programming tasks in the validation dataset.
Compared to Rosetta Code, overall accuracies are substantially
higher, reflecting the benefit of CodeNet’s larger scale and
richer data distribution. For instance, even baseline models

such as BERT and RoBERTa achieved PT classification above
0.70 with SVM, far surpassing their evaluation results.

Classifier effectiveness also differed between datasets. On
Rosetta Code, SVM was consistently the strongest probing
method, while KNN often lagged. On CodeNet, however, both
SVM and KNN performed competitively, with SVM showing
robust results across nearly all models. This suggests that the
larger, more balanced validation dataset enabled classifiers to
utilize embeddings more effectively, thereby reducing overfit-
ting.

Taken together, these results show that: (i) validation accuracy
is consistently higher than evaluation, underscoring the im-
portance of dataset scale; (ii) classifier effectiveness depends
on dataset characteristics, with SVM clearly excelling on
CodeNet; (iii) embedding-optimized models remain superior
for task semantics, while code-specific and LLaMA models
scale effectively for language classification. These findings
reinforce RQ1.1 and RQ1.2 while further supporting RQ?2,
showing that code-specific models become competitive at scale
but still do not surpass embedding-optimized models in task-
level recognition.

Validation on the CodeNet dataset, which
is substantially larger but less diverse than
Rosetta Code, confirmed our main findings:
syntactic features are easier to capture than
semantic ones by smaller models, with text-
embedding-3 models best at encoding both
information in latent space.

E Visualization

To enhance visualization, we sampled data from 10 pro-
gramming languages, ranging from low-level to high-level
abstraction languages such as Java. The resulting visualization
is shown in Fig. [/| (Plots for all models are included in the
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TABLE IX: Validation of Experiment 2: Median Accuracy from Ten Random Selections across Two Sample Sizes Using KNN
and SVM. Bold text highlights the top 3 highest accuracy for each classification task.

KNN SVM
5 10 5 10
Model PL PT PL PT PL PT PL PT
BERT 0.8899  0.8566 09103 0.8020 0.9895 0.9703 09747 0.9287
GPT2 0.6619 0.5552 0.6743 0.4616 09070 0.7849 0.9396  0.8490
RoBERTa 0.7801  0.7490 0.8374 0.7136  0.9770  0.9411  0.9627  0.8926
Falon7b 09262 0.7774 09576 0.6820 0.9622 0.8699 0.9607 0.9035
Falonl1b 0.9569 0.8026 0.9630 0.7024 09947 0.9632 09707 0.9630
Falon40b 0.9445 0.7978 09711 0.7074  1.0000 0.9457 0.9802 0.9416
General-purpose Models ~ LLaMA-2-7B 0.9622  0.7807 09709 0.7035 0.9895 0.9603 0.9873  0.9647
LLaMA-3.1-8B 0.9828 0.8039 0.9771 0.7330 0.9895 0.9730 0.9902 0.9776
LLaMA-2-13B 0.9828 0.7877 09710 0.7148 0.9895 0.9653 0.9873  0.9654
LLaMA-3.1-70B 0.9705 0.7209 0.9799 0.7003 0.9788  0.9299  0.9938  0.9340
Text-embedding-3-ada-002  0.5909  0.9436 0.3739 0.9031 0.5970 1.0000 0.3806  0.9909
Text-embedding-3-small 09141  0.8847 09453 0.7840 0.9659 0.9913 0.9889 0.9710
Text-embedding-3-large 0.9202 09690 0.9435 0.8953 0.9659 1.0000 0.9902 0.9897
CodeBERT 0.8333  0.7610 0.8665 0.6918 0.9694 0.9302 0.9730 0.8733
CodeGPT2 09195 0.7768  0.9255 0.6856 0.9746 0.9563  0.9812  0.9340
Models for Code CodeLLaMa-7B 09604 0.7632 0.9735 0.6866 09830 0.9840 0.9855 0.9659
CodeLLaMa-13B 09644 0.7546 09722 0.6719 09788 0.9657 0.9839  0.9689
CodeLLaMa-34B 09562 0.7602 09721 0.6534 09788 0.9698 0.9790  0.9585
CodeLLaMa-70B 0.9551 0.7978 0.9695 0.6540 0.9832 0.9655 0.9809 0.9591

(a) BERT (b) LLaMA-2-7B

(d) Text-embedding-3-large

(c) CodeLLLaMa-7B

Fig. 7: t-SNE Representations of Embeddings in Two Dimensions

Supplementary Data). Most languages form distinct clusters,
and as model size increases, these clusters become more
pronounced.

However, Text-embedding-3 models do not exhibit apparent
clustering. This may be due to the choice of perplexity, as
perplexity heavily influences the formation of clusters in t-SNE
plots. Additionally, reducing high-dimensional embeddings to
just two dimensions may obscure strong clustering patterns.
Furthermore, the vector representation of different program-
ming tasks remains unclear. Therefore, while these plots help
us understand the embeddings, they are not used as conclusive
evidence.

VI. DISCUSSION

a) Dataset: We selected two large datasets with many pro-
gramming languages and programming tasks. That choice
allowed us to test the hypothesis and establish that only the
largest language models are capable of literate programming.
This means that programmers can, with a high degree of
certainty, rely on the generated programs solving the right
tasks in the right programming language. The majority of
the existing benchmarks are too small in terms of either
too few programming languages (only a handful) or too few

programming tasks. This does not mean that the benchmarks
are wrong, they are just too small for our purposes.

Regarding input data for classifiers (the output embeddings of
chosen models), which consist of code and programming text
embeddings, their length depends on the model architecture,
ranging from 768 to 8,192 dimensions. This variation in
embedding size may affect the accuracy. However, the Text-
embedding-3-large model, with an embedding size of 3072
(a medium-sized representation), consistently achieved stable
and high accuracy across all classification tasks. This suggests
that the selected classifiers can handle high-dimensional inputs
and that embedding size alone is not the primary cause of
inefficiencies. Consequently, KNN emerges as the most cost-
effective classifier for our study.

b) Classifier: We intentionally chose lightweight probing
classifiers (SVM, KNN, CNN) for interpretability. More com-
plex classifiers (e.g., transformers on embeddings) could yield
higher performance, but would obscure whether embeddings
(and thus the models) themselves contain the required in-
formation. The classifiers differ in performance, but they
show a similar trend, which means that the results from the
classifications is based on the information in the embeddings
rather than based on the classifiers’ ability to find similarities
between vectors.
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c) Text-Embedding-3 Series Models: Because OpenAl has not
disclosed detailed architectural information, our analysis in
Section |V| is limited to known specifications and observed
performance. Another possible explanation for the strong
results of the text-embedding-3 series lies in their likely
training objectives. Embedding models are generally optimized
to produce vector representations that capture semantic simi-
larity between inputs, which makes them particularly effective
for tasks such as clustering, classification, and retrieval. In
contrast, general-purpose LLMs (e.g., GPT, LLaMA, Falcon)
are primarily trained for next-token prediction, an objective
that emphasizes fluency in text generation rather than enforc-
ing semantic alignment in the embedding space. Embedding-
oriented models are often trained with contrastive or retrieval-
based objectives that encourage semantically similar inputs
to be placed closer together in latent space. While this may
explain the superior performance we observe, confirming this
would require further study, ideally with transparent training
details or controlled experiments.

d) Programming Language Recognition: PL classification
was consistently easier for models than PT classification. All
models performed well in this task (ACCpr, > ACCpp -0.02
when the classifier was SVM). This trend reflects that syntactic
regularities and lexical markers languages are strong signals,
which larger models are particularly adept at capturing, and
this aligns with the naturalness hypothesis proposed by Hindle
et al. [11]]. For billion-scale models, the accuracy improved
as the model size increased, except for an anomaly where
LLaMA-3.1-8B outperformed LLaMA-3.1-13B. The anomaly
where LLaMA-3.1-8B outperformed LLaMA-3.1-13B can be
attributed to training efficiency and data quality: the smaller
and newer models benefit from more refined training cor-
pora and architectural improvements, sometimes exceeding
the larger ones. Thus, while size generally improves PL
recognition, training methodology matters as much as param-
eter count. Therefore, if we want to understand code alone,
LLaMA-3.1-8B would be the optimum choice if computational
resources are limited.

This explains why models achieve near-perfect PL recognition
but still fall short in PT classification: language recognition
exploits surface-level syntax, whereas task recognition requires
capturing deeper semantic intent. These contrasting results
directly address RQ1.1 by showing that while LLMs encode
syntactic regularities effectively, their ability to represent task-
level semantics remains limited.

e) Programming Tasks Recognition: PT classification was
significantly more complicated based on the embeddings.
Even trillion-scale general-purpose models struggled to match
the performance of models optimized for embedding. The
Text-embedding-3 series dominated task classification. This
advantage arises from their training objective, which is ex-
plicitly optimized for semantic similarity in embedding space,
unlike autoregressive LLMs trained for next-token prediction.
By encoding semantically similar programs and descriptions
closer together, Text-embedding-3 models exhibit the kind of
semantic alignment that is central to literate programming.

This finding also clarifies why code-specific models (e.g.,

CodeBERT, CodeL.LaMA) lag in PT recognition: while fine-
tuning on source code strengthens structural and syntactic
representations, it does not necessarily improve the abstract
mapping between problems and solutions.

f) Textual Description Recognition: Textual description
prediction further reinforced this distinction. The Text-
embedding-3 models not only achieved the highest accuracy,
but also showed much smaller performance gaps between
PL, PT, and text. This indicates that they maintain consis-
tent representations across modalities, capturing both natural
and programming languages in a unified space. In contrast,
CNN classifiers failed in text descriptions, suggesting that
convolutional architectures do not align well with embedding
structures optimized for semantic similarity.

These results directly address RQ1.2: LLMs do not represent
tasks and descriptions equally well unless explicitly optimized
for embeddings. General-purpose and code-specific models
tend to prioritize code syntax, while embedding-optimized
models capture task-level semantics more effectively.

g) General vs. Code-Specific Models: Our results also address
RQ2. Code-specific models consistently perform well in PL
classification, sometimes rivaling general-purpose billion-scale
models, confirming that they effectively capture syntactic and
structural properties of source code. However, they show
no clear advantage in PT or textual tasks, and their gap
with general-purpose LLMs decreases as the scale increases.
This suggests that code-specific training enhances syntactic
recognition, but does not substantially improve semantic align-
ment—which is critical for literate programming. In contrast,
large general-purpose LLMs, especially those optimized for
embedding, encode language and task semantics more effec-
tively.

Implications for Software Engineering Practice: Our find-
ings carry several implications for the design and use of LLM-
based tools in software engineering:

1) Code completion versus task recognition. Since most
LLMs excel at recognizing programming languages (syn-
tax), current tools such as Copilot and IntelliCode benefit
from strong syntactic fluency. However, their limited
ability to capture programming tasks explains why gen-
erated code often lacks semantic correctness or problem
alignment. It also shows why we need to complement
LLMs with agentic Al and RAGs when designing these
tools.

2) Code Summarization and Documentation. Embedding-
optimized models (e.g., Text-embedding-3) demonstrate
superior alignment between code and textual descriptions.
This suggests that they are better suited for tasks like au-
tomated documentation, summarization, and explanation,
the core aspects of literate programming. Integrating these
embeddings into SE tools could improve explainability
and maintainability.

3) Cross-Language and Multi-Task Scenarios. Because task
recognition is harder than language recognition, tools for
cross-language code search, translation, or multi-language
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repositories should prioritize models that explicitly en-
code semantic similarity (e.g., embedding-based models).

4) Choice of Models under Resource Constraints. Our
results show that smaller, well-trained models (e.g.,
LLaMA-3.1-8B) can rival or exceed older, larger mod-
els, making them practical choices for organizations
with limited compute. However, for task-level semantics,
embedding-optimized models remain the preferred option
when resources permit.

In short, software engineering practitioners should match the
choice of model with the intended task: code-specific or syn-
tactic tools for completion and bug detection, and embedding-
optimized models for summarization, documentation, or se-
mantic code search.

VII. VALIDITY EVALUATION

We use the framework by Wohlin [59] to evaluate the threats
to the validity of our experiments. In this computational
experiment, we focused on maximizing the conclusion and
external validity.

In our case, we focused on obtaining results that are as gener-
alizable as possible, thus prioritizing the external validity.
Using programs from Rosetta Code, we minimize the risk
of studying a non-representative sample of programs. Rosetta
Code is a community-driven website that collects implemen-
tations of the same problems done by skilled programmers
in that particular language. This means that the implemen-
tations adhere to the best practices for each programming
language. The repository contains multiple solutions for the
same problem in the same programming language, if there are
numerous. Although it is only around 40,000 programs, it is
diverse enough to reduce the risk that our results are biased
toward a specific programming style, language, or problem.

To achieve as high conclusion validity as possible, we used
statistics for the evaluation of the hypotheses. We highlighted
the best three results for each task instead of one to enhance the
degree of significance of our observed results. One threat to the
validity of conclusions is related to the ability of classifiers to
learn from high-dimensional embeddings. If simple classifiers
fail to generalize, our conclusions about the quality of em-
beddings may be compromised. Conversely, if we use highly
complex models, it becomes unclear whether performance
improvements stem from the embeddings or the classifier
itself. This presents a trade-off between classifier complexity
and effective evaluation. To strengthen our conclusions, we
incorporate multiple classifiers in our experiments, ensuring
that our findings are not biased toward a specific model
choice. We also include KNN, a simple classifier with minimal
hyperparameters, and analyze trends rather than relying solely
on accuracy.

However, a potential threat to construct validity arises from
our decision to operationalize literate programming through
probing classifiers applied to embeddings of existing program-
ming repositories. Although this approach avoids confounding
factors such as prompt leakage and variability in prompt

engineering, it evaluates ’literacy’ indirectly through classifica-
tion accuracy rather than through end-to-end code generation
or explanation. Consequently, high probing accuracy may
indicate that embeddings capture discriminative features of
programming languages and tasks, but not necessarily that
models can generate coherent, literate explanations in practice.
Thus, our measure of literate programming alignment captures
an important but partial view of the construct, and results
should be interpreted with this limitation in mind.

Additionally, we had to choose the LLMs in our study so that
they are comparable to each other (in terms of size of the
embedding space) and can be used for both NLP tasks and
programming tasks. This means that we studied models with
ca. 100 million parameters (compared to an estimated more
than 7 billion parameters for LLaMA models or a trillion Text-
embedding-3-large). Although this is a constraint, using large
models would introduce a confounding factor — models being
biased toward specific programming languages or problems
(since pretraining on 40,000 programs is ineffective for such
large models). Another tradeoff in our study is to use embed-
dings rather than instructing the models to generate programs.
This is a direct consequence of using statistical models in
large corpora of programs; however, it means that we cannot
determine whether the models can still accurately generate
code for a given problem in a specific programming language.

Internal validity in our study is naturally a trade-off. To test
the hypothesis, we need to assume that it is equally easy to
identify a solved problem as it is to identify the programming
language. This seems like an easy assumption, but it does not
have to be. For example, if we take Java as the program-
ming language and Fibonacci as the problem, most modern
programmers would be able to recognize both. However, if
we take an 8086 assembly and a program that copies strings,
programmers may have a problem recognizing both (e.g.,
which assembly it is or whether it is copying the string or
searching in a string). This means that there is no guarantee of
an interaction between the cause and the effect — it may not be
observable by humans. So, since they are “observable” by the
computer (after compilation/interpretation, the program works
correctly), some of the languages may have an inherent bias
towards the programming language. There is no taxonomy of
programming languages (or even order) regarding how close
they are to human understanding, and therefore to the original
programming literacy of Knuth. Thus, to minimize this threat,
we conducted two experiments with two models with high-
level languages only. We also conducted experiments with
models that were not trained on programs at all to avoid
bias towards the programming languages. Experiments that
can compare human performance in recognizing PT and PL
are planned for our future work.

VIII. CONCLUSIONS

Literate programming, originating in the work of Knuth [1]],
says that software programs should be written in a way
understandable to humans and machines alike. Over time,
this concept has been implemented in various ways, with
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one widespread practice being the Jupyter Notebook, where
figures, Markdown syntax, comments, and code coexist. Mod-
ern LLMs seem to be able to provide both explanations of
solutions to programming problems in a similar way when
prompted; the explanation and the code coexist in the same
answer. However, it is not clear whether these explanations
are equally suitable for both the source code and the task.

In this study, we conducted a year-long investigation into
whether LLMs are capable of literate programming, that is,
whether they can explain both the programming language and
the task of a given program equally well. To test this hy-
pothesis, we designed four experiments using 19 transformer-
based models on the Rosetta Code repository, covering 1,228
tasks across 926 programming languages and more than 3,300
trials. We further validated our findings on the larger Co-
deNet dataset, which comprises 55 tasks and 52 languages,
with nearly 70 times more records, resulting in over 2,000
additional trials. Although the CodeNet experiments were
substantially more time- and resource-intensive, the Rosetta
Code repository offered greater diversity, spanning a wider
range of programming tasks and languages.

Our results indicate that trillion-scale models are the only
ones that come close to literate programming by consistently
recognizing both the programming language and the programs’
corresponding tasks with an accuracy of over 70% on both
datasets. These models perform well even with limited data
and outperform smaller, but code-specific models. For smaller
LLMs, the ability to recognize programming languages and
tasks improves with model size. These smaller LLMs perform
acceptably only when the set of programming languages and
tasks is limited to a handful of languages and tasks. As the
variety of tasks and languages increases, performance declines,
with task recognition accuracy dropping more sharply than
programming language recognition. These findings mean that
we can rely on the really large language models, and the small
models should be used with caution.

IX. LIMITATION AND FUTURE WORK

Limitation: One key limitation of this study is the use
of dataset. We restricted experiments to Rosetta Code and
CodeNet. While they cover diverse tasks and languages, they
do not represent all programming paradigms (e.g., large-scale
frameworks, domain-specific languages). Results may not gen-
eralize fully to industrial repositories because the industrial
repositories contain significantly larger code bases, spread over
multiple files, and solve multiple tasks in one system. Studying
such repositories is a part of our further work.

The second limitation is the computational constraints. Due
to resource limitations, we were unable to train all classifiers
(e.g., SVM) on full CodeNet data and restricted KNN param-
eterﬁ This may have limited absolute performance, although
relative trends were consistent between datasets.

8We had access to CPUs with 256GB of memory, which was too little for
that classifier and the extensive CodeNet data

The third limitation arises from the undisclosed architecture
and details of the Text-embedding-3 series models from Ope-
nAl. Since crucial information such as model size, architec-
ture, and training data remain unknown to the public, we
are unable to fully investigate the factors that contribute to
performance differences beyond the observable ones. This
prevents us from making a comprehensive analysis of how
specific architectural choices or training methodologies impact
model effectiveness, limiting our ability to gain deeper insights
into their strengths and weaknesses.

A last limitation is that we evaluate LLMs using embeddings
rather than directly analyzing code and text generated from
prompts. Our choice was deliberate: generation-based evalu-
ation introduces several biases, including prompt leakage, re-
liance on surface-level similarity metrics, and susceptibility to
prompt-engineering effects that are difficult to control. By con-
trast, probing embeddings from existing programming datasets
allows us to rely on explicit PL and PT labels, providing a
controlled and reproducible evaluation. Nevertheless, if these
biases can be mitigated, future work should complement our
approach with generation-based studies, directly comparing
code and description outputs to assess literate programming
capabilities.

Future Work: Several directions arise naturally from the
limitations of this study:

A first direction for future work is to explore generated code
and descriptions through prompt. Rather than relying solely on
pre-existing datasets, future studies could leverage Agentic Al
to generate both code and corresponding textual descriptions,
while carefully mitigating the influence of prompt design. This
would allow for a deeper analysis of whether models can
generate both code and descriptions with consistent semantics,
providing insight into their alignment between code recogni-
tion and natural language generation.

Second direction is expanding datasets. Future research should
extend beyond Rosetta Code and CodeNet to include large-
scale industrial repositories, domain-specific languages, and
multi-module frameworks. This would test whether the literate
programming hypothesis for LLMs generalizes to real-world
software engineering environments where tasks are larger and
more context-dependent.

Thirdly, we can bridging probing and generation. future studies
should move from static probing of embeddings to evaluating
LLMs in end-to-end generation of code and explanations.
Developing reliable automatic evaluation pipelines—for exam-
ple, combining executability checks with semantic equivalence
metrics—would allow researchers to test whether the internal
literate programming alignment we observe translates into
practical improvements in generated code and documentation.
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