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developing field.
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INTRODUCTION

The broad field of artificial intelligence (Al), first intro-
duced in 1955 by McCarthy et al., encompasses the
process of developing systems that perform tradition-
ally human tasks, including decision-making, pattern
recognition and understanding language [44]. Shortly
thereafter, machine learning (ML) was introduced as a
subset of Al by which algorithms and statistical models
were developed that allowed computers to learn and
make predictions or decisions from provided data
without explicit programming [2, 57]. Within ML, deep
learning (DL) encompasses the use of neural networks
for tasks involving large volumes of data for complex
tasks including image and speech recognition [48].
Natural language processing (NLP) is another subset
of Al increasingly used in healthcare research, which
can often incorporate elements of ML and DL to allow
computers to understand and interpret human lan-
guage [4, 56, 86]. These applications are described
more in depth in a previous work [85]. Across all
medical specialities, medical practitioners, insurance
providers and the medical device industry are
adapting Al techniques to aid in diagnosing and
treating pathology, facilitating patient engagement
and adherence and streamlining administrative tasks
[2, 12, 21, 81].

Concurrently, there is a growing body of literature
regarding the use of Al in orthopaedic research.
Orthopaedic researchers have demonstrated suc-
cess in implementing Al for an array of tasks,
including image evaluation, surgical planning and
decision making, cohort identification, variable ex-
traction and outcome prediction [10, 17, 35, 51, 63,
65, 68, 76, 82]. Of note, the orthopaedic field has
been slower to implement Al techniques compared to
other specialities such as oncology, general surgery
and radiology, although the number of Al and
ML publications within orthopaedics is increasing

pattern recognition and understanding language. Within Al, machine learning
and deep learning play pivotal roles in diagnosis and outcome prediction,
while natural language processing aids in synthesising large datasets from
the electronic medical record. In orthopaedics, Al has demonstrated success
in various areas, including image evaluation, surgical planning, outcome
prediction, cohort identification and administrative tasks. The purpose of this
manuscript was to provide an overview of the benefits of Al implementation
within the field of orthopaedics. An additional goal was to address the chal-
lenges associated with producing high quality Al-based research in a rapidly

Level of Evidence: Level IV.

artificial intelligence, machine learning, orthopaedics, research methods, sports medicine

each year (Figure 1). These technological innova-
tions provide enormous potential to improve surgical
practice, research and education. On a larger scale,
broader implementation of Al may further optimise
systems-level processes, including clinical docu-
mentation, scheduling, coding and billing and inter-
actions with payers to facilitate greater efficiency in
surgeon workflow. This work will explore the trans-
formative potential of Al in orthopaedic research,
focusing on its current applications and the pre-
requisites for high-quality Al research in the field of
orthopaedics.

CURRENT STATE OF Al IN
ORTHOPAEDIC RESEARCH

There has been a drastic increase in orthopaedic
publications regarding the use of Al and ML in
recent years [59]. The following review is not meant to
be comprehensive, as such reviews already exist. This
section serves to provide an overview of common
themes of Al-related research within the orthopaedic
literature (Figure 2).

Injury and outcome prediction

An important and clinically relevant use-case for Al is
in the prediction of injuries and outcomes. Within
orthopaedics, researchers have found success in
predicting several osseous and soft tissue patholo-
gies (Table 1) [6, 20, 22, 47, 72, 75]. Additionally,
authors have demonstrated success using Al to
predict outcomes for an array of procedures, includ-
ing ACL reconstruction, hip arthroscopy and knee
and shoulder arthroplasty [13, 18, 32, 34, 41, 52, 78].
Arthroplasty dislocation calculators have also
been developed with promising results [27, 46].
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FIGURE 1 Artificial intelligence (Al) and machine learning publications on PubMed in (a) orthopaedic surgery, by year and (b) across a
broad range of 13 medical specialities since 2000. Specific search queries used on 03 February 2024 were: (a) (‘Al' OR ‘artificial intelligence’ OR
‘machine learning’) AND (‘orthopaedic’ OR ‘orthopaedic’), and (b) (‘Al’ OR ‘artificial intelligence’ OR ‘machine learning’) AND (Medical Specialty)
AND ('2000/01/01’(Date—Publication): ‘2024/02/03'(Date—Publication).
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FIGURE 2 Areas for potential artificial intelligence (Al) applications throughout and after a patient-care cycle. Beginning in a preinjury state,
supervised machine learning (ML) models can be used to identify what puts patients at increased injury risk. Once injured, deep learning (DL)
models can be used to identify pathology from provided images. Subsequently, DL models can assist with surgical planning and decision making
(e.g., automated templating, automated measurements), and natural language processing (NLP) can be used to provide a list of applicable
billing codes to the clinical encounter. After surgery, supervised ML models can be used to predict patient outcomes using patient and surgical
variables, and similar models can predict re-injury after surgery, capturing an entire patient-care cycle. On a larger scale, NLP can be used to
identify cohorts of interest from these care cycles and capture relevant variables to create real-time registries efficiently and accurately. These
registries can be used to train further models, allowing for a cycle of continuous improvement.
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TABLE 1
Author Topic/aim

Bulstra et al. [6]

Jauhiainen et al. [20]

Jurgensmeier

et al. [22] after ACL reconstruction

Oeding et al. [47]

Whiteside et al. [75] Identifying significant predictors of ulnar

collateral ligament (UCL) reconstruction in MLB

pitchers

Estimating probability of scaphoid fracture

Predicting risk of anterior cruciate ligament
(ACL) injury based on physical screening tests

Predicting risk of secondary meniscus injury

Predicting the presence of subscapularis tears
based on preoperative exam and imaging

Examples of studies using artificial intelligence (Al) for injury risk prediction.

Conclusion/findings

The best classifier had a mean area under the receiver
operating characteristic curve (AUC-ROC) of 0.77. Additionally,
the authors developed a decision rule with a sensitivity of 1.0,
decreasing number of patients undergoing advanced imaging
by 36% without missing a fracture.

The best classifier had a mean AUC-ROC of 0.63. Accordingly,
some variables may assist with understanding causation,
however, are insufficient to predict injury in practice.

All 4 ML models outperformed traditional logistic regression.
The best classifier had a mean AUC-ROC of 0.79. Risk factors
were identified for secondary meniscal injury.

Using preoperative imaging factors, the model had an accuracy
of 0.85, and identified five key imaging features associated with
tear presence.

The top performing model predicted UCL reconstruction with an
accuracy of 0.75, Additionally, 6 key performance factors were
identified as potential risk factors for UCL reconstruction.

These analyses typically combine demographic,
injury and surgical patient-specific variables to pre-
dict patient-reported outcomes, revision surgery or
clinically meaningful improvement. Similarly, re-
searchers combine various modifiable and non-
modifiable risk factors with the goal of determining
what puts patients at higher risk for secondary or
concomitant injuries that are clinically relevant but
otherwise difficult to predict [47, 54].

Imaging interpretation

One of the more apparent use-cases for Al,
particularly DL, is in the analysis and interpretation
of imaging data. Importantly, the purpose of this
implementation is not to replace the role of the
physician in diagnosing musculoskeletal pathology,
but rather to supplement the knowledge of the phy-
sician, identify patterns, minimise error and assist in
the education of lower-level trainees. Potential
benefits of successful implementation include
increasing efficiency in the diagnostic timeline, the
ability to provide expert-level interpretations in
areas with limited access to care, and the potential
to teach residents, fellows and students [15]. DL has
been successfully implemented to aid in the diag-
nosis of several different pathologies across varying
supspecialties (Table 2) [3, 35, 64, 66, 77, 82].
Additionally, implant identification tools have been
developed which will aid future efforts for registry-
building and outcomes research, as well as poten-
tially assist with timely planning for hardware
removal and revision procedures [23, 31].

Surgical planning

One of the primary driving forces behind the growing
interest in incorporating Al into the orthopaedic sur-
geon's workflow is the desire for increased efficiency
and decreased time spent completing routine manual
tasks. As such, incorporating Al into the surgical plan-
ning workflow is greatly desired, as much of this
involves manual measurements and calculations,
which can often vary between surgeons. Recent stud-
ies demonstrate successful implementation of Al plat-
forms for automating an array of surgically relevant
measurements (Table 3) [5, 11, 19, 37, 38, 40]. Surgical
templating tools for arthroplasty procedures have also
been developed with early success [62, 73]. The ability
to have these measurements reliably calculated in a
validated and reproducible manner can drastically
improve the surgeon's workflow, while possible creating
more predictable outcomes between surgeons.

Administrative tasks

Outside of direct orthopaedic practice and research,
there has also been early success in using Al to aug-
ment administrative tasks. Researchers have pub-
lished the successful implementations of Al pipelines
for the purposes of predicting operative time, length of
hospital stay, costs and billing codes (Table 4) [24, 58,
68, 79]. Additionally, Al can assist in clinical docu-
mentation and consultation, allowing surgeons to see
and treat more patients efficiently [16, 30]. Once vali-
dated, such models could optimise surgical scheduling,
payment plans and administrative tasks in a way that
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TABLE 2 Examples of studies using artificial intelligence (Al) for imaging interpretation.

Author
Bien et al. [3]

Karnuta
et al. [23]

Kunze
et al. [31]

Shim et al. [64]

Suzuki
et al. [66]

Yamada
et al. [77]

Topic/aim

Development of a deep learning model to identify
abnormalities and specific diagnoses from knee magnetic
resonance imaging (MRI) studies

Development and testing of a deep learning system to
classify total hip arthroplasty implants

Development and testing of a deep learning system to
classify total shoulder arthroplasty implants

Development of a deep learning method to diagnose,
classify and visualise rotator cuff tears

Development of a deep learning method to diagnose distal
radius fractures

Development of a deep learning method to discriminate
femoral neck fractures, trochanteric fractures and
nonfracture

Conclusion/findings

The model achieved an area under the receiver operating
characteristic curve (AUC-ROC) of 0.937, 0.965 and 0.847
for detecting abnormalities, anterior cruciate ligament (ACL)
tears and meniscal tears, respectively. Providing model
predictions significantly increased clinical experts' specificity
in identifying ACL tears.

The system discriminated 8 implant models with a mean
AUC-ROC of 0.991 in the external testing set. The software
classified implants at a mean speed of 0.02 s per image.

The system discriminated 22 implant models with AUC-
ROCs between 0.994 and 1.000 in the independent testing
set. The software classified implants at a mean speed of
0.079 s per image.

The neural network outperformed shoulder specialists with
regards to binary accuracy (0.925 vs. 0.764) and specificity
(0.86 vs. 0.61). Class activation maps were generated to
provide information regarding the location and three-
dimensional size of the tear.

The model achieved an AUC-ROC 0.993. The neural
network based on anteroposterior and lateral radiographs
had accuracy, sensitivity and specificity of 0.993, 0.987 and
1.00, respectively. The accuracy of the convolutional neural
network was equal to or better than that of three orthopaedic
hand surgeons.

The average accuracy, sensitivity and specificity of the neural
network were 0.98, 0.98 and 0.98, respectively. The
accuracy of the model was comparable to, or statistically
significantly better than, that of the orthopaedic surgeons.

TABLE 3 Examples of studies using artificial intelligence (Al) for surgical planning.

Author

Boileau et al. [5]

Jang et al. [19]

Larson et al. [37]

Larson et al. [38]

Rouzrokh
et al. [62]

Topic/aim

To determine whether 3D automated measurements of
glenoid version and inclination are accurate and reliable

Development of a deep learning platform to identify leg
length discrepancy (LLD) landmarks and automate LLD
measurements

Development of a deep learning platform to assess
bone age

Development of a deep learning platform to identify LLD
landmarks and automate LLD measurements

Development of a deep learning platform to generate
synthetic postoperative hip arthroplasty radiographs.

Conclusion/findings

Concordance correlation coefficients between the automated
approach and previously described measurement techniques
ranged from 0.93 and 0.95 for glenoid version and was 0.78
for inclination.

Interclass correlation coefficients (ICC) varied from 0.73 and
0.98 for the six LLD methods. When comparing the methods
for agreement, no combination had ICC >0.90, and 53% of

combinations had a poor ICC (<0.50).

The mean difference between the neural network and
radiologist bone age estimates was 0 years.

Anatomic landmarks were identified with sensitivity and
specificity of 0.98 and 0.96, respectively. Correlation
coefficients between radiologist and Al measurements were
>0.99 for LLD measurements, and 0.98 and 0.86 for
mechanical axis angle and pelvic tilt, respectively.

The surgical validity of synthetic postoperative radiographs
was higher than their real counterparts (by 0.8—1.1 points on
10-point Likert scale), representing a potentially useful tool for
arthroplasty templating.
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TABLE 4 Examples of studies using artificial intelligence (Al) for administrative tasks.

Author Topic/aim

Karnuta et al. [24]
length of stay and cost after hip fracture

Ramkumar
et al. [58]
arthroplasty

Tavabi et al. [68] To assess the performance of common natural

language processing techniques to predict current
procedural terminology (CPT) codes from operative

notes.

Yeo et al. [79]

undergoing total knee arthroplasty

Development of a machine learning model to predict

Development of a deep learning model to predict length
of stay, cost and discharge disposition after total knee

To assess the performance of different machine
learning models in predicting operative time for patients

Conclusion/findings

The model demonstrated 0.765 and 0.79 accuracy for
length of stay and cost, respectively.

The model achieved an area under the receiver operating
characteristic curve (AUC-ROC) of 0.748, 0.828 and 0.761
for length of stay, costs and discharge disposition,
respectively.

Traditional techniques, such as term frequency-inverse
document frequency (TF-IDF), outperformed more
computationally intensive transformer models, with a mean
AUC-ROC of 0.96 and accuracy of 0.97 when assessing the
100 most common musculoskeletal CPT codes.

The best performing model (neural network) achieved an
AUC-ROC of 0.82. Additionally, several factors were found
to be predictive of surgical operative time.

minimises waste and costs and allowing the surgeon to
spend more time on patient care.

THE BENEFITS OF Al IN
ORTHOPAEDIC RESEARCH

Modern increases in computing power and the vast
amount of patient data available through the electronic
medical record (EMR) have paved the way for the rapid
growth of Al and ML research within orthopaedics.
While ML theory has existed for over five decades, the
biomedical literature has predominantly utilised tradi-
tional statistical methods in analysing patient data. In
general, statistical methods are ‘top-down’ approaches,
in that a model and distribution are assumed, and
unknown model parameters are estimated from the
data [39]. In contrast, ML methods are ‘bottom-up’
approaches, in which a model is developed through a
standardised process with prediction or classification
as the primary goal [39, 57]. Within ML, a range of
models exist that vary in both complexity and explain-
ability and can be tailored to suit specific tasks [55]. In
general, explainability is sacrificed for predictive power
when moving from models such as decision trees to-
ward deep neural networks. ML models have demon-
strated improved predictive ability compared to
traditional regression in an array of clinical scenarios,
including detecting osteoarthritis and predicting pro-
fessional sports injuries [29, 42, 75]. Importantly, how-
ever explainability is paramount in healthcare Al
implementation where clinical decisions have direct
patient impact, as the ‘black box’ nature of
advanced ML models can undermine trust among
healthcare professionals, potentially perpetuates
biases and complicate error correction [8, 84]. While
complex models like neural networks may outperform

simpler models in prediction tasks, their reduced
transparency poses significant challenges [8, 84].
Achieving the optimal balance between predictive
power and interpretability remains essential for
responsible Al adoption in medical settings.

A key benefit of Al to orthopaedic research is its
significant potential to augment the conduction of
inductive research, by aiding in the creation of new
hypotheses. Unsupervised ML techniques, such as
clustering and principal components analysis, have
been used in orthopaedics to identify subtle patterns
and structures from high-dimensional datasets [14].
For example, groups have identified outcome patterns
in patients undergoing spinal deformity surgery, ortho-
paedic trauma surgery and total joint arthroplasty
[1, 9, 60]. Additionally, clustering and principal compo-
nent analyses have been used in kinematic studies to
identify patterns in patients and associate those pat-
terns with risk for bone stress injury risk and limited
mobility after arthroplasty [43, 80]. By identifying these
patterns in a timely manner, physicians are afforded the
opportunity to tailor personalised treatment plans to
optimise outcomes in patients. This ability to identify
patterns and then create hypotheses or enact action-
able plans is unique to ML and poses an exciting
frontier for research in the era of ‘big data’.

For applications of Al in orthopaedic surgery to
continue to evolve, a critical step will be the creation of
large registries of data that can be built upon and uti-
lised for multiple applications [36]. While these regis-
tries can be used to create novel ML and DL algorithms
with significant predictive ability, Al models can also
assist in the registry creation process itself. For ex-
ample, Al can automate the cohort identification pro-
cess by using unstructured clinical documentation from
the EMR [67-70]. This process has been historically
labour intensive, logistically and financially expensive
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and plagued by error. Once the cohort is identified,
variables of interest can be extracted from the EMR for
the purpose of registry-based research [54, 67, 76].
Furthermore, classification algorithms that can label
imaging data (e.g., implant type, radiographic mea-
surements) have the potential to add to the pool of data
used to train ML models. These combined imaging and
tabular data registries have demonstrated far greater
predictive ability compared to tabular data-trained
models alone [27]. Without question, the ability to reli-
ably create a registry that can be used for multiple
clinical investigations may greatly improve the quality of
research in the field of orthopaedics and will be a
necessary step for algorithms to evolve beyond basic
tasks such as fracture or tear detection.

Generative Al is an area of growing interest, as the
ability to synthesise realistic data would benefit model
training, testing and validation while protecting patient
privacy. This is critical to the future of research, as DL
performance has been shown to improve with large,
diverse, high-quality training datasets [74]. Within
orthopaedics, researchers have demonstrated success
in creating high-quality pelvis radiographs, as well as
anonymising existing radiographs, and improving
image quality with DL [26, 28, 83]. Generative Al can
also minimise barriers to collaboration in orthopaedics
by minimising language barriers within academic
writing [25, 50].

As previously mentioned, meaningful implementa-
tion of Al research in orthopaedics should augment the
physician's workflow in a reliable way. Al, as opposed
to statistics, is required to meet the complex demands
of modern practice. The ability of these models to
handle large amounts of nonlinear data, while being
able to be fine-tuned to specific practice scenarios
makes them ideal to be used in an array of clinical
scenarios. As the emphasis on personalised, precision
medicine continues to increase, surgeons and re-
searchers will begin to lean increasingly on these more
complex models to improve efficiency and outcomes.

CHALLENGES AND
REQUIREMENTS FOR HIGH
QUALITY Al RESEARCH

While the drastic increase in Al-based orthopaedic lit-
erature demonstrates increased access to, interest in,
and understanding of technology, the current state of Al
within our field is not without pitfalls and challenges.
Primarily, these models require high-quality data,
interdisciplinary collaboration and validation, appropri-
ate context and interpretability prior to wide-scale
implementation for clinical practice. In their work,
Cabitza et al. highlighted four key consequences of ML
in medicine: reduced physician skills, the demise of
context, the intrinsic uncertainty of clinical medicine,
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and uninterpretable output [7]. The authors highlighted
examples of studies in which physicians demonstrated
decreased diagnostic accuracy and sensitivity when
analysing results that were annotated with inaccurate
computer-generated results, suggesting an over-
reliance on technology [7, 53, 71]. To avoid this
potentially serious consequence for patient care,
developers of Al models should define a priori whether
the purpose of the model is to (1) augment clinician
performance by performing tasks that humans are ei-
ther not able to perform or for which Al may be better
suited to perform, such as recognising unique patterns
in images or large amounts of data, or (2) increase
clinician efficiency by assisting with relatively routine
tasks. DL models should be trained specifically for
the stated purpose (i.e., trained on fractures that are
commonly missed by humans if the goal is to augment
clinician performance or trained on routine fractures if
the goal is to improve workflow efficiency), and this
purpose should be clearly communicated to users.
Additionally, the data utilised in these models should be
scrutinised for quality, as high amounts of missing
data and nonrepresentative samples may cause
performance bias, leading to limited generalisability
[33, 49, 57]. These observations strengthen the notion
that Al should augment, not replace, the work of the
physician/surgeon, and that the user should under-
stand, generally, how the model works, when it may be
applied, and what limitations exist.

Importantly, even with high-quality data, the models
should still undergo external validation on other popu-
lation data, as well as prospective evaluation prior to
clinical implementation [57, 59]. This is one of the key
tenants for high-quality Al research, proposed by
Ramkumar et al. [59]. Their work also proposed that
inappropriate vernacular, repackaging registry data,
overstating the ‘black-box phenomenon’, and with-
holding full model code were key concerns about Al
research within the field of orthopaedics. The black-box
phenomenon pertains to decreased interpretability of
model methods, and the model's tendency to detect
unconventional or out-of-context patterns that might
not have previously been correlated or reported [7, 45].
Finally, the ethical considerations of these models must
be considered prior to release. Patient privacy must be
assured, training populations must be generalisable
and representative to avoid bias, and data must be
protected and defended both during and after model
implementation [45]. While this is not a comprehensive
evaluation of the challenges of integrating Al and ML
applications to the field of orthopaedics, the afore-
mentioned pitfalls are important to be aware of when
evaluating potential tools or models proposed in the
literature. Despite these challenges, the use of these
models does not appear to be slowing down—or should
it. Given that high-quality data are collected, and a
model is properly developed and evaluated for a
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specific purpose, Al models have the potential to sig-
nificantly improve the clinician's ability to care for
patients.

PRACTICAL CONSIDERATIONS
FOR AI-DRIVEN RESEARCH

Equipped with a fundamental technical knowledge of
Al, the orthopaedic researcher needs to consider
additional factors to proceed with designing feasible Al-
driven research projects. Often, these projects are
designed and executed by multidisciplinary teams,
involving both clinical and technical specialists. When
considering the next steps, orthopaedic researchers
should make deliberate, well-informed decisions about
the type of domain-specific research topics that can be
investigated using Al. Data acquisition, management
and processing for Al-intensive research must be
strategically planned. A plan must be established to
assess the performance of Al systems, navigate the
interpretability of Al-driven research output and to val-
idate the end-product. A general approach to the
implementation of Al for orthopaedic research is out-
lined in Figure 3. Subsequent parts of this learning
series will focus on exploring these topics in more
detail.

FUTURE DIRECTIONS

The future of Al in orthopaedics is clearly promising
given the rapid advances in technological and com-
putational power. One can envision a scenario in
which at any stage of a clinical encounter, from
scheduling to diagnosis to surgical management,
technology can autonomously augment the clinical
workflow. Orthopaedic surgery could undergo a
transformative shift as Al systems assist surgeons in
planning procedures with unparalleled precision, op-
timising implant selection and reducing surgical risks.
Generative Al may aid in the curation of large radio-
graphic datasets, which in turn can allow for high-
quality diagnostic models. Additionally, generative Al-
driven decision support tools are expected to aid
surgeons in tailoring treatment plans to individual
patient needs, improving outcomes and reducing
recovery times. These advancements are set to
redefine orthopaedic surgery and research, ushering
in an era of personalised and efficient care for patients
with musculoskeletal disorders and injuries. However,
this requires interdisciplinary communication and
teamwork, quality assurance and external validation
and collaboration to ensure that models are accurate
and applicable to diverse clinical scenarios. While
many institutional and administrative barriers exist in

[
Spiit Training Feature Seiection Model
<l Data Data Exploration Creation
S ——
Data Preparation
Data é» Formatted Spiit t
Acquisition Data
Valldation Hyperparameter Model
Data Optimization Refinement
i
e
= Testing Model
Data " Performance
. ?

Model Monltoring

and Retralning

External
Valldation

FIGURE 3 An illustrative process for crafting, assessing and implementing machine learning models. Following data preparation, the
customary division into training, validation, and test sets is executed. The training dataset is predominantly employed for model creation and
algorithm optimisation, while validation sets aid in fine-tuning through hyperparameter selection. Subsequently, the model undergoes evaluation
on blinded test datasets, ensuring unbiased assessment before transitioning into a functional predictive model. Ongoing monitoring and
retraining are integral for maintenance, offering the flexibility of potential deployment to alternative sites for external validation. Figure used with

permission from Pruneski et al. [57].

85UBD17 SUOLILLIOD aA 181D aqealdde ay) Aq peusenob ale sop e WO ‘8N JO Sa|ni 1o Akeiqi auljuQ A3]1AA UO (SUOIPUOD-PUR-SLLLBIALIOY" B [1IMAReIq Ul |UO//SANY) SUORIPUOD PUe SWS | 8U1 89S *[G202/TT/02] uo Arigiiauliuo A8jim ‘ABojouyde | JO AiseAlun siBweyD Aq T80/ 209 (/200T OT/I0p/L0Y" B[ 1m ARelg Ul |UO'S eUINO fexsse//sdny WOy pepeojumoq ‘v 'S20z ‘€STTL6TE



completing multicentre studies and collaborating via
data and code sharing, the field of orthopaedics
stands to benefit substantially from such collaboration.
Federated learning is one paradigm that seeks to
address the problem of data governance and privacy,
wherein algorithms are trained collaboratively without
exchanging the data itself [61]. Similar approaches
and paradigms that minimise barriers to collaboration
will allow Al applications to more broadly and rapidly
transform the medical landscape.

CONCLUSION

The valuable role of Al in orthopaedics is under-
scored by its ability to handle large and complex
data and provide predictive power that surpasses
traditional statistical methods. Researchers have
demonstrated success in an array of clinical sce-
narios, from optimising surgical workflow to planning
surgery and predicting outcomes. While there are
challenges to be addressed, including data quality,
validation and ethical considerations, Al's potential
to improve clinical practice is undeniable. The future
of Al in orthopaedics is promising, with the potential
for autonomous clinical support, precision surgical
planning and personalised patient care. To harness
these benefits, interdisciplinary collaboration, qual-
ity assurance and external validation are essential.
As such, the integration of Al into orthopaedics
is advocated for its potential to advance patient
care and our understanding of musculoskeletal
pathology.
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