CHAL

UNIVERSITY OF TECHNOLOGY

A Formalization of Opaque Definitions for a Dependent Type Theory

Downloaded from: https://research.chalmers.se, 2025-12-01 12:02 UTC

Citation for the original published paper (version of record):

Danielsson, N., Geng, E. (2025). A Formalization of Opaque Definitions for a Dependent Type
Theory. Tyde 2025 Proceedings of the 10th ACM SIGPLAN International Workshop on Type Driven
Development Co Located with ICFP Splash 2025: 39-51. http://dx.doi.org/10.1145/3759538.3759653

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



N)
)
Check for
updates

A Formalization of Opaque Definitions
for a Dependent Type Theory

Nils Anders Danielsson
nad@cse.gu.se
Department of Computer Science and Engineering
University of Gothenburg and Chalmers University of
Technology
Gothenburg, Sweden

Abstract

Definitions allow for reuse of code. Typical type-checkers
for dependently typed programming languages automati-
cally unfold definitions, but excessive unfolding can lead
to types that are hard to read, or performance issues. Such
problems can be mitigated through the use of opaque defi-
nitions, which give the programmer control over when un-
folding is allowed. However, subject reduction fails to hold
for certain designs.

We study the metatheory of a type theory with opaque
definitions, inspired by Agda. We give typing and reduction
rules and show that the type theory enjoys properties like
subject reduction, normalization, consistency, and decidabil-
ity of conversion. The development is fully mechanized in
Agda.

CCS Concepts: « Software and its engineering — Abstrac-
tion, modeling and modularity; Abstract data types; Formal
language definitions; « Theory of computation — Logic
and verification; Type theory.

Keywords: opaque definitions, dependent types, formaliza-
tion, Agda

ACM Reference Format:

Nils Anders Danielsson and Eve Geng. 2025. A Formalization of
Opaque Definitions for a Dependent Type Theory. In Proceedings
of the 10th ACM SIGPLAN International Workshop on Type-Driven
Development (TyDe ’25), October 12—18, 2025, Singapore, Singapore.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3759
538.3759653

1 Introduction

Most programming languages in everyday use today offer
some facility for definitions: a programmer can choose a
name «, then declare that « refers to some fixed definiens t,
which we might denote by a £ ¢. This makes it easy to reuse

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

TyDe ’25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2163-2/25/10
https://doi.org/10.1145/3759538.3759653

Eve Geng
me@evening.st
Chalmers University of Technology
Gothenburg, Sweden

code without having to repeat oneself: one can simply write
the name « in place of the code at any usage site. For exam-
ple, the following Agda definitions bind the name double
to a doubling function, then reuse it to define quadruple:

double : N- N -- Doubles a natural
doublen=n+n

quadruple : N~ N -- Quadruples a natural
quadruple n = double (double n)

This sort of construction also works at the type level, giv-
ing us type aliasing. For example, we can name the type of
positive natural numbers N>8, allowing us to use the name
in a later type signature:

N>B : Set -- Positive naturals
N>0=X[n:N]n>0

pred : N>B > N -- Predecessor
pred (sucn, >zero) =n

A key feature of definitions is that by composing them,
we can incrementally build up complexity with compara-
tively little syntactical cost. Consider, for example, the fol-
lowing definitions for a number hierarchy equipped with
setoid equality relations:!

Z : Set -- Integers as differences of naturals
Z=NxN

x=ly="fstx+sndy=fsty+sndx

L_:1~1-Set--Equality on integers

_*1_:1-1-1--Integer multiplication
X*7y=Ffstx*fsty+sndx*sndy
, fstx *sndy+ fsty*sndx

07 : 1 -- Integer zero
82=0,0

7#8 : Set -- Nonzero integers
1#0=1[x:7]-x=101

Q : Set -- Rationals as the field of fractions
0=17x1+0

'This particular example might be more clearly expressed with pattern
matching, but we avoid it here for illustrative purposes.


https://orcid.org/0000-0001-8688-0333
https://orcid.org/0009-0001-7825-0339
https://doi.org/10.1145/3759538.3759653
https://doi.org/10.1145/3759538.3759653
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759538.3759653
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3759538.3759653&domain=pdf&date_stamp=2025-10-09

TyDe 25, October 12-18, 2025, Singapore, Singapore

_=0_ : @~ Q~ Set -- Equality on rationals
x=Qy="~stx*2fst (sndy)=Zfsty*Zfst (sndx)

Although equality on ) is, on its face, a fairly involved no-
tion, our ability to build on earlier definitions allows us to
state it quite concisely. This kind of scalability makes defi-
nitions indispensable to large software projects.

Informally, the semantics of definitions is fairly obvious: a
definition name is equal to its corresponding definiens. This
is straightforward for execution, but it may pose some prob-
lems when programs are constructed or type-checked. For
example, suppose that we want to show that equality on the
rationals is symmetric:

sym-Q : V {x y}>x=Qy-y=0x
sym-0 p = {! insert proof here !}

When approaching a proof obligation like this one, a typical
step is to ask Agda for the normalized goal type. For this
particular goal, we get the following normalized type:

fst (fst y) * fst (fst (snd x)) +

snd (fst y) * snd (fst (snd x)) +

(fst (fst x) * snd (fst (snd y)) +
fst (fst (snd y)) * snd (fst x)) =
fst (fst x) * fst (fst (snd y)) +

snd (fst x) * snd (fst (snd y)) +

(fst (fst y) * snd (fst (snd x)) +
fst (fst (snd x)) * snd (fst y))

This type is arguably not very readable, and we might have
preferred to see something like the following, where some
of the “implementation details” are hidden:

fst y *Z fst (snd x) =Z fst x *Z fst (snd y)

Unfolding of definitions is a basic ingredient in typical
intensional type theories, but it can lead to problems:

1. As seen above, excessive unfolding can impair usabil-
ity by obfuscating types shown to users.

2. Unnecessary unfolding can also bog down type check-
ing, which typically involves some kind of normaliza-
tion of types.

One way to mitigate such problems is to use opaque def-
initions [7]. By marking a definition as “opaque”, the pro-
grammer declares that the type checker should not unfold
it unless explicitly instructed to.

In Agda, this is done using the opaque keyword:?

opaque
1 : Set -- Integers as differences of naturals

Z=NxN

2Support for opaque definitions was added to Agda by Amélia Liao (https:
//github.com/agda/agda/pull/6628).

40

Nils Anders Danielsson and Eve Geng

With Z now opaque, it is no longer definitionally equal to
N x N.3 As a consequence, the definition of _=Z_ no longer
type-checks, since the pair projections fst and snd do not
apply to Z. To fix this, we can use the unfolding keyword
to tell the type checker that when the body of the definition
of _=Z_ is checked, the definition of Z can be unfolded, thus
re-establishing the lost equality:

opaque
unfolding Z
_=l_: 1~ 1~ Set -- Equality on integers
x=ly=fstx+sndy=fsty+sndx

Such definitions make up a sort of “interface” for Z, allow-
ing us to reason about it without having to look into the un-
derlying implementation details. Note that the unfolding
directive may only be used in other opaque definitions: if
_=l_ were not opaque in the above example, then details of
the implementation of Z could “leak” when _=Z_ is unfolded.
Furthermore, the directive only applies to the body of the
definition and not to its type, which is part of the “interface”
and therefore must make sense without any unfolding.

When defining the rationals, we can use the interface to
avoid unfolding Z at all:

opaque
7#8 : Set -- Nonzero integers
1#6=%[ x:7]-x=101

opaque
0 : Set -- Rationals as the field of fractions
0 =17x1+0

opaque
unfolding Q Z+0
_=0_ : 0~ Q~ Set -- Equality on rationals
x=Qy= fstx*Zfst(sndy)
=] fsty *1 fst (snd x)

The symmetry proof is now part of the interface for (. It
declares unfolding for _={_, which in turn implies unfold-
ing for (J and 7#0 (and everything those definitions declare
unfolding for, and so on):

opaque

unfolding _=Q_

sym-Q : ¥ {xy}-x=Qy-y=0x

sym-Q p = {! insert proof here !}
As a result of the use of opaque definitions, the normalized
goal type is now the type that we gave earlier:

fst y *Z fst (snd x) =Z fst x *Z fst (snd y)

Here, the type checker has unfolded _=(_ as asked, but has
gotten stuck on the opaque _*Z_ and _=Z_, thus yielding a
goal type that is arguably more readable. The proof can be

3The definitional equality holds in the body of the definition of Z.


https://github.com/agda/agda/pull/6628
https://github.com/agda/agda/pull/6628

A Formalization of Opaque Definitions for a Dependent Type Theory

completed using symmetry of _=Z_, which could be part of
the interface for Z.

Implicit unfolding of transitive dependencies as above is
used by Agda to ensure subject reduction. Suppose, for ex-
ample, that we wrote a new definition unfolding 87 without
transitively unfolding Z. In that definition’s body, 8Z of type
7 would reduce to (8 , 8) oftypeN x N, but we would not
be able to deduce that Z is equal to N x N! This suggests that
the design of a type theory with opaque definitions and un-
folding declarations is not entirely trivial.

Our main contribution is a fully-mechanized formal-
ization of a dependent type theory with opaque top-level
definitions. We build off of the previous work of the graded-
type-theory project [2], an Agda formalization of a (graded
modal) dependent type theory which, prior to this work,
lacked definitions of any kind. The core calculus is loosely
based on the Agda language and comes equipped with var-
ious common type formers: dependent functions and pairs,
a universe hierarchy, natural numbers, identity types, and
so on. A Kripke logical relation [1, 3] is then employed to
establish a number of metatheoretic properties: normaliza-
tion, consistency, decidability of conversion, and so on.

In this work, we extend the type theory of graded-type-
theory with opaque definitions, also based on Agda (adding
top-level definitions in general along the way), then show
that many of the metatheoretic results established by the
formalization are preserved by our extension. This is, to the
best of our knowledge, the first mechanization of the meta-
theory of opaque definitions for a language with dependent
types. However, we note a few limitations of our work:

o For simplicity, and following the Agda design, we only
allow top-level definitions; see §3.3 for more discus-
sion.

e Asmentioned above the language that is formalized in
the graded-type-theory project is a graded modal type
theory. In this text we ignore the grades (but grades
are, to some extent, supported in the formalization).

e The type theory optionally supports equality reflec-
tion. We support equality reflection in the presence of
definitions, but not opaque definitions, and will largely
be ignoring this feature.

The remainder of this paper is structured as follows:

e In §2, we discuss some related work in the area.

e In §3, we recall the methodology of the formalization
and go over the general idea of our extensions.

e In §4, we detail our extensions to the type theory for
supporting top-level definitions without opacity.

e In §5, we detail further modifications for supporting
opaque definitions.

Finally, a note on mechanization: The type-checked for-
malization in Agda should be considered the “authoritative”
form of this work, this paper being only a presentation of
that work. We have chosen to be a little lax in the text in

TyDe 25, October 12-18, 2025, Singapore, Singapore

order to avoid including too many details; for instance, we
omit certain arguments to the logical relations. Interested
readers can find the full source code in this paper’s soft-
ware artifact [6]. Additionally, in the digital version of this
paper, definitions and results are accompanied by (possibly
less stable) links, displayed in blue, to the relevant parts of
the Agda code. Because we build up our extensions incre-
mentally throughout the paper, such links point to a snap-
shot at the appropriate point in development. Accordingly,
we distinguish these references with the following coloured
markings:

I The original formalization, before any of our extensions.

The formalization extended with top-level definitions,
without opacity.

The formalization extended with opaque definitions.

The full development includes results not presented in this
text, and the last two snapshots mentioned above include
parts that do not type-check. However, the software arti-
fact [6] contains further changes which make all of the code
type-correct.

2 Related Work

Opaque definitions have been studied and implemented in
various dependently-typed settings:

e Gratzer et al. [7] present a formalism for opaque defi-
nitions based on an elaboration to a language with ex-
tension types, along with an implementation as part
of cooltt [16]. The surface language supports top-level
unfolding directives, as in the examples above, but
also expression-level unfolding directives. In the tar-
get language definitions are represented as specially-
typed variables* in the typing context, which allows
for local definitions. Gratzer et al. show normaliza-
tion for the system, but the proof does not seem to
be mechanized. Our proof is different from theirs: our
proof does not involve the use of extension types.

e We discussed the Agda implementation of opaque def-
initions above. It is loosely based on the theory by
Gratzer et al. [7], but dispenses with the extension
types. Moreover, there are only top-level definitions,
and only top-level unfolding directives. We follow suit
in our work here.

¢ In Rocq, opaque definitions are present in the “core
language” as defined by the reference manual [17],
but not in the calculus of (inductive) constructions
on which it is originally based [5, 11]. There is a sin-
gle context for definitions and variables, but unlike

4A definition @ £ t : A elaborates to a variable of the extension type
{A | Yy <> t}, a subtype of A whose terms must be definitionally equal
to ¢ in contexts where the “unfolding proposition” Y, holds.



TyDe 25, October 12-18, 2025, Singapore, Singapore

the target language in the work of Gratzer et al. [7],
definitions are distinct from variables. There has been
some effort towards a formalization/mechanization of
Rocq’s metatheory, including its extensions to the cal-
culus of inductive constructions; the work of Sozeau
et al. [13] and MetaRocq [12] are two such examples.
However, they operate on simplified versions of the
core language that exclude opacity.

e In Lean [15], an opaque definition can be introduced
with the opaque command, which instructs the ker-
nel to check the definiens, but to then discard it. This
irreversibly bars the definition from §-reduction.
Lean definitions also have a separate notion of “re-
ducibility”, which functions as a hint for the tactic en-
gine. When the “irreducible” attribute is applied to a
definition, tactics will refuse to unfold it; this can then
be locally undone by removing the attribute with the
unseal command. However, reducibility is discarded
in elaboration to the core (kernel) language. Carneiro
[4] formalizes some metatheory for Lean; the formal-
ization seems to only address opacity, not reducibility.

e Automath, one of the earliest systems for mechanized
mathematics, supports definitions [18]. The original
system does not seem to have featured opacity, but
a modern re-implementation includes support for it
[19].

The information-hiding approach to separation of con-
cerns is by no means limited to the dependently-typed space;
indeed, analogous constructions have long been used, even
in non-dependent settings, to address the problem of soft-
ware organization [10]. Some examples:

e In many languages, the notion of an “abstract data
type” or “interface” offers a similar form of separation
of concerns: since the abstract type is not bound to
any specific implementation, consumers must work
with only that which is given in the type’s interface
in much the same way an outside party can only work
with the interface to an opaque type definition.

e Harper and Lillibridge [8] present a “translucent sum
type” to represent abstract data types. A translucent
sum type is essentially a dependent record type for
which each field’s type can optionally be annotated
with a definiens, which then forces that field to take
on the given value.’

e In the realm of algebraic semantics, the relationship
between an equational signature X and its Z-algebras
is similar to that between an abstract data type and its
implementations, in the sense that equational results
on X (or, equivalently, on an initial algebra of X) ex-
tend to all Z-algebras, giving a form of representation
independence [9].

>The fields might be thought of as having extension types {A | ¢ < ¢t}
where 1/ is one of the constant propositions T or L.

42

Nils Anders Danielsson and Eve Geng

3 Background

Here, we give an overview of the structure of the graded-
type-theory formalization in order to set the context for our
extensions and to fix notation. We also briefly describe the
general idea of our extensions.

3.1 The Type Theory

As previously mentioned, the graded-type-theory formal-
ization supports a variety of type formers; in fact, for gener-
ality, it’s configurable in the sense that it is parametric in a
set of flags that control the inclusion or exclusion of certain
type formers. However, it turns out that the choice of type
formers is largely orthogonal to the problem of opaque defi-
nitions, and so we shall not discuss them in too much detail.
A small sampling of the term language is shown below:

Definition 3.1. A term is either a variable, represented
as a de Bruijn index, or a term constructor applied to sub-
terms:

xo|x1]...
x|ITAB|tu|N]|zero|suct]...

Variable x :
Term A, B, t,u =

Here, x; refers to the variable at index i.

Note that terms are well-scoped in the actual formalization.®
We also use typing contexts, weakenings and substitu-
tions. We do not include all details of their definitions here:

Definition 3.2. A typing context is a list of types for
variables in the context:

Typing Context LA z=¢ |- A

Typing contexts are dependent in the sense that later en-
tries may refer to variables bound in earlier ones.

Definition 3.3. A weakening p lifts a term ¢ to a term
t[p] by incrementing free de Bruijn indices in t: weaken-
ings are used to embed terms into larger contexts.

Definition 3.4. A substitution ¢ transforms a term ¢
into a term t[c] by replacing each free variable in t with
a specified term (which may be weakened to account for

binders).

Typing contexts, weakenings and substitutions are also well-
scoped in the formalization proper, but again we elide this.

We use the following basic typing judgements and reduc-
tion relations:

Definition 3.5 (Typing judgements).
+ ' — I' is a well-formed typing context.
' A— Ais awell-formed type in T

®The term and context data types are indexed by the number n of variables
present, and the variable term constructor is restricted to indices smaller
than n. This ensures that only variables in scope are representable as terms.


https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Untyped.agda#L50
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Untyped.agda#L49
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Untyped/NotParametrised.agda#L29
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Untyped/NotParametrised.agda#L92
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Untyped.agda#L386
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed.agda#L50
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed.agda#L55

A Formalization of Opaque Definitions for a Dependent Type Theory

I'+t:A— tisawell-formed term of type Ain I".
I'FA=B— AequalsBasatypeinI.

I'trt=u:A— tequalsuasatermoftype AinT.
I'rA= B— Areducesto BasatypeinI.

't = u:A— treducestouasatermoftype AinT.
p:A DT — pisawell-formed weakening from I" to A.
At o :I'— ois awell-formed substitution from I" to A.

The typing rules are more or less standard, albeit with some
configurability for the inclusion and exclusion of rules that
may differ between programming languages: equality reflec-
tion, axiom K, and so on. The reduction relations are of the
small-step kind, and weak head reduction is used.

With these rules, we can immediately derive a handful of
“direct” results (we use I' + J as notation for any of " A,
I'rt:ATFrA=BandT'+t=u:A):

Lemma 3.6 (Weakening). If I' + 7, then for any well-
formed weakening p : A 2 T', we have A + J[p], and
similarly for reduction.

Lemma 3.7 (Substitution). If T + 7, then for any well-
formed substitution A + o : I', we have A + J[o], and
similarly for reduction.

Lemma 3.8 (Well-formedness). Most typing judgements
require that their constituents are well-formed:
e IfI"'+ A, thentTI.
e IfI'+t:A, thenl' + A.
eIfT+A=B,thenT'+Aand T + B.
elf'tt=u:AthenT'+t:Aand ' u: A
o Similarly for reduction.

Because the reduction relation for terms is typed, subject
reduction reduces to well-formedness of reduction:

Theorem 3.9 (Subject Reduction). If ' + t = u : A and
I'ktt:A thenT' +Fu:A.

3.2 'The Logical Relation

For more substantial results about reduction, we resort to a
Kripke logical relation argument in the style of Abel et al.
[3]. The idea is broadly to define three different versions
of the typing judgements with varying levels of “strength”,
then to establish a logical equivalence that lets us freely
move up and down the ladder, as illustrated in Fig. 3.1.

We start by defining a series of relations I' 7, called
“reducibility judgements”, which mirror the structure of the
usual typing judgements I' + J. The idea is that the re-
ducibility judgements capture the behaviour of terms under
reduction to weak head normal form:

Definition 3.10. A term is neutral if it has a variable in
its head position.

43

TyDe 25, October 12-18, 2025, Singapore, Singapore

Validity: " +¥ I

Escape
Reducibility: I' + 7 Fundamental
Theorem
Escape
Typing:T'+ J

Figure 3.1. The validity-reducibility-typing “ladder”.

Definition 3.11. A term is in weak head normal form
(WHNF) if it is either neutral or a constructor application.

Definition 3.12. The logical relation for reducibility
consists of the following relations:’

I' + A— Aisareducible type in I".

'+t :A— tisareducible term of type Ain T

'+ A= B — Aand B are reducibly equal typesinI".

'+t =u:A— tandu are reducibly equal terms of type
AinT.

Reducibility generally entails two things:

1. Everything in sight reduces (in zero or more steps) to
a WHNF.
2. The WHNFs “behave correctly” under reducibility.

What it means for a WHNF to “behave correctly” depends
on the type in question; for the full details, refer to the Agda
code. As an example, consider term reducibility for function
types: given a reducible type I' I T that reduces to IT A B,
the reducibility judgement I" I ¢ : T holds roughly when

o t reduces to some WHNF f (i.e. either a lambda ab-
straction or a neutral term),

e for any well-formed weakening p : A 2 T, and any

A a:Alp], wehave A f[p] a: B[pT][a/xo], and

o for any well-formed weakening p : A 2 T, and any

Al a:Alpland A b: Alp] suchthat Ara=b:
Alp], we have A - flp]l a = flp] b: BlpTl[a/x.

Here 7 is a “lifting” operation that takes a weakening p :

A 2 T'to anew lifted one pT: A-A[p] 2 T-AGf A+ Alp]).

Note the generalization over weakenings in the above

conditions. We will use reducibility weakening lemmas in

later proofs, but because reducibility occurs in negative po-

sitions in its own definition (e.g. as premises to the two lat-

ter conditions), it is difficult to prove these lemmas directly

by induction. Instead, by building weakening directly into

7In the formalization proper, the three latter cases are parametrized by a
proof of type reducibility. We elide this here for brevity; in fact, this presen-
tation corresponds roughly to the “hidden” variants of the relations, which
“hide” the proofs by existential quantification. A universe level parameter
is similarly elided.


https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed.agda#L71
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed.agda#L160
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed.agda#L182
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed.agda#L485
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed.agda#L358
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Weakening.agda#L89
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Substitution/Primitive/Primitive.agda#L106
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Weakening.agda#L778
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Substitution/Primitive/Primitive.agda#L1463
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Well-formed.agda
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Syntactic.agda#L45
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Untyped/Neutral.agda#L38
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Untyped/Neutral.agda#L72
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation.agda#L609
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation.agda#L631
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation.agda#L620
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation.agda#L643
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation.agda#L637
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation.agda#L637
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Hidden.agda

TyDe 25, October 12-18, 2025, Singapore, Singapore

the definition of reducibility, we are essentially shifting the
proof burden for weakening elsewhere—in particular, to the
fundamental theorem (3.17). For now, we have:

Lemma 3.13 (Weakening). If I' I 7, then for any well-
formed weakening p : A D I', we have A I J [p].

What we want now is a means of moving between the
normal typing judgements and the reducibility judgements
of the logical relation. The backwards direction, known as
“escape”, is fairly straightforward:

I Lemma 3.14 (Escape). If '+ J, then ' + 7.

The proof of the forwards direction, on the other hand, is
more involved. The general idea is to proceed by induction
on the typing derivations I' + J. However, the motive is
strengthened from reducibility to what is known as validity:

Definition 3.15 (Validity judgements).

¥ I" — Every type in I is valid.

'Y A— Aisavalid type in T

' t: A— tisavalid term of type Ain T

'+ A = B— A and B are validly equal as typesinT.

't =u:A— tanduare validly equal as terms of type
AinT.

A o : " — o is avalid substitution from I" to A.

AW oy =0, : ' — 01 and oy are validly equal substitu-
tions from I to A.

Validity boils down to reducibility, but respecting substitu-
tion. Just as we baked weakening into reducibility to sim-
plify weakening lemmas, baking substitution into validity
simplifies substitution lemmas. As an example, consider va-
lidity for terms: I ¥ ¢t : A holds when I' ¥ A and, for
any validly equal substitutions A ¥ o1 = o3 : I', we have
A v tloy] = tloy] : Aloy]. Plain reducibility falls out of
this definition as the special case for the trivial substitution
01 =0y = id:

Lemma 3.16 (Escape). IfI" ¥ 7, then I" + 7. Similarly,
if VT, thent+T.

Now, we finally have what we need to state the fundamen-
tal theorem for the logical relation:

Theorem 3.17 (Fundamental Theorem). If I" + 7, then
'+ J. Similarly, if + T, then -V T".

The principal challenge of our work will be to repair
the proof of the fundamental theorem after making our ex-
tensions. The original proof uses induction on the typing
derivation I' + J (or + T'), and mainly amounts to show-
ing that the premises of each typing rule, given suitable in-
ductive hypotheses, imply the corresponding validity judge-
ment. As an example, consider the successor typing rule for
natural numbers:

44

Nils Anders Danielsson and Eve Geng

T'rt:N

— suc
I'tsuct:N

The corresponding case of the fundamental theorem would
have us prove that given I + ¢ : N and the inductive hy-
pothesis I' ¥ t : N, we have I' - suc t : N. Later on, when
we are throwing opaque definitions into the mix, re-proving
the fundamental theorem will largely amount to proving the
new cases corresponding to the new typing rules we add.

With the fundamental theorem now in hand, we have ob-
tained a way to reduce generalizations over all terms to gen-
eralizations over only normal forms. A simple example of
this is the normalization theorem:

Theorem 3.18 (Normalization). Any well-typed term
[+ t: Areduces to some WHNF £.

By the fundamental theorem, it follows from I" + ¢ : A that
'Yt : A, from which it follows that I" I ¢ : A. Reducibility
tells us that t reduces to a WHNF, and so we are done. Vari-
ous other results also follow from the fundamental theorem,
including the following ones:

Theorem 3.19 (Canonicity for N). If ¢ + ¢ : N, where ¢
is the empty context, then ¢ is judgementally equal to a
canonical form of N, i.e. suc applied zero or more times
to zero.

Theorem 3.20 (Consistency). In the empty context ¢, the
empty type L is uninhabited.

The formalized normalization proof is parametrized in a
certain way, and by instantiating it a second time, one can
obtain decidability of conversion [3]:

Theorem 3.21 (Decidable Conversion). Judgemental
equality is decidable:
e Given well-formed types I' + A and I' + B, it is
decidable whether or not I' A = B.
o Given well-typedterms I' -t : Aand ' - u : A, it
is decidable whether ornotI' -t = u : A.

The formalization that we build on [3] also includes results
related to decidability of type checking. We do not list them
here, but we build on them and present similar results in
§5.3.

3.3 Towards Opaque Definitions

To model opaque definitions, the idea will be to augment
every typing judgement with a definition context V analo-
gous to the usual typing contexts I', but carrying informa-
tion about definitions rather than variables. For a judgement
I' v J, we denote this by V» I' + 7. In this way, the typing
rules can depend on the contents of the definition context;
for example, the rule for well-typed definitions can look up
a definition’s type in V, much like the rule for well-typed
variables can look up a variable’s type in I'. We will also


https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Weakening.agda#L135
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Properties/Escape.agda
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Substitution.agda#L58
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Substitution.agda#L66
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Substitution.agda#L120
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Substitution.agda#L73
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Substitution.agda#L107
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Substitution.agda#L98
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Substitution.agda#L84
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Substitution.agda#L1353
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/LogicalRelation/Fundamental.agda
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed.agda#L115-L117
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Consequences/Reduction.agda#L317-L319
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Consequences/Canonicity.agda#L45
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Consequences/Canonicity.agda#L63
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Decidable/Equality.agda
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Decidable/Equality.agda#L35
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Decidable/Equality.agda#L41

A Formalization of Opaque Definitions for a Dependent Type Theory

augment the logical relation accordingly, so that I" + J be-
comes V»I'Ir J andI' +¥ J becomes V» T ¥ 7.

For a typical variable, one only needs to know its type.
For a definition, on the other hand, one also needs to know
its definiens, its opacity, as well as any associated unfolding
directives in order to know how the definition should un-
fold. The responsibility of the definition context, then, is to
store all of this information for later use by the typing rules.
This design might be thought of as a simplified version of
the way opaque definitions are implemented in Agda [14],
where things are more complicated due to, for instance, the
presence of mutually recursive definitions, which we do not
provide direct support for.

A key limitation of this approach is that only top-level def-
initions are possible. Because definitions in the definition
context cannot depend on variables in the typing context,
there is no way to model, for example, a definition contain-
ing a local variable. In fact, the dependency goes in the oppo-
site direction: since the type of a local variable may contain
a definition, the typing context depends on the definition
context.

An alternative approach might be to use a single, het-
erogeneous context in which later entries can depend on
earlier entries, regardless of whether they are variables or
definitions. This is the approach taken by the Rocq proof
assistant [17]. Because Agda itself only supports top-level
opaque definitions, as well as for the sake of simplicity, we
have opted to stick with a separate definition context in the
present work.

4 Formalizing Top-level Definitions

We now consider top-level definitions without opacity. Our
goal in this section will be to formally define the definition
contexts V, then to use them to define typing rules for defi-
nitions. After that, we will discuss how the presence of the
definition context interacts with the logical relation and, in
particular, the fundamental theorem.

4.1 The Formalism

To represent the definitions, we augment the term language
with a new kind of term similar to a variable:

Definition 4.1. A term can also be a definition name,
represented as a de Bruijn level:

Definition Name o, f i=ap | 1 | ...

Term A,B,t,u == a | ...

Here, «; refers to the definition at level i.

Why de Bruijn levels over indices? With de Bruijn indices,
if we were to append an entry to a definition context, then
we would have to shift indices in order to ensure that they
still point to the same thing. With de Bruijn levels, there is
no need to do this.

45

TyDe 25, October 12-18, 2025, Singapore, Singapore

Because definition names contain no variables, they are
invariant under substitution. This will be useful for the proof
of Lemma 5.16 later.

We can now define definition contexts, which are similar
to typing contexts, but which additionally carry a definiens
for each binding:

Definition 4.2. A definition context is a list of type
annotations and definientia for definitions in the context:

Definition Context V z=€ | V- (¢ : A)

We can also define inductive “maps-to” relations that let us
peek into a definition context:

Definition 4.3. The maps-to relations:

a > t: A€V — The name «a refers to a definition with
type annotation A and definiens ¢ in V.

a =t A € V — The name « refers to a definition with type
annotation Ain V.

These relations will be used in the typing rules for defini-
tions, which we now move to.

We first state what it means for a definition context V to
be well-formed, which we denote by » V. Such a V is well-
formed precisely when all of its definitions are well-typed
in the empty context (being top-level definitions):

Definition 4.4. Well-formedness for definition con-
texts is defined inductively by the following rules:

V»ert:A
»V.(t:A)

— EMPTY
» €

EXTEND

One might have expected to see » V as a premise of the
EXTEND rule, but it turns out that this follows from the given
premise by a well-formedness lemma (4.9).

Next, we augment the well-formedness of typing contexts
FIMto VT

Definition 4.5. Well-formedness for typing con-
texts is defined inductively by the following rules:

»V V»I'+A
Vot e Vs T-A

EMPTY EXTEND

None of the existing typing rules depend on V, and so
they remain largely untouched (aside from slapping a V onto
the judgements). However, our new typing rules for defini-
tions look into V using the maps-to relations:

VT a2 AeV
DEFN
V»T'ta: A
VT a—t:AeV
5-RED

VyT'ra=t: A


https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Untyped.agda#L82
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Untyped.agda#L80
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped.agda#L560
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Untyped.agda#L47
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Untyped.agda#L58
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Untyped.agda#L54
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L53
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L53
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L54
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L55
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L58
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L58
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L59
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L60
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L98-L101
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L208-L212

TyDe 25, October 12-18, 2025, Singapore, Singapore

VT ar—t:AeV
Vesl'ta=t:A

0-RED

These rules state that a definition takes its type from its type
annotation and is equal to (and reduces to) its definiens. We
refer to the reduction step as “§-reduction”, following work
on Automath [18].

Note that because of the well-scopedness of terms in the
formalization proper, it is technically necessary to weaken
the definition types and terms to embed them into I' in the
conclusions of the above rules. However, since the defini-
tions are well-scoped in the empty context ¢ and therefore
contain no free variables, weakenings are trivial for them,
so we elide them here.

We also consider a notion of “definition context exten-
sion”, analogous to a weakening for a typing context:

Definition 4.6. A definition context extension is a
sequence ¢ of definitions to be appended to a definition
context. Such an extension is a well-formed extension
E» V' 2 V from V to V' when each definition in the
sequence is well-typed.

With these rules, we can derive some simple results about
definitions and definition contexts:

' Lemma 4.7 (Weakening). Typing judgements are pre-
served under weakening of the definition context. That
is, if V.» T" + 9, then for any well-formed extension
E»V' 2V, wehave V' » T+ 7.

" Lemma 4.8 (Well-formedness). If » Vanda — t : A €
V,thenV»ert: A

Note that the proof of the above well-formedness lemma
(4.8) uses weakening for definitions (4.7): it amounts to ex-
tracting the proof from » V that V' » ¢ + t : A for some
sub-context V’ of V, then weakening it up to V. This is sim-
ple enough for now, but our proof of an analogous lemma
for validity (4.15) is more complicated.

The previous “direct” results from §3.1 still hold, albeit
with minor changes to the proofs to account for the new
typing rules. Our new well-formedness lemma also includes
a new case for definition contexts:

" Lemma 4.9 (Well-formedness). Most typing judgements
require that their constituents are well-formed:
e If V»-I', then» V.
e IfV»T'+ A, then Vo T
e IfV»T'+t:A thenV»T+ A
o IfV»I'+rA=B, thenV»I'rAand V» I + B.
oIfVy 't t=u:AthenV» T +t: Aand
V»Tru:A
e Similarly for reduction.

46

Nils Anders Danielsson and Eve Geng

4.2 Updating the Logical Relation

To attack the fundamental theorem, we will start by aug-
menting the logical relation with definition contexts in the
same way we did for the typing judgements:

" Definition 4.10. The logical relation for reducibility
consists of the following relations:

V»I' - A— Aisareducible typein Vand I'.

V»T'I-t:A—tis areducible term of type A in V and
r.

V»T'IF A =B — A and B are reducibly equal types in V
and I'.

V»T'i-t=u:A— tand u are reducibly equal terms of
type Ain Vand I

" Definition 4.11. The validity judgements are the fol-

lowing relations:

VoY I' — Every type in I" is valid in V.

V»T'Y A— Aisavalidtypein VandT.

V»T'IF t:A— tisavalid term of type Ain Vand .

V»T' Y A = B— Aand B are validly equal as typesin V
and I'.

V» ' t =u:A— tandu are validly equal as terms of
type Ain Vand I

V» A o: T — o is avalid substitution from I" to A in
V.

V» A oy = 0y : I' — 07 and 0, are validly equal substi-
tutions from I" to Ain V.

These new relations are defined in mostly the same way as
before (with the definition context V tacked on so that it can
be passed into the underlying typing judgements), but with
one key difference that we will discuss in connection with
Lemma 4.16 below.

For now, note that no validity variant of definition con-
text well-formedness is given above. As discussed in §3.2
the logical relation is focused on WHNFs, and definitions
can always reduce: they are not WHNFs. It turns out that
we can get away without validity for definitions as part of
Definition 4.11, definition context well-formedness is suffi-
cient for our purposes: V»Ir¥ € = » V.

Nevertheless, validity for definitions will be used to prove
the cases of the fundamental theorem related to definitions.
Thus, we define it now, after the other validity judgements:®

Definition 4.12. Validity for definition contexts is
defined by the following recursive equations:
»We=T
W (V-(t:A)=0" V)X (Ve t:A)

Now, we can state the updated fundamental theorem:

8That is to say, »” V is not defined mutually-recursively with any of the
other validity judgements.


https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L381-L385
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Untyped.agda#L64
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed/Weakening/Definition.agda#L37-L38
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed/Weakening/Definition.agda#L80
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed/Well-formed.agda#L61
https://github.com/phantamanta44/graded-type-theory/blob/paper-original/Definition/Typed/Well-formed.agda
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation.agda#L616
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation.agda#L638
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation.agda#L627
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation.agda#L650
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L60
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L68
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L123
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L75
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L109-L110
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L100
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L86
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L61
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution/Introductions/Definition.agda#L54

A Formalization of Opaque Definitions for a Dependent Type Theory

Theorem 4.13 (Fundamental Theorem). All of the fol-
lowing hold:

e If » V, then »¥ V.

e If VoI, then VoV T.

e IfV»I'+ J,thenV>»T' ¥ 9.

Proceeding by mutual induction,’ the first two statements
can be shown using the third as a mutual-inductive hypoth-
esis: we can handle each definition in a definition context
by recursively applying the third statement for term valid-
ity, and we can handle each variable in a typing context by
recursively applying the third statement for type validity. It
remains, then, to re-prove this third statement by address-
ing the cases for our two new typing rules.
We will start with the case for the §-reduction equality
rule:
VT

VsT'ra=t:A

a—t:AeV
5-RED

By well-formedness, V »- I" gives us » V, then the mutual-
inductive hypotheses give us » V and V »+Y T'. Then, it
suffices to show the following:

Lemma 4.14 (Validity of §-reduction). Given that »¥ V
and Vo' I ifa—>t:AeV,thenVor ' a=1t: A.

To make use of the assumption o — t : A € V, we will use
a well-formedness lemma for valid definition contexts anal-
ogous to the one given earlier for well-formed ones (4.8):

Lemma 4.15 (Well-formedness). If»¥ Vanda +— t: A €
V,thenV» eV t: A.

As with Lemma 4.8 before, we prove this using a weakening
lemma for definitions—this time, for validity:

Lemma 4.16 (Weakening). If V» I" ¥ 7, then for any
well-formed extension £ » V' 2 V, we have V' » "' vV 7.

In proving this, we run into the same problem we previ-
ously encountered with weakening of the typing context
(3.13)—namely, that reducibility occurs negatively in its own
definition. Fortunately, we can use the same trick again to
work around the problem: we just bake weakening for def-
initions into validity. To illustrate, let us see how validity
for terms has changed to accommodate these weakenings:
V» "I t : Aholds when

e V»T' IV Aand

o for any well-formed extension &£ » V/ 2 V and any
validly equal substitutions V' » A ¥ o1 = 02 : I, we
have V' » A I+ t[o1] = t[o2] : Aloy].

The first statement is proved using induction on the length of the defini-
tion context. “Recursive calls” in the proofs of the other two statements
always use an unchanged definition context.

47

TyDe 25, October 12-18, 2025, Singapore, Singapore

Returning to the proof of Lemma 4.14, a key insight is
that because reducibility speaks principally about a term’s
WHNE, any term ¢ that reduces to a reducible term u—and
therefore has the same WHNF as u—is reducibly equal to u.
By then generalizing over weakenings (for definitions) and
substitutions, we can extend this result to validity:

" Lemma 4.17 (Expansion). Given that
e V»>I'HW u:Aand
e for any well-formed extension & » V' 2 V and any
valid substitution V?» A ¥ o : T', we have V' » A +
tlo] = ulo] : Alo],
we can conclude that V> T t =u : A

We can now complete the proof of Lemma 4.14: By well-
formedness, we know that V » ¢ -V ¢ : A, which gives us
V» T Y t: Aby a weakening lemma for validity. Then, by
expansion for §-reduction, we can conclude that V » I" ¥
a=t:A

Now, we move on to the case for the term typing rule:

VT
V»T'rta:A

a2 AeV

DEFN

As before, we apply the mutual-inductive hypotheses to the
premises to get »¥ V and V»+" I, and so our goal is to show
the following:

Lemma 4.18 (Validity of Definitions). Given that »¥ V
and VorV I'ifa —>: A € V,then Vo T' Y « : A.

As we are not yet considering opacity, a definition will al-
ways reduce to its definiens, and so there must be some term
t for which @ — t : A € V. We thus get the desired result by
more or less the same argument as for §-reduction: since
reduces to t by §-reduction, they have the same WHNF, and
so «a is valid whenever ¢ is.

5 Formalizing Opacity

Now that definitions are out of the way, we can begin mod-
eling opacity. We first describe how definition contexts are
modified to carry information about opacity as well as how
the typing rules use this information to restrict unfolding.
We then discuss the impact of these changes on normaliza-
tion and the resulting implications for the logical relation.

5.1 The Formalism, Take Two

To track the opacity of definitions, we mark each entry in a
definition context as either transparent or opaque. In the lat-
ter case, since opaque definitions can be associated with un-
folding directives, we also include information about those:

Definition 5.1. An opacity for entry number 1 + n in
a definition context is either tra, indicating that the en-
try is transparent; or opa(¢) for an n-bitvector ¢, indicat-
ing that the entry is opaque, with unfolding directives for


https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Fundamental.agda
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Fundamental.agda#L54
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Fundamental.agda#L113
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Fundamental.agda#L113
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Fundamental.agda#L60
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Fundamental.agda#L66
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L208-L212
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution/Introductions/Definition.agda#L128-L132
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution/Introductions/Definition.agda#L103
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L630
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L123
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Properties/Reduction.agda#L92-L97
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L1267-L1274
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution.agda#L1803-L1804
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/Typed.agda#L98-L101
https://github.com/phantamanta44/graded-type-theory/blob/paper-definitions/Definition/LogicalRelation/Substitution/Introductions/Definition.agda#L153-L157

TyDe 25, October 12-18, 2025, Singapore, Singapore

those previous definitions that correspond to the one bits
in ¢:
Opacity w == tra | opa(¢)
Unfolding Vector ¢ == ¢ | 90 | p1

" Definition 5.2. A definition context is a list of defini-
tion bindings, where each entry consists of a type anno-
tation, a definiens, and an opacity:

Definition Context V i:=€ | V-, (t : A)

The data carried by an entry in a definition context reflect
the information given in a possibly opaque (simple) Agda
definition: the opa and tra annotations represent the pres-
ence or absence of the opaque keyword, and in the opa(¢)
case, the one bits in the unfolding vector ¢ represent the
unfolding clauses:

opacue -- Opacity
unfolding B -- Unfolding vector
o : A -- Type annotation
o = t -- Definiens

Due to the presence of both transparent and opaque defi-
nitions we use three maps-to relations:

" Definition 5.3. The maps-to relations:

a > t:AeV — arefers to a transparent definition with
type annotation A and definiens ¢ in V.

at— 0:AeV— arefers to an opaque definition with
type annotation A in V.

a +—: A €V arefers to a definition with type annotation
Ain V.

With a bit of easy induction, we can move from the last of
these relations to one of the other two:

Lemma 5.4 (Dichotomy). If « +: A € V, then either
ar> Q:AeVorthereisat forwhichat+—t:AeV.

We also define “glassification”, which makes all the defi-
nitions in a context transparent:

" Definition 5.5. The glassify operation is given by the
following recursive equations:
glassify(e) = €
glassify(V -, (t : A)) = glassify(V) -3 (¢ : A)

" Lemma 5.6 (Glassification). If & +: A € V, then there is
some t for which a — t : A € glassify(V).

As we will see in §5.3, certain results are stated only for glass
(i.e. fully transparent) contexts, because they do not neces-
sarily hold for general contexts.

When an opaque definition a@ =qp,(p) t : A is checked
for well-formedness, the definitions marked in ¢ should be

48

Nils Anders Danielsson and Eve Geng

treated as transparent. This, along with the transitive unfold-
ing discussed earlier, is encoded by the transparentization
relation ¢ » V’ «~ V, where V is the “input” context and V’
is the “output™

" Definition 5.7. The transparentization relation is de-
fined inductively by the following rules:

EMPTY
ENE & €

p» V' «V
NO
@0» V' -, (t:A) «~ V-, (t: A)

pU@ »V «V
P1» V' s (11 A) -~ V “opa(¢’) (t:A)

YES-OPA

q)»V'(v*V
(pl » V, ‘tra (tA) (\/‘V'tra (tA)

YES-TRA

Note the LI in the YES-oPA rule, which stands for bitwise
disjunction. The idea is to enforce transitive unfolding by
merging the definition’s unfolding vector into the running
vector. Note also that the relation is deterministic: ¢ » V’ «~
Vand ¢ » V"’ «~ V imply that V' = V",

We can now update the well-formedness judgement:

E Definition 5.8. Well-formedness for definition con-
texts is defined inductively in the following way:

V»ert:A
» V tra (21 A)

— EMPTY
» €

EXTEND-TRA

V»etr A p»V «V Vi»ert:A

>V opa(e) (t:A)

EXTEND-OPA

Note that even in the opaque case, the type of the definition
must check in the original context: the type signature of an
“interface” definition must not leak the “implementation de-
tails” of any opaque definitions. For example, imagine if we
had tried to extend the interface for 7 in §1 with a definition
of type (8 , 8) =Z (1 , 1). Since Z is not definitionally
equal to N x N to an outside observer, to them, this type
would be ill-formed.

At a glance, the typing rules for definitions look exactly
the same as before:

VT ar»AeV
Vy»T'kta: A

DEFN

VT a—t:AeV
Vy»T'ta=t:A

0-RED

VT a—t:AeV
V»T'ra=t:A

5-RED



https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped.agda#L66
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped.agda#L50
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped.agda#L72
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped.agda#L85
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped.agda#L89
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped.agda#L81
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped/Properties.agda#L108
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped.agda#L95
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped/Properties.agda#L171
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L65
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L66
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L67
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L68
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L69
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Properties/Definition.agda#L125
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L75
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L75
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L76
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L80
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L77-L79
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L123-L126
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L233-L237
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed.agda#L406-L410

A Formalization of Opaque Definitions for a Dependent Type Theory

However, note that the + variant of the maps-to relations
only holds for transparent definitions. Opaque definitions
should not unfold, so the §-RED rules use this variant. The
DEFN rule uses the +—: variant, which is opacity-agnostic:
uses of definitions are typed in the same way regardless of
opacity.

There are two useful classes of context-modification lem-
mas which we can now prove for the typing judgements:

" Lemma 5.9 (Weakening). If V » I + 7, then for any
well-formed extension é» V' 2 V, we have V' » '+ 7.

" Lemma 5.10 (Glassification). Typing judgements are
preserved by glassification. That is, if V. » T" + 7, then
glassify(V)» T+ 7.

The “direct” results from §3.1 and §4 still hold (with the
addition of “V »” wherever appropriate), including subject
reduction:

" Theorem 5.11 (Subject Reduction). f V>»T'+rt = u: A
and V»IT'+t:A thenV»T Fu:A.

We can also prove a theorem analogous to subject reduction
for transparentization:

" Theorem 5.12 (Well-formedness Preservation). Given
@» V' « V,if» V, then » V/;and if V» I" + 7, then
Vi»T+J9.

Gratzer et al. [7] observe that subject reduction is lost
with non-transitive unfolding; we see a similar result when
we employ a variant of LI that rejects transitive unfolding:

Counterexample 5.13 (Unfolding). With the alternate
definition ¢ U ¢’ = ¢, there exist definition contexts V
and V’ and an unfolding ¢ » V' «~ V such that » V, but
not » V.

Our counterexample uses the context
V=¢ ‘opa() (N : (L{) ‘opa(1) (0 : 0(0)

and an unfolding vector 01 that makes @; £ 0 : o trans-
parent but not @y = N : U. The resulting transparentized
context is ill-formed: we cannot show that 0 : ag, because
we cannot deduce that oy = N.

Is the counterexample above a problem in practice? Most
of our results actually hold with either of the two definitions
of LI above. However, type-checking might be less efficient
with the second definition. In the presence of Theorem 5.12
a type-checker might check if the context V -opa(y) (¢ : A)
is well-formed in the following way, aborting if any answer
is “no” [6]:

1. Does» V hold?

2. Does V » ¢ + A hold for the well-formed context V?

3. Let V' be the (unique) context such that ¢ » V' «~ V.
Does V' » ¢ + t : A hold for the well-formed context
V’ and the well-formed type A?

49

TyDe 25, October 12-18, 2025, Singapore, Singapore

Counterexample 5.13 shows us that, if the alternative defini-
tion of Ul is used, then it may be the case that the answer to
the first two questions is yes, but V' is not well-formed. This
could be addressed by adding the step “Does» V' hold?”, but
that seems terrible from a performance perspective. Perhaps
there is a better fix, but the problem can be avoided entirely
through the use of transitive unfolding.

5.2 Updating the Logical Relation, Take Two

A term is, generally speaking, “neutral” if it cannot reduce
but is not in canonical form. Before we added opacity, this
was only the case for terms blocked on variables, but now
we use the following definition:

Definition 5.14. A term is neutral if it has either a vari-
able or an opaque definition in its head position.

Naturally, this will also change—semantically, at least—what
it means for a term to be in WHNE:

Definition 5.15. A term is in weak head normal form
(WHNF) if it is either neutral or a constructor application.

The logical relations, both for reducibility and validity, do
not change all that much with this reformulation, outside
of some minor shuffling around to accommodate the new
definition of WHNFs. Moreover, since neutrals blocked on
opaque definitions have more or less the same reduction se-
mantics as neutrals blocked on variables, most of the same
arguments for the fundamental theorem go through with
minimal changes. The key exception is the case for well-
typed definitions, which no longer reduces to d-reduction.

Recall that to discharge the case for well-typed defini-
tions, it suffices to prove the following validity lemma (pre-
viously Lemma 4.18):

Lemma 5.16 (Validity of Definitions). Given that »¥ V
and VoV I ifa > Ae V,then Vo T' Y « : A.

In §4.2, we noted that @ must always unfold to some ¢, which
allowed us to reuse the argument used for §-reduction (4.14).
In light of opacity, however, we can no longer guarantee that
a unfolds at all! Fortunately, we can still use this argument
when the definition does unfold, and so we can proceed like
this: by the dichotomy principle for the maps-to relations
(5.4), we either have that @ — 0 : A € V or that there is
some t for which @ — t : A € V. The latter case reduces
to validity of §-reduction, and so it now suffices to show
validity for only opaque definitions.

Recall that definitions are invariant under substitution.
Using this, along with some weakening lemmas for defini-
tions, we can conclude that it suffices to show reducibility
for opaque definitions. To this end, we use the following
lemma:


https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Weakening/Definition.agda#L105
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Properties/Definition.agda#L190
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Syntactic.agda#L46
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Consequences/Unfolding.agda#L534-L542
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Consequences/Unfolding.agda#L444-L447
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable.agda#L94
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable.agda#L94
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable.agda#L116
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped/Neutral.agda#L40
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped/Whnf.agda#L44
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/LogicalRelation/Substitution/Introductions/Definition.agda#L203-L207
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Untyped.agda#L560

TyDe 25, October 12-18, 2025, Singapore, Singapore

Lemma 5.17 (Reducibility of Neutrals). If ¢ is a neutral
term of a reducible type V» I' - A, then V» " I- ¢ : A.

Since the name of an opaque definition is neutral, it remains
only to show that A is reducible, which we can do with a
variant of well-formedness (previously Lemma 4.15):

Lemma 5.18 (Well-formedness). If »* Vanda +—: A €V,
then V» ¢ ¥ A.

5.3 Consequences of the Fundamental Theorem

The theorems listed in §3.2 still hold, with the caveat that
canonicity for N is stated for a glass context to avoid situa-
tions where a term is stuck on an opaque definition:

" Theorem 5.19 (Canonicity for N). If V» ¢ + t : N holds,
then t is judgementally equal to a canonical form of N in
glassify (V).

We get the following theorem from canonicity for the
identity type:

" Theorem 5.20 (Pseudo-reflection). If V» e+t v :Ild At u,
then glassify(V) » e -t = u : A

This holds because by canonicity, any term of type Id A t u
must reduce to rfl, which allows us to syntactically unify ¢
and u. However, if V contains opaque entries, then the the-
orem might not hold. Consider the following Agda code:

opaque opaque

x:N unfolding x

x=0 eq: IdNx@
eq=rfl

This is well-typed because the unfolding directive allows x
to reduce to 0, and so rfl is a valid constructor for [d Nx 0 =
Id N 0 0. However, if x is not unfolded, then x is neutral, and
not judgementally equal to the canonical form 0:

: Counterexample 5.21 (Non-glass Pseudo-reflection).
There exists a definition context V, type A, and terms ¢,
u, and v such that V.» ¢ + v : Id A t u holds, but not
Vy»ert=u:A

A few other potentially interesting results:

" Theorem 5.22 (Consistency). Inthe empty context ¢, the
empty type L is uninhabited.

" Theorem 5.23 (Definition Consistency). No definition in
a well-formed definition context has the empty type L.

" Theorem 5.24 (Type Normalization). Any well-formed
type V» I' + A reduces to some WHNF.

" Theorem 5.25 (Normalization). Any well-typed term
V» T+ t: Areduces to some WHNF.

50

Nils Anders Danielsson and Eve Geng

* Theorem 5.26 (Decidable Conversion). Judgemental
equality is decidable:
o Given well-formed types V> I'F Aand V» I' + B,
it is decidable whether or not V> I' + A = B.
e Given well-typedterms V> T'+Ft: Aand V» I +
u : A, it is decidable whether ornot V»>T'+t = u :
A.

We can also consider the question of whether type check-
ing is decidable. The syntax is not fully annotated: lambda
abstractions are, for instance, not annotated with types. For
that reason we expect that type checking is not decidable,
even though we have not proved this formally. However, if
we restrict ourselves to a fragment of the language that ex-
cludes certain things (including S-redexes), then checking
is decidable:

" Theorem 5.27 (Decidable Type Checking). Typing is de-
cidable for a certain “checkable” fragment of the lan-
guage:

o Given a definition context V of checkable types and
terms, it is decidable whether or not » V.

e Given a well-formed definition context » V and a
typing context I of checkable types, it is decidable
whether or not V»- T,

e Given a well-formed context V » I' and a check-
able type A, it is decidable whether or not V» I" +
A.

o Given a well-formed type V » I' + A and a check-
able term t, it is decidable whether or not V» I' +
t: A

e Given a well-formed context V »- I' and an infer-
able term t, it is decidable whether or not there ex-
ists an A for which V»> T + ¢ : A.

6 Conclusion

We have presented a fully-mechanized formal characteriza-
tion of opaque top-level definitions in the style of Agda. We
have given syntax and semantics for these definitions and
shown that the theory satisfies a number of metatheoretic
properties.

We based the design on that of Agda, and do not support
local definitions or expression-level unfolding directives: an
obvious opportunity for further work is to try to include
support for one or more of those features.

Acknowledgements

We would like to thank Amélia Liao, who added support for
opaque definitions to Agda. We also thank Patrik Jansson
for feedback on the second author’s MSc thesis, which this
text is based on.

Nils Anders Danielsson acknowledges financial support
from Vetenskapsradet (2023-04538).


https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/LogicalRelation/Properties/Neutral.agda#L82-L86
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/LogicalRelation/Substitution/Introductions/Definition.agda#L124
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Consequences/Canonicity.agda#L53
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Consequences/Canonicity.agda#L110
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Consequences/Canonicity.agda#L122-L125
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Consequences/Canonicity.agda#L83
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Consequences/Canonicity.agda#L90
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Consequences/Reduction.agda#L193-L195
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Consequences/Reduction.agda#L327-L329
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable/Equality.agda
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable/Equality.agda#L36
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable/Equality.agda#L42
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable.agda
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typechecking.agda#L154
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typechecking.agda#L196
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable.agda#L94
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable.agda#L132
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable.agda#L50
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable.agda#L57
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typechecking.agda#L163
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typechecking.agda#L163
https://github.com/phantamanta44/graded-type-theory/blob/paper-opacity/Definition/Typed/Decidable.agda#L72

A Formalization of Opaque Definitions for a Dependent Type Theory

References

[1] Andreas Abel, Nils Anders Danielsson, and Oskar Eriksson. 2023. A
Graded Modal Dependent Type Theory with a Universe and Erasure,
Formalized. Proceedings of the ACM on Programming Languages 7,

ICFP, Article 220 (2023), 35 pages. doi:10.1145/3607862

—
oo
—

Type Theory with a Universe Hierarchy and Erasure.
com/graded-type-theory/graded-type-theory

[3] Andreas Abel, Joakim Ohman, and Andrea Vezzosi. 2017. Decidability
of Conversion for Type Theory in Type Theory. Proceedings of the
ACM on Programming Languages 2, POPL, Article 23 (2017), 29 pages.

doi:10.1145/3158111

[4] Mario Carneiro. 2024. Lean4Lean: Towards a Verified Typechecker for
arXiv:2403.14064v2 [cs.PL] doi:10.48550/arXiv.2403.

Lean, in Lean.
14064

[5] Thierry Coquand and Gérard Huet. 1988. The Calculus of Construc-
tions. Information and Computation 76, 2-3 (1988), 95-120. doi:10.

1016/0890-5401(88)90005-3

[6] Nils Anders Danielsson and Eve Geng. 2025. An Agda Formalization
of a Graded Modal Type Theory with a Universe Hierarchy, Erasure and

Opaque Definitions. doi:10.5281/zenodo0.16906631

[7] Daniel Gratzer, Jonathan Sterling, Carlo Angiuli, Thierry Coquand,
Controlling unfolding in type theory.

and Lars Birkedal. 2022.
arXiv:2210.05420v1 [cs.LO] doi:10.48550/arXiv.2210.05420

[8] Robert Harper and Mark Lillibridge. 1994. A Type-Theoretic Ap-
proach to Higher-Order Modules with Sharing. In Conference Record
of POPL 94: 21ST ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. 123-137. doi:10.1145/174675.176927

[9] José Meseguer and Joseph A. Goguen. 1986. Initiality, induction, and
computability. In Algebraic methods in semantics. Cambridge Univer-

sity Press, 459-541.

Andreas Abel, Nils Anders Danielsson, Oskar Eriksson, Naim Favier,
Gaétan Gilbert, Ondiej Kubanek, Wojciech Nawrocki, Joakim Ohman,
and Andrea Vezzosi. 2025. An Agda Formalization of a Graded Modal
https://github.

51

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]
[19]

TyDe 25, October 12-18, 2025, Singapore, Singapore

D.L. Parnas. 1972. Information Distribution Aspects of Design
Methodology. In Information Processing 71. North-Holland Publishing
Company, 339-344.

Christine Paulin-Mohring. 1993. Inductive Definitions in the sys-
tem Cogq; Rules and Properties. In Typed Lambda Calculi and Appli-
cations, International Conference on Typed Lamda Calculi and Applica-
tions, TLCA °93. 328-345. doi:10.1007/BFb0037116

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yan-
nick Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and
Théo Winterhalter. 2020. The MetaCoq Project. Journal of Automated
Reasoning 64 (2020), 947-999. doi:10.1007/510817-019-09540-0
Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob
Nielsen, Nicolas Tabareau, and Théo Winterhalter. 2025. Correct and
Complete Type Checking and Certified Erasure for Coq, in Coq.
ACM 72, 1, Article 8 (2025), 74 pages. doi:10.1145/3706056

The Agda Team. 2025. Agda User Manual, Release 2.8.0. https://agda.
readthedocs.io/_/downloads/en/v2.8.0/pdf/

The Lean Developers. 2025. The Lean Language Reference.
//lean-lang.org/doc/reference/4.21.0-rc3/

The RedPRL Development Team. 2023. cooltt. https://github.com/
RedPRL/cooltt

The Rocq Development Team. 2025. The Rocq Prover Reference Man-
ual, Release 9.0.0. https://github.com/coq/coq/releases/download/V9.
0.0/rocq-9.0.0-reference-manual.pdf

D.T. van Daalen. 1980. The language theory of Automath. Phd Thesis
2. Technische Hogeschool Eindhoven. doi:10.6100/IR85774

Freek Wiedijk. 2002. A New Implementation of Automath. Jour-
nal of Automated Reasoning 29 (2002), 365-387.  doi:10.1023/A:
1021983302516

https:

Received 2025-06-23; accepted 2025-07-23


https://doi.org/10.1145/3607862
https://github.com/graded-type-theory/graded-type-theory
https://github.com/graded-type-theory/graded-type-theory
https://doi.org/10.1145/3158111
https://arxiv.org/abs/2403.14064v2
https://doi.org/10.48550/arXiv.2403.14064
https://doi.org/10.48550/arXiv.2403.14064
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.5281/zenodo.16906631
https://arxiv.org/abs/2210.05420v1
https://doi.org/10.48550/arXiv.2210.05420
https://doi.org/10.1145/174675.176927
https://doi.org/10.1007/BFb0037116
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1145/3706056
https://agda.readthedocs.io/_/downloads/en/v2.8.0/pdf/
https://agda.readthedocs.io/_/downloads/en/v2.8.0/pdf/
https://lean-lang.org/doc/reference/4.21.0-rc3/
https://lean-lang.org/doc/reference/4.21.0-rc3/
https://github.com/RedPRL/cooltt
https://github.com/RedPRL/cooltt
https://github.com/coq/coq/releases/download/V9.0.0/rocq-9.0.0-reference-manual.pdf
https://github.com/coq/coq/releases/download/V9.0.0/rocq-9.0.0-reference-manual.pdf
https://doi.org/10.6100/IR85774
https://doi.org/10.1023/A:1021983302516
https://doi.org/10.1023/A:1021983302516

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 The Type Theory
	3.2 The Logical Relation
	3.3 Towards Opaque Definitions

	4 Formalizing Top-level Definitions
	4.1 The Formalism
	4.2 Updating the Logical Relation

	5 Formalizing Opacity
	5.1 The Formalism, Take Two
	5.2 Updating the Logical Relation, Take Two
	5.3 Consequences of the Fundamental Theorem

	6 Conclusion
	Acknowledgements
	References

