
Causal models for specifying requirements in industrial ML-based
software: A case study

Downloaded from: https://research.chalmers.se, 2025-11-27 02:26 UTC

Citation for the original published paper (version of record):
Heyn, H., Mao, Y., Weiß, R. et al (2026). Causal models for specifying requirements in industrial
ML-based software: A case study. Journal of Systems and Software, 232.
http://dx.doi.org/10.1016/j.jss.2025.112691

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

H.-M. Heyn et al.

;

The Journal of Systems and Software 232 (2026) 112691

Available online 5 November 2025
0164-1212/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2025.112691
http://creativecommons.org/licenses/by/4.0/

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Causal models for specifying requirements in industrial ML-based software:
A case study

Hans-Martin Heyn a,∗, Yufei Mao b, Roland Weiß b, Eric Knauss a

aDepartment of Computer Science and Engineering, University of Gothenburg and Chalmers, Gothenburg, 41756, Sweden
b Siemens AG, München, 80333, Germany

a r t i c l e i n f o

Editor: Prof Neil Ernst
Keywords:
Anomaly detection
Causal analysis
Causality
Industrial systems
Machine learning
Requirement engineering
Systems engineering

 a b s t r a c t

Unlike conventional software systems, where rules are explicitly defined to specify the desired behaviour, soft-
ware components that incorporate machine learning (ML) infer such rules as associations from data. Require-
ments Engineering (RE) provides methods and tools for specifying the desired behaviour as structured natural
language. However, the inherent ambiguity of natural language can make these specifications difficult to inter-
pret. Moreover, it is challenging in RE to establish a clear link between the specified desired behaviour and data
requirements necessary for training and validating ML models.
 In this paper, we explore the use of causal models to address this gap in RE. Through an exploratory case study,
we found that causal models, represented as directed acyclic graphs (DAGs), support the collaborative discovery
of an ML system’s operational context from a causal perspective. We also found that causal models can serve as
part of the requirements specification for ML models because they encapsulate both data and model requirements
needed to achieve the desired causal behaviour. We introduce a concept for causality-driven development, in which
we show that data and model requirements, as well as a causal description of the operational context, can be
discovered iteratively using graphical causal models. We demonstrate this approach using an industrial use case
on anomaly detection with ML.

1. Introduction

Developing and deploying software systems that incorporate ma-
chine learning (ML) models are becoming routine processes in many
different industries. Unlike the development of conventional software
with a priori defined rules, developing software with ML models is a
data driven process: Especially deep learning systems are “opaque learn-
ing machines” (Pearl, 2019) because they rely on statistical learning
to discover associations among implicit variables from observational
data (Peters et al., 2017). Many industrial applications require robustness
of the employed ML models against changes in the input data distribu-
tion (Borg et al., 2019). A lack of robustness against changes in the input
data distribution not only compromises reliability and eventual safety
of a depending system, but also renders the system susceptible to ad-
versarial attacks (Carlini and Wagner, 2017; Goodfellow et al., 2018).
One reason for the lack of robustness in ML models can be found in the
challenges to specify the models, because “if input and/or output data
are high-dimensional, both defining preconditions and detailed function
specifications are difficult” (Kuwajima et al., 2020). Assumptions about
the operational context in which the ML model is deployed are often
implicitly included during the design process (Mitchell et al., 2021), for
example in the dataset used for training. However, robustness against
(small) context changes can only be tested if the expected operational

∗ Corresponding author.
 E-mail addresses: hans-martin.heyn@gu.se, martin.heyn@gmail.com (H.-M. Heyn), tufei.mao@siemens.com (Y. Mao), rolandweiss@siemens.com (R. Weiß),
Eric.Knauss@cse.gu.se (E. Knauss).

context has been made explicit, for example in the form of contextual
requirements (Knauss et al., 2014, 2016).

Understanding the system’s context, or problem domain, from a
data perspective however is not solved in requirement engineering
(RE) (Habiba et al., 2024). Current RE methods, such as behaviour-
driven development (BDD) or goal modelling do not work well for sys-
tems with ML components because they cannot systematically approach
the problem of specifying the necessary data based on the system’s ex-
pected operational context (Ahmad et al., 2023). As a result, many ML
development projects spend more than 80% of the project time on the
elicitation of data requirements and data preparation (Pei et al., 2022).

An important, and in RE not yet well explored aspect, of the op-
erational context for systems with ML models are causal structures
that determine the direction of cause and effect. Recent work suggests
that causal probabilistic graph-based models are a powerful tool for
capturing the context of a system from a causal perspective (Maier et al.,
2024). In this paper, we propose a system specification concept called
causality-driven development (CDD), in which graphical causal models
play an important role in exploring and communicating assumptions
about the operational context, desired functionality of ML models, and
data needed to ensure correct causal behaviour of the system. We opera-
tionalised this approach through an exploratory case study in which we
applied graphical causal models for system prototyping in an industrial

https://doi.org/10.1016/j.jss.2025.112691
Received 8 May 2025; Received in revised form 27 August 2025; Accepted 27 October 2025

The Journal of Systems & Software 232 (2026) 112691

2

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0002-2427-6875

X_1,\ldots ,X_n

f_i

U_i

\begin {equation}\label {eq:SCM} X_i \,:=\,f_i\left (\mathbf {PA}_i,U_i\right) \quad \left (i=1,\ldots ,n \right).\end {equation}

X_i

$X_j,\,i\neq j$

X_j

f_i

X_i

$\mathbf {PA}_i$

X_i

X_i

Z_0

X_1

X_2

X_1

X_2

$X_1 \, \leftarrow \, Z_0 \, \rightarrow \, X_2$

X_1

X_2

$X_1 - Z_0 - X_2$

Z_0

X_1

X_2

Z_0

X_1

X_2

X_4

X_1

X_2

X_4

Z_0

p

Z

p

$X_1 \rightarrow Z_0 \rightarrow X_2$

$X_1 \leftarrow Z_0 \rightarrow X_2$

Z_0

Z

p

$X_1 \rightarrow Z_0 \leftarrow X_2$

Z_0

Z

$\rightarrow $

$\rightarrow $

$\rightarrow $

$\rightarrow $

$\leftarrow $

$\rightarrow $

$\rightarrow $

\begin {equation}\label {eq:decompose} p(X_1,\ldots ,X_n) = \prod _{i=1}^{n} p\left (X_i|\mathbf {PA}_i\right)\end {equation}

X_1

X_2

Z_0

Z_0

X_1

X_2

X_1

X_2

X_1

X_2

X_1

X_2

Z_0

Z_0

Z_0

X_1

X_2

X_1

X_2

Z_0

X_1

X_2

Z_0

X_1

X_2

Z_0

X_1

X_2

Z_0

X_1

A

L

$[n,n+1)$

$A_{n-1}\rightarrow L_n\rightarrow A_n\rightarrow L_{n+1}$

$n-1$

n

n

3

I_s

I_s

I

I_s

I

I_s

I

I_s

U_I

I

U_I

I_s

I

I

I

I

I_s

$_l$

$|S(f)|$

I_s

I_s

$|S(f)|$

I_s

$|S(f)|$

I_s

$|S(f)|$

$|S(f)|$

$|S(f)|$

\begin {align}&\text {Accuracy} = \frac {\text {TP} + \text {TN}}{\text {TP} + \text {FP} + \text {TN} + \text {FN}}, \label {eq:Acc}\\ &\text {Sensitivity} = \frac {\text {TP}}{\text {TP} + \text {FN}}, \quad \text {Specificity} = \frac {\text {TN}}{\text {TN} + \text {FP}}, \label {eq:SS}\\ &\text {Precision} = \frac {\text {TP}}{\text {TP} + \text {FP}}, \quad \text {F1} = \frac {2 \cdot \text {TP}}{2 \cdot \text {TP} + \text {FP} + \text {FN}}, \label {eq:PreF1}\\ &\text {MCC} = \frac {(\text {TP} \cdot \text {TN}) - (\text {FP} \cdot \text {FN})} {\sqrt {(\text {TP} + \text {FP})(\text {TP} + \text {FN})(\text {TN} + \text {FP})(\text {TN} + \text {FN})}}, \label {eq:MCC}\end {align}

$\beta _0$

$\beta _1$

$\beta _1$

$\sigma $

\begin {equation}y_i \sim \mathcal {N}(\mu _i, \sigma), \label {Xeqn3-7}\end {equation}

$\mu _i$

\begin {equation}\mu _i = \beta _0+\beta _1\cdot \mathrm {group}_i, \label {Xeqn4-8}\end {equation}

$\mathrm {group}_i \in \{0,1\}$

$i^\text {th}$

$\beta _0 \sim \mathcal {N}(0.5, 1^2)$

$\beta _1 \sim \mathcal {N}(0, 1^2)$

$\sigma \sim \mathrm {Exponential}(\lambda = 10)$

$\hat {R}<1.01$

$\beta _0$

$\beta _1$

$\beta _1$

$P(\beta _1>0)$

$P(\beta _1>0)\geq 0.95$

$P(\beta _1>0)\leq 0.05$

H_{0}

H_{1}

\begin {align}& H_{0}: \mu _{\text {model}_1} = \mu _{\text {model}_2} \\ & H_{1}: \mu _{\text {model}_1} \neq \mu _{\text {model}_2}\end {align}

$\alpha =0.05$

H_0

$\alpha = 0.05$

$P(\beta _1>0)$

0.04

$P(\beta _1>0)\leq 0.05$

https://orcid.org/0009-0003-3211-7748
https://orcid.org/0000-0003-3092-7846
https://orcid.org/0000-0002-6631-872X
mailto:hans-martin.heyn@gu.se
mailto:martin.heyn@gmail.com
mailto:tufei.mao@siemens.com
mailto:rolandweiss@siemens.com
mailto:Eric.Knauss@cse.gu.se
https://doi.org/10.1016/j.jss.2025.112691

H.-M. Heyn et al.

setting. With CDD, we suggest a concept to RE that connects contextual
assumptions and data requirements through graphical causal models for
which a rich mathematical framework exists that can be used to derive
data requirements (Schölkopf, 2022). Specifically, this paper contributes
in the following ways:

C1 Based on a series of workshops with industrial practitioners, we pro-
pose a concept for causality-driven development (CDD) for software
with ML components. This technique complements natural language
requirements-driven software development.

C2 We demonstrate the application of CDD in practice on an industrial
use case involving anomaly detection in low-voltage DC switching
gear.

C3 We report experimental results suggesting that CDD has a positive
impact on the performance and robustness of a trained ML model
for anomaly detection in an industrial prototyping environment.

The article is structured as follows: Section 2 provides background
information on causal models and Section 3 an overview of related work.
Section 4 outlines the research methods of this study. Section 5 intro-
duces CDD as a complement to requirements elicitation for software of
industrial cyber-physical system (CPS) with ML models and their train-
ing data. Section 6 presents results from a case study where we ap-
plied CDD in an industrial context. Section 7 discusses the application of
causal modelling in the context of systems prototyping, outlines limita-
tions of CDD, offers suggestions for future research, as well as addresses
threats to validity. Section 8 provides a conclusion.

2. Background

2.1. ML development pipeline

In an ML development pipeline, system goals and high-level require-
ments are met by accumulating data to train an ML model until the
stakeholder needs are met. Steps in an ML development pipeline typi-
cally include:

1. System goals and context assumptions: Business and problem under-
standing;

2. Building datasets: Data collection, understanding, and pre-
processing;

3. Building the ML model: Model selection and training on the prepared
datasets;

4. Analysing: Evaluation and tuning of the model;
5. Deploying: Final deployment and monitoring in the field.

These steps are typically iterative because if the evaluation of the
final model is unsatisfactory, additional data may be collected, and the
model is retrained and re-evaluated. ML development pipelines often
base on the cross-industry standard process for data mining (CRISP-DM),
originally introduced by Wirth and Hipp (2000) and Chapman et al.
(2000), and widely applied in both data science and machine learn-
ing problems (Schröer et al., 2021; Martínez-Plumed et al., 2019). This
workflow for ML model development has several limitations. First, data
requirements derived from high-level system goals are often poorly spec-
ified. As a result, models trained on such data frequently fail to meet the
stakeholders’ needs and do not generalise well to changes in the oper-
ational environment (Heyn et al., 2023). Second, the operational con-
text is often underspecified, resulting in datasets, and consequently ML
models, that perform poorly under real-world conditions (Heyn et al.,
2022). These two limitations are typically mitigated by collecting large
volumes of training data in the hope of covering all potentially relevant
operational contexts and use case scenarios. Finally, the analysis and
validation of the ML model require testable conditions based on stake-
holder needs and requirements. However, to the best of our knowledge,
no clear path exists from high-level stakeholder requirements for ML sys-
tems to testable conditions that can be used for purposes such as model

validation and runtime monitoring. Establishing such a path would al-
low traceability of design decisions, such as the data collection, back to
overarching system goals.

2.2. Causal inference

While humans often intuitively understand the direction of cause and
effect (a drop in the temperature measurement does not cause the sun
to set, even though both variables are associated in a dataset), today’s
ML approaches cannot infer causal structures from observational data
alone (Pearl, 2019). There are two reasons for this limitation suggested
in the literature:

1. Lack of observability: In conventional ML we only have a limited
sample set available to infer properties of an underlying function,
i.e., “we want to estimate a property of an object we cannot [en-
tirely] observe” (Peters et al., 2017). This first lack of observability
is typically met by “throwing more data at the problem”1.

2. ML models represent associations: Even if one were able to per-
fectly observe and reconstruct the underlying function, the trained
ML model is still only a probabilistic representation of the underlying
problem, i.e., it represents associations but not causal relationships
between variables. This is not enough to infer a suitable causal model
for the desired operational context, because even a perfectly learnt
probabilistic model can relate to any one of several possible causal
models that are compatible with the data (Pearce and Lawlor, 2016).

Without recognising the causal structure of a problem, the incorporated
ML model may learn a probabilistic representation that seems compat-
ible in a training context, but as soon as it is deployed in a slightly dif-
ferent environment, its performance may deviate drastically from the
expectations (D’Amour et al., 2022). It is therefore necessary to find a
path from the expected cause-effect relationships to the necessary data.
Two approaches in the realm of causal learning seem possible to solve
the outlined problems of underspecification of data for ML:

One approach is the development of methods that allow for causal
discovery from observational data. While data-driven causal discovery
made significant progress in algorithms in recent years, see for example
the review by Vowels et al. (2022), these algorithms still rely on “strong
and often untestable assumptions”. Causal discovery therefore usually
only allows the identification of a so-called Markov equivalence class for
a causal graph. This means that several distinct causal graphs can be
equally compatible with the data, making it impossible to uniquely iden-
tify the underlying causal structure without additional knowledge.

A second approach is causal inference based on the explicit inclu-
sion of human “insight” by defining, even partially, the expected causal
model of the operational context. This prior knowledge allows to reason
about data, assumptions, and tests that are needed to arrive at a proba-
bilistic model that correctly represents the environment (Hernán et al.,
2019).

Directed acyclic graphs (DAGs). DAGs provide an accessible visualisa-
tion of prior knowledge about causality, with nodes representing the
variables of a system of interest and directed edges representing the di-
rection of cause-and-effect (Elwert, 2013). DAGs are a qualitative graph-
ical representation of causal models. They provide information about the
direction of cause-and-effects between variables, but they do not provide
information about the strengths or functional properties of the causal re-
lations (Pearce and Lawlor, 2016). Mathematically, the graph structure
of a DAG represents a structural causal model (SCM). A SCM is a formal
assignment of random variables 𝑋1,… , 𝑋𝑛 through a set of functions 𝑓𝑖

1 https://www.forbes.com/sites/kalevleetaru/2019/07/07/
automatic-image-captioning-and-why-not-every-ai-problem-can-be-solved\
-through-more-data, accessed 2024-10-17

The Journal of Systems & Software 232 (2026) 112691

3

https://www.forbes.com/sites/kalevleetaru/2019/07/07/automatic-image-captioning-and-why-not-every-ai-problem-can-be-solved\-through-more-data
https://www.forbes.com/sites/kalevleetaru/2019/07/07/automatic-image-captioning-and-why-not-every-ai-problem-can-be-solved\-through-more-data
https://www.forbes.com/sites/kalevleetaru/2019/07/07/automatic-image-captioning-and-why-not-every-ai-problem-can-be-solved\-through-more-data

H.-M. Heyn et al.

Fig. 1. Elemental structures in a causal model.

and unexplained, jointly independent variables 𝑈𝑖 (Schölkopf, 2022):
𝑋𝑖 ∶= 𝑓𝑖

(

𝐏𝐀𝑖, 𝑈𝑖
)

(𝑖 = 1,… , 𝑛). (1)

In a SCM, a variable 𝑋𝑖 is a direct cause of another variable 𝑋𝑗 , 𝑖 ≠ 𝑗 if 𝑋𝑗
appears in the function 𝑓𝑖 that assigns the value of 𝑋𝑖 (Glymour et al.,
2016). If each variable is modelled as a node, and the direct causes as di-
rected edges between the nodes in a DAG, then the parents in the graph,
denoted as 𝐏𝐀𝑖, of a node 𝑋𝑖 are all nodes that have a directed edge
pointing into the node 𝑋𝑖. DAGs are directed, i.e., the arrows can only
have a single head pointing from the cause towards the effect (Rohrer,
2018). They are acyclic because a variable at a given point in time can-
not be the cause of itself (Pearl et al., 2016). In DAGs, four fundamental
structural patterns can occur which are illustrated in Fig. 1.

Confounding. DAGs can clarify assumptions about confounders. A typ-
ical case of confounding occurs when a variable 𝑍0 acts as common
cause of two unrelated variables 𝑋1 and 𝑋2 such that a spurious relation-
ship between 𝑋1 and 𝑋2 can be observed: 𝑋1 ← 𝑍0 → 𝑋2 (Fig. 1 (a)).
Such associations arise through confounding paths, i.e., non-causal paths
that induce statistical dependence between variables. In this example,
an association between 𝑋1 and 𝑋2 is observable because there exists
a path 𝑋1 −𝑍0 −𝑋2 when ignoring the direction of the arrows in the
DAG. Association can “flow” along such paths against the direction of
causality. Conditioning on the common cause 𝑍0 blocks this flow and
removes the spurious association between 𝑋1 and 𝑋2.

Confounding can also arise for other reasons besides a common
cause: A collider blocks the flow of association unless conditioned upon.
That is, if in a collider structure, as shown in Fig. 1 (c), a learning al-
gorithm conditions the data on 𝑍0, it will open the flow of association
between 𝑋1 and 𝑋2, which results in a spurious association and con-
founding. This situation is often referred to as selection bias. Similarly,
conditioning on a descendent of a collider, as illustrated in Fig. 1 (d), has
the same effect. Here, conditioning on 𝑋4 will re-open the flow of asso-
ciation between 𝑋1 and 𝑋2 because 𝑋4 is a descendent of the collider
𝑍0. These cases show how any decision on which variables should be
included or excluded in a statistical analysis, or as data for a learning
algorithm, can either block or open non-causal paths.

d-separation. D-separation is a formal criterion, introduced by Pearl
(2009), that allows to reason systematically about conditional indepen-
dence in DAGs. It determines whether there exists an “open” path of
association between two variables, i.e., a path on which association can
flow. A confounding path of association exists when association can flow
against the assumed direction of cause-and-effect in a DAG. Pearl et al.
(2016) states that such a confounding path 𝑝 can be blocked by a set
of nodes 𝑍 if (i) 𝑝 contains a chain 𝑋1 → 𝑍0 → 𝑋2 or a common cause

𝑋1 ← 𝑍0 → 𝑋2 such that the middle node 𝑍0 is in 𝑍, or (ii) 𝑝 contains a
collider 𝑋1 → 𝑍0 ← 𝑋2 such that neither 𝑍0 nor any of its descendants
are in 𝑍. The rules of d-separation apply to all possible paths in a DAG.
In practice, tools such as DAGitty (Textor et al., 2011) can determine
which variables need to be conditioned on to block any confounding
path implied by a DAG elicited from prior knowledge.

3. Related work

The aim of RE is to identify system goals and elicit requirements for
software development. Recognising causality is important in specifying
the desired behaviour of a software system. For example, BDD allows
to identify system goals and to elicit requirements in software devel-
opment by specifying the desired behaviour of a system using natural
language in a “Given-When-Then” structure (Binamungu et al., 2018).
This structure provides high level domain-specific scenarios that guide
both requirements specification and testing. An RE-governed develop-
ment process typically entails the following steps:
(a) describing textually examples of the desired functionality,
(b) developing of system prototypes that exhibit the desired functional-

ity,
(c) testing and deploying the system based on test cases derived from

the described examples of the desired functionality (Smart, 2014).
Although RE approaches, such as BDD, have been applied successfully to
conventional software development, their usefulness for ML systems can
be limited by gaps in the functional specification (Irshad et al., 2021)
and a lack of understanding of the operational context (Heyn et al.,
2022). The context in which an ML model operates is often only im-
plicitly assumed during design, for example in the choice of data used
for training (Mitchell et al., 2021). While natural language requirements
offer certain advantages such as ease of use, accessibility, and flexibil-
ity compared to domain-specific language, they are also prone to ambi-
guity which can make specifications difficult to interpret (Gervasi and
Zowghi, 2005; Binamungu et al., 2018). To our knowledge, usual ap-
proaches to RE lack a clear link between the specified desired behaviour
and the data requirements for training and validating of ML models;
they do not provide methods to guide the specification of the necessary
data required to train the desired behaviour into an ML model. On the
other hand, RE methods such as BDD inherently imply a causal struc-
ture: Given (a context)→When(a cause)→Then(an effect). Combining the
naturalness of the “Given-When-Then” structure and the inability of ML
to infer causal relationships from data, the idea is therefore to make im-
plied causal relationships explicit through graphical models as part of
the RE effort for software systems that use ML.

An example of an RE method that graphically defines causal
relationships for software is goal-oriented requirement engineering
(GORE) (van Lamsweerde, 2001). Goal models, represented through di-
rected graphs, allow for the decomposition of high level goals to system
level design decisions (Anwer and Ikram, 2006). However, with GORE
it is not immediately obvious how to define clear and measurable goals
in terms of the data required to achieve a desired behaviour in an ML-
enabled system, leading to “uncertainty and unpredictability of [the]
implementation” (Ishikawa and Matsuno, 2020). Goal models are a type
of knowledge graph that generally represent knowledge models using a
structure of nodes as entities and edges describing relationships between
these entities. Ehrlinger and Wöß (2016) highlighted that a knowledge
graph can be seen as a model that “acquires and integrates informa-
tion into an ontology and applies a reasoner to derive new knowledge”.
However, unlike graphical causal models in the form of DAGs, which
base on a mathematical framework for causality, a formal definition of
knowledge graphs is missing (Buchgeher et al., 2021). Although there is
significant prior work on knowledge inclusion into ML model develop-
ment, see for example the literature review by Von Rueden et al. (2021),
to our knowledge there has been no attempt to incorporate prior knowl-
edge about causal relationships in the ML development pipeline. Other

The Journal of Systems & Software 232 (2026) 112691

4

H.-M. Heyn et al.

RE methods, such as use case modelling or user stories, do not explicitly
define causal relationships in a way that it could be applied to finding
data for training an ML model as part of an ML development pipeline.
The potential of including causal knowledge as part of RE has not yet
been fully leveraged (Fischbach et al., 2020). In a recent systematic
review, Giamattei et al. conclude that causal reasoning is increasingly
recognised as a tool for software quality assurance, particularly in fault
localisation and testing activities (Giamattei et al., 2024). The authors
highlight that causal reasoning remains underutilised in earlier phases
of the software lifecycle, such as RE. In a vision paper, we argued there-
fore that causal modelling is promising for RE for ML systems Heyn
et al. (2025). We suggested that more research is needed to explore
how causal modelling can support key RE tasks, including requirements
elicitation, particularly in the context of complex, data-dependent char-
acteristics of ML-based systems.

3.1. Research objectives and research questions

The scope of this article is to develop this vision of using causal mod-
els in RE activities further by proposing, arguing, and demonstrating
that causal modelling can be used as requirements specifications in prac-
tice when building software systems with ML components. Specifically,
we show how to discover iteratively data needs for the training and vali-
dation of ML models and demonstrate the approach on an industrial use
case of a CPS for anomaly detection. The use case is relevant to industrial
practitioners because building representative datasets for ML models in
industrial settings for anomaly detection is challenging (Zheng et al.,
2019):

1. Data diversity: Industrial sites can generate a wide range of data,
but the data relevant to anomaly detection are very limited as ab-
normal situation happens rarely in productive system (e.g., once in
ten years of continues operation).

2. Cost: The creation of data for rare and abnormal situations in real
industry environments is often expensive and risky.

As a result, test benches and prototypes are used to simulate operational
environments and collect data. To the best of our knowledge, there is
yet no explicit treatment of causal relationships as part of requirement
specifications for software that includes ML components. This research
therefore has two main objectives:
Obj1 The first research objective is to define a procedure for causal

analysis as a complement to conventional requirements elicitation
for software systems with ML models.

Obj2 The second research objective is to explore in a case study whether
the use of causal modelling during prototyping of a CPS has a pos-
itive impact on the robustness and performance of the ML com-
ponents that are part of a CPS for anomaly detection.

Our hypothesis is that causal modelling can help to isolate and to specify
clearly the intended causal behaviour of the ML model and the opera-
tional context in which the system operates. As a result, causal mod-
els support the specification of data needs for training the model in
the given operational context. The following research questions (RQs)
guided this study:
RQ1 How can causal models provide guidance for the development of

software systems with ML components?
RQ2 In a case study, to what extent can the performance and robust-

ness of the software system with ML for cyber-physical systems be
improved by incorporating domain experts knowledge as graphi-
cal causal models during the system development?

4. Methods

We applied engineering research to explore, conceptualise, and eval-
uate CDD as a new and complementary approach for the elicitation of

High-level requirements for arc detection system
RA1: GIVEN a low voltage DC system in normal operation WHEN
an arc occurs THEN an alarm should be triggered.
RA2: GIVEN a low voltage DC system in normal operation WHEN
no arc occurs THEN an alarm should not be triggered.

requirements for software with ML components. The research entailed
three research cycles, whereof the first cycle focused on exploring causal
models for capturing prior knowledge about the system and its oper-
ational context and the second cycle focused on conceptualising CDD
for software with ML components. These two cycles of exploring prior
knowledge and conceptualising CDD primarily addressed RQ1 on how
causal models can guide development. The final third cycle focused on
demonstrating the approach in an evaluative case study and addressed
RQ2 by testing the extent to which causal modelling improves robust-
ness and performance of ML.

In this section, we will first describe the study site and the industrial
use case that became part of the case study. Then, we will describe the
methodology for each of the three research cycles.

4.1. Description of study site

The research was conducted within the Very efficient deep learning
in the IoT (VEDLIoT) EU Horizon 2020 project. The aim of the project
was to develop tools, methodologies, and experience for supporting the
development and deployment of AI in IoT systems (Kaiser et al., 2022).
We chose Siemens, one of the industrial partners in VEDLIoT, as the case
company because their use case, which involves anomaly detection in
CPS, represented a typical industrial product development in its proto-
typing phase. It is at this prototyping stage that practitioners need guid-
ance in understanding the CPS and in discovering and defining the nec-
essary data in the context of the design accordingly (Diefenbach et al.,
2019).

4.2. Description of use case

The use case on which we explored (first cycle), conceptualised (sec-
ond cycle), and demonstrated (third cycle) CDD for software with ML
components is a system for the detection of series arc faults in low volt-
age direct current (DC) distribution systems. The use case represents a
CPS for anomaly detection using ML. Unlike parallel arc faults, which
are mainly detected by mandatory over-current protection systems, se-
rial arc faults are more challenging to detect with conventional sys-
tems (Lu et al., 2018). The company engineers provided the following
high-level requirements for the use case system:

Safety is a critical aspect of arc detection and the false prediction rate
therefore should be low. If an arc occurrence is missed, i.e., a false neg-
ative, and the power is not cut, it can lead to severe economical damage
due to fire and injuries to personal. On the other hand, a false positive,
i.e., a false alarm, can lead to economical damage for customers due to
unwanted power cuts. Therefore, RA1 requires a low false negative rate,
and RA2 specifically requires the prevention of false positive classifica-
tion. Today’s approaches rely on physical model analysis and statistical
algorithms for anomaly detection (Xiong et al., 2017; Chae et al., 2016).
The limitation of conventional methods is their low adaptability to dif-
ferent system structures and application scenarios. This makes their con-
version to industrial products, where different scenarios need to be han-
dled, challenging (Lu et al., 2021). In recent years, there has been a
number of studies investigating the possibility and performance of var-
ious ML algorithms in DC series fault detection (Lu et al., 2020). How-
ever, ML approaches often neglect the underlying physical properties
of the engineering problem which can lead to systems with unexpected
behaviour (Frisch, 2014).

The Journal of Systems & Software 232 (2026) 112691

5

H.-M. Heyn et al.

Fig. 2. Component diagram of the arc fault detection prototype system.

Description of prototyping system. The system in this use case is an indus-
trial prototype for a DC switch gear arc detection system. The prototype
followed a reference implementation for DC series arc fault detection
systems which increased the realism of the case study (UL, 2018). An
overview of the prototype system is depicted in Fig. 2.

The prototype consisted of an arc generation circuit and an arc de-
tection system. The main circuit consisted of a DC power supply, an elec-
tronic load, a passive load, and a pair of electrodes that were connected
during normal operation. One of the electrodes was controlled by a lin-
ear stage, allowing it to create an air gap to generate the arc. The cur-
rent transducer of the detection system reduced the current proportion-
ally and the signal was then sampled by an analogue-digital-converter
(ADC). At runtime, the data was then further transmitted to an edge de-
vice for processing with the trained ML algorithms. A component list of
the prototype system is provided in Appendix A.

4.3. First cycle: exploring prior knowledge integration through causal
models

In the first cycle of this engineering research we explored how prior
domain knowledge about the system under development can be cap-
tured in graphical causal models. We conducted three workshops with
Siemens in October and November 2022. These were conducted re-
motely using Miro as an interactive whiteboard platform and the R-
package DAGitty to interactively construct graphical causal models (Tex-
tor et al., 2011). Two company development engineers, a project man-
ager, and two academic scientists participated in each workshop. The
first author of this paper prepared a Miro board with an explanation of
what causal models are and examples of graphical causal models illus-
trating causal relationships such as rain → wet road → braking distance.
The company participants explained the use case in the form of scenario
descriptions and provided data samples from initial experiments. To-
gether, the scientists and engineers identified causal mechanisms, i.e.,
independent “logical” cause-and-effect relationships based on the use
case scenario and the initial data. The result was a first causal model
that contained the envisioned cause-effect relationships for the use case
which were supported by the initial data samples. In the subsequent
two workshops, the causal model was continuously extended and modi-
fied by incorporating new experimental data and by discussing underly-
ing assumptions of the cause-effect mechanisms, contextual assumptions
and possible interventions in the use case. This iteratively “drawing” of
a graphical causal model helped the company experts to formalise their
prior knowledge about the system. As a result of the workshops, the re-
searchers and engineers started to see patterns in their work progress
that lead to a systematic approach in how they refined the causal mod-
els for the use cases based on prior expert knowledge and experimental
results.

4.4. Second cycle: conceptualising the CDD approach for software with ML
components

Based on the progress and the discussions during the first cycle
workshops, the scientists developed a heuristic for constructing graph-
ical causal models using experts’ prior knowledge. They also outlined
a workflow for documenting assumptions about cause-effect relation-
ships through causal models and for deriving both data and ML-model
requirements from these models. In the final two workshops, the pro-
posed heuristic and workflow were discussed and refined. The final
causal model for the industrial use case was created, and data as well as
ML model requirements were defined based on the CDD approach.

4.5. Third cycle: demonstrating CDD in practice on an evaluative case
study

The final cycle of this engineering research focused on evaluating
the proposed CDD approach in terms of ML model performance and ro-
bustness. The evaluation tests were run on a prototype of the arc fault
detection system. The current signal served as data source for arc classi-
fication because it is a common feature used in studies on DC series arc
fault detection (Lu et al., 2018). There are several reasons for this. The
installation of a current sensor is more realistic in practice compared to
voltage monitoring because the installation of current transducers does
not require any additional intervention in the circuit. The current sens-
ing is less susceptible to environmental disturbances than other sensors
such as temperature, optical or acoustic sensors. Finally, a change in
current measured at one point in the circuit can reflect the condition of
the whole circuit which allows the number of sensors to be reduced

Two independent variables were manipulated during arc generation
and data collection: the load profile and the electrode movement pat-
tern. The load profile could be simulated with different settings of the
electronic load. The electrode movement pattern could differ not only
in the arc gap and arc duration, but also in its speed of movement and
its behaviour after the arc had occurred.

5. Causality-driven development (CDD)

The idea of causality-driven development for ML is to add a step in
the ML development pipeline that captures and documents systemati-
cally prior knowledge about the expected causal structure of the system.
In particular, the additional step documents causal relationships that
cannot be learned from data with conventional ML models today (Pearl,
2019). Domain experts must provide this additional data knowledge, but
they are often neither ML model developers nor data scientists. There-
fore, a common language is needed to communicate causal knowledge.
Causal models in their graphical form as directed acyclic graphs can be
used as a universal language between domain experts and developers
because graphical causal models are well described and commonly ap-
plied in statistics to identify and to describe causal relationships (Vowels
et al., 2022; Shpitser et al., 2010). Fig. 3 illustrates where in the ML de-
velopment pipeline we envision to include prior knowledge in the form
of causal models.

The causal relation network of complex systems however can be huge
and inscrutable. It might not be feasible to immediately capture every
possible cause-effect relation for a typical industrial CPS use case. We
therefore propose an iterative approach including four steps to building
causal models for ML systems. The model grows iteratively until the
domain experts are satisfied that all relevant cause-effect relationships
are included and the ML system behaves robustly enough in the intended
operational context. If testing shows that the ML model is still not robust
enough, or if new operational context assumptions are to be included,
the causal model can be extended, new data generated according to the
extended model, and the tests can be repeated. The iteration and the
resulting data collection are guided by a causal model which allows

The Journal of Systems & Software 232 (2026) 112691

6

H.-M. Heyn et al.

Fig. 3. Inclusion of causal models in the ML development pipeline. (1): Prior Knowledge (2): Context description and testable conditions (3a): Data requirements
(3b): Model requirements (4): Data availability / observability.

Fig. 4. Workflow for constructing causal models to support requirements spec-
ification in ML-based software. The numbers in parentheses refer to the stages
depicted in Fig. 3.

for traceability of the design decisions and predetermination of data
collection.

Fig. 4 details the building of causal models as part of an ML model
pipeline and below we will explain each step in detail. We arrived grad-
ually at the proposed workflow by working with our project partner in
regular workshops.

Step 1: Identifying causal mechanisms from high level requirements and
context assumptions. In the first step, causal mechanisms are identified
that subsume the described functional behaviour using prior knowledge
the developers or domain experts have about the system. Scenarios,
elicited by the stakeholders, for example through user stories or BDD,
contain information about high level requirements and context assump-
tions. Causal mechanisms that govern the behaviour described in these
high level requirements need to be identified. This additional knowl-
edge about causal mechanisms can be obtained through a set of differ-
ent methods summarised for example in Molak and Jaokar (2023): In
controlled experiments, researchers can “isolate” the object in a context
that allows data collection in a controlled environment. In randomised
controlled trials (RCTs), this “controlled environment” is created by ran-
domly assigning an external factor to the objects of interest. That allows

Principle steps for causal-driven development (CDD) in Fig. 4.
Step 1, Identifying causal mechanisms: In this step, the ex-
pected outcome, relevant causes in the operational context, and
other effects influencing the desired outcome are identified, for
example through expert knowledge. This leads to a set of separate
cause-effect relationships.
Example: Assume we design a system to warn if sensor noise affects the
safety of an automated vehicle unacceptably much. Experts identify
that Rain affects Sensor Noise, which in turn affects Safe Driving.
They identify also a second mechanism, namely that Road Quality
affects Braking Distance, which in turns also affects Safe Driving.
Step 2, Drawing a graphical causal model: The identified cause-
effect relationships are connected to a directed acyclic graph
(DAG). Steps 1 and 2 occur iteratively, i.e., each newly discovered
cause-effect relationship from Step 1 is integrated in the causal
model. The resulting graph documents the operational context and
represents the expected cause-effect relationships for the system.
Example: The two identified causal mechanisms are added to one DAG.
The expert noted that Rain also affects the Braking Distance, which
was previously not recognised. This relation is added to the DAG (here
as dashed edge).
Step 3, Performing d-separation: Based on the causal model,
confounding paths and colliders are identified. The principle of
d-separation is applied to determine which variables need to be
conditioned on in order to block ”non-causal“ paths of association
in the data. These ”non-causal“ paths can lead to undesired be-
haviour of a ML component by introducing spurious associations.
The resulting set of variables that must be controlled provide re-
quirements for the training dataset, the data that must be observ-
able at runtime, and requirements towards the ML models in terms
of data it must accept as well as model configurations. This step
helps prevent the model from becoming biased due to the learning
of spurious associations or inadvertently opening collider paths.
Example: To estimate the direct effect of Sensor Noise on Safe Driv-
ing, the expert identify a non-causal path: Sensor Noise ← Rain
→ Braking Distance → Safe Driving. The principle of d-separation
tells us now that we must condition on Rain to block the spurious
path. This gives a data requirement: The variable Rain must be
available, e.g., through a rain sensor, and the training data must
entail different “rain conditions” such that an ML model can learn
the influence of rain on the entire system.
Step 4, Checking consistency, faithfulness, and observabil-
ity: The resulting graphical causal model must not contain cyclic
dependencies to be consistent. Furthermore, the graphical model
must be faithful to the data: it should not imply associations that
are absent in the data. Finally, the variables required for closing
non-causal paths must be observable. If they are not observable,
proxy variables can be identified and added to the causal model.
Example: The variable Sensor Noise is not directly observable. In-
stead, the expert identify that Lidar Variance can act as proxy for
Sensor Noise.

The Journal of Systems & Software 232 (2026) 112691

7

H.-M. Heyn et al.

Fig. 5. Example of a DAG as part of CDD.

in most, but not all cases, see for example Kostis and Dobrzynski (2020),
the attribution of observed differences in the outcome to the assigned
external factor. However in many cases, such controlled experiments
and RCTs are either prohibitively expensive (e.g., due to the amount
of experiments necessary to discover every relevant causal relationship)
or ethically impossible to conduct. Therefore, an alternative, or supple-
ment, to controlled experiments is knowledge from domain experts. We
assume that domain experts have a deep understanding of the area of
expertise by carefully studying and collecting experience. However, us-
ing expert knowledge has limitations and risk as listed in Molak and
Jaokar (2023) and Bradley et al. (2006): Experts might be overconfi-
dent, especially the more experience they have gained in a given field.
Experts might also suffer from what Kahneman describes as “availabil-
ity heuristic”: Plausible solutions (here: causal relationships) that come
to the expert’s mind first have higher influence on the final decision
(Daniel, 2017). The combination of personal experience and domain
experience of a domain experts is still valuable input if two aspects are
considered to mitigate the previously mentioned risks: First, a group of
experts should work together to identify relevant causal relationships.
Second, causal relationships relevant for the system under development
must be documented to communicate assumptions made by the experts.

5.1. Step 2: Drawing of graphical causal model to document context
assumptions from a set of causal mechanisms

In this step the identified causal mechanisms are merged into a DAG.
A DAG, together with the assumption of independent noises,2 for exam-
ple sensor noises, can be used to decompose a joint probability function
entailed in (1) into a causal factorisation (Schölkopf et al., 2021):

𝑝(𝑋1,… , 𝑋𝑛) =
𝑛
∏

𝑖=1
𝑝
(

𝑋𝑖|𝐏𝐀𝑖
)

(2)

While a full structural causal model (SCM), as described in (1), of a
real-world system is usually not attainable, the principle that causal de-
pendencies can be factorised into local mechanisms, as suggested by (2),
justifies the iterative construction of causal graphs. Each newly elicited
causal mechanism can be added as an additional factor which allows
the model to grow incrementally without requiring a full SCM. DAGs
representing the causal structure of the system become therefore part of
an ML model specification and can provide evidence about the assumed
causal relationships in the operational environment of the ML model.

5.2. Step 3: Performing d-separation to derive data requirements and
model requirements.

Through modelling expected cause-effect relations, causal models
provide an insight into possible sources of confounding in the data. If
confounding is not treated properly, the dataset presented to the ML
model for training contains spurious correlations and the resulting ML
model’s behaviour will be biased. The aim of d-separation is to iden-
tify possible spurious correlation and thereby to avoid confounding or

2 If two noise terms were not independent, there must be some common cause
to which an independent noise then applies (see Reichenbach’s common cause
principle (Reichenbach, 1956).

anti-causal behaviour of the final ML model by allowing the model to
condition on possible confounders or by forcing the model not to condi-
tion on possible colliders in the causal model. D-separation does not rely
on manual effort by experts alone because tools, such as DAGitty (Tex-
tor et al., 2011), can be used to automatically perform d-separation on
a given DAG.

Data requirements from confounding. Assume a dataset containing three
variables 𝑋1, 𝑋2, and 𝑍0. Assume further a causal structure in which 𝑍0
is a common cause of 𝑋1 and 𝑋2 (see Fig. 1 left top case). If one were to
construct the training dataset to only contain the variables 𝑋1 and 𝑋2 in
this case, the ML model would learn an association between 𝑋1 and 𝑋2
indicating a causal-effect relationship between the variables which in
fact does not exist. The result is a spurious correlation between 𝑋1 and
𝑋2 through a common cause 𝑍0. Therefore, a data requirement resulting
from the causal model is that the dataset shall explicitly contain the
variable 𝑍0 to avoid learning a spurious correlation.

Continuation of the example in Fig. 5: The variable Rain acts as a common cause
for Sensor Noise and Braking Distance. It was therefore necessary in the example
to include Rain in the training data to allow the ML model to learn the confounding
influence of Rain.

Data requirements from colliders. Another case arises when 𝑍0 acts as a
collider between 𝑋1 and 𝑋2 (see Fig. 1 (c)). Here, if only 𝑋1 or 𝑋2 are
presented in the training dataset, the ML model would not learn an as-
sociation between the two variables, which is correct. However, if one
were condition on 𝑍0 (i.e., using it as a feature), the association path be-
tween 𝑋1 and 𝑋2 could be opened because the ML-model could include
𝑍0 as predictor which leads to learning an association between 𝑋1 and
𝑋2 that in reality does not exist. The problem is that many ML-models,
and especially deep learning models, are black-box models where we
cannot actively choose which variables in the data are used as predic-
tors. However, the ML-model cannot use 𝑍0 as predictor if the data for
this variable is not present in the dataset.

Continuation of the example in Fig. 5: Assume 𝑋1 = Rain, 𝑋2 = Road
Quality and 𝑍0 = Braking Distance. Braking Distance is acting as collider
between Rain and Road quality. If Braking Distance is included in the
training data, an ML model might learn that Rain and Road Quality are
negatively associated, i.e., rain improves the road quality3, and vice versa.
In summary, the model may falsely infer that Rain and Road Quality are
statistically dependent, even though they are causally independent, leading
to biased predictions or incorrect attributions.

Handling divergences in experts’ knowledge. Ideally, the group of experts
finds a consensus on the causal mechanisms that should be merged into
one DAG. However, we acknowledge that such consensus among ex-
perts might not always be reached. In such cases, it is possible to cre-
ate a number of different DAGs. Then, using d-separations, independence
conditions can be found for each alternative DAG. Given the data of the
use case, statistical tests of conditional independence can be performed
to examine which of the alternative DAGs is consistent with the ob-
served data (see checking for faithfulness in Section 5.3). This approach
allows experts to converge by ruling out models that contradict empir-
ical evidence. Documenting divergences as alternative DAGs provides
traceability of assumptions and enables later reconciliation in case that
more data or operational experience becomes available. Similarly, ex-
perts might agree on a partial causal model and apply data-driven causal
discovery to automatically suggest missing elements in the model based
on available empirical data. We discuss the potential use of causal dis-
cover in more detail in Section 7.4.

3 Intuition: If one already knows the braking distance was long (conditioning
on braking distance), and it is raining, it becomes less likely the road was bad
because the rain alone could explain the long braking distance.

The Journal of Systems & Software 232 (2026) 112691

8

H.-M. Heyn et al.

Updating causal models for new use cases. In some cases, such as the oc-
currence of new confounding environmental factors, the dataset needs
to be adjusted by adding additional variables to avoid possible spurious
correlation in the trained model. In other cases, in which the new en-
vironmental factor acts as collider, such an adjustment could however
cause spurious correlation in the trained model which ultimately can
lead to bias in the ML model’s behaviour. The causal model guides de-
velopers towards which data variables are needed as input to the ML
model (i.e., do we only need 𝑋1 as input variable, or should we also
design the system such that it can perceive other variables as input at
runtime in order to mitigate confounding?) by providing information
about the expected cause-effect relationships in the operational context
of the ML model. It is important to communicate these causal assump-
tions about the operational context in case an ML model should be de-
ployed into a new operational context. Here, causal models, as part of
the requirements specification for ML models, provide this information
about the assumed causal operational context. This information can then
be used to decide if the original causal assumptions are still valid in the
new operational context or if the causal model needs to be updated.
Such an update can require new training data as new data requirements
might arise, and consequently a re-training of the ML model to make it
compatible with the new causal operational context.

5.3. Step 4: Checking consistency, faithfulness, and observability

Checking for consistency. Consistency refers to the direction of the edges
in the graph are consistent with the causal relationship they represent
based on the prior knowledge of the stakeholders. Edges should only
point from causes to their effects, and not vice versa. Furthermore, there
should not be any “causal-loop”, i.e., a cycle or feedback loop between
causes and effects because it would otherwise imply a self-reinforcing
causal relationship. For causal analysis, acyclic graphs are used be-
cause “a variable cannot cause itself, either directly or through another
variable”, i.e., there cannot be cycles of cause and effect (Hernán and
Robins, 2020). Time can be discretised to represent a feedback loop
for example in a control system with a feedback loop from observa-
tion to a control unit that regulates an input to the system. This also
reflects the usual assumption of discrete time steps in digital control
systems, i.e., the treatment 𝐴 (controller output) and the covariates 𝐿
(system under control) change at discrete time steps [𝑛, 𝑛 + 1). The result
is 𝐴𝑛−1 → 𝐿𝑛 → 𝐴𝑛 → 𝐿𝑛+1 (Hernán and Robins, 2020, Fine Point 20.1).
In other words, the state of the system at time 𝑛 − 1 affects the controller
at the next time step 𝑛, which in turn affects the system at that time step
𝑛, and so on.

Checking for faithfulness. Additionally, the faithfulness of the causal
model can be checked. A causal model violates faithfulness when it sug-
gests an association between variables that does not appear in the empir-
ical data (Hernán and Robins, 2020). In other words, if the causal model
suggests a causal relation, we would expect to observe corresponding
association between the variables in the data. There are, however, rare
cases in which causal effects can “cancel each other out,” resulting in
a null association even though a cause-effect relationship does, in fact,
exist. These cases are rare because for two causes to have exactly the
same effect and perfectly cancel each other out is highly unlikely (Spirtes
et al., 2000, pp. 68–69).

Checking for observability. Another aspect that needs to be checked is
observability. In many cases, variables in the causal model are not ob-
servable, such as the measurement noise of a sensor. In these cases, we
either have to find alternative variables that allow for the identification
of the missing system aspects, such as moderating variables, or the data
can be provided through a simulation.

6. Results

First, this section presents the prior knowledge identified by the com-
pany expert with the help of causal modelling during the explorative
first cycle of this engineering research. Then, a heuristic is presented for
drawing these graphical causal models based on the conceptualisation
of the CDD approach conducted in the second cycle of this research. The
heuristic is described using the use case as a running example to con-
ceptualise how high-level requirements, context assumptions, and prior
knowledge of the company experts were incorporated into a graphical
causal model. The resulting heuristic for eliciting graphical causal mod-
els and deriving requirements addresses RQ1. Finally, the results of the
evaluative case study, which was the focus of the third cycle of this engi-
neering research, are presented. The evaluation includes a comparison
of the performance of a deep learning model trained on a previously ex-
isting dataset for the use case with the performance of a model trained
on a dataset following the requirements derived from the causal model.

The resulting heuristic for eliciting graphical causal models and de-
riving requirements addresses RQ1. The evaluative case study compar-
ing the basic and CDD-based ML models provides evidence for RQ2.

6.1. Prior knowledge about the system

During the explorative first cycle, the company experts iteratively
drew a graphical causal model of the system. This process not only pro-
duced a graphical representation of the assumed cause-effect relation-
ships of the system, but also helped company experts to “explore” and
formalise their prior domain knowledge about the system.

In the end, the following prior knowledge (PK) was identified by the
company experts:

PK1: The arc shows different behaviours under various load profiles,
see for example studies such as (Dang et al., 2021; Chae et al.,
2016) describing different arc generation setups and representa-
tive current signals during arc occurrence.

PK2: There is a relation between current, system power supply, which
is assumed to be stable, and the load profile.

PK3: High frequency disturbances from unmodelled sources (active
switching components such as inverter for example) can trigger
nuisance tripping (Dang et al., 2021).

PK4: The current signal during arc occurrence has a distinct waveform
in the frequency spectrum, which depends strongly on the sys-
tem’s dynamic behaviour. This feature has been used in related
works for arc fault detection (Lu et al., 2018).

PK5: A jump in current can trigger nuisance tripping. Load changes
caused by connecting or disconnecting of devices, which is pre-
dictable but unmodelled, can cause such current jumps (Chae
et al., 2016).

PK6: The sensor signal can be noisy under operational environment.

6.2. A heuristic for the elicitation of a graphical causal model from prior
knowledge and context assumptions

The goal of causal modelling is not to obtain estimates of a parameter
of interest, but to clearly define the estimand in its relevant context that
is estimated using ML or any other statistical method as an estimator. An
estimand is the “target parameter” and represents a certain quantity of
interest about which we want to draw conclusions based on causes that
affect that parameter. Fig. 6 provides a running example based on the
industrial use case on arc fault detection in low voltage DC system, out-
lining each step of eliciting a graphical causal model for our industrial
use case. The variable names and definitions used in the causal models
are listed in Table 1.

The nodes of the graphical causal models represent causes and ef-
fects, while edges represent the direction of cause and effect. The nodes

The Journal of Systems & Software 232 (2026) 112691

9

H.-M. Heyn et al.

Table 1
Variables for arc fault detection use case. (meas.:
measured; freq.: frequency).
 Variable Definition

 Arc Arc occurrence
 Load Load profile
𝐼 (𝐼𝑠) Current (measured)
 HF𝑙 High frequency components extracted

from the load profile, including HF from
arc occurrence and HF noise.

|𝑆(𝑓)| Frequency spectrum
𝑈𝐼 Sensor noise

Fig. 6. Example of performing a causal modelling task: (a) Definition of rel-
evant variables of outcome and causes of interest; (b) Identification of other
causes affecting the outcome of interest; (c) Identification of other effects that
are governed by the identified causes; (d) Establishing relations between causes
and effects; (e) Identifying competing causes; (f) Analysing for confounding of
the outcome through competing causes; (g) Closing confounding paths through
additional observable variables. All variables in this diagram are defined in
Table 1.

for the outcome and cause of interest are highlighted as a concentric el-
lipse and a circle. Grey nodes represent unobserved variables at runtime
and white nodes represent observable variables at runtime.

Defining outcome and causes of interest. Fig. 6 (a) illustrates the initial
step in constructing a graphical causal model, which involves defining
the desired outcome and the cause of interest. The desired outcome is a
classification result that is true, if an arc is present, and false, if an arc
is not present (RA1 and RA23). The (root) cause of interest that changes
the classification result is the presence of an arc in the system. As we
cannot measure the arc directly, we need another cause that acts as
proxy. This proxy is the measured current, 𝐼𝑠 in (b). We set the output
of a current measure 𝐼𝑠 as an input (direct cause) for the classification.

Defining other causes affecting the outcome and relations between causes
and effects. In (c), we add that an arc has an effect on the current 𝐼 of
the system (PK14). We also know that the measured current 𝐼𝑠 must be
directly influenced by the system current 𝐼 , which is why we can draw
a directed edge between these two variables in (d).

Including competing causes. The measured current 𝐼𝑠, and the current of
the system 𝐼 might not be identical, because 𝐼𝑠 is influenced by mea-
surement noise 𝑈𝐼 (PK6) and 𝐼 can be influenced by other confounding
factors. In the next step (e), such influencing external causes are added
to the causal model. Besides the measurement noise 𝑈𝐼 that influences
𝐼𝑠, the company experts identified the Load connected to the DC grid as
influencing the current 𝐼 (PK5). The load however also influences the
characteristics and probability of an arc (PK1). It is therefore a common
cause for both 𝐼 and Arc and a directed edge is not only drawn from Load
to 𝐼 , but also to Arc. The causal models illustrated in Fig. 6 (a) - (e), are
the result of applying the first two steps of CDD that were described in
Section 5 and illustrated in Fig. 4. The resulting graphical causal model
provides a visual context description of the ML problem.

Identifying and closing confounding paths. The next step in CDD involves
applying d-separation because with Load, there is a confounding path
in our system that can lead to spurious correlation. Certain external
load characteristics may influence the current 𝐼 in a way that the mea-
sured current 𝐼𝑠 looks as if an arc occurs although that is not the case,
or vice versa (PK3). This can lead to false positive and false negative
classifications of arc occurrence. The confounding path is illustrated
as red, dotted lines in Fig. 6 (f). D-separation tells us that information
about the Load must be added to our estimand and consequently to the
training dataset to close the confounding path. For the training data,
the information about the connected load can be added to the dataset,
which allows the ML model to identify the confounding factor. Unfor-
tunately, we cannot measure the connected Load at runtime. However,
the connected load causes a load-specific high frequency pattern HF𝑙
that is distinct from the high frequency pattern of an arc occurrence
(PK3). This high frequency characteristic can be extracted through a
Fourier-transformation |𝑆(𝑓)|, based on the measured current signal 𝐼𝑠.
By adding the load information in the training data and adding the high
frequency information containing characteristics about the load to both
the training and the runtime data, we allow the classification algorithm
to learn about different load characteristics and thereby close the con-
founding path.

Final causal model and requirements for data and ML model. The fi-
nal causal model in Fig. 6 (g) is consistent with the prior knowledge
and context assumptions of the company experts, it is faithful to the
training data, it does not contain any causal cycles, and we accounted for
all non-observable variables by identifying proxy variables. The edges in

4 The requirements (RA) and prior knowledge (PK) are listed in Section 4.2

The Journal of Systems & Software 232 (2026) 112691

10

H.-M. Heyn et al.

Table 2
Requirements derived from causal model for arc fault detection.
 ID Requirement
 A-D1 The current measurements should be disturbed by characteristic sensor noise.
 Rationale: The causal model depicts 𝑈𝐼 as influencing factor on the measured current 𝐼𝑠.
 A-D2 The current signal should be superimposed by additional load current (random and real scenario based).
 Rationale: The dynamic of the load acts as confounder. Including data on load dynamics allows an ML model to learn the confounding factor.
 A-D3 The current signal should contain high frequency components from active switching components.
 Rationale: At runtime, information about the dynamic load profile is not available. The high frequency spectrum can serve as proxy for obtaining information about the load.
 A-M1 The frequency spectrum |𝑆(𝑓)| should be used as additional data input to the ML model.
 Rationale: The causal model depicts |𝑆(𝑓)| as additional input to the Classification model.

the final causal model are annotated to establish a traceability between
the causal assumptions and the prior domain knowledge (PK). The final
estimand is a classification of arc occurrence under different load char-
acteristics, given a measured current signal 𝐼𝑠 and frequency spectrum
information |𝑆(𝑓)| at runtime. The resulting causal model provides a set
of data requirements (A-D) and model requirements (A-M). The causal
models indicates that the measured current 𝐼𝑠 at runtime is superim-
posed by sensor noise which should be reflected in the training data
(A-D1). Using the concept of d-separation, the identified confounding
path is closed by adding the load profile in the training dataset (A-D2).
Because we cannot measure the connected Load profile at runtime, we
include the high frequency spectrum |𝑆(𝑓)| of the current signal 𝐼𝑠 as
a proxy for the Load profile in both the training and runtime data (A-
D3). This however requires our ML model to accept the additional signal
|𝑆(𝑓)| as input (A-M1). All requirements derived from the causal model
are summarised in Table 2.

6.3. Experimental evaluation

An experiment was designed and conducted to demonstrate how the
results of causal modelling improve model performance and robustness.
Three requirements were selected: A-M1, A-D2, and A-D3. They were
selected because the prototype system could be modified to accommo-
date the necessary data collection for these requirements. The evalua-
tion therefore will investigate the answer to the following two questions:

• To what degree does including different electrical load profiles in
training dataset, as suggested by A-D2, improve the robustness of
the resulting ML model?

• To what degree does including features from the current’s frequency
domain as input to the ML model, as suggested by A-M1 and A-D3,
improve the performance of the ML model?

The experiment was carried out in three steps: data generation, model
training, and performance evaluation. In the first phase, the test bench
was extended and new datasets were collected based on the CDD re-
quirements A-D2 and A-D3. In the second phase, four models (two of
which fulfilled the CDD requirement A-M1) were trained and validated
to ensure overfitting did not occur. Finally, in the third phase, the per-
formance of the four models, based on the different datasets as depicted
in Fig. 7, were evaluated and compared.

Data generation. A prior dataset existed before the experiment that was
created without the requirements elicited through CDD. This dataset is
referred to as the basic dataset and the model trained with this dataset is
referred to as the basic model. The basic dataset was collected from the
test bench circuit with a resistor as passive load based on the industrial
standard defined in UL1699B (UL, 2018). Fig. 8(a) shows a sample from
the basic dataset.

In a first phase of the experiment, the existing test bench was ex-
tended with a dynamic DC electronic load in order to collect dynamic
resistor load profiles as suggested in requirement A-D2. Fig. 8 shows
data samples under different load profiles and electrode movement
patterns.

Table 3
Circuit setups for datasets.

 Dataset
Item Basic CDD-based External

 DC Power 50V - 80V 50V - 80V 50V - 80V
 Passive Load Resistor Resistor Resistor and Inductor
 Electronic Load None Load pattern simula-

tion under constant
resistor mode

Constant current mode
for circuit current regula-
tion

The dataset collected with the additional dynamic resistor load pro-
file is referred to as CDD-based dataset, and the corresponding model as
CDD-based model. The electronic load acted a configurable resistor and
its value changed according to a pre-programmed pattern based on cur-
rent changes recorded under real-world conditions from DC switching
gear. Fig. 8(b) shows a data sample from the CDD-based dataset. Addi-
tionally, a third dataset referred to as external dataset was created. This
dataset includes a load profile from an inductor added to the setup. The
idea behind this modification was to simulate a change in the opera-
tional environment. For example power electronics in electric vehicle
chargers connected as load can cause such an additional inductance.
The external dataset was collected with a resistor as passive load and
the electric load operating under constant current mode. When the arc
occurred, the electronic load changed its resistance such that the current
in the circuit was regulated to a stable level. This represents a DC system
with loads that require a constant current, such as certain components
in electric vehicles. Fig. 9 shows a data sample from the external dataset.
The external dataset was only used in the evaluation phase to test the
ability of the basic model and the CDD-based model to perform in an
operational environment that was not represented in the training data.

An overview of the test bench configurations for the three datasets
is summarised in Table 3.

Model training. The basic dataset and the CDD-based dataset were shuf-
fled and divided into three parts: training, validation and test sets with
a ratio of 6:2:2. This ratio is common to split the datasets for train-
ing purpose in machine learning. The size of datasets are specified in
Table 4 where the class ratio represents the imbalance of the dataset
between the number of negative instances labelled “no-arc” and the
positive instances labelled “arc”. Transient data points were removed
from the datasets. These transient data occurred when the experiment
setup changed state between normal operation and arc occurrence, for
example during electrode separation or reconnection. This caused short
periods of unstable current and voltage signals that did not represent a
steady-state behaviour of either class.

Four models were trained: the basic model without frequency in-
formation (FFT) input, the basic model with FFT input, the CDD-based
model without FFT input, and the CDD-based model with FFT input.
The detailed training, validation, and evaluation / testing procedure is
illustrated in Fig. 7. Certain hyperparameters were controlled in order
to reduce the influence of the hyperparameters on the performance of
the models and therefore to ensure that the models remain comparable:
The size of the training datasets were set to be 60% of the available data

The Journal of Systems & Software 232 (2026) 112691

11

H.-M. Heyn et al.

Fig. 7. Causal model validation procedure for arc fault detection. FFT refers to Fast-Fourier Transformation and indicates that frequency-spectrum information |𝑆(𝑓)|
is available.

Fig. 8. Examples of the sampled current signal from the test bench for DC series arc fault detection..

Fig. 9. Data sample visualisation of the external dataset.

The Journal of Systems & Software 232 (2026) 112691

12

H.-M. Heyn et al.

Table 4
Size of each dataset in the validation.

 Dataset
Property Basic CDD-based External
 Size (excl. transient-state samples) 31,200 (29690) 33,200 (31372) 6100 (5539)
 Class ratio 4.7:1 2.5:1 3:1
 Training 17,814 18,823 0
 Validation 5938 6274 0
 Test 5938 6275 5539

samples. The remaining 40% were used for validation (20%), and test-
ing (20%). One time-series of current data always contained 160 data
points. Each data point is the current value in the circuit measured with
a sampling rate of 16kHz. A fully connected neural network with three
dense layers was chosen as model architecture. For each dense layer,
batch normalisation was applied with a batch size of 64. ReLu was cho-
sen as activation function, and each layer is followed by a dropout layer
to mitigate overfitting. The models were trained with an Adam opti-
miser and binary cross entropy as loss function. The input layer for mod-
els with FFT accepts both time-series data and frequency-domain data,
while the input layer for models without FFT only accepts time-series
data. The frequency spectrum information |𝑆(𝑓)| was created in a pre-
processing step from the time-series current data through a fast-fourier
transformation. The detailed specifications of the models are available
in Appendix B. The trained models and their Python implementations
are included as Jupyter Notebooks in the replication package of this
paper.

Evaluation of the models’ performance. The performance of the models
was evaluated on all test datasets, i.e., the basic, CDD-based, and ex-
ternal dataset as listed in Tables 3 and 4. As classification metrics we
included Accuracy and F1-score which indicate the overall predictive ca-
pability. Sensitivity measures the models’ ability to correctly identify arc
events, which is important to evaluate RA1.5 On the other hand, Speci-
ficity is used to evaluate the ability to correctly detect a non-arc event
and Precision assesses how many triggered alarms are actually correct
which both assess RA2.6 We also included the Matthews Correlation Co-
efficient (MCC) for a more balanced overall evaluation compared to the
F1-score in the presence of imbalanced classes, which can be consid-
ered the case here (Chicco and Jurman, 2020). The individual metrics
are defined as follows:

Accuracy = TP + TN
TP + FP + TN + FN

, (3)

Sensitivity = TP
TP + FN

, Specificity = TN
TN + FP

, (4)

Precision = TP
TP + FP

, F1 = 2 ⋅ TP
2 ⋅ TP + FP + FN

, (5)

MCC =
(TP ⋅ TN) − (FP ⋅ FN)

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (6)

where TP indicates true positive, TN true negative, FP false positive, and
FN false negative.

The training and evaluation procedure were repeated ten times for
each model. Each iteration was executed with randomly initialised
weights, and randomly shuffled datasets to avoid bias introduced by
the initialisation of parameters. The evaluation results for all models are
presented in Fig. 10 and the confusion matrices for each model across
each datasets are provided in Appendix C. Fig. 10 shows the mean and
standard deviation of the metrics from all conducted experiment runs.

5 RA1: WHEN an arc occurs THEN an alarm should be triggered
6 RA2: WHEN no arc occurs THEN an alarm should not be triggered

6.4. Significance testing

We followed a Bayesian approach for testing statistical significance
of our results following the suggestions outlined by Torkar et al. (2022),
the framework for Bayesian data analysis in SE outlined by Furia
et al. (2022), and the practical implementations suggested by McElreath
(2018)7. We analysed the following cases:

1. Case (a), CDD-based Model With FFT vs. Basic Model No FFT:
Applying the data and model requirements (A-D2, A-D3, and A-M1)
from the proposed CDD-based methods has a positive effect on the
metrics compared to the original model.

2. Case (b), CDD-based Model No FFT vs. Basic Model No FFT: Ap-
plying the proposed data requirement of adding dynamic load data
(A-D2) without adopting the model requirement of adding the fre-
quency information (A-D3, A-M1) has a positive effect on the metrics
compared to the original model.

3. Case (c1), Basic Model With FFT vs. Basic Model No FFT: Ap-
plying the proposed model requirement of adding the frequency in-
formation (A-D3, A-M1) but not the requirement of adding dynamic
load data (A-D2) has a positive effect on the metrics compared to the
original model.

4. Case (c2), CDD-based Model With FFT vs. CDD-based Model No
FFT: Applying the proposed model requirement of adding the fre-
quency information (A-D3, A-M1) and the requirement of adding dy-
namic load data (A-D2) has a positive effect on the metrics compared
to a model that only applies the requirement of adding dynamic load
data (A-D2).

For brevity, we performed this analysis only on the results of the metrics
for the external dataset. We consider the external data to be the most
difficult test of model performance and robustness because the data rep-
resents previously unseen operational conditions.

Model definition. We model the performance of the two models for each
metric using a Bayesian generalised linear model (GLM) with normal
likelihood. The parameter 𝛽0 is the baseline mean, which represents the
mean value of the performance metric for model 1 (reference model).
The parameter 𝛽1 represents the effect of introducing model 2, i.e., 𝛽1
represents the change in the mean of the metric under consider-
ation when moving from model 1 to model 2. The shared standard
deviation across both models is represented by 𝜎. The likelihood is de-
fined as:
𝑦𝑖 ∼  (𝜇𝑖, 𝜎), (7)

with 𝜇𝑖 as linear predictor defined as:
𝜇𝑖 = 𝛽0 + 𝛽1 ⋅ group𝑖, (8)

and group𝑖 ∈ {0, 1} indicating if the 𝑖th-observation is part of the baseline
model 1 or of model 2.

Choice of priors. We use weakly informative priors to allow the data to
dominate the inference of the posterior distribution:

• 𝛽0 ∼  (0.5, 12), which centres the baseline mean around a plausible
value (0.5) for the metric,

• 𝛽1 ∼  (0, 12), which is symmetric around zero to reflect no a priori
preference for either model,

• 𝜎 ∼ Exponential(𝜆 = 10), which ensures positivity of the variance.

These priors can be considered plausible for our study because we
checked that the chosen priors generate values within realistic ranges
of the metrics and that they avoid extreme values.

7 An alternative approach to significance testing using Welch’s t-test can be
found in Appendix E

The Journal of Systems & Software 232 (2026) 112691

13

H.-M. Heyn et al.

Fig. 10. Performance metrics for the use case models across all datasets..

Model inference and workability. The models were fitted using the
Python library pymc in version 5.25.1 which utilises a dynamic Hamil-
tonian Monte Carlo approach. We consider the models workable be-
cause we did not see divergent transitions during sampling, 𝑅̂ <
1.01, and the effective sample sizes do not show concerning de-
creases compared to the overall sample size. The estimated metric
sizes (𝛽0) of the resulting posterior predictive distributions for the
baseline models align well with the observed data, indicating that
the results are adequate. The summaries of the posteriors for each
metric and each case can be found as supplementary material in
Appendix D.

Evaluation results. The estimated effect sizes 𝛽1 for all cases (a) - (c2)
are illustrated in Fig. 11. In addition to providing the density plots,
the figure also indicates the posterior probability that the effect of in-
troducing model 2 is greater than zero, i.e., 𝑃 (𝛽1 > 0). Specifically, if
𝑃 (𝛽1 > 0) ≥ 0.95, it indicates that there is a chance greater or equal 95%
that model 2 outperforms model 1 for this specific metric. In such cases,
the posterior density is drawn in blue. Similarly, if 𝑃 (𝛽1 > 0) ≤ 0.05, it in-
dicates that there is only a 5% chance, or less, that model 2 outperforms

model 1 for this specific metric. In such cases, the posterior density is
drawn in red.

Introducing both dynamic load data (requirement A-D2), and fre-
quency information (requirements A-D3 and A-M1) in case (a) has a sig-
nificant positive effect on all considered metrics, except for precision and
specificity. The precision of the new model is slightly lower (0.96 vs. 0.97
for the external dataset), while specificity is distinctly lower (0.89 vs.
0.93). However, compared to these two metrics, the positive effect on
the remaining metrics is significantly higher for the CDD-based model.
By separating the effect of introducing dynamic load data in case (b)
from frequency information in cases (c1) and (c2), we find that it is the
introduction of dynamic load (requirement A-D2) that has a negative
effect on precision and specificity. On the other hand, the introduction of
frequency information has a positive effect on both precision and speci-
ficity. If the frequency information is introduced to a model trained on
data without dynamic load (case (c1)), the introduction of frequency in-
formation has a small negative effect on all metrics, except for precision
and specificity. Introducing frequency information to a model trained on
dynamic load data (case (c2)) however has a distinct positive effect on
all metrics.

The Journal of Systems & Software 232 (2026) 112691

14

H.-M. Heyn et al.

Fig. 11. Effect sizes 𝛽1 of introducing CDD-derived requirements on performance metrics.

7. Discussion

This section will first present a discussion of the experiment results,
followed by a summary of the answers to the research questions. Then,
the results of this study are discussed in the context of system prototyp-
ing, including a discussion on the current limitation of CDD, suggestions
for further research, and a discussion on the threats to validity.

7.1. Discussion of the experiment results

The experiment results suggest that the CDD-based models outper-
form the existing basic models in terms of accuracy, sensitivity, F1 score,
and MCC with significant improvement in cases when operational con-
ditions change (external dataset), while on the other hand precision and
specificity show reduced values.

Effect of introducing dynamic load data. The results suggest that it is
specifically the introduction of dynamic load data (requirement A-
D2) that significantly improves all metrics but also decreases precision
slightly and specificity distinctly. By introducing dynamic load data, the
model becomes more sensitive towards arc-events and therefore detects
more true positive events. However, this shift in the decision boundary
also leads to a higher chance of raising a false alarm, which is why speci-
ficity decreases. Given that the dataset has a significantly higher number

Effect of introducing dynamic load data
The introduction of dynamic data based on the CDD-derived re-
quirements A-D2 leads to a model with slightly lower specificity
(higher false positive rate) but substantially higher sensitivity
(lower false negative rate).

of non-arc events (true negatives) compared to the number of arc events
(true positives), the decrease in precision is far less distinct. However, the
positive effect on sensitivity is by a factor of three larger compared to
the negative effect on specificity. This is also reflected in the significant
increase in overall performance indicated by the F1 score and MCC.

Effect of introducing frequency information. The introduction of fre-
quency information improves specificity and therefore also precision. In
the case of a model trained on dynamic load data, the additional fre-
quency information seems to also support the detection of arc events,
which is why all metrics improve. However, the improvement in speci-
ficity due to the introduction of frequency information cannot compen-
sate for the negative effect on specificity due to the introduction of the
dynamic load data. Furthermore, if additional frequency information is

The Journal of Systems & Software 232 (2026) 112691

15

H.-M. Heyn et al.

Effect of introducing frequency information
The introduction of frequency information based on the CDD-
derived requirements A-D3 and A-M1 leads to a model with overall
higher performance, but only if the model was trained on dynamic
load data.

provided to a model not trained on dynamic load data, sensitivity and
overall performance of the model is significantly reduced.

The idea behind including frequency information in the training and
runtime data of the models is to create a “proxy” for identifying the load
in the system that acts as a confounder as discussed earlier. In case of the
basic dataset there is no additional load present in the system. There-
fore, the frequency information does not provide any useful additional
information for the basic model. In contrast, dynamic loads are present
in the dataset for the CDD-based model. Here, the additional frequency
information (FFT) provides useful information to the model allowing it
to differentiate the type of load connected to the system. Therefore, the
basic model cannot make use of the additional frequency information.
One could, however, argue that the frequency information is inherent
to the time-domain signal, as it is also suggested by the DAG in Fig. 6
(g). The deep neural network of the CDD-based model without explicit
access to the frequency signal might inadvertently perform internally a
frequency analysis on the time-domain signal anyway. It might therefore
not be necessary to provide additional frequency information. However,
we cannot be sure that this frequency analysis is actually taking place
within the neural network. If, as in our case, expert knowledge indicates
benefits of providing frequency information, it is advisable to provide
the frequency information explicitly to the model. This advice is sup-
ported by the results of case (c2).

Considerations on why the CDD-based model might fail. While we see that
the new model based on the CDD-derived requirements improves ro-
bustness towards unseen data and sensitivity, there are scenarios where
it may underperform compared to the basic model:

Adding dynamic load profiles (requirement A-D2) reduces missed arc
events but increases false alarms. Depending on the use case, this might
be unacceptable. In the considered DC switching gear use case, a missed
arc event would be more problematic compared to a false positive. As
the improvement in sensitivity is threefold compared to the reduction
in specificity (increase of false alarm rate), the introduction of the CDD-
based model has an overall positive effect on the use case.

We see further that false positives can occur in cases of high dynamic
load variations. The occurrence of an arc is accompanied by peaks across
the entire frequency spectrum. We assume that if the dynamic load has a
very broad frequency signature, the resulting frequency components will
become nearly indistinguishable from those produced by a real arc. That
might explain also why adding explicit frequency information improves
the specificity (decrease of false alarm rate) for the CDD-based model.
While we can assume that the deep neural network might perform a fre-
quency analysis inadvertently based on the provided time-domain data,
we cannot ensure it does this analysis for all relevant frequency. By
adding the frequency information for all relevant frequency explicitly,
we improved the model’s capability of distinguishing arc events from
non-arc events with a highly dynamic load.

A possible reason for remaining misclassification can be the pres-
ence of hidden confounders. These are variables that influence both arc
occurrence and the observed signals but were not included in the causal
models because they were unknown to the company experts. If such hid-
den factors exist, the CDD-based requirements may not fully capture the
operational context which leads to a degraded model performance. We
outline a possible solution to this limitation in Section 7.5.

7.2. Answer to the research questions (RQs)

Answer to RQ1. RQ1 asked how causal models can guide the develop-
ment of software systems with ML components. The case study showed
how expert-elicited causal mechanisms could be systematically encoded
in DAGs. We showed that DAGs offer several benefits for requirements
elicitation, integration of prior knowledge, and representation of the sys-
tem’s operational context. For example the concepts of d-separation and
proxy variables were used to translate causal assumptions into concrete
data and model requirements. This demonstrates that graphical causal
models provide actionable guidance during requirements elicitation and
system design. As answer to RQ1, we proposed a heuristic for construct-
ing DAGs from expert knowledge and for deriving low-level data and
model requirements from these models.

Answer to RQ2. RQ2 asked to what extent the performance and robust-
ness of a software system with ML can be improved by incorporating
prior causal knowledge during the development. To address this ques-
tion, we conducted an evaluative case study on anomaly detection in a
DC power distribution system. We compared a deep learning model fol-
lowing the CDD-derived requirements on including dynamic load data
(A-D2) and frequency-information (A-D3, A-M1) to a model trained on
a pre-existing dataset. We see that the inclusion of dynamic load data
lead to a significant reduction in missed arc-events, i.e., higher sensi-
tivity and therefore lower false-negative rate. This comes at the cost
of an increase in the specificity which suggests a higher false alarms
rate. However, the improved detection ability significantly outweighs
the increased false alarm rate. The improvement in sensitivity and over-
all performance of the model indicated through the F1 score and MCC is
especially distinct when applying the external dataset. This suggest that
the robustness of the model to changes in the operational environment
improved. The causal model (Fig. 6 (g)) provides an explanation for this
improvement: it reveals that load is a confounder. If this confounder is
not recognised in the training data - as was the case in the pre-existing
dataset - the resulting model will underperform in the presence of loads.
We also see, as suggested by the causal model, that the inclusion of
frequency information (requirements A-D3 and A-M1) leads to an im-
provement across all performance metrics. We assume that frequency
information provides the model with additional data allowing it to dis-
tinguish between an arc and a normal-operation condition. As answer to
RQ2, CDD not only led to an improvement in most performance metrics
and robustness of the ML model, but also provided an explanation to
why the basic model underperformed in the presence of varying loads:
the omitted confounder load profile induced a spurious correlation. CDD
makes such constellations explicit and therefore and it increases trace-
ability between requirements, data, and model behaviour.

7.3. Causal modelling in the context of systems prototyping

Usually, complex cyber-physical systems are developed in several
phases from laboratory environment to full-scale systems. Diefenbach
et al. (2019) describe four phases of prototyping from problem discov-
ery to product delivery: In the discover phase, the focus is on generating
knowledge and gaining insight into the use case, for example by gath-
ering information about the context and target user group. In the define
phase, the focus shifts to filtering and analysing the collected knowledge.
In practise this means that a requirements specification is created which
describes the design goals of the system. The development phase involves
continuous refinement and improvement. The deliver phase entails iden-
tifying the final solution and preparing it for market launch.

The results of this engineering research suggest that CDD is ben-
eficial in all four phases of product prototyping for systems with ML
components: In the discovery phase, causal models allow the formu-
lation of prior assumptions about the context and the intended causal
relationships between the variables that describe the system. CDD can
then help stakeholders, such as project managers, data scientists, and

The Journal of Systems & Software 232 (2026) 112691

16

H.-M. Heyn et al.

ML experts, to define the machine learning problem in a given causal
operational context and to elicit requirements for the features that need
to be included (or excluded) in the dataset even before the data col-
lection begins. In the define phase, causal models serve as an effective
communication tool to visualise and analyse the causal relationships of
the system in a defined context. These causal models in their graphi-
cal representation as DAGs can be considered knowledge graphs. Tiddi
and Schlobach (2022) highlight the positive aspects of using knowledge
graphs in ML system development in terms of explainability. However,
unlike knowledge graphs, the underlying mathematical framework of
causal models, such as do-calculus, allow for reproducible and standard-
ised extraction of causal meaning from graphical causal models. In par-
ticular, we showed that the analysis of potential confounding between
variables defining the system provide guidance on data selection for ML
models early on in the design process. In the development phase, causal
models can serve as guiding templates to which causal relationships can
be added or removed based on the results of prototyping iterations and
validations. CDD allows for a transparent and iterative definition of the
causal relationship between variables from expert knowledge, which
can reduce the need for data collection and ML model training itera-
tions. This aspect of transparency in the use of expert knowledge has
the additional benefit that it can lead to traceability of data require-
ments back to causal assumptions and expert knowledge about the use
case. This traceability is essential when building a safety case for criti-
cal ML applications or for any kind of certification. In the deliver phase,
causal models can effectively communicate the final causal context and
data assumptions which can play an important role in certification pro-
cesses (Borg et al., 2019), such as safety certification, or compliance
with legislation such as the EU AI Act (Floridi et al., 2022).

7.4. Identifying inconsistencies in prior knowledge

The workflow for constructing causal models from prior knowledge
assumes an iterative identification of causal mechanisms that can be
added to a causal graph. For example, experts can be confronted with ex-
perimental results from a prototyping system and asked to refine the as-
sumed causal models based on these findings. This process can reveal in-
consistencies and allows for adjustments of the model. However, errors
in confounders identification can directly bias the training data. If, for
example, a confounder is omitted, the ML model might learn a spurious
association, as shown in the arc-detection case where omitting the load
profile in the training data leads to reduced robustness. However, the use
of DAGs provides transparency about the assumptions made in the DAG.
An approach to reduce possible inconsistencies in prior knowledge are
data-driven causal discovery methods. They can support the construc-
tion of causal models by suggesting additional dependencies, for exam-
ple by testing independence structures in the observed data. Methods
based on independence testing, such as the PC algorithm (Spirtes and
Glymour, 1991) or the fast causal inference (FCI) algorithm (Spirtes,
2001), assume that the data is independent and identically distributed
(i.d.d.), which is usually not the case in practice. There are, however,
recent methods for causal discovery from time-series data that are ap-
plicable to non-i.d.d. settings such as the PCMCI method (Runge et al.,
2019). The performance of data-driven approaches to causal discovery
depends on the availability of interventional data, i.e., data obtained
under controlled interventions that disturb the system to reveal causal
directions. However, if such data were available in sufficient quantity,
it would also allow ML approaches, such as deep neural networks, to
identify the correct causal effects.

In that sense, solely data-driven causal discovery is not effective,
and we assume that human prior knowledge is still needed. We see two
promising uses of data-driven causal discovery as part of CDD:

• causal discovery can suggest the existence of confounders to experts
based on identified independence relations in the data or temporal
dependencies (e.g., by testing for Granger causality Granger, 1988);

• causal discovery methods can be used to test emerging causal mod-
els derived from expert knowledge. Automatic tests based on causal
discovery approaches can warn if a causal model suggests indepen-
dence conditions that are not consistent with the data.

7.5. Limitation of CDD and future work

We recognise a number of limitations in the application of CDD:

Adopt causal models to RE. We proposed the use of DAGs as represen-
tation for causal models because of the existing body of knowledge on
how to extract actionable intelligence from these graphs. However, for
RE purposes, DAGs in their current form may need to be modified. We
believe that CDD can be integrated into an agile workflow because the
models can be iteratively extended with new knowledge and they can
serve as a communication medium about causal knowledge between dif-
ferent stakeholders (Heyn and Knauss, 2022). For example, the edges in
a DAG could carry IDs or other information that would allow for an
easier mapping of elements in the DAG to the elicited requirements.

Hidden confounders. A risk to validity of the iteratively elicited causal
model are hidden confounders. These are confounders that the expert
did not include in the DAG because they were not aware of them (un-
known unknowns). While this risk is partially mitigated in CDD by doc-
umenting causal assumptions as DAG explicitly, future research can
explore how to further reduce the risk of hidden confounders. An ap-
proach could be to apply sensitivity analysis techniques that quantify
how strong the influence of an unobserved variable would have to be to
overturn the conclusions drawn from the current causal model.

Runtime conditions from causal models. A common problem in ML is that
the models become “stale”, where changes in the operational environ-
ment over time require retraining of the model (Prapas et al., 2021). An
interesting avenue for further investigation is whether identifying and
documenting prior knowledge about causal mechanisms through CDD
enables the derivation of runtime checks, based on the conditional inde-
pendence criteria implicitly encoded in causal models. Such an approach
could enhance not only the robustness of ML systems to changes in the
operational environment, but also their resilience to adversarial attacks.
Recent research suggests that many such attacks exploit unrecognised
confounding in the model’s operational context (Ren et al., 2022; Zhao
et al., 2022).

Scalability of CDD. For larger systems, constructing and maintaining
comprehensive causal models may be challenging, and the approach
may need to be applied modularly (e.g., by separating sub-systems) and
with the support of automated tools as discussed in Section 7.4. Ap-
proaches such as CausalOps, introduced by Maier et al. (2024), can be
used to maintain an industrial lifecycle of larger causal models. Future
research is needed to assess scalability in larger settings and to build
tool support that can reduce manual effort.

Transferability of CDD to other domains. In this study, we only have dis-
cussed the case of system prototyping in a research and development
environment. Further research is needed to establish a more general ap-
plicability of causal models in RE for ML by applying CDD to additional
use cases. We believe that causal models can lead to a better explain-
ability of decisions made by ML, because clear cause-effect structures
help stakeholders to understand the reasons for a certain ML output,
see for example the work of Chou et al. (2022). However, the way CDD
is applied may vary across domains: in safety-critical CPS development,
such as the one described here, expert elicitation may dominate. In data-
rich domains, such as e-commerce, causal discovery methods may play
a larger role.

The Journal of Systems & Software 232 (2026) 112691

17

H.-M. Heyn et al.

7.6. Threats to validity

We identified the following threats to validity based on criteria for
judging the quality of case studies by Yin (2003):

Construct validity. A lack in construct validity can occur if the mea-
sures employed for the case study cannot accurately and comprehen-
sively capture the phenomenon under study. For the experimental part
of this study, we included metrics common in statistical learning and
ML. We also included MCC as a metric used in scenarios where both
false positives and false negatives must be evaluated jointly, making
it particularly suitable for imbalanced anomaly detection tasks such as
arc-fault detection. In cases where clear metrics were not available, we
tried to describe the problem and potential solution such that we can
establish a chain of evidence.

Internal validity. A lack of internal validity can cause confounding and
consequently bias in the results. This is the case for example if a lack of
rigour (i.e., degree of control) in the study design occurred (Slack and
Draugalis Jr, 2001). We increased the degree of control over the case
study with different mechanisms: We followed a defined protocol for
the workshops and documented the results of each workshop for later
analysis. We analysed the data with a group of four researchers to reduce
the impact of personal beliefs, making the findings less prone to personal
bias. We maintained consistency in controlling hyper-parameters across
validation experiments to mitigate bias in the results.

External validity. The purpose of the case study was to explore a phe-
nomena, i.e., the use of causal graphs as support for BDD in a realistic
setting. With an exploratory case study we therefore cannot claim direct
generalisability of the results. To ensure however that the case study rep-
resents a realistic setting, we conducted the case study together with an
industrial partner. A remaining validity threat is that the use case was
in a prototyping state of development and not intended yet for the mass
markets. We reflect this limitation in the description of the case study.
We also discuss scalability and transferability as current limitation in
Section 7.4.

Reliability. To increase reliability, we publish the workshop protocols,
survey data, datasets, and models as additional replication material
alongside this article. Throughout the article we described the steps
taken during the data collection and analysis.

8. Conclusion

The development of software systems that incorporate ML requires
insight into the causal relationship between different variables to make
informed decisions when specifying data for the training and valida-
tion of the ML component. In this article we discussed the limitations of
current RE methods for specifying the desired behaviour of ML-enabled
systems. In particular, we discussed the limitations of describing prior
knowledge about cause-effect relationships in a given context, and the
missing link between high-level requirements and data requirements in
current RE methods. We argued that causal models in the form of DAGs
can help define the operational causal context and support the elicita-
tion of data requirements by making assumed cause-effect relationships
explicit. We explored the use of causal models as part of the model spec-
ification in a case study on DC series arc fault detection in collabora-
tion with an industrial partner. In a series of workshops, we developed
and tested a concept for causality-driven development (CDD). We also
demonstrated the effectiveness of the data requirements derived from
the causal model of the arc fault detection use case in terms of perfor-
mance and robustness of the resulting ML model. In addition, the causal
model as output of CDD provided evidence as to why the robustness of
the model increased by allowing developers to identify confounding and
unobservable variables in the operational context. The findings answer

RQ1 by showing how causal models can be used as part of requirements
elicitation to derive explicit data and model requirements, and RQ2, by
demonstrating that such requirements improved robustness and perfor-
mance in our case study. In summary, this study showed how CDD can
create a link between a specified desired causal behaviour, data require-
ments, and the resulting ML model behaviour.

Additional data

A replication package accompanying this article is available at https:
//doi.org/10.7910/DVN/XEK72T. The replication data package con-
tains the protocols of the workshops, the final causal models, the use
case datasets and the Python code for the DL models used in the evalu-
ation of the case study.

CRediT authorship contribution statement

Hans-Martin Heyn: Writing – review & editing, Writing – original
draft, Visualization, Software, Methodology, Investigation, Data cura-
tion, Conceptualization; Yufei Mao: Writing – review & editing, Writing
– original draft, Visualization, Validation, Software, Investigation, Data
curation; Roland Weiß: Writing – review & editing, Validation, Super-
vision, Resources, Project administration, Methodology, Funding acqui-
sition, Data curation, Conceptualization; Eric Knauss: Writing – review
& editing, Writing – original draft, Visualization, Supervision, Project
administration, Methodology, Investigation, Funding acquisition, Con-
ceptualization.

Data availability

All data and code available on Harvard dataverse: https://doi.org/
10.8447910/DVN/XEK72T

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This project has received funding from the EU’s Horizon 2020 re-
search and innovation program under grant agreement No 957197
(VEDLIoT).

Appendix A. Component list and description for the test bench
representing the use case of serial arc fault detection in DC power
systems

The test bench was built in accordance to the UL1699B standard
which describes photovoltaic (PV) DC arc-fault circuit protection mech-
anisms. The following components were used:

• A power supply which provided stable voltage up to 100V.
• A programmable linear stage allowed the adjustment of the air gap
between the electrodes where the arc is generated.

• A passive load in form of a resistor and/or conductor.
• A programmable electronic load which could simulate different
load behaviours by changes of its inner resistor value under dif-
ferent modes. It was integrated in the prototype as a consequence
of the causal modelling because different load profiles were iden-
tified as a confounding element. The constant resistor and con-
stant current modes were used in this case study. The constant
resistor model allowed the electronic load to change its resis-
tor value over time according to a pre-programmed pattern. The
electronic load under constant current mode could adapt its re-
sistor value to regulate the circuit current to a given current
value.

The Journal of Systems & Software 232 (2026) 112691

18

https://doi.org/10.7910/DVN/XEK72T
https://doi.org/10.7910/DVN/XEK72T
https://doi.org/10.8447910/DVN/XEK72T
https://doi.org/10.8447910/DVN/XEK72T

H.-M. Heyn et al.

Table B.5
Hyperparameters and setting for the FNN models without and with FFT features.
 Parameter FNN without FFT FNN with FFT
 Activation ReLU (after Batch Normalization)
 Architecture Fully connected feedforward neural network (FNN)
 Batch size 64
 Class weighting Inverse frequency weighting
 Dropout rate 0.25
 Epochs Variable (epoch argument)
 Hidden layers 320, 640, 480 units 640, 1280, 480 units
 Input dimension 160 features (time-domain only) 320 features (FFT + time-domain)
 Loss function Binary cross-entropy
 Metrics Binary Accuracy, F1-score (threshold = 0.5)
 Optimiser Adam, learning rate 1 × 10−6

 Output bias initialization log(#pos
#neg

)
 Output layer 1 unit, sigmoid activation
 Regularization L2, 𝜆 = 1 × 10−5

 Weight initialization Glorot Normal

• An ADC ADS131A02 collected data at a sampling rate of 16kHz.
• A current transducer reduced the current signal proportionally for
sampling to the ADC sensing range.

• An anti-aliasing low pass filter was integrated with a cutoff frequency
of 160kHz.

• An AI accelerator was utilised for data processing and execution of
machine learning algorithms.

Appendix B. Detailed specifications of the FNN models used in
this study

Table B.5 outlines the specifications of the FNN models trained in
this study, including all relevant hyperparameter settings. The mod-
els’ Python code and the trained models are available in the replication
package of this study.

Appendix C. Confusion matrices for all models across all datasets

Fig. C.12 contains the confusion matrices for all models across all
datasets.

Appendix D. Summary of the Bayesian GLM posteriors for the
evaluation of the models

Tables D.6–D.9 lists the posterior summaries of the Bayesian GLMs
for each performance metric and each case (a) - (c2) outlined in Sec-
tion 6.4.

Appendix E. Significance testing using Welch’s t-test and Hedges’
g for effect size suggestion

We conducted statistical testing on the models’ results on the

unseen external datasets following the suggestions for statistical test-
ing in SE experiments outlined by Arcuri and Briand (2014). For each
metric outlined in Eqs. (3)–(6), we conducted the following hypothesis
test:

𝐻0: There is no difference between the two model variants on the cho-
sen metric.

𝐻1: There is a difference (two-sided).

Formally, the hypotheses can be expresses as follows:
𝐻0 ∶ 𝜇model1 = 𝜇model2 (E.1)

𝐻1 ∶ 𝜇model1 ≠ 𝜇model2 (E.2)

We compared the same cases as outlined in Section 6.4. We used the
Welch’s t-test assuming approximate normality of the results because
the approach is robust to unequal variances, and it works well on
small sample sizes (in our case n=10 for each metric). Arcuri and
Briand (2014) recommend to report effect sizes alongside the test re-
sults. We therefore computed Hedges’ g to quantify the magnitude of
the observed differences between the models. This is important be-
cause there are cases (metrics) in which the new model performs worse
compared to the original model. Hedges’ g measures the difference be-
tween two means in a unitless way relative to the pooled standard
deviation of both groups (Rosenthal et al., 1994), which makes the
effect size better comparable across the different metrics and mod-
els. We used a significance level of 𝛼 = 0.05 because it is considered
an academic default. Table E.10 lists the results of the significance
testing. The results of the t-test approach are mostly identical to the
Bayesian approach in Section 6.4. The only minor deviation is that
for case (c1), the change in MCC is not significant according to the
Welsh t-test. However, even under the Bayesian approach, the probabil-
ity 𝑃 (𝛽1 > 0) for MCC equals 0.04. This is very close to the threshold of
𝑃 (𝛽1 > 0) ≤ 0.05.

The Journal of Systems & Software 232 (2026) 112691

19

H.-M. Heyn et al.

Fig. C.12. Confusion matrices for all models across all datasets.

Table D.6
Posterior summaries for case (a): Model 1 = basic_no_fft, Model 2 = cdd_fft.
 Metric 𝛽0 mean (SD) 𝛽1 mean (SD) 𝑃 (𝛽1 > 0) ESS𝛽0 ESS𝛽1 𝑅̂𝛽0 / 𝑅̂𝛽1

 Accuracy 0.8224 (0.0018) 0.0665 (0.0026) 1.00 3190 3283 1.000 / 1.000
 Precision 0.9704 (0.0012) -0.0077 (0.0016) 0.00 2831 3059 1.000 / 1.000
 Sensitivity 0.7891 (0.0031) 0.0983 (0.0044) 1.00 3298 3440 1.000 / 1.000
 Specificity 0.9254 (0.0035) -0.0319 (0.0049) 0.00 3378 3245 1.000 / 1.000
 F1 Score 0.7178 (0.0022) 0.0792 (0.0031) 1.00 3015 2780 1.000 / 1.000
 MCC 0.6308 (0.0028) 0.0990 (0.0039) 1.00 3459 3349 1.000 / 1.000

The Journal of Systems & Software 232 (2026) 112691

20

H.-M. Heyn et al.

Table D.7
Posterior summaries for case (b): Model 1 = basic_no_fft, Model 2 = cdd_no_fft.
 Metric 𝛽0 mean (SD) 𝛽1 mean (SD) 𝑃 (𝛽1 > 0) ESS𝛽0 ESS𝛽1 𝑅̂𝛽0 / 𝑅̂𝛽1

 Accuracy 0.8223 (0.0016) 0.0439 (0.0023) 1.00 3646 3602 1.000 / 1.000
 Precision 0.9703 (0.0009) -0.0142 (0.0013) 0.00 3270 3449 1.000 / 1.000
 Sensitivity 0.7891 (0.0027) 0.0736 (0.0038) 1.00 3573 3397 1.000 / 1.000
 Specificity 0.9253 (0.0026) -0.0479 (0.0036) 0.00 3508 3394 1.000 / 1.000
 F1 Score 0.7177 (0.0018) 0.0443 (0.0026) 1.00 3370 3368 1.000 / 1.000
 MCC 0.6307 (0.0024) 0.0520 (0.0033) 1.00 3406 3321 1.000 / 1.000

Table D.8
Posterior summaries for case (c1): Model 1 = basic_no_fft, Model 2 = basic_fft.
 Metric 𝛽0 mean (SD) 𝛽1 mean (SD) 𝑃 (𝛽1 > 0) ESS𝛽0 ESS𝛽1 𝑅̂𝛽0 / 𝑅̂𝛽1

 Accuracy 0.8224 (0.0016) -0.0136 (0.0023) 0.00 3647 3593 1.000 / 1.000
 Precision 0.9704 (0.0010) 0.0123 (0.0014) 1.00 3225 3383 1.000 / 1.000
 Sensitivity 0.7891 (0.0029) -0.0285 (0.0040) 0.00 3118 2981 1.000 / 1.000
 Specificity 0.9253 (0.0026) 0.0330 (0.0037) 1.00 3216 3314 1.000 / 1.000
 F1 Score 0.7178 (0.0014) -0.0079 (0.0020) 0.00 3154 3224 1.000 / 1.000
 MCC 0.6307 (0.0016) -0.0040 (0.0023) 0.04 3245 3217 1.000 / 1.000

Table D.9
Posterior summaries for case (c2): Model 1 = cdd_no_fft, Model 2 = cdd_fft.
 Metric 𝛽0 mean (SD) 𝛽1 mean (SD) 𝑃 (𝛽1 > 0) ESS𝛽0 ESS𝛽1 𝑅̂𝛽0 / 𝑅̂𝛽1

 Accuracy 0.8663 (0.0018) 0.0225 (0.0026) 1.00 3365 3316 1.000 / 1.000
 Precision 0.9561 (0.0010) 0.0066 (0.0014) 1.00 3056 3056 1.000 / 1.000
 Sensitivity 0.8627 (0.0031) 0.0247 (0.0043) 1.00 3403 3348 1.000 / 1.000
 Specificity 0.8774 (0.0033) 0.0161 (0.0046) 1.00 3170 3269 1.000 / 1.000
 F1 Score 0.7620 (0.0024) 0.0350 (0.0033) 1.00 3330 3325 1.000 / 1.000
 MCC 0.6828 (0.0031) 0.0470 (0.0045) 1.00 2814 2926 1.000 / 1.000

Table E.10
Welch’s t-test on the External dataset for comparisons (a)–(d). SD: Standard Deviation. Diff: Difference. “Rej.
𝐻0?” indicates whether the null hypothesis is rejected at 𝛼 = 0.05. Metrics in bold indicate that the Hedges g
suggests a positive effect of model 1 compared to model 2 for this metric.
 Metric Model 1 Model 2 Diff. t Hedges g p Rej. 𝐻0?

 Mean (SD) Mean (SD)
 (a) Model 1 = cdd_fft, Model 2 = basic_no_fft
 Accuracy 0.8888 (0.0058) 0.8224 (0.0045) 0.0664 28.7088 12.2965 7.57 ⋅ 10−16 Yes
 F1 Score 0.7969 (0.0076) 0.7178 (0.0042) 0.0792 28.8224 12.3451 7.50 ⋅ 10−14 Yes
 MCC 0.7298 (0.0098) 0.6307 (0.0051) 0.0991 28.3598 12.1470 2.18 ⋅ 10−13 Yes
 Precision 0.9627 (0.0035) 0.9704 (0.0030) -0.0077 -5.2758 -2.2597 5.67 ⋅ 10−5 Yes
 Sensitivity 0.8873 (0.0097) 0.7891 (0.0080) 0.0982 24.7336 10.5938 5.84 ⋅ 10−15 Yes
 Specificity 0.8934 (0.0113) 0.9254 (0.0083) -0.0320 -7.1913 -3.0802 1.82 ⋅ 10−6 Yes
 (b) Model 1 = cdd_no_fft, Model 2 = basic_no_fft
 Accuracy 0.8663 (0.0047) 0.8224 (0.0045) 0.0439 21.2530 9.1030 3.54 ⋅ 10−14 Yes
 F1 Score 0.7621 (0.0060) 0.7178 (0.0042) 0.0443 19.0775 8.1712 1.94 ⋅ 10−12 Yes
 MCC 0.6827 (0.0079) 0.6307 (0.0051) 0.0520 17.4814 7.4876 1.65 ⋅ 10−11 Yes
 Precision 0.9561 (0.0020) 0.9704 (0.0030) -0.0143 -12.6347 -5.4116 1.13 ⋅ 10−9 Yes
 Sensitivity 0.8627 (0.0073) 0.7891 (0.0080) 0.0736 21.5187 9.2168 3.15 ⋅ 10−14 Yes
 Specificity 0.8774 (0.0064) 0.9254 (0.0083) -0.0480 -14.5020 -6.2115 5.66 ⋅ 10−11 Yes
 (c1) Model 1 = basic_fft, Model 2 = basic_no_fft
 Accuracy 0.8088 (0.0047) 0.8224 (0.0045) -0.0136 -6.6009 -2.8273 3.40 ⋅ 10−6 Yes
 F1 Score 0.7099 (0.0040) 0.7178 (0.0042) -0.0079 -4.3416 -1.8596 3.96 ⋅ 10−4 Yes
 MCC 0.6267 (0.0042) 0.6307 (0.0051) -0.0040 -1.9152 -0.8203 7.21 ⋅ 10−2 No
 Precision 0.9827 (0.0026) 0.9704 (0.0030) 0.0123 9.8579 4.2223 1.31 ⋅ 10−8 Yes
 Sensitivity 0.7605 (0.0081) 0.7891 (0.0080) -0.0286 -7.9590 -3.4090 2.65 ⋅ 10−7 Yes
 Specificity 0.9584 (0.0067) 0.9254 (0.0083) 0.0330 9.7714 4.1852 1.87 ⋅ 10−8 Yes
 (c2) Model 1 = cdd_fft, Model 2 = cdd_no_fft
 Accuracy 0.8888 (0.0058) 0.8663 (0.0047) 0.0225 9.5585 4.0941 2.51 ⋅ 10−8 Yes
 F1 Score 0.7969 (0.0076) 0.7621 (0.0060) 0.0348 11.3377 4.8561 2.21 ⋅ 10−9 Yes
 MCC 0.7298 (0.0098) 0.6827 (0.0079) 0.0471 11.7888 5.0494 1.12 ⋅ 10−9 Yes
 Precision 0.9627 (0.0035) 0.9561 (0.0020) 0.0066 5.1106 2.1890 1.51 ⋅ 10−4 Yes
 Sensitivity 0.8873 (0.0097) 0.8627 (0.0073) 0.0246 6.4087 2.7450 7.00 ⋅ 10−6 Yes
 Specificity 0.8934 (0.0113) 0.8774 (0.0064) 0.0161 3.8957 1.6686 1.58 ⋅ 10−3 Yes

The Journal of Systems & Software 232 (2026) 112691

21

H.-M. Heyn et al.

References

Ahmad, K., Abdelrazek, M., Arora, C., Bano, M., Grundy, J., 2023. Requirements engineer-
ing for artificial intelligence systems: a systematic mapping study. Inf Softw. Technol.
158.

Anwer, S., Ikram, N., 2006. Goal oriented requirement engineering: a critical study of
techniques. In: 2006 13th Asia Pacific Software Engineering Conference (APSEC’06).
IEEE, pp. 121–130.

Arcuri, A., Briand, L., 2014. A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verif. Reliab. 24 (3), 219–250.

Binamungu, L.P., Embury, S.M., Konstantinou, N., 2018. Maintaining behaviour driven
development specifications: challenges and opportunities. In: 2018IEEE 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
pp. 175–184.

Borg, M., Englund, C., Wnuk, K., Duran, B., Levandowski, C., Gao, S., Tan, Y., Kaijser, H.,
Lönn, H., Törnqvist, J., 2019. Safely entering the deep: a review of verification and
validation for machine learning and a challenge elicitation in the automotive industry.
J. Autom. Softw. Eng. 1 (1), 1–19.

Bradley, J.H., Paul, R., Seeman, E., 2006. Analyzing the structure of expert knowledge.
Inf. Manag. 43 (1), 77–91.

Buchgeher, G., Gabauer, D., Martinez-Gil, J., Ehrlinger, L., 2021. Knowledge graphs
in manufacturing and production: a systematic literature review. IEEE Access 9,
55537–55554.

Carlini, N., Wagner, D., 2017. Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (Sp). IEEE, pp. 39–57.

Chae, S., Park, J., Oh, S., 2016. Series DC Arc fault detection algorithm for DC microgrids
using relative magnitude comparison. IEEE J. Emerg. Sel. Top. Power Electron. 4 (4),
1270–1278.

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R., 2000.
CRISP-DM 1.0: Step-by-Step Data Mining Guide. SPSS, Chicago.

Chicco, D., Jurman, G., 2020. The advantages of the matthews correlation coefficient
(MCC) over f1 score and accuracy in binary classification evaluation. BMC Genomics
21 (1), 6.

Chou, Y.-L., Moreira, C., Bruza, P., Ouyang, C., Jorge, J., 2022. Counterfactuals and caus-
ability in explainable artificial intelligence: theory, algorithms, and applications. Inf.
Fus. 81, 59–83.

D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C.,
Deaton, J., Eisenstein, J., Hoffman, M.D., et al., 2022. Underspecification presents
challenges for credibility in modern machine learning. J. Mach. Learn. Res. 23 (226),
1–61.

Dang, H.-L., Kim, J., Kwak, S., Choi, S., 2021. Series DC Arc fault detection using machine
learning algorithms. IEEE Access 9, 133346–133364.

Daniel, K., 2017. Thinking, Fast and Slow. Farrar, Straus og Giroux, New York.
Diefenbach, S., Christoforakos, L., Maisch, B., Kohler, K., 2019. The state of prototyping

practice in the industrial setting: potential, challenges and implications. In: Proceed-
ings of the Design Society: International Conference on Engineering Design. Vol. 1.
Cambridge University Press, pp. 1703–1712.

Ehrlinger, L., Wöß, W., 2016. Towards a definition of knowledge graphs. SEMANTiCS
(Posters, Demos, SuCCESS) 48 (1–4), 2.

Elwert, F., 2013. Graphical causal models. In: Handbook of Causal Analysis for Social
Research. Springer, pp. 245–273.

Fischbach, J., Hauptmann, B., Konwitschny, L., Spies, D., Vogelsang, A., 2020. Towards
causality extraction from requirements. In: 2020IEEE 28th International Requirements
Engineering Conference (RE). IEEE, pp. 388–393.

Floridi, L., Holweg, M., Taddeo, M., Amaya Silva, J., Mökander, J., Wen, Y., 2022. CapAI-
a procedure for conducting conformity assessment of AI systems in line with the EU
artificial intelligence act. Available at SSRN 4064091 .

Frisch, M., 2014. Causal Reasoning in Physics. Cambridge University Press, Cambridge.
Furia, C.A., Torkar, R., Feldt, R., 2022. Applying bayesian analysis guidelines to empirical

software engineering data: the case of programming languages and code quality. ACM
Trans. Softw. Eng. Methodol. 31 (3), 1–38.

Gervasi, V., Zowghi, D., 2005. Reasoning about inconsistencies in natural language re-
quirements. ACM Trans. Softw. Eng. Methodol. 14 (3), 277–330.

Giamattei, L., Guerriero, A., Pietrantuono, R., Russo, S., 2024. Causal reasoning in software
quality assurance: a systematic review. IST, 178 107599.

Glymour, M., Pearl, J., Jewell, N.P., 2016. Causal Inference in Statistics: A Primer. John
Wiley & Sons, Hoboken, New Jersey.

Goodfellow, I., McDaniel, P., Papernot, N., 2018. Making machine learning robust against
adversarial inputs. Commun. ACM 61 (7), 56–66.

Granger, C. W.J., 1988. Some recent development in a concept of causality. J. Econom.
39 (1–2), 199–211.

Habiba, U.-E., Haug, M., Bogner, J., Wagner, S., 2024. How mature is requirements en-
gineering for AI-based systems? a systematic mapping study on practices, challenges,
and future research directions. Requir. Eng.. 29 (4), 567–600.

Hernán, M.A., Hsu, J., Healy, B., 2019. A second chance to get causal inference right: a
classification of data science tasks. Chance 32 (1), 42–49.

Hernán, M.A., Robins, J.M., 2020. Causal Inference: What If. Chapman & Hall/CRC, Lon-
don.

Heyn, H.-M., Knauss, E., 2022. Structural causal models as boundary objects in AI system
development. In: Proceedings of the 1st International Conference on AI Engineering:
Software Engineering for AI, pp. 43–45.

Heyn, H.-M., Knauss, E., Malleswaran, I., Dinakaran, S., 2023. An investigation of chal-
lenges encountered when specifying training data and runtime monitors for safety
critical ML applications. In: International Working Conference on Requirements Engi-
neering: Foundation for Software Quality. Springer, pp. 206–222.

Heyn, H.-M., Mao, Y., Weiss, R., Knauss, E., 2025. Causal models in requirement specifi-
cations for machine learning: a vision. In: Proceedings of the 33rd ACM International
Conference on the Foundations of Software Engineering, pp. 1402–1405.

Heyn, H.-M., Subbiah, P., Linder, J., Knauss, E., Eriksson, O., 2022. Setting AI in context: a
case study on defining the context and operational design domain for automated driv-
ing. In: International Working Conference on Requirements Engineering: Foundation
for Software Quality. Springer, pp. 199–215.

Irshad, M., Britto, R., Petersen, K., 2021. Adapting behavior driven development (BDD)
for large-scale software systems. J. Syst. Softw. 177, 110944.

Ishikawa, F., Matsuno, Y., 2020. Evidence-driven requirements engineering for uncer-
tainty of machine learning-based systems. In: 2020IEEE 28th International Require-
ments Engineering Conference (RE). IEEE, pp. 346–351.

Kaiser, M., Griessl, R., Kucza, N., Haumann, C., Tigges, L., Mika, K., Hagemeyer, J., Por-
rmann, F., Rückert, U., vor dem Berge, M., et al., 2022. Vedliot: very efficient deep
learning in iot. In: 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, pp. 963–968.

Knauss, A., Damian, D., Franch, X., Rook, A., Müller, H.A., Thomo, A., 2016. Acon: a
learning-based approach to deal with uncertainty in contextual requirements at run-
time. Inf. Softw. Technol. 70, 85–99.

Knauss, A., Damian, D., Schneider, K., 2014. Eliciting contextual requirements at design
time: a case study. In: 2014 IEEE 4th International Workshop on Empirical Require-
ments Engineering (EmpiRE). IEEE, pp. 56–63.

Kostis, J.B., Dobrzynski, J.M., 2020. Limitations of randomized clinical trials. Am. J. Car-
diol. 129, 109–115.

Kuwajima, H., Yasuoka, H., Nakae, T., 2020. Engineering problems in machine learning
systems. Mach. Learn. 109 (5), 1103–1126.

Lu, S., Ma, R., Sirojan, T., Phung, B.T., Zhang, D., 2021. Lightweight transfer nets and
adversarial data augmentation for photovoltaic series arc fault detection with limited
fault data. Int. J. Electr. Power Energy Syst. 130, 107035.

Lu, S., Phung, B.T., Zhang, D., 2018. A comprehensive review on DC arc faults and their
diagnosis methods in photovoltaic systems. Renew. Sustain. Energy Rev. 89, 88–98.

Lu, S., Sahoo, A., Ma, R., Phung, B.T., 2020. DC Series Arc fault detection using machine
learning in photovoltaic systems: recent developments and challenges. In: 2020 8th
International Conference on Condition Monitoring and Diagnosis (CMD). IEEE, pp.
416–421.

Maier, R., Schlattl, A., Guess, T., Mottok, J., 2024. Causalops-towards an industrial lifecy-
cle for causal probabilistic graphical models. Inf. Softw. Technol. 174, 107520.

Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Kull, M.,
Lachiche, N., Ramírez-Quintana, M.J., Flach, P., 2019. CRISP-DM twenty years later:
from data mining processes to data science trajectories. IEEE Trans. Knowl. Data Eng.
33 (8), 3048–3061.

McElreath, R., 2018. Statistical Rethinking: A Bayesian Course with Examples in R and
Stan. Chapman and Hall/CRC.

Mitchell, S., Potash, E., Barocas, S., D’Amour, A., Lum, K., 2021. Algorithmic fairness:
choices, assumptions, and definitions. Annu. Rev. Stat. Appl. 8, 141–163.

Molak, A., Jaokar, A., 2023. Causal Inference and Discovery in Python. Packt Publishing,
Birmingham.

Pearce, N., Lawlor, D.A., 2016. Causal inference-so much more than statistics. Int. J. Epi-
demiol. 45 (6), 1895–1903.

Pearl, J., 2009. Causality. Cambridge university press.
Pearl, J., 2019. The limitations of opaque learning machines. In: Brockman, J. (Ed.), Pos-

sible Minds: 25 Ways of Looking at AI. Penguin Press, London. chapter 2, pp. 13–19.
Pearl, J., Glymour, M., Jewell, N.P., 2016. Causal Inference in Statistics: A Primer. John

Wiley & Sons.
Pei, Z., Liu, L., Wang, C., Wang, J., 2022. Requirements engineering for machine learning:

a review and reflection. In: 2022IEEE 30th International RE Conference Workshops
(REW). IEEE, pp. 166–175.

Peters, J., Janzing, D., Schölkopf, B., 2017. Elements of Causal Inference: Foundations and
Learning Algorithms. The MIT Press, Cambridge, Massachusetts.

Prapas, I., Derakhshan, B., Mahdiraji, A.R., Markl, V., 2021. Continuous training and de-
ployment of deep learning models. Datenbank-Spektrum 21 (3), 203–212.

Reichenbach, H., 1956. The Direction of Time. Vol. 65. University of California Press,
Berkeley.

Ren, M., Wang, Y.-L., He, Z.-F., 2022. Towards interpretable defense against adversarial
attacks via causal inference. Mach. Intell. Res. 19 (3), 209–226.

Rohrer, J.M., 2018. Thinking clearly about correlations and causation: graphical causal
models for observational data. Adv. Methods Prac. Psychol. Sci. 1 (1), 27–42.

Rosenthal, R., Cooper, H., Hedges, L., et al., 1994. Parametric measures of effect size.
Handbook Res. Synth. 621 (2), 231–244.

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., Sejdinovic, D., 2019. Detecting and
quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5 (11),
eaau4996.

Schölkopf, B., 2022. Causality for machine learning. In: Probabilistic and Causal Inference:
The Works of Judea Pearl, pp. 765–804.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N.R., Kalchbrenner, N., Goyal, A., Bengio, Y.,
2021. Toward causal representation learning. Proc. IEEE 109 (5), 612–634.

Schröer, C., Kruse, F., Gómez, J.M., 2021. A systematic literature review on applying
CRISP-DM process model. Procedia Comput. Sci. 181, 526–534.

Shpitser, I., VanderWeele, T., Robins, J.M., 2010. On the validity of covariate adjustment
for estimating causal effects. In: Proceedings of the Twenty-Sixth Conference on Un-
certainty in Artificial Intelligence, pp. 527–536.

Slack, M.K., Draugalis Jr, , J.R., 2001. Establishing the internal and external validity of
experimental studies. Am. J. Health-Syst. Pharm. 58 (22), 2173–2181.

Smart, J., 2014. BDD in Action: Behavior-driven development for the whole software life-
cycle. Simon and Schuster, New York.

The Journal of Systems & Software 232 (2026) 112691

22

http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0001
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0001
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0001
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0002
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0002
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0002
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0003
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0003
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0004
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0004
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0004
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0004
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0005
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0005
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0005
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0005
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0006
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0006
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0007
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0007
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0007
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0008
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0008
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0009
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0009
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0009
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0010
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0010
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0011
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0011
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0011
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0012
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0012
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0012
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0014
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0014
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0015
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0016
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0016
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0016
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0016
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0017
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0017
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0018
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0018
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0019
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0019
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0019
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0020
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0020
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0020
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0021
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0022
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0022
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0022
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0023
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0023
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0024
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0024
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0025
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0025
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0026
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0026
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0027
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0027
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0028
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0028
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0028
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0029
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0029
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0030
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0030
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0031
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0031
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0031
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0032
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0032
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0032
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0032
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0033
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0033
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0033
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0034
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0034
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0034
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0034
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0035
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0035
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0036
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0036
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0036
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0037
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0037
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0037
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0037
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0038
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0038
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0038
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0039
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0039
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0039
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0040
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0040
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0041
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0041
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0042
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0042
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0042
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0043
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0043
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0044
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0044
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0044
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0044
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0045
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0045
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0046
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0046
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0046
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0046
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0047
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0047
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0048
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0048
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0049
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0049
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0050
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0050
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0051
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0052
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0052
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0053
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0053
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0054
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0054
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0054
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0055
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0055
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0056
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0056
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0057
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0057
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0058
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0058
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0059
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0059
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0060
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0060
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0061
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0061
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0061
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0062
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0062
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0063
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0063
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0064
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0064
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0065
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0065
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0065
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0066
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0066
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0067
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0067

H.-M. Heyn et al.

Spirtes, P., 2001. An anytime algorithm for causal inference. In: International Workshop
on Artificial Intelligence and Statistics. PMLR, pp. 278–285.

Spirtes, P., Glymour, C., 1991. An algorithm for fast recovery of sparse causal graphs. Soc.
Sci. Comput. Rev. 9 (1), 62–72.

Spirtes, P., Glymour, C.N., Scheines, R., Heckerman, D., 2000. Causation, Prediction, and
Search. MIT press, Cambridge, Massachusetts.

Textor, J., Hardt, J., Knüppel, S., 2011. DAGItty: a graphical tool for analyzing causal
diagrams. Epidemiology 22 (5), 745.

Tiddi, I., Schlobach, S., 2022. Knowledge graphs as tools for explainable machine learning:
a survey. Artif. Intell. 302, 103627.

Torkar, R., Furia, C.A., Feldt, R., de Oliveira Neto, F.G., Gren, L., Lenberg, P., Ernst, N.A.,
2022. A method to assess and argue for practical significance in software engineering.
IEEE Trans. Softw. Eng. 48 (6), 2053–2065.

UL, 2013. UL 1699B: Outline of Investigation for Photovoltaic (PV) DC Arc-Fault Circuit
Protection. Underwriters Laboratories Inc., Northbrook, IL, USA.

van Lamsweerde, A., 2001. Goal-oriented requirements engineering: a guided tour. In:
Proceedings 5th IEEE International Symposium on Requirements Engineering. IEEE,
pp. 249–262.

Von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch,
B., Pfrommer, J., Pick, A., Ramamurthy, R., et al., 2021. Informed machine learning–
a taxonomy and survey of integrating prior knowledge into learning systems. IEEE
Trans. Knowl. Data Eng. 35 (1), 614–633.

Vowels, M.J., Camgoz, N.C., Bowden, R., 2022. D’ya like dags? a survey on structure
learning and causal discovery. ACM Comput. Surv. 55 (4), 1–36.

Wirth, R., Hipp, J., 2000. CRISP-DM: towards a standard process model for data mining.
In: Proceedings of the 4th International Conference on the Practical Applications of
Knowledge Discovery and Data Mining. Vol. 1. Manchester, pp. 29–39.

Xiong, Q., Ji, S., Zhu, L., Zhong, L., Liu, Y., 2017. A novel DC arc fault detection method
based on electromagnetic radiation signal. IEEE Trans. Plasma Sci. 45 (3), 472–478.

Yin, R.K., 2003. Designing case studies. Qualit. Res. Methods 5 (14), 359–386.
Zhao, H., Ma, C., Dong, X., Luu, A.T., Deng, Z.-H., Zhang, H., 2022. Certified robustness

against natural language attacks by causal intervention. In: International Conference
on Machine Learning. PMLR, pp. 26958–26970.

Zheng, H., Wang, R., Yang, Y., Yin, J., Li, Y., Li, Y., Xu, M., 2019. Cross-domain
fault diagnosis using knowledge transfer strategy: a review. IEEE Access 7,
129260–129290.

The Journal of Systems & Software 232 (2026) 112691

23

http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0068
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0068
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0069
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0069
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0070
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0070
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0071
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0071
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0072
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0072
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0073
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0073
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0073
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0074
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0074
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0074
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0075
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0075
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0075
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0075
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0076
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0076
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0077
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0077
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0077
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0078
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0078
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0079
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0080
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0080
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0080
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0081
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0081
http://refhub.elsevier.com/S0164-1212(25)00360-7/sbref0081

	Causal models for specifying requirements in industrial ML-based software: A case study
	1 Introduction
	2 Background
	2.1 ML development pipeline
	2.2 Causal inference

	3 Related work
	3.1 Research objectives and research questions

	4 Methods
	4.1 Description of study site
	4.2 Description of use case
	4.3 First cycle: exploring prior knowledge integration through causal models
	4.4 Second cycle: conceptualising the CDD approach for software with ML components
	4.5 Third cycle: demonstrating CDD in practice on an evaluative case study

	5 Causality-driven development (CDD)
	5.1 Step 2: Drawing of graphical causal model to document context assumptions from a set of causal mechanisms
	5.2 Step 3: Performing d-separation to derive data requirements and model requirements.
	5.3 Step 4: Checking consistency, faithfulness, and observability

	6 Results
	6.1 Prior knowledge about the system
	6.2 A heuristic for the elicitation of a graphical causal model from prior knowledge and context assumptions
	6.3 Experimental evaluation
	6.4 Significance testing

	7 Discussion
	7.1 Discussion of the experiment results
	7.2 Answer to the research questions (RQs)
	7.3 Causal modelling in the context of systems prototyping
	7.4 Identifying inconsistencies in prior knowledge
	7.5 Limitation of CDD and future work
	7.6 Threats to validity

	8 Conclusion
	A Component list and description for the test bench representing the use case of serial arc fault detection in DC power systems
	B Detailed specifications of the FNN models used in this study
	C Confusion matrices for all models across all datasets
	D Summary of the Bayesian GLM posteriors for the evaluation of the models
	E Significance testing using Welch's t-test and Hedges' g for effect size suggestion

