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 a b s t r a c t

Unlike conventional software systems, where rules are explicitly defined to specify the desired behaviour, soft-
ware components that incorporate machine learning (ML) infer such rules as associations from data. Require-
ments Engineering (RE) provides methods and tools for specifying the desired behaviour as structured natural 
language. However, the inherent ambiguity of natural language can make these specifications difficult to inter-
pret. Moreover, it is challenging in RE to establish a clear link between the specified desired behaviour and data 
requirements necessary for training and validating ML models.
 In this paper, we explore the use of causal models to address this gap in RE. Through an exploratory case study, 
we found that causal models, represented as directed acyclic graphs (DAGs), support the collaborative discovery 
of an ML system’s operational context from a causal perspective. We also found that causal models can serve as 
part of the requirements specification for ML models because they encapsulate both data and model requirements 
needed to achieve the desired causal behaviour. We introduce a concept for causality-driven development, in which 
we show that data and model requirements, as well as a causal description of the operational context, can be 
discovered iteratively using graphical causal models. We demonstrate this approach using an industrial use case 
on anomaly detection with ML.

1.  Introduction

Developing and deploying software systems that incorporate ma-
chine learning (ML) models are becoming routine processes in many 
different industries. Unlike the development of conventional software 
with a priori defined rules, developing software with ML models is a 
data driven process: Especially deep learning systems are “opaque learn-
ing machines” (Pearl, 2019) because they rely on statistical learning 
to discover associations among implicit variables from observational 
data (Peters et al., 2017). Many industrial applications require robustness
of the employed ML models against changes in the input data distribu-
tion (Borg et al., 2019). A lack of robustness against changes in the input 
data distribution not only compromises reliability and eventual safety 
of a depending system, but also renders the system susceptible to ad-
versarial attacks (Carlini and Wagner, 2017; Goodfellow et al., 2018). 
One reason for the lack of robustness in ML models can be found in the 
challenges to specify the models, because “if input and/or output data 
are high-dimensional, both defining preconditions and detailed function 
specifications are difficult” (Kuwajima et al., 2020). Assumptions about 
the operational context in which the ML model is deployed are often 
implicitly included during the design process (Mitchell et al., 2021), for 
example in the dataset used for training. However, robustness against 
(small) context changes can only be tested if the expected operational 
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context has been made explicit, for example in the form of contextual 
requirements (Knauss et al., 2014, 2016).

Understanding the system’s context, or problem domain, from a 
data perspective however is not solved in requirement engineering 
(RE) (Habiba et al., 2024). Current RE methods, such as behaviour-
driven development (BDD) or goal modelling do not work well for sys-
tems with ML components because they cannot systematically approach 
the problem of specifying the necessary data based on the system’s ex-
pected operational context (Ahmad et al., 2023). As a result, many ML 
development projects spend more than 80% of the project time on the 
elicitation of data requirements and data preparation (Pei et al., 2022).

An important, and in RE not yet well explored aspect, of the op-
erational context for systems with ML models are causal structures 
that determine the direction of cause and effect. Recent work suggests 
that causal probabilistic graph-based models are a powerful tool for
capturing the context of a system from a causal perspective (Maier et al., 
2024). In this paper, we propose a system specification concept called 
causality-driven development (CDD), in which graphical causal models 
play an important role in exploring and communicating assumptions 
about the operational context, desired functionality of ML models, and 
data needed to ensure correct causal behaviour of the system. We opera-
tionalised this approach through an exploratory case study in which we 
applied graphical causal models for system prototyping in an industrial 
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setting. With CDD, we suggest a concept to RE that connects contextual 
assumptions and data requirements through graphical causal models for 
which a rich mathematical framework exists that can be used to derive 
data requirements (Schölkopf, 2022). Specifically, this paper contributes 
in the following ways:

C1 Based on a series of workshops with industrial practitioners, we pro-
pose a concept for causality-driven development (CDD) for software 
with ML components. This technique complements natural language 
requirements-driven software development.

C2 We demonstrate the application of CDD in practice on an industrial 
use case involving anomaly detection in low-voltage DC switching 
gear.

C3 We report experimental results suggesting that CDD has a positive 
impact on the performance and robustness of a trained ML model 
for anomaly detection in an industrial prototyping environment.

The article is structured as follows: Section 2 provides background 
information on causal models and Section 3 an overview of related work. 
Section 4 outlines the research methods of this study. Section 5 intro-
duces CDD as a complement to requirements elicitation for software of 
industrial cyber-physical system (CPS) with ML models and their train-
ing data. Section 6 presents results from a case study where we ap-
plied CDD in an industrial context. Section 7 discusses the application of 
causal modelling in the context of systems prototyping, outlines limita-
tions of CDD, offers suggestions for future research, as well as addresses 
threats to validity. Section 8 provides a conclusion.

2.  Background

2.1.  ML development pipeline

In an ML development pipeline, system goals and high-level require-
ments are met by accumulating data to train an ML model until the 
stakeholder needs are met. Steps in an ML development pipeline typi-
cally include:

1. System goals and context assumptions: Business and problem under-
standing;

2. Building datasets: Data collection, understanding, and pre-
processing;

3. Building the ML model: Model selection and training on the prepared 
datasets;

4. Analysing: Evaluation and tuning of the model;
5. Deploying: Final deployment and monitoring in the field.

These steps are typically iterative because if the evaluation of the 
final model is unsatisfactory, additional data may be collected, and the 
model is retrained and re-evaluated. ML development pipelines often 
base on the cross-industry standard process for data mining (CRISP-DM), 
originally introduced by Wirth and Hipp (2000) and Chapman et al. 
(2000), and widely applied in both data science and machine learn-
ing problems (Schröer et al., 2021; Martínez-Plumed et al., 2019). This 
workflow for ML model development has several limitations. First, data 
requirements derived from high-level system goals are often poorly spec-
ified. As a result, models trained on such data frequently fail to meet the 
stakeholders’ needs and do not generalise well to changes in the oper-
ational environment (Heyn et al., 2023). Second, the operational con-
text is often underspecified, resulting in datasets, and consequently ML 
models, that perform poorly under real-world conditions (Heyn et al., 
2022). These two limitations are typically mitigated by collecting large 
volumes of training data in the hope of covering all potentially relevant 
operational contexts and use case scenarios. Finally, the analysis and 
validation of the ML model require testable conditions based on stake-
holder needs and requirements. However, to the best of our knowledge, 
no clear path exists from high-level stakeholder requirements for ML sys-
tems to testable conditions that can be used for purposes such as model 

validation and runtime monitoring. Establishing such a path would al-
low traceability of design decisions, such as the data collection, back to 
overarching system goals.

2.2.  Causal inference

While humans often intuitively understand the direction of cause and 
effect (a drop in the temperature measurement does not cause the sun 
to set, even though both variables are associated in a dataset), today’s 
ML approaches cannot infer causal structures from observational data 
alone (Pearl, 2019). There are two reasons for this limitation suggested 
in the literature:

1. Lack of observability: In conventional ML we only have a limited 
sample set available to infer properties of an underlying function, 
i.e., “we want to estimate a property of an object we cannot [en-
tirely] observe” (Peters et al., 2017). This first lack of observability 
is typically met by “throwing more data at the problem”1.

2. ML models represent associations: Even if one were able to per-
fectly observe and reconstruct the underlying function, the trained 
ML model is still only a probabilistic representation of the underlying 
problem, i.e., it represents associations but not causal relationships 
between variables. This is not enough to infer a suitable causal model 
for the desired operational context, because even a perfectly learnt 
probabilistic model can relate to any one of several possible causal 
models that are compatible with the data (Pearce and Lawlor, 2016).

Without recognising the causal structure of a problem, the incorporated 
ML model may learn a probabilistic representation that seems compat-
ible in a training context, but as soon as it is deployed in a slightly dif-
ferent environment, its performance may deviate drastically from the 
expectations (D’Amour et al., 2022). It is therefore necessary to find a 
path from the expected cause-effect relationships to the necessary data. 
Two approaches in the realm of causal learning seem possible to solve 
the outlined problems of underspecification of data for ML:

One approach is the development of methods that allow for causal 
discovery from observational data. While data-driven causal discovery 
made significant progress in algorithms in recent years, see for example 
the review by Vowels et al. (2022), these algorithms still rely on “strong 
and often untestable assumptions”. Causal discovery therefore usually 
only allows the identification of a so-called Markov equivalence class for 
a causal graph. This means that several distinct causal graphs can be 
equally compatible with the data, making it impossible to uniquely iden-
tify the underlying causal structure without additional knowledge.

A second approach is causal inference based on the explicit inclu-
sion of human “insight” by defining, even partially, the expected causal 
model of the operational context. This prior knowledge allows to reason 
about data, assumptions, and tests that are needed to arrive at a proba-
bilistic model that correctly represents the environment (Hernán et al., 
2019).

Directed acyclic graphs (DAGs). DAGs provide an accessible visualisa-
tion of prior knowledge about causality, with nodes representing the 
variables of a system of interest and directed edges representing the di-
rection of cause-and-effect (Elwert, 2013). DAGs are a qualitative graph-
ical representation of causal models. They provide information about the 
direction of cause-and-effects between variables, but they do not provide 
information about the strengths or functional properties of the causal re-
lations (Pearce and Lawlor, 2016). Mathematically, the graph structure 
of a DAG represents a structural causal model (SCM). A SCM is a formal 
assignment of random variables 𝑋1,… , 𝑋𝑛 through a set of functions 𝑓𝑖

1 https://www.forbes.com/sites/kalevleetaru/2019/07/07/
automatic-image-captioning-and-why-not-every-ai-problem-can-be-solved\
-through-more-data, accessed 2024-10-17
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Fig. 1. Elemental structures in a causal model.

and unexplained, jointly independent variables 𝑈𝑖 (Schölkopf, 2022):
𝑋𝑖 ∶= 𝑓𝑖

(

𝐏𝐀𝑖, 𝑈𝑖
)

(𝑖 = 1,… , 𝑛). (1)

In a SCM, a variable 𝑋𝑖 is a direct cause of another variable 𝑋𝑗 , 𝑖 ≠ 𝑗 if 𝑋𝑗
appears in the function 𝑓𝑖 that assigns the value of 𝑋𝑖 (Glymour et al., 
2016). If each variable is modelled as a node, and the direct causes as di-
rected edges between the nodes in a DAG, then the parents in the graph, 
denoted as 𝐏𝐀𝑖, of a node 𝑋𝑖 are all nodes that have a directed edge 
pointing into the node 𝑋𝑖. DAGs are directed, i.e., the arrows can only 
have a single head pointing from the cause towards the effect (Rohrer, 
2018). They are acyclic because a variable at a given point in time can-
not be the cause of itself (Pearl et al., 2016). In DAGs, four fundamental 
structural patterns can occur which are illustrated in Fig. 1.

Confounding. DAGs can clarify assumptions about confounders. A typ-
ical case of confounding occurs when a variable 𝑍0 acts as common 
cause of two unrelated variables 𝑋1 and 𝑋2 such that a spurious relation-
ship between 𝑋1 and 𝑋2 can be observed: 𝑋1 ← 𝑍0 → 𝑋2 (Fig. 1 (a)). 
Such associations arise through confounding paths, i.e., non-causal paths 
that induce statistical dependence between variables. In this example, 
an association between 𝑋1 and 𝑋2 is observable because there exists 
a path 𝑋1 −𝑍0 −𝑋2 when ignoring the direction of the arrows in the 
DAG. Association can “flow” along such paths against the direction of 
causality. Conditioning on the common cause 𝑍0 blocks this flow and 
removes the spurious association between 𝑋1 and 𝑋2.

Confounding can also arise for other reasons besides a common 
cause: A collider blocks the flow of association unless conditioned upon. 
That is, if in a collider structure, as shown in Fig. 1 (c), a learning al-
gorithm conditions the data on 𝑍0, it will open the flow of association 
between 𝑋1 and 𝑋2, which results in a spurious association and con-
founding. This situation is often referred to as selection bias. Similarly, 
conditioning on a descendent of a collider, as illustrated in Fig. 1 (d), has 
the same effect. Here, conditioning on 𝑋4 will re-open the flow of asso-
ciation between 𝑋1 and 𝑋2 because 𝑋4 is a descendent of the collider 
𝑍0. These cases show how any decision on which variables should be 
included or excluded in a statistical analysis, or as data for a learning 
algorithm, can either block or open non-causal paths. 

d-separation. D-separation is a formal criterion, introduced by Pearl 
(2009), that allows to reason systematically about conditional indepen-
dence in DAGs. It determines whether there exists an “open” path of 
association between two variables, i.e., a path on which association can 
flow. A confounding path of association exists when association can flow 
against the assumed direction of cause-and-effect in a DAG. Pearl et al. 
(2016) states that such a confounding path 𝑝 can be blocked by a set 
of nodes 𝑍 if (i) 𝑝 contains a chain 𝑋1 → 𝑍0 → 𝑋2 or a common cause 

𝑋1 ← 𝑍0 → 𝑋2 such that the middle node 𝑍0 is in 𝑍, or (ii) 𝑝 contains a 
collider 𝑋1 → 𝑍0 ← 𝑋2 such that neither 𝑍0 nor any of its descendants 
are in 𝑍. The rules of d-separation apply to all possible paths in a DAG. 
In practice, tools such as DAGitty (Textor et al., 2011) can determine 
which variables need to be conditioned on to block any confounding 
path implied by a DAG elicited from prior knowledge.

3.  Related work

The aim of RE is to identify system goals and elicit requirements for 
software development. Recognising causality is important in specifying 
the desired behaviour of a software system. For example, BDD allows 
to identify system goals and to elicit requirements in software devel-
opment by specifying the desired behaviour of a system using natural 
language in a “Given-When-Then” structure (Binamungu et al., 2018). 
This structure provides high level domain-specific scenarios that guide 
both requirements specification and testing. An RE-governed develop-
ment process typically entails the following steps:
(a) describing textually examples of the desired functionality,
(b) developing of system prototypes that exhibit the desired functional-

ity,
(c) testing and deploying the system based on test cases derived from 

the described examples of the desired functionality (Smart, 2014).
Although RE approaches, such as BDD, have been applied successfully to 
conventional software development, their usefulness for ML systems can 
be limited by gaps in the functional specification (Irshad et al., 2021) 
and a lack of understanding of the operational context (Heyn et al., 
2022). The context in which an ML model operates is often only im-
plicitly assumed during design, for example in the choice of data used 
for training (Mitchell et al., 2021). While natural language requirements 
offer certain advantages such as ease of use, accessibility, and flexibil-
ity compared to domain-specific language, they are also prone to ambi-
guity which can make specifications difficult to interpret (Gervasi and 
Zowghi, 2005; Binamungu et al., 2018). To our knowledge, usual ap-
proaches to RE lack a clear link between the specified desired behaviour 
and the data requirements for training and validating of ML models; 
they do not provide methods to guide the specification of the necessary 
data required to train the desired behaviour into an ML model. On the 
other hand, RE methods such as BDD inherently imply a causal struc-
ture: Given (a context)→When(a cause)→Then(an effect). Combining the 
naturalness of the “Given-When-Then” structure and the inability of ML 
to infer causal relationships from data, the idea is therefore to make im-
plied causal relationships explicit through graphical models as part of 
the RE effort for software systems that use ML.

An example of an RE method that graphically defines causal 
relationships for software is goal-oriented requirement engineering 
(GORE) (van Lamsweerde, 2001). Goal models, represented through di-
rected graphs, allow for the decomposition of high level goals to system 
level design decisions (Anwer and Ikram, 2006). However, with GORE 
it is not immediately obvious how to define clear and measurable goals 
in terms of the data required to achieve a desired behaviour in an ML-
enabled system, leading to “uncertainty and unpredictability of [the] 
implementation” (Ishikawa and Matsuno, 2020). Goal models are a type 
of knowledge graph that generally represent knowledge models using a 
structure of nodes as entities and edges describing relationships between 
these entities. Ehrlinger and Wöß (2016) highlighted that a knowledge 
graph can be seen as a model that “acquires and integrates informa-
tion into an ontology and applies a reasoner to derive new knowledge”. 
However, unlike graphical causal models in the form of DAGs, which 
base on a mathematical framework for causality, a formal definition of 
knowledge graphs is missing (Buchgeher et al., 2021). Although there is 
significant prior work on knowledge inclusion into ML model develop-
ment, see for example the literature review by Von Rueden et al. (2021), 
to our knowledge there has been no attempt to incorporate prior knowl-
edge about causal relationships in the ML development pipeline. Other 
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RE methods, such as use case modelling or user stories, do not explicitly 
define causal relationships in a way that it could be applied to finding 
data for training an ML model as part of an ML development pipeline. 
The potential of including causal knowledge as part of RE has not yet 
been fully leveraged (Fischbach et al., 2020). In a recent systematic 
review, Giamattei et al. conclude that causal reasoning is increasingly 
recognised as a tool for software quality assurance, particularly in fault 
localisation and testing activities (Giamattei et al., 2024). The authors 
highlight that causal reasoning remains underutilised in earlier phases 
of the software lifecycle, such as RE. In a vision paper, we argued there-
fore that causal modelling is promising for RE for ML systems Heyn 
et al. (2025). We suggested that more research is needed to explore 
how causal modelling can support key RE tasks, including requirements 
elicitation, particularly in the context of complex, data-dependent char-
acteristics of ML-based systems.

3.1.  Research objectives and research questions

The scope of this article is to develop this vision of using causal mod-
els in RE activities further by proposing, arguing, and demonstrating 
that causal modelling can be used as requirements specifications in prac-
tice when building software systems with ML components. Specifically, 
we show how to discover iteratively data needs for the training and vali-
dation of ML models and demonstrate the approach on an industrial use 
case of a CPS for anomaly detection. The use case is relevant to industrial 
practitioners because building representative datasets for ML models in 
industrial settings for anomaly detection is challenging (Zheng et al., 
2019):

1. Data diversity: Industrial sites can generate a wide range of data, 
but the data relevant to anomaly detection are very limited as ab-
normal situation happens rarely in productive system (e.g., once in 
ten years of continues operation).

2. Cost: The creation of data for rare and abnormal situations in real 
industry environments is often expensive and risky.

As a result, test benches and prototypes are used to simulate operational 
environments and collect data. To the best of our knowledge, there is 
yet no explicit treatment of causal relationships as part of requirement 
specifications for software that includes ML components. This research 
therefore has two main objectives:
Obj1 The first research objective is to define a procedure for causal 

analysis as a complement to conventional requirements elicitation 
for software systems with ML models.

Obj2 The second research objective is to explore in a case study whether 
the use of causal modelling during prototyping of a CPS has a pos-
itive impact on the robustness and performance of the ML com-
ponents that are part of a CPS for anomaly detection.

Our hypothesis is that causal modelling can help to isolate and to specify 
clearly the intended causal behaviour of the ML model and the opera-
tional context in which the system operates. As a result, causal mod-
els support the specification of data needs for training the model in 
the given operational context. The following research questions (RQs) 
guided this study:
RQ1 How can causal models provide guidance for the development of 

software systems with ML components?
RQ2 In a case study, to what extent can the performance and robust-

ness of the software system with ML for cyber-physical systems be 
improved by incorporating domain experts knowledge as graphi-
cal causal models during the system development?

4.  Methods

We applied engineering research to explore, conceptualise, and eval-
uate CDD as a new and complementary approach for the elicitation of 

High-level requirements for arc detection system
RA1: GIVEN a low voltage DC system in normal operation WHEN
an arc occurs THEN an alarm should be triggered.
RA2: GIVEN a low voltage DC system in normal operation WHEN
no arc occurs THEN an alarm should not be triggered.

requirements for software with ML components. The research entailed 
three research cycles, whereof the first cycle focused on exploring causal 
models for capturing prior knowledge about the system and its oper-
ational context and the second cycle focused on conceptualising CDD 
for software with ML components. These two cycles of exploring prior 
knowledge and conceptualising CDD primarily addressed RQ1 on how 
causal models can guide development. The final third cycle focused on 
demonstrating the approach in an evaluative case study and addressed 
RQ2 by testing the extent to which causal modelling improves robust-
ness and performance of ML.

In this section, we will first describe the study site and the industrial 
use case that became part of the case study. Then, we will describe the 
methodology for each of the three research cycles.

4.1.  Description of study site

The research was conducted within the Very efficient deep learning 
in the IoT (VEDLIoT) EU Horizon 2020 project. The aim of the project 
was to develop tools, methodologies, and experience for supporting the 
development and deployment of AI in IoT systems (Kaiser et al., 2022). 
We chose Siemens, one of the industrial partners in VEDLIoT, as the case 
company because their use case, which involves anomaly detection in 
CPS, represented a typical industrial product development in its proto-
typing phase. It is at this prototyping stage that practitioners need guid-
ance in understanding the CPS and in discovering and defining the nec-
essary data in the context of the design accordingly (Diefenbach et al., 
2019).

4.2.  Description of use case

The use case on which we explored (first cycle), conceptualised (sec-
ond cycle), and demonstrated (third cycle) CDD for software with ML 
components is a system for the detection of series arc faults in low volt-
age direct current (DC) distribution systems. The use case represents a 
CPS for anomaly detection using ML. Unlike parallel arc faults, which 
are mainly detected by mandatory over-current protection systems, se-
rial arc faults are more challenging to detect with conventional sys-
tems (Lu et al., 2018). The company engineers provided the following 
high-level requirements for the use case system:

Safety is a critical aspect of arc detection and the false prediction rate 
therefore should be low. If an arc occurrence is missed, i.e., a false neg-
ative, and the power is not cut, it can lead to severe economical damage 
due to fire and injuries to personal. On the other hand, a false positive, 
i.e., a false alarm, can lead to economical damage for customers due to 
unwanted power cuts. Therefore, RA1 requires a low false negative rate, 
and RA2 specifically requires the prevention of false positive classifica-
tion. Today’s approaches rely on physical model analysis and statistical 
algorithms for anomaly detection (Xiong et al., 2017; Chae et al., 2016). 
The limitation of conventional methods is their low adaptability to dif-
ferent system structures and application scenarios. This makes their con-
version to industrial products, where different scenarios need to be han-
dled, challenging (Lu et al., 2021). In recent years, there has been a 
number of studies investigating the possibility and performance of var-
ious ML algorithms in DC series fault detection (Lu et al., 2020). How-
ever, ML approaches often neglect the underlying physical properties 
of the engineering problem which can lead to systems with unexpected 
behaviour (Frisch, 2014).
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Fig. 2. Component diagram of the arc fault detection prototype system.

Description of prototyping system. The system in this use case is an indus-
trial prototype for a DC switch gear arc detection system. The prototype 
followed a reference implementation for DC series arc fault detection 
systems which increased the realism of the case study (UL, 2018). An 
overview of the prototype system is depicted in Fig. 2.

The prototype consisted of an arc generation circuit and an arc de-
tection system. The main circuit consisted of a DC power supply, an elec-
tronic load, a passive load, and a pair of electrodes that were connected 
during normal operation. One of the electrodes was controlled by a lin-
ear stage, allowing it to create an air gap to generate the arc. The cur-
rent transducer of the detection system reduced the current proportion-
ally and the signal was then sampled by an analogue-digital-converter 
(ADC). At runtime, the data was then further transmitted to an edge de-
vice for processing with the trained ML algorithms. A component list of 
the prototype system is provided in Appendix A.

4.3.  First cycle: exploring prior knowledge integration through causal 
models

In the first cycle of this engineering research we explored how prior 
domain knowledge about the system under development can be cap-
tured in graphical causal models. We conducted three workshops with 
Siemens in October and November 2022. These were conducted re-
motely using Miro as an interactive whiteboard platform and the R-
package DAGitty to interactively construct graphical causal models (Tex-
tor et al., 2011). Two company development engineers, a project man-
ager, and two academic scientists participated in each workshop. The 
first author of this paper prepared a Miro board with an explanation of 
what causal models are and examples of graphical causal models illus-
trating causal relationships such as rain → wet road → braking distance. 
The company participants explained the use case in the form of scenario 
descriptions and provided data samples from initial experiments. To-
gether, the scientists and engineers identified causal mechanisms, i.e., 
independent “logical” cause-and-effect relationships based on the use 
case scenario and the initial data. The result was a first causal model 
that contained the envisioned cause-effect relationships for the use case 
which were supported by the initial data samples. In the subsequent 
two workshops, the causal model was continuously extended and modi-
fied by incorporating new experimental data and by discussing underly-
ing assumptions of the cause-effect mechanisms, contextual assumptions 
and possible interventions in the use case. This iteratively “drawing” of 
a graphical causal model helped the company experts to formalise their 
prior knowledge about the system. As a result of the workshops, the re-
searchers and engineers started to see patterns in their work progress 
that lead to a systematic approach in how they refined the causal mod-
els for the use cases based on prior expert knowledge and experimental 
results.

4.4.  Second cycle: conceptualising the CDD approach for software with ML 
components

Based on the progress and the discussions during the first cycle 
workshops, the scientists developed a heuristic for constructing graph-
ical causal models using experts’ prior knowledge. They also outlined 
a workflow for documenting assumptions about cause-effect relation-
ships through causal models and for deriving both data and ML-model 
requirements from these models. In the final two workshops, the pro-
posed heuristic and workflow were discussed and refined. The final 
causal model for the industrial use case was created, and data as well as 
ML model requirements were defined based on the CDD approach.

4.5.  Third cycle: demonstrating CDD in practice on an evaluative case 
study

The final cycle of this engineering research focused on evaluating 
the proposed CDD approach in terms of ML model performance and ro-
bustness. The evaluation tests were run on a prototype of the arc fault 
detection system. The current signal served as data source for arc classi-
fication because it is a common feature used in studies on DC series arc 
fault detection (Lu et al., 2018). There are several reasons for this. The 
installation of a current sensor is more realistic in practice compared to 
voltage monitoring because the installation of current transducers does 
not require any additional intervention in the circuit. The current sens-
ing is less susceptible to environmental disturbances than other sensors 
such as temperature, optical or acoustic sensors. Finally, a change in 
current measured at one point in the circuit can reflect the condition of 
the whole circuit which allows the number of sensors to be reduced

Two independent variables were manipulated during arc generation 
and data collection: the load profile and the electrode movement pat-
tern. The load profile could be simulated with different settings of the 
electronic load. The electrode movement pattern could differ not only 
in the arc gap and arc duration, but also in its speed of movement and 
its behaviour after the arc had occurred.

5.  Causality-driven development (CDD)

The idea of causality-driven development for ML is to add a step in 
the ML development pipeline that captures and documents systemati-
cally prior knowledge about the expected causal structure of the system. 
In particular, the additional step documents causal relationships that 
cannot be learned from data with conventional ML models today (Pearl, 
2019). Domain experts must provide this additional data knowledge, but 
they are often neither ML model developers nor data scientists. There-
fore, a common language is needed to communicate causal knowledge. 
Causal models in their graphical form as directed acyclic graphs can be 
used as a universal language between domain experts and developers 
because graphical causal models are well described and commonly ap-
plied in statistics to identify and to describe causal relationships (Vowels 
et al., 2022; Shpitser et al., 2010). Fig. 3 illustrates where in the ML de-
velopment pipeline we envision to include prior knowledge in the form 
of causal models.

The causal relation network of complex systems however can be huge 
and inscrutable. It might not be feasible to immediately capture every 
possible cause-effect relation for a typical industrial CPS use case. We 
therefore propose an iterative approach including four steps to building 
causal models for ML systems. The model grows iteratively until the 
domain experts are satisfied that all relevant cause-effect relationships 
are included and the ML system behaves robustly enough in the intended 
operational context. If testing shows that the ML model is still not robust 
enough, or if new operational context assumptions are to be included, 
the causal model can be extended, new data generated according to the 
extended model, and the tests can be repeated. The iteration and the 
resulting data collection are guided by a causal model which allows 
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Fig. 3. Inclusion of causal models in the ML development pipeline. (1): Prior Knowledge (2): Context description and testable conditions (3a): Data requirements 
(3b): Model requirements (4): Data availability / observability.

Fig. 4. Workflow for constructing causal models to support requirements spec-
ification in ML-based software. The numbers in parentheses refer to the stages 
depicted in Fig. 3.

for traceability of the design decisions and predetermination of data 
collection.

Fig. 4 details the building of causal models as part of an ML model 
pipeline and below we will explain each step in detail. We arrived grad-
ually at the proposed workflow by working with our project partner in 
regular workshops.

Step 1: Identifying causal mechanisms from high level requirements and 
context assumptions. In the first step, causal mechanisms are identified 
that subsume the described functional behaviour using prior knowledge 
the developers or domain experts have about the system. Scenarios, 
elicited by the stakeholders, for example through user stories or BDD, 
contain information about high level requirements and context assump-
tions. Causal mechanisms that govern the behaviour described in these 
high level requirements need to be identified. This additional knowl-
edge about causal mechanisms can be obtained through a set of differ-
ent methods summarised for example in Molak and Jaokar (2023): In 
controlled experiments, researchers can “isolate” the object in a context 
that allows data collection in a controlled environment. In randomised 
controlled trials (RCTs), this “controlled environment” is created by ran-
domly assigning an external factor to the objects of interest. That allows 

Principle steps for causal-driven development (CDD) in Fig. 4.
Step 1, Identifying causal mechanisms: In this step, the ex-
pected outcome, relevant causes in the operational context, and 
other effects influencing the desired outcome are identified, for 
example through expert knowledge. This leads to a set of separate 
cause-effect relationships.
Example: Assume we design a system to warn if sensor noise affects the 
safety of an automated vehicle unacceptably much. Experts identify 
that Rain affects Sensor Noise, which in turn affects Safe Driving. 
They identify also a second mechanism, namely that Road Quality 
affects Braking Distance, which in turns also affects Safe Driving.
Step 2, Drawing a graphical causal model: The identified cause-
effect relationships are connected to a directed acyclic graph 
(DAG). Steps 1 and 2 occur iteratively, i.e., each newly discovered 
cause-effect relationship from Step 1 is integrated in the causal 
model. The resulting graph documents the operational context and 
represents the expected cause-effect relationships for the system.
Example: The two identified causal mechanisms are added to one DAG. 
The expert noted that Rain also affects the Braking Distance, which 
was previously not recognised. This relation is added to the DAG (here 
as dashed edge).
Step 3, Performing d-separation: Based on the causal model, 
confounding paths and colliders are identified. The principle of 
d-separation is applied to determine which variables need to be 
conditioned on in order to block ”non-causal“ paths of association 
in the data. These ”non-causal“ paths can lead to undesired be-
haviour of a ML component by introducing spurious associations. 
The resulting set of variables that must be controlled provide re-
quirements for the training dataset, the data that must be observ-
able at runtime, and requirements towards the ML models in terms 
of data it must accept as well as model configurations. This step 
helps prevent the model from becoming biased due to the learning 
of spurious associations or inadvertently opening collider paths.
Example: To estimate the direct effect of Sensor Noise on Safe Driv-
ing, the expert identify a non-causal path: Sensor Noise ← Rain
→ Braking Distance → Safe Driving. The principle of d-separation 
tells us now that we must condition on Rain to block the spurious 
path. This gives a data requirement: The variable Rain must be 
available, e.g., through a rain sensor, and the training data must 
entail different “rain conditions” such that an ML model can learn 
the influence of rain on the entire system.
Step 4, Checking consistency, faithfulness, and observabil-
ity: The resulting graphical causal model must not contain cyclic 
dependencies to be consistent. Furthermore, the graphical model 
must be faithful to the data: it should not imply associations that 
are absent in the data. Finally, the variables required for closing 
non-causal paths must be observable. If they are not observable, 
proxy variables can be identified and added to the causal model.
Example: The variable Sensor Noise is not directly observable. In-
stead, the expert identify that Lidar Variance can act as proxy for 
Sensor Noise.
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Fig. 5. Example of a DAG as part of CDD.

in most, but not all cases, see for example Kostis and Dobrzynski (2020), 
the attribution of observed differences in the outcome to the assigned 
external factor. However in many cases, such controlled experiments 
and RCTs are either prohibitively expensive (e.g., due to the amount 
of experiments necessary to discover every relevant causal relationship) 
or ethically impossible to conduct. Therefore, an alternative, or supple-
ment, to controlled experiments is knowledge from domain experts. We 
assume that domain experts have a deep understanding of the area of 
expertise by carefully studying and collecting experience. However, us-
ing expert knowledge has limitations and risk as listed in Molak and 
Jaokar (2023) and Bradley et al. (2006): Experts might be overconfi-
dent, especially the more experience they have gained in a given field. 
Experts might also suffer from what Kahneman describes as “availabil-
ity heuristic”: Plausible solutions (here: causal relationships) that come 
to the expert’s mind first have higher influence on the final decision 
(Daniel, 2017). The combination of personal experience and domain 
experience of a domain experts is still valuable input if two aspects are 
considered to mitigate the previously mentioned risks: First, a group of 
experts should work together to identify relevant causal relationships. 
Second, causal relationships relevant for the system under development 
must be documented to communicate assumptions made by the experts.

5.1.  Step 2: Drawing of graphical causal model to document context 
assumptions from a set of causal mechanisms

In this step the identified causal mechanisms are merged into a DAG. 
A DAG, together with the assumption of independent noises,2 for exam-
ple sensor noises, can be used to decompose a joint probability function 
entailed in (1) into a causal factorisation (Schölkopf et al., 2021):

𝑝(𝑋1,… , 𝑋𝑛) =
𝑛
∏

𝑖=1
𝑝
(

𝑋𝑖|𝐏𝐀𝑖
)

(2)

While a full structural causal model (SCM), as described in (1), of a 
real-world system is usually not attainable, the principle that causal de-
pendencies can be factorised into local mechanisms, as suggested by (2), 
justifies the iterative construction of causal graphs. Each newly elicited 
causal mechanism can be added as an additional factor which allows 
the model to grow incrementally without requiring a full SCM. DAGs 
representing the causal structure of the system become therefore part of 
an ML model specification and can provide evidence about the assumed 
causal relationships in the operational environment of the ML model.

5.2.  Step 3: Performing d-separation to derive data requirements and 
model requirements.

Through modelling expected cause-effect relations, causal models 
provide an insight into possible sources of confounding in the data. If 
confounding is not treated properly, the dataset presented to the ML 
model for training contains spurious correlations and the resulting ML 
model’s behaviour will be biased. The aim of d-separation is to iden-
tify possible spurious correlation and thereby to avoid confounding or 

2 If two noise terms were not independent, there must be some common cause
to which an independent noise then applies (see Reichenbach’s common cause 
principle (Reichenbach, 1956).

anti-causal behaviour of the final ML model by allowing the model to 
condition on possible confounders or by forcing the model not to condi-
tion on possible colliders in the causal model. D-separation does not rely 
on manual effort by experts alone because tools, such as DAGitty (Tex-
tor et al., 2011), can be used to automatically perform d-separation on 
a given DAG.

Data requirements from confounding. Assume a dataset containing three 
variables 𝑋1, 𝑋2, and 𝑍0. Assume further a causal structure in which 𝑍0
is a common cause of 𝑋1 and 𝑋2 (see Fig. 1 left top case). If one were to 
construct the training dataset to only contain the variables 𝑋1 and 𝑋2 in 
this case, the ML model would learn an association between 𝑋1 and 𝑋2
indicating a causal-effect relationship between the variables which in 
fact does not exist. The result is a spurious correlation between 𝑋1 and 
𝑋2 through a common cause 𝑍0. Therefore, a data requirement resulting 
from the causal model is that the dataset shall explicitly contain the 
variable 𝑍0 to avoid learning a spurious correlation.

Continuation of the example in Fig. 5: The variable Rain acts as a common cause 
for Sensor Noise and Braking Distance. It was therefore necessary in the example 
to include Rain in the training data to allow the ML model to learn the confounding 
influence of Rain.

Data requirements from colliders. Another case arises when 𝑍0 acts as a 
collider between 𝑋1 and 𝑋2 (see Fig. 1 (c)). Here, if only 𝑋1 or 𝑋2 are 
presented in the training dataset, the ML model would not learn an as-
sociation between the two variables, which is correct. However, if one 
were condition on 𝑍0 (i.e., using it as a feature), the association path be-
tween 𝑋1 and 𝑋2 could be opened because the ML-model could include 
𝑍0 as predictor which leads to learning an association between 𝑋1 and 
𝑋2 that in reality does not exist. The problem is that many ML-models, 
and especially deep learning models, are black-box models where we 
cannot actively choose which variables in the data are used as predic-
tors. However, the ML-model cannot use 𝑍0 as predictor if the data for 
this variable is not present in the dataset.

Continuation of the example in Fig. 5: Assume 𝑋1 = Rain, 𝑋2 = Road 
Quality and 𝑍0 = Braking Distance. Braking Distance is acting as collider 
between Rain and Road quality. If Braking Distance is included in the 
training data, an ML model might learn that Rain and Road Quality are 
negatively associated, i.e., rain improves the road quality3, and vice versa. 
In summary, the model may falsely infer that Rain and Road Quality are 
statistically dependent, even though they are causally independent, leading 
to biased predictions or incorrect attributions.

Handling divergences in experts’ knowledge. Ideally, the group of experts 
finds a consensus on the causal mechanisms that should be merged into 
one DAG. However, we acknowledge that such consensus among ex-
perts might not always be reached. In such cases, it is possible to cre-
ate a number of different DAGs. Then, using d-separations, independence 
conditions can be found for each alternative DAG. Given the data of the 
use case, statistical tests of conditional independence can be performed 
to examine which of the alternative DAGs is consistent with the ob-
served data (see checking for faithfulness in Section 5.3). This approach 
allows experts to converge by ruling out models that contradict empir-
ical evidence. Documenting divergences as alternative DAGs provides 
traceability of assumptions and enables later reconciliation in case that 
more data or operational experience becomes available. Similarly, ex-
perts might agree on a partial causal model and apply data-driven causal 
discovery to automatically suggest missing elements in the model based 
on available empirical data. We discuss the potential use of causal dis-
cover in more detail in Section 7.4.

3 Intuition: If one already knows the braking distance was long (conditioning 
on braking distance), and it is raining, it becomes less likely the road was bad 
because the rain alone could explain the long braking distance.
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Updating causal models for new use cases. In some cases, such as the oc-
currence of new confounding environmental factors, the dataset needs 
to be adjusted by adding additional variables to avoid possible spurious 
correlation in the trained model. In other cases, in which the new en-
vironmental factor acts as collider, such an adjustment could however 
cause spurious correlation in the trained model which ultimately can 
lead to bias in the ML model’s behaviour. The causal model guides de-
velopers towards which data variables are needed as input to the ML 
model (i.e., do we only need 𝑋1 as input variable, or should we also 
design the system such that it can perceive other variables as input at 
runtime in order to mitigate confounding?) by providing information 
about the expected cause-effect relationships in the operational context 
of the ML model. It is important to communicate these causal assump-
tions about the operational context in case an ML model should be de-
ployed into a new operational context. Here, causal models, as part of 
the requirements specification for ML models, provide this information 
about the assumed causal operational context. This information can then 
be used to decide if the original causal assumptions are still valid in the 
new operational context or if the causal model needs to be updated. 
Such an update can require new training data as new data requirements 
might arise, and consequently a re-training of the ML model to make it 
compatible with the new causal operational context.

5.3.  Step 4: Checking consistency, faithfulness, and observability

Checking for consistency. Consistency refers to the direction of the edges 
in the graph are consistent with the causal relationship they represent 
based on the prior knowledge of the stakeholders. Edges should only 
point from causes to their effects, and not vice versa. Furthermore, there 
should not be any “causal-loop”, i.e., a cycle or feedback loop between 
causes and effects because it would otherwise imply a self-reinforcing 
causal relationship. For causal analysis, acyclic graphs are used be-
cause “a variable cannot cause itself, either directly or through another 
variable”, i.e., there cannot be cycles of cause and effect (Hernán and 
Robins, 2020). Time can be discretised to represent a feedback loop 
for example in a control system with a feedback loop from observa-
tion to a control unit that regulates an input to the system. This also 
reflects the usual assumption of discrete time steps in digital control 
systems, i.e., the treatment 𝐴 (controller output) and the covariates 𝐿
(system under control) change at discrete time steps [𝑛, 𝑛 + 1). The result 
is 𝐴𝑛−1 → 𝐿𝑛 → 𝐴𝑛 → 𝐿𝑛+1 (Hernán and Robins, 2020, Fine Point 20.1). 
In other words, the state of the system at time 𝑛 − 1 affects the controller 
at the next time step 𝑛, which in turn affects the system at that time step 
𝑛, and so on.

Checking for faithfulness. Additionally, the faithfulness of the causal 
model can be checked. A causal model violates faithfulness when it sug-
gests an association between variables that does not appear in the empir-
ical data (Hernán and Robins, 2020). In other words, if the causal model 
suggests a causal relation, we would expect to observe corresponding 
association between the variables in the data. There are, however, rare 
cases in which causal effects can “cancel each other out,” resulting in 
a null association even though a cause-effect relationship does, in fact, 
exist. These cases are rare because for two causes to have exactly the 
same effect and perfectly cancel each other out is highly unlikely (Spirtes 
et al., 2000, pp. 68–69).

Checking for observability. Another aspect that needs to be checked is 
observability. In many cases, variables in the causal model are not ob-
servable, such as the measurement noise of a sensor. In these cases, we 
either have to find alternative variables that allow for the identification 
of the missing system aspects, such as moderating variables, or the data 
can be provided through a simulation.

6.  Results

First, this section presents the prior knowledge identified by the com-
pany expert with the help of causal modelling during the explorative 
first cycle of this engineering research. Then, a heuristic is presented for 
drawing these graphical causal models based on the conceptualisation 
of the CDD approach conducted in the second cycle of this research. The 
heuristic is described using the use case as a running example to con-
ceptualise how high-level requirements, context assumptions, and prior 
knowledge of the company experts were incorporated into a graphical 
causal model. The resulting heuristic for eliciting graphical causal mod-
els and deriving requirements addresses RQ1. Finally, the results of the 
evaluative case study, which was the focus of the third cycle of this engi-
neering research, are presented. The evaluation includes a comparison 
of the performance of a deep learning model trained on a previously ex-
isting dataset for the use case with the performance of a model trained 
on a dataset following the requirements derived from the causal model.

The resulting heuristic for eliciting graphical causal models and de-
riving requirements addresses RQ1. The evaluative case study compar-
ing the basic and CDD-based ML models provides evidence for RQ2.

6.1.  Prior knowledge about the system

During the explorative first cycle, the company experts iteratively 
drew a graphical causal model of the system. This process not only pro-
duced a graphical representation of the assumed cause-effect relation-
ships of the system, but also helped company experts to “explore” and 
formalise their prior domain knowledge about the system.

In the end, the following prior knowledge (PK) was identified by the 
company experts:

PK1: The arc shows different behaviours under various load profiles, 
see for example studies such as (Dang et al., 2021; Chae et al., 
2016) describing different arc generation setups and representa-
tive current signals during arc occurrence.

PK2: There is a relation between current, system power supply, which 
is assumed to be stable, and the load profile.

PK3: High frequency disturbances from unmodelled sources (active 
switching components such as inverter for example) can trigger 
nuisance tripping (Dang et al., 2021).

PK4: The current signal during arc occurrence has a distinct waveform 
in the frequency spectrum, which depends strongly on the sys-
tem’s dynamic behaviour. This feature has been used in related 
works for arc fault detection (Lu et al., 2018).

PK5: A jump in current can trigger nuisance tripping. Load changes 
caused by connecting or disconnecting of devices, which is pre-
dictable but unmodelled, can cause such current jumps (Chae 
et al., 2016).

PK6: The sensor signal can be noisy under operational environment.

6.2.  A heuristic for the elicitation of a graphical causal model from prior 
knowledge and context assumptions

The goal of causal modelling is not to obtain estimates of a parameter 
of interest, but to clearly define the estimand in its relevant context that 
is estimated using ML or any other statistical method as an estimator. An 
estimand is the “target parameter” and represents a certain quantity of 
interest about which we want to draw conclusions based on causes that 
affect that parameter. Fig. 6 provides a running example based on the 
industrial use case on arc fault detection in low voltage DC system, out-
lining each step of eliciting a graphical causal model for our industrial 
use case. The variable names and definitions used in the causal models 
are listed in Table 1.

The nodes of the graphical causal models represent causes and ef-
fects, while edges represent the direction of cause and effect. The nodes 
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Table 1 
Variables for arc fault detection use case. (meas.: 
measured; freq.: frequency).
 Variable Definition

 Arc Arc occurrence
 Load Load profile
𝐼 (𝐼𝑠) Current (measured)
 HF𝑙 High frequency components extracted 

from the load profile, including HF from 
arc occurrence and HF noise.

|𝑆(𝑓 )| Frequency spectrum
𝑈𝐼 Sensor noise

Fig. 6. Example of performing a causal modelling task: (a) Definition of rel-
evant variables of outcome and causes of interest; (b) Identification of other 
causes affecting the outcome of interest; (c) Identification of other effects that 
are governed by the identified causes; (d) Establishing relations between causes 
and effects; (e) Identifying competing causes; (f) Analysing for confounding of 
the outcome through competing causes; (g) Closing confounding paths through 
additional observable variables. All variables in this diagram are defined in
Table 1.

for the outcome and cause of interest are highlighted as a concentric el-
lipse and a circle. Grey nodes represent unobserved variables at runtime 
and white nodes represent observable variables at runtime.

Defining outcome and causes of interest. Fig. 6 (a) illustrates the initial 
step in constructing a graphical causal model, which involves defining 
the desired outcome and the cause of interest. The desired outcome is a 
classification result that is true, if an arc is present, and false, if an arc 
is not present (RA1 and RA23). The (root) cause of interest that changes 
the classification result is the presence of an arc in the system. As we 
cannot measure the arc directly, we need another cause that acts as 
proxy. This proxy is the measured current, 𝐼𝑠 in (b). We set the output 
of a current measure 𝐼𝑠 as an input (direct cause) for the classification.

Defining other causes affecting the outcome and relations between causes 
and effects. In (c), we add that an arc has an effect on the current 𝐼 of 
the system (PK14). We also know that the measured current 𝐼𝑠 must be 
directly influenced by the system current 𝐼 , which is why we can draw 
a directed edge between these two variables in (d).

Including competing causes. The measured current 𝐼𝑠, and the current of 
the system 𝐼 might not be identical, because 𝐼𝑠 is influenced by mea-
surement noise 𝑈𝐼  (PK6) and 𝐼 can be influenced by other confounding 
factors. In the next step (e), such influencing external causes are added 
to the causal model. Besides the measurement noise 𝑈𝐼  that influences 
𝐼𝑠, the company experts identified the Load connected to the DC grid as 
influencing the current 𝐼 (PK5). The load however also influences the 
characteristics and probability of an arc (PK1). It is therefore a common 
cause for both 𝐼 and Arc and a directed edge is not only drawn from Load
to 𝐼 , but also to Arc. The causal models illustrated in Fig. 6 (a) - (e), are 
the result of applying the first two steps of CDD that were described in 
Section 5 and illustrated in Fig. 4. The resulting graphical causal model 
provides a visual context description of the ML problem.

Identifying and closing confounding paths. The next step in CDD involves 
applying d-separation because with Load, there is a confounding path 
in our system that can lead to spurious correlation. Certain external 
load characteristics may influence the current 𝐼 in a way that the mea-
sured current 𝐼𝑠 looks as if an arc occurs although that is not the case, 
or vice versa (PK3). This can lead to false positive and false negative 
classifications of arc occurrence. The confounding path is illustrated 
as red, dotted lines in Fig. 6 (f). D-separation tells us that information 
about the Load must be added to our estimand and consequently to the 
training dataset to close the confounding path. For the training data, 
the information about the connected load can be added to the dataset, 
which allows the ML model to identify the confounding factor. Unfor-
tunately, we cannot measure the connected Load at runtime. However, 
the connected load causes a load-specific high frequency pattern HF𝑙
that is distinct from the high frequency pattern of an arc occurrence 
(PK3). This high frequency characteristic can be extracted through a 
Fourier-transformation |𝑆(𝑓 )|, based on the measured current signal 𝐼𝑠. 
By adding the load information in the training data and adding the high 
frequency information containing characteristics about the load to both 
the training and the runtime data, we allow the classification algorithm 
to learn about different load characteristics and thereby close the con-
founding path.

Final causal model and requirements for data and ML model. The fi-
nal causal model in Fig. 6 (g) is consistent with the prior knowledge 
and context assumptions of the company experts, it is faithful to the
training data, it does not contain any causal cycles, and we accounted for 
all non-observable variables by identifying proxy variables. The edges in 

4 The requirements (RA) and prior knowledge (PK) are listed in Section 4.2
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Table 2 
Requirements derived from causal model for arc fault detection.
 ID  Requirement
 A-D1  The current measurements should be disturbed by characteristic sensor noise.
 Rationale: The causal model depicts 𝑈𝐼 as influencing factor on the measured current 𝐼𝑠.
 A-D2  The current signal should be superimposed by additional load current (random and real scenario based).
 Rationale: The dynamic of the load acts as confounder. Including data on load dynamics allows an ML model to learn the confounding factor.
 A-D3  The current signal should contain high frequency components from active switching components.
 Rationale: At runtime, information about the dynamic load profile is not available. The high frequency spectrum can serve as proxy for obtaining information about the load.
 A-M1  The frequency spectrum |𝑆(𝑓 )| should be used as additional data input to the ML model.
 Rationale: The causal model depicts |𝑆(𝑓 )| as additional input to the Classification model.

the final causal model are annotated to establish a traceability between 
the causal assumptions and the prior domain knowledge (PK). The final 
estimand is a classification of arc occurrence under different load char-
acteristics, given a measured current signal 𝐼𝑠 and frequency spectrum 
information |𝑆(𝑓 )| at runtime. The resulting causal model provides a set 
of data requirements (A-D) and model requirements (A-M). The causal 
models indicates that the measured current 𝐼𝑠 at runtime is superim-
posed by sensor noise which should be reflected in the training data 
(A-D1). Using the concept of d-separation, the identified confounding 
path is closed by adding the load profile in the training dataset (A-D2). 
Because we cannot measure the connected Load profile at runtime, we 
include the high frequency spectrum |𝑆(𝑓 )| of the current signal 𝐼𝑠 as 
a proxy for the Load profile in both the training and runtime data (A-
D3). This however requires our ML model to accept the additional signal 
|𝑆(𝑓 )| as input (A-M1). All requirements derived from the causal model 
are summarised in Table 2.

6.3.  Experimental evaluation

An experiment was designed and conducted to demonstrate how the 
results of causal modelling improve model performance and robustness. 
Three requirements were selected: A-M1, A-D2, and A-D3. They were 
selected because the prototype system could be modified to accommo-
date the necessary data collection for these requirements. The evalua-
tion therefore will investigate the answer to the following two questions:

• To what degree does including different electrical load profiles in 
training dataset, as suggested by A-D2, improve the robustness of 
the resulting ML model?

• To what degree does including features from the current’s frequency 
domain as input to the ML model, as suggested by A-M1 and A-D3, 
improve the performance of the ML model?

The experiment was carried out in three steps: data generation, model 
training, and performance evaluation. In the first phase, the test bench 
was extended and new datasets were collected based on the CDD re-
quirements A-D2 and A-D3. In the second phase, four models (two of 
which fulfilled the CDD requirement A-M1) were trained and validated 
to ensure overfitting did not occur. Finally, in the third phase, the per-
formance of the four models, based on the different datasets as depicted 
in Fig. 7, were evaluated and compared.

Data generation. A prior dataset existed before the experiment that was 
created without the requirements elicited through CDD. This dataset is 
referred to as the basic dataset and the model trained with this dataset is 
referred to as the basic model. The basic dataset was collected from the 
test bench circuit with a resistor as passive load based on the industrial 
standard defined in UL1699B (UL, 2018). Fig. 8(a) shows a sample from 
the basic dataset.

In a first phase of the experiment, the existing test bench was ex-
tended with a dynamic DC electronic load in order to collect dynamic 
resistor load profiles as suggested in requirement A-D2. Fig. 8 shows 
data samples under different load profiles and electrode movement
patterns.

Table 3 
Circuit setups for datasets.

 Dataset
Item  Basic CDD-based External

 DC Power  50V - 80V 50V - 80V 50V - 80V
 Passive Load  Resistor Resistor Resistor and Inductor
 Electronic Load  None Load pattern simula-

tion under constant 
resistor mode

Constant current mode 
for circuit current regula-
tion

The dataset collected with the additional dynamic resistor load pro-
file is referred to as CDD-based dataset, and the corresponding model as 
CDD-based model. The electronic load acted a configurable resistor and 
its value changed according to a pre-programmed pattern based on cur-
rent changes recorded under real-world conditions from DC switching 
gear. Fig. 8(b) shows a data sample from the CDD-based dataset. Addi-
tionally, a third dataset referred to as external dataset was created. This 
dataset includes a load profile from an inductor added to the setup. The 
idea behind this modification was to simulate a change in the opera-
tional environment. For example power electronics in electric vehicle 
chargers connected as load can cause such an additional inductance. 
The external dataset was collected with a resistor as passive load and 
the electric load operating under constant current mode. When the arc 
occurred, the electronic load changed its resistance such that the current 
in the circuit was regulated to a stable level. This represents a DC system 
with loads that require a constant current, such as certain components 
in electric vehicles. Fig. 9 shows a data sample from the external dataset. 
The external dataset was only used in the evaluation phase to test the 
ability of the basic model and the CDD-based model to perform in an 
operational environment that was not represented in the training data.

An overview of the test bench configurations for the three datasets 
is summarised in Table 3.

Model training. The basic dataset and the CDD-based dataset were shuf-
fled and divided into three parts: training, validation and test sets with 
a ratio of 6:2:2. This ratio is common to split the datasets for train-
ing purpose in machine learning. The size of datasets are specified in 
Table 4 where the class ratio represents the imbalance of the dataset 
between the number of negative instances labelled “no-arc” and the 
positive instances labelled “arc”. Transient data points were removed 
from the datasets. These transient data occurred when the experiment 
setup changed state between normal operation and arc occurrence, for 
example during electrode separation or reconnection. This caused short 
periods of unstable current and voltage signals that did not represent a 
steady-state behaviour of either class.

Four models were trained: the basic model without frequency in-
formation (FFT) input, the basic model with FFT input, the CDD-based 
model without FFT input, and the CDD-based model with FFT input. 
The detailed training, validation, and evaluation / testing procedure is 
illustrated in Fig. 7. Certain hyperparameters were controlled in order 
to reduce the influence of the hyperparameters on the performance of 
the models and therefore to ensure that the models remain comparable: 
The size of the training datasets were set to be 60% of the available data 
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Fig. 7. Causal model validation procedure for arc fault detection. FFT refers to Fast-Fourier Transformation and indicates that frequency-spectrum information |𝑆(𝑓 )|
is available.

Fig. 8. Examples of the sampled current signal from the test bench for DC series arc fault detection..

Fig. 9. Data sample visualisation of the external dataset.
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Table 4 
Size of each dataset in the validation.

 Dataset
Property  Basic  CDD-based  External
 Size (excl. transient-state samples)  31,200 (29690)  33,200 (31372)  6100 (5539)
 Class ratio  4.7:1  2.5:1  3:1
 Training  17,814  18,823  0
 Validation  5938  6274  0
 Test  5938  6275  5539

samples. The remaining 40% were used for validation (20%), and test-
ing (20%). One time-series of current data always contained 160 data 
points. Each data point is the current value in the circuit measured with 
a sampling rate of 16kHz. A fully connected neural network with three 
dense layers was chosen as model architecture. For each dense layer, 
batch normalisation was applied with a batch size of 64. ReLu was cho-
sen as activation function, and each layer is followed by a dropout layer 
to mitigate overfitting. The models were trained with an Adam opti-
miser and binary cross entropy as loss function. The input layer for mod-
els with FFT accepts both time-series data and frequency-domain data, 
while the input layer for models without FFT only accepts time-series 
data. The frequency spectrum information |𝑆(𝑓 )| was created in a pre-
processing step from the time-series current data through a fast-fourier 
transformation. The detailed specifications of the models are available 
in Appendix B. The trained models and their Python implementations 
are included as Jupyter Notebooks in the replication package of this 
paper.

Evaluation of the models’ performance. The performance of the models 
was evaluated on all test datasets, i.e., the basic, CDD-based, and ex-
ternal dataset as listed in Tables 3 and 4. As classification metrics we 
included Accuracy and F1-score which indicate the overall predictive ca-
pability. Sensitivity measures the models’ ability to correctly identify arc 
events, which is important to evaluate RA1.5 On the other hand, Speci-
ficity is used to evaluate the ability to correctly detect a non-arc event 
and Precision assesses how many triggered alarms are actually correct 
which both assess RA2.6 We also included the Matthews Correlation Co-
efficient (MCC) for a more balanced overall evaluation compared to the 
F1-score in the presence of imbalanced classes, which can be consid-
ered the case here (Chicco and Jurman, 2020). The individual metrics 
are defined as follows:

Accuracy = TP + TN
TP + FP + TN + FN

, (3)

Sensitivity = TP
TP + FN

, Specificity = TN
TN + FP

, (4)

Precision = TP
TP + FP

, F1 = 2 ⋅ TP
2 ⋅ TP + FP + FN

, (5)

MCC =
(TP ⋅ TN) − (FP ⋅ FN)

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (6)

where TP indicates true positive, TN true negative, FP false positive, and 
FN false negative.

The training and evaluation procedure were repeated ten times for 
each model. Each iteration was executed with randomly initialised 
weights, and randomly shuffled datasets to avoid bias introduced by 
the initialisation of parameters. The evaluation results for all models are 
presented in Fig. 10 and the confusion matrices for each model across 
each datasets are provided in Appendix C. Fig. 10 shows the mean and 
standard deviation of the metrics from all conducted experiment runs.

5 RA1: WHEN an arc occurs THEN an alarm should be triggered
6 RA2: WHEN no arc occurs THEN an alarm should not be triggered

6.4.  Significance testing

We followed a Bayesian approach for testing statistical significance 
of our results following the suggestions outlined by Torkar et al. (2022), 
the framework for Bayesian data analysis in SE outlined by Furia 
et al. (2022), and the practical implementations suggested by McElreath 
(2018)7. We analysed the following cases:

1. Case (a), CDD-based Model With FFT vs. Basic Model No FFT: 
Applying the data and model requirements (A-D2, A-D3, and A-M1) 
from the proposed CDD-based methods has a positive effect on the 
metrics compared to the original model.

2. Case (b), CDD-based Model No FFT vs. Basic Model No FFT: Ap-
plying the proposed data requirement of adding dynamic load data 
(A-D2) without adopting the model requirement of adding the fre-
quency information (A-D3, A-M1) has a positive effect on the metrics 
compared to the original model.

3. Case (c1), Basic Model With FFT vs. Basic Model No FFT: Ap-
plying the proposed model requirement of adding the frequency in-
formation (A-D3, A-M1) but not the requirement of adding dynamic 
load data (A-D2) has a positive effect on the metrics compared to the 
original model.

4. Case (c2), CDD-based Model With FFT vs. CDD-based Model No 
FFT: Applying the proposed model requirement of adding the fre-
quency information (A-D3, A-M1) and the requirement of adding dy-
namic load data (A-D2) has a positive effect on the metrics compared 
to a model that only applies the requirement of adding dynamic load 
data (A-D2).

For brevity, we performed this analysis only on the results of the metrics 
for the external dataset. We consider the external data to be the most 
difficult test of model performance and robustness because the data rep-
resents previously unseen operational conditions.

Model definition. We model the performance of the two models for each 
metric using a Bayesian generalised linear model (GLM) with normal 
likelihood. The parameter 𝛽0 is the baseline mean, which represents the 
mean value of the performance metric for model 1 (reference model). 
The parameter 𝛽1 represents the effect of introducing model 2, i.e., 𝛽1
represents the change in the mean of the metric under consider-
ation when moving from model 1 to model 2. The shared standard 
deviation across both models is represented by 𝜎. The likelihood is de-
fined as:
𝑦𝑖 ∼  (𝜇𝑖, 𝜎), (7)

with 𝜇𝑖 as linear predictor defined as:
𝜇𝑖 = 𝛽0 + 𝛽1 ⋅ group𝑖, (8)

and group𝑖 ∈ {0, 1} indicating if the 𝑖th-observation is part of the baseline 
model 1 or of model 2.

Choice of priors. We use weakly informative priors to allow the data to 
dominate the inference of the posterior distribution:

• 𝛽0 ∼  (0.5, 12), which centres the baseline mean around a plausible 
value (0.5) for the metric,

• 𝛽1 ∼  (0, 12), which is symmetric around zero to reflect no a priori 
preference for either model,

• 𝜎 ∼ Exponential(𝜆 = 10), which ensures positivity of the variance.

These priors can be considered plausible for our study because we 
checked that the chosen priors generate values within realistic ranges 
of the metrics and that they avoid extreme values.

7 An alternative approach to significance testing using Welch’s t-test can be 
found in Appendix E
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Fig. 10. Performance metrics for the use case models across all datasets..

Model inference and workability. The models were fitted using the 
Python library pymc in version 5.25.1 which utilises a dynamic Hamil-
tonian Monte Carlo approach. We consider the models workable be-
cause we did not see divergent transitions during sampling, 𝑅̂ <
1.01, and the effective sample sizes do not show concerning de-
creases compared to the overall sample size. The estimated metric 
sizes (𝛽0) of the resulting posterior predictive distributions for the 
baseline models align well with the observed data, indicating that 
the results are adequate. The summaries of the posteriors for each 
metric and each case can be found as supplementary material in
Appendix D.

Evaluation results. The estimated effect sizes 𝛽1 for all cases (a) - (c2) 
are illustrated in Fig. 11. In addition to providing the density plots, 
the figure also indicates the posterior probability that the effect of in-
troducing model 2 is greater than zero, i.e., 𝑃 (𝛽1 > 0). Specifically, if 
𝑃 (𝛽1 > 0) ≥ 0.95, it indicates that there is a chance greater or equal 95% 
that model 2 outperforms model 1 for this specific metric. In such cases, 
the posterior density is drawn in blue. Similarly, if 𝑃 (𝛽1 > 0) ≤ 0.05, it in-
dicates that there is only a 5% chance, or less, that model 2 outperforms 

model 1 for this specific metric. In such cases, the posterior density is 
drawn in red.

Introducing both dynamic load data (requirement A-D2), and fre-
quency information (requirements A-D3 and A-M1) in case (a) has a sig-
nificant positive effect on all considered metrics, except for precision and 
specificity. The precision of the new model is slightly lower (0.96 vs. 0.97 
for the external dataset), while specificity is distinctly lower (0.89 vs. 
0.93). However, compared to these two metrics, the positive effect on 
the remaining metrics is significantly higher for the CDD-based model. 
By separating the effect of introducing dynamic load data in case (b) 
from frequency information in cases (c1) and (c2), we find that it is the 
introduction of dynamic load (requirement A-D2) that has a negative 
effect on precision and specificity. On the other hand, the introduction of 
frequency information has a positive effect on both precision and speci-
ficity. If the frequency information is introduced to a model trained on 
data without dynamic load (case (c1)), the introduction of frequency in-
formation has a small negative effect on all metrics, except for precision
and specificity. Introducing frequency information to a model trained on 
dynamic load data (case (c2)) however has a distinct positive effect on 
all metrics.
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Fig. 11. Effect sizes 𝛽1 of introducing CDD-derived requirements on performance metrics.

7.  Discussion

This section will first present a discussion of the experiment results, 
followed by a summary of the answers to the research questions. Then, 
the results of this study are discussed in the context of system prototyp-
ing, including a discussion on the current limitation of CDD, suggestions 
for further research, and a discussion on the threats to validity.

7.1.  Discussion of the experiment results

The experiment results suggest that the CDD-based models outper-
form the existing basic models in terms of accuracy, sensitivity, F1 score, 
and MCC with significant improvement in cases when operational con-
ditions change (external dataset), while on the other hand precision and 
specificity show reduced values.

Effect of introducing dynamic load data. The results suggest that it is 
specifically the introduction of dynamic load data (requirement A-
D2) that significantly improves all metrics but also decreases precision
slightly and specificity distinctly. By introducing dynamic load data, the 
model becomes more sensitive towards arc-events and therefore detects 
more true positive events. However, this shift in the decision boundary 
also leads to a higher chance of raising a false alarm, which is why speci-
ficity decreases. Given that the dataset has a significantly higher number 

Effect of introducing dynamic load data
The introduction of dynamic data based on the CDD-derived re-
quirements A-D2 leads to a model with slightly lower specificity 
(higher false positive rate) but substantially higher sensitivity 
(lower false negative rate).

of non-arc events (true negatives) compared to the number of arc events 
(true positives), the decrease in precision is far less distinct. However, the 
positive effect on sensitivity is by a factor of three larger compared to 
the negative effect on specificity. This is also reflected in the significant 
increase in overall performance indicated by the F1 score and MCC.

Effect of introducing frequency information. The introduction of fre-
quency information improves specificity and therefore also precision. In 
the case of a model trained on dynamic load data, the additional fre-
quency information seems to also support the detection of arc events, 
which is why all metrics improve. However, the improvement in speci-
ficity due to the introduction of frequency information cannot compen-
sate for the negative effect on specificity due to the introduction of the 
dynamic load data. Furthermore, if additional frequency information is 
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Effect of introducing frequency information
The introduction of frequency information based on the CDD-
derived requirements A-D3 and A-M1 leads to a model with overall 
higher performance, but only if the model was trained on dynamic 
load data.

provided to a model not trained on dynamic load data, sensitivity and 
overall performance of the model is significantly reduced.

The idea behind including frequency information in the training and 
runtime data of the models is to create a “proxy” for identifying the load 
in the system that acts as a confounder as discussed earlier. In case of the 
basic dataset there is no additional load present in the system. There-
fore, the frequency information does not provide any useful additional 
information for the basic model. In contrast, dynamic loads are present 
in the dataset for the CDD-based model. Here, the additional frequency 
information (FFT) provides useful information to the model allowing it 
to differentiate the type of load connected to the system. Therefore, the 
basic model cannot make use of the additional frequency information. 
One could, however, argue that the frequency information is inherent 
to the time-domain signal, as it is also suggested by the DAG in Fig. 6 
(g). The deep neural network of the CDD-based model without explicit 
access to the frequency signal might inadvertently perform internally a 
frequency analysis on the time-domain signal anyway. It might therefore 
not be necessary to provide additional frequency information. However, 
we cannot be sure that this frequency analysis is actually taking place 
within the neural network. If, as in our case, expert knowledge indicates 
benefits of providing frequency information, it is advisable to provide 
the frequency information explicitly to the model. This advice is sup-
ported by the results of case (c2).

Considerations on why the CDD-based model might fail. While we see that 
the new model based on the CDD-derived requirements improves ro-
bustness towards unseen data and sensitivity, there are scenarios where 
it may underperform compared to the basic model:

Adding dynamic load profiles (requirement A-D2) reduces missed arc 
events but increases false alarms. Depending on the use case, this might 
be unacceptable. In the considered DC switching gear use case, a missed 
arc event would be more problematic compared to a false positive. As 
the improvement in sensitivity is threefold compared to the reduction 
in specificity (increase of false alarm rate), the introduction of the CDD-
based model has an overall positive effect on the use case.

We see further that false positives can occur in cases of high dynamic 
load variations. The occurrence of an arc is accompanied by peaks across 
the entire frequency spectrum. We assume that if the dynamic load has a 
very broad frequency signature, the resulting frequency components will 
become nearly indistinguishable from those produced by a real arc. That 
might explain also why adding explicit frequency information improves 
the specificity (decrease of false alarm rate) for the CDD-based model. 
While we can assume that the deep neural network might perform a fre-
quency analysis inadvertently based on the provided time-domain data, 
we cannot ensure it does this analysis for all relevant frequency. By 
adding the frequency information for all relevant frequency explicitly, 
we improved the model’s capability of distinguishing arc events from 
non-arc events with a highly dynamic load.

A possible reason for remaining misclassification can be the pres-
ence of hidden confounders. These are variables that influence both arc 
occurrence and the observed signals but were not included in the causal 
models because they were unknown to the company experts. If such hid-
den factors exist, the CDD-based requirements may not fully capture the 
operational context which leads to a degraded model performance. We 
outline a possible solution to this limitation in Section 7.5. 

7.2.  Answer to the research questions (RQs)

Answer to RQ1. RQ1 asked how causal models can guide the develop-
ment of software systems with ML components. The case study showed 
how expert-elicited causal mechanisms could be systematically encoded 
in DAGs. We showed that DAGs offer several benefits for requirements 
elicitation, integration of prior knowledge, and representation of the sys-
tem’s operational context. For example the concepts of d-separation and 
proxy variables were used to translate causal assumptions into concrete 
data and model requirements. This demonstrates that graphical causal 
models provide actionable guidance during requirements elicitation and 
system design. As answer to RQ1, we proposed a heuristic for construct-
ing DAGs from expert knowledge and for deriving low-level data and 
model requirements from these models.

Answer to RQ2. RQ2 asked to what extent the performance and robust-
ness of a software system with ML can be improved by incorporating 
prior causal knowledge during the development. To address this ques-
tion, we conducted an evaluative case study on anomaly detection in a 
DC power distribution system. We compared a deep learning model fol-
lowing the CDD-derived requirements on including dynamic load data 
(A-D2) and frequency-information (A-D3, A-M1) to a model trained on 
a pre-existing dataset. We see that the inclusion of dynamic load data 
lead to a significant reduction in missed arc-events, i.e., higher sensi-
tivity and therefore lower false-negative rate. This comes at the cost 
of an increase in the specificity which suggests a higher false alarms 
rate. However, the improved detection ability significantly outweighs 
the increased false alarm rate. The improvement in sensitivity and over-
all performance of the model indicated through the F1 score and MCC is 
especially distinct when applying the external dataset. This suggest that 
the robustness of the model to changes in the operational environment 
improved. The causal model (Fig. 6 (g)) provides an explanation for this 
improvement: it reveals that load is a confounder. If this confounder is 
not recognised in the training data - as was the case in the pre-existing 
dataset - the resulting model will underperform in the presence of loads. 
We also see, as suggested by the causal model, that the inclusion of 
frequency information (requirements A-D3 and A-M1) leads to an im-
provement across all performance metrics. We assume that frequency 
information provides the model with additional data allowing it to dis-
tinguish between an arc and a normal-operation condition. As answer to 
RQ2, CDD not only led to an improvement in most performance metrics 
and robustness of the ML model, but also provided an explanation to 
why the basic model underperformed in the presence of varying loads: 
the omitted confounder load profile induced a spurious correlation. CDD 
makes such constellations explicit and therefore and it increases trace-
ability between requirements, data, and model behaviour.

7.3.  Causal modelling in the context of systems prototyping

Usually, complex cyber-physical systems are developed in several 
phases from laboratory environment to full-scale systems. Diefenbach 
et al. (2019) describe four phases of prototyping from problem discov-
ery to product delivery: In the discover phase, the focus is on generating 
knowledge and gaining insight into the use case, for example by gath-
ering information about the context and target user group. In the define 
phase, the focus shifts to filtering and analysing the collected knowledge. 
In practise this means that a requirements specification is created which 
describes the design goals of the system. The development phase involves 
continuous refinement and improvement. The deliver phase entails iden-
tifying the final solution and preparing it for market launch.

The results of this engineering research suggest that CDD is ben-
eficial in all four phases of product prototyping for systems with ML 
components: In the discovery phase, causal models allow the formu-
lation of prior assumptions about the context and the intended causal 
relationships between the variables that describe the system. CDD can 
then help stakeholders, such as project managers, data scientists, and 
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ML experts, to define the machine learning problem in a given causal 
operational context and to elicit requirements for the features that need 
to be included (or excluded) in the dataset even before the data col-
lection begins. In the define phase, causal models serve as an effective 
communication tool to visualise and analyse the causal relationships of 
the system in a defined context. These causal models in their graphi-
cal representation as DAGs can be considered knowledge graphs. Tiddi 
and Schlobach (2022) highlight the positive aspects of using knowledge 
graphs in ML system development in terms of explainability. However, 
unlike knowledge graphs, the underlying mathematical framework of 
causal models, such as do-calculus, allow for reproducible and standard-
ised extraction of causal meaning from graphical causal models. In par-
ticular, we showed that the analysis of potential confounding between 
variables defining the system provide guidance on data selection for ML 
models early on in the design process. In the development phase, causal 
models can serve as guiding templates to which causal relationships can 
be added or removed based on the results of prototyping iterations and 
validations. CDD allows for a transparent and iterative definition of the 
causal relationship between variables from expert knowledge, which 
can reduce the need for data collection and ML model training itera-
tions. This aspect of transparency in the use of expert knowledge has 
the additional benefit that it can lead to traceability of data require-
ments back to causal assumptions and expert knowledge about the use 
case. This traceability is essential when building a safety case for criti-
cal ML applications or for any kind of certification. In the deliver phase, 
causal models can effectively communicate the final causal context and 
data assumptions which can play an important role in certification pro-
cesses (Borg et al., 2019), such as safety certification, or compliance 
with legislation such as the EU AI Act (Floridi et al., 2022).

7.4.  Identifying inconsistencies in prior knowledge

The workflow for constructing causal models from prior knowledge 
assumes an iterative identification of causal mechanisms that can be 
added to a causal graph. For example, experts can be confronted with ex-
perimental results from a prototyping system and asked to refine the as-
sumed causal models based on these findings. This process can reveal in-
consistencies and allows for adjustments of the model. However, errors 
in confounders identification can directly bias the training data. If, for 
example, a confounder is omitted, the ML model might learn a spurious 
association, as shown in the arc-detection case where omitting the load 
profile in the training data leads to reduced robustness. However, the use 
of DAGs provides transparency about the assumptions made in the DAG. 
An approach to reduce possible inconsistencies in prior knowledge are 
data-driven causal discovery methods. They can support the construc-
tion of causal models by suggesting additional dependencies, for exam-
ple by testing independence structures in the observed data. Methods 
based on independence testing, such as the PC algorithm (Spirtes and 
Glymour, 1991) or the fast causal inference (FCI) algorithm (Spirtes, 
2001), assume that the data is independent and identically distributed 
(i.d.d.), which is usually not the case in practice. There are, however, 
recent methods for causal discovery from time-series data that are ap-
plicable to non-i.d.d. settings such as the PCMCI method (Runge et al., 
2019). The performance of data-driven approaches to causal discovery 
depends on the availability of interventional data, i.e., data obtained 
under controlled interventions that disturb the system to reveal causal 
directions. However, if such data were available in sufficient quantity, 
it would also allow ML approaches, such as deep neural networks, to 
identify the correct causal effects.

In that sense, solely data-driven causal discovery is not effective, 
and we assume that human prior knowledge is still needed. We see two 
promising uses of data-driven causal discovery as part of CDD:

• causal discovery can suggest the existence of confounders to experts 
based on identified independence relations in the data or temporal 
dependencies (e.g., by testing for Granger causality Granger, 1988);

• causal discovery methods can be used to test emerging causal mod-
els derived from expert knowledge. Automatic tests based on causal 
discovery approaches can warn if a causal model suggests indepen-
dence conditions that are not consistent with the data.

7.5.  Limitation of CDD and future work

We recognise a number of limitations in the application of CDD:

Adopt causal models to RE. We proposed the use of DAGs as represen-
tation for causal models because of the existing body of knowledge on 
how to extract actionable intelligence from these graphs. However, for 
RE purposes, DAGs in their current form may need to be modified. We 
believe that CDD can be integrated into an agile workflow because the 
models can be iteratively extended with new knowledge and they can 
serve as a communication medium about causal knowledge between dif-
ferent stakeholders (Heyn and Knauss, 2022). For example, the edges in 
a DAG could carry IDs or other information that would allow for an 
easier mapping of elements in the DAG to the elicited requirements. 

Hidden confounders. A risk to validity of the iteratively elicited causal 
model are hidden confounders. These are confounders that the expert 
did not include in the DAG because they were not aware of them (un-
known unknowns). While this risk is partially mitigated in CDD by doc-
umenting causal assumptions as DAG explicitly, future research can 
explore how to further reduce the risk of hidden confounders. An ap-
proach could be to apply sensitivity analysis techniques that quantify 
how strong the influence of an unobserved variable would have to be to 
overturn the conclusions drawn from the current causal model.

Runtime conditions from causal models. A common problem in ML is that 
the models become “stale”, where changes in the operational environ-
ment over time require retraining of the model (Prapas et al., 2021). An 
interesting avenue for further investigation is whether identifying and 
documenting prior knowledge about causal mechanisms through CDD 
enables the derivation of runtime checks, based on the conditional inde-
pendence criteria implicitly encoded in causal models. Such an approach 
could enhance not only the robustness of ML systems to changes in the 
operational environment, but also their resilience to adversarial attacks. 
Recent research suggests that many such attacks exploit unrecognised 
confounding in the model’s operational context (Ren et al., 2022; Zhao 
et al., 2022). 

Scalability of CDD. For larger systems, constructing and maintaining 
comprehensive causal models may be challenging, and the approach 
may need to be applied modularly (e.g., by separating sub-systems) and 
with the support of automated tools as discussed in Section 7.4. Ap-
proaches such as CausalOps, introduced by Maier et al. (2024), can be 
used to maintain an industrial lifecycle of larger causal models. Future 
research is needed to assess scalability in larger settings and to build 
tool support that can reduce manual effort.

Transferability of CDD to other domains. In this study, we only have dis-
cussed the case of system prototyping in a research and development 
environment. Further research is needed to establish a more general ap-
plicability of causal models in RE for ML by applying CDD to additional 
use cases. We believe that causal models can lead to a better explain-
ability of decisions made by ML, because clear cause-effect structures 
help stakeholders to understand the reasons for a certain ML output, 
see for example the work of Chou et al. (2022). However, the way CDD 
is applied may vary across domains: in safety-critical CPS development, 
such as the one described here, expert elicitation may dominate. In data-
rich domains, such as e-commerce, causal discovery methods may play 
a larger role. 
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7.6.  Threats to validity

We identified the following threats to validity based on criteria for 
judging the quality of case studies by Yin (2003):

Construct validity. A lack in construct validity can occur if the mea-
sures employed for the case study cannot accurately and comprehen-
sively capture the phenomenon under study. For the experimental part 
of this study, we included metrics common in statistical learning and 
ML. We also included MCC as a metric used in scenarios where both 
false positives and false negatives must be evaluated jointly, making 
it particularly suitable for imbalanced anomaly detection tasks such as 
arc-fault detection. In cases where clear metrics were not available, we 
tried to describe the problem and potential solution such that we can 
establish a chain of evidence.

Internal validity. A lack of internal validity can cause confounding and 
consequently bias in the results. This is the case for example if a lack of 
rigour (i.e., degree of control) in the study design occurred (Slack and 
Draugalis Jr, 2001). We increased the degree of control over the case 
study with different mechanisms: We followed a defined protocol for 
the workshops and documented the results of each workshop for later 
analysis. We analysed the data with a group of four researchers to reduce 
the impact of personal beliefs, making the findings less prone to personal 
bias. We maintained consistency in controlling hyper-parameters across 
validation experiments to mitigate bias in the results.

External validity. The purpose of the case study was to explore a phe-
nomena, i.e., the use of causal graphs as support for BDD in a realistic 
setting. With an exploratory case study we therefore cannot claim direct 
generalisability of the results. To ensure however that the case study rep-
resents a realistic setting, we conducted the case study together with an 
industrial partner. A remaining validity threat is that the use case was 
in a prototyping state of development and not intended yet for the mass 
markets. We reflect this limitation in the description of the case study. 
We also discuss scalability and transferability as current limitation in 
Section 7.4.

Reliability. To increase reliability, we publish the workshop protocols, 
survey data, datasets, and models as additional replication material 
alongside this article. Throughout the article we described the steps 
taken during the data collection and analysis.

8.  Conclusion

The development of software systems that incorporate ML requires 
insight into the causal relationship between different variables to make 
informed decisions when specifying data for the training and valida-
tion of the ML component. In this article we discussed the limitations of 
current RE methods for specifying the desired behaviour of ML-enabled 
systems. In particular, we discussed the limitations of describing prior 
knowledge about cause-effect relationships in a given context, and the 
missing link between high-level requirements and data requirements in 
current RE methods. We argued that causal models in the form of DAGs 
can help define the operational causal context and support the elicita-
tion of data requirements by making assumed cause-effect relationships 
explicit. We explored the use of causal models as part of the model spec-
ification in a case study on DC series arc fault detection in collabora-
tion with an industrial partner. In a series of workshops, we developed 
and tested a concept for causality-driven development (CDD). We also 
demonstrated the effectiveness of the data requirements derived from 
the causal model of the arc fault detection use case in terms of perfor-
mance and robustness of the resulting ML model. In addition, the causal 
model as output of CDD provided evidence as to why the robustness of 
the model increased by allowing developers to identify confounding and 
unobservable variables in the operational context. The findings answer 

RQ1 by showing how causal models can be used as part of requirements 
elicitation to derive explicit data and model requirements, and RQ2, by 
demonstrating that such requirements improved robustness and perfor-
mance in our case study. In summary, this study showed how CDD can 
create a link between a specified desired causal behaviour, data require-
ments, and the resulting ML model behaviour.

Additional data

A replication package accompanying this article is available at https:
//doi.org/10.7910/DVN/XEK72T. The replication data package con-
tains the protocols of the workshops, the final causal models, the use 
case datasets and the Python code for the DL models used in the evalu-
ation of the case study.
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Appendix A.  Component list and description for the test bench 
representing the use case of serial arc fault detection in DC power 
systems

The test bench was built in accordance to the UL1699B standard 
which describes photovoltaic (PV) DC arc-fault circuit protection mech-
anisms. The following components were used:

• A power supply which provided stable voltage up to 100V.
• A programmable linear stage allowed the adjustment of the air gap 
between the electrodes where the arc is generated.

• A passive load in form of a resistor and/or conductor.
• A programmable electronic load which could simulate different 
load behaviours by changes of its inner resistor value under dif-
ferent modes. It was integrated in the prototype as a consequence 
of the causal modelling because different load profiles were iden-
tified as a confounding element. The constant resistor and con-
stant current modes were used in this case study. The constant 
resistor model allowed the electronic load to change its resis-
tor value over time according to a pre-programmed pattern. The 
electronic load under constant current mode could adapt its re-
sistor value to regulate the circuit current to a given current
value.
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Table B.5 
Hyperparameters and setting for the FNN models without and with FFT features.
 Parameter  FNN without FFT  FNN with FFT
 Activation  ReLU (after Batch Normalization)
 Architecture  Fully connected feedforward neural network (FNN)
 Batch size  64
 Class weighting  Inverse frequency weighting
 Dropout rate  0.25
 Epochs  Variable (epoch argument)
 Hidden layers  320, 640, 480 units  640, 1280, 480 units
 Input dimension  160 features (time-domain only)  320 features (FFT + time-domain)
 Loss function  Binary cross-entropy
 Metrics  Binary Accuracy, F1-score (threshold = 0.5)
 Optimiser  Adam, learning rate 1 × 10−6

 Output bias initialization log( #pos
#neg

)
 Output layer  1 unit, sigmoid activation
 Regularization  L2, 𝜆 = 1 × 10−5

 Weight initialization  Glorot Normal

• An ADC ADS131A02 collected data at a sampling rate of 16kHz.
• A current transducer reduced the current signal proportionally for 
sampling to the ADC sensing range.

• An anti-aliasing low pass filter was integrated with a cutoff frequency 
of 160kHz.

• An AI accelerator was utilised for data processing and execution of 
machine learning algorithms.

Appendix B.  Detailed specifications of the FNN models used in 
this study

Table B.5 outlines the specifications of the FNN models trained in 
this study, including all relevant hyperparameter settings. The mod-
els’ Python code and the trained models are available in the replication 
package of this study.

Appendix C.  Confusion matrices for all models across all datasets

Fig. C.12 contains the confusion matrices for all models across all 
datasets.

Appendix D.  Summary of the Bayesian GLM posteriors for the 
evaluation of the models

Tables D.6–D.9 lists the posterior summaries of the Bayesian GLMs 
for each performance metric and each case (a) - (c2) outlined in Sec-
tion 6.4.

Appendix E.  Significance testing using Welch’s t-test and Hedges’ 
g for effect size suggestion

We conducted statistical testing on the models’ results on the

unseen external datasets following the suggestions for statistical test-
ing in SE experiments outlined by Arcuri and Briand (2014). For each 
metric outlined in Eqs.  (3)–(6), we conducted the following hypothesis 
test:

𝐻0: There is no difference between the two model variants on the cho-
sen metric.

𝐻1: There is a difference (two-sided).

Formally, the hypotheses can be expresses as follows:
𝐻0 ∶ 𝜇model1 = 𝜇model2 (E.1)

𝐻1 ∶ 𝜇model1 ≠ 𝜇model2 (E.2)

We compared the same cases as outlined in Section 6.4. We used the 
Welch’s t-test assuming approximate normality of the results because 
the approach is robust to unequal variances, and it works well on 
small sample sizes (in our case n=10 for each metric). Arcuri and 
Briand (2014) recommend to report effect sizes alongside the test re-
sults. We therefore computed Hedges’ g to quantify the magnitude of 
the observed differences between the models. This is important be-
cause there are cases (metrics) in which the new model performs worse 
compared to the original model. Hedges’ g measures the difference be-
tween two means in a unitless way relative to the pooled standard 
deviation of both groups (Rosenthal et al., 1994), which makes the 
effect size better comparable across the different metrics and mod-
els. We used a significance level of 𝛼 = 0.05 because it is considered 
an academic default. Table E.10 lists the results of the significance 
testing. The results of the t-test approach are mostly identical to the 
Bayesian approach in Section 6.4. The only minor deviation is that 
for case (c1), the change in MCC is not significant according to the 
Welsh t-test. However, even under the Bayesian approach, the probabil-
ity 𝑃 (𝛽1 > 0) for MCC equals 0.04. This is very close to the threshold of
𝑃 (𝛽1 > 0) ≤ 0.05.
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Fig. C.12. Confusion matrices for all models across all datasets.

Table D.6 
Posterior summaries for case (a): Model 1 = basic_no_fft, Model 2 = cdd_fft.
 Metric 𝛽0 mean (SD) 𝛽1 mean (SD) 𝑃 (𝛽1 > 0)  ESS𝛽0  ESS𝛽1 𝑅̂𝛽0  / 𝑅̂𝛽1

 Accuracy  0.8224 (0.0018)  0.0665 (0.0026)  1.00  3190  3283  1.000 / 1.000
 Precision  0.9704 (0.0012) -0.0077 (0.0016)  0.00  2831  3059  1.000 / 1.000
 Sensitivity  0.7891 (0.0031)  0.0983 (0.0044)  1.00  3298  3440  1.000 / 1.000
 Specificity  0.9254 (0.0035) -0.0319 (0.0049)  0.00  3378  3245  1.000 / 1.000
 F1 Score  0.7178 (0.0022)  0.0792 (0.0031)  1.00  3015  2780  1.000 / 1.000
 MCC  0.6308 (0.0028)  0.0990 (0.0039)  1.00  3459  3349  1.000 / 1.000
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Table D.7 
Posterior summaries for case (b): Model 1 = basic_no_fft, Model 2 = cdd_no_fft.
 Metric 𝛽0 mean (SD) 𝛽1 mean (SD) 𝑃 (𝛽1 > 0)  ESS𝛽0  ESS𝛽1 𝑅̂𝛽0  / 𝑅̂𝛽1

 Accuracy  0.8223 (0.0016)  0.0439 (0.0023)  1.00  3646  3602  1.000 / 1.000
 Precision  0.9703 (0.0009) -0.0142 (0.0013)  0.00  3270  3449  1.000 / 1.000
 Sensitivity  0.7891 (0.0027)  0.0736 (0.0038)  1.00  3573  3397  1.000 / 1.000
 Specificity  0.9253 (0.0026) -0.0479 (0.0036)  0.00  3508  3394  1.000 / 1.000
 F1 Score  0.7177 (0.0018)  0.0443 (0.0026)  1.00  3370  3368  1.000 / 1.000
 MCC  0.6307 (0.0024)  0.0520 (0.0033)  1.00  3406  3321  1.000 / 1.000

Table D.8 
Posterior summaries for case (c1): Model 1 = basic_no_fft, Model 2 = basic_fft.
 Metric 𝛽0 mean (SD) 𝛽1 mean (SD) 𝑃 (𝛽1 > 0)  ESS𝛽0  ESS𝛽1 𝑅̂𝛽0  / 𝑅̂𝛽1

 Accuracy  0.8224 (0.0016) -0.0136 (0.0023)  0.00  3647  3593  1.000 / 1.000
 Precision  0.9704 (0.0010)  0.0123 (0.0014)  1.00  3225  3383  1.000 / 1.000
 Sensitivity  0.7891 (0.0029) -0.0285 (0.0040)  0.00  3118  2981  1.000 / 1.000
 Specificity  0.9253 (0.0026)  0.0330 (0.0037)  1.00  3216  3314  1.000 / 1.000
 F1 Score  0.7178 (0.0014) -0.0079 (0.0020)  0.00  3154  3224  1.000 / 1.000
 MCC  0.6307 (0.0016) -0.0040 (0.0023)  0.04  3245  3217  1.000 / 1.000

Table D.9 
Posterior summaries for case (c2): Model 1 = cdd_no_fft, Model 2 = cdd_fft.
 Metric 𝛽0 mean (SD) 𝛽1 mean (SD) 𝑃 (𝛽1 > 0)  ESS𝛽0  ESS𝛽1 𝑅̂𝛽0  / 𝑅̂𝛽1

 Accuracy  0.8663 (0.0018)  0.0225 (0.0026)  1.00  3365  3316  1.000 / 1.000
 Precision  0.9561 (0.0010)  0.0066 (0.0014)  1.00  3056  3056  1.000 / 1.000
 Sensitivity  0.8627 (0.0031)  0.0247 (0.0043)  1.00  3403  3348  1.000 / 1.000
 Specificity  0.8774 (0.0033)  0.0161 (0.0046)  1.00  3170  3269  1.000 / 1.000
 F1 Score  0.7620 (0.0024)  0.0350 (0.0033)  1.00  3330  3325  1.000 / 1.000
 MCC  0.6828 (0.0031)  0.0470 (0.0045)  1.00  2814  2926  1.000 / 1.000

Table E.10 
Welch’s t-test on the External dataset for comparisons (a)–(d). SD: Standard Deviation. Diff: Difference. “Rej. 
𝐻0?” indicates whether the null hypothesis is rejected at 𝛼 = 0.05. Metrics in bold indicate that the Hedges g 
suggests a positive effect of model 1 compared to model 2 for this metric.
 Metric  Model 1  Model 2  Diff.  t  Hedges g  p  Rej. 𝐻0?

 Mean (SD)  Mean (SD)
 (a) Model 1 = cdd_fft, Model 2 = basic_no_fft
 Accuracy  0.8888 (0.0058)  0.8224 (0.0045)  0.0664  28.7088  12.2965 7.57 ⋅ 10−16  Yes
 F1 Score  0.7969 (0.0076)  0.7178 (0.0042)  0.0792  28.8224  12.3451 7.50 ⋅ 10−14  Yes
 MCC  0.7298 (0.0098)  0.6307 (0.0051)  0.0991  28.3598  12.1470 2.18 ⋅ 10−13  Yes
 Precision  0.9627 (0.0035)  0.9704 (0.0030) -0.0077 -5.2758 -2.2597 5.67 ⋅ 10−5  Yes
 Sensitivity  0.8873 (0.0097)  0.7891 (0.0080)  0.0982  24.7336  10.5938 5.84 ⋅ 10−15  Yes
 Specificity  0.8934 (0.0113)  0.9254 (0.0083) -0.0320 -7.1913 -3.0802 1.82 ⋅ 10−6  Yes
 (b) Model 1 = cdd_no_fft, Model 2 = basic_no_fft
 Accuracy  0.8663 (0.0047)  0.8224 (0.0045)  0.0439  21.2530  9.1030 3.54 ⋅ 10−14  Yes
 F1 Score  0.7621 (0.0060)  0.7178 (0.0042)  0.0443  19.0775  8.1712 1.94 ⋅ 10−12  Yes
 MCC  0.6827 (0.0079)  0.6307 (0.0051)  0.0520  17.4814  7.4876 1.65 ⋅ 10−11  Yes
 Precision  0.9561 (0.0020)  0.9704 (0.0030) -0.0143 -12.6347 -5.4116 1.13 ⋅ 10−9  Yes
 Sensitivity  0.8627 (0.0073)  0.7891 (0.0080)  0.0736  21.5187  9.2168 3.15 ⋅ 10−14  Yes
 Specificity  0.8774 (0.0064)  0.9254 (0.0083) -0.0480 -14.5020 -6.2115 5.66 ⋅ 10−11  Yes
 (c1) Model 1 = basic_fft, Model 2 = basic_no_fft
 Accuracy  0.8088 (0.0047)  0.8224 (0.0045) -0.0136 -6.6009 -2.8273 3.40 ⋅ 10−6  Yes
 F1 Score  0.7099 (0.0040)  0.7178 (0.0042) -0.0079 -4.3416 -1.8596 3.96 ⋅ 10−4  Yes
 MCC  0.6267 (0.0042)  0.6307 (0.0051) -0.0040 -1.9152 -0.8203 7.21 ⋅ 10−2  No
 Precision  0.9827 (0.0026)  0.9704 (0.0030)  0.0123  9.8579  4.2223 1.31 ⋅ 10−8  Yes
 Sensitivity  0.7605 (0.0081)  0.7891 (0.0080) -0.0286 -7.9590 -3.4090 2.65 ⋅ 10−7  Yes
 Specificity  0.9584 (0.0067)  0.9254 (0.0083)  0.0330  9.7714  4.1852 1.87 ⋅ 10−8  Yes
 (c2) Model 1 = cdd_fft, Model 2 = cdd_no_fft
 Accuracy  0.8888 (0.0058)  0.8663 (0.0047)  0.0225  9.5585  4.0941 2.51 ⋅ 10−8  Yes
 F1 Score  0.7969 (0.0076)  0.7621 (0.0060)  0.0348  11.3377  4.8561 2.21 ⋅ 10−9  Yes
 MCC  0.7298 (0.0098)  0.6827 (0.0079)  0.0471  11.7888  5.0494 1.12 ⋅ 10−9  Yes
 Precision  0.9627 (0.0035)  0.9561 (0.0020)  0.0066  5.1106  2.1890 1.51 ⋅ 10−4  Yes
 Sensitivity  0.8873 (0.0097)  0.8627 (0.0073)  0.0246  6.4087  2.7450 7.00 ⋅ 10−6  Yes
 Specificity  0.8934 (0.0113)  0.8774 (0.0064)  0.0161  3.8957  1.6686 1.58 ⋅ 10−3  Yes
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