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Abstract 

Enzyme kinetics are fundamental for understanding metabolism, yet experimentally measured parameters remain scarce. To address this gap, 
we introduce GotEnzymes2, a substantially expanded resource covering 1 0 7 65 species, 7.3 million enzymes, and 59.6 million unique entries. 
Compared with the first v ersion, GotEnzymes2 no w integrates both catalytic and thermal parameters, enabling unified predictions of k cat , 
K m 

, k cat / K m 

, optimal temperature, and melting temperature. This expansion markedly broadens species and enzyme co v erage, creating the 
most comprehensive database of enzyme kinetic and stability parameters to date. To construct the resource, we systematically benchmarked 
state-of-the-art models for catalytic and thermal parameter prediction, and incorporated the best-performing strategies to ensure accuracy and 
generalizability . Altogether , GotEnzymes2 provides the community with a po w erful resource f or data-driv en enzyme disco v ery, design, and 
engineering, with broad applications in systems biology, metabolic engineering, and synthetic biology. GotEnzymes2 is publicly accessible at 
https://metabolicatlas.org/gotenzymes. 
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Introduction 

Enzymes, the primary biological catalysts in living organisms,
play an essential role in metabolic processes and cellular func-
tion [ 1 , 2 ]. Quantitative characterization of their catalytic ef-
ficiency and thermal stability is of both significant theoret-
ical and practical importance for understanding biological
metabolism [ 3 , 4 ], guiding enzyme engineering [ 5 ], optimizing
industrial bioprocesses, and advancing the field of synthetic
biology [ 6 ]. 

Catalytic efficiency is defined by three core kinetic param-
eters: k cat (turnover number), which represents the maximum
number of substrate molecules converted by an enzyme active
site per unit time; K m 

(Michaelis constant), which represents
the substrate concentration required to achieve half of the
maximum catalytic rate and measures substrate affinity; and
k cat / K m 

(catalytic efficiency), which estimates overall catalytic
performance. In addition, enzymes are characterized by their
thermal properties. An enzyme’s optimal temperature ( T opt )
defines the temperature at which an enzyme exhibits peak ac-
tivity. Thermal stability is often characterized by the melting
temperature, T m 

, which measures the enzyme’s resistance to
denaturation at elevated temperatures. Both T opt and T m 

are
crucial for understanding enzyme function across diverse envi-
ronments and are particularly important for industrial appli-
cations. However, existing databases that record enzyme ki-
netic parameters and thermal properties, such as BRENDA
[ 7 ], SABIO-RK [ 8 ], and UniProt [ 9 ], have limited coverage of
kinetic and thermal properties due to scarcity of the experi-
mental data, posing a significant barrier to the in silico rational
selection and engineering of enzymes for diverse applications
[ 10 ]. To address this gap, various computational models have
been developed in recent years (Table 1 ). For kinetic param-
eter prediction, models including DLKcat [ 11 ], TurNuP [ 12 ],
DLTKcat [ 13 ], DeepEnzyme [ 14 ], Kroll et al.’s model (referred
to as Boost_KM) [ 15 ], UniKP [ 16 ], EITLEM-Kinetics [ 17 ],
and CataPro [ 18 ] have been developed. In parallel, models in-
cluding TOMER [ 19 ] and Seq2Topt [ 20 ] have been developed
for predicting enzyme thermal properties. These diverse meth-
ods have significantly advanced the field of enzyme property
prediction, yet challenges remain in benchmarking and gener-
alizability across diverse biological contexts. 

Benchmarking enzyme prediction models is difficult due to
inconsistent datasets, heterogeneous evaluation metrics, and
the variable ability of models to generalize across biologically
relevant conditions. Existing approaches often lack rigorous
assessment of performance on low-homology sequences and
in predicting mutational effects, which are two critical as-
pects for enabling broader applicability. The absence of stan-
dardized evaluations across these aspects has hindered both
methodological refinement and real-world deployment. To ad-
dress this, we propose a three-step strategy: first, we retrain
existing models on all kinetic parameters ( k cat , K m 

, k cat / K m 

)
and thermal properties ( T opt , T m 

) using a unified dataset to
assess the accuracy , generalizability , and mutational predic-
tion capability, respectively; second, we combine diverse fea-
ture representations (e.g. pretrained protein language models)
with machine or deep learning model architectures to optimize
prediction performance; third, we apply the best-performing
models to systematically update and expand the GotEnzymes
database [ 21 ] with large-scale predictions of kinetic and ther-
mal properties across a diverse set of enzymes and organ-
isms, thereby creating a comprehensive resource for enzyme
research and engineering. 
Materials and methods 

Dataset acquisition 

The EITLEM-Kinetics dataset contains kinetic data for multi- 
ple enzyme-substrate reactions, including 34 429 k cat , 28 664 

K m 

, and 13 388 k cat / K m 

. These data provide important sup- 
port for reproducing the DLKcat, UniKP ( k cat , K m 

, k cat / K m 

),
and Boost_KM models. During data processing, for reactions 
as inputs in TurNuP, we used EC numbers annotated in the 
EITLEM-Kinetics datasets to fill in the reaction completeness,
ensuring data accuracy and consistency. For DLTKcat, which 

requires temperature information, we referenced the temper- 
ature data included in the BRENDA [ 7 ] and SABIO-RK [ 8 ] 
databases to fill in the necessary temperature parameters. For 
entries lacking thermal parameters in BRENDA and SABIO- 
RK, we excluded them from the dataset. For protein struc- 
ture information, we predicted the 3D structures of all protein 

sequences using ESMFold [ 22 ]. The T opt dataset ( n = 2917) 
was obtained from the GitHub repository of TOMER, which 

was originally obtained from the BRENDA database. To ad- 
dress the T opt imbalance, we doubled the entries with high 

T opt ( ≥80 

◦C) by randomly duplicating existing points in this 
range. This creates a more balanced dataset, reducing bias to- 
ward lower T opt values and improving predictions for high- 
temperature enzymes [ 19 , 20 ]. The training and test datasets 
of thermal stability ( T m 

) were obtained from DeepTM [ 23 ] 
and Meltome Atlas [ 24 ]. The T m 

training and test datasets 
had 25 399 and 6350 entries, respectively. 

Calculation of protein identity and substrate 

similarity 

We used the MMseqs2 [ 25 ] to calculate the identity of protein 

sequences and the FingerprintSimilarity function from RDKit 
to calculate the similarity between substrates. 

Results 

Comparison of different enzyme kinetic and 

thermal property prediction models on unified 

datasets 

We began by collecting kinetic parameter prediction mod- 
els with available code for both enzyme kinetic parameters 
( k cat , K m 

, k cat / K m 

) and thermal properties ( T opt , T m 

), which
exhibited significant differences in their original datasets and 

reported performance (Fig. 1 A and B). To benchmark the 
performance of kinetic prediction models, we adopted the 
EITLEM-Kinetics datasets to retrain them, since it is currently 
the largest in scale, integrating relevant data from UniProt 
[ 9 ], BRENDA [ 7 ], and SABIO-RK [ 8 ]. This dataset con- 
tains 34 429 enzyme–substrate pairs for k cat , 28 664 enzyme–
substrate pairs for K m 

, and 13 388 enzyme–substrate pairs 
for k cat / K m 

(Fig. 1 A). In all three datasets, mutants account 
for ∼40% of all entries ( Supplementary Fig. S1 A), enabling 
evaluation of model sensitivity to sequence perturbations.
These datasets cover 8000 protein types and 3000 substrates 
( Supplementary Fig. S1 B and C). The k cat , K m 

, and k cat / K m 

values follow a log-normal distribution ( Supplementary Fig. 
S1 D). To evaluate T opt and T m 

prediction models, we used 

the datasets from TOMER [ 19 ], DeepTM [ 23 ], and Meltome 
Atlas [ 24 ], which contain 2917 T opt entries and 31 749 T m 

entries ( Supplementary Fig. S1 E). 
Most existing kinetic models are trained using protein se- 

quence and substrate inputs, which allows for direct retrain- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1053#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1053#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1053#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1053#supplementary-data
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Table 1. Enzyme kinetic and thermal properties prediction model 

Model Parameters Input Characteristics 

DLKcat [ 11 ] k cat Protein sequence and substrate k cat ( R 

2 = 0.49), integrated in GECKO 3.0 
TurNuP [ 12 ] k cat Protein sequence and reaction 

fingerprint 
k cat ( R 

2 = 0.44) of an entire reaction, 
unable to differentiate the k cat for each 
substrate in multi-substrate reactions 

DLTKcat [ 13 ] k cat Protein sequence, substrate, and 
temperature 

k cat at different temperatures ( R 

2 = 0.66) 

DeepEnzyme [ 14 ] k cat Protein sequence, substrate, and protein 
3D structure 

k cat ( R 

2 = 0.58) utilizing protein 3D 

structure 
Boost_KM 

a [ 15 ] K m 

Protein sequence and substrate K m 

( R 

2 = 0.53) 
UniKP [ 16 ] k cat , K m 

, k cat / K m 

Protein sequence and substrate k cat ( R 

2 = 0.67), K m 

( R 

2 = 0.60), and 
k cat / K m 

( R 

2 = 0.56), supports temperature 
and pH inputs 

EITLEM-Kinetics 
[ 17 ] 

k cat , K m 

, k cat / K m 

Protein sequence and substrate k cat ( R 

2 = 0.72), K m 

( R 

2 = 0.69), and 
k cat / K m 

( R 

2 = 0.68) utilizing transfer 
learning 

CataPro [ 18 ] k cat , K m 

, k cat / K m 

Protein sequence and substrate k cat (PCC = 0.497), K m 

(PCC = 0.633), 
and k cat / K m 

(PCC = 0.413), training on 
hard set, exhibiting strong robustness 

TOMER [ 19 ] T opt Protein sequence and optimal growth 
temperature (OGT) 

T opt ( R 

2 = 0.632) 

Seq2Topt [ 20 ] T opt , T m 

Protein sequence T opt ( R 

2 = 0.57) and T m 

( R 

2 = 0.64) 
a Here, we use Boost_KM to refer to the model developed by Kroll et al. 
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ng with the EITLEM-Kinetics datasets. However, models such
s DLTKcat require temperature information, while DeepEn-
yme depends on structural information. To accommodate
hese requirements, we collected the corresponding tempera-
ure data through databases (i.e. UniProt [ 9 ], BRENDA [ 7 ])
nd structural data from protein structure prediction models
i.e. ESMFold [ 22 ]). In addition, TurNuP was trained using
rotein sequences and reaction fingerprints, requiring us to
xtend the dataset with reaction data from BRENDA [ 7 ]. Sim-
larly, for T opt and T m 

models, we retrained models only when
he original training code was available and inputs were lim-
ted to either protein sequence alone or in combination with
GT. 
After retraining, UniKP ( k cat ) and EITLEM-Kinetics ( k cat )

erformed the best for k cat prediction, achieving Coefficient
f Determination ( R 

2 ) values of 0.674 and 0.628, respec-
ively (Fig. 1 C). For K m 

prediction, the retrained Boost_KM,
niKP, EITLEM-Kinetics, and CataPro achieved R 

2 values
f 0.607, 0.662, 0.579, and 0.598, respectively (Fig. 1 C).
or k cat / K m 

prediction, the retrained UniKP ( k cat / K m 

) out-
erformed EITLEM-Kinetics ( k cat / K m 

) and CataPro ( k cat / K m 

),
ith R 

2 values of 0.589, 0.556, and 0.502, respectively (Fig.
 C). The overall better performance of the k cat prediction
ompared to K m 

and k cat / K m 

may be attributed to its larger
ataset size compared to those for K m 

and k cat / K m 

. Addi-
ionally, the R 

2 values of Boost_KM and TurNuP showed
mprovement compared to their original reports, increasing
y 0.08 and 0.17 (compared to original report), respectively,
urther showing the positive impact of dataset expansion on
odel accuracy. 
For T opt prediction, TOMER [ 19 ] and Seq2Topt [ 20 ] were

hosen due to the code availability for retraining. TOMER is
 machine learning model that takes both sequence and OGT
s input features, while Seq2Topt is a deep learning model
hat uses only sequences as input (Fig. 1 D). For T m 

prediction,
nly Seq2Topt was retrained (Fig. 1 D), and its results outper-
ormed the originally reported performance in its publication.
he performance of the retrained models was evaluated using

he R 

2 , Pearson’s Correlation Coefficient (PCC), Mean Ab-
solute Error, Spearman Correlation, and Root Mean Square
Error, as shown in Supplementary Table S1 . 

Evaluation of the generalization ability of enzyme 

kinetics parameters and thermal property 

prediction models 

We systematically evaluated the generalization ability of mod-
els for predicting enzyme kinetics and thermal properties,
uniquely assessing performance across both protein sequence
identity and substrate similarity. For kinetics models, as can
be expected, performance declined with decreasing similarity
on both axes, with retrained UniKP and Boost_KM show-
ing the most robust generalization for k cat / K m 

and K m 

predic-
tions, respectively (Fig. 2 A and B and Supplementary Fig. S2 ).
We therefore propose that this dual-axis evaluation should
become a standard for assessing generalization. In contrast,
models predicting thermal properties ( T opt and T m 

) demon-
strated stable performance across a wide range of sequence
identities, indicating strong generalization even to distant pro-
teins (Fig. 2 C) and in different OGT ranges (Fig. 2 D). 

Evaluation of enzyme kinetic parameter prediction 

models on mutants 

To assess the models’ utility for enzyme engineering, we evalu-
ated their performance on predicting the kinetic parameters of
mutants. The retrained UniKP model was superior, achieving
high R 

2 values on the mutant dataset for k cat ( R 

2 = 0.743),
K m 

( R 

2 = 0.787), and k cat / K m 

( R 

2 = 0.667) (Fig. 2 E). This
high performance was maintained even as the number of mu-
tation sites increased (Fig. 2 F). Critically, leading models could
also accurately predict the directional impact of mutations on
activity; for instance, UniKP ( k cat ) predicted whether a mu-
tation would increase or decrease k cat with 87.3% accuracy.
These findings validate the models’ robustness for variant pre-
diction and highlight their potential to guide rational enzyme
design. Further details on comparative performance and direc-
tional accuracy are available in the supplementary materials
( Supplementary Fig. S3 ). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1053#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1053#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf1053#supplementary-data
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Figure 1. Performance of retrained enzyme kinetic parameter and thermal properties prediction models on unified datasets. (A) The dataset size of 
different enzyme kinetics prediction models and their reported R 

2 values. It should be noted that the R 

2 for CataPro was calculated using predictions on 
the test dataset and the corresponding labels. (B) The dataset size of different enzyme thermal property prediction models and their reported R 

2 values. 
(C) R 

2 of different retrained kinetic parameter prediction models on the EITLEM-Kinetics datasets. (D) R 

2 of different retrained thermal properties 
prediction models on the T opt and T m 

datasets. Error bars represent the standard deviation of the test performance over five random train-test splits of 
the dataset ( n = 5). ∗ To be noted here, CataPro employs an unbiased dataset and splits the training and test sets under protein sequence similarity 
control. This more challenging strategy results in lower R 

2 values compared to random splitting of other models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Common protein and substrate representations and model 
architectures 

Substrate 
representation 

Protein 
representation Model architecture 

Approach RDKitFP 
ECFP 
MACCSkeys FP ESM-1b[ 26 ] UniKP (Extra- 

TreesRegressor) 
Mole-BERT [ 27 ] ESM-1v[ 28 ] DLKcat [attention 

based multilayer 
perceptron (MLP)] 

ChemBERTa-2 
[ 29 ] 

ESM2 [ 22 ] EITLEM-Kinetics 
(attention based 
MLP) 

UniMol V1 [ 30 ] ESM C 

a CataPro (MLP) 
UniMol V2 [ 31 ] ProtT5 [ 32 ] 
MolGen [ 33 ] ProLLaMA 

[ 34 ] 
SMILES 
Transformer [ 35 ] 
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Optimal module combinations for enzyme kinetic 

and thermal parameter prediction 

To identify the most effective predictive models, we performed
a systematic combinatorial screen of key modules, including
protein representations, substrate representations, and model
architectures (Table 2 ). For enzyme kinetics, an extensive
benchmark of 216 unique configurations revealed that a ma-
chine learning architecture (ExtraTrees) paired with large lan-
guage model representations (ProtT5 for proteins, MolGen
for substrates) surpassed existing deep learning models at
the current data scale (Fig. 3 A–D). This optimal combina-
tion, ProtT5&MolGen&ExtraTrees, demonstrated superior
performance over all retrained published models, particularly
in predicting the parameters of mutants (Fig. 4 A–C). Applying
a similar strategy to enzyme thermal properties, we identified
the combination of ProtT5 and the Seq2Topt architecture as
the top performer, which improved R 

2 by 0.09 for T opt (com-
pared to retrained result) and 0.20 for T m 

over previous state-
of-the-art models (Fig. 4 D and E). 
a ESM C was from https://www.evolutionaryscale.ai/blog/esm-cambrian 
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Figure 2. Generalization capabilities of the retrained enzyme kinetic parameter and thermal properties prediction models in the dimensions of protein 
identity and substrate similarity and performance of the enzyme kinetic parameter models in predicting mutants. Generalization ability of the retrained 
k cat , K m 

, and k cat / K m 

prediction models e v aluated across (A) enzyme sequence identity and (B) substrate similarity. (C) Generalization ability of the 
retrained T opt and T m 

prediction model. (D) Performance of the retrained T opt and T m 

prediction model in different OGT intervals. (E) R 

2 of the retrained 
model predictions for wild-type and mutants on the test set. Here, circles represent the k cat model, diamonds represent the K m 

model, and squares 
represent k cat / K m 

. (F) R 

2 of the retrained model predictions for mutants with varying numbers of mutation sites on the test set. 
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Figure 3. Performance comparison of 216 model configurations. Heatmap showing the R 

2 values on the test set for k cat , K m 

, and k cat / K m 

prediction 
across all combinations of protein representations, substrate representations, and model architectures. (A) Attention-based MLP architecture (used in 
DLKcat). (B) ExtraTreesRegressor architecture (used in UniKP). (C) Attention-based MLP architecture (used in EITLEM-Kinetics). (D) MLP architecture 
(used in CataPro). 
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Figure 4. Performance of the optimal combined model. (A) Comparison of the R 

2 for mutation predictions between the optimal combined model and 
retrained UniKP ( k cat , K m 

, k cat / K m 

) on the test set. Here, circles represent the k cat model, diamonds represent the K m 

model, and squares represent 
k cat / K m 

. (B) Comparison of mutation prediction performance across different numbers of mutation sites between the optimal combined model and 
retrained UniKP ( k cat , K m 

, k cat / K m 

) on the test set. (C) Comparison of mutation direction prediction performance between the optimal combined model 
and retrained UniKP ( k cat , K m 

, k cat / K m 

). (D) Performance of combinations of T opt model. (E) Performance of T m 

model combinations. Error bars represent 
the standard deviation of the test performance over five random train-test splits of the dataset ( n = 5). 

Table 3. Comparison between GotEnzymes and GotEnzymes2 

GotEnzymes GotEnzymes2 

Species 8099 10 765 
Enzymes (million) 5.8 7.3 
Entries (million) 25 59.6 
Parameters k cat k cat , K m 

, k cat / K m 

, T opt , and 
T m 
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xpansion of the GotEnzymes database 

he original GotEnzymes database encompassed predicted
 cat values for 25 million enzyme–substrate pairs, covering
.8 million enzymes from 8099 species. To further expand
he dataset, we updated the species list based on the latest
EGG [ 36 ] database, increasing the total number of species to
0 765, the number of enzymes to 7.3 million, and the num-
er of enzyme–substrate pairs to 59.6 million in GotEnzymes2
Table 3 ). Additionally, we substantially enriched the range
f annotated properties. Using our optimal combined enzyme
inetic model (ProtT5&MolGen&ExtraTrees), we extended
redictions to include k cat , K m 

, and k cat / K m 

parameters. For
nzyme thermal properties, we employed the best-performing
odel (ProtT5&Seq2Topt) to predict T opt and T m 

(Fig. 5 A).
hese updates transform GotEnzymes2 into a comprehensive
and multi-parameter enzyme property resource, facilitating
downstream applications in metabolic engineering, enzyme
design, and synthetic biology. 

Global analysis of enzyme thermal properties 

For our global analysis of enzyme thermal properties, to
classify the enzymes into thermal categories, we used the
OGT of their respective source organisms. This OGT in-
formation was sourced from the GOSHA database [ 37 ]
and linked to our dataset via organism name mapping be-
tween GOSHA and KEGG. The sample sizes of organisms
were n = 19 for psychrophiles, n = 5696 for mesophiles,
n = 253 for thermophiles, and n = 61 for hyperthermophiles.
As shown in Fig. 5 B, the distributions of optimal reac-
tion temperature ( T opt ) and melting temperature ( T m 

) for
these enzyme groups are clearly distinct. Enzymes from psy-
chrophiles and mesophiles, which are adapted to colder envi-
ronments, exhibit lower thermal characteristics. Specifically,
psychrophilic enzymes display the lowest temperature pro-
files, while mesophilic enzymes typically have T opt values clus-
tered in the 30 

◦C–50 

◦C range with correspondingly moder-
ate T m 

values. While enzymes from thermophilic and hyper-
thermophilic organisms possess significantly higher T opt and
T m 

values. Their T opt values are generally above 70 

◦C, with
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Figure 5. Ov ervie w of the GotEnzymes2 database. (A) User interf ace of GotEnzymes2. (B) Global analy sis of enzyme thermal properties. T he sample 
sizes of organisms were n = 19 for psychrophiles, n = 5696 for mesophiles, n = 253 for thermophiles, and n = 61 for hyperthermophiles. The inner box 
represents the interquartile range (from lo w er to upper quartile). The central line is the median, and whiskers extend to 1.5 × the interquartile range. 
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some hyperthermophilic enzymes showing peak activity near
100 

◦C, and their elevated T m 

values reflect their enhanced
thermal stability. 

Case study: data-driven sourcing of a thermostable 

biocatalyst 

The industrial modification of starch requires highly ther-
mostable glycogen branching enzymes (GBE, EC 2.4.1.18), as
many existing candidates exhibit insufficient stability at high
temperatures. The GotEnzymes2 database is designed to ad-
dress this challenge directly. 

Instead of performing laborious literature searches, a user
can simply query for EC number “2.4.1.18” within the
database and sort the results by melting temperature ( T m 

) in
descending order. This process rapidly generates a shortlist
of top-ranking, hyper-thermostable enzymes, providing ideal
starting points for protein engineering. This data-driven work-
flow can significantly accelerate a project’s initial phase. For
instance, the GBE with UniProt ID O50094 (top 0.2%) could 

be efficiently identified through this method and selected for 
subsequent directed mutagenesis [ 38 ]. 

Discussion 

Recent years have witnessed substantial progress in the pre- 
diction of enzyme properties, including kinetic parameters 
( k cat , K m 

, k cat / K m 

) and thermal properties ( T opt , T m 

), which
are crucial for enzyme-constrained modeling and engineer- 
ing. However, differences in datasets and model performance 
hinder reproducibility, benchmarking, and widespread adop- 
tion. Here, we addressed these limitations through a com- 
prehensive benchmarking framework by retraining leading 
models on unified large-scale datasets. For kinetic predictions,
retrained versions of UniKP and EITLEM-Kinetics emerged 

as top performers. For thermal properties, Seq2Topt outper- 
formed others after retraining. To assess real-world appli- 
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ability, we evaluated model generalization to divergent se-
uences and substrates, as well as performance on mutant
nzymes. Notably, retrained UniKP exhibited strong general-
zation and maintained high accuracy across both wild-type
nd mutant datasets. Importantly, UniKP, EITLEM-Kinetics,
nd DeepEnzyme accurately predicted mutation effects, a crit-
cal feature for enzyme design. Thermal models showed stable
erformance across low-homology sequences, suggesting an
bility to capture more global determinants of thermostabil-
ty. To optimize further, we combined advanced protein and
olecular representations (e.g. ProtT5, MolGen) with differ-

nt model architectures. The ProtT5&MolGen&ExtraTrees
odel improved kinetic predictions, especially for mutants,
hile ProtT5&Seq2Topt enhanced T opt and T m 

prediction.
hese advances enabled a major update to GotEnzymes, ex-
anding species coverage from 8099 to 10 765 and enzyme–
ubstrate pairs from 25 million to 59.6 million, now including
 cat , K m 

, k cat / K m 

, T opt , and T m 

. 
In conclusion, our study presents a unified benchmarking

ramework for enzyme property prediction, identifies opti-
al model configurations through extensive modular eval-
ation, and delivers a significantly expanded GotEnzymes2
atabase encompassing high-accuracy predictions for cat-
lytic and thermal parameters across a broad phylogenetic
andscape. However, several challenges remain despite signif-
cant advances. Model performance remains constrained by
he quality of available data and the limited integration of
tructural information. Additionally, model outputs can vary
ubstantially across architectures, posing a challenge for inter-
retability and reliability. Future efforts should prioritize the
uration of higher-quality datasets, inclusion of underrepre-
ented enzyme classes, and incorporation of structure-aware
epresentations to drive more consistent and mechanistically
rounded predictions. Ultimately, the continued expansion of
ublicly available, experimentally verified enzyme kinetic and
hermal stability data will be the most crucial element for
raining next-generation models with even higher accuracy
nd broader applicability. 
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