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Abstract

Enzyme kinetics are fundamental for understanding metabolism, yet experimentally measured parameters remain scarce. To address this gap,
we introduce GotEnzymes2, a substantially expanded resource covering 10 765 species, 7.3 million enzymes, and 59.6 million unique entries.
Compared with the first version, GotEnzymes2 now integrates both catalytic and thermal parameters, enabling unified predictions of kgat,
Km, keat/ K, optimal temperature, and melting temperature. This expansion markedly broadens species and enzyme coverage, creating the
most comprehensive database of enzyme kinetic and stability parameters to date. To construct the resource, we systematically benchmarked
state-of-the-art models for catalytic and thermal parameter prediction, and incorporated the best-performing strategies to ensure accuracy and
generalizability. Altogether, GotEnzymes2 provides the community with a powerful resource for data-driven enzyme discovery, design, and
engineering, with broad applications in systems biology, metabolic engineering, and synthetic biology. GotEnzymes2 is publicly accessible at
https://metabolicatlas.org/gotenzymes.
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Introduction

Enzymes, the primary biological catalysts in living organisms,
play an essential role in metabolic processes and cellular func-
tion [1, 2]. Quantitative characterization of their catalytic ef-
ficiency and thermal stability is of both significant theoret-
ical and practical importance for understanding biological
metabolism [3, 4], guiding enzyme engineering [5], optimizing
industrial bioprocesses, and advancing the field of synthetic
biology [6].

Catalytic efficiency is defined by three core kinetic param-
eters: k¢, (turnover number), which represents the maximum
number of substrate molecules converted by an enzyme active
site per unit time; K, (Michaelis constant), which represents
the substrate concentration required to achieve half of the
maximum catalytic rate and measures substrate affinity; and
kear/ K (catalytic efficiency), which estimates overall catalytic
performance. In addition, enzymes are characterized by their
thermal properties. An enzyme’s optimal temperature (Top)
defines the temperature at which an enzyme exhibits peak ac-
tivity. Thermal stability is often characterized by the melting
temperature, Ty, which measures the enzyme’s resistance to
denaturation at elevated temperatures. Both T, and T, are
crucial for understanding enzyme function across diverse envi-
ronments and are particularly important for industrial appli-
cations. However, existing databases that record enzyme ki-
netic parameters and thermal properties, such as BRENDA
[71, SABIO-RK [8], and UniProt [9], have limited coverage of
kinetic and thermal properties due to scarcity of the experi-
mental data, posing a significant barrier to the iz silico rational
selection and engineering of enzymes for diverse applications
[10]. To address this gap, various computational models have
been developed in recent years (Table 1). For kinetic param-
eter prediction, models including DLKcat [11], TurNuP [12],
DLTKcat [13], DeepEnzyme [14], Kroll ez al.’s model (referred
to as Boost_KM) [15], UniKP [16], EITLEM-Kinetics [17],
and CataPro [18] have been developed. In parallel, models in-
cluding TOMER [19] and Seq2Topt [20] have been developed
for predicting enzyme thermal properties. These diverse meth-
ods have significantly advanced the field of enzyme property
prediction, yet challenges remain in benchmarking and gener-
alizability across diverse biological contexts.

Benchmarking enzyme prediction models is difficult due to
inconsistent datasets, heterogeneous evaluation metrics, and
the variable ability of models to generalize across biologically
relevant conditions. Existing approaches often lack rigorous
assessment of performance on low-homology sequences and
in predicting mutational effects, which are two critical as-
pects for enabling broader applicability. The absence of stan-
dardized evaluations across these aspects has hindered both
methodological refinement and real-world deployment. To ad-
dress this, we propose a three-step strategy: first, we retrain
existing models on all kinetic parameters (kcar, Ky Reat/Km)
and thermal properties (Top, Tm) using a unified dataset to
assess the accuracy, generalizability, and mutational predic-
tion capability, respectively; second, we combine diverse fea-
ture representations (e.g. pretrained protein language models)
with machine or deep learning model architectures to optimize
prediction performance; third, we apply the best-performing
models to systematically update and expand the GotEnzymes
database [21] with large-scale predictions of kinetic and ther-
mal properties across a diverse set of enzymes and organ-
isms, thereby creating a comprehensive resource for enzyme
research and engineering.

Materials and methods

Dataset acquisition

The EITLEM-Kinetics dataset contains kinetic data for multi-
ple enzyme-substrate reactions, including 34 429 k.., 28 664
Ky, and 13 388 key/Ky,. These data provide important sup-
port for reproducing the DLKcat, UniKP (kcr, Kiny keat/Kin),
and Boost_KM models. During data processing, for reactions
as inputs in TurNuP, we used EC numbers annotated in the
EITLEM-Kinetics datasets to fill in the reaction completeness,
ensuring data accuracy and consistency. For DLTKcat, which
requires temperature information, we referenced the temper-
ature data included in the BRENDA [7] and SABIO-RK [8]
databases to fill in the necessary temperature parameters. For
entries lacking thermal parameters in BRENDA and SABIO-
RK, we excluded them from the dataset. For protein struc-
ture information, we predicted the 3D structures of all protein
sequences using ESMFold [22]. The T, dataset (z = 2917)
was obtained from the GitHub repository of TOMER, which
was originally obtained from the BRENDA database. To ad-
dress the Tope imbalance, we doubled the entries with high
Topt (=80°C) by randomly duplicating existing points in this
range. This creates a more balanced dataset, reducing bias to-
ward lower Ty, values and improving predictions for high-
temperature enzymes [19, 20]. The training and test datasets
of thermal stability (T,,) were obtained from DeepTM [23]
and Meltome Atlas [24]. The T, training and test datasets
had 25399 and 6350 entries, respectively.

Calculation of protein identity and substrate
similarity

We used the MMseqs2 [25] to calculate the identity of protein
sequences and the FingerprintSimilarity function from RDKit
to calculate the similarity between substrates.

Results

Comparison of different enzyme kinetic and
thermal property prediction models on unified
datasets

We began by collecting kinetic parameter prediction mod-
els with available code for both enzyme kinetic parameters
(kcaty K, keat/Kim) and thermal properties (Tope, Trm), which
exhibited significant differences in their original datasets and
reported performance (Fig. 1A and B). To benchmark the
performance of kinetic prediction models, we adopted the
EITLEM-Kinetics datasets to retrain them, since it is currently
the largest in scale, integrating relevant data from UniProt
[9], BRENDA [7], and SABIO-RK [8]. This dataset con-
tains 34 429 enzyme-substrate pairs for kca, 28 664 enzyme—
substrate pairs for K, and 13 388 enzyme-substrate pairs
for key/Ky (Fig. 1A). In all three datasets, mutants account
for ~40% of all entries (Supplementary Fig. STA), enabling
evaluation of model sensitivity to sequence perturbations.
These datasets cover 8000 protein types and 3000 substrates
(Supplementary Fig. S1B and C). The k¢, K, and kea/Kin
values follow a log-normal distribution (Supplementary Fig.
S1D). To evaluate Top and Ty, prediction models, we used
the datasets from TOMER [19], DeepTM [23], and Meltome
Atlas [24], which contain 2917 T, entries and 31749 T,
entries (Supplementary Fig. S1E).

Most existing kinetic models are trained using protein se-
quence and substrate inputs, which allows for direct retrain-
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Table 1. Enzyme kinetic and thermal properties prediction model

Model Parameters Input Characteristics

DLKcat [11] Reat Protein sequence and substrate kear (R* = 0.49), integrated in GECKO 3.0

TurNuP [12] Reat Protein sequence and reaction kear (R* = 0.44) of an entire reaction,
fingerprint unable to differentiate the k., for each

substrate in multi-substrate reactions

DLTKcat [13] Reat Protein sequence, substrate, and kea at different temperatures (R? = 0.66)
temperature

DeepEnzyme [14] Reat Protein sequence, substrate, and protein kear (R* = 0.58) utilizing protein 3D
3D structure structure

Boost_ KM 2 [15] K Protein sequence and substrate K (R* =0.53)

UniKP [16] Reats Kiny Reat/ Kin Protein sequence and substrate kear (R? = 0.67), Ky (R? = 0.60), and

EITLEM-Kinetics
[17]

kcaf’ Kln’ kcaf/Kln
CataPro [18] keats Kiny Read/ Kin

TOMER [19] Topt

Seq2Topt [20] Topt> Tm

Protein sequence and substrate

Protein sequence and substrate

Protein sequence and optimal growth
temperature (OGT)
Protein sequence

kea/ K (R = 0.56), supports temperature
and pH inputs

kear (R =0.72), Kiy (R? = 0.69), and
kear/Km (R* = 0.68) utilizing transfer
learning

kear (PCC = 0.497), K, (PCC = 0.633),
and ke, /Ky (PCC = 0.413), training on
hard set, exhibiting strong robustness

Tope (R? = 0.632)

Tope (R* = 0.57) and T, (R? = 0.64)

2Here, we use Boost_KM to refer to the model developed by Kroll et al.

ing with the EITLEM-Kinetics datasets. However, models such
as DLTKcat require temperature information, while DeepEn-
zyme depends on structural information. To accommodate
these requirements, we collected the corresponding tempera-
ture data through databases (i.e. UniProt [9], BRENDA [7])
and structural data from protein structure prediction models
(i.e. ESMFold [22]). In addition, TurNuP was trained using
protein sequences and reaction fingerprints, requiring us to
extend the dataset with reaction data from BRENDA [7]. Sim-
ilarly, for Tope and Ty, models, we retrained models only when
the original training code was available and inputs were lim-
ited to either protein sequence alone or in combination with
OGT.

After retraining, UniKP (k) and EITLEM-Kinetics (kca)
performed the best for k., prediction, achieving Coefficient
of Determination (R?) values of 0.674 and 0.628, respec-
tively (Fig. 1C). For K, prediction, the retrained Boost_KM,
UniKP, EITLEM-Kinetics, and CataPro achieved R? values
of 0.607, 0.662, 0.579, and 0.598, respectively (Fig. 1C).
For kea/Ky, prediction, the retrained UniKP (ke /Ky,) out-
performed EITLEM-Kinetics (ke,/Kin) and CataPro (kca/Ki),
with R? values of 0.589, 0.556, and 0.502, respectively (Fig.
1C). The overall better performance of the ke, prediction
compared to Ky, and k., /K, may be attributed to its larger
dataset size compared to those for Ky, and kc,/Kp. Addi-
tionally, the R? values of Boost_ KM and TurNuP showed
improvement compared to their original reports, increasing
by 0.08 and 0.17 (compared to original report), respectively,
further showing the positive impact of dataset expansion on
model accuracy.

For Top: prediction, TOMER [19] and Seq2Topt [20] were
chosen due to the code availability for retraining. TOMER is
a machine learning model that takes both sequence and OGT
as input features, while Seq2Topt is a deep learning model
that uses only sequences as input (Fig. 1D). For T}, prediction,
only Seq2Topt was retrained (Fig. 1D), and its results outper-
formed the originally reported performance in its publication.
The performance of the retrained models was evaluated using
the R?, Pearson’s Correlation Coefficient (PCC), Mean Ab-

solute Error, Spearman Correlation, and Root Mean Square
Error, as shown in Supplementary Table S1.

Evaluation of the generalization ability of enzyme
kinetics parameters and thermal property
prediction models

We systematically evaluated the generalization ability of mod-
els for predicting enzyme kinetics and thermal properties,
uniquely assessing performance across both protein sequence
identity and substrate similarity. For kinetics models, as can
be expected, performance declined with decreasing similarity
on both axes, with retrained UniKP and Boost_KM show-
ing the most robust generalization for k,/Ky, and Ky, predic-
tions, respectively (Fig. 2A and B and Supplementary Fig. S2).
We therefore propose that this dual-axis evaluation should
become a standard for assessing generalization. In contrast,
models predicting thermal properties (Tope and Tj,) demon-
strated stable performance across a wide range of sequence
identities, indicating strong generalization even to distant pro-
teins (Fig. 2C) and in different OGT ranges (Fig. 2D).

Evaluation of enzyme kinetic parameter prediction
models on mutants

To assess the models’ utility for enzyme engineering, we evalu-
ated their performance on predicting the kinetic parameters of
mutants. The retrained UniKP model was superior, achieving
high R? values on the mutant dataset for ke, (R? = 0.743),
Ky (R? = 0.787), and ke,/Kyn (R? = 0.667) (Fig. 2E). This
high performance was maintained even as the number of mu-
tation sites increased (Fig. 2F). Critically, leading models could
also accurately predict the directional impact of mutations on
activity; for instance, UniKP (k.,.) predicted whether a mu-
tation would increase or decrease k¢, with 87.3% accuracy.
These findings validate the models’ robustness for variant pre-
diction and highlight their potential to guide rational enzyme
design. Further details on comparative performance and direc-
tional accuracy are available in the supplementary materials
(Supplementary Fig. S3).
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Figure 1. Performance of retrained enzyme kinetic parameter and thermal properties prediction models on unified datasets. (A) The dataset size of
different enzyme kinetics prediction models and their reported R? values. It should be noted that the R? for CataPro was calculated using predictions on
the test dataset and the corresponding labels. (B) The dataset size of different enzyme thermal property prediction models and their reported R? values.
(C) R? of different retrained kinetic parameter prediction models on the EITLEM-Kinetics datasets. (D) R? of different retrained thermal properties
prediction models on the T, and Ty, datasets. Error bars represent the standard deviation of the test performance over five random train-test splits of
the dataset (n = b). * To be noted here, CataPro employs an unbiased dataset and splits the training and test sets under protein sequence similarity
control. This more challenging strategy results in lower R? values compared to random splitting of other models.

Table 2. Common protein and substrate representations and model
architectures

Optimal module combinations for enzyme kinetic
and thermal parameter prediction

To identify the most effective predictive models, we performed Substrate Protein

a systematic combinatorial screen of key modules, including representation  representation ~ Model architecture

protein representations, substrate representations, and model -

. Lo . Approach  RDKitFP

architectures (Table 2). For enzyme kinetics, an extensive ECEP

benchmark of 216 unique configurations revealed that a ma- MACCSkeys FP ESM-1b[26] UniKP (Extra-

chine learning architecture (ExtraTrees) paired with large lan- TreesRegressor)

guage model representations (ProtT5 for proteins, MolGen Mole-BERT [27] ESM-1v[28] DLKcat [attention

for substrates) surpassed existing deep learning models at based multilayer

the current data scale (Fig. 3A-D). This optimal combina- perceptron (MLP)]

tion, ProtT5&MolGen&ExtraTrees, demonstrated superior ChemBERTa-2 ESM2 [22] EITLEM-Kinetics
. . . [29] (attention based

performance over all retrained published models, particularly MLP)

in predicting the parameters of mutants (Fig. 4A-C). Applying UniMol V1 [30] ESM C? CataPro (MLP)

a similar strategy to enzyme thermal properties, we identified UniMol V2 [31]  ProtT5 [32]

the combination of ProtT5 and the Seq2Topt architecture as MolGen [33] ProLLaMA

the top performer, which improved R* by 0.09 for T (com- [34]

pared to retrained result) and 0.20 for T}, over previous state-
of-the-art models (Fig. 4D and E).

SMILES

Transformer [35]

AESM C was from https://www.evolutionaryscale.ai/blog/esm-cambrian
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Figure 2. Generalization capabilities of the retrained enzyme kinetic parameter and thermal properties prediction models in the dimensions of protein
identity and substrate similarity and performance of the enzyme kinetic parameter models in predicting mutants. Generalization ability of the retrained
keat, K, and keat/ K prediction models evaluated across (A) enzyme sequence identity and (B) substrate similarity. (C) Generalization ability of the
retrained Topr and Ty, prediction model. (D) Performance of the retrained Top: and Ty, prediction model in different OGT intervals. (E) R? of the retrained
model predictions for wild-type and mutants on the test set. Here, circles represent the k.,x model, diamonds represent the K, model, and squares
represent keai/Km. (F) R% of the retrained model predictions for mutants with varying numbers of mutation sites on the test set.
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across all combinations of protein representations, substrate representations, and model architectures. (A) Attention-based MLP architecture (used in
DLKcat). (B) ExtraTreesRegressor architecture (used in UniKP). (C) Attention-based MLP architecture (used in EITLEM-Kinetics). (D) MLP architecture
(used in CataPro).
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Table 3. Comparison between GotEnzymes and GotEnzymes2

GotEnzymes GotEnzymes2
Species 8099 10765
Enzymes (million) 5.8 7.3
Entries (million) 25 59.6
Parameters Reat keats Kiny Reat/Km, Tope, and

Tm

Expansion of the GotEnzymes database

The original GotEnzymes database encompassed predicted
kear values for 25 million enzyme—substrate pairs, covering
5.8 million enzymes from 8099 species. To further expand
the dataset, we updated the species list based on the latest
KEGG [36] database, increasing the total number of species to
10765, the number of enzymes to 7.3 million, and the num-
ber of enzyme-substrate pairs to 59.6 million in GotEnzymes2
(Table 3). Additionally, we substantially enriched the range
of annotated properties. Using our optimal combined enzyme
kinetic model (ProtT5&MolGen& ExtraTrees), we extended
predictions to include ke, Ky, and ke, /Ky, parameters. For
enzyme thermal properties, we employed the best-performing
model (ProtT5&Seq2Topt) to predict Top and Ty, (Fig. SA).
These updates transform GotEnzymes2 into a comprehensive

and multi-parameter enzyme property resource, facilitating
downstream applications in metabolic engineering, enzyme
design, and synthetic biology.

Global analysis of enzyme thermal properties

For our global analysis of enzyme thermal properties, to
classify the enzymes into thermal categories, we used the
OGT of their respective source organisms. This OGT in-
formation was sourced from the GOSHA database [37]
and linked to our dataset via organism name mapping be-
tween GOSHA and KEGG. The sample sizes of organisms
were n = 19 for psychrophiles, 7 = 5696 for mesophiles,
n = 253 for thermophiles, and # = 61 for hyperthermopbhiles.
As shown in Fig. 5B, the distributions of optimal reac-
tion temperature (Top) and melting temperature (Ty,) for
these enzyme groups are clearly distinct. Enzymes from psy-
chrophiles and mesophiles, which are adapted to colder envi-
ronments, exhibit lower thermal characteristics. Specifically,
psychrophilic enzymes display the lowest temperature pro-
files, while mesophilic enzymes typically have T values clus-
tered in the 30°C-50°C range with correspondingly moder-
ate Ty, values. While enzymes from thermophilic and hyper-
thermophilic organisms possess significantly higher T and
T values. Their Top values are generally above 70°C, with
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some hyperthermophilic enzymes showing peak activity near
100°C, and their elevated T,, values reflect their enhanced
thermal stability.

Case study: data-driven sourcing of a thermostable
biocatalyst

The industrial modification of starch requires highly ther-
mostable glycogen branching enzymes (GBE, EC 2.4.1.18), as
many existing candidates exhibit insufficient stability at high
temperatures. The GotEnzymes2 database is designed to ad-
dress this challenge directly.

Instead of performing laborious literature searches, a user
can simply query for EC number “2.4.1.18” within the
database and sort the results by melting temperature (Ty,) in
descending order. This process rapidly generates a shortlist
of top-ranking, hyper-thermostable enzymes, providing ideal
starting points for protein engineering. This data-driven work-
flow can significantly accelerate a project’s initial phase. For

instance, the GBE with UniProt ID 050094 (top 0.2%) could
be efficiently identified through this method and selected for
subsequent directed mutagenesis [38].

Discussion

Recent years have witnessed substantial progress in the pre-
diction of enzyme properties, including kinetic parameters
(Reaty Kiny Reat/Ki) and thermal properties (Tope, Tin), which
are crucial for enzyme-constrained modeling and engineer-
ing. However, differences in datasets and model performance
hinder reproducibility, benchmarking, and widespread adop-
tion. Here, we addressed these limitations through a com-
prehensive benchmarking framework by retraining leading
models on unified large-scale datasets. For kinetic predictions,
retrained versions of UniKP and EITLEM-Kinetics emerged
as top performers. For thermal properties, Seq2Topt outper-
formed others after retraining. To assess real-world appli-

G20z Jaquianop g uo 1senb Aq L9€20€8/€50 LIeNB/IBU/S60 L 0 L /I0P/3|01lB-80UBAPE/IBU/WOD dNO"OlWepe.//:sdiy Wolj papeojumod



cability, we evaluated model generalization to divergent se-
quences and substrates, as well as performance on mutant
enzymes. Notably, retrained UniKP exhibited strong general-
ization and maintained high accuracy across both wild-type
and mutant datasets. Importantly, UniKP, EITLEM-Kinetics,
and DeepEnzyme accurately predicted mutation effects, a crit-
ical feature for enzyme design. Thermal models showed stable
performance across low-homology sequences, suggesting an
ability to capture more global determinants of thermostabil-
ity. To optimize further, we combined advanced protein and
molecular representations (e.g. ProtT5, MolGen) with differ-
ent model architectures. The ProtT5&MolGen&ExtraTrees
model improved kinetic predictions, especially for mutants,
while ProtT5&Seq2Topt enhanced Top and Ty, prediction.
These advances enabled a major update to GotEnzymes, ex-
panding species coverage from 8099 to 10 765 and enzyme-
substrate pairs from 25 million to 59.6 million, now including
kcata Ko, kcat/Kma Topts and Th.

In conclusion, our study presents a unified benchmarking
framework for enzyme property prediction, identifies opti-
mal model configurations through extensive modular eval-
uation, and delivers a significantly expanded GotEnzymes2
database encompassing high-accuracy predictions for cat-
alytic and thermal parameters across a broad phylogenetic
landscape. However, several challenges remain despite signif-
icant advances. Model performance remains constrained by
the quality of available data and the limited integration of
structural information. Additionally, model outputs can vary
substantially across architectures, posing a challenge for inter-
pretability and reliability. Future efforts should prioritize the
curation of higher-quality datasets, inclusion of underrepre-
sented enzyme classes, and incorporation of structure-aware
representations to drive more consistent and mechanistically
grounded predictions. Ultimately, the continued expansion of
publicly available, experimentally verified enzyme kinetic and
thermal stability data will be the most crucial element for
training next-generation models with even higher accuracy
and broader applicability.
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