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 A B S T R A C T

The smoothing distribution is the conditional distribution of the diffusion process in the space 
of trajectories given noisy observations made continuously in time. It is generally difficult to 
sample from this distribution. We use the theory of enlargement of filtrations to show that the 
conditional process has an additional drift term derived from the backward filtering distribution 
that is moving or guiding the process towards the observations. This term is intractable, but 
its effect can be equally introduced by replacing it with a heuristic, where importance weights 
correct for the discrepancy. From this Markov Chain Monte Carlo and sequential Monte Carlo 
algorithms are derived to sample from the smoothing distribution. The choice of the guiding 
heuristic is discussed from an optimal control perspective and evaluated. The results are tested 
numerically on a stochastic differential equation for reaction–diffusion.

1. Introduction

Diffusion processes are continuous-time probabilistic models with applications across various fields, including finance, physics, 
and engineering, see, e.g., [1–3]. They naturally emerge by introducing Gaussian random perturbations (white noise) to deterministic 
systems. We consider the problem of smoothing, that is, determining the conditional distribution of the process’ trajectory given 
observational data by a variant of Bayes’ rule. Intuitively, this conditional distribution represents the knowledge about the stochastic 
trajectory given the observation data. We start with introducing our most central stochastic processes. Let 𝑋 = (𝑋𝑡, 𝑡 ∈ [0, 𝑇 ]) be 
a 𝑑-dimensional diffusion process of interest, which is indirectly observed as detailed below. Its dynamics are governed by the 
stochastic differential equation (SDE) 

d𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡) d𝑡 + 𝜎(𝑡, 𝑋𝑡) d𝑊𝑡, (1.1)

on the time interval 𝑡 ∈ [0, 𝑇 ] with 𝑇 > 0 some final time, initial value 𝑋0 = 𝑥0, and where 𝑊  is a 𝑑′-dimensional Brownian motion. 
Here, the drift coefficient 𝑏∶ [0, 𝑇 ] ×R𝑑 → R𝑑 and the dispersion coefficient 𝜎 ∶ [0, 𝑇 ] ×R𝑑 → R𝑑×𝑑′  are sufficiently smooth functions. 
We denote 𝑎 = 𝜎𝜎′.

Let 𝑌 = (𝑌𝑡, 𝑡 ∈ [0, 𝑇 ]) be the 𝐷-dimensional observation process with initial value 𝑌0 = 0 and dynamics governed by the SDE 

d𝑌𝑡 = 𝐻𝑡𝑋𝑡 d𝑡 + d𝛽𝑡. (1.2)

Here, for each 𝑡 ∈ [0, 𝑇 ], 𝐻𝑡 ∈ R𝐷×𝑑 is a linear observation operator and 𝛽 is a 𝐷-dimensional Brownian motion on our probability 
space, independent of 𝑊  and 𝑋.
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Assume that 𝑌  was observed (up to time 𝑇 ) and the conditional distribution (or smoothing distribution) of 𝑋 given 𝑌  is of 
interest. In particular, we are interested in sampling paths of 𝑋 given 𝑌  and computing conditional expectations with respect to the 
smoothing distribution,

E [𝑓 (𝑋) ∣ 𝑌 ] ,

correctly up to Monte Carlo error. For suitable functions 𝑓 this includes for example quantities of interests such as the mean and 
variance of the unobserved process 𝑋 given the data.

The problem is intractable except in a few easy cases. For example, when 𝑏 is linear in space and 𝜎 is constant in space, we 
can use the Rauch–Tung–Striebel smoother, see [4], to compute it. Naively, smoothing an approximation of the process gives an 
approximation to the smoothing distribution. But such direct approximations themselves are not suitable for Monte Carlo methods, 
as in general the conditional law and the approximation are (as measures) mutually singular, precluding the use of the approximation 
as proposal distribution in the Monte Carlo context when samples of the smoothing distribution are sought.

As solution for this, we propose to use ‘‘guided processes’’ (see [5]) for sampling from the actual smoothing distribution. They 
are also derived from tractable approximations to the smoothing distribution, for example via the Rauch–Tung–Striebel smoother 
of a linearized auxiliary system, albeit in a more indirect manner: The auxiliary process is only used to change the drift component 
of the process 𝑋 by a linear term, preventing the measures to become mutually singular.

The process with changed drift approximates the conditional process 𝑋 given observations well and its samples can be used to 
sample the actual conditional process by Monte Carlo, up to Monte Carlo error.

High frequency observations are for example relevant in automated stock trading, but also observations at 50-year intervals such 
as glacier data can constitute high frequency data as geological processes happen on time scales of million years. Due to their large 
dimension, observation vectors in these applications are better modelled as functional observation data, and likewise the latent 
process as continuous time processes, see, e.g., [6].

Method and results

Here, we describe our method of computing expectations with respect to the smoothing distribution. We work on the complete 
filtered probability space (𝛺,, (𝑡),P) supporting the independent Brownian motions 𝑊  and 𝛽 and consider the processes 𝑋 and 
𝑌  defined on the fixed time interval [0, 𝑇 ].

In Section 2, using the theory of enlargement of filtrations, we introduce a filtration  = (𝑡) containing information about 𝑌 . 
Under the new filtration, the meaning of ‘‘adapted Brownian motion’’ changes, which is reflected by a change in the drift of the 
process 𝑋. In our first main theorem, we show that 𝑋 under P solves the stochastic differential equation 

d𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡) d𝑡 + 𝜎(𝑡, 𝑋𝑡)(𝑈𝑡 d𝑡 + d𝑊 ⋆
𝑡 ), (⋆)

 for a data dependent, -adapted control process 𝑈 = (𝑈𝑡, 𝑡 ∈ [0, 𝑇 ]) taking values in R𝑑′ , where 𝑊 ⋆ is again a 𝑑′-dimensional 
Brownian motion, but now also adapted to  under P. The theorem includes a characterization of the control process 𝑈 which 
induces the dependence on 𝑌 , see (2.2).

Note that 𝑋 in (⋆) is still the same process under the same measure P, just expressed differently to make it possible to sample 𝑋
conditional having seen 𝑌  already. For this, note that the new Brownian motion 𝑊 ⋆ can be simulated in the filtration  like any 
other Brownian motion and numerical solutions to (⋆) are obtained using standard integration procedures.

The new representation makes it therefore straight forward to sample 𝑋 given 𝑌  if one can get hold on the control process 𝑈
by solving (2.2). However, this is not always practical, and we may settle for a suboptimal, but tractable data dependent control 
term 𝑈◦ to substitute 𝑈 . In Section 3, we define the guided process, which solves the SDE 

d𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡) d𝑡 + 𝜎(𝑡, 𝑋𝑡)(𝑈◦
𝑡 d𝑡 + d𝑊 ◦

𝑡 ), (◦)

 where 𝑊 ◦ is again a 𝑑′-dimensional Brownian motion adapted to  = (𝑡) under a different probability measure we denote P◦.
We choose 𝑈◦ such that 𝑋 given 𝑌  can be easily sampled under P◦. For that, we approximate the SDE (1.1) by a linear, and 

therefore tractable, process, for which the corresponding control process is known in closed form. This generalizes the backward 
filtering forward guiding paradigm of [7] to continuous time observation models.

Under P◦, 𝑋 solves the smoothing problem only approximately. But we then derive the Girsanov change of measure which 
changes the control back to 𝑈 , expressed as function which gives each sample 𝑋 of (◦) a weight 𝛹 (𝑋). This is our second main 
theorem.

In line with the theory of sequential Monte Carlo, the change of measure is tractable up to an unknown constant. This allows 
us to use Monte Carlo methods to sample the actual conditional process. We devise a Markov Chain Monte Carlo sampler using 
solutions to (◦) as proposals which produces dependent samples of 𝑋 ∣ 𝑌  when it has reached stationary.

Ideally, we choose 𝑈◦ such that P◦ is close to P. To do so in a principled manner, we parametrize 𝑈◦
𝜃  and P◦

𝜃 and vary 𝜃 as to 
minimize the Kullback–Leibler divergence between P and P◦

𝜃 . This variational problem can be formulated as optimal control problem 
similar to those considered in [8].
2 
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Notation

We use P𝑋 with a subscript to denote the law of a random process 𝑋 (i.e. the push forward of P under 𝑋). We denote the 
conditional distribution of 𝑋 given 𝑌  as P𝑋∣𝑌 . Expectations under a decorated measure, e.g. under P◦, are indicated by a decorated 
expectation E◦, likewise the law of 𝑋 is denoted P◦𝑋 , etc. We also denote the integral ∫

⋅
0 𝑌𝑡 d𝑋𝑡 by 𝑌 ∙ 𝑋. The processes [𝑋, 𝑌 ] and 

[𝑋] denote the quadratic (co-)variation process with coordinate processes [𝑋, 𝑌 ](𝑖,𝑗) = [𝑋(𝑖), 𝑋(𝑗)] and (𝑋)⋅ = exp
(

𝑋⋅ −
1
2 [𝑋]⋅

)

 the 
Doléans–Dade exponential process, up to a scaling factor the unique solution 𝑍 of d𝑍𝑡 = 𝑍𝑡 d𝑋𝑡, 𝑍0 = 1. By 𝜎(𝑌 ) respective 𝜎(), 
we denote the 𝜎-field generated by some random variable 𝑌  or by the sets in a collection , and we let  ∨  ∶= 𝜎(

⋃

).

Related work

The problem of smoothing and filtering for the model (1.1) and (1.2) is well-studied. The exact smoothing distribution as 
well as the filtering distribution are in general unknown, although it can be found in the Gaussian affine case, see [4,9,10]. In 
general, indirect observation of diffusion processes causes changes in the underlying probability measure which are described by 
Girsanov’s theorem. These changes, as done in this work, can be alternatively, but to large extend equivalently, seen as changes in 
the information flow that can be modelled via enlargement of filtrations, see [11].

Alternatively to both approaches, the Girsanov framework or the framework of enlargement of filtrations, conditional processes 
can be obtained as solutions to optimal control problems under Kullback–Leibler loss. In this direction, the conditional process can 
be derived as optimal controlled process, see [8], with

𝑈𝑡 = 𝜎′(𝑡, 𝑋𝑡)∇ log 𝑣(𝑡, 𝑋𝑡),

being the optimal control defined in terms of the solution 𝑣 of a backward stochastic partial differential equation derived in [12]. 
The use of stochastic partial differential equations brings additional complexity which we can avoid in the main line of our work. 
Nevertheless, we will explore the connection in more detail.

Earlier, similar approaches based on guided processes have been used in the case of discrete-time observation processes, 
see [7,13]. These approaches are based on work on bridge processes derived in [14,15], which generalize the Brownian bridge. 
Here, we extend the theory to continuous time observations. Also in this line of work, one can choose between the perspectives of 
changes of measures and of enlargement of filtrations, see [16, p. 125] and [17].

As reference literature for the smoothing and filtering problems, we use [1,6,18,19]. For filtering techniques using machine 
learning or deep learning methods, see [20,21]. For related work on optimal control, see e.g. [22].

Outline

This paper is organized as follows: In Section 2, we derive a stochastic differential equation for the smoothed process and relate 
it to a backward stochastic partial differential equation for which we give a solution in the case of linear processes. In Section 3, we 
define the guided proposal process, derive the change of measure between the conditional process and the proposal process, and 
illustrate how to use this in sampling and in variational inference. The last Section 4 is devoted to a numerical experiment. The 
proofs of theorems are included in the main text, remaining proofs are gathered in the Appendix.

2. Smoothing for continuously observed diffusions

In this section, we derive a stochastic differential equation for the smoothed process using the approach of initial enlargement of 
filtration (grossissement initial de filtration), see [11]. Let  = (𝑡, 𝑡 ∈ [0, 𝑇 ]) (recall that  contains information about both Brownian 
motions 𝑊  and 𝛽) be the complete and right continuous filtration created by 𝑊 . The enlarged filtration  = (𝑠), also complete 
and right continuous,

𝑠 =
⋂

𝑡>𝑠
(𝑡 ∨ 𝜎(𝑌 )),

models the flow of information when the entire realization 𝑌  is made known from the beginning of time. Now the process seen as 
semimartingale under the new filtration will have a new canonical decomposition which we derive in this section.

For the simpler case where 𝑌 = 𝑋𝑇 , the process 𝑋 under the filtration  (with 𝜎(𝑌 ) = 𝜎(𝑋𝑇 ) accordingly), fulfils Eq. (⋆) with 

𝑈𝑡 = 𝜎′(𝑡, 𝑋𝑡)∇𝑥 log 𝑣(𝑡, 𝑋𝑡; 𝑇 ,𝑋𝑇 ), (2.1)

where 𝑣(𝑡, 𝑥; 𝑇 , 𝑦) = P(𝑋𝑇 ∈ d𝑦 ∣ 𝑋𝑡 = 𝑥)
/

d𝑦 is the transition density, that is the likelihood to still observe 𝑌 = 𝑋𝑇  when the process 
is in 𝑥 at time 𝑡.

In the case of continuous observations considered here we can express 𝑈 similarly in terms of a density of the conditional 
distribution of 𝑌  of an event 𝐴,

P𝑌 ∣𝑡 (𝐴) = E[𝟏𝐴(𝑌 ) ∣ 𝑡],

which is derived in the next section using a decoupling change of measure.
3 
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2.1. Decoupling change of measure for the joint process

We introduce the progressive log-likelihood process 𝜑 = (𝜑𝑡, 𝑡 ∈ [0, 𝑇 ]) taking values in R with dynamics governed by the SDE

d𝜑𝑡 = (𝐻𝑡𝑋𝑡)′ d𝑌𝑡 −
1
2
‖𝐻𝑡𝑋𝑡‖

2 d𝑡

and initial value 𝜑0 = 0. Exponentiated it gives the likelihood of seeing a sample (𝑌𝑠, 𝑠 ∈ [0, 𝑡]) given (𝑋𝑠, 𝑠 ∈ [0, 𝑡]) so far relative to 
the Wiener law, so 𝜑 = log ((𝐻𝑋)′ ∙ 𝑌 ).

Assumption 2.1.  Assume that the drift vector 𝑏 and the dispersion matrix 𝜎 are measurably defined on [0, 𝑇 ]×R𝑑 , with 𝜎 bounded 
and that the observation matrix 𝐻 is bounded on [0, 𝑇 ] and measurable. Assume that the law of the solution to (1.1) is unique.

Assumption 2.2 (Novikov). There is 𝜖 > 0 such that E exp(𝜖 sup𝑡∈[0,𝑇 ] ‖𝑋𝑡‖
2) < ∞.

Under this local Novikov-type assumption, compare [23, Exercise 1.40, p. 338], using 𝜑 as Radon–Nikodym density, we can 
define a new, equivalent measure

dP̃ = e−𝜑𝑇 dP,

and the process ((𝐻𝑋)′ ∙ 𝑌 ) is an -adapted martingale under P̃.
Under this new measure, the process 𝑋 will be decoupled from the observation process 𝑌  as this is the change of measure which 

removes the drift term 𝐻𝑡𝑋𝑡 d𝑡 from 𝑌 . But the marginal law P𝑋 of 𝑋 remains the same, for example E[𝑓 (𝑋)] = Ẽ[𝑓 (𝑋)] for path 
functionals 𝑓 .

Then, under the new measure, by Girsanov’s theorem, (𝑊𝑡, 𝛽𝑡) ∶= (𝑊𝑡, 𝛽𝑡+∫
𝑡
0 𝐻𝑠𝑋𝑠 d𝑠) = (𝑊𝑡, 𝑌𝑡) is an R𝑑

′+𝐷-dimensional Brownian 
motion and 𝑋 is independent of 𝑌 . Hence,

P̃𝑋,𝑌 = P𝑋 ⊗ P̃𝑌 ,

where P̃𝑌  is the Wiener measure restricted to [0, 𝑇 ] and a tilde indicates that we consider the push forward under P̃. As in [12, 
p. 150, (1.6)], we have the following characterization of the conditional expectation given 𝑌  in form of a Kallianpur–Striebel type 
formula. 

Proposition 2.3.  For bounded measurable real test functions 𝑓 on the path space 𝐶([0, 𝑇 ],R𝑑 ), it holds

E [𝑓 (𝑋) ∣ 𝑌 ] = Ẽ
[

𝑓 (𝑋)𝑍𝑇 ∣ 𝑌
]

,  where 𝑍𝑡 = e𝜑𝑡
Ẽ[e𝜑𝑡 ∣ 𝑌 ]

.

2.2. The dynamics of the conditional process

The process 𝑉 = (𝑉𝑡, 𝑡 ∈ [0, 𝑇 ]), given by
𝑉𝑡 = Ẽ

[

exp(𝜑𝑇 − 𝜑𝑡) ∣ 𝑡
]

,

can be understood as likelihood of the future part (𝑌𝑟, 𝑡 ≤ 𝑟 ≤ 𝑇 ) of the observation 𝑌  given 𝑋𝑡 and plays a similar role as the 
transition density 𝑞(𝑡, 𝑋𝑡, 𝑇 , 𝑦) in the case of observing 𝑋𝑇 = 𝑦. The dynamics of the process 𝑋 under the new filtration are governed 
by the score process, an -adapted process 𝑈 = (𝑈𝑡, 𝑡 ∈ [0, 𝑇 ]) such that 

∫

𝑡

0
𝑈𝑠𝑉𝑠 d𝑠 = [𝑊 ,𝑉 ]𝑡. (2.2)

Theorem 2.4.  Under Assumptions  2.1 and 2.2, there exists a predictable integrable process 𝑈 such that (2.2) holds and

𝑊 ⋆
𝑡 = 𝑊𝑡 − ∫

𝑡

0
𝑈𝑠 d𝑠

is an -Brownian motion under P. The process 𝑋 from (1.1) solves (⋆) with 𝑈 and 𝑊 ⋆.

Proof.  Define 𝑝𝑡 = 𝛷𝑡𝑉𝑡 = Ẽ[𝛷𝑇 ∣ 𝑡] with 𝛷𝑡 = exp(𝜑𝑡). The process 𝑝 is an -martingale under P̃. From the martingale 
representation theorem, which holds under initial enlargement of  by the P̃-independent 𝜎(𝑌 ), see [24, theorem III.4.33], there is 
a square integrable stochastic process 𝛥 with

𝑝𝑡 = 𝑝0 + ∫

𝑡

0
𝛥′𝑠 d𝑊𝑠.

Also [𝑊 , 𝑝] is absolutely continuous. Therefore, as 𝑝 > 0,

𝑈 = 𝑝−1𝛥 = 𝑝−1 𝜕 [𝑊 , 𝑝]
𝑡 𝑡 𝑡 𝑡 𝜕𝑡 𝑡

4 
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solves 𝑝 = 𝑝0(𝑈 ′ ∙𝑊 ) by 𝑝−1 ∙ 𝑝 = (𝑝−1𝛥)′ ∙𝑊 = 𝑈 ′ ∙𝑊  and 

∫

𝑡

0
𝑈𝑠𝑝𝑠 d𝑠 = [𝑊 , 𝑝]𝑡. (2.3)

Integration by parts yields
𝑊 𝑝 = 𝑊 ∙ 𝑝 + 𝑝 ∙𝑊 + [𝑊 , 𝑝],

and with 𝐴𝑡 = ∫ 𝑡0 𝑈𝑠 d𝑠 by (2.3)
𝐴𝑝 = 𝐴 ∙ 𝑝 + 𝑝 ∙ 𝐴 = 𝐴 ∙ 𝑝 + [𝑊 , 𝑝].

Also 𝑊  is an -martingale under P̃. So,
𝑊 ⋆𝑝 = (𝑊 − 𝐴)𝑝 = (𝑊 𝑝 − [𝑊 , 𝑝]) − (𝐴𝑝 − [𝑊 , 𝑝])

is an -martingale under P̃ as difference of two -martingales. Then by (abstract) Bayes’ formula
E
[

𝑊 ⋆
𝑡
|

|

𝑠
]

= Ẽ
[

𝑊 ⋆
𝑡 𝑝𝑡 ||𝑠

]

∕𝑝𝑠 = 𝑊 ⋆
𝑠 .

As [𝑊 ⋆]𝑡 = 𝑡𝐼 , by Lévy’s characterization, 𝑊 ⋆ is an -Brownian motion under P. The SDE (⋆) follows by substituting d𝑊 ⋆
𝑡 +𝑈𝑡 d𝑡

for d𝑊𝑡 in (1.1).
Finally, by [𝑊 ,𝛷] = 0 we have from integration by parts [𝑊 , 𝑝] = [𝑊 ,𝛷𝑉 ] = [𝑊 ,𝛷 ∙𝑉 +𝑉 ∙𝛷+ [𝑉 ,𝛷]] = 𝛷 ∙ [𝑊 ,𝑉 ]. We see that 

𝑈 also solves (2.2) by ∫ ⋅
0 𝑈𝑠𝑉𝑠 d𝑠 = 𝛷−1 ∙ [𝑊 , 𝑝] = (𝛷−1𝛷) ∙ [𝑊 ,𝑉 ] = [𝑊 ,𝑉 ]. □

The term 𝑈 guides the process closer to the observations 𝑌  and plays a similar role as the corresponding term in case of a single 
discrete observation in (2.1). We derive a corollary that further helps to gain intuitive understanding of 𝑈 and will help to compute 
𝑈 in the linear Gaussian case later.

Corollary 2.5.  Let 𝑉  be parametrized by an 𝑟-dimensional Itô-process 𝛩 = (𝛩𝑡, 𝑡 ∈ [0, 𝑇 ]), independent of 𝑋, in the sense that there is a 
function 𝑣∶ [0, 𝑇 ] × R𝑑 × R𝑟 → [0,∞), continuously differentiable in space, such that

𝑣(𝑡, 𝑋𝑡, 𝛩𝑡) = 𝑉𝑡.

Then

𝑈𝑡 = 𝜎′(𝑡, 𝑋𝑡)∇𝑥 log 𝑣(𝑡, 𝑋𝑡, 𝛩𝑡).

So (𝜎′)−1𝑈 is the direction where the likelihood 𝑉  increases, 𝜎𝑈 acts as a drift in the corresponding direction in coordinates of 
𝑋, see [25].

2.3. Connection to stochastic PDEs

Without the assumption that 𝑉  can be parametrized by a finite dimensional process, 𝑈 is correspondingly determined by the 
following backward stochastic partial differential equation (PDE), due to [12,26,27], in particular [26, Sec. 5] for the case of 
unbounded coefficients. Define the formal differential operator

L𝑓 (𝑡, 𝑥) = ⟨𝑏(𝑡, 𝑥),∇𝑓 (𝑡, 𝑥)⟩ + 1
2
Tr(𝑎(𝑡, 𝑥) Hess𝑓 (𝑡, 𝑥))

=
𝑑
∑

𝑖=1
𝑏𝑖(𝑡, 𝑥)

𝜕
𝜕𝑥𝑖

𝑓 (𝑡, 𝑥) + 1
2

𝑑
∑

𝑖,𝑗=1
𝑎𝑖𝑗 (𝑡, 𝑥)

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓 (𝑡, 𝑥)

associated with 𝑋.
One possible way to make practical use of Theorem  2.4 is using these results to compute 𝑈 . 

Proposition 2.6.  Under the additional conditions that 𝑏 is once and 𝜎 and 𝜎𝜎′ are twice bounded differentiable in space, 𝜎𝜎′ is uniformly 
elliptic, and 𝐻 is bounded differentiable in time,

𝑣(𝑡, 𝑥) = Ẽ
[

𝛷𝑇
𝛷𝑡

|

|

|

|

𝑋𝑡 = 𝑥, 𝑌
]

satisfies the stochastic PDE 
d𝑣(𝑡, ⋅) + L𝑣(𝑡, ⋅) d𝑡 + 𝑣(𝑡, ⋅)(𝐻𝑡⋅)′ ⋄ d𝑌𝑡 = 0 (2.4)

with terminal condition 𝑣(𝑇 , ⋅) ≡ 1, where ⋄ indicates a backward Itô integral.
We refer to [27] for further motivation, for the notion of a backward Itô integral and for what entails to be a solution in this 

context. The stochastic term reads in integral form

∫

𝑡

0
𝐺(𝑣(𝑠, ⋅), (𝐻𝑠⋅))′ ⋄ d𝑌𝑠,

where for 𝑐 ∶R𝑑 → R, 𝑔∶R𝑑 → R𝐷, we have 𝐺(𝑐, 𝑔)(𝑥) = 𝑐(𝑥)𝑔(𝑥). 
5 
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Remark 2.7.  When additional to 𝑌  also a random variable 𝜁 that depends (only) on 𝑋𝑇  is noisily observed, then the terminal 
condition changes to 𝑣(𝑇 , ⋅) = 𝐿(𝑥; 𝜁 ), where 𝐿(𝑥; 𝑦) is the conditional probability density of 𝜁 given 𝑋𝑡 = 𝑥 (the likelihood of 𝑥). 
Then 𝑉𝑇 = 𝐿(𝑋𝑇 ; 𝜁 ) and

𝑣(𝑡, 𝑥) = Ẽ
[

𝛷𝑇
𝛷𝑡

𝐿(𝑋𝑇 ; 𝜁 )
|

|

|

|

𝑋𝑡 = 𝑥, 𝑌 , 𝜁
]

.

Thus one can easily extend our results to the setting where both continuous and discrete observations are available, extending [5,7] 
by this setting.

Remark 2.8.  From (2.4) by Itô’s formula [12, p. 133],

d log 𝑣(𝑡, ⋅) +
[

L log 𝑣(𝑡, ⋅) + 1
2
‖𝜎′∇ log 𝑣(𝑡, ⋅)‖2

]

d𝑡 + (𝐻𝑡⋅)′ d𝑌𝑡 −
1
2
‖(𝐻𝑡⋅)‖2 d𝑡 = 0.

Details on the derivation can be found in Appendix.

2.4. Backward filter for the likelihood process in the linear case

Consider a linear process (1.1) with 𝑏(𝑡, 𝑥) = 𝐵𝑡𝑥+𝑚𝑡 and 𝜎(𝑡, 𝑥) = 𝜎𝑡 constant in space, where 𝜎𝑡 ∈ R𝑑×𝑑′ , 𝐵𝑡 ∈ R𝑑×𝑑 , and 𝑚𝑡 ∈ R𝑑 . 
In line with [28], the solution of the backward stochastic PDE (2.4) can be alternatively obtained by a backward filter. Introduce

L†𝑓 (𝑡, 𝑥) = −
𝑑
∑

𝑖=1
𝑏𝑖(𝑡, 𝑥)

𝜕
𝜕𝑥𝑖

𝑓 (𝑡, 𝑥) + 1
2
∑

𝑖,𝑗=1
𝑎𝑖𝑗 (𝑡, 𝑥)

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓 (𝑡, 𝑥)

and let
𝑐(𝑡) = −Tr(𝐵𝑡).

The operator (− 𝜕
𝜕𝑡 + L†)𝑓 + 𝑐𝑓 is the formal adjoint of 𝜕𝜕𝑡 + L. Now one can think of − 𝜕

𝜕𝑡 + L†, where we split off the bounded 
multiplicative operator 𝑐, as the space–time generator of a linear process 𝑋†

𝑡  running backwards in time starting from a Gaussian 
density 𝜋†(𝑇 , ⋅).

Using classical filtering theory for the process 𝑋†
𝑇−𝑟, we can derive the Kushner–Stratonovich equation for the proper filtering 

density

𝜋†(𝑠, 𝑥) = P(𝑋†
𝑠 ∈ d𝑥 ∣ 𝑌𝑡, 𝑡 ∈ [𝑠, 𝑇 ])∕d𝑥,

where 𝑌𝑇 − 𝑌𝑡 = ∫ 𝑇𝑡 𝐻𝑠𝑋
†
𝑠 d𝑠 + 𝛽𝑇 − 𝛽𝑡. Relating 𝜋†(𝑠, 𝑥) and 𝑣(𝑡, 𝑥), we obtain a guiding term from the filtering density of the 𝑋†

process. More specifically, there is a process 𝐶 = (𝐶𝑡, 𝑡 ∈ [0, 𝑇 ]) such that 𝑣(𝑡, 𝑥) = Ẽ[𝛷𝑇 ∕𝛷𝑡 𝐿(𝑋𝑇 ) ∣ 𝑋𝑡 = 𝑥, 𝑌 , 𝜁 ] in the setting of 
Remark  2.7 with he conditional distribution of 𝜁 given 𝑋𝑇  given by N(𝐵𝜁𝑋𝑇 , 𝛴𝜁 ), a normal distribution with parameters 𝐵𝜁𝑋𝑇 , 𝛴𝜁 , 
and

𝑣(𝑠, 𝑥) = 𝐶𝑡𝜋
†(𝑠, 𝑥),

with terminal condition 
𝑣(𝑇 , 𝑥) = 𝐶𝑇 𝜋

†(𝑇 , 𝑥), (2.5)

where 𝑣(𝑇 , 𝑥) ≡ 1 is obtained as limiting case.
In a statistical context, 𝐶 can depend on unknown parameters and therefore cannot be neglected. For example, maximum 

likelihood estimation of 𝐵 and 𝑚 can be implemented by gradient descent on 𝑣(0, 𝑥0), in which case knowledge of 𝐶 is needed. We 
have the following proposition proven in Appendix and giving directly the backward filtering equation for the likelihood process 𝑣
making 𝐶 explicit. 

Proposition 2.9.  The process 𝑣 is given by 

𝑣(𝑡, 𝑥) =
𝐶𝑡

√

(2𝜋)𝑑 |𝑃𝑡|
exp

(

−1
2
(𝑥 − 𝜈𝑡)′𝑃−1

𝑡 (𝑥 − 𝜈𝑡)
)

, (2.6)

where the parameters 𝜈𝑡, 𝑃𝑡, 𝐶𝑡 are obtained from solving a system of backward stochastic differential equations 
d𝜈𝑡 = (𝐵𝑡𝜈𝑡 + 𝑚𝑡) d𝑡 − 𝑃𝑡𝐻 ′

𝑡 (d𝑌𝑡 −𝐻𝑡𝜈𝑡 d𝑡),

d𝑃𝑡 =
(

𝐵𝑡𝑃𝑡 + 𝑃𝑡𝐵′
𝑡 − 𝑎𝑡 + 𝑃𝑡𝐻

′
𝑡𝐻𝑡𝑃𝑡

)

d𝑡,

d log𝐶𝑡 = Tr(𝐵𝑡) d𝑡 − (𝐻𝑡𝜈𝑡)′ ⋄ d𝑌𝑡 +
1
2
‖𝐻𝑡𝜈𝑡‖

2 d𝑠

(2.7)

with 𝑎 = 𝜎𝜎′ and with terminal condition (2.5), assuming that 𝑃𝑡 has a well-defined inverse for 𝑡 ∈ [0, 𝑇 ) with bounded limit for 𝑡 → 𝑇 . 
Consequently, the smoothing process 𝑋 solves

d𝑋𝑡 = (𝐵𝑡𝑋𝑡 + 𝑚𝑡) d𝑡 + 𝑎𝑡𝑃−1
𝑡 (𝜈𝑡 −𝑋𝑡) d𝑡 + 𝜎𝑡 d𝑊 ⋆

𝑡 .

Note that result contains Theorem 2.6 in [7] as special case for 𝐻 ≡ 0.
𝑡

6 
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3. Guided processes

The process 𝑈 in Theorem  2.4 is hardly ever tractable outside the linear Gaussian case. Hence, direct forward simulation of the 
conditional process by solving (⋆),

d𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡) d𝑡 + 𝜎(𝑡, 𝑋𝑡)𝑈𝑡 d𝑡 + 𝜎(𝑡, 𝑋𝑡) d𝑊 ⋆
𝑡 (⋆)

is in general not possible. In this section, we propose an approximation based on proposition 2.9. For a tractable, -adapted 
approximation 𝑈◦, the process 𝑋 solves Eq. (◦),

d𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡) d𝑡 + 𝜎(𝑡, 𝑋𝑡)𝑈◦
𝑡 d𝑡 + 𝜎(𝑡, 𝑋𝑡) d𝑊 ◦

𝑡 , (◦)

with d𝑊 ◦
𝑡 = d𝑊 ⋆

𝑡 + (𝑈𝑡 − 𝑈◦
𝑡 ) d𝑡 = d𝑊𝑡 − 𝑈◦

𝑡 d𝑡.
Suppose (i) E [

((𝑈◦ − 𝑈 )′ ∙𝑊 ⋆)𝑇
]

= 1. Then by Girsanov’s theorem, dP◦ = ((𝑈◦ − 𝑈 )′ ∙ 𝑊 ⋆)𝑇 dP defines a law under which 
𝑊 ◦ is a Brownian motion, so weak solutions of (◦) can be obtained numerically under P◦. If also (ii) E◦

[

((𝑈 − 𝑈◦)′ ∙𝑊 ◦)𝑇
]

= 1, 
(weighted) Monte Carlo samples from 𝑋 ∣ 𝑌  can be obtained from those solutions by weighting them with Girsanov’s likelihood 
𝑍 = ((𝑈 − 𝑈◦) ∙𝑊 ◦)𝑇 = ((𝑈◦ − 𝑈 ) ∙𝑊 ⋆)−1𝑇 . We come back to this after the next section.

3.1. Guiding based on a linear approximation

It remains to choose 𝑈◦ that approximates 𝑈 , express 𝑍 containing the intractable 𝑈 only as proportionality constant, and show 
equivalence between P and P◦ assumed in (𝑖) and (𝑖𝑖).

Let us split 𝑏(𝑡, 𝑥) = 𝐵𝑡𝑥+𝑚𝑡+𝑔(𝑡, 𝑥) into an (affine) linear part and a non-linear 𝑔, so that ideally 𝑏̃(𝑡, 𝑥) = 𝐵𝑡𝑥+𝑚𝑡 can be thought 
of as approximation of 𝑏, likewise we approximate the dispersion coefficient 𝜎(𝑡, 𝑥) by a dispersion coefficient 𝜎̃𝑡 constant in space. 
Again, let 𝑎̃𝑡 = 𝜎̃𝑡𝜎̃′𝑡 . Finally, if 𝜁 is observed, we approximate the conditional distribution of 𝜁 by N(𝐵𝜁𝑋𝑇 , 𝛴𝜁 ) for some matrix 𝐵𝜁
and noise covariance 𝛴𝜁 . If 𝜁 was not observed, we chose 𝐵𝜁 ≡ 0 and 𝛴𝜁  large, compare with [7].

We leverage that we can solve the smoothing problem for the process d𝑋̃𝑡 = 𝑏̃(𝑡, 𝑋̃𝑡) d𝑡+ 𝜎̃𝑡 d𝑊𝑡 with the same observation model 
d𝑌𝑡 = 𝐻𝑡𝑋̃𝑡 d𝑡 + d𝛽𝑡.

Under regularity assumptions, Proposition  2.9 applies to the system (𝑋̃, 𝑌 ) and the corresponding solution (𝐶, 𝜈, 𝑃 ) defines, with 
𝑌  substituted for 𝑌 , an backward filter

𝑣̃(𝑡, 𝑥) =

[

𝐶𝑡
√

(2𝜋)𝑑 |𝑃𝑡|
exp

(

−1
2
(𝑥 − 𝜈𝑡)′𝑃−1

𝑡 (𝑥 − 𝜈𝑡)
)

]

with 𝑉𝑡 = 𝑣̃(𝑡, 𝑋𝑡) and 

𝑈◦
𝑡 = 𝑢◦(𝑡, 𝑋𝑡) (3.1)

where

𝑢◦(𝑡, 𝑥) ∶= 𝜎′(𝑡, 𝑥)∇𝑥 log 𝑣̃(𝑡, 𝑥)

= 𝜎′(𝑡, 𝑥)𝑃−1
𝑡 (𝜈𝑡 − 𝑥).

In fact, it is enough if the conclusion of Proposition  2.9 holds true.

Theorem 3.1.  Under Assumptions  2.1 and 2.2 and assuming that 𝜈 and 𝑃  solve (2.7) from Proposition  2.9 for 𝐵,𝑚 and 𝑎 with 𝑃𝑇 = 𝛴𝜁
and 𝜈𝑇 = 𝐵𝜁 𝜁 , the measures P and P◦ are equivalent with Radon–Nikodym derivative 

dP
dP◦ =

𝑉0 𝑉𝑇
𝑉0 𝑉𝑇

exp
(

∫

𝑇

0
𝜓(𝑡, 𝑋◦

𝑡 , 𝜈𝑡) d𝑡
)

, (3.2)

where

𝜓(𝑡, 𝑥, 𝜈) = (𝑏(𝑡, 𝑥) − 𝑏̃(𝑡, 𝑥))′𝑃−1
𝑡 (𝜈 − 𝑥)

− 1
2
Tr((𝑎(𝑡, 𝑥) − 𝑎̃𝑡)𝑃−1

𝑡 ) + 1
2
(𝜈 − 𝑥)′𝑃−1

𝑡 (𝑎(𝑡, 𝑥) − 𝑎̃𝑡)𝑃−1
𝑡 (𝜈 − 𝑥).

For bounded, measurable, real-valued test functions 𝑓 defined on the path space 𝐶([0, 𝑇 ],R𝑑 ),

E [𝑓 (𝑋) ∣ 𝑌 ] =
𝑉0 𝑉𝑇
𝑉0 𝑉𝑇

E
[

𝑓 (𝑋◦) exp
(

∫

𝑇

0
𝜓(𝑡, 𝑋◦

𝑡 , 𝜈𝑡) d𝑡
)

|

|

|

|

|

𝑌
]

.

When 𝜁 was observed, we have

E [𝑓 (𝑋) ∣ 𝑌 ] =
𝑉0 𝑉𝑇
𝑉 𝑉

E
[

𝑓 (𝑋◦) exp
(

∫

𝑇
𝜓(𝑡, 𝑋◦

𝑡 , 𝜈𝑡) d𝑡
)

|

|

|

|

𝑌 , 𝜁
]

.

0 𝑇 0

|
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Proof.  Note that P and P◦ coincide on 0.
By Yor’s formula (𝑋)(𝑌 − [𝑋, 𝑌 ]) = (𝑋 + 𝑌 ),

((−𝑈 + 𝑈◦)′ ∙𝑊 ⋆)𝑡 = (−𝑈 ′ ∙𝑊 ⋆)𝑡
(

(𝑈◦)′ ∙𝑊 ⋆ + [𝑈 ′ ∙𝑊 ⋆, (𝑈◦)′ ∙𝑊 ⋆]
)

𝑡

=
𝑝0
𝑝𝑡

(−(𝑈◦)′ ∙𝑊 ◦)−1𝑡 ,

where we used 𝑝 = 𝑝0(𝑈 ′ ∙𝑊 ) = 𝑝0(−𝑈 ′ ∙𝑊 ⋆)−1 by (2.3) and

(

(𝑈◦)′ ∙𝑊 ⋆ + [𝑈 ′ ∙𝑊 ⋆, (𝑈◦)′ ∙𝑊 ⋆]
)

= exp
(

(𝑈◦)′ ∙𝑊 ◦ + ∫

⋅

0
(𝑈◦

𝑠 − 𝑈𝑠)′𝑈◦
𝑠 d𝑠 + [𝑈 ′ ∙𝑊 ⋆, (𝑈◦)′ ∙𝑊 ⋆] − 1

2
[(𝑈◦)′ ∙𝑊 ⋆]

)

= exp
(

(𝑈◦)′ ∙𝑊 ◦ + 1
2
[(𝑈◦)′ ∙𝑊 ◦]

)

= (−(𝑈◦)′ ∙𝑊 ◦)−1.

By Lemma  3.2,

(−(𝑈◦)′ ∙𝑊 ◦)0 =
𝛷0
𝛷𝑇

𝑣̃(0, 𝑋0)
𝑣̃(𝑇 ,𝑋𝑇 )

exp
(

∫

𝑇

0
𝜓(𝑡, 𝑋𝑡, 𝜈𝑡) d𝑡

)

.

Combining the preceding displays gives (3.2). It remains to show equivalence between P and P◦. By equivalence of P and P̃, it 
suffices to show equivalence between P̃ and P◦. Under P̃, 𝜈̂𝑡 = Ẽ 𝜈𝑡 is bounded and 𝜈 − 𝜈̂ is a centred Gaussian process on the 
separable Banach space 𝐶([0, 𝑇 ],R𝑑 ) with supremum norm ‖ ⋅‖∞, so by Fernique’s theorem since 𝑃𝑇  is finite, see [29, theorem 2.7], 
there is 𝜖 > 0 such that 

Ẽ exp(𝜖‖𝜈 − 𝜈̂‖∞∕2) < ∞ (3.3)

and therefore
Ẽ exp(𝜖‖𝜈‖∞∕2) ≤ Ẽ exp(𝜖‖𝜈 − 𝜈̂‖∞∕2 + 𝜖‖𝜈̂‖∞∕2) <∞.

Then

((𝑈◦)′ ∙𝑊 )𝑡 = 
(

∫

𝑡

0

(

𝜎′(𝑠,𝑋𝑠)𝑃−1
𝑠 (𝜈𝑠 −𝑋𝑠)

)′ d𝑊𝑠

)

and

Ẽ exp

(

1
2 ∫

min(𝑡+𝛿,𝑇 )

𝑡
‖𝜎′(𝑠,𝑋𝑠)𝑃−1

𝑠 (𝜈𝑠 −𝑋𝑠)‖2 d𝑠

)

≤ Ẽ exp
( 1
2
𝑎̄𝑝̄𝛿

(

‖𝜈 − 𝜈̂‖2∞ + ‖𝜈̂‖2∞ + ‖𝑋‖

2
∞
)

)

≤ exp
( 1
2
𝑎̄𝑝̄𝛿‖𝜈̂‖2∞

)

⋅ Ẽ exp
( 1
2
𝑎̄𝑝̄𝛿‖𝜈 − 𝜈̂‖2∞

)

⋅ Ẽ exp
( 1
2
𝑎̄𝑝̄𝛿‖𝑋‖

2
∞

)

,

where 𝑎̄ = sup𝑡∈[0,𝑇 ],𝑥∈R𝑑 ||𝜎(𝑡, 𝑥)𝜎(𝑡, 𝑥)′|| and 𝑝̄ = sup𝑡∈[0,𝑇 ] ||𝑃−2
𝑡 || where || ⋅ || denotes the spectral norm. In the last step, we have used 

that 𝜈̂ is deterministic and 𝜈 and 𝑋 are independent under P̃.
Therefore, we may choose 𝛿 > 0 small enough, such that by (3.3) and Assumption  2.2, the preceding display is finite and bounded 

in 𝑡 ∈ [0, 𝑇 ]. This establishes that for each 𝑡 ∈ [0, 𝑇 ] Novikov’s condition holds for (𝑈◦)′ ∙ 𝑊  for a short time 𝛿 independent of 𝑡, 
showing equivalence between P̃ and P◦. □

Note the parallels between (3.2) and formula (1.11) in [7] for the discretely observed case.
In the proof we used the following lemma, which is proven in Appendix directly from Proposition  2.9 using Itô’s formula. 

Heuristically, the result follows from Remark  2.8. 

Lemma 3.2.  In the setting of Theorem  3.1,

d log 𝑣̃(𝑡, 𝑋𝑡) = −(𝐻𝑡𝑋𝑡)′ d𝑌𝑡 +
1
2
‖𝐻𝑡𝑋𝑡‖

2 d𝑡

+ (𝜎′(𝑡, 𝑋𝑡)𝑃−1
𝑡 (𝜈𝑡 −𝑋𝑡))′ d𝑊 ◦

𝑡 + 1
2
‖𝜎(𝑠,𝑋𝑡)𝑃−1

𝑡 (𝑋𝑡 − 𝜈𝑡)‖2 d𝑡

+ (𝑏(𝑡, 𝑋𝑡) − (𝐵𝑡𝑋𝑡 + 𝑚𝑡))′𝑃−1
𝑡 (𝜈𝑡 −𝑋𝑡) d𝑡

− 1
2
Tr((𝑎(𝑡, 𝑋𝑡) − 𝑎̃𝑡)𝑃−1

𝑡 ) d𝑡 + 1
2
(𝑋𝑡 − 𝜈𝑡)′𝑃−1

𝑡 (𝑎(𝑡, 𝑋𝑡) − 𝑎̃𝑡)𝑃−1
𝑡 (𝑋𝑡 − 𝜈𝑡) d𝑡.

3.2. Monte Carlo method

The last Theorem  3.1 can be used directly to estimate the expectation of functionals of the conditional process. It would be natural 
to derive estimates by Monte Carlo sampling, but if the Monte Carlo weights dP𝑋∣𝑌=𝑦

d𝑃 ◦ (𝑋◦) have too high variance, it can be better to 
use instead Markov Chain Monte Carlo methods for example. Here we give the Metropolis–Hastings sampler with an autoregressive 
8 
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random walk on the driving Brownian motion as example. In line with the spirit of the paper, we formulate the Metropolis–Hastings 
algorithm in the space of sample paths, see [30], and do not discuss approximation errors. In our implementation in Section 4, we 
use a fine time grid to make sure that the approximation error of the SDEs is small compared to the Monte Carlo sampling error.

In order to apply the Metropolis–Hastings algorithm, we need to define the proposal kernel 𝑄, a measurable function 𝛼 for 
the acceptance probabilities and the target distribution 𝜋. On Wiener space equipped with the Wiener measure P𝑊 , we define the 
proposal kernel

𝑄(𝑤, d𝑤′)

indirectly, by conditional on the current Brownian path 𝑤 proposing a new Brownian path
𝑤′ = 𝜚𝑤 +

√

1 − 𝜚2 𝑊̄ ,

where 𝑊̄  is an independent Brownian motion and 𝜚 ∈ (0, 1) is an autocorrelation parameter governing the size of random walk 
steps in Wiener space. We denote the strong solution of (◦), whose existence we assume, by 𝐹 ◦ such that

𝑋 = 𝐹 ◦(𝑊 ◦).

The target distribution P𝑋∣𝑌=𝑦 has density 
dP𝑋∣𝑌=𝑦

dP◦ , known up to a constant, with respect to the ‘‘reference measure’’ P◦. Thus, to 
sample from P𝑋∣𝑌=𝑦, we can sample from the measure 𝜋 defined via its P𝑊  density,

d𝜋
dP𝑊

=
dP𝑋∣𝑌=𝑦

dP◦
◦𝐹 ◦,

which has P𝑋∣𝑌=𝑦 as push forward under 𝐹 ◦, such that 𝐹 ◦(𝑍) ∼ P𝑋∣𝑌=𝑦, where 𝑍 ∼ 𝜋. To sample from 𝜋 we are using Metropolis–
Hastings with proposal kernel 𝑄. To be precise, given 𝑧, we propose 𝑧′ = 𝜚𝑧+

√

1 − 𝜚2 𝑊̄  and accept the proposed 𝑧′ with probability 
𝛼(𝑧, 𝑧′) as new sample 𝑧, otherwise we reject the proposal and retain the old sample 𝑧. Here,

𝛼(𝑧, 𝑧′) = min
⎛

⎜

⎜

⎝

d𝜋
dP𝑊

(𝑧′)

d𝜋
dP𝑊

(𝑧)
, 1
⎞

⎟

⎟

⎠

is the Metropolis–Hastings acceptance rate.
In Appendix we prove the following proposition that this procedure leads to the correct stationary distribution. 

Proposition 3.3.  The measure 𝜋 is the stationary distribution of the Metropolis–Hastings chain with proposal kernel 𝑄 and acceptance 
probability 𝛼.

3.3. Bellman principle and optimal control for the smoothing distribution

Finding the smoothing distribution can be thought of as a stochastic control problem, see e.g. [22]. Hence, in this section, we 
revisit heuristically the process defined in (◦) from a stochastic control perspective, this also elucidates (2.4). Just as under additional 
regularity assumptions 𝑉𝑡 = 𝑣(𝑡, 𝑋𝑡), we can make the ansatz 𝑈𝑡 = 𝑢(𝑡, 𝑋𝑡) for a choice of (sufficiently smooth) 𝑢 ∶ [0, 𝑇 ] × R𝑑 → R𝑑 . 
Here we consider to choose 𝑢 which minimizes a Kullback–Leibler type cost function: Let P𝑢 defined by the change of measure 
dP𝑢
dP = 

(

𝑈 ′ ∙𝑊
)

= 
(

−𝑈 ′ ∙𝑊 𝑢)−1 = ( dP
dP𝑢 )

−1.
We define the reward function (the negative of a cost function)

𝐽 𝑡𝑠 = ∫

𝑡

𝑠
(𝐻𝑋𝑟)′ d𝑌𝑟 −

1
2 ∫

𝑡

𝑠
‖𝐻𝑋𝑟‖

2 d𝑟 − ∫

𝑡

𝑠
𝑢(𝑟,𝑋𝑟)′ d𝑊 𝑢

𝑟 − ∫

𝑡

𝑠

1
2
‖𝑢(𝑟,𝑋𝑟)‖2 d𝑟,

which is the sum of the log-likelihood process and the negative log-likelihood between P𝑢 under which 𝑊 𝑢 is a Brownian motion 
and P. This objective can be made light of in terms of the variational formula of [31], which relates a conditional distribution 
to a Kullback–Leibler optimization problem: As example, let P⋆ be the conditional or posterior measure induced having observed 
a datum with likelihood 𝑍, using P as prior. That is P⋆ is the measure given by dP⋆ = 𝑍 dP using the likelihood 𝑍 as Radon–
Nikodym derivative with respect to the prior. By the variational formula, a consequence of Jensen’s inequality, P⋆ is the maximizer 
of EQ log𝑍 −KL(Q ∥ P) over measures Q≪ P. Here we essentially restrict our search to random measures of the form Q = P𝑢 with

log dP𝑢
dP

= ∫ 𝑇0 𝑢(𝑡, 𝑋𝑡)′ d𝑊𝑡 −
1
2 ∫

𝑇
0 ‖𝑢(𝑡, 𝑋𝑡)‖2 d𝑡

for some process 𝑢(𝑡, 𝑋𝑡), observe E𝑢[log dP𝑢
dP ] = KL(P𝑢 ∥ P), and search for an optimal control 𝑢⋆ attaining the maximum of the 

conditional expectation. (E𝑢 denoting the expectation under P𝑢.) To solve this, we consider the optimal expected reward-to-go 
conditional on 𝑌 , that is

log 𝑣(𝑠, 𝑥) ∶= sup
𝑢

E𝑢
[

𝐽𝑇𝑠 ∣ 𝑋𝑠 = 𝑥, 𝑌
]

,

and use the Bellman principle: ‘‘An optimal policy has the property that whatever the initial state and initial decision are, the 
remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision’’. (See [32], Chap. 
III.3.) So

supE𝑢
[

𝐽 𝑠+𝜖 + log 𝑣(𝑠 + 𝜖,𝑋𝑠+𝜖) ∣ 𝑋𝑠 = 𝑥, 𝑌
]

− log 𝑣(𝑠, 𝑥) = 0.

𝑢 𝑠

9 
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Taking the formal derivative,

(d log 𝑣)(𝑠, ⋅) + (L log 𝑣)(𝑠, ⋅) d𝑠 + (𝐻𝑡⋅)′ d𝑌𝑠 −
1
2
‖𝐻𝑡 ⋅ ‖

2 d𝑠

+ sup
𝑢

(

𝑢′(𝑠, ⋅)𝜎′(𝑠, 𝑥) 𝜕
𝜕𝑥

log 𝑣(𝑠, ⋅) − 1
2
‖𝑢(𝑠, ⋅)‖2

)

d𝑠 = 0.

The supremum 12‖𝑢(𝑠, ⋅)‖2 of the right-most term is attained in

𝑢(𝑠, 𝑥) = 𝜎′(𝑠, 𝑥) 𝜕
𝜕𝑥

log 𝑣(𝑠, 𝑥)

(see [22]), with 𝑣(𝑠, 𝑥) solving the parabolic stochastic differential equation 

d log 𝑣(𝑡, ⋅) + L log 𝑣(𝑡, ⋅) d𝑡 + (𝐻𝑡⋅)′ ⋄ d𝑌𝑡 +
1
2
‖𝜎(𝑠, ⋅)′∇ log 𝑣(𝑡, ⋅)‖2 d𝑡 − 1

2
‖(𝐻𝑡⋅)′‖2 d𝑡 = 0. (3.4)

We now have the Hamilton–Jacobi–Bellman stochastic parabolic differential equation for log 𝑣 and 𝑣. We can relate (3.4) to (2.4) 
by Remark  2.8. By the verification theorem (c.f. [22]), the reward-to-go log 𝑣 characterizes the optimal control 𝑢⋆: If 𝑣 is the solution 
with boundary condition log 𝑣(𝑇 , ⋅) ≡ 0, then

𝑢⋆(𝑡, 𝑥) = 𝜎(𝑡, 𝑥)′∇ log 𝑣(𝑡, 𝑥)

is the optimal control and the drift of 𝑋 under P⋆ is 𝑏 + 𝑎∇ log 𝑣.
We can therefore think of (⋆) as solution to a Kullback–Leibler control problem.

3.4. Optimizing the guide

The performance of the method depends on the choice of linear auxiliary process, see the discussion in van der Meulen and 
Schauer [33] (Section 4.4) for general ways to approach this. Let 𝜃 = vec(𝐵,𝑚, 𝜎) be the tuneable parameters, determining 𝑋◦ using 
a time-homogeneous linear process as guide. We write P◦𝜃 to emphasize the dependence of the law of 𝑋◦ on the choice of 𝜃. In line 
with Section 3.3 we propose to simulate the process 𝑋◦ and the Jacobian process 𝐷𝑋◦, see [34,35],

(𝐷𝑋◦
𝑡 )

(𝑖,⋅) = 𝜕𝜃𝑖𝑋
◦
𝑡 , 𝑡 ∈ [0, 𝑇 ], 𝑖 ∈ {1,… , 𝑑},

using a differentiable numerical solver and to maximize the reward 

𝐽 = ∫

𝑇

0
(𝐻𝑡𝑋

◦
𝑡 )

′ d𝑌𝑡 −
1
2 ∫

𝑇

0
‖𝐻𝑡𝑋

◦
𝑡 ‖

2 d𝑡 + log𝐿(𝑋◦
𝑇 ; 𝜁 ) − ∫

𝑡

𝑠
𝑢(𝑟,𝑋𝑟)′ d𝑊𝑟 − ∫

𝑡

𝑠

1
2
‖𝑢(𝑟,𝑋𝑟)‖2 d𝑟, (3.5)

using gradient based optimization methods with gradients ∇𝜃𝐽 .

4. Application: Reaction–diffusion

We consider the following discretization of a stochastic reaction diffusion system as a 𝑑 = 100 dimensional stochastic differential 
equation 

d𝑋𝑡 = −5𝛬𝑋𝑡 d𝑡 + 𝐹 (𝑋𝑡) d𝑡 + d𝑊𝑡, 𝑋0 = 0, (4.1)

for 𝑡 ∈ [0, 1], where 𝑊 = (𝑊𝑡) is an R𝑑 -valued Brownian motion. The tridiagonal matrix 𝛬 ∈ R𝑑×𝑑 is given as
𝛬(1,1) = 𝛬(𝑑,𝑑) = 1, 𝛬(𝑖,𝑖) = 2, 1 < 𝑖 < 𝑑, 𝛬(𝑖,𝑖+1) = 𝛬(𝑖+1,𝑖) = −1, 1 ≤ 𝑖 < 𝑑

and a non-linear force
𝐹 (𝑥)𝑖 = 2𝑥𝑖 − 2𝑥3𝑖 , 𝑥 ∈ R𝑑 ,

that causes spontaneous organization.
This system corresponds to a semidiscrete finite difference approximation in space of the stochastic reaction–diffusion equation

dX(𝑡, 𝑥) =
(

5𝛥X(𝑡, 𝑥) + 2X(𝑡, 𝑥) − 2X3(𝑡, 𝑥)
)

d𝑡 + dW(𝑡, 𝑥)

with initial condition X(0, 𝑥) = 0 and truncated to a finite space interval of R with grid size 1 and Neumann boundary conditions. 
Here 𝛥 = 𝜕𝑥𝑥 denotes the Laplace operator, and W is a cylindrical Wiener process.

We observe the process

𝑌𝑡 = ∫

𝑡

0
𝐻𝑋𝑠 d𝑠 + 𝛽𝑡, 𝑌𝑡 = 0,

with 𝐻 = 5 as well as the noisy final value 𝜁 = 𝑋1 +𝑍, 𝑍 ∼ 𝑁(0, 0.1𝐼𝑑 ).
We implemented our procedure for this model in Julia, [36]. All code is available from [37] and https://github.com/mschauer/

GuiSDE.jl. The Euler–Maruyama scheme with step size 0.001 is employed to generate a sample of 𝑋 as ground truth and 
corresponding observation 𝑌 . Fig.  1 shows the process 𝑋 on the left and coordinate processes 𝑋(50), 𝑌 (50) on the right.
10 
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Fig. 1. Forward simulation of system (4.1). Left: Heatmap of (𝑋(𝑗)
𝑡 ). (Horizontal axis: time. Vertical: Coordinates. Colour: Value.) Right: Coordinate 

process 𝑋(50) and, in bold, the corresponding observation process 𝑌 (50).

Fig. 2. Left: Estimate E[𝑋𝑡 ∣ 𝑌 , 𝜁 ]. Right: A sample of 𝑋 ∣ 𝑌 , 𝜁 .

We approximate 𝑋 by the linear process 𝑋̃ = (𝑋̃𝑡, 𝑡 ∈ [0, 1]) given by

d𝑋̃𝑡 = −5𝛬𝑋̃𝑡 d𝑡 + d𝑊𝑡, 𝑋̃0 = 0.

Given our observation 𝑌 , we solve the backward system from Proposition  2.9 to obtain 𝑈◦, see (3.1).
We use the autoregressive random walk Metropolis–Hastings from Section 3.2 with 5000 iterations to compute an estimate of 

the process 𝜇⋆𝑡 = E[𝑋𝑡 ∣ 𝑌 , 𝜁 ]. Fig.  2 shows the obtained estimate as well as a sample of 𝑋 ∣ 𝑌 , 𝜁 .
Finally, we fit a variational approximation to the conditional law 𝑋 ∣ 𝑌 , 𝜁 using the approach of Section 3.4 on the system. Here 

we take the same parameters, except the dimension is 𝑑 = 20, to allow the use of (simpler) forward mode automatic differentiation. 
The results are shown in Fig.  3.

For 𝐵 we consider all symmetric, tridiagonal matrices, parametrized as

𝐵(𝑖,𝑖)
𝑡 = 𝜃𝑖, 1 ≤ 𝑖 ≤ 𝑑, 𝐵(𝑖,𝑖+1)

𝑡 = 𝐵(𝑖+1,𝑖)
𝑡 = 𝜃𝑑+𝑖, 1 ≤ 𝑖 < 𝑑

and 𝑚𝑡 we parametrize as 𝑚(𝑖)
𝑡 = 𝜃2𝑑+𝑖−1. We denote by 𝜃◦ the ad hoc choice 𝐵(𝜃◦) = −5𝛬 from earlier. We use the Julia package 

ForwardDiff [38] to compute gradients and the Julia package Optimizers from Julia’s Flux ecosystem [39] for the optimization.
We run Adam with learning rate parameter 𝜂 = 0.01 and starting value 𝜃 = 0 for 2000 iterations to find 𝜃⋆ maximizing the 

expected reward (3.5). The training took 187min on a single Intel Xeon Platinum 8180 CPU at 2.50 GHz.
Fig.  4 shows the training loss curve and the entries of the matrix 𝐵(𝜃⋆), and for comparison, the matrix −5𝛬, as heatmap. Our 

procedure finds a decent approximation to the posterior. To compare, we compare both 𝜇̂𝑡 = E◦
𝜃⋆ [𝑋𝑡 ∣ 𝑌 , 𝜁 ] and 𝜇◦𝑡 = E◦

𝜃◦ [𝑋𝑡 ∣ 𝑌 , 𝜁 ]
with 𝜇⋆, the posterior mean. Here P◦

𝜃 is the P◦ measure corresponding to the choice 𝜃 of the variational parameter. While 𝜇◦ is 
already quite close to 𝜇⋆, 𝜇̂ is much closer, 𝜇⋆ see Fig.  5.
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Fig. 3. Left: Forward simulation of the system (4.1), 𝑑 = 20. Centre: Posterior mean computed with Metropolis–Hastings for a noisy observation 
of the left sample. Right: Mean of variational approximation of the same posterior.

Fig. 4. Left: Loss curve (negative reward versus iteration). Centre: 𝐵(𝜃⋆) versus −5𝛬. Right: 𝑚(𝜃⋆).

Fig. 5. Left: Error |𝜇⋆,(𝑖)𝑡 − 𝜇◦,(𝑖)
𝑡 | corresponding to the ad hoc choice. Right: Error |𝜇⋆,(𝑖)𝑡 − 𝜇̂(𝑖)

𝑡 | corresponding to the variational optimum.
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Appendix. Proofs

Proof of Corollary  2.5.  By Clark’s formula, [34, IV.41], cited after [40], and the assumed independence,

[𝑝,𝑊 ]𝑡 = [𝑝(⋅, 𝑋⋅, 𝛩⋅),𝑊 ]𝑡 = ∫

𝑡

0
(𝛷𝑡∇𝑥𝑣(𝑠,𝑋𝑠, 𝛩𝑠))′d[𝑋]𝑠

= ∫

𝑡

0
(𝜎′(𝑠,𝑋𝑠)∇𝑥 log 𝑣(𝑠,𝑋𝑠, 𝛩𝑠))′𝑣(𝑠,𝑋𝑠, 𝛩𝑠)d𝑠. □

Derivation of Remark  2.8.  Rewrite for clarity the stochastic PDE (2.4)
d𝑣(𝑡, ⋅) = −L𝑣(𝑡, ⋅) d𝑡 − 𝑣(𝑡, ⋅)(𝐻𝑡⋅)′ ⋄ d𝑌𝑡.

By Itô’s formula for stochastic backward integrals

d log 𝑣(𝑡, ⋅) = 1
𝑣(𝑡, ⋅)

d𝑣(𝑡, ⋅) + 1
2
‖(𝐻𝑡⋅)‖2 d𝑡.

Plugging in d𝑣 yields

d log 𝑣(𝑡, ⋅) = − 1
𝑣(𝑡, ⋅)

L𝑣(𝑡, ⋅) d𝑡 − (𝐻𝑡⋅)′ ⋄ d𝑌𝑡 +
1
2
‖𝐻(⋅)‖2 d𝑡

and

d log 𝑣(𝑡, ⋅) + L log 𝑣(𝑡, ⋅) d𝑡 + 1
2
‖𝜎′∇ log 𝑣(𝑡, ⋅)‖2 d𝑡 + (𝐻𝑡⋅)′ ⋄ d𝑌𝑡 −

1
2
‖(𝐻𝑡⋅)‖

2 d𝑡 = 0

Lastly, (𝐻𝑡⋅)′ ⋄ d𝑌𝑡 = (𝐻𝑡⋅)′ d𝑌𝑡. □

Proof of Proposition  2.9.  This can be proven via (2.4) by choosing the ansatz (2.6), so that

𝐶𝑡 = ∫ 𝑣(𝑡, 𝑥) d𝑥, 𝜈𝑡 =
1
𝐶𝑡 ∫

𝑥𝑣(𝑡, 𝑥) d𝑥,  and 𝑃𝑡 =
1
𝐶𝑡 ∫

(𝑥 − 𝜈𝑡)(𝑥 − 𝜈𝑡)′𝑣(𝑡, 𝑥) d𝑥.

We only derive the stochastic differential equation for the process 𝐶, the equations for 𝜈 and 𝑃  are derived in [28].
Note now that

∇𝑥𝑣(𝑡, 𝑥) = 𝑃−1
𝑡 (𝜈𝑡 − 𝑥)𝑣(𝑡, 𝑥)

and

1
2

𝑛
∑

𝑖,𝑗=1
𝑎𝑡,𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑣(𝑡, 𝑥) = 1

2
(

‖𝜎′𝑡𝑃
−1
𝑡 (𝜈𝑡 − 𝑥)‖2 − Tr(𝑎′𝑡𝑃

−1
𝑡 )

)

𝑣(𝑡, 𝑥).

Furthermore, we observe that

∫
1
2
(

‖𝜎′𝑡𝑃
−1
𝑡 (𝜈𝑡 − 𝑥)‖2 − Tr(𝑎𝑡𝑃−1

𝑡 )
)

𝑣(𝑡, 𝑥) d𝑥 = 0

and

∫ (𝐵𝑡𝑥 + 𝑚𝑡)′𝑃−1
𝑡 (𝜈𝑡 − 𝑥)𝑣(𝑡, 𝑥) d𝑥 = −Tr(𝐵𝑡)𝐶𝑡.

So, plugging everything into (2.4) and using stochastic Fubini to integrate over 𝑥, we obtain as equation for 𝐶
d𝐶𝑡 = Tr(𝐵𝑡)𝐶𝑡 d𝑡 − 𝐶𝑡(𝐻𝑡𝜈𝑡)′ ⋄ d𝑌𝑡

and therefore
d log𝐶𝑡 = Tr(𝐵𝑡) d𝑡 − (𝐻𝑡𝜈𝑡)′ ⋄ d𝑌𝑡 +

1
2
‖𝐻𝑡𝜈𝑡‖

2 d𝑡. □

Proof of Lemma  3.2.  The result follows from applying Itô’s formula and collecting terms.

d log 𝑣̃(𝑡, 𝑋𝑡) = + d log𝐶𝑡 −
1
2d log |𝑃𝑡| + d

(

− 1
2 (𝑋𝑡 − 𝜈𝑡)′𝑃−1

𝑡 (𝑋𝑡 − 𝜈𝑡)
)

=Tr(𝐵𝑡) d𝑡 − (𝐻𝑡𝜈𝑡)′ ⋄ d𝑌𝑡 +
1
2‖𝐻𝑡𝜈𝑡‖

2 d𝑡 − 1
2 Tr((

𝜕
𝜕𝑡
𝑃𝑡)𝑃−1

𝑡 ) d𝑡

− (d𝑋𝑡 − d𝜈𝑡)′𝑃−1
𝑡 (𝑋𝑡 − 𝜈𝑡) − (d𝑋𝑡 − d𝜈𝑡)′𝑃−1

𝑡 (d𝑋𝑡 − d𝜈𝑡)∕2

− 1
2 (𝑋𝑡 − 𝜈𝑡)′(

𝜕
𝜕𝑡
𝑃−1
𝑡 )(𝑋𝑡 − 𝜈𝑡) d𝑡

= − (𝐻𝑡𝜈𝑡)′ d𝑌𝑡 +
1
2‖𝐻𝑡𝜈𝑡‖

2 d𝑡 − (𝐻𝑡d𝜈𝑡)′ d𝑌𝑡 −
1
2 Tr(𝑃𝑡𝐻

′
𝑡𝐻𝑡) d𝑡 +

1
2 Tr(𝑎̃𝑡𝑃

−1
𝑡 ) d𝑡

+ (d𝑋 − d𝜈 )′𝑃−1(𝜈 −𝑋 ) − (d𝑋 − d𝜈 )′𝑃−1(d𝑋 − d𝜈 )∕2
𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

13 
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+ 1
2 (𝑋𝑡 − 𝜈𝑡)′𝑃−1

𝑡 (𝐵𝑡𝑃𝑡 + 𝑃𝑡𝐵′
𝑡 )𝑃

−1
𝑡 (𝑋𝑡 − 𝜈𝑡) d𝑡 −

1
2 (𝑋𝑡 − 𝜈𝑡)′𝑃−1

𝑡 𝑎̃𝑡𝑃
−1
𝑡 (𝑋𝑡 − 𝜈𝑡) d𝑡

+ 1
2

(

(𝑋𝑡 − 𝜈𝑡)′𝐻 ′
𝑡𝐻𝑡(𝑋𝑡 − 𝜈𝑡)

)

d𝑡

= − (𝐻𝑡𝜈𝑡)′ d𝑌𝑡 +
1
2‖𝐻𝑡𝜈𝑡‖

2 d𝑡

+ Tr(𝐻𝑡𝑃𝑡𝐻
′
𝑡 ) d𝑡 −

1
2 Tr(𝑃𝑡𝐻

′
𝑡𝐻𝑡) d𝑡 +

1
2 Tr(𝑎̃𝑡𝑃

−1
𝑡 ) d𝑡

+ (𝑏(𝑡, 𝑋𝑡) d𝑡 − (𝑋𝜈𝑡 + 𝑚) d𝑡)′𝑃−1
𝑡 (𝜈𝑡 −𝑋𝑡)

+ (𝐻𝑡(𝜈𝑡 −𝑋𝑡))′ d𝑌𝑡 − (𝐻 ′
𝑡𝐻𝑡𝜈𝑡)′(𝜈𝑡 −𝑋𝑡) d𝑡

+ (𝜎(𝑡, 𝑋𝑡) d𝑊𝑡)′𝑃−1
𝑡 (𝜈𝑡 −𝑋𝑡)

− (d𝑋𝑡)′𝑃−1
𝑡 (d𝑋𝑡)∕2 − (d𝜈𝑡)′𝑃−1

𝑡 (d𝜈𝑡)∕2

− (𝑋(𝑋𝑡 − 𝜈𝑡))′𝑃−1
𝑡 (𝜈𝑡 −𝑋𝑡) d𝑡 −

1
2 (𝑋𝑡 − 𝜈𝑡)′𝑃−1

𝑡 𝑎̃𝑡𝑃
−1
𝑡 (𝑋𝑡 − 𝜈𝑡) d𝑡

+ 1
2𝑋

′
𝑡𝐻

′
𝑡𝐻𝑡𝑋𝑡 d𝑡 − 𝜈′𝑡𝐻

′
𝑡𝐻𝑡𝑋𝑡 d𝑡 +

1
2 𝜈

′
𝑡𝐻

′
𝑡𝐻𝑡𝜈𝑡 d𝑡

= − (𝐻𝑡𝑋𝑡)′ d𝑌𝑡 +
1
2‖𝐻𝑡𝑋𝑡‖

2 d𝑡

+ (𝑏(𝑡, 𝑋𝑡) d𝑡 − (𝑋𝑋𝑡 + 𝑚) d𝑡)′𝑃−1
𝑡 (𝜈𝑡 −𝑋𝑡)

− 1
2 Tr((𝑎(𝑡, 𝑋𝑡) − 𝑎̃)𝑃−1

𝑡 ) d𝑡 + 1
2 (𝑋𝑡 − 𝜈𝑡)′𝑃−1

𝑡 (−𝑎 − 𝑎̃)𝑃−1
𝑡 (𝑋𝑡 − 𝜈𝑡) d𝑡

+ (𝜎′(𝑡, 𝑋𝑡)𝑃−1
𝑡 (𝜈𝑡 −𝑋𝑡))′ d𝑊𝑡 +

1
2‖𝜎(𝑠,𝑋𝑡)𝑃−1

𝑡 (𝑋𝑡 − 𝜈𝑡)‖2 d𝑡 □

Proof of Proposition  3.3.  To establish detailed balance, and therefore prove the proposition, by [30], page 2, we need to show
𝛼(𝑧, 𝑧′)𝜋(d𝑧)𝑄(𝑧, d𝑧′) = 𝛼(𝑧′, 𝑧)𝜋(d𝑧′)𝑄(𝑧′, d𝑧).

In our case,

𝛼(𝑧, 𝑧′)𝜋(d𝑧)𝑄(𝑧, d𝑧′) = 𝛼(𝑧, 𝑧′) d𝜋
dP𝑊

(𝑧)P𝑊 (d𝑧)𝑄(𝑧, d𝑧′)

= 𝛼(𝑧′, 𝑧) d𝜋
dP𝑊

(𝑧′)P𝑊 (d𝑧)𝑄(𝑧, d𝑧′)

= 𝛼(𝑧′, 𝑧) d𝜋
dP𝑊

(𝑧′)P𝑊 (d𝑧′)𝑄(𝑧′, d𝑧)

= 𝛼(𝑧′, 𝑧)𝜋(d𝑧′)𝑄(𝑧′, d𝑧),

follows from min(𝑎∕𝑏, 1) ⋅ 𝑏 = min(𝑏∕𝑎, 1) ⋅ 𝑎 and the symmetry of the measure
𝜆(d𝑤, d𝑤′) = P𝑊 (d𝑤)𝑄(𝑤, d𝑤′). □
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