
ELPIS: Accelerated Metal and Dust Enrichment in a Protocluster Core at z
≈ 8

Downloaded from: https://research.chalmers.se, 2025-11-29 13:14 UTC

Citation for the original published paper (version of record):
Umehata, H., Tamura, Y., Fudamoto, Y. et al (2025). ELPIS: Accelerated Metal and Dust
Enrichment in a Protocluster Core at z ≈ 8. Astrophysical Journal Letters, 993(2).
http://dx.doi.org/10.3847/2041-8213/ae1603

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



A Vision on Intentions in So�ware Engineering

Jacob Krüger
Eindhoven University of Technology

Eindhoven, The Netherlands
j.kruger@tue.nl

Yi Li
Nanyang Technological University

Singapore, Singapore
yi_li@ntu.edu.sg

Chenguang Zhu
The University of Texas at Austin

Austin, USA
cgzhu@utexas.edu

Marsha Chechik
University of Toronto

Toronto, Canada
chechik@cs.toronto.edu

Thorsten Berger
Ruhr-University Bochum &

Chalmers | University of Gothenburg
Bochum & Gothenburg
Germany & Sweden

thorsten.berger@rub.de

Julia Rubin
University of British Columbia

Vancouver, Canada
mjulia@ece.ubc.ca

ABSTRACT

Intentions are fundamental in software engineering, but they are

typically only implicitly considered through di�erent abstractions,

such as requirements, use cases, features, or issues. Speci�cally, soft-

ware engineers develop and evolve (i.e., change) a software system

based on such abstractions of a stakeholder’s intention—something

a stakeholder wants the system to be able to do. Unfortunately,

existing abstractions are (inherently) limited when it comes to rep-

resenting stakeholder intentions and are mostly used for document-

ing only. So, whether a change in a system ful�lls its underlying

intention (and only this one) is an essential problem in practice

that motivates many research areas (e.g., testing to ensure intended

behavior, untangling intentions in commits). We argue that none of

the existing abstractions is ideal for capturing intentions and con-

trolling software evolution, which is why intentions are often vague

and must be recovered, untangled, or understood in retrospect. In

this paper, we re�ect on the role of intentions (represented by

changes) in software engineering and sketch how improving their

management may support developers. Particularly, we argue that

continuously managing and controlling intentions as well as their

ful�llment has the potential to improve the reasoning about which

stakeholder requests have been addressed, avoid misunderstand-

ings, and prevent expensive retrospective analyses. To guide future

research for achieving such bene�ts for researchers and practition-

ers, we discuss the relationships between di�erent abstractions and

intentions, and propose steps towards managing intentions.

CCS CONCEPTS

• Software and its engineering→ Software creation and man-

agement.

KEYWORDS

software evolution, intention, quality assurance

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3613087

ACM Reference Format:

Jacob Krüger, Yi Li, Chenguang Zhu, Marsha Chechik, Thorsten Berger,

and Julia Rubin. 2023. A Vision on Intentions in Software Engineering. In

Proceedings of the 31st ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),

December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/3611643.3613087

1 INTRODUCTION

Software developers rely on various abstractions (e.g., features, re-

quirements, issues) to manage their software systems along the

dimensions of time (i.e., evolution) and space (i.e., functionali-

ties) [2, 5]. Essentially, these abstractions aim to capture the inten-

tion of an involved stakeholder. For example, the feature request of a

stakeholder represents an intended functionality at an abstract level,

requirements specify the boundaries of this intention, a change to

the system implements the intended behavior, and a bug report

documents a violation of this intention (cf. Figure 1). Essentially,

we argue that many of the widely established abstractions used in

software engineering implicitly describe stakeholder intentions.

While such abstractions are widely used in practice, we argue

that we should re�ect on the abstractions’ relations to stakeholder

intentions as a potential means for better connecting, explaining,

and managing these intentions. In fact, we have found that, in prac-

tice, developers use issue and pull-request templates1 to describe

the intended evolution of their system. Moreover, researchers have

proposed various techniques to analyze, manage, and reverse en-

gineer information on di�erent abstractions and the underlying

intentions. Most prominently, researchers have worked on recov-

ering and untangling [6–8, 11, 12] intentions, testing as a means

to ensure intended behavior [19], or verifying changes against a

speci�ed intention [22, 29].

Apparently, developers as well as researchers care about know-

ing and specifying intentions. Particularly, we consider software-

change intentions (SCIs) as an interesting notion that can help de-

scribe a developer’s underlying intention for changing a system

(e.g., �xing a bug, refactoring, implementing a requested feature)

and that can connect other, more established abstractions intu-

itively to each other. However, existing attempts for managing SCIs

focus on documenting (e.g., pull-request templates) or recovering

1https://docs.github.com/en/communities/using-templates-to-encourage-useful-
issues-and-pull-requests/about-issue-and-pull-request-templates

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

2117

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0283-248X
https://orcid.org/0000-0003-4562-8208
https://orcid.org/0000-0002-7343-8279
https://orcid.org/0000-0002-6301-3517
https://orcid.org/0000-0002-3870-5167
https://orcid.org/0000-0001-7280-1614
https://doi.org/10.1145/3611643.3613087
https://doi.org/10.1145/3611643.3613087
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/about-issue-and-pull-request-templates
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/about-issue-and-pull-request-templates
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3613087&domain=pdf&date_stamp=2023-11-30


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jacob Krüger, Yi Li, Chenguang Zhu, Marsha Chechik, Thorsten Berger, and Julia Rubin

typical software-development workflow

lazy check

software changesrequirementsfeature request bug reporttest casesreviewcommit message pull request

eager declaration
verify control

deriving intention specification

vision for a controlled software-development workflow

implementing intention conformance checking against specification

Figure 1: Sketch of a typical software-development work�ow (top) and its relations to our vision for a more controlled work�ow

based on explicitly speci�ed SCIs (bottom).

them after the fact. In the former case, we cannot ensure that the

documented SCI aligns with the actual change; in the later case,

a tangled or wrong SCI may already be in the system. Both cases

are lazy strategies for managing SCIs, and can easily lead to bugs,

cluttered version histories [9], or additional e�orts when review-

ing and quality assuring a system [10]. Moreover, recovering and

potentially untangling SCIs after they have been implemented is

costly and cognitively challenging [25, 27], especially because only

the actual developer knows what their concrete SCI was. Conse-

quently, research on software engineering and evolution also faces

challenges, for instance, when the goal is to identify and investigate

bug-inducing or refactoring changes.

In this paper, we re�ect on existing abstractions in software

engineering and their connections to intentions as represented

in changes (i.e., SCIs). We argue that research into this direction

can help researchers obtain a better conceptual understanding of

software development that, in turn, can guide the design of novel

techniques. As a concrete instantiation for tackling the aforemen-

tioned problems, we sketch the idea of employing an eager strategy

for managing SCIs (cf. Figure 1). Speci�cally, we outline how em-

pirically collected and formally declared SCIs can help (i) control

that only a speci�c SCI can be employed, (ii) verify that a change

matches its SCI, and (iii) ensure a reliable documentation through-

out a system’s evolution. Since this is a long-term vision that is

challenging to achieve, we propose intermediate steps for moving

into this direction and obtaining novel insights in the mean time.

2 WHY MANAGE INTENTIONS

We re�ect on the notion of SCIs as a helpful means for software

engineering by discussing the use of di�erent software-engineering

abstractions, reviewing related work, and considering observations

we made in open-source as well as industrial projects.

Re�ection on Research. In research, many techniques and tools

aim to recover some form of SCIs from version histories, for in-

stance, to identify refactorings [28] or refactor the version history

itself [23]. Other researchers have focused on measuring e�orts

based on SCIs or predicting and understanding the impact of cer-

tain SCIs [18, 21]. Consequently, having more control and a better

mapping of SCIs to the actual changes is highly interesting for

researchers. This promotes our vision of managing and controlling

SCIs via eagerly specifying them (cf. Figure 1), allowing to con-

trol the ful�llment of SCIs, to automatically and reliably document

changes, and thus to improve data quality, reliability, as well as

analyses for researchers and practitioners.

Already in 1976, Swanson [26] started to classify SCIs by de�ning

high-level maintenance activities, namely:

• Adaptive changes are intended to update or modify a sys-

tem to keep it compatible, for instance, with the underlying

hardware or other systems.

• Corrective changes are intended to �x bugs, design �aws,

or security issues in the system.

• Enhancive (added later) changes are intended to add new

functionality (or tests) to a system, providing new features

with speci�c requirements to the stakeholders.

• Perfective changes are intended to improve the system, for

instance, by optimizing its properties, refactoring code, or

deprecating functionality.

Such SCIs have been used extensively to classify changes, but they

are rather abstract and more �ne-grained SCIs are likely more

helpful for researchers and developers—also to untangle changes

with multiple SCIs. A lot of research has built upon this idea and

achieved several advancements [6, 7, 9–12, 25, 27, 29, 30], even

though recovering SCIs is less reliable than controlling them from

the beginning.

Re�ection on Practice.Amore interesting perspective is the prac-

tical point of view. On the top of Figure 1, we sketch an abstracted

development work�ow that may occur in open-source or industrial

projects: Some stakeholder raises a feature request (their inten-

tion for the system), which is re�ned based on requirements (the

boundaries of the intention), and then implemented in a change.

Already at this point, misunderstandings between di�erent stake-

holders (e.g., customer, developer) can cause severe gaps and faults

in an intention’s speci�cation—which is why extensive research has

focused on managing features and requirements [3, 13–15, 17, 24].

Typically, developers document their implemented SCI via com-

mit messages and pull requests, which, however, are no check

whether this (and only this) SCI has been properly implemented.

For instance, GitHub allows developers to create templates for is-

sues and pull requests. The templates de�ne a rough corpus of

what information a developer or user should provide when they

create issues or pull requests. Over time, such templates have be-

come somewhat common, with various standard templates being

collected in di�erent repositories.2 In fact, searching for “add pull

request template” returns roughly 5 million issues and 250 thousand

commits on GitHub, with large projects using such templates to

structure their documentation and communication, for instance, by

2https://github.com/stevemao/github-issue-templates
https://github.com/devspace/awesome-github-templates

2118

https://github.com/stevemao/github-issue-templates
https://github.com/devspace/awesome-github-templates


A Vision on Intentions in So�ware Engineering ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

updating their templates to align them to their needs.3 Such tem-

plates involve di�erent types of information, such as a descriptions

of what the issue or pull request is about; links to related documen-

tation (e.g., pull requests linking to a respective issue); checklists

for con�rming to project styles or testing practices; and regularly a

selection of the type of change employed, which represents the SCI.

Even more, developers have derived tools for checking that pull

requests align to the speci�ed templates, for instance, the RedHat-

powered Tyr.4

However, such templates are only used to document changes,

and the tools can only enforce that the developer �lls in information

according to the template. Whether that information is correct and

whether it re�ects the changes implemented in the pull request

cannot be veri�ed using such templates. For instance, a developer

may state in the template that their SCI is to �x a certain bug and

that the pull request passed all corresponding test cases. But, the

developer may have also refactored the system or �xed another

bug. So, the information in the template may not fully represent

the actual intention underlying the pull request—it is up to the de-

veloper or reviewer to ensure that. Also, reviewers and testers have

to check that the implemented change does not con�ict with the

actual SCI. Speci�cally, we can consider test cases as speci�cations

for controlling the ful�llment of intentions, but whether the test

cases properly re�ect that intention is also an open problem. We

argue that it can be helpful to specify SCIs eagerly in the develop-

ment to control its ful�llment (i.e., allowing only changes to �x a

bug if that SCI is declared), rather then reviewing and testing it

lazily after the implementation.

Summary. Re�ecting on these two perspectives, we perceive our

vision of managing software evolution via declaring SCIs as highly

valuable for researchers and practitioners alike. To use a simple

sketch based on Figure 1: We can imagine that an organization

wants to control that (at least) bug �xes are completely separated

from any other changes to reduce interferences caused by, for in-

stance, tangled refactorings. So, the organization derives a speci�ca-

tion for bug-�xing or even more �ne-grained SCIs (i.e., corrective).

The speci�cation may then build on a well-de�ned test suite (as

one example) and declare the conditions for the di�erent types

(as far as possible) of SCIs. As a simple and incomplete example,

such a declaration could be: A corrective SCI is ful�lled when the

corresponding test cases before the change failed (i.e., identi�ed a

bug) and then completely pass afterwards. Here, executing the test

suite against the system version before and after a change could suf-

�ce, and could be implemented as one technique to check that the

SCI conforms with its speci�cation. As a consequence, if a change

would �x the bug and align to the de�ned rules, the conformance

check would approve that the SCI of the change is ful�lled.

Note that this is a simple and limited example. We are convinced

that a single technique is unlikely to ensure the ful�llment of a SCI,

which is already the case for our test-based example. Speci�cally,

test cases may also tangle intentions or misrepresent them. More-

over, the exact meaning, di�erences, and possible speci�cations for

the various types of SCIs are rather vague. As a consequence, we

see the need to better explore di�erent types and granularities of

3https://github.com/ionic-team/ionic-framework/pull/25286
4https://github.com/jboss/tyr

SCIs, aiming to understand how to distinguish them. Then, starting

with a few concrete SCIs, we can explore how well speci�cations

and techniques can help to clearly identify, specify, and control SCIs

in a change. This is clearly a challenging and long-term research

vision, but we are convinced that it can lead to immense bene�ts

regarding the management and evolution of software systems as

well as their consequent quality. For example, to explore the fea-

sibility and real-world potential of our idea in the short-term, we

envision that, instead of controlling SCIs eagerly, we collect and

develop concepts for lazily checking SCIs (cf. Figure 1).

3 A VISION OF MANAGING INTENTIONS

At the bottom of Figure 1, we sketch a coarse overview of our vision

for improving the management of SCIs. For example, imagine an

organization that wants to control the evolution of its software

system using branches. Speci�cally, the developers may be allowed

to create a branch, but they have to declare what they intend to

implement in that branch (e.g., �xing a bug). Our idea is to design

a technique that could then control that only the speci�ed SCI can

be executed and integrated back into the main system. This would

result in a more understandable version history by avoiding tangled

SCIs, limit quality problems, facilitate comprehension of changes

and version histories, simplify code transplantation, improve docu-

mentation, and simplify automated analyses—among many more

bene�ts. Next, we describe this idea in more detail. Note that an

organization or developer community must de�ne the extent to

which they employ and control SCIs, but we envision developing

techniques and tools that provide a reusable foundation.

First, for each of the SCIs, we have to derive an intention

speci�cation. This speci�cation shall de�ne the properties and

values of each SCI, such as a unique identi�er to track every change,

what properties have to hold to verify that the SCI is ful�lled, or

what types of checks will be executed. We consider the speci�cation

to serve as the foundation against which a change will be veri�ed.

As a consequence, an intention speci�cation must be associated

with a certain type of change (e.g., commit or branch level). Note

that the intention speci�cations can be employed already when a

change starts to eagerly control its ful�llment, or the changes can

be lazily checked against the speci�cation to assess a change after

the fact. For managing the di�erent speci�cations, we can envision

an intention meta model that describes what types of SCIs are

allowed, how these are speci�ed, and on what level of abstraction

they are executed. Building on our insights from a literature review

and own work on such speci�cations [1, 22], we understand that

SCIs can be on various levels of abstraction, such as the high-level

intentions of adaptive, corrective, enhancive, and perfective that build

on the taxonomy of Swanson [26] down to low-level intentions of

adding a feature or �xing a bug. The SCIs that are relevant for an

organization, their boundaries, and their granularity can be de�ned

or selected by the organization or researchers.

Second, we aim to implement conformance checks that ensure

that an implemented change ful�lls its speci�ed SCI. Speci�cally,

we envision that several techniques are integrated into an inten-

tion library to distinguish and check SCIs based on the de�ned

speci�cations as well as meta model. For our long-term vision, we

envision to incorporate these checks continuously, enabling novel

2119

https://github.com/ionic-team/ionic-framework/pull/25286
https://github.com/jboss/tyr


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jacob Krüger, Yi Li, Chenguang Zhu, Marsha Chechik, Thorsten Berger, and Julia Rubin

techniques to check that SCIs are ful�lled throughout the entire

system evolution. Depending on which strategy an organization

employs (i.e., lazily checking, eagerly controlling), such a library

can warn about violations of SCIs or not even allow developers

to execute such violations. We argue that various di�erent tech-

niques can and must be used to balance each technique’s strengths

and weaknesses, for instance, test cases, software veri�cation, or

formalized operations on the system. Notably, de�ning the inten-

tion speci�cations and how to execute corresponding conformance

checks lazily or eagerly is the most challenging aspect of our idea.

4 STEPS FOR FUTUREWORK

To advance towards our vision of improving software evolution,

we see several open research gaps. In the following, we describe

these gaps, sketch some �rst steps into each direction, and what

(intermediate) bene�ts addressing these gaps can yield.

Understanding Intentions.Aprimary step to specify intentions is

to understand how developers are expressing, using, and re�ecting

on what types of SCIs. This way, we are able to identify in what

context SCIs are relevant to them and for what purposes SCIs are

used. As a step towards this direction, we need empirical studies, for

instance, on pull-request templates (e.g., whether they are used and

enforced, what they exhibit) or developers’ cognition (e.g., whether

they are thinking about and in terms of SCIs [16]). Before eliciting a

complete model of SCIs, we see this as bene�cial to understand how

developers interact and behave with their software systems and its

evolution. Understanding such aspects would greatly help design

novel concepts for program comprehension and adapt existing

solutions to new foundational insights on developers’ cognition.

Intended versus Actual Change. Stakeholders and developers

usually have a particular SCI in mind, for instance, adding a new

feature (i.e., enhancive). However, this SCI may not be implemented

as planned, leading to misbehavior or bugs, due to the actual change.

As a result, corrective or perfective changes are needed, aiming to

get the actual behavior in line with the intended one. So, in addition

to one of such four classes, each change may also be distinguished

based on whether it ful�lls its SCI. Identifying changes that do

not ful�ll their SCI can help developers identify bugs faster and

avoid the propagation of faulty code. Also, understanding the root

causes for a mismatch in intended and actual behavior is key to

de�ne speci�cations for SCIs, since they represent under what

circumstances such speci�cations are violated.

Behavior-Changing versus Behavior-Preserving Intention.

While most changes are intended to change system behavior (e.g.,

�xing a bug, adding new functionality), others are not (e.g., refac-

toring, ensuring compatibility with hardware). So, some SCIs can

also be considered as behavior preserving. This distinction can help

identify changes relevant for certain software-engineering activi-

ties, but most importantly, it is arguably much more challenging to

specify behavior-preserving SCIs. For example, refactorings should

be behavior preserving, and knowing the corresponding changes

can facilitate library adaptations, merging, or cherry-picking by

indicating that no behavioral adaptations are required. In contrast,

a bug �x should change (i.e., correct) behavior, which is why such

changes could be identi�ed with tests, and could help evaluate the

quality and completeness of a test suite.

Tangled SCIs. In our ideal scenario, every change (e.g., in the

form of a commit) would represent a single, correctly implemented

SCI. However, in practice, changes often comprise multiple tangled

SCIs, for instance, �xing a bug (i.e., corrective) and refactoring

(i.e., perfective) [4, 7]. Such SCI-tangling changes are problematic,

since they are harder to comprehend for developers, complicate

integration, and challenge analysis tools. For example, developers

maywant to cherry-pick and propagate a particular intention that is

tangled with other intentions. If these SCIs cannot be identi�ed and

separated, the developers need to propagate additional, unwanted

changes to ensure correct behavior [20]. Achieving the ideal of a

one-to-one mapping between intentions and changes would help

facilitate support for such use cases. So, we argue that methods

and techniques for untangling SCIs (e.g., splitting a commit into

multiple) are important.

Declaring SCIs. Building on insights for the previous points, we

will be able to de�ne speci�cations for SCIs, that is, some form of

declaration developers can use to ensure and control that only a

speci�c SCI is ful�lled. While there have been some attempts, such

a declaration is highly challenging (i.e., de�ning clear boundaries

between speci�c SCIs), and poses immediate new questions. For

instance, we have to de�ne whether missing declarations for some

changes, SCIs, or parts of a software system will mean that other

declarations become invalid. Moreover, we need to identify what

we need to declare on what level of detail in what format (e.g., via

annotations or integrated tooling), and how to maintain the decla-

rations themselves. The declarations then serve as the foundation

for actually controlling software evolution.

Developing an SCI-Management Framework. Recovering SCIs

for existing systems is important to analyze and introduce SCIs in

real-world settings. To enable such an analysis, we seek a frame-

work that incorporates di�erent techniques for recovering SCIs.

The framework must enable its users to make sense of unique,

incomplete, inconclusive, and diverging classi�cations of SCIs re-

covered from each technique. Building on the insights gained for

the previous directions, we aim to advance towards a management

framework that enables developers to eagerly declare and control

SCIs for software engineering. So, instead of recovering SCIs when

needed, they could be used as the primary notion for managing a

system. Ideally, this can help address the problems we highlighted,

and thus facilitate developers’ tasks.

5 CONCLUSION

In this paper, we re�ected on the notion of intentions in software en-

gineering and sketched a vision for using SCIs to manage software

evolution. Our long-term vision is to declare and specify SCIs to de-

�ne what developers are allowed to implement for a certain (set of)

changes, for instance, in a pull request. As guidance, we sketched

future research directions, which are primarily connected to:

• Empirically analyzing SCIs, including their relevance for

developers, their tangling, and how to distinguish them.

• Designing techniques for specifying and checking SCIs.

• Engineering tools for fully and eagerly controlling software

evolution based on SCIs.

This as an ambitious research agenda, but already even steps will

yield novel insights to help improve research and practice.

2120



A Vision on Intentions in So�ware Engineering ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] So�a Ananieva, Sandra Greiner, Jacob Krüger, Lukas Linsbauer, Sten Gruener,

Timo Kehrer, Thomas Kuehn, Christoph Seidl, and Ralf Reussner. 2022. Uni�ed
Operations for Variability in Space and Time. In International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS). ACM. https:
//doi.org/10.1145/3510466.3510483

[2] So�a Ananieva, Sandra Greiner, Thomas Kühn, Jacob Krüger, Lukas Linsbauer,
Sten Grüner, Timo Kehrer, Heiko Klare, Anne Koziolek, Henrik Lönn, Sebastian
Krieter, Christoph Seidl, S. Ramesh, Ralf Reussner, and BernhardWestfechtel. 2020.
A Conceptual Model for Unifying Variability in Space and Time. In International
Systems and Software Product Line Conference (SPLC). ACM. https://doi.org/10.
1145/3382025.3414955

[3] Vaibhav Anu, Wenhua Hu, Je�rey C. Carver, Gursimran S. Walia, and Gary
Bradshaw. 2018. Development of a Human Error Taxonomy for Software Re-
quirements: A Systematic Literature Review. Information and Software Technology
103 (2018). https://doi.org/10.1016/j.infsof.2018.06.011

[4] Wesley K.G. Assunção, Jacob Krüger, Sébastien Mosser, and So�ane Selaoui. 2023.
How Do Microservices Evolve? An Empirical Analysis of Changes in Open-
Source Microservice Repositories. Journal of Systems and Software 204 (2023).
https://doi.org/10.1016/j.jss.2023.111788

[5] Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for Software
Con�guration Management. ACM Computing Surveys 30, 2 (1998). https://doi.
org/10.1145/280277.280280

[6] Andrea Di Sorbo, Sebastiano Panichella, Corrado A. Visaggio, Massimiliano
Di Penta, Gerardo Canfora, and Harald C. Gall. 2015. Development Emails
Content Analyzer: Intention Mining in Developer Discussions. In International
Conference on Automated Software Engineering (ASE). IEEE. https://doi.org/10.
1109/ASE.2015.12

[7] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. 2015. Untangling Fine-Grained Code Changes. In International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER). IEEE. https:
//doi.org/10.1109/saner.2015.7081844

[8] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2018.
Communicative Intention in Code Review Questions. In International Conference
on Software Maintenance and Evolution (ICSME). IEEE. https://doi.org/10.1109/
ICSME.2018.00061

[9] Shinpei Hayashi, Takayuki Omori, Teruyoshi Zenmyo, Katsuhisa Maruyama, and
Motoshi Saeki. 2012. Refactoring Edit History of Source Code. In International
Conference on Software Maintenance (ICSM). IEEE. https://doi.org/10.1109/icsm.
2012.6405336

[10] Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The Impact of Tangled Code
Changes on Defect Prediction Models. Empirical Software Engineering 21, 2 (2016).
https://doi.org/10.1007/s10664-015-9376-6

[11] Sebastian Hönel, Morgan Ericsson, Welf Löwe, and Anna Wingkvist. 2020. Using
Source Code Density to Improve the Accuracy of Automatic Commit Classi�-
cation Into Maintenance Activities. Journal of Systems and Software 168 (2020).
https://doi.org/10.1016/j.jss.2020.110673

[12] Qiao Huang, Xin Xia, David Lo, and Gail C. Murphy. 2018. Automating Intention
Mining. IEEE Transactions on Software Engineering 46, 10 (2018). https://doi.org/
10.1109/TSE.2018.2876340

[13] Irum Inayat, Siti S. Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin
Shamshirband. 2015. A Systematic Literature Review on Agile Requirements
Engineering Practices and Challenges. Computers in Human Behavior 51 (2015).
https://doi.org/10.1016/j.chb.2014.10.046

[14] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Carnegie Mellon University.

[15] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang
Huh. 1998. FORM: A Feature-Oriented Reuse Method with Domain-Speci�c
Reference Architectures. Annals of Software Engineering 5 (1998). https://doi.
org/10.1023/a:1018980625587

[16] Jacob Krüger and Regina Hebig. 2020. What Developers (Care to) Recall: An
Interview Survey on Smaller Systems. In International Conference on Software
Maintenance and Evolution (ICSME). IEEE. https://doi.org/10.1109/ICSME46990.
2020.00015

[17] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is My Feature and What is it About? A Case
Study on Recovering Feature Facets. Journal of Systems and Software 152 (2019).
https://doi.org/10.1016/j.jss.2019.01.057

[18] Stanislav Levin and Amiram Yehudai. 2019. Visually Exploring Software Mainte-
nance Activities. In International Working Conference on Software Visualization
(VISSOFT). IEEE. https://doi.org/10.1109/VISSOFT.2019.00021

[19] Yuejian Li and Nancy J. Wahl. 1999. An Overview of Regression Testing. ACM
SIGSOFT Software Engineering Notes 24, 1 (1999). https://doi.org/10.1145/308769.
308790

[20] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2018. Semantic Slicing
of Software Version Histories. IEEE Transactions on Software Engineering 44, 2
(2018). https://doi.org/10.1109/tse.2017.2664824

[21] Bennet P Lientz, E. Burton Swanson, and Gail E Tompkins. 1978. Characteristics
of Application Software Maintenance. Communications of the ACM 21, 6 (1978).
https://doi.org/10.1145/359511.359522

[22] Max Lillack, S, tefan Stănciulescu,WilhelmHedman, Thorsten Berger, and Andrzej
Wąsowski. 2019. Intention-Based Integration of Software Variants. In Interna-
tional Conference on Software Engineering (ICSE). IEEE. https://doi.org/10.1109/
icse.2019.00090

[23] Katsuhisa Maruyama, Eijiro Kitsu, Takayuki Omori, and Shinpei Hayashi. 2012.
Slicing and Replaying Code Change History. In International Conference on Auto-
mated Software Engineering (ASE). ACM. https://doi.org/10.1145/2351676.2351713

[24] Damir Nešić, Jacob Krüger, S, tefan Stănciulescu, and Thorsten Berger. 2019. Prin-
ciples of Feature Modeling. In Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM.
https://doi.org/10.1145/3338906.3338974

[25] Sarocha Sothornprapakorn, Shinpei Hayashi, and Motoshi Saeki. 2018. Visualiz-
ing a Tangled Change for Supporting Its Decomposition and Commit Construc-
tion. In Annual Computer Software and Applications Conference (COMPSAC). IEEE.
https://doi.org/10.1109/compsac.2018.00018

[26] E. Burton Swanson. 1976. The Dimensions of Maintenance. In International
Conference on Software Engineering (ICSE). IEEE.

[27] Song Wang, Chetan Bansal, and Nachiappan Nagappan. 2020. Large-Scale Intent
Analysis for Identifying Large-Review-E�ort Code Changes. Information and
Software Technology (2020). https://doi.org/10.1016/j.infsof.2020.106408

[28] Peter Weißgerber and Stephan Diehl. 2006. Identifying Refactorings from Source-
Code Changes. In International Conference on Automated Software Engineering
(ASE). IEEE. https://doi.org/10.1109/ASE.2006.41

[29] Jooyong Yi, Dawei Qi, Shin H. Tan, and Abhik Roychoudhury. 2015. Software
Change Contracts. ACM Transactions on Software Engineering and Methodology
24, 3 (2015). https://doi.org/10.1145/2729973

[30] Shurui Zhou, S, tefan Stănciulescu, Olaf Leßenich, Yingfei Xiong, Andrzej Wą-
sowski, and Christian Kästner. 2018. Identifying Features in Forks. In International
Conference on Software Engineering (ICSE). ACM. https://doi.org/10.1145/3180155.
3180205

2121

https://doi.org/10.1145/3510466.3510483
https://doi.org/10.1145/3510466.3510483
https://doi.org/10.1145/3382025.3414955
https://doi.org/10.1145/3382025.3414955
https://doi.org/10.1016/j.infsof.2018.06.011
https://doi.org/10.1016/j.jss.2023.111788
https://doi.org/10.1145/280277.280280
https://doi.org/10.1145/280277.280280
https://doi.org/10.1109/ASE.2015.12
https://doi.org/10.1109/ASE.2015.12
https://doi.org/10.1109/saner.2015.7081844
https://doi.org/10.1109/saner.2015.7081844
https://doi.org/10.1109/ICSME.2018.00061
https://doi.org/10.1109/ICSME.2018.00061
https://doi.org/10.1109/icsm.2012.6405336
https://doi.org/10.1109/icsm.2012.6405336
https://doi.org/10.1007/s10664-015-9376-6
https://doi.org/10.1016/j.jss.2020.110673
https://doi.org/10.1109/TSE.2018.2876340
https://doi.org/10.1109/TSE.2018.2876340
https://doi.org/10.1016/j.chb.2014.10.046
https://doi.org/10.1023/a:1018980625587
https://doi.org/10.1023/a:1018980625587
https://doi.org/10.1109/ICSME46990.2020.00015
https://doi.org/10.1109/ICSME46990.2020.00015
https://doi.org/10.1016/j.jss.2019.01.057
https://doi.org/10.1109/VISSOFT.2019.00021
https://doi.org/10.1145/308769.308790
https://doi.org/10.1145/308769.308790
https://doi.org/10.1109/tse.2017.2664824
https://doi.org/10.1145/359511.359522
https://doi.org/10.1109/icse.2019.00090
https://doi.org/10.1109/icse.2019.00090
https://doi.org/10.1145/2351676.2351713
https://doi.org/10.1145/3338906.3338974
https://doi.org/10.1109/compsac.2018.00018
https://doi.org/10.1016/j.infsof.2020.106408
https://doi.org/10.1109/ASE.2006.41
https://doi.org/10.1145/2729973
https://doi.org/10.1145/3180155.3180205
https://doi.org/10.1145/3180155.3180205

	Abstract
	1 Introduction
	2 Why Manage Intentions
	3 A Vision of Managing Intentions
	4 Steps for Future Work
	5 Conclusion
	References

