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Coastal highway route E39 is immense road project in Norway with the aim to shorten the journey time between
the south part (Kristiansand city) and the north part of the country (Trondheim city). Different high-tech
structures will make E39 route continuous and reduce the travel time from currently 21 h to 11 h. A floating
bridge has been considered for Bjgrnafjorden. This paper suggests bus safe speeds for travel on a floating bridge
exposed to 10 different storm conditions (W1-W10). The results show that the coach does not stray from the
traffic lane under mild storm conditions (W1-W2) even for the highest vehicle speed of 108 km/h. However, at a

speed of 90 km/h for W6 and W7 and at a speed of 72 km/h for W8, the vehicle severely and often departures the
traffic lane. At 36 km/h, 54 km/h and 72 km/h for strong storms (W9-W10), the windward rear wheel of the bus
frequently loses contact with the floating bridge deck.

Introduction

The E39 route, in Norway, is 1100 km in length connecting the south
part (Kristiansand city) with the north part of the country (Trondheim
city). There are several fjords crossed by ferries on this route which
makes the journey time long, over 20 h. Coastal highway route E39 is
immense road project in Norway with the aim to shorten the journey
time. In the reconstruction of E39 route, ferries will be replaced with the
high-tech structures (e.g. floating and suspension bridges, submerged
floating and subsea road tunnels) making the route continuous and
journey time considerably lower, around 11 h (Vegvesen, 2017).
Improved E39 route will bring various benefits for both freight and
passenger transport (e.g. lower driving and time costs (Vegvesen,
2021)).

Dependable transportation on the reconstructed E39 route seeks for
safety measures suited for hazardous conditions during driving. This is
crucial for structures like long-span bridges exposed to strong winds and
waves during bad weather. Wind-vehicle-bridge interactions for long-
span bridges have been investigated in previous studies (Han et al.;
Wang et al., 2014). The entire safety performance of vehicles in realistic
stochastic traffic moving through highway infrastructure systems was
assessed using an integrated approach in (Hou et al., 2019). For
demonstration reasons, the suggested approach was used on a bridge-
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roadway system. According to one of the study’s findings, trucks had a
little higher accident rate on dry roads than vans and cars (Hou et al.,
2019).

For Bjgrnafjorden, floating bridges have been proposed as a possible
crossing option (Fig. 1b). The effects of the vertical motion of floating
bridges on the ride comfort of bus drivers were analysed at different
vehicle speeds based on numerical simulations (Sekulic et al., 2020;
Sekulic, 2018) and a driving simulator (Gustafsson et al. 2019). The
effects of floating bridge motion and wind excitation on the tracking and
lateral stability of buses and driver loads under 1-year storm conditions
were recently investigated (Sekulic et al., 2021; Bhat et al. 2020). At a
speed of 108 km/h, a rollover risk was confirmed for a bus since the
windward wheels lost contact with the floating bridge deck (Sekulic
et al., 2021). The simulation findings indicate that a bus might start
journey on floating bridge at a lower speed (e.g., 72 km/h) under wind
loads from 1-year storm condition, with the option to increase speed (up
to 90 km/h) after about 2 km (Sekulic et al., 2021).

Bjgrnafjorden is located to the south of Bergen and is exposed to wind
and waves from the North Sea (Fig. 1a). It is important to know how a
bus would behave under various storm conditions, i.e., for conditions
more and less severe than those for a 1-year storm (Table 1). This paper
investigates the lateral stability of a coach travelling on a floating bridge
exposed to 10 different storm conditions (W1-W10). The main aim of
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this work is to determine the safe travel speeds for buses under 10
different storm conditions. In the past, safety measures for bridges under
the influence of the strong wind were commonly established regarding
subjective experience (Chen and Cai, 2004), without consideration of
the results from numerical investigations. This work has potential
practical application to recommend safe speeds and assist floating
bridge management in severe weather conditions.

Coach model

In this work, a two-rigid-axle coach with eight degrees of freedom
(DoFs) is employed for the numerical investigation. Detailed description
of the mathematical model could be found in (Sekulic et al., 2021).
Vehicle lateral and yaw motion (y, y) are considered for the in-ground-
plane DoFs (Fig. 2a). The out-of-ground-plane DoFs include bouncing of
the sprung mass, front and rear axles, the sprung mass roll motion, and
the front and rear axles roll motion (2, 21, 22, ¥xs, @x1 and @y2) (Fig. 2b).
Coach parameters from Fig. 2 and their values used in the simulations
are given in Appendix section (Table A4).

The active and inertial forces and moments for in-ground-plane
motions are presented in Fig. 2a. The derivation of differential equa-
tions of motion for both in-ground-plane and out-of-ground-plane DoFs
and their final forms were provided by (Sekulic et al., 2021). Numerical
simulation and coach modelling are both done using MATLAB/Simulink
software.

Vehicle model excitation

Hydrodynamic and wind loads for ten different storm conditions
(W1-W10) were used as inputs for bridge model excitation. The Orcaflex
software was used to simulate the bridge responses to obtain time series
data (Vegvesen, 2017). The definitions of the storm conditions are given
in Table 1.

Each storm condition is described by waves, swells and wind char-
acteristics (Table 1). Waves are generated locally at the site of the
floating bridge by the wind (i.e., from the friction of the sea surface and
the wind) and are short periodic waves. Swells are waves that have
travelled over the ocean and reach Bjgrnafjorden from the North Sea.
These waves are long periodic waves generated from storms far from the
floating bridge location. The overall wave conditions (both wind-

Halsafjorden
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generated waves and swells) at the surface elevation of the bridge are
simulated by superimposing waves generated from two Jonswap spectra
(Vegvesen, 2017). A Kaimal wind spectrum was used to create a wind
field (Branlard, 2010) with mean wind speed ws (Table 1) and the tur-
bulence characteristic I,, as shown in Eq. (1).

1
()

where z is the height [m].

Waves, swell and wind are characterized with parameters — wave
and wind direction (Dir [°]); wave height (Hs [m]); a peak period (Tp
[s]); and mean wind speed (ws [m/s]), (Table 1). It could be noticed that
height of the wind-generated waves are higher values with shorter peak
periods compared to swells waves (Table 1).

The coach model was excited with vertical (zp(vt)), lateral (yp(vt))
and roll motions (¢p(vt)) of the floating bridge and wind loads (Fig. 3a).
To determine the relative wind velocity (Vrer wind, xy,2), wind velocity
signals (Vying, x,v,7z) from the global (earth) coordinate system OXYZ
were converted into the vehicle coordinate system O;xyz (Fig. 3b). This
procedure could be found in (Sekulic et al., 2021). Aerodynamic forces
and moments acting on the coach are calculated considering relative
wind velocity signals and used when defining differential equations of
motion. The equations for aerodynamic load calculations were defined
in (Sekulic et al., 2021).

Bridge motions (vertical, lateral, roll motions) under the influence of
environmental loads (wind and waves for storm conditions) were ob-
tained by simulation using Orcaflex software. Vertical (z,), lateral (yp,)
and torsional (¢p,) displacements of the bridge deck centre (point C,
Fig. 4) were given for specific points along the length of the bridge (on
each 5 m or on each 8 m depending on the bridge nodes definition in the
Orcaflex software) as a function of simulation time which is one hour
(3600 s). It means that input data for the coach model depend on vehicle
position on the bridge deck and time. Consequently, bridge motion data
will not be the same for the different vehicle speed.

@

Vertical bridge excitation

Fig. 5a presents vertical bridge displacement data for a few points (at
0.6 km; 2 km; 5 km) in function of simulation time for a 1-year storm
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Fig. 1. Bjgrnafjorden a) location, and b) floating bridge (straight concept solution).
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(W6). It could be seen that vertical bridge displacement on distance at 2
km differs for two chosen vehicle speeds of 36 km/h and 90 km/h
Fig. 5b). From bridge motion data set we defined vehicle input data set.
Detail procedure could be found in (Sekulic et al., 2021).

Fig. 6 shows the vertical bridge excitation for five different vehicle
speeds (36 km/h, 54 km/h, 72 km/h, 90 km/h and 108 km/h) and
W1-W10 conditions. These excitation cases encompass vertical bridge
motion and road roughness of A/B quality (A/B road class refers to the
road of very good/good quality defined by ISO 8608, (1995) standard).
More modelling information for road roughness could be found in
(Sekulic et al., 2020). The excitation magnitude gradually increases with
the storm severity. For a mild storm (W1), vertical bridge excitation is
small and within + 0.05 m (Fig. 4a). For the strongest storm (W10),
vertical bridge excitation is large and within + 0.6 m (Fig. 4j).

Lateral bridge inputs (motion and velocity)

Fig. 7 shows the lateral bridge motion for five different vehicle
speeds. The magnitude of lateral motion gradually increases with the
storm severity. For W1, lateral motion is small and within + 0.2 m
(Fig. 7a). For the strongest storm, W10, lateral motion excitation is
considerable and within + 1.9 m (Fig. 7j). Lateral bridge motion has
been used as an input for vehicle driver model when calculating wheel
steering angle. The driver model was defined by the path tracking pure
pursuit method. Detail information about driver model could be found
in (Sekulic et al., 2021).

The lateral bridge velocity for five different vehicle speeds is shown
in Fig. 8. These signals were used for lateral tire forces calculations
(Sekulic et al., 2021). For W1, the lateral velocities are small and within
+ 0.1 m/s (Fig. 8a). For the strongest storm, W10, the lateral velocity
values are high and within + 0.7 m/s (Fig. 8j).

Bridge roll motion

Fig. 9 shows bridge roll motion for five different bus speeds as a
function of distance. These signals, together with the vertical bridge
excitation signals (Fig. 6), are used to establish vertical excitations of the
coach model’s left and right wheel tracks (Sekulic et al., 2021). The
magnitude of roll motion gradually increases with storm severity. For
W1, roll motion excitation is small and within + 0.1° (Fig. 9a). For W10,
roll motion excitation is large and within + 1.5° (Fig. 9j).

Wind velocity excitation

Fig. 10 shows a wind velocity signal example in the global coordinate
system for a coach speed of 72 km/h for W1-W10. The magnitudes of
the horizontal and vertical components gradually increase with storm
severity. The along-wind and cross-wind signals were used for relative
wind velocity calculations and aerodynamic force/moment calculations
(Sekulic et al., 2021). In comparison to the horizontal wind components,
the vertical wind component was deemed minor and therefore not
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considered in aerodynamic load calculations (Sekulic et al., 2021).

Fig. 11 presents the RMS values for each wind component. For each
coach speed, the RMS values for the along-wind and cross-wind com-
ponents rise with storm intensity. The RMS values are low for the ver-
tical wind component (below 2 m/s, Fig. 11c). The maximum RMS value
for the horizontal wind components is approximately 20 m/s, as shown
in Fig. 11a-b.

Simulation results and discussion

The simulation results for 10 storm conditions (W1-W10) are pre-
sented in this section. A large quantity of results was obtained, and only
the bus model responses in characteristic cases are shown here.

Analysis of lateral path and traffic lane deviation

Vehicle path tracking

Fig. 12 shows the simulation results for path tracking for storm
condition W5, as an example. It could be noticed that the vehicle’s
course deviates from the path more with increasing its speed. Soon after
the bus enters the bridge, the highest path deviations occur for speeds of
90 km/h and 108 km/h (approximately 0.5 m; Fig. 12 d-e). Path de-
viations remain at 0.5 m along the bridge at a bus speed of 108 km/h
(Fig. 12e). With increasing bus speed, the RMS value of lateral
displacement rises (Fig. 12f). Additionally, the maximum deviation in-
creases with increasing bus speed (Fig. 12g). For speeds of 92 km/h and
108 km/h, the maximum deviations are 0.5 m and 0.7 m, respectively
(Fig. 12g).

Fig. 13 presents the simulation results for path tracking under ten
storm conditions (W1-W10) and for a bus speed of 90 km/h. As the storm
gets stronger, the deviation from the path increases. Notably, the devi-
ation is low for W1 (approximately 0.05 m) and high for W7 (approxi-
mately 0.7 m) shortly after the bus comes in the bridge section. The
vehicle is unstable under strong storm conditions (W8, W9, and W10),
and path deviations sharply increase (Fig. 13 h-j).

Fig. 14 shows the RMS values and absolute values of maximum
vehicle path deviation as a function of coach speed and storm conditions
for the cases in which the vehicle can be safely operated (i.e., no risk of
bus rollover, and the bus is stable; Table 3). Both parameters increase
with the bus speed and storm severity. The highest RMS value is close to
0.3 m for a speed of 108 km/h and storm condition W5 (Fig. 14a). The
highest value of maximum path deviation is close to 0.8 m for a speed of
90 km/h and storm condition W7 (Fig. 14b).

Traffic lane departure

Lateral displacement from the path increases with coach speed and
storm severity (Fig. 14). As a result, it is crucial to ascertain whether the
coach leaves the traffic lane. Fig. 15 presents the outermost points of the
vehicle, which are considered when analysing leaving the traffic lane.
Important bus parameters, such as total length (Lpys), total width
(Ways), and front and rear overhang (fon_pus, Toh_bus), are also signified in

Table 1

Ten storm conditions (W1-W10).
Storm Waves Swell Wind - [1hr - 10m]
condition Dir [°] Hs [m] Tp [s] Dir [°] Hs [m] Tp [s] Dir [°] ws [m/s]
W1 (<1-year storm) 315.00 0.20 2.07 300.00 0.04 17.00 315.00 6.13
W2 (<1-year storm) 315.00 0.40 2.73 300.00 0.07 17.00 315.00 9.84
W3 (<1-year storm) 315.00 0.60 3.22 300.00 0.11 17.00 315.00 13.08
W4 (<1-year storm) 315.00 0.80 3.61 300.00 0.15 17.00 315.00 15.99
W5 (<1-year storm) 315.00 1.00 3.96 300.00 0.18 17.00 315.00 18.73
W6 (1-year storm) 315.00 1.20 4.26 300.00 0.22 17.00 315.00 21.40
W7 (2-year storm) 315.00 1.40 4.53 300.00 0.25 17.00 315.00 23.60
W8 (10-year storm) 315.00 1.60 4.78 300.00 0.28 17.00 315.00 25.80
W9 (50-year storm) 315.00 1.80 5.02 300.00 0.33 17.00 315.00 28.50
W10 (100-year storm) 315.00 2.00 5.24 300.00 0.34 17.00 315.00 29.60
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this figure. Table 2 lists the bus parameters.

Fig. 16 shows the path of the outermost vehicle’s body points for
storm conditions W1-W5. The simulation results show that the coach
does not leave the traffic lane under mild storm conditions (W1-W2),

regardless of vehicle speed. Fig. 16a-b shows the outermost body posi-
tions within the traffic lane for the highest speed of 108 km/h for W1
and W2. The bus stays in the traffic lane for storm condition W3 at a
speed of 90 km/h (Fig. 16c). At a speed of 108 km/h under W3, the
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outermost points on the left side of the bus departure the traffic lane
slightly when entering the bridge section and at close to 3 km from the
beginning of the bridge section (Fig. 16d). At 72 km/h and under W4
and W5 conditions, the vehicle does not leave the lane (Figs. 16e,h);
however, at 90 km/h, the bus leaves the lane soon after entering the
bridge section (Figs. 16f,i). At a speed of 108 km/h, the bus departures
the traffic lane relatively frequently under W4 conditions (Fig. 14g) and

often under W5 conditions (Fig. 16j).

Fig. 17 shows the path of the outermost body points of the coach
under storm conditions W6-W8. For W6, the bus stays in the traffic lane
at speeds of 54 km/h and 72 km/h (Figs. 17a,b), whereas at 90 km/h, it
frequently leaves the lane (Fig. 17¢). Under W7 and W8 conditions, the
bus does not leave the lane at a speed of 54 km/h (Figs. 17d,g) but at 72
km/h, the vehicle slightly leaves the lane along the bridge (Figs. 17e,h).
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Under W7 and at a speed of 90 km/h, the bus severely and frequently
leaves the traffic lane (Fig. 17f).

Steering effort of the driver

Fig. 18 presents the handwheel steering angle (HSA) as a function of
distance and speed for W1-W8. The HSA intensity increases with
increasing vehicle speed for each storm condition. Additionally, the HSA
intensity increases with the severity of the storm. For instance, at a speed
of 108 km/h, the maximum HSA value is approximately 12 degrees
(Fig. 18a) for W1 and approximately 50 degrees for W5 (Fig. 18e).

It could be seen that the HSA signals deviate around a certain mean
value in each case (Fig. 18), and the RMS and mean values increase with

the vehicle speed and storm severity (Fig. 19).

Roll-over risk

Simulation results confirmed that vertical tire forces (VTFs) are
positive at every speed and under storm conditions W1-W5. Fig. 20
depicts the VTFs for each coach wheel as a function of time for a speed of
108 km/h and W1-W7 conditions. Notably, the VTFs increase with storm
severity. In addition, the winward wheels’ VTFs are less values than
those of the windward wheels. Both windward wheels (left front and
rear wheels) lose contact with the floating bridge deck at a speed of 108
km/h for W6 and W7 (Figs. 20g,i). The loss of contact with both
windward wheels leads to the simulation stopping at approximately 40 s
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(Figs. 20g,i). At a speed of 90 km/h, the VTFs are greater than zero
(Figs. 20f,h).

Simulation results confirmed that both windward wheels of the bus
separate from the bridge deck at 90 km/h and 108 km/h under storm
conditions W8, W9 and W10. At speeds of 36 km/h, 54 km/h and 72 km/
h and for both W9 and W10, the rear wheel on the vehicle windward side
loses contact frequently along the bridge (Figs. 21c,e). At 36 km/h, the
rear wheel on the vehicle windward side separates from the deck soon
after the vehicle enters the bridge section under W8 conditions. This
happens in one short interval of simulation time (less than 0.2 s;
Figs. 21a,d). At the same time, a significant load reduction is observed at

the windward front wheel (approximately 1 s; Fig. 21d). Therefore, the
speed of 36 km/h for W8 is not considered unsafe.

Load transfer ratio (LTR)

Risk of vehicle roll-over is commonly predicted using the LTR
parameter (Kamnik et al., 2003) according to Eq. (2). If the LTR is larger
than 0.9 (i.e., the left or right vehicle tires separate from the ground), the
vehicle is considered to overturn (Wang et al. (2016)).

qu +Z”1—chr—zm-

(2)
Zig + Zify + Zint + Zr

LTR =
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where Zi, Zify, Zy, and Zg, are the vertical tire forces for the front left,
front right, rear left, and rear right wheels, respectively.
Fig. 22 presents the maximum absolute LTR value for storm condi-

Table 2
Bus parameters.
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Losing lateral grip analysis

Lateral sideslip limit (LSL)

The risk of losing lateral grip can be analysed based on the LSL
parameter (Chen and Chen, 2011; Chen and Chen, 2010), as shown in

Eq. (3).

+FE —

LSL = min [F;‘;X

(F yfa + F, ym) ]

=min[p (Zesa + Zera) = (Fysa + Fyra) | 2 0

3)

where F"™ and F™X are the maximum values of the lateral friction

yfa yra

12

forces that could be realized on front and rear axles, respectively, for a
given road surface; Z; i,and Z, ,, are the vertical forces on the front and
rear bus axles, respectively; F, pandFy ,, are the actual lateral tire forces
for the front and rear bus axles, respectively; and u is the road friction
coefficient (value of 0.7 for dry-wet asphalt pavement surface (Shin and
Lee, 2015)). If the LSL value is less than zero, the vehicle starts to
experience sideslip.

Fig. 23 shows the minimum LSL value for storm conditions W1-W8 as
a function of speed. The LSL value decreases with the vehicle speed and
storm severity. The LSL is greater than zero for W1-W5, which means
that the LSL limit is not reached for the considered road surface. For W6,
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W7 and W8, the LSL is greater than or equal to zero for speeds of 108
km/h and 87 km/h, respectively; this indicates that vehicle rollover
occurs before vehicle sliding. These results are logical since the road
friction coefficient is relatively high (value of 0.7).

Simulation results summary

Table 3 shows a summary of the simulation results for the bus
response under storm cases W1-W10. Safe speeds for a coach travelling
over the studied bridge under hazardous driving conditions can be
determined from this table. The meaning of the colours is explained
below Table 3.

The results show that the bus is not stable when moving at 108 km/h
for W6-W10 and at 90 km/h for W8-W10. The windward wheel
frequently separates from the deck at 36 km/h, 54 km/h and 72 km/h
under W9 and W10 conditions. The windward wheel loses contact at 36
km/h for W8 at only one instance of time for a very short period. At 108
km/h for W3-W5, the vehicle leaves the traffic lane when entering the
bridge section. At 72 km/h for W6 and W7 conditions, the vehicle

13

departures the traffic lane when entering the bridge section. The vehicle
severely leaves the traffic lane at 108 km/h for W4, W5 and W6 con-
ditions, at 90 km/h for W6 and W7 conditions, and at a speed of 72 km/h
for W8 conditions.

The interpretation of the colours in Table 3 is as follows: vehicle runs
safely (empty green box); one vehicle wheel looses contact with the
bridge deck only once for short period of time (green box with one tick);
vehicle front/rear right side insignificantly leaves the traffic lane when
entering the bridge for short period of time (green box with two ticks);
vehicle is instable or frequently leaves the traffic lane (empty red box);
vehicle front/rear right side significantly and frequently leaves the
traffic lane along the bridge (red box with one cross sign); vehicle wheels
losses contact with the bridge deck frequently (red box with two cross
signs); vehicle is instable (red box with three cross signs).

Conclusions

In this work, safe speeds are defined for a coach traveling on the
planned Bjgrnafjorden floating bridge under ten different storm
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Table 3
Summary of the simulation results.

Waves Swell Wind - [1hr - 10m]
Dir [°] Hs [m] Tp [s] Dir [°] Hs [m] Tp [s] Dir[°]  ws[m/s]
W1 (<1-year storm) 315.00 0.20 2.07 300.00 0.04 17.00 315.00 6.13
W2 (<1-year storm) 315.00 0.40 2.73 300.00 0.07 17.00 315.00 9.84
W3 (<1-year storm) 315.00 0.60 3.22 300.00 0.11 17.00 315.00 13.08
W4 (<1-year storm)) 315.00 0.80 3.61 300.00 0.15 17.00 315.00 15.99
WS5 (<1-year storm) 315.00 1.00 3.96 300.00 0.18 17.00 315.00 18.73
W6 (1-year storm ) 315.00 1.20 4.26 300.00 0.22 17.00 315.00 21.40
W?7 (2-year storm ) 315.00 1.40 4.53 300.00 0.25 17.00 315.00 23.60
W8 (10-year storm ) 315.00 1.60 4.78 300.00 0.28 17.00 315.00 25.80
W9 (50-year storm ) 315.00 1.80 5.02 300.00 0.33 17.00 315.00 28.50
W10 (100-year storm ) 315.00 2.00 5.24 300.00 0.34 17.00 315.00 29.60

conditions (W1-W10). The storm conditions differ in terms of the wave,
swell and wind characteristics.
The following are the main results drawn from this study:

With increasing bus speed and storm intensity, vehicle departure
from the path increases. Consequently, the load on the bus driver
required to keep the vehicle within a traffic lane increases as the
weather conditions become increasingly severe.

At 90 km/h for W4 and W5, the vehicle leaves the traffic lane only
when entering the bridge section. The bus can enter the bridge sec-
tion safely at a speed of 90 km/h, and the bus speed can be increased
to 108 km/h after 0.5 km of travel.

At 72 km/h for W6 and W7, the vehicle departures the traffic lane
when entering the bridge section only. The bus can safely enter the
bridge section at a speed of 54 km/h, and the bus speed can be
increased to 72 km/h after 0.5 km of travel.

At 108 km/h for W4, W5 and W6, the vehicle leaves the traffic lane
severely and frequently; the same issue occurs at a speed of 90 km/h
for W6 and W7 and at a speed of 72 km/h for W8. Therefore, these
speeds are not safe.

At 108 km/h for W6-W10 and at a speed of 90 km/h for W8, W9, and
W10, the bus is not stable. Therefore, these speeds are not safe.

At 36 km/h for W8, the windward wheel of the bus separates from
the deck at only one instance of time for a very short period. Thus,
this speed is not considered unsafe.

14

e At speeds of 36 km/h, 54 km/h and 72 km/h for W9 and W10, the
windward wheels of the bus frequently separate from the bridge
deck. Therefore, these speeds are not safe.

Considering the results and findings from this work, useful recom-
mendations and measures could be determined to help bridge man-
agement in maintaining safe coach speeds over floating bridge under
hazardous driving conditions.
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Geometric parameters of the bus

Wheelbase L [m]

Front overhang fon [m]

Rear overhang r,, [m]

Distance from the front axle to the centre of gravity (CoG) of an empty bus Is [m]
Distance from the rear axle to the centre of gravity (CoG) of empty bus I [m]
Distance from the front right/left wheel to the front axle CoG by [m]

Distance from the rear right/left wheel to the rear axle CoG b, [m]

Distance from the CoG of the whole vehicle to the ground hcog,star. [m]
Height of the front axle roll-centre hrcfa,star. [m]

Height of the rear axle roll-center hrcra star. [m]

Distance from the CoG to the roll-centre for the front axle hrcfastar- [m]
Distance from the CoG to the roll-centre for the rear axle hrcrg star [m]
Distance from suspension elements on the front axle to the front axle CoG e,; [m]
Distance from suspension elements on the rear axle to the rear axle CoG e,z [m]
Mass parameters of the bus

Sprung mass of the empty bus m; [kg]

Front axle — mass my; [kg]

Rear axle — mass my; [kg]

Empty bus — mass m [kg]

Sprung mass — moment of inertia about its x-axis Jy [kgm?]

Sprung mass — moment of inertia about its y-axis J;, [kgm?]

Bus — moment of inertia about z-axis J, [kgm2]

Front axle — moment of inertia relative to the x;-axis Juy; [kgm?]

Rear axle — moment of inertia relative to the xz-axis Jyuxz [kgm?]

Oscillatory parameters of the bus

Stiffness for one air spring on the front axle kg [N/m]

Stiffness for all air springs on the front axle ksfq [N/m]

Damping for one shock-absorber on the front axle caf [Ns/m]

Damping for all shock-absorbers on the left side of the front axle cqn [Ns/m]
Damping for all shock-absorbers on the right side of the front axle cqp [Ns/m]
Damping for all shock-absorbers on the front axle Cdfeq [Ns/m]

Stiffness for one air spring on the rear axle ks [N/m]

Stiffness for all air springs on the left side of the rear axle kg; [N/m]

Stiffness for all air springs on the right side of the rear axle kg, [N/m]
Stiffness for all air springs on the rear axle ksreq [N/m]

Damping for one shock-absorber on the rear axle cg4 [Ns/m]

Damping for all shock-absorbers on the left side of the rear axle cg4y [Ns/m]
Damping for one shock-absorber on the right side of the rear axle cg4 [Ns/m]
Damping for all shock-absorbers on the rear axle cgreq [Ns/m]

Radial stiffness for one tyre on the left/right side of the front axle kya/k. [N/m]
Radial stiffness for all tyres on the front axle kg [N/m]

Radial stiffness for one tyre on the left/right side of rear axle kyi/kyr [N/m]
Radial stiffness for all tyres on the rear axle kyeq [N/m]

Torsional stiffness for anti-roll bar on front axle Kq [Nm/rad]

Torsional stiffness for anti-roll bar on rear axle Ky [Nm/rad]

Front axle — roll-stiffness K,r [Nm/rad]

Front axle — roll-damping C,s [Nms/rad]

Rear axle — roll-stiffness K, [Nm/rad]

Rear axle — roll-damping C,, [Nms/rad]

References

8.375
2.619
2.806
4.4103
3.9647
1.00
1.00
1.1725
0.508
0.508
0.6645
0.6645
0.70
0.80

16,099
746
1355
18,200
33,400
150,000
290,000
315

657

175,000
350,000
20,000
40,000
40,000
80,000
200,000
400,000
400,000
800,000
22,500
45,000
45,000
90,000
1,000,000
2,000,000
2,000,000
4,000,000
120,000
120,000
171,500
39,200
512,000
57,600

Data will be made available on request.
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