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Abstract
Setting up suspension kinematics targets has been a challenging task for vehicle engineers. The 
challenges involve a high-dimensional search space, nonlinear relationships between the suspension 
kinematics and vehicle dynamics, exploration and exploitation trade-offs, and the need for domain-
specific knowledge. Traditional multi-objective optimization methods are time-consuming, sensitive 
to initial conditions, and rarely converge to the global optimum in high-dimensional spaces. This 
article explores how reinforcement learning can be used to automate the design of suspension 
kinematics targets, addressing a longstanding challenge in vehicle dynamics design: the inverse 
problem of satisfying high-level handling objectives through low-level subsystem parameters. The 
method is based on the accumulation of knowledge through the interaction between an intelligent 
agent and a simulation environment. The agent optimizes suspension kinematics targets by receiving 
rewards tied to vehicle dynamics performance. The agent, employing a Gaussian policy and σ-based 
sensitivity analysis, enables the identification of critical and non-critical design parameters. The 
results show that the proposed method can find optimal suspension kinematics targets with the 
help of accumulated knowledge. The knowledge-guided learning process demonstrates a novel 
approach to solving high-dimensional optimization problems, offering good convergence time and 
valuable results. The proposed method contributes to the field by using reinforcement learning to 
set up suspension kinematics targets in the automotive industry.
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1.  Introduction

1.1.  Background and Research 
Problem

The objective of this study is to develop a reinforce-
ment learning framework capable of automatically 
determining suspension kinematics targets that 

fulfill predefined complete vehicle-level dynamic require-
ments. To ensure adequate stress-testing, the frame-
work was developed using a case study based on 
industry-relevant requirements and representative 
vehicle models. Suspension kinematics targets are set 
by the attributes of the vehicle. The majority of these 
attributes are determined by the vehicle dynamics, 
which are influenced by the suspension kinematics, 
among other vehicle subsystems. The suspension kine-
matics targets are set by vehicle engineers based on 
their experience and knowledge, and then given to the 
suspension engineer. With the help of optimization tech-
niques [1, 2], finding the optimal suspension kinematics 
targets can be programmed as a computational task. 
In the domain of engineering design optimization appli-
cations, the most common methods, such as gradient-
based techniques [3–7] and gradient-free methods, for 
example, genetic algorithms (GA) [8–12] and biologically 
inspired algorithms [13–16], are widely used. However, 
challenges such as convergence, exploration–exploita-
tion balancing, and computational efficiency remain, 
especially in high-dimensional design spaces [17–19]. 
Inspired by human engineers, knowledge accumulated 
from previous experience plays a crucial role when a 
new design is proposed. With the early foundation in 
neural networks [20, 21], the knowledge represented in 
the weights of the network can be updated through 
interaction with the environment. This is the foundation 
of reinforcement learning (RL), which has shown promise 
in solving complex problems [22]. This study addresses 
the lack of efficient optimization methods for high-
dimensional suspension kinematics design by leveraging 
the RL method to find optimal suspension targets. While 
the authors hypothesize that RL models can address 
the research problem, the goal of this article is to 
evaluate the feasibility and practical implications of 
using RL-based methods for searching high-dimensional 
suspension kinematics targets. The suspension target 
generation task presented here involves an inverse 
mapping from vehicle-level objectives to subsystem-
level parameters, where RL’s policy-based formulation 
and reusability provide a natural advantage, enabling 
faster adaptation as vehicle-level requirements evolve. 
However, we acknowledge the importance of bench-
marking and plan to investigate quantitative compari-
sons, including convergence behavior and solution 
quality, in future work.

1.2.  Motivation and Contributions
Motivating the RL algorithm versus traditional optimiza-
tion methods, a deep argument provided by [23, 24] 
shows that RL offers a potential solution to the limitations 
of traditional optimization methods. The results indicate 
RL has the potential to solve complex engineering 
problems. RL’s policy-based formulation and reusability 
provide an advantage over optimization techniques like 
GA in high-dimensional, sequentially coupled variables. 
The effect of one decision depends on previous decisions; 
the problem unfolds in steps rather than all at once. RL 
handles this well because it treats the problem as a 
sequence of state–action–reward steps, learning to 
navigate dependencies over time. GA treats the problem 
as a static “find the best set of parameters” task, so it 
doesn’t naturally model sequential dependencies. In 
contrast to optimization techniques such as GA and 
gradient-based methods, the RL framework used in this 
study offers several qualitative advantages for suspension 
target generation. The learned policy can be visualized, 
providing interpretable insight into how the agent navi-
gates the trade-offs between, for example, longitudinal 
and lateral dynamics. A trained policy can be adapted to 
related design tasks, reducing computation in iterative 
development cycles. Unlike methods that require 
predefined datasets, RL learns by interacting with the 
simulation, enabling exploration of non-obvious design 
configurations. While GA remains well-suited for certain 
nonlinear, non-smooth problems [25], RL’s sequential 
learning and experience reuse make it a compelling alter-
native for complex, high-dimensional design spaces. 
Following recent successful domain applications using RL, 
it has become a popular machine learning technique used 
to solve control problems [26–29] and gaming strategies 
[30–32]. It has demonstrated its potential search capabili-
ties in complex environments. In this article, we propose 
a search tool using RL to find optimal suspension kine-
matics targets. The research gap is addressing the 
increase in search dimensionality by using the RL method 
instead of multi-objective optimization. We hypothesize 
that the proposed RL-based method will address these 
limitations and is suitable for high-dimensional, nonlinear 
design spaces compared to traditional multi-objective 
optimization techniques. The σ-based policy enables iden-
tification of critical and non-critical design parameters. 
This is valuable in handling high-dimensional optimization 
problems and guiding further dimension reduction.

A modified actor-critic framework inspired by [33] is 
deployed for this learning task. The goal for the RL learning 
agent is to obtain higher rewards from a simulation envi-
ronment. The reward is formulated in a way that leads 
the suspension kinematics targets to converge to their 
optimal values. A probabilistic model gives a better chance 
to learn the uncertainty of the environment. The environ-
ment in this article uses VI-CarRealTime [34] since 
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VI-CarRealTime provides a sufficiently accurate vehicle 
model type with acceptably low computation time. The 
model contains a look-up table-based suspension property 
file, which is characterized by the suspension kinematics 
targets. The complete vehicle can be simulated “offline” 
as a set of pre-defined driving scenarios or as a driver-in-
the-loop (DiL) simulation. The DiL simulation can involve 
the human driver in the simulation loop, thereby evaluating 
subjective criteria. Offline simulation is used in this article 
without DiL evaluation, but real-time simulation is also of 
interest for potential performance evaluation. This article 
contributes a methodology for an actor-critic RL frame-
work and a simulation environment from which the RL 
agent can learn. The method helps the vehicle dynamics 
engineer to find or narrow down the design space in the 
early vehicle development stages. Once the training is 
complete, the knowledge represented by the agent’s value 
function can be reused in later design stages, for example, 
for minor suspension target adjustments. Any trained 
model can be reused as long as the architecture of the 
neural network remains the same. Furthermore, compared 
with optimization-based methods, the new method 
utilizes the knowledge accumulated during the training 
process. Therefore, the agent continues to improve with 
more training data and has the potential to be used in 
future tasks as a pre-trained model.

The first part of the article introduces a method that 
generates suspension property files that amount to the 
vehicle model. In the second part, the RL agent that inter-
acts with the simulation environment and proposes new 
suspension kinematics targets is introduced. While limited 
to a single vehicle model, the study provides insight into 
the challenges and potential of RL in target generation 
for suspension systems. The third part of the article 
shows the results of a case study using the proposed 
method. The results show that the proposed method can 
find optimal suspension kinematics targets with the help 
of accumulated knowledge.

2.  Simulation Environment
This section describes the suspension target selection, 
generating artificial suspension property files, and the 
RL environment.

2.1.  Artificial Suspension  
Property File
2.1.1. Suspension Target Selection  The selection of 
suspension kinematics targets in this article focuses on 
the targets that mainly influence longitudinal and lateral 
dynamic behaviors. An extended set of targets from [35] 
is used in this article. The targets are listed in Table 3. The 
targets are divided into three categories: front suspension 
jounce targets, front suspension steering targets, and 

rear suspension jounce targets. These targets are used 
to generate look-up table-based front and rear suspen-
sion property files. The kinematics targets used to 
generate artificial suspension property files do not guar-
antee a physically feasible suspension; they only guar-
antee a suspension that can be simulated in VI-CarRealTime. 
To ensure the feasibility of the suspension, a packaging 
check needs to be considered together with the kine-
matics targets setup. Figure 1 shows a physical suspen-
sion using the selected kinematics targets with a feasible 
packaging solution [36].

2.1.2. Generating Artificial Suspension Property 
Files  The suspension property files utilize the targets from 
Section 2.1.1 to generate curve-based steering subsystems 
for the front axle and curve-based suspension subsystems 
for the rear axle. The targets for the front steering 
subsystem use 3D splines to capture the motion of the 
steering knuckle. For the rear axle, 2D splines are used to 
capture the motion of the non-steering knuckle. The 
motion includes steer at ground, camber angle, side view 
angle, X-coordinate variation, and Y-coordinate variation. 
The motion in the front axle depends on rack travel and 
jounce travel. The motion in the rear axle depends only 
on jounce travel.1 A summary of the motion properties 
and corresponding input is shown in Table A.1.

To get a proper motion file, the first step is to calcu-
late the general motion from the given suspension kine-
matics targets. The concept of general motions q is 
described in [37]. The relation between the general 
motion and the suspension kinematics targets is described 
in Section 3.1.1 [35] for a front axle and Section 3 [37] for 
a rear axle. At a given jounce position u, the targets are 
given by reading the target curve. For example, the target 
curve bump steer is shown in Equation 1.

	
( ) = + ⋅

+ ⋅ 2

Bump Steer 1st Bump Steer 2ndBump Steer

3rdBump Steer

u u

u 	  
(1)

1 Jounce travel refers to the wheel center height change with respect 
to the design position—positive is termed jounce and negative is 
termed rebound.

  FIGURE 1    Physical suspension considers 
packaging feasibility.
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For jounce motion, the general motion q can be solved 
by a symbolic solver from the given target at a specific 
jounce position, according to the suspension jounce target 
in Table 3. The second step is to integrate the general 
motion with a small time step Δt to get the next position 
qt+1. The targets for the new position qt+1 can be read 
again from the target curve. The process is repeated until 
the end of the jounce travel. The motion file is generated 
by the motion q at each jounce position. For the steering 
motion, the process is similar to the jounce motion. The 
steering motion file is generated by the motion q at each 
rack travel or steering wheel angle. To formulate the 
suspension property file represented by 3D splines for 
the front steering subsystem, a superposition of the 
steering motion and the jounce motion is used. Figure 2 
shows the process of generating artificial suspension 
property files.

2.2.  RL Environment
Once the suspension property files are generated, the RL 
environment shown in Figure 3 also includes a simulation 
environment [34], a reward function, and a pre-check 
function. The mechanism of the pre-check function 
ensures that only the suspension property files that meet 
the target range can be simulated. Invalid suspension 
property files will lead to a punishment in the reward 
function. The shortcut path stabilizes the training process 
and improves training efficiency. Many parts, such as 
wheel rate, tire models, suspension compliance, brake 
control, powertrain control, and driver model, have been 
modeled with fixed parameters, since they are needed 
for simulation, even though they are not subject to design 
in the present article.

2.2.1. Simulation Scenarios  The suspension property 
files are attached to an existing vehicle in this study. The 
vehicle is simulated in a set of driving scenarios, including 
acceleration, braking, and ramp steer scenarios. The 
selected driving scenarios reflect the vehicle driving 
behaviors influenced by suspension kinematics targets. 
For example, the pitch angle during acceleration is influ-
enced by the anti-lift in the front suspension and anti-
squat in the rear suspension. The simulation scenarios 
aim to cover fundamental longitudinal and lateral vehicle 
dynamics behaviors. The measurement of the vehicle’s 
performance is based on the postprocessing simulation 
results. The complete vehicle performance targets are 
measured according to Table 1. Figure 8 shows the results 
from the simulation.

Suspension targets 

Suspension 
property file

  FIGURE 2    Generating artificial suspension property files.
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  FIGURE 3    RL environment overview.
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2.2.2. Reward Function  The reward function rewards 
the agent by comparing the simulation results and the 
target values. For each complete vehicle target i in Table 
1, it consists of complete vehicle target ranges [ϵmin,i, ϵmax,i], 
maximum reward Rmax,i, and punishment gradient  .iR  The 
relation between the individual target reward Ri and the 
simulation result ϵi is shown in Equation 2. If the suspen-
sion does not pass the pre-check in Figure 3, a punish-
ment Rpunish,i is assigned to the reward Ri.

	

 < <= − ⋅ − <


− ⋅ − >





, , ,

, , ,

, , ,

, if
, if

, if

max i min i i max i

i max i i i min i i min i

max i i i max i i max i

R
R R R

R R

  

   

   

	 (2)

Equation 2 shows that the reward Ri is a linear function 
of the simulation result ϵi. A linear function is simple to 
tune and is less sensitive to hyperparameters than a 
nonlinear function. Although a linear reward was used for 
simplicity and stability, the trained RL agent was able to 
discover configurations that reflect an implicit balance 
between different complete vehicle targets (see Figure 
8). While longitudinal and lateral dynamic objectives are 
not shown separately, the resulting complete vehicle 
targets (see Table 2) are consistent with typical vehicle 
dynamics design expectations. The reward Ri is set to 
Rmax,i if the simulation result ϵi is within the target range 
[ϵmin,i, ϵmax,i]. The reward Ri decreases linearly if the simula-
tion result ϵi is outside the target range. The total reward 

R is the summation of each individual reward Ri from 

Equation 2, meaning 
=

=∑
1

n

i

i

R R . The punishment gradient 



iR  as weight factor is adjustable for different targets and 
learning tasks. The simulation environment is imple-
mented in Python using the OpenAI Gym framework [38]. 
It cooperates with a learning agent to find the optimal 
suspension kinematics targets. The architecture of the 
learning agent is described in the next section.

3.  Learning Agent
The learning agent is adapted based on the stochastic 
actor-critic framework [30]. The actor part consists of 
multiple Gaussian distributions that represent the suspen-
sion kinematics targets. The critic part is modeled by a 
neural network function and outputs a high-dimensional 
value function that estimates the expected reward. 

TABLE 1  Complete vehicle targets.

Acceleration scenario*
Pitch angle at 0.1 g (deg)
Pitch angle at 0.5 g

Pitch angle at 0.35 g

Braking scenario**
Pitch angle at −0.1 g (deg)
Pitch angle at −0.6 g

Pitch angle at −0.35 g

Ramp steer scenario for roll***
Roll angle at −0.2 g (deg) Roll angle at −0.5 g
Ramp steer scenario for pitch***
Pitch angle at −0.2 g (deg) Pitch angle at −0.6 g
Ramp steer scenario for Jacking***
Vertical displacement at −0.4 g (mm) Vertical displacement 

at −0.7 g
Handling diagram from ramp steer***
Understeer gradient at 0.1 g (deg/g) Understeer gradient 

at 0.5 g

* � Acceleration scenario: The vehicle accelerates from 18 km/h in 
3 s with open loop constant throttle.

** � Braking scenario: The vehicle decelerates from 160 km/h in 1 s 
with open loop constant braking.

*** � Ramp steer scenario: The vehicle steer 9 deg/s up to 6 s with 
constant velocity 100 km/h.
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TABLE 2  Complete vehicle targets and reward 
parameters setup*.

Parameter Rmax
R ϵmax,min**

Acceleration scenario (unit) (1) (1/deg) (deg)
Pitch angle at 0.1 g (deg)*** 0 1000 (−0.189, −0.189)
Pitch angle at 0.35 g 0 1000 (−0.730, −0.730)
Pitch angle at 0.5 g 0 100 (−1.087, −1.087)
Braking scenario (1) (1/deg) (deg)
Pitch angle at −0.1 g (deg) 0 10,000 (0.038, 0.038)
Pitch angle at −0.35 g 0 1000 (0.337, 0.337)
Pitch angle at −0.6 g 0 1000 (0.664, 0.664)
Ramp steer scenario for roll (1) (1/deg) (deg)
Roll angle at −0.2 g (deg) 0 1000 (−0.478, −0.478)
Roll angle at −0.5 g 0 100 (−1.211, −1.211)
Ramp steer scenario for 
pitch

(1) (1/deg) (deg)

Pitch angle at −0.2 g (deg) 0 1e5 (−0.0068, −0.0068)
Pitch angle at −0.6 g 0 10,000 (−0.073, −0.073)
Ramp steer scenario for 
Jacking

(1) (1/mm) (mm)

Vertical displacement at  
−0.4 g (mm)

0 1000 (1.157, 1.157)

Vertical displacement at  
−0.7 g

0 100 (4.443, 4.443)

Handling diagram from 
ramp steer

(1) (1/
[deg/g])

(deg/g)

Understeer gradient at  
0.1 g (deg/g)

0 1000 (0.724, 0.724)

Understeer gradient at 0.5 g 0 100 (1.914, 1.914)

*  These are example targets for a test vehicle used for the 
concept study at Volvo Cars.
**  The complete vehicle targets are simplified as one value, 
therefore ϵmax = = ϵmin in the case study.
***  Target setup referenced to initial condition at 0 g.
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The actor gets updated by the critic part using temporal-
difference learning, and the critic part gets updated by 
training examples from the memory buffer. This section 
goes through the key elements and describes the learning 
mechanism of the learning agent.

3.1.  Agent Critic
The critic neural network is used to estimate values 
V̂  for individual suspension kinematics targets 
according to certain states shown in Figure 4. The 
weight vector W includes scale weight w and bias term 
b. The states are observations from the simulation 
environment, for example, the complete vehicle targets 
from Table 1. The critic neural network is implemented 
using PyTorch [39] with customized layers and sizes. 
To stabilize the training process, batch normalization 
is applied to the critic network. The gradient of each 
layer, which is used for training, is trimmed automati-
cally based on the connections between layers. The 
critic neural network aims to generate values that 
update the policy in the actor part. A well-trained critic 
network should provide a good estimation of the 
expected reward, which leads to the convergence of 
the policy in the actor part.

3.2.  Agent Actor
The actor is supposed to generate suspension kinematics 
targets based on the policy. The policy π is a set of 
Gaussian distributions with mean µθ

 and standard devia-
tion σθ

 as shown in Equation 3.

	 ( )
( )

( )( )
( )
µ

π
σπσ

 − = − 
 
 

2

22

1| exp
22

a
a

θ
θ

θθ
	 (3)

where

	
( )

( ) ( )
µ

σ

µ

σ

=

=

is the action

exp

a




θ θ

θ θ
	

To update the policy, the gradient with action a is 
expressed in Equations 4 and 5 from [30],

	 ( )
( )

( )( )µπ µ
σ

= −2
1ln |a a θ θ
θ 	 (4)

	 ( ) ( )( )
( )

σ

µ
π

σ

−
= −

2

2ln | 1
a

a
θ

θ
θ

	 (5)

3.3.  Training with Temporal-
Difference Learning
The training process is based on the temporal-difference 
learning algorithm with an average reward [40]. The 
temporal-difference δ is a multidimensional scale vector 
that is broadcast by one-dimensional reward and multi-
dimensional predicted values, as shown in Equation 6.

	 ( ) ( )δ ′= − +  − ˆ ˆR R S S V V 	 (6)

where
�R and R are one-dimensional scales reflecting total 
reward and average reward
�̂V  is a multidimensional vector from the critic 
network output

The weight update includes three steps for the 
average reward, critic, and actor parts. The average 
reward is updated by the temporal-difference δ times the 
learning rate α .R  The gradient is essentially the key to 
weight updates, together with the temporal-difference 
and learning rate. The gradient of the critic network can 
be obtained thanks to the PyTorch Autograd feature, and 
the actor part is calculated from Equations 4 and 5. The 
process of weight update is shown in Equations 7, 8, 
and 9.

	 α δ← + RR R 	 (7)

	 ( )α δ← + ˆ ,S   V 	 (8)

	 ( )θα δ π← + |lnθ θ θA 	 (9)

Input

Hidden

Output
State 1

State 2

State 3

Value 1

Value 2

  FIGURE 4    Critic network architecture.
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3.4.  Agent Learning Mechanism
The learning mechanism is shown in Figure 5 and Algorithm 
1. The agent starts with an initial state, policy parameters 
θ, and randomly initialized value network parameters W. 
The batch actions are sampled from the current policy 
distribution and fed into the simulation environment. The 
simulation experience is stored in the memory buffer. The 
action that has the highest reward will be used to update 
the actor weight factors. The experience in memory buffers 
is used to train the critic network with the help of the 
temporal-difference error shown in Equation 6. The memory 
buffer represents the historical experience. Notice that 
replay training with the memory buffer improves training 
efficiency. With the current state, a value can be estimated 
by the updated critic network and provide an updated TD 
error. Then, the policy parameters θ can be updated by the 

gradient of the policy from Equations 4 and 5. A clip function 
is applied to the policy parameters to avoid gradient explo-
sion. If all actions generated by the policy fail to pass the 
pre-check function, the agent resets the state, average 
reward, and policy parameters. The agent repeats the 
process until the end of the training episode.

4.  Case Study
In this section, a demonstration of the proposed method 
is presented as a case study. The investigation begins by 
establishing 14 complete vehicle targets, which serve as 
input for the RL algorithm to determine the optimal 30 
suspension targets as shown from vehicle level in Table 
2 to subsystem level in Table 3. A set of suspension 

Policy

Observations
Environment Greedy algorithm

Action 
clip

Memory
buffer

Action 
batch

Batch training with TD

Policy update

TD with value

Replay

  FIGURE 5    Agent learning mechanism.
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  ALGORITHM 1    Agent learning algorithm based on actor-critic framework.
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kinematics targets is selected as the learning parameters. 
The task for the RL agent is to find the setup for the 
reference model without prior knowledge of the refer-
ence model’s target setup. Figure 6 illustrates the case 
study workflow, which starts with the complete vehicle 
targets setup. The RL agent cascades the complete 
vehicle targets into suspension targets through the RL 
learning process. Once the training converges and the 
stopping criteria are met, a simulatable suspension 
property file is generated as the outcome from RL and 
artificial suspension property files. The complete vehicle 
targets are then simulated in VI-CarRealTime, enabling 
systematic verification that the design meets the specified 
performance criteria, as shown in Figure 11. The study is 
conducted with Volvo XC60 [41] body model and MF-Tyre 
5.2 tire model [42].

4.1.  Complete Vehicle Target and 
Learning Parameter Setup
Table 2 summarizes the selected complete vehicle targets 
across various driving scenarios. For acceleration and 
braking scenarios, pitch angles are measured at three 
distinct levels of longitudinal acceleration to capture the 
suspension kinematics during both minor and significant 
wheel travel. This approach specifically influences higher-
order targets such as 2nd and 3rd anti-lift coefficients. 

Roll motion is evaluated using a ramp steer scenario, with 
targets established for roll, pitch, and jacking motion. 
These parameters primarily influence kinematic targets 
like roll center height (RCH). Additionally, understeer 
gradient is incorporated as a complete vehicle target to 
regulate suspension kinematics parameters, particularly 
bump steer and bump camber characteristics. The reward 
parameters are set according to Equation 2. A reference 
model is used as an upper bound for the reward function, 

which means 
=

=∑
1

n

i

i

R R  is set to 0. Furthermore, the 

complete vehicle targets simplified as one value in this 
case study.

This case study focuses on suspension targets related 
to jounce motion, as detailed in Table 3. Using the meth-
odology outlined in Section 3, the primary objective is to 
determine the optimal suspension jounce targets that 
fulfill the complete vehicle requirements. To facilitate a 
front suspension model that can be simulated, additional 
steering targets are listed as fixed parameters, as also 
presented in Table 3: Front suspension steering 
target category.

A collection of RL hyperparameters is presented in 
Table 4. These hyperparameters were tuned experimen-
tally to achieve a balance with computational efficiency. 
This termination threshold for early stop was established 
based on experimental validation.

TABLE 3  Targets selected to generate suspension property file.

First order Second order Third order
Front suspension jounce target*
1st bump steer (deg/m) 2nd bump steer ([deg/m]/dm) ** 3rd bump steer ([deg/m]/dm2)
1st bump camber (deg/m) 2nd bump camber ([deg/m]/dm) 3rd bump camber ([deg/m]/dm2)
1st anti-dive (%) 2nd anti-dive (%/dm) 3rd anti-dive (%/dm2)
1st anti-lift (%) 2nd anti-lift (%/dm) 3rd anti-lift (%/dm2)
1st RCH (mm) 2nd RCH (mm/dm) 3rd RCH (mm/dm2)
Front suspension steering target
1st Caster angle (deg) 2nd Caster angle (deg/25 deg) 3rd Caster angle (deg/25 deg2)
1st Kingpin angle (deg) 2nd Kingpin angle (deg/25 deg) 3rd Kingpin angle (deg/25 deg2)
1st Caster trail (mm) 2nd Caster trail (mm/25 deg) 3rd Caster trail (mm/25 deg2)
1st Scrub radius (mm) 2nd Scrub radius (mm/25 deg) 3rd Scrub radius (mm/25 deg2)
1st WLLA*** (mm) 2nd WLLA (mm/25 deg) 3rd WLLA (mm/25 deg2)
Rear suspension jounce target*
1st bump steer (deg/m) 2nd bump steer ([deg/m]/dm) 3rd bump steer ([deg/m]/dm2)
1st bump camber (deg/m) 2nd bump camber ([deg/m]/dm) 3rd bump camber ([deg/m]/dm2)
1st anti-squat (%) 2nd anti-squat (%/dm) 3rd anti-squat (%/dm2)
1st anti-lift (%) 2nd anti-lift (%/dm) 3rd anti-lift (%/dm2)
1st RCH (mm) 2nd RCH (mm/dm) 3rd RCH (mm/dm2)

*  Learning parameter used in case study.
** � Unit explanation: 2nd bump steer ([deg/m]/dm) means the bump steer unit is (deg/m), and the target is measured at 100 mm jounce 

travel. For more explanation, refer to [37].
***  WLLA: Wheel load level arm.
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5.  Results and Discussion
The case study results are shown in this section after 
completing the training process described in Section 4. 
Figure 7 illustrates the training progression, depicting the 
best reward achieved per episode. The learning curve 
exhibits both rapid advancement phases and periods of 
incremental improvement. The rapid advancement phases 
indicate an efficient learning step at the beginning of the 
training process, thanks to the pre-check function 

described in Section 2.2. After reaching a rapidly growing 
reward, the learning process stabilizes, and the reward 
converges to the maximum reward that triggered the 
stopping criteria. The training process concluded at 
episode 93, reaching an optimal reward value of −83. This 
termination threshold was established based on experi-
mental validation. For this case study, the early stopping 
criteria also play a role in preventing overfitting. The 
continuous exploration and exploitation of the learning 
agent means the neural network in the critic part works 
together with the actor part to find the optimal suspen-
sion kinematics targets.

Figure 8 illustrates the learning progression for each 
individual complete vehicle target. Throughout the training 
process, the RL agent effectively balances these multiple 
targets, achieving convergence by the final episode. The 
convergence characteristics of the suspension targets will 
be examined in a learning curve for each suspension target.

In alignment with the complete vehicle target learning 
curve illustrated in Figure 8, the suspension target learning 
process is characterized by two key parameters: mean μ 
and standard deviation σ per episode, as shown in Figures 
9 and 10. These parameters correspond to the policy 
parameters defined in Equation 3. While some subfigures 
demonstrate convergence of both the mean value and 
its variation, others exhibit only partial convergence. As 
established in Equation 1, the nonlinear suspension target 
incorporates coefficients up to the third order. The value 
function assigned to each complete vehicle target helps 
the agent find the correct path toward the optimal setup. 
Furthermore, the convergence of suspension kinematics 
targets in Figure 9 demonstrates the agent’s ability to 
find the optimal setup. The variation σ for each parameter 
also provides a sensitivity representation.2 Typically, the 

2 Parameter sensitivity indicates how different values of an input 
variable impact a particular output variable.

CompareVe
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Target verification

  FIGURE 6    Case study with Volvo XC60 body model in VI-CarRealTime environment.
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TABLE 4  RL hyperparameter setup.

Parameter Critic Actor Environment
Environment
Max episodes — — 100
Episodes replay size — — 10
Early stopping reward — — −5000
Minibatch size — — 8
Replay buffer size — — 10,000
Learning agent
Neural netwotk input 
dimension

14 — —

Neural netwotk output 
dimension

30 — —

Hidden layers (20, 20, 30) — —
Training step size 1e−3 1e−3(μ), 

1e−5(σ)
—

Average reward step size 1e−1 — —
Actor discount factor γ 1 — —
Prevent overfitting Early stop — —

PyTorch 2.4.1.
**CPU:** Intel Xeon W5-2455x.
**RAM:** 64 GB.
**GPU:** NVIDIA Quadro RTX A4500 20 GB.
**Training time with random initial conditions:** 120 h.
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σ value converges to a small value, indicating the critical 
parameters for the setup. The other parameters have a 
higher σ value, which means they are less critical for the 
setup. For example, Figure 10 shows the convergence of 
the suspension target front axle 1st anti-dive. The σ value 
converges to a small value, and the μ shifts to a value 
that yields the highest reward. In contrast, Figure 10 
shows the lack of convergence of the suspension target 
front axle 1st anti-lift. the σ remains high throughout the 
training process, which means the agent considers this 
particular suspension target less critical to achieving an 
overall high reward. Therefore, such a suspension target 
can be considered a less sensitive target.

The rapid convergence of front axle 1st anti-dive 
also indicates strong policy learning, whereas the persis-
tent high σ in front axle 1st anti-lift reveals underlying 
trade-off tension. Interestingly, the RL agent depriori-
tized front axle 1st anti-lift, suggesting this target may 
not be critical for meeting the higher-level objectives. 
As the algorithm can automatically identify the critical 
suspension kinematics targets, the dimension of suspen-
sion targets can be  increased without significantly 
increasing the computational cost. The interpretation of 
the σ and μ values reflects how the agent makes new 
design proposals according to policy and eventually finds 
the optimal suspension kinematics targets. The results 
show that the proposed method can be used to solve 
high-dimensional optimization problems in the vehicle 
dynamics field.

Figure 11 demonstrates that the target learning algo-
rithm effectively achieved its intended purposes. The 
verification focuses on comparing the performance 
against the original targets established in Table 2. This 
comparison confirms the successful translation from 
vehicle-level targets to subsystem-level targets in the 
suspension field that was highlighted in Figure 6. This 
supports the hypothesis that reward shaping with linear 
penalties can still capture multi-objective tension under 
certain conditions.

This section has demonstrated the complete design 
workflow from vehicle targets to suspension hardpoints. 
The process began with 14 complete vehicle targets that 
were used by the RL algorithm to establish 30 suspension 
kinematic targets. Additionally, many fixed values were 
given, such as vehicle data but also some fixed suspension 
parameters, e.g., wheel rate, which was not allowed to 
vary in the design. Two findings are concluded in 
this section.

•	The RL algorithm effectively converged on optimal 
suspension targets that fulfilled the specified 
complete vehicle targets.

•	The implemented design demonstrated excellent 
correlation with the original vehicle targets across all 
evaluated performance metrics.

This case study provides validation of the method-
ology described in Section 2 and 3, demonstrating its 
capability in automotive suspension design applications.

6.  Conclusion
This study demonstrates that RL can effectively address 
the challenge of high-dimensional suspension kinematics 
optimization in early vehicle development stages. It high-
lights both the promise and the practical limitations of 
RL in multi-objective suspension design field. Although 
not benchmarked against traditional methods in this 
study, the RL agent produced results consistent with 
physical expectations, suggesting the method’s applica-
bility for earlystage concept development. Through the 
implementation of an actor-critic framework, we learned 
that RL agents can successfully navigate complex param-
eter trade-offs without requiring detailed suspension 
hardpoint knowledge, making the approach particularly 
valuable during conceptual design phases.

  FIGURE 7    Reward for each episode during the RL training process.
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  FIGURE 8    Learning curve per episode: Individual completes vehicle target learning process.
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  FIGURE 9    Learning curve per episode with μ and σ for front axle suspension targets.
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  FIGURE 10    Learning curve per episode with μ and σ rear axle.
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The research revealed that RL-based optimization can 
achieve meaningful convergence in suspension targets, 
with the agent effectively learning value functions for 
complete vehicle performance and policy functions for 
parameter selection. The method’s ability to identify 
critical design parameters through convergence patterns 
provides valuable sensitivity insights that complement 
traditional engineering approaches.

The actor-critic framework developed for suspension 
optimization demonstrates broader applicability to high-
dimensional engineering design problems. The method-
ology of using RL for inverse mapping from vehicle perfor-
mance requirements to design parameters can 
be extended beyond automotive applications to other 
complex engineering systems where traditional optimiza-
tion struggles with dimensionality and parameter inter-
dependencies. The approach of embedding domain 
knowledge through reward function design while allowing 
the agent to discover parameter relationships is transfer-
able across engineering disciplines.

Several limitations constrain the current work’s 
scope. The validation is limited to a single vehicle 

architecture within the VI-CarRealTime environment, 
raising questions about generalizability across different 
vehicle types and simulation platforms. The reward 
function design, while effective, remains relatively simple 
and may not capture all relevant performance trade-offs 
in real-world applications. The method’s dependency on 
simulation fidelity means that model uncertainties in 
VI-CarRealTime could propagate to the optimization 
results. Additionally, the current approach focuses solely 
on kinematics targets without considering other subsys-
tems that are crucial in vehicle development. The RL 
agent’s performance is also sensitive to hyperparameter 
choices, which may require further tuning for 
different applications.

7.  Future Work
Building on the identified limitations, several research 
directions emerge for advancing RL-based vehicle 
design optimization.

(a) Acceleration event comparison (b) Braking event comparison

(c) Jacking effect comparison (d) Pitch event comparison

(e) Roll event comparison (f) Understeer gradient comparison

  FIGURE 11    Comparison of original targets with RL simulation results.
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Methodological Extensions: Future investigations 
will explore nonlinear reward functions, particularly para-
bolic formulations, to better capture engineering trade-
offs and potentially accelerate convergence. The integra-
tion of transfer learning capabilities will enable pre-trained 
models to reduce training time for new vehicle projects, 
addressing the practical concern of development 
timeline constraints.

Scope Expansion: The methodology will be extended 
to encompass additional subsystems including suspension 
compliance characteristics and tire design parameters. 
This multi-subsystem approach could provide valuable 
insights for cross-functional engineering teams by iden-
tifying critical design parameters across different domains 
and their interdependencies.

Enhanced Environment Complexity: Integration with 
DiL simulation environments represents a significant 
advancement opportunity, enabling the incorporation of 
subjective criteria alongside objective performance 
metrics. This capability would allow the RL agent to adapt 
to specific driver preferences and diverse testing scenarios, 
bridging the gap between objective engineering require-
ments and human-centered design considerations.

Validation and Robustness: Validation across 
multiple vehicle architectures and simulation platforms is 
essential to establish the method’s generalizability. Future 
work will test generalizability across architectures. The 
demonstrated RL approach enables its application in 
multiple real-world vehicle development projects, which 
will provide valuable experience.
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Appendix A: A Suspension Motion Property Files
TABLE A .1  Selected motion properties and correspond input.

Motion Jounce travel Steering travel
Front suspension jounce target
Steer at ground X X
Camber angle X X
Side view angle X X
X-coordinate variation X X
Y-coordinate variation X X
Rear suspension jounce target
Steer at ground X
Camber angle X
Side view angle X
X-coordinate variation X
Y-coordinate variation X©
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