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Abstract

Setting up suspension kinematics targets has been a challenging task for vehicle engineers. The
challenges involve a high-dimensional search space, nonlinear relationships between the suspension
kinematics and vehicle dynamics, exploration and exploitation trade-offs, and the need for domain-
specific knowledge. Traditional multi-objective optimization methods are time-consuming, sensitive
to initial conditions, and rarely converge to the global optimum in high-dimensional spaces. This
article explores how reinforcement learning can be used to automate the design of suspension
kinematics targets, addressing a longstanding challenge in vehicle dynamics design: the inverse
problem of satisfying high-level handling objectives through low-level subsystem parameters. The
method is based on the accumulation of knowledge through the interaction between an intelligent
agent and a simulation environment. The agent optimizes suspension kinematics targets by receiving
rewards tied to vehicle dynamics performance. The agent, employing a Gaussian policy and ¢-based
sensitivity analysis, enables the identification of critical and non-critical design parameters. The
results show that the proposed method can find optimal suspension kinematics targets with the
help of accumulated knowledge. The knowledge-guided learning process demonstrates a novel
approach to solving high-dimensional optimization problems, offering good convergence time and
valuable results. The proposed method contributes to the field by using reinforcement learning to
set up suspension kinematics targets in the automotive industry.
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1.1. Background and Research
Problem

he objective of this study is to develop a reinforce-

ment learning framework capable of automatically

determining suspension kinematics targets that
fulfill predefined complete vehicle-level dynamic require-
ments. To ensure adequate stress-testing, the frame-
work was developed using a case study based on
industry-relevant requirements and representative
vehicle models. Suspension kinematics targets are set
by the attributes of the vehicle. The majority of these
attributes are determined by the vehicle dynamics,
which are influenced by the suspension kinematics,
among other vehicle subsystems. The suspension kine-
matics targets are set by vehicle engineers based on
their experience and knowledge, and then given to the
suspension engineer. With the help of optimization tech-
niques [1, 2], finding the optimal suspension kinematics
targets can be programmed as a computational task.
In the domain of engineering design optimization appli-
cations, the most common methods, such as gradient-
based techniques [3=7] and gradient-free methods, for
example, genetic algorithms (GA) [8-12] and biologically
inspired algorithms [13-16], are widely used. However,
challenges such as convergence, exploration—exploita-
tion balancing, and computational efficiency remain,
especially in high-dimensional design spaces [17-19].
Inspired by human engineers, knowledge accumulated
from previous experience plays a crucial role when a
new design is proposed. With the early foundation in
neural networks [20, 21], the knowledge represented in
the weights of the network can be updated through
interaction with the environment. This is the foundation
of reinforcement learning (RL), which has shown promise
in solving complex problems [22]. This study addresses
the lack of efficient optimization methods for high-
dimensional suspension kinematics design by leveraging
the RL method to find optimal suspension targets. While
the authors hypothesize that RL models can address
the research problem, the goal of this article is to
evaluate the feasibility and practical implications of
using RL-based methods for searching high-dimensional
suspension kinematics targets. The suspension target
generation task presented here involves an inverse
mapping from vehicle-level objectives to subsystem-
level parameters, where RLs policy-based formulation
and reusability provide a natural advantage, enabling
faster adaptation as vehicle-level requirements evolve.
However, we acknowledge the importance of bench-
marking and plan to investigate quantitative compari-
sons, including convergence behavior and solution
quality, in future work.

1.2. Motivation and Contributions

Motivating the RL algorithm versus traditional optimiza-
tion methods, a deep argument provided by [23, 24]
shows that RL offers a potential solution to the limitations
of traditional optimization methods. The results indicate
RL has the potential to solve complex engineering
problems. RLUs policy-based formulation and reusability
provide an advantage over optimization techniques like
GA in high-dimensional, sequentially coupled variables.
The effect of one decision depends on previous decisions;
the problem unfolds in steps rather than all at once. RL
handles this well because it treats the problem as a
sequence of state—action-reward steps, learning to
navigate dependencies over time. GA treats the problem
as a static “find the best set of parameters” task, so it
doesn’t naturally model sequential dependencies. In
contrast to optimization techniques such as GA and
gradient-based methods, the RL framework used in this
study offers several qualitative advantages for suspension
target generation. The learned policy can be visualized,
providing interpretable insight into how the agent navi-
gates the trade-offs between, for example, longitudinal
and lateral dynamics. A trained policy can be adapted to
related design tasks, reducing computation in iterative
development cycles. Unlike methods that require
predefined datasets, RL learns by interacting with the
simulation, enabling exploration of non-obvious design
configurations. While GA remains well-suited for certain
nonlinear, non-smooth problems [25], RUs sequential
learning and experience reuse make it a compelling alter-
native for complex, high-dimensional design spaces.
Following recent successful domain applications using RL,
it has become a popular machine learning technique used
to solve control problems [26—29] and gaming strategies
[30-32]. It has demonstrated its potential search capabili-
ties in complex environments. In this article, we propose
a search tool using RL to find optimal suspension kine-
matics targets. The research gap is addressing the
increase in search dimensionality by using the RL method
instead of multi-objective optimization. We hypothesize
that the proposed RL-based method will address these
limitations and is suitable for high-dimensional, nonlinear
design spaces compared to traditional multi-objective
optimization techniques. The o-based policy enables iden-
tification of critical and non-critical design parameters.
This is valuable in handling high-dimensional optimization
problems and guiding further dimension reduction.

A modified actor-critic framework inspired by [33] is
deployed for this learning task. The goal for the RL learning
agent is to obtain higher rewards from a simulation envi-
ronment. The reward is formulated in a way that leads
the suspension kinematics targets to converge to their
optimal values. A probabilistic model gives a better chance
to learn the uncertainty of the environment. The environ-
ment in this article uses VI-CarRealTime [34] since
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VI-CarRealTime provides a sufficiently accurate vehicle
model type with acceptably low computation time. The
model contains a look-up table-based suspension property
file, which is characterized by the suspension kinematics
targets. The complete vehicle can be simulated “offline”
as a set of pre-defined driving scenarios or as a driver-in-
the-loop (DiL) simulation. The DiL simulation can involve
the human driver in the simulation loop, thereby evaluating
subjective criteria. Offline simulation is used in this article
without DiL evaluation, but real-time simulation is also of
interest for potential performance evaluation. This article
contributes a methodology for an actor-critic RL frame-
work and a simulation environment from which the RL
agent can learn. The method helps the vehicle dynamics
engineer to find or narrow down the design space in the
early vehicle development stages. Once the training is
complete, the knowledge represented by the agent’s value
function can be reused in later design stages, for example,
for minor suspension target adjustments. Any trained
model can be reused as long as the architecture of the
neural network remains the same. Furthermore, compared
with optimization-based methods, the new method
utilizes the knowledge accumulated during the training
process. Therefore, the agent continues to improve with
more training data and has the potential to be used in
future tasks as a pre-trained model.

The first part of the article introduces a method that
generates suspension property files that amount to the
vehicle model. In the second part, the RL agent that inter-
acts with the simulation environment and proposes new
suspension kinematics targets is introduced. While limited
to a single vehicle model, the study provides insight into
the challenges and potential of RL in target generation
for suspension systems. The third part of the article
shows the results of a case study using the proposed
method. The results show that the proposed method can
find optimal suspension kinematics targets with the help
of accumulated knowledge.

2. Simulation Environment

This section describes the suspension target selection,
generating artificial suspension property files, and the
RL environment.

2.1. Artificial Suspension
Property File

2.1.1. Suspension Target Selection The selection of
suspension kinematics targets in this article focuses on
the targets that mainly influence longitudinal and lateral
dynamic behaviors. An extended set of targets from [35]
is used in this article. The targets are listed in Table 3. The
targets are divided into three categories: front suspension
jounce targets, front suspension steering targets, and

m Physical suspension considers

packaging feasibility.
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rear suspension jounce targets. These targets are used
to generate look-up table-based front and rear suspen-
sion property files. The kinematics targets used to
generate artificial suspension property files do not guar-
antee a physically feasible suspension; they only guar-
antee a suspension that can be simulated in VI-CarRealTime.
To ensure the feasibility of the suspension, a packaging
check needs to be considered together with the kine-
matics targets setup. Figure 1 shows a physical suspen-
sion using the selected kinematics targets with a feasible
packaging solution [36].

2.1.2. Generating Artificial Suspension Property
Files The suspension property files utilize the targets from
Section 211 to generate curve-based steering subsystems
for the front axle and curve-based suspension subsystems
for the rear axle. The targets for the front steering
subsystem use 3D splines to capture the motion of the
steering knuckle. For the rear axle, 2D splines are used to
capture the motion of the non-steering knuckle. The
motion includes steer at ground, camber angle, side view
angle, X-coordinate variation, and Y-coordinate variation.
The motion in the front axle depends on rack travel and
jounce travel. The motion in the rear axle depends only
on jounce travell A summary of the motion properties
and corresponding input is shown in Table Al

To get a proper motion file, the first step is to calcu-
late the general motion from the given suspension kine-
matics targets. The concept of general motions g is
described in [37]. The relation between the general
motion and the suspension kinematics targets is described
in Section 311 [35] for a front axle and Section 3 [37] for
a rear axle. At a given jounce position u, the targets are
given by reading the target curve. For example, the target
curve bump steer is shown in Equation 1.

Bump Steer(u) = Ist Bump Steer + 2nd Bump Steer -u

+3rd Bump Steer - u?

(1)

T Jounce travel refers to the wheel center height change with respect
to the design position—positive is termed jounce and negative is
termed rebound.
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For jounce motion, the general motion g can be solved
by a symbolic solver from the given target at a specific
jounce position, according to the suspension jounce target
in Table 3. The second step is to integrate the general
motion with a small time step At to get the next position
Jeq- The targets for the new position g4 can be read
again from the target curve. The process is repeated until
the end of the jounce travel. The motion file is generated
by the motion g at each jounce position. For the steering
motion, the process is similar to the jounce motion. The
steering motion file is generated by the motion g at each
rack travel or steering wheel angle. To formulate the
suspension property file represented by 3D splines for
the front steering subsystem, a superposition of the
steering motion and the jounce motion is used. Figure 2
shows the process of generating artificial suspension
property files.

2.2. RL Environment

Once the suspension property files are generated, the RL
environment shown in Figure 3 also includes a simulation
environment [34], a reward function, and a pre-check
function. The mechanism of the pre-check function
ensures that only the suspension property files that meet
the target range can be simulated. Invalid suspension
property files will lead to a punishment in the reward
function. The shortcut path stabilizes the training process
and improves training efficiency. Many parts, such as
wheel rate, tire models, suspension compliance, brake
control, powertrain control, and driver model, have been
modeled with fixed parameters, since they are needed
for simulation, even though they are not subject to design
in the present article.

The suspension property
files are attached to an existing vehicle in this study. The
vehicle is simulated in a set of driving scenarios, including
acceleration, braking, and ramp steer scenarios. The
selected driving scenarios reflect the vehicle driving
behaviors influenced by suspension kinematics targets.
For example, the pitch angle during acceleration is influ-
enced by the anti-lift in the front suspension and anti-
squat in the rear suspension. The simulation scenarios
aim to cover fundamental longitudinal and lateral vehicle
dynamics behaviors. The measurement of the vehicle’s
performance is based on the postprocessing simulation
results. The complete vehicle performance targets are
measured according to Table 1. Figure 8 shows the results
from the simulation.

m RL environment overview.

l Reward value

| Post processing | Reward | Punish |

No

Simulation results

Simulation Pre-check

Yes

Susp. property ﬂles]

Generating suspension property file

Suspension targets l
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TABLE1 Complete vehicle targets.

Acceleration scenario*

Pitch angle at 0.1 g (deg)

Pitch angle at 0.5 g

Braking scenario**

Pitch angle at —0.1 g (deq)

Pitch angle at —0.6 g

Ramp steer scenario for roll***

Roll angle at —0.2 g (deg)

Ramp steer scenario for pitch***
Pitch angle at —0.2 g (deg)

Ramp steer scenario for Jacking***
Vertical displacement at —0.4 g (mm)

Pitch angle at 0.35 g

Pitch angle at —0.35 g

Roll angle at —0.5 g
Pitch angle at —0.6 g

Vertical displacement
at -07g
Handling diagram from ramp steer***
Understeer gradient at 0.1 g (deg/qg) Understeer gradient
at05¢g

* Acceleration scenario: The vehicle accelerates from 18 km/h in
3 s with open loop constant throttle.
** Braking scenario: The vehicle decelerates from 160 km/h in 1s
with open loop constant braking.
*** Ramp steer scenario: The vehicle steer 9 deg/s up to 6 s with
constant velocity 100 km/h.

The reward function rewards
the agent by comparing the simulation results and the
target values. For each complete vehicle target i in Table
1, it consists of complete vehicle target ranges [emin,;, €max,il,
maximum reward R, and punishment gradient R;. The
relation between the individual target reward R; and the
simulation result ¢; is shown in Equation 2. If the suspen-
sion does not pass the pre-check in Figure 3, a punish-
ment Rpynish,i i assigned to the reward R;

Rmax,/’v IF 6m/'n,l < S < 6max,r'
Ri={Rmaxi —Ri-l&6 —€mni|,  IF & <€mpn; (2
Rmax,i - Ri 1€ T €maxii|» if € > €max,i

Equation 2 shows that the reward R; is a linear function
of the simulation result ¢, A linear function is simple to
tune and is less sensitive to hyperparameters than a
nonlinear function. Although a linear reward was used for
simplicity and stability, the trained RL agent was able to
discover configurations that reflect an implicit balance
between different complete vehicle targets (see Figure
8). While longitudinal and lateral dynamic objectives are
not shown separately, the resulting complete vehicle
targets (see Table 2) are consistent with typical vehicle
dynamics design expectations. The reward R; is set to
Rmax, if the simulation result e; is within the target range
[€min,» €max]- The reward R; decreases linearly if the simula-
tion result ¢; is outside the target range. The total reward

© Yansong Huang, Volvo Car Corporation
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TABLE 2 Complete vehicle targets and reward
parameters setup?.

Parameter Roox R Emacmin
Acceleration scenario (unit) (M (1/deq) (deg)

Pitch angle at 01 g (deg)*** 0 1000 (0189, —0.189)
Pitch angle at 0.35 g 0 1000  (=0.730, —0.730)
Pitch angle at 0.5 g 0 100 (-1.087, —1.087)
Braking scenario (1) (1/deq) (deg)

Pitch angle at —0.1 g (deg) 0 10,000 (0.038, 0.038)
Pitch angle at —0.35 g 0 1000 (0.337,0.337)
Pitch angle at =06 g 0 1000 (0664, 0.664)
Ramp steer scenario forroll (1)  (1/deg) (deg)

Roll angle at —0.2 g (deg) 0 1000 (0478, —0.478)
Roll angle at —0.5 g 0 100 (=1.2M, =1.21)
Ramp steer scenario for (M (1/degq) (deg)
pitch

Pitch angle at —0.2 g (deg) 0 1e5  (—-0.0068, —0.0068)
Pitch angle at —06 g 0 10000 (-0.073, -0.073)
Ramp steer scenario for M (Vmm) (mm)
Jacking

Vertical displacement at 0 1000 (1157,1157)
—0.4 g (mm)

Vertical displacement at 0 100 (4.443, 4.443)
-07g

Handling diagram from () (v (deg/q)
ramp steer [deg/q))

Understeer gradient at 0 1000 (0.724, 0.724)
01 g (deg/g)

Understeer gradient at 0.5 g 0 100 (1914, 1.914)

* These are example targets for a test vehicle used for the
concept study at Volvo Cars.

** The complete vehicle targets are simplified as one value,
therefore emax = = €min iN the case study.

*** Target setup referenced to initial condition at O g.

R is the summation of each individual reward R; from
Equation 2, meaning R = ZR,. The punishment gradient

R, as weight factor is adju§t1able for different targets and
learning tasks. The simulation environment is imple-
mented in Python using the OpenAl Gym framework [38].
It cooperates with a learning agent to find the optimal
suspension kinematics targets. The architecture of the
learning agent is described in the next section.

The learning agent is adapted based on the stochastic
actor-critic framework [30]. The actor part consists of
multiple Gaussian distributions that represent the suspen-
sion kinematics targets. The critic part is modeled by a
neural network function and outputs a high-dimensional
value function that estimates the expected reward.
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m Critic network architecture.

Hidden

E % % ?g Output

The actor gets updated by the critic part using temporal-
difference learning, and the critic part gets updated by
training examples from the memory buffer. This section
goes through the key elements and describes the learning
mechanism of the learning agent.

Input

State 1
Value 1
State 2

Value 2
State 3

© Yansong Huang, Volvo Car Corporation

3.1. Agent Critic

The critic neural network is used to estimate values
V for individual suspension kinematics targets
according to certain states shown in Figure 4. The
weight vector W includes scale weight w and bias term
b. The states are observations from the simulation
environment, for example, the complete vehicle targets
from Table 1. The critic neural network is implemented
using PyTorch [39] with customized layers and sizes.
To stabilize the training process, batch normalization
is applied to the critic network. The gradient of each
layer, which is used for training, is trimmed automati-
cally based on the connections between layers. The
critic neural network aims to generate values that
update the policy in the actor part. A well-trained critic
network should provide a good estimation of the
expected reward, which leads to the convergence of
the policy in the actor part.

3.2. Agent Actor

The actor is supposed to generate suspension kinematics
targets based on the policy. The policy & is a set of
Gaussian distributions with mean 0T and standard devia-
tion @) as shown in Equation 3.

—ExXp| - (aZ_aAEt(;;? ) 3)

a| 0
\/ 27[0'

where

a is the action
u(0)=0,
o(8)= exp(6))

To update the policy, the gradient with action a is
expressed in Equations 4 and 5 from [30],

vinz(alg,) =——(a-u(0)) @

0(9

v |n7z(a|ea):(a_“(g))2_1

o(6)

3.3. Training with Temporal-
Difference Learning

The training process is based on the temporal-difference
learning algorithm with an average reward [40]. The
temporal-difference é is a multidimensional scale vector
that is broadcast by one-dimensional reward and multi-
dimensional predicted values, as shown in Equation 6.

5 =R-R+V(sIw)- siw) (6)

where 7
R and R are one-dimensional scales reflecting total
reward and average reward
V' is a multidimensional vector from the critic
network output

The weight update includes three steps for the
average reward, critic, and actor parts. The average
reward is updated by the temporal-difference é times the
learning rate . The gradient is essentially the key to
weight updates, together with the temporal-difference
and learning rate. The gradient of the critic network can
be obtained thanks to the PyTorch Autograd feature, and
the actor part is calculated from Equations 4 and 5. The
process of weight update is shown in Equations 7, 8,
and 9.

R«R+a"s (7)
W e W+a"™s v V(SW) 8)

0« 0+a’s v inr(AH) (9)



Downloaded from SAE International by Chalmers University of Technology, Wednesday, January 21, 2026

Huang et al. / SAE Int. J. Veh. Dyn., Stab., and NVH / Volume 10, Issue 1, 2026 31

m Agent learning mechanism.

Observations

Environment

Action
batch

Policy
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3.4. Agent Learning Mechanism

The learning mechanism is shown in Figure 5 and Algorithm
1. The agent starts with an initial state, policy parameters
0, and randomly initialized value network parameters W.
The batch actions are sampled from the current policy
distribution and fed into the simulation environment. The
simulation experience is stored in the memory buffer. The
action that has the highest reward will be used to update
the actor weight factors. The experience in memory buffers
is used to train the critic network with the help of the
temporal-difference error shown in Equation 6. The memory
buffer represents the historical experience. Notice that
replay training with the memory buffer improves training
efficiency. With the current state, a value can be estimated
by the updated critic network and provide an updated TD
error. Then, the policy parameters @ can be updated by the

Memory
buffer

Policy update

Greedy algorithm

Batch training with TD

Replay

P J 1D with value

gradient of the policy from Equations 4 and 5. A clip function
is applied to the policy parameters to avoid gradient explo-
sion. If all actions generated by the policy fail to pass the
pre-check function, the agent resets the state, average
reward, and policy parameters. The agent repeats the
process until the end of the training episode.

In this section, a demonstration of the proposed method
is presented as a case study. The investigation begins by
establishing 14 complete vehicle targets, which serve as
input for the RL algorithm to determine the optimal 30
suspension targets as shown from vehicle level in Table
2 to subsystem level in Table 3. A set of suspension

F\Rclol: i1, [VEM Agent learning algorithm based on actor-critic framework.

Initialize policy parameters 6, value network parameters W, initial state sg, and initial

average reward R

Initialize learning rates oy and ayy for actor and critic

Initialize average reward learning rate o*
for each of episode: do

while All batch action A not pass Pre-check do
Sample batch action A ~ 7(-|#) {Select action according to current policy}
Execute action a; € A, observe reward r; and next state s;
Store transition (s;, a;, 74, s;) in memory buffer

while end of replay: do

Sample the experience with batch size

Compute TD error: § = R — R +AV(SI\W) —V(S|W) {6 e R}
Update critic: W <~ W + a,, § VV (S, W)

end while

(Sma17 Gmazs "'mazs Smaz)

Clip 6, with interval [g74", 972
R+ R+a®6,us
I+~I
S S’mM
end while

© Yansong Huang, Volvo Car Corporation

end for

Select action amq, with the highest reward and update actor part with

Compute TD error: § = R — R+ V(S'|W) — V(S|W) {§ e R*}
Update actor: 6 < 0 + oy I 6 VInm(amaz|0)

reset state so, average reward R, and policy parameters 6, I + 1
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TABLE 3 Targets selected to generate suspension property file.

First order

Front suspension jounce target*
1st bump steer (deg/m)

Ist bump camber (deg/m)

st anti-dive (%)

st anti-lift (%)

Ist RCH (mm)

Front suspension steering target
st Caster angle (deg)

Ist Kingpin angle (deg)

st Caster trail (mm)

st Scrub radius (mm)

1st WLLA™* (mm)

Rear suspension jounce target*
Ist bump steer (deg/m)

Ist bump camber (deg/m)

st anti-squat (%)

st anti-lift (%)

1st RCH (mm)

Second order

2nd bump steer ([deg/m]/dm) **
2nd bump camber ([deg/m]/dm)
2nd anti-dive (%/dm)
2nd anti-lift (%/dm)
2nd RCH (mm/dm)

2nd Caster angle (deg/25 deg)
2nd Kingpin angle (deg/25 deg)
2nd Caster trail (mm/25 deg)
2nd Scrub radius (mm/25 deg)
2nd WLLA (mm/25 deg)

2nd bump steer ([deg/m]/dm)
2nd bump camber ([deg/m]/dm)
2nd anti-squat (%/dm)
2nd anti-lift (%/dm)
2nd RCH (mm/dm)

Third order

3rd bump steer ([deg/m]/dm?)
3rd bump camber ([deg/m]/dm?)
3rd anti-dive (%/dm?)
3rd anti-lift (%/dm?)
3rd RCH (mm/dm?)

3rd Caster angle (deg/25 deg?)
3rd Kingpin angle (deg/25 deg?)
3rd Caster trail (mm/25 deg?)
3rd Scrub radius (mm/25 deg?)
3rd WLLA (mm/25 deg?)

3rd bump steer ([deg/m]/dm?)
3rd bump camber ([deg/m]/dm?)
3rd anti-squat (%/dm?)
3rd anti-lift (%/dm2)
3rd RCH (mm/dm?)

* Learning parameter used in case study.

** Unit explanation: 2nd bump steer ([deg/m]/dm) means the bump steer unit is (deg/m), and the target is measured at 100 mm jounce

travel. For more explanation, refer to [37].
*** WLLA: Wheel load level arm.

kinematics targets is selected as the learning parameters.
The task for the RL agent is to find the setup for the
reference model without prior knowledge of the refer-
ence model’s target setup. Figure 6 illustrates the case
study workflow, which starts with the complete vehicle
targets setup. The RL agent cascades the complete
vehicle targets into suspension targets through the RL
learning process. Once the training converges and the
stopping criteria are met, a simulatable suspension
property file is generated as the outcome from RL and
artificial suspension property files. The complete vehicle
targets are then simulated in VI-CarRealTime, enabling
systematic verification that the design meets the specified
performance criteria, as shown in Figure 11. The study is
conducted with Volvo XC60 [41] body model and MF-Tyre
5.2 tire model [42].

4.1. Complete Vehicle Target and
Learning Parameter Setup

Table 2 summarizes the selected complete vehicle targets
across various driving scenarios. For acceleration and
braking scenarios, pitch angles are measured at three
distinct levels of longitudinal acceleration to capture the
suspension kinematics during both minor and significant
wheel travel. This approach specifically influences higher-
order targets such as 2nd and 3rd anti-lift coefficients.

Roll motion is evaluated using a ramp steer scenario, with
targets established for roll, pitch, and jacking motion.
These parameters primarily influence kinematic targets
like roll center height (RCH). Additionally, understeer
gradient is incorporated as a complete vehicle target to
regulate suspension kinematics parameters, particularly
bump steer and bump camber characteristics. The reward
parameters are set according to Equation 2. A reference
model is used as an upper bound for the reward function,

which means R:ZR, is set to 0. Furthermore, the

i=1
complete vehicle targets simplified as one value in this
case study.

This case study focuses on suspension targets related
to jounce motion, as detailed in Table 3. Using the meth-
odology outlined in Section 3, the primary objective is to
determine the optimal suspension jounce targets that
fulfill the complete vehicle requirements. To facilitate a
front suspension model that can be simulated, additional
steering targets are listed as fixed parameters, as also
presented in Table 3: Front suspension steering
target category.

A collection of RL hyperparameters is presented in
Table 4. These hyperparameters were tuned experimen-
tally to achieve a balance with computational efficiency.
This termination threshold for early stop was established
based on experimental validation.

© Yansong Huang, Volvo Car Corporation
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m Case study with Volvo XC60 body model in VI-CarRealTime environment.
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5. Results and Discussion

The case study results are shown in this section after
completing the training process described in Section 4.
Figure 7 illustrates the training progression, depicting the
best reward achieved per episode. The learning curve
exhibits both rapid advancement phases and periods of
incremental improvement. The rapid advancement phases
indicate an efficient learning step at the beginning of the
training process, thanks to the pre-check function

TABLE 4 RL hyperparameter setup.

Parameter Critic Actor Environment
Environment

Max episodes — — 100
Episodes replay size — — 10

Early stopping reward — — -5000
Minibatch size — — 8
Replay buffer size — — 10,000

Learning agent

Neural netwotk input 14 — —
dimension

Neural netwotk output 30 — —
dimension

Hidden layers (20, 20, 30) — —
Training step size le-3 Te—3(u), —

1e—=5(0)

Average reward step size le—1 — —

Actor discount factor y 1
Prevent overfitting Early stop

PyTorch 2.4.1.

**CPU** Intel Xeon W5-2455x.

**RAM:** 64 GB.

**GPU* NVIDIA Quadro RTX A4500 20 GB.
**Training time with random initial conditions:** 120 h.

described in Section 2.2. After reaching a rapidly growing
reward, the learning process stabilizes, and the reward
converges to the maximum reward that triggered the
stopping criteria. The training process concluded at
episode 93, reaching an optimal reward value of —83. This
termination threshold was established based on experi-
mental validation. For this case study, the early stopping
criteria also play a role in preventing overfitting. The
continuous exploration and exploitation of the learning
agent means the neural network in the critic part works
together with the actor part to find the optimal suspen-
sion kinematics targets.

Figure 8 illustrates the learning progression for each
individual complete vehicle target. Throughout the training
process, the RL agent effectively balances these multiple
targets, achieving convergence by the final episode. The
convergence characteristics of the suspension targets will
be examined in a learning curve for each suspension target.

In alignment with the complete vehicle target learning
curve illustrated in Figure 8, the suspension target learning
process is characterized by two key parameters: mean u
and standard deviation ¢ per episode, as shown in Figures
9 and 10. These parameters correspond to the policy
parameters defined in Equation 3. While some subfigures
demonstrate convergence of both the mean value and
its variation, others exhibit only partial convergence. As
established in Equation 1, the nonlinear suspension target
incorporates coefficients up to the third order. The value
function assigned to each complete vehicle target helps
the agent find the correct path toward the optimal setup.
Furthermore, the convergence of suspension kinematics
targets in Figure 9 demonstrates the agent’s ability to
find the optimal setup. The variation ¢ for each parameter
also provides a sensitivity representation.? Typically, the

2 Parameter sensitivity indicates how different values of an input
variable impact a particular output variable.
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Reward for each episode during the RL training process.

RL training progress—best reward per episode

0
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Reward

—1000

—1250

—1500

—e— Reward per episode
@® Best result: —-82.966 at episode 93
---Reward upper bound

«—
Best: -82.966

0 20 40

Episode

o value converges to a small value, indicating the critical
parameters for the setup. The other parameters have a
higher o value, which means they are less critical for the
setup. For example, Figure 10 shows the convergence of
the suspension target front axle st anti-dive. The ¢ value
converges to a small value, and the u shifts to a value
that yields the highest reward. In contrast, Figure 10
shows the lack of convergence of the suspension target
front axle 1st anti-lift. the o remains high throughout the
training process, which means the agent considers this
particular suspension target less critical to achieving an
overall high reward. Therefore, such a suspension target
can be considered a less sensitive target.

The rapid convergence of front axle st anti-dive
also indicates strong policy learning, whereas the persis-
tent high ¢ in front axle st anti-lift reveals underlying
trade-off tension. Interestingly, the RL agent depriori-
tized front axle 1st anti-lift, suggesting this target may
not be critical for meeting the higher-level objectives.
As the algorithm can automatically identify the critical
suspension kinematics targets, the dimension of suspen-
sion targets can be increased without significantly
increasing the computational cost. The interpretation of
the ¢ and u values reflects how the agent makes new
design proposals according to policy and eventually finds
the optimal suspension kinematics targets. The results
show that the proposed method can be used to solve
high-dimensional optimization problems in the vehicle
dynamics field.

Figure 11 demonstrates that the target learning algo-
rithm effectively achieved its intended purposes. The
verification focuses on comparing the performance
against the original targets established in Table 2. This
comparison confirms the successful translation from
vehicle-level targets to subsystem-level targets in the
suspension field that was highlighted in Figure 6. This
supports the hypothesis that reward shaping with linear
penalties can still capture multi-objective tension under
certain conditions.

60 80

© Yansong Huang, Volvo Car Corporation

This section has demonstrated the complete design
workflow from vehicle targets to suspension hardpoints.
The process began with 14 complete vehicle targets that
were used by the RL algorithm to establish 30 suspension
kinematic targets. Additionally, many fixed values were
given, such as vehicle data but also some fixed suspension
parameters, e.g., wheel rate, which was not allowed to
vary in the design. Two findings are concluded in
this section.

e The RL algorithm effectively converged on optimal
suspension targets that fulfilled the specified
complete vehicle targets.

¢ The implemented design demonstrated excellent
correlation with the original vehicle targets across all
evaluated performance metrics.

This case study provides validation of the method-
ology described in Section 2 and 3, demonstrating its
capability in automotive suspension design applications.

This study demonstrates that RL can effectively address
the challenge of high-dimensional suspension kinematics
optimization in early vehicle development stages. It high-
lights both the promise and the practical limitations of
RL in multi-objective suspension design field. Although
not benchmarked against traditional methods in this
study, the RL agent produced results consistent with
physical expectations, suggesting the method’s applica-
bility for earlystage concept development. Through the
implementation of an actor-critic framework, we learned
that RL agents can successfully navigate complex param-
eter trade-offs without requiring detailed suspension
hardpoint knowledge, making the approach particularly
valuable during conceptual design phases.
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m Comparison of original targets with RL simulation results.
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The research revealed that RL-based optimization can
achieve meaningful convergence in suspension targets,
with the agent effectively learning value functions for
complete vehicle performance and policy functions for
parameter selection. The method’s ability to identify
critical design parameters through convergence patterns
provides valuable sensitivity insights that complement
traditional engineering approaches.

The actor-critic framework developed for suspension
optimization demonstrates broader applicability to high-
dimensional engineering design problems. The method-
ology of using RL for inverse mapping from vehicle perfor-
mance requirements to design parameters can
be extended beyond automotive applications to other
complex engineering systems where traditional optimiza-
tion struggles with dimensionality and parameter inter-
dependencies. The approach of embedding domain
knowledge through reward function design while allowing
the agent to discover parameter relationships is transfer-
able across engineering disciplines.

Several limitations constrain the current work’s
scope. The validation is limited to a single vehicle
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(f) Understeer gradient comparison

architecture within the VI-CarRealTime environment,
raising questions about generalizability across different
vehicle types and simulation platforms. The reward
function design, while effective, remains relatively simple
and may not capture all relevant performance trade-offs
in real-world applications. The method’'s dependency on
simulation fidelity means that model uncertainties in
VI-CarRealTime could propagate to the optimization
results. Additionally, the current approach focuses solely
on kinematics targets without considering other subsys-
tems that are crucial in vehicle development. The RL
agent’s performance is also sensitive to hyperparameter
choices, which may require further tuning for
different applications.

Building on the identified limitations, several research
directions emerge for advancing RL-based vehicle
design optimization.

© Yansong Huang, Volvo Car Corporation
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Methodological Extensions: Future investigations
will explore nonlinear reward functions, particularly para-
bolic formulations, to better capture engineering trade-
offs and potentially accelerate convergence. The integra-
tion of transfer learning capabilities will enable pre-trained
models to reduce training time for new vehicle projects,
addressing the practical concern of development
timeline constraints.

Scope Expansion: The methodology will be extended
to encompass additional subsystems including suspension
compliance characteristics and tire design parameters.
This multi-subsystem approach could provide valuable
insights for cross-functional engineering teams by iden-
tifying critical design parameters across different domains
and their interdependencies.

Enhanced Environment Complexity: Integration with
DiL simulation environments represents a significant
advancement opportunity, enabling the incorporation of
subjective criteria alongside objective performance
metrics. This capability would allow the RL agent to adapt
to specific driver preferences and diverse testing scenarios,
bridging the gap between objective engineering require-
ments and human-centered design considerations.

Validation and Robustness: Validation across
multiple vehicle architectures and simulation platforms is
essential to establish the method’s generalizability. Future
work will test generalizability across architectures. The
demonstrated RL approach enables its application in
multiple real-world vehicle development projects, which
will provide valuable experience.
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Appendix A: A Suspension Motion Property Files

TABLE A.1 Selected motion properties and correspond input.

Motion Jounce travel Steering travel
Front suspension jounce target

Steer at ground X X
Camber angle X X
Side view angle X X
X-coordinate variation X X
Y-coordinate variation X X
Rear suspension jounce target

Steer at ground X

Camber angle X

Side view angle X

X-coordinate variation X

Y-coordinate variation X
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