CHAL

UNIVERSITY OF TECHNOLOGY

Language Support for Verifying Reconfigurable Interacting Systems

Downloaded from: https://research.chalmers.se, 2025-11-28 06:21 UTC

Citation for the original published paper (version of record):

Alrahman, Y., Azzopardi, S., Di Stefano, L. et al (2023). Language Support for Verifying
Reconfigurable Interacting Systems. International Journal on Software Tools for Technology
Transfer, 25(5-6): 765-784. http://dx.doi.org/10.1007/s10009-023-00729-8

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

International Journal on Software Tools for Technology Transfer (2023) 25:765-784
https://doi.org/10.1007/s10009-023-00729-8

FOUNDATIONS FOR MASTERING CHANGE

®

Check for
updates

Special Section: Rigorous Engineering of Collective Adaptive Systems

Language support for verifying reconfigurable interacting
systems

Yehia Abd Alrahman’' - Shaun Azzopardi' - Luca Di Stefano' - Nir Piterman'’

Accepted: 10 October 2023 / Published online: 2 November 2023
© The Author(s) 2023

Abstract

Reconfigurable interacting systems consist of a set of autonomous agents, with integrated interaction capabilities that feature
opportunistic interaction. Agents seemingly reconfigure their interaction interfaces by forming collectives and interact based
on mutual interests. Finding ways to design and analyse the behaviour of these systems is a vigorously pursued research goal.
In this article, we provide a modelling and analysis environment for the design of such system. Our tool offers simulation and
verification to facilitate native reasoning about the domain concepts of such systems. We present our tool named R-CHECK
(please find the associated toolkit repository here: https://github.com/dsynma/recipe). R-CHECK supports a high-level input
language with matching enumerative and symbolic semantics and provides modelling convenience for features such as
reconfiguration, coalition formation, and self-organisation. For analysis, users can simulate the designed system and explore

arising traces. Our included model checker permits reasoning about interaction protocols and joint missions.

Keywords Model checking - Agent theories and models - Verification of multi-agent systems

1 Introduction

Reconfigurable multi-agent systems (MASs) [1, 5] have
emerged as new computational systems, consisting of a set
of autonomous agents that interact based on mutual inter-
est, thus creating a sort of opportunistic interaction. That
is, agents seemingly reconfigure their interaction interfaces
and dynamically form groups/collectives based on run-time
changes in their execution context. Designing these systems
and reasoning about their behaviour is very challenging, due
to the high level of dynamism that reconfigurable MASs ex-
hibit. Reconfigurable MASs can be viewed as a special case
of collective-adaptive systems (CASs) [38]. Indeed, the only
major difference is that the latter focus more on scalable
systems with a large number of components. Reconfigurable
MASs, instead, focus on small-scale systems with collective

X Y.A. Alrahman
yehia.abd.alrahman @ gu.se

S. Azzopardi
shaun.azzopardi @gu.se

L. Di Stefano
luca.di.stefano@gu.se

N. Piterman
nir.piterman @gu.se

University of Gothenburg, Gothenburg, Sweden

behaviour. Reconfigurable MASs are useful for applications
in control systems, smart factories, autonomous vehicles,
etc., while CASs can be used to explain systems with a very
large number of (relatively small) agents. For instance, the-
ories about CASs can be used to reason about the spread of
infectious diseases [34], the utilisation of bike-sharing sys-
tems [32], etc. That being said, theories on reconfigurable
MASs focus more on qualitative measures, while CAS the-
ories are quantitative. In this article, we focus on qualitative
analysis (through, e.g., model checking) of reconfigurable
systems.

Traditionally, model checking [17, 31] is considered as a
mainstream verification tool for reactive systems [9] in the
community. A system is usually represented by a low-level
language such as NuSMYV [16], reactive modules [10, 26],
concurrent game structures [11], or interpreted systems [23].
The modelling primitives of these languages are very close
to their underlying semantics, e.g., predicate representa-
tion, transition systems, etc. Thus, it makes it hard to
model and reason about high-level features of reconfigurable
MASSs such as reconfiguration, group formation, and self-
organisation. Indeed, encoding these features in existing for-
malisms would not only make it hard to reason about them,
but will also create exponentially large and detailed models
that are not amenable to verification. The latter is a clas-
sical challenge for model checking and is often termed as
state-space explosion.

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-023-00729-8&domain=pdf
https://github.com/dsynma/recipe
mailto:yehia.abd.alrahman@gu.se
mailto:shaun.azzopardi@gu.se
mailto:luca.di.stefano@gu.se
mailto:nir.piterman@gu.se

766

Y.A. Alrahman et al.

Existing techniques that attempt to tame the state-
space explosion problem (such as binary decision diagrams
[BDDs], abstraction, and bounded model checking [BMC])
can only act as a mitigation strategy, but cannot provide the
right level of abstraction to compactly model and reason
about high-level features of reconfigurable MASs.

MASs are often programmed using high-level languages
that support domain-specific features of MASs like emer-
gent behaviour [3, 4, 37], interactions [5], intentions [18],
and knowledge [23]. These descriptions are very involved to
be directly encoded in plain transition systems. Thus, we of-
ten want programming abstractions that focus on the domain
concepts, abstract away from low-level details, and conse-
quently reduce the size of the model under consideration.
The rationale is that reasoning about a system requires hav-
ing the right level of abstraction to represent its behaviour.
Thus, there is a pressing demand to extend traditional model-
checking tools with support for reasoning about high-level
features of reconfigurable MASs. This suggests supporting
an intuitive description of programs, actions, protocols, re-
configuration, self-organisation, etc.

ReCiPe [1, 5] is a promising framework to support mod-
elling and verification of reconfigurable MASs. It is sup-
ported with both an enumerative semantics and a symbolic
semantics and model representation that permits the use of
symbolic representation to enable efficient analysis. How-
ever, writing programs in ReCiPe is very hard and error-
prone. This is because ReCiPe models are encoded in a
predicate-based representation that is far from how people
usually write programs. In fact, the predicate representation
of ReCiPe supports no programming primitives to control
the structure of programs, and thus everything is encoded
using state variables.

In this article, we present R-CHECK, a toolkit for de-
signing, simulating, and verifying reconfigurable MASs. R-
CHECK supports a minimalistic high-level programming
language with symbolic semantics based on the ReCiPe
framework. The syntax of the language was presented briefly,
along with a short case study, in [7].

Here we formally present the syntax and semantics of
R-CHECK and use it to model and reason about a non-
trivial case study from the realm of reconfigurable and self-
organising MASs. We have integrated LToL [1, 5] — a logic
specialised for interaction — into R-CHECK, thus allowing
native reasoning about selective interaction strategies.

This article is an extended and enhanced version of the
paper in [6]. There are two major new contributions [6]:

(i) We have integrated native reasoning about message ex-
change by supporting LToL [1] specifications, an extension
to LTL with native support for message exchange. We have
devised a new algorithm for LToL model checking that is
different from the one presented in [1] to allow integra-

Springer

tion with NuXmv. Indeed, rather than a bespoke automa-
ton construction [1], we extend the underlying system with
additional information and model check an extended LTL
formula over it. This alternative algorithm is integrated into
R-CHECK.

(ii) We also now support a native interpreter for the se-
mantics of R-CHECK models, and thus we can now sim-
ulate and visualise the counterexamples from the model-
checking algorithm directly on the generated symbolic au-
tomata. In [6], we could only enable simulation by com-
pletely relying on NuXMv, and we had no way to replay
model-checking counterexamples. Note that the counterex-
amples that NUXMV supports are state-based and due to
possible non-determinism it was hard to link them to mes-
sage exchange. Our interpreter instead focuses on message
exchange.

This specialised integration provides a powerful and na-
tive tool that permits verifying high-level features of re-
configurable MASs. Indeed, we can reason about systems
from both an individual and a system level. We show how
to reason about synchronisations, interaction protocols, and
joint missions and how to express high-level features such as
channel mobility, reconfiguration, coalition formation, and
self-organisation.

The remainder of this article is structured as follows. In
Sect. 2, give a background on ReCiPe [1, 5], the underlying
theory of R-CHECK. In Sect. 3, we present the language of
R-CHECK and its symbolic semantics. In Sect. 4, we pro-
vide a non-trivial case study to model autonomous resource
allocation. In Sect. 5, we present the LToL logic and moti-
vate its use through a case study. In Sect. 6, we present our
new algorithm of LToL embedding in NUXMv. We also
discuss the integration of R-CHECK in NuXwmv. Finally,
we provide concluding remarks in Sect. 7.

2 ReCiPe: a model of computation

We present the underlying theory of R-CHECK and explain
its semantics. R-CHECK accepts a high-level language that
is based on the symbolic ReCiPe formalism [1, 5]. We briefly
present ReCiPe agents and their composition to generate a
system-level behaviour. All these definitions are based on
discrete systems [36].

ReCiPe relies on (attributed) channel communication,
where agents agree on channel names to exchange mes-
sages. These messages carry data (in variables p) specified
by senders. Agents can also specify the target of communi-
cation by attributing the channels through predicates, sim-
ilar to [3, 4]. As opposed to the latter, ReCiPe supports a
dynamic reconfiguration of channel utilisation. Moreover,
ReCiPe supports two kinds of communication, channelled

Language support for verifying reconfigurable interacting systems

767

broadcast and channelled multicast. In channelled broad-
cast, the communication is non-blocking, that is, the com-
munication can still go through if a targeted receiver is not
ready to engage. Contrarily, in multicast, the communication
is blocked until all targeted receivers are willing to accept the
message and engage in the communication. Agents agree on
a set of channels cH, which includes the one used exclusively
for broadcast, .

Usually, broadcast is used for service discovery, for in-
stance, when agents are unaware of the existence of each
other and want to be discovered or to establish links for fur-
ther interaction. On the other hand, multicast can capture
a more structured interaction where agents have dedicated
links to interact on. The reconfiguration of interaction inter-
faces in ReCiPe makes it possible to integrate the two ways
of communication in a meaningful way. That is, agents may
start with a flat communication structure and use broadcast
to discover others. Thanks to ReCiPe’s channel passing fea-
ture, agents can dynamically build dedicated communication
structures based on channel references they exchange during
execution.

In order to target a subset of agents, in an inter-
action, sending agents rely on property identifiers, that
is, identifiers that senders use to specify properties re-
quired by targeted receivers. The set of property iden-
tifiers is pv. For instance, agent k may specify that it
wants to communicate on channel “a” with all agents
that listen to “a” and satisfy the property “Batterylevel
> 30%”. In other words, property identifiers pv are used
by agents to indirectly specify constraints on the targeted
receivers.

Each agent has a way to relate property identifiers to its
local state through a relabelling function. As we will see
later, we have generalised this function in R-CHECK to deal
with more sophisticated expressions. Thus, agents specify
properties anonymously using these identifiers, which are
later translated to the corresponding receiver’s local state.
Messages are then only delivered to receivers that satisfy the
property after relabelling.

Formally, an agent is defined as a discrete system
(DS) [36].

Definition 1 (Agent)
An agentisatuple A=(V, f, g% g", T°, T", 0), where:

* Vis afinite set of typed local variables;

e f:pv — Vis a function associating property identifiers
with local variables;

e ¢*(V,cH,D,pPV) is a send guard specifying the property of
the targeted receivers based on the current evaluation of V,
cH, and p, which is checked against every receiver j after

applying fj;

e g"(V,cH) is a receive guard describing the connectedness
of an agent to a channel ch; we let g"(V,%) =true, i.e.,
every agent is always connected to the broadcast channel;

e T5(V,V/,p,cn) and 7" (V,V’',p,cH) are assertions de-
scribing the send and receive transition relations, respec-
tively; we assume that an agent is broadcast input-enabled,
ie., Yo,d I’ s.t. T"(v,0’,d,%);

* 6 is an assertion on V describing the initialization of the
agent.

In this definition, a state of an agent s is an assignment
to the agent’s local variables V, i.e., for v € V if Dom(v) is
the domain of v, then s is an element in [],oy, Dom(v). In
the case that all variables range over a finite domain, the
number of states is finite. A state is initial if its assignment
to V satisfies 0. Note that A is a DS, and thus we use the set
V’ to denote the primed copy of V. That is, V' stores the next
assignment to V. Moreover, we use Id to denote the assertion
NApeyv =v’. That is, V is kept unchanged. We use d to
denote an assignment to the data variables b. We also abuse
the notation and use f for the assertion A\ ,,cpy pv = f(pv).

Agents exchange messages of the form m = (ch,d,i, x).
A message is defined by the channel it is sent on ch, the
data it carries d, the sender identity i (we assume a unique
identifier for each agent), and the assertion specifying the
property of targeted receivers xr. The predicate r is obtained
by grounding the sender’s send guard on the sender’s current
state, used channel ch, and exchanged data d.

Send transition relations 7° characterise what messages
may be sent, with one message sent at each point in time,
while receive transition relations 7" characterise the reaction
of a receiving agent to a message.

We use KeeP(X) to denote that a set of variables X is
not changed by a transition (either send or receive). That is,
kEEP(X) is equivalent to the assertion A, cx x = x’.

A set of agents agreeing on property identifiers pv, data
variables p, and channels cH defines a system. We give
the semantics of systems in terms of predicates to facilitate
efficient symbolic analysis (through BDD or satisfiability
modulo theory SMT). We use |+ for disjoint union.

Formally, a ReCiPe system is a DS and is defined as
follows.

Definition 2 (System)

Given a set {A;}; of agents, a system is S = (V, p, 6), where

YV = V;, astate of the system s is in [; [], ey, Dom(v), and
i

the initial assertion 6 = A 6;. The transition relation p of S
i

Springer

768

Y.A. Alrahman et al.

is as follows:
p= dch. Ib. \/7;:(Vk,Vk’,D,ch)/\
k
gjr.(Vj,ch) /\g]i(Vk,Cl’l,D,PV)/\
77(\/1-,\/].’,13,(:}1)
dpv.fi A
ji\k firly =87 (Vj.ch) Ald;
\% ﬁgz(Vk,ch,D,Pv) Ach=%Ald;j

The transition relation p describes two modes of interac-
tions: blocking multicast and non-blocking broadcast. For-
mally, p relates a system state s to its successors s’ given
a message m = (ch,d, k,). Namely, there exists an agent k
that sends a message with data d (an assignment to p) with
assertion 7 (an assignment to gi) on channel ch, and all
other agents (a) are connected to channel ch, satisfy the send
predicate &, and participate in the interaction (i.e., have a
corresponding receive transition for the message), (b) are
not connected and idle, or (c) do not satisfy the send predi-
cate of a broadcast and idle. That is, the agents satisfying 7
(translated to their local state by the conjunct Jpv.f;) and
connected to channel ch (i.e., g; (s/,ch)) get the message and
perform a receive transition. As a result of the interaction,
the state variables of the sender and these receivers might
be updated. The agents that are not connected to the chan-
nel (i.e., —|g; (s/,ch)) do not participate in the interaction
and stay still. In case of broadcast, namely, when sending
on %, agents are always connected and the set of receivers
not satisfying « (translated again as above) stay still. Thus, a
blocking multicast arises when a sender is blocked until all
connected agents satisfy 3pv.f; A m. The relation ensures
that when sending on a channel different from x, the set of
receivers is the full set of connected agents. On the broadcast
channel agents not satisfying the send predicate do not block
the sender.

Example: Consider a ReCiPe system that is composed of
two agents A; and A, agreeing on the set of channels cu =
{x}, the data variables b = {mMsG,LNKk}, and the property
variables pv = {pv}. Here, we use non-boolean variables to
simplify the presentation.

A; is defined as follows:
¢ Vi = {cLink :channel, role :enum}
e fi={pv—role}
* g} is (ch =% A pv = client)
* gj istrue
e 77 is (keEP(V1)Ad(MSG — join,LNK — C) A ch = %)
* 7/ iskeer(V})
* 6 is (cLink = ¢ A role = client)
That is, A has two local variables, cLink of channel type
and role of enumerate type. Moreover, A; relabels the prop-

erty identifier pv locally as the value of its local variable role.
The send predicate g7 indicates that A; intends to interact on

Springer

the broadcast channel x with agents that satisfy the property
pv = client according to their local relabelling. The receive
predicate g| indicates that A is always enabled to receive.

Behaviour-wise, A; can send a message join with a link ¢
on the broadcast channel x. Moreover, A; is not willing to
receive any messages.

Initially, the local variables of A; are set such that cLink
is assigned link ¢ and role is a client.

Ay is defined as follows:

¢ V, ={cLink :channel, role :enum}
* fo={pv - role}

* g is false

> g istrue

s 7, is false

T, is (cLink = L AcLink” =d(LNk) A KEEP(role)A
d(Mmsc > reserve) A ch = x)
¢ 6, is (cLink = L A role = client)

Clearly, A, only differs from A; with respect to the send
guard, the send transition relation (which are set to false), the
receive transition relation (which indicates that A, is willing
to receive a message named reserve and stores the value
of Lnk of the message in cLink), and the initial condition
where cLink is set to L.

By applying Definition 2, we see that the composition
of A; and A; indeed forms a ReCiPe system (where local
variables of A; and A; are joined with disjoint union to
account for similar local naming).

Now starting from the initial conditions of both agents, we
apply the system transition relation p. Clearly, there exist only
one message that satisfies p, namely, the message on channel
*, and data variables assigned as {MsG > join,LNK > C},
where A; is the sender (i.e., its send transition relation 7'15
is satisfied). Moreover, there is only one receiver A, which
is connected to x (i.e., gg is satisfied), its receive transition
relation 7, is satisfied with respect to the same message, and
the send guard g7 is (ch = x A pv = client) in conjunction with
local relabelling of A; (i.e., pv = role) is satisfiable. Thus,
p holds and as a result A, sets its local cLink variable to ¢
that is communicated in the message. In the next cycle, p is
checked again based on the new updated states.

Clearly, ReCiPe is a low-level formalism that is geared
towards efficient BDD representation and model checking;
thus, it is not meant to be used as a modelling language. R-
CHECK, on the other hand, builds on the efficient represen-
tation of ReCiPe and provides a set of high-level primitives
that can be used for modelling purposes.

R-CHECK adopts a symbolic model-checking approach
that directly works on the predicate representation of ReCiPe
systems. Technically speaking, the behaviour of each ReCiPe
agent is represented by a first order predicate that is defined
as a disjunction over the send and receive transition relations

Language support for verifying reconfigurable interacting systems

769

1 channel: identifier, - - -, identifier

2 message—structure: var-name:type, - - -, var-name:type
3 property—variables: var_-name:type, - - -, var-name:type
4 enum name {identifier, - - -, identifier}

5 X

6 enum name {identifier, - - -, identifier}

Fig. 1 R-CHECK script prelude

1 agent name

2 local:

3 var_name:type, - - -, var_-name:type
4

5 init: O

6

7 relabel:

8 predicate_var <— Exp

9 .
10 predicate_var <— Exp
11
12 receive—guard: g" (V, CH)
13 repeat: P

Fig. 2 An agent type

of that agent. Moreover, both send and receive transition
relations can be represented by a disjunctive normal form
predicate of the form \/(/\; assertion;), that is, a disjunct of
all possible send/receive transitions enabled in each step of
a computation. In the following, we will define a high-level
language that can be used to write user-friendly programs
with symbolic computation steps. We will also show how to
translate these programs to the ReCiPe predicate representa-
tion.

3 The R-CHECK language

We formally present the syntax of R-CHECK and show how
to translate it to the ReCiPe predicate representation.

An R-CHECK program starts with a prelude, reported
in Fig. 1, explicitly defining the communication context: by
defining the channel names (line 1), the data variables a
message carries (line 2), and the property variables (line 3).
Moreover, the user is allowed to define custom enum types
(lines 4-6).

After the communication context is defined, the user can
define the set of agents that compose the systems. We define
agent behaviour as data types.

We now introduce the agent type, its structure, and how
to instantiate it; we also introduce the syntax of the agent
behaviour and how to create a system of agents.

The type agent is reported in Fig. 2. Intuitively, each
agent type has a name that identifies a specific type of be-
haviour. As we will see later, we permit creating multiple
instances/copies with the same type of behaviour. Each agent
has a local state 1ocal represented by a set of local variables
Vr, each of which can be of a boolean, integer, or enum

type. The initialisation of an agent init: 6r is a predi-
cate characterising the initial assignments to the agent local
variables. The section relabel is used to implement the re-
labelling function of predicate variables in a ReCiPe agent.
Here, we allow the relabelling to include a boolean expres-
sion Exp over local variables V- to accommodate a more
expressive relabelling mechanism, e.g., pv < (length > 20).
The section receive-guard specifies the connectedness of
the agent to channels given a current assignment to its local
variables. Syntax-wise, to specify receive guards we use a
special variable ch to denote the channel a message was sent
on at the current time step; thus, we can write ch = a to denote
that an agent is always receptive to messages sent on chan-
nel a. Moreover, an agent is always receptive to messages
on broadcast, i.e., ch = % is implicitly added as a disjunct
to whatever receive guard the user writes. The latter per-
mits input-enabled broadcast as explained in Definition 1.
The non-terminating behaviour of an agent is represented by
repeat: P, which executes the process P indefinitely.

Before we introduce the syntax of agent behaviour, we
show how to instantiate an agent and how to compose the
different agents to create a system.

An agent type of name A can be instantiated as follows:
A(id,0). That is, we create an instance of A with identity
id and an additional initial restriction 6. Here, we take the
conjunction of # with the predicate 67 in the init section
of type A as the initial condition of this instance.

We use the parallel composition operator || to inductively
define a system as shown in the following production rule.

(System) Su= A(@d,0) | SIS

That is, a system is either an instance of agent type or
a parallel composition of a set of instances of (possibly)
different types. The semantics of || is fully captured by p in
Definition 2.!

The syntax of an R-CHECK process is inductively defined

as follows.
(Process) P:= C;P | P+P | repP | C
(Command) C:u= [:C | (D)x!ndU | (®)x?U

An agent behaviour corresponds to an infinite repetition
of a process. A process P is either a command prefix process
C; P, a non-deterministic choice between two processes P +
P, a loop rep P, or a command C. There are three types
of commands corresponding to either a labelled command, a
message-send, or a message-receive. A command of the form
[: C is a syntactic labelling and is used to allow the model

I Technically, in the case that the relabelling uses a predicate, we
have to introduce a variable of the correct type and make sure that
every transition changing the state of the agent updates this variable to
the value of the given predicate, that is, given the relabelling pv — Exp,
adding a variable puv to local variables and the conjunct pv’ = Exp’ to
all transitions.

Springer

770

Y.A. Alrahman et al.

checker to reason about syntactic elements as we will see
later.?2 A command of the form (®@)x! 7 d U corresponds to
a message-send. Intuitively, the predicate @ is an assertion
over the current assignments to local variables, i.e., it is a
pre-condition that must hold before the transition can be
taken; x is a placeholder (or a bound name) for a channel
name. Note that x may refer to the value of a local variable,
since we allow local variables to have the type channels.
As the names suggest, 7 and d are the sender predicate and
the assignment to data variables (i.e., the actual content of
the message), respectively. Lastly, U is the next assignment
to local variables after taking the transition. We use ! to
distinguish send transitions. A command of the form (®)x? U
corresponds to a message-receive. Differently from message-
send, @ can also predicate on the incoming message, i.e., the
assignment d. We use ? to distinguish receive transitions.

Despite the minimalistic syntax of R-CHECK, we can
express every control flow structure in a high-level program-
ming language. For instance, by combining non-determinism
and pre-conditions of commands, we can encode every struc-
ture of an IF statement. Similarly, we can encode finite loops
by combining rep P and commands C, e.g., (rep C1 + C;)
means: repeat C; or block until C, happens.

We define a system by instantiating agent types and put
them in parallel, as shown below.

1 system = agent_name(ldy, 01) || ... || agent_-name(lds, 01)

Finally, the user can supply logical specifications/ proper-
ties of the behaviour of the system as a set of LTL and LTOL
formulas as shown below.

LTL ltl_spec

LTL ltl_spec
LTOL ltol_spec

DU WN -

LTOL ltol_spec

3.1 The semantics of R-CHECK

We initially give a structural semantics? to the R-CHECK
process using a finite automaton such that each transition
in the automaton corresponds to a symbolic transition. In-
tuitively, the automaton represents the control structure of
an R-CHECK process. We will further use this automaton
alongside the agent definition to give an R-CHECK agent an

2 This option is made redundant by the support of LtroL. However, it
is left to support backward compatibility and for convenience.

3 We use the term structural semantics instead of symbolic because
we want to stress that this semantics exposes the control structure of a
process.

Springer

execution semantics based on the symbolic ReCiPe frame-
work. This two-step semantics will help us in verifying struc-
tural properties of R-CHECK agents.

Definition 3 (Structure automaton)
A structure automaton is of the form G = (S, X, s;, E),
where:

¢ S is a finite set of states;

e s5; € S is the initial state;

* X is the alphabet of G; and

* EC§SxX xS is the set of edges of G.

We use (s1,0,572) to denote an edge e € E such that s; is
the source state of e, s; is the target state of e, and the letter
o is the label of e.

Now, everything is in place to define the structure se-
mantics of R-CHECK processes. We define a function
(.)Wsiosrl: P— 2F which takes an R-CHECK process P
as input and produces the set of edges of the corresponding
structure automaton. The function (.)[*%/] returns a set of
transitions corresponding to the input process, starting from
state s; and (possibly) finishing at state s¢. The definition is
reported below.

(Py; Po)lsi-srl & (Py)lsi-sil [(Py)lsts7]

(Py + Py)lsi-srl 2 (py)lsissel | (Py)lsisss]
(]rep PD Slasj] A OPD[Si’Si]
(c

DBissl £ {(s,Co5p)}
Given a process P appearing in the body of the agent

type under repeat, we construct its corresponding structure
automaton by constructing the set of edges E = (P)si-sil,
given some state s;. Let S and X be the set of states and
commands used in E, respectively. Then the corresponding
structure automaton is (S, X, s;, E).

Note that the states of the structure automaton only rep-
resent the control structure of the process, and an agent can
have multiple initial states depending on 67 while starting
from s;.

We explain informally the semantics. (Py; Po)[%571 is the
union of the transitions created by P; and P, while cre-
ating a fresh state in the graph s; to allow sequentiality,
where P; starts in s; and ends in s; and later P, contin-
ues from sy and ends in sy. That is, the structure of the
process is encoded using an extra memory. Differently, the
non-deterministic choice (P; + P2)!%-*s1 does not require
extra memory because the execution of P; and P; is inde-
pendent. The semantics of (rep P)!%>5s1 is similar to that of
(repeat : P)!si-57] and is introduced to allow finite looping
inside a non-terminating process. Finally, the semantics of
a command in C corresponds to an edge {(s;,C,s¢)} in the
structure automaton. This means that the alphabet X of the
automaton ranges over R-CHECK commands. Note that the

for a fresh sy

Language support for verifying reconfigurable interacting systems

771

translation is completely syntactic and does not enumerate
variable values, resulting in a symbolic automaton.

To translate an R-CHECK agent into a ReCiPe agent,
we first introduce the functions typeOf, varsOf, predOf,
and guardOf on a command C. That is, typeOf(C) returns
the type of a command C as either ! or ?. For example,
typeOf((®) ch ! 7 d U) = !. Moreover, varsOf(C) returns the
set of local variables that are updated in C, while predOf(C)
returns the predicate characterising C in terms of local vari-
ables V., the primed copy V/, the channel ch, and the data
variables p (excluding). For instance,

predOf({Link = c)x!7r(MSG := m)[Link :=b])
is
(Link =c¢) A (ch=%) A (MSG =m) A (Link” = b)

That is, we provide a predicate that uniquely characterises
the information in the command.

Finally guardOf(C) returns the send predicate in a send
command and false otherwise.

Next we define how to construct a ReCiPe agent from an
R-CHECK agent with structure semantics interpreted as a
structure automaton.

Definition 4 (From R-CHECK to ReCiPe)

Given an instance of agent type T as defined in Fig. 2

with a structure semantics interpreted as a structure au-

tomaton G = (S, X, s;, E), we can construct a ReCiPe agent

A=V, f, g% g, T*, T",0) that implements its behaviour.
We construct A as follows:

V = Vp U {st} is the union of the set of declared variables
Vr in the local section of T in Fig. 2 and a new state
variable st ranging over the states S in G of the structure
automaton, representing the control structure of the pro-
cess of T. Namely, the control structure of the behaviour
of T is now encoded as an additional variable in A.

. TS =
\/ predOf(c) A (st = s1) A
((St’ =s5)A KEEP(VT\VaI’SOf(O')))
(s1,0,52)€E : typeOf(o)=!

o« T =

\/ predOf(c) A (st = s1) A
(st’ = s7) A keEP(Vy\varsOf(o))

(s1,0°,82)€E : typeOf(o)=?

c 8= V
o eX: typeOf(o)=!
* The initial condition 6 = 7 A (st = s;) is the conjunction
of the initial condition 67 in the init section of 7" in Fig. 2
and the predicate st = s;, specifying the initial state of G.

guardOf(o)

e f and g" have one-to-one correspondence in section
relabel and section receive-guard, respectively, of T
in Fig. 2.

Namely, the structure of the R-CHECK process is en-
coded as a state variable st in ReCiPe. The send transition
relation is encoded as the disjunction of all edges labelled
with send commands, and similarly for the receive transition
relation. The send guard is a disjunction of all guards in send
commands. Lastly, the initial condition of the ReCiPe model
is initialised to the initial state of the state variable.

4 Case study: autonomous resource
allocation

We model a scenario where a group of clients are requested
to jointly solve a problem. Each client will buy a computing
virtual machine (VM) from a resource manager and use it
to solve their task. Initially, clients know the communication
link of the manager, but they need to self-organise and co-
ordinate the use of the link anonymously. The manager will
help establishing connections between clients and available
machines, and later clients proceed interacting independently
with machines on private links learnt when the connection
is established.

There are two types of machines: high-performance ma-
chines and standard ones. The resource manager commits
to providing high-performance VMs to clients, but when all
of these machines are reserved, the clients are assigned to
standard ones. The protocol proceeds until each client buys
a machine, and then all clients have to collaborate to solve
the problem and complete the task.

To model this scenario in R-CHECK we need three agent
types: client, manager, and machine. Each type can be in-
stantiated multiple times, to model scenarios of different
size. We continue by defining each agent type. We as-
sume an enum type that identifies the role of each agent:
rolevals = {client,manager,machine}.

A client uses the local variables cLink, mLink, and tLink
of type channels and role : rolevals to control its behaviour,
where cLink is a link to interact with the manager, mLink is
a placeholder for a mobile link that can be learnt at run-time,
tLink is a link to synchronise with other clients to complete
the task, and role is the role of the client. A client’s initial
condition 6 is

cLink = ¢ A mLink = empty A tLink =t A role = client

specifying that the resource manager is reachable on c, the
mobile link is empty, the task link is t, and the role is client.

Note that the interfaces of agents are parameterised to
their local states and state changes may create dynamic and

Springer

772

Y.A. Alrahman et al.

opportunistic interactions. For instance, when cLink is set to
empty, the client does not connect to channel c; also, when
a channel is assigned to mLink, the client starts receiving
messages on that channel.

In our example, clients are not aware of the existence of
each other while they share the resource manager channel c.
Thus, they may coordinate to use the channel anonymously
by means of broadcast. A client reserves the channel ¢ by
means of a broadcast message with a predicate targeting other
clients. All other clients self-organise and disconnect from ¢
and wait for a release message.

A message in R-CHECK carries an assignment to a set of
data variables p. In our scenario, b = {LNK,MsG}, where
LNK is used to exchange a link with other agents and MsG
denotes the label of the message and takes values from

{reserve,request, release, buy, connect, full, complete}

Agents in this scenario use one predicate variable pv rang-
ing over roles to specify potential receivers. Remember that
every agent i has a relabelling function f; : pv — V; that is
applied to the send guard once a message is delivered to check
whether it is eligible to receive. For a client, f.(pv) = role.
The send guard of a client appears in the messages that the
client sends, as we will explain later. In general, broadcasts
are destined to agents assigning to the predicate variable
pv a value matching the role of the sender, i.e, client; mes-
sages on cLink are destined to agents assigning mgr to pv;
and other messages are destined to everyone listening on the
right channel.

The receive guard g’. is

(ch =x%) Vv (ch =cLink) Vv (ch = tLink)

That is, reception is always enabled on broadcast and on a
channel that matches the value of cLink or tLink. Note that
these guards are parameterised to local variables and thus
may change at run-time, creating a dynamic communication
structure.

The behaviour of the client is reported in Fig. 3. In this
example, we label each command with a name identifying
the message and its type (i.e., s for send and r for receive).
For instance, the send transition at line 2 is labelled with
sReserve, while the receive transition at line 4 is labelled
with rReserve. We use these later to reason about agent
interactions syntactically.

Initially in lines 2-6, every client may either broadcast
a reserve message to all other clients (i.e., (pv = role)) or
receive a reserve message from one of them. This is to allow
clients to self-organise and coordinate to use the common
link. That is, a client may initially reserve an interaction ses-
sion with the resource manager by broadcasting a reserve
message to all other clients, asking them to disconnect the

Springer

1 repeat: (

2 (sReserve: <cLink==c > x! (pv==role)(MSG := reserve)]]
3 +

4 rReserve: <cLink==c && MSG == reserve> *?

5 [cLink := empty]

6

7

8

9 sRequest: <cLink!=empty> cLink! (pv==mgr)
10 (MSG := request)[]
11 ;
12 rConnect: <mLink==empty && MSG == connect>

cLink? [mLink := LNK]

13 ;
14 sRelease: <TRUE> x! (pv==role)(MSG := release)

15 [cLink := empty]

16 H

17 sBuy: <mLink!=empty> mLink! (TRUE)(MSG := buy)
18 [mLink := empty]

19 H
20 (
21 sSolve: <TRUE> tLink!(TRUE)(MSG := complete)]]
22 +
23 rSolve: <MSG == complete> tLink? []
24)
25 +
26 rRelease: <cLink==empty && MSG == release> *?
27 [cLink :=]
28)
29)

Fig. 3 Client behaviour

common link ¢ (stored in their local variable cLink), or re-
ceive a reserve message, i.e., it gets asked by another client
to disconnect from channel c. In either case, the client con-
tinues to line 8. Depending on what happened in the previous
step, the client may proceed to establish a session with the re-
source manager (i.e., (pv = mgr)) and a machine (lines 9-25)
or gets stuck waiting for a release message from the client,
currently holding the session (lines 26-27). In the latter case,
the client gets back in the loop to line 1 after receiving a
release message and attempts again to establish the session.

In the former case, the client uses the blocking multi-
cast channel ¢ to send a request to the resource manager
(line 9) and waits to receive a private connection link with
a VM agent on cLink (line 12). When the client receives
the connect message on cLink, the client assigns its mLink
variable the value of LNk in the message. That is, the client is
now ready to communicate on mLink. The agent releases the
common link ¢ on line 14 by broadcasting a release message
to all other clients (with (pv = role)) and proceeds to line 17
and starts communicating privately with the assigned VM
agent. The client buys a service from the VM agent on a
dedicated link stored in mLink by sending a buy to the VM
agent to complete the transaction. The client proceeds to
line 20 and waits for other clients to collaborate and finish
the task. Thus, the client either initiates the last step and
sends a complete message when the rest of the clients are
ready (line 21) or receives a complete message from another
client that is ready (line 23).

We now specify the manager and the VM and show how
reconfigurable multicast can be used to cleanly model a
point-to-point interaction.

Language support for verifying reconfigurable interacting systems 773
1 repeat: (1 repeat: (
2 rRequest: <MSG == request> cLink? []; 2 rForward: <cLink==empty && MSG == request> glink?
3 sForward: <TRUE> hLink! (TRUE)(MSG := request)|] [cLink:= ¢];
4 ; 3 (
5 (4 sConnect: <clink==c && lasgn> cLink! (TRUE)(MSG
6 rConnect: <MSG == connect> cLink? [] := connect, LNK := pLink)[cLink:= empty, asgn:= TRUE]
7 + 5 +
8 6 sFull: <cLink==c && asgn> glLink! (TRUE)(MSG :=
9 rep (rFull: <MSG == full> hLink? []; full)[cLink:= empty]
10 sRequest: <TRUE> sLink! (TRUE) 7 +
11 (MSG := request)]] 8 rConnect: <clLink==c && MSG == connect> cLink?
12) [cLink:= empty]
13) 9 +
14) 10 rFull: <cLink==c && asgn && MSG == full> gLink?
[cLink:= empty]
11
Fig. 4 Manager behaviour 12 T
13 rBuy: <MSG == buy> pLink? []
14)

The resource manager’s local variables are
hLink, sLink, cLink, role

where hLink and sLink store channel names to communicate
with high- and standard-performance VMs, respectively, and
the rest are as defined before.

The initial condition 6, is

hLink = g1 A sLink = g2 A cLink = ¢ A role = mgr

Note that the link g is used to communicate with the group
of high-performance machines, while g is used for standard
ones.

The send guard for a manager is always satisfied (i.e., g;,
is true), while the receive guard specifies that a manager only
receives on broadcast or on channels that match with cLink
or hLink, i.e., g, is

(ch =x%) Vv (ch =cLink) Vv (ch = hLink)

The behaviour of the agent manager is reported in Fig. 4.
In summary, the manager initially forwards requests received
on channel ¢ (line 2) to the high-performance VMs as in
line 3. The negotiation protocol with machines is reported
in lines 5-13. The manager can receive a connect message
and directly enable the client to connect with the VM as
in line 6 or receive a full message, informing that all high-
performance machines are fully occupied (line 9). In the latter
case, the requests are forwarded to the standard-performance
machines on sLink as in lines 10—11. The process repeats
until a connect message is received (line 6) and the man-
ager gets back to line 1 to handle other requests. Clearly, the
specifications of the manager assume that there are plenty
of standard VMs but not a lot of high-performance ones.
Thus, it only expects a full message to be received on chan-
nel hLink. Note also that the manager gets ready to handle
the next request once a connect message is received on chan-
nel ¢ and leaves the client and the selected VM to interact
independently.

The VM’s local variables are

gLink, pLink, cLink, asgn

Fig. 5 Machine behaviour

where asgn indicates if the VM is assigned, gLink is a group
link, pLink is a private link, and gLink is as before; the initial
condition 6yy is —asgn A cLink = empty (note gLink and
pLink will be machine-specific), where initially VMs are not
listening on the common link cLink. Depending on the group
that the machine belong to, gLink will be assigned to either
high-performance machine group g or the standard one g».
Moreover, each machine has a unique private link pLink. A
VM’s send guard is always satisfied (i.e., g, is true), while
its receive guard (gy,,,) specifies that it always receives on the
broadcast channel and also any channel held in the variables
pLink, gLink, and cLink, i.e., g/, is

ch=% Vv ch=gLink v ch=pLink v ch =cLink

The behaviour of the VM agent is reported in Fig. 5.
Intuitively, a VM either receives the forwarded request on the
group channel gLink (line 2) and thus activates the common
link and also a non-deterministic choice between connect
and full messages (lines 4—11) or receives a buy message
from a client on the private link pLink (line 13). In the latter
case, the VM agent agrees to sell the service and stays idle.
In the former case, a VM sends connect, with its private link
pLink carried on the data variable LNK, on cLink if it is not
assigned (line 4), and it sends full on gLink otherwise (line 6).
Note that a full message can only go through if all VMs
in group glink are assigned. Note that reception on gLink
is always enabled by the receive guard g/,,. Moreover, the
receive transition at line 6 specifies that a machine enables a
send on a full message only when it is assigned. For example,
if gLink = g1, then only when all machines in group g; are
assigned, a full message can be enabled.

Furthermore, a connect message will also be received by
other VMs in the group cLink (line 8). As a result, all other
available VMs (i.e., —asgn) in the same group do not reply to
the request. Thus, one VM is non-deterministically selected
to provide a service and a point-to-point-like interaction is
achieved. Note that this easy encoding is possible because

Springer

774

Y.A. Alrahman et al.

sReserve!

sSolve!

tLink?

(a) Client

Fig. 6 Symbolic structure automata

agents change communication interfaces dynamically by en-
abling and disabling channels.
Now, we can easily create an R-CHECK system as follows.

system = Client(client1, TRUE) || Client(client2, TRUE)
|| Client(client3, TRUE) || Manager(manager, TRUE)
|| Machine(machine1, gLink = g1 A pLink = vmm1) (1)
|| Machine(machine2, gLink = g1 A pLink = vmm2)
|| Machine(machine3, gLink = g2 A pLink = vmm3)

This system is the parallel composition (according to Def-
inition 2) of three copies of a client {clienty,...,clients}, a
copy of a manager {manager}, and finally three copies of
a machine {machineq, ..., machines}, each belonging to a
specific group and a private link. For instance, machiney be-
longs to group g1 (the high-performance machines) and has
a private link named vmm1. The symbolic automata corre-
sponding to the different agents are reported in Fig. 6. There,
the interaction structure and the control flow of the differ-
ent agents are exposed to facilitate a fine-grained reasoning
about interactions.

5 Model checking of R-CHECK systems

We present the required background on LTOL, an extension
of LTL with the ability to refer to and therefore reason about
agent interactions. We also show how to use LTOL to reason
about R-CHECK models. In the following sections, we show
how to efficiently integrate LToL model checking into the
R-CHECK toolkit.

5.1 The LToL specification logic

LTOL is an extension of the Linear Time Temporal (LTL)
logic with the ability to refer to and therefore reason about
agent interactions. LToL majorly differs from LTL with re-
spect to the next operator (i.e., X). Indeed, LToL replaces
the next operator of LTL with observation descriptors that
characterise the contents of the message and the sender pred-
icate. Namely, we distinguish two descriptors, possible (O)
and necessary [O], to refer to messages and the intended

Springer

sConnect!

(¢) Machine

set of receivers. The syntax of formulas ¢ and observation
descriptors O is as follows:

O:=pv|-pv|ch|-ch|k|-k|d|-d|e 0|« 0|
OVO|OAO
pu=vlwleVeleApleUpleRe|{(0)p|[Olp

where pu is a property identifier, c/ is a channel name (iden-
tifying the channel the current message is sent on), k is an
agent identifier (indicating the sending agent at the current
time step), and d is a data variable (whose value is deter-
mined by the payload of the current message).

We use the classic abbreviations — and < and the usual
definitions for true and false. We also introduce the tem-
poral abbreviations F ¢ = true U ¢ (eventually), Gy = -F-¢
(globally), and e Wy = R(Y V ¢) (weak until). Further-
more, the semantics assumes that all variables mentioned in
the specification are boolean. Note that every finite domain
can be encoded by multiple boolean variables. R-CHECK,
however, supports constraints over non-boolean variables,
including variables with infinite domain (e.g., integers) as
part of the LTOL syntax.

The syntax of LToL is presented in positive normal form
to avoid unnecessary blowup during model checking. That
is, we push the negation down to atomic propositions.

Observation descriptors are built from referring to the dif-
ferent parts of the message and their boolean combinations.
Thus, they refer to the channel in cH, the data variables
in p, the sender &, and the sender predicate over predicate
variables in pv. These predicates are interpreted as sets of
possible assignments to property identifiers, and therefore we
include existential 0 and universal 'O quantifiers over
these assignments.

The semantics of a descriptor O is defined for a ReCiPe
message m = (ch, d, k, m). Recall & identifies the set of re-
ceivers the sender wishes the message to reach by identify-
ing the assignments to property identifiers pv that a receiver
is allowed to have. Given an assignment ¢ and a variable
pv € Pv we write ¢ g puv if ¢ assigns pv to true and c ¥ pv

Language support for verifying reconfigurable interacting systems

775

otherwise. The semantics is defined as follows:

mech’ iff ch=ch’
med iffd(d’)
mek’ iffk=k

me-ch’iff ch #ch’
me—~d’ iff ~d(d’)
me-k’ iff k+k’

mepv iff for every assignment ¢ £ 7 we have ¢ k pv
me —pv iff there is an assignment ¢ i 7 such that ¢ ¢ pv
m e 30 iff there is an assignment ¢ £ 7 such that
(ch,d,k,{c}) O

m 'O ifF for every assignment ¢ i 7 we have
(ch,d,k,{c}) O

me0O; VO, iff eithermeOjormeO;

meO1ANOy ff meOyandme Oy

We only comment on the semantics of the descriptors
70 and "0 as the rest are standard propositional formu-
las. The descriptor 70 requires that at least one assignment
¢ to the property identifiers in the sender predicate 7 satis-
fies O. Dually " O requires that all assignments in 7 satisfy
O. Using the former, we express properties where we re-
quire that the sender predicate has a possibility to satisfy O,
while using the latter, we express properties where the sender
predicate can only satisfy O. For instance, both observations
(ch,d,k,pvy V —~puvo) and (ch,d, k, pv) satisfy e=pu;, while
only the latter satisfies ovpvl. Furthermore, the observation
descriptor " false A ch = % says that a message is sent on
the broadcast channel with a false predicate. That is, the mes-
sage cannot be received by other agents. In our example in
Sect. 4, the descriptor e7(pv = client) A ¢"(pv = client) says
that the message is intended exactly for agents with a client
role.

We interpret LToL formulas over system computations.

Definition 5 (System computation)

A system computation p is a function from natural numbers
N to 2V x M where V is the set of state variable propo-
sitions and M = cu x 2P x K x 227" is the set of possible
observations. That is, p includes values for the variables in
2" and a message in M at each time instant.

We denote by s; the system state (i.e., an assignment
to system variables) at the i-th time point of the system
computation. Moreover, we denote the suffix of p starting
with the i-th state by p>; and we use m; to denote the message
(ch,d,k,) in p at time point i.

The semantics of an LToL formula ¢ is defined for a
computation p at a time point i as follows:

psiev iff s;ev and ps; e —w iff s H v

pziep2V @ iff prie@r or piE @

pziep2 ANy iff pzie @1 and psi e @23

psi ko1 U iff there exists j > i s.t. p»; k¢ and
foreveryi < k < j, p>k E ¢1;

Psi ko1 Ry iff for every j > i either p»; k¢ or
there exists i < k < j,p>k E @15

p2iE(O)p f m; £ O and psis1 k¢,

p>i E[Ole iff m; £ O implies p>iv1 E .

Intuitively, the temporal formula (O)¢ is satisfied on the
computation p at point i if the message m; satisfies O and
@ is satisfied on the suffix computation ps;.;. On the other
hand, the formula [O]y is satisfied on the computation p
at point i if m; satisfying O implies that ¢ is satisfied on
the suffix computation p»;.. Other formulas are interpreted
exactly as in LTL.

With observation descriptors we can refer to the intention
of agents in the interaction. Consider the following formula:

\/ F (sender = k A e7(pv = mgr)
keClient

A MSG = request)true

The formula states that eventually a client k will communi-
cate with the resource manager mgr using a request message.
Note that we not only specify the message contents in LTOL,
but we can also predicate on the targeted receivers. Express-
ing this formula in LTL, which was the only specification
language supported in the conference version [6] of this ar-
ticle, is only possible by including (manually) additional in-
strumentation in the system. Thus, we have integrated LTOL
model checking into R-CHECK. Here, we would like to use
existing implementations of LTL model checking rather than
the bespoke LToL model-checking algorithm in [1]. The
algorithm here replaces the large alphabet required in [1]
by extending the model with observation variables (to be
explained below) and creating a modified LTL formula relat-
ing to them. Thus, we reduce LToL model checking to LTL
model checking over a model that is extended with additional
variables. The details are given in Sect. 6.2.

Practically, the implementation of the latter algorithm
is done through an encoding into the NuXmv model
checker [15]. First, we transform an R-CHECK model into a
symbolic ReCiPe model, we encode it as an NUXMV mod-
ule, and later we rely on the symbolic model-checking algo-
rithms of NUXMvV to reason about R-CHECK.

Springer

776

Y.A. Alrahman et al.

5.2 LToL showcasing

We will use Eq. (1) (Sect. 4) and the corresponding structure
automata in Fig. 6 as the system under consideration.

We will show how to verify LToL properties of agents at
both individual and interaction protocol levels by predicat-
ing on message exchange rather than on atomic propositions.
Unlike the conference version [6], we will use formulas that
natively characterise interactions and the different coordina-
tion mechanisms. For instance, we can reason about a client
and its connection to the system as follows.

G([sender = client1 A MSG = reserve]
F (sender = client1 A MSG = request)true) (1)

G([sender = clientl A MSG = reserve]
F (sender = client1 A MSG = release)true) (2)

G([sender = client! A MSG = request]
F (MSG = connect)clienti—mLink # empty) (3)

The liveness condition (1) specifies that after a client re-
serves the common link they send a request to the manager
c¢. The liveness condition (2) specifies that the client does
not hold a live lock on the common link ¢, namely, the client
releases the common link eventually. The liveness condi-
tion (3) specifies that the system is responsive, i.e., after the
client’s request, other agents collaborate to eventually supply
a connection.

We can also reason about synchronisation and reconfigu-
ration in relation to local state as follows.

G([sender = manager A MSG = request]
V k—cLink=c) “4)

keMachine

A G (lk—asgn— F (sender =k A MSG = connect)true) (5)

keMachine

In (4), the manager has to forward the request before a
machine can get connected to the common link. That is,
a machine reconfigures its interaction interface and starts
listening to link ¢. Moreover, in (5) every machine that is not
assigned must eventually supply a connection.

We can also specify channel mobility and joint missions
from a declarative and centralised point of view, as follows.

\/ F|{sender =k A MSG = complete)true A
keClient

A [sender #j A MSG = complete]j—rSolve | A
j#keClient
A F k—mLink # empty
keClient

That is, eventually one client will initiate the mission’s ter-
mination by synchronising with the others to solve the joint
problem. Notice that the quantified subformula over clients
(in the second line) that are not senders ensures that they must

Springer

participate and supply a receive transition (i.e., j—rSolve; see
Fig. 3, line 23). Moreover, each client eventually receives a
mobile link (i.e., k-mLink # empty).

This is interesting because we can zoom in and specify
senders and receivers natively. Indeed, this level of reasoning
is impossible to achieve while considering only the states of
the system. We must be able to refer to contents of messages
as allowed by LtoL. The full tool support and all examples
in this paper are available in the git repository.

In the following, we will show how to integrate LToL into
R-CHECK.

6 LTL and LTOL model checking and
simulation

We will show how to model check both LTL and LToL [1, 5]
through NuXmv. With NuXmMv, we can support BDD-
based symbolic model checking (with finite state-space)
or IC3 and BMC (with infinite state-space). Moreover, we
present a new native frontend and interpreter for R-CHECK
and showcase it.

6.1 Integrating LTL model checking into
R-CHECK

We give individual R-CHECK agents a symbolic semantics
based on the ReCiPe framework as shown in Sect. 3.1 and
Definition 4. Notably, we preserve the labels of commands
(i.e., [: o) and use them as subpredicate definitions. For
instance, given a labelled edge (s1,/ : 0,s2) in the structure
automaton G in Definition 3, we translate it into the following
predicate in ReCiPe as explained in Definition 4:

[:=predOf(c) A(st = s1) A(st’ = s2) Axeer(Vy\varsOf(o))

The only difference here is that the label / is now a pred-
icate definition and its truth value defines if the transition
(s1,1 : 0, 57) is feasible. Since every command is translated
to either message-send or message-receive, we can use these
labels now to syntactically refer to code reachability. That is,
we can directly specify if a line of code is reachable.

Moreover, we rename all local variables of agents to
consider the identity of the agent as follows: for example,
given the cLink variable of a client, we generate the vari-
able client—cLink. This is important when different agents
use the same identifier for local variables. We also treat all
data variables p and channel names cH as constants and
we construct a ReCiPe system S = (V, p, 0) as defined in
Definition 2 while considering subpredicate definitions and
agent variables after renaming. Technically, a ReCiPe system
S has a one-to-one correspondence to a NUXMV module M.
That is, both S and M agree on local variables V' and the
initial condition @, but are slightly different with respect to

Language support for verifying reconfigurable interacting systems

77

transition relations. For efficiency, the composition of agents
to a system discards the information about messages. Thus,
we do not add variables that capture these details and rely
on correct conjunction of transition disjuncts to capture the
existence of an appropriate message. Finally, the transition
relation p of § as defined in Definition 2 is translated to an
equivalent transition relation p of M as follows:

p= pV (=p AKEEP(V))

That is, NuX MV translates deadlock states in S into stutter-
ing (sink) states in M where system variables do not change.

Note that the abovementioned translation to NUXMV un-
locks the native model simulator and LTL model checker
of NuXMvV. As messages are not encoded directly in the
model, only basic reasoning about message exchange using
labelled commands is possible. As shown in the early ver-
sion [6] of this article, one can use such labels to reason
about interactions as follows:

G (client1—sRequest— F client1-rConnect)

This formula can be used in our example to specify that
after the client’s request eventually a machine supplies a con-
nection. Although this formula is correct in our example, it
is not strong enough to indicate that a request message is ac-
tually happening. It can only indicate that a request message
is enabled. This is because the label sRequest only indicates
if a line of code is reachable and feasible, but does not tell
if it is executed. One needs a more expressive language to
express the actual exchange of messages. For instance, this
is straightforward in the following LToL formula:

¢ 2 G([sender = client1 A MSG = request]
F (MSG = connect)clienti—mLink # empty) (1)

Clearly, Eq. (1) natively expresses that it is always the
case that if a client sends a request message, it will eventually
receive a connection where its mobile link mLink is assigned.
However, to allow such high-level verification of message
exchange, we need to integrate LToL model checking into
R-CHECK.

6.2 Integrating LToL model checking into
R-CHECK

We provide a new algorithm for model checking LToL. The
original algorithm [1] constructed directly a corresponding
automaton from an LToL specification. Furthermore, during
model checking additional satisfiability checks of individual
steps were required. Here, to reuse existing state-of-the-art
tools, we instead augment our system model to be able to
project LToL model checking onto LTL model checking.
Note that this is not equivalent to an encoding of LTOL

into LTL. Such encoding does not actually exist, and this is
why our algorithm requires augmenting the model with new
variables.

Our algorithm exploits the original insights of the algo-
rithm for LToL model checking [1], namely, to concentrate
on checking messages against top-level observations, appear-
ing in the LToL formula.

A core difficulty in the present algorithm is that the ob-
servation descriptors O that appear in LToL formulas are
not (completely) part of R-CHECK models. Therefore, we
need a way to embed them efficiently in R-CHECK models
and use this embedding to reason about interactions through
NuXmv. To do so, we introduce a variable obs; for each de-
scriptor that appears in the LToL formula, embed obs; into
the NuXmv encoding of the R-CHECK model, and later
use an extended LTL formula to reason about it. We stress
that the embedding of obs; into the NUXMV encoding en-
sures that the value of obs; reflects the truth value of the
observation after each transition.

Formally, let obs(y) be the set of observations appearing
“top-level” in the operators (-) and [-] in ¢. More precisely,
obs(yp) is closed under the subformula relation of ¢, but is
not closed under the subformula relation of O. Consider ¢
in Eq. (1):

obs(¢) = {sender = client1 A MSG = request,
MSG = connect}

We denote by |obs(y)| the size of the set obs(y). Thus, for a
formula ¢ over an R-CHECK system Sys, we create a modi-
fied system Sys’ by introducing |obs(y)| new variables (one
for each descriptor) to the system. These variables can be
used to record the changes of truth values to the different
observation descriptors. We set the initial condition 6’ of the
modified system Sys’ to the conjunction of the initial condi-
tion 6 of the original system Sys and a false assignment to
all these new descriptor variables, to mean that no messages
have been exchanged initially.

Recall that the predicate semantics of an R-CHECK sys-
tem is of the form \/;(/\; cmd;), where each conjunct in
the disjunction represents a message-send command in 7;°
conjuncted with reactions of receivers in 7" with respect to
g]r. , while evaluating the send predicate g7 on each receiver
state. This means that it is sufficient to set the new descrip-
tor variables after the execution of each conjunct to specify
which message is executed. In what follows, we abuse the
notations and use 7;° to denote the set of send transitions of
agent i and 77 to denote a single send transition of agent i.

In other words, for each conjunct (/\; cmdy) in the sys-
tem semantics, we conjunct it with the truth value of each
descriptor in the next state. Namely, the latter conjunct is
transformed into

(/\ cmd;) A /\(obs; = embed(Ox, 7)) @
j k

Springer

778

Y.A. Alrahman et al.

That is, every time a message is emitted, we assign each
obs; with its truth value in the next state (hence we use the
prime copy obs;) through an embedding function. The latter
takes the descriptor Oy for sender k and the send transition
T]S as parameters. The definition of the embed function is
shown below.

The rationale is that each transition at the system level is a
send transition, which is originated by a single sender. Thus,
every time a message is emitted, we set the truth values of all
observation descriptors. We embed the observations for each
send transition 7} € 7, of agent k. The embedding function
is defined as follows.

Definition 6 (Observation embedding)

We define an embedding function embed(Ok,Tl‘?) that takes
an observation Oy and a send transition Tj‘? of agent j and
rewrites the observation to a formula with respect to T; and
the send predicate g;. of agent j. We use c to denote an
assignment to property identifiers in pv and f[c] to denote
a grounding of formula f on c:

embed(k,T;) 2k=j
embed(ch,rj.') 2ch= ch(‘r;)
embed(d, T;) 2= dT; (d)
embed(pv,‘l';) 2 pv
embed(ﬁO,TJ‘.“) = —-embed(O,rJz")

embed(e70,77) =V cpy(gslc] A embed(0,77)[c])
embed(oVO,T;) 2 Acepv(gslc] — embed(O,Tj)[c])
embed(0; A 02,1-;') 2 embed(Ol,-r;) A embed(Oz,‘r;)
embed(0; v 02,1;) 2 embed(Ol,-r;) \Y embed(Og,-r;)

Namely, we rewrite the observation in relation to the cur-
rent executed send command and the sender predicate. We
require that LTtorL formulas are written in a normal form
where pvs do not appear outside quantifiers and there is no
nesting of quantifiers. This is important to handle quantified
formulas correctly.

Now, everything is in place to translate LToL descriptor
formulas into LTL as follows:

[<0)¢] = X(obso A [¢])
[[Ol¢] = X(obso — [¢])

Intuitively, the translation faithfully follows the trace se-
mantics of descriptor formulas as explained in Sect. 5.1. Note
that the resulting LTL formula is linear in size with respect to
the LToL one. Here, we consider the size of an LToL formula
with respect to top-level observations as in [1], and thus we
consider an observation alphabet in 2/°°5¢%)| Since we even-
tually employ LTL model checking on the modified model
and formula, it is clear that the model-checking problem is
still in psPACE. However, the size of the model is dependent
on the extra variables added to account for top-level obser-
vations |obs(¢)|. More precisely, we have the following.

3)

Springer

Theorem 1 (Model checking)

The model-checking problem of an LtL formula ¢’ translated
from an rLToL formula ¢ is pspacE-complete with respect
to the size of the original LToL formula |¢| and the size
of the modified system |Sys| X |obs(¢)|, where |Sys| is the
(symbolic) size of the original system.

Note that the stated bound in terms of |Sys| X |obs(y)|
instead of LoGgspPACE is because R-CHECK systems are
symbolic. Indeed, LoGsPACE complexity is achieved for
enumerative representation, which is anyway exponentially
larger.

Clearly, the size of the resulting LTL formula (which is lin-
ear compared to LToL) does not play arole in the asymptotic
complexity. The only major difference is due to the enriched
system model. Since the number of top-level observations in
the formula |obs(y)| impacts the size of the model, one could
mitigate the blowup by model checking individual formulas,
and thus building smaller enriched system models for each
LTOL formula.

Theorem 2 (Correctness)
Given a ReCiPe system Sys and an LToL formula ¢, we have

Syse@ ifandonlyif Sys'e¢’

where Sys’ is an enriched system model according to Eq. (2)
and Definition 6 and ¢’ is an vLtL formula translated from ¢
according to Eq. (3).

Proof

We have two directions. We prove the direction (=), and
the direction (<) follows in a similar way. Moreover, we
restrict our attention to base and descriptor formulas. Note
that the translation of other formulas is the identity func-
tion.

(=) Assume Sys £ ¢ and prove Sys’ E ¢”:

For a ReCiPe system Sys, a computation is of the form
o (s0,mo)(s1,m1) ..., where sg is an initial state, s; € 27,
and m; € M (see Definition 5). An R-CHECK system com-
putation, on the other hand, is of the form o’ : sg,s1,.. .,
where information about messages (m;) is dropped after
composition to produce a NuXm v module. Our algorithm
aims at enriching the states of a computation when needed
to allow reasoning about message exchange.
We know that Sys e ¢ iff for every computation o in Sys
we have o k£ ¢. Now consider an arbitrary ReCiPe com-
putation o : (sg,mg)(s1,my)... of Sys, and consider the
following cases for ¢:
— Consider a state formula (v): A state formula does not
contain observation descriptors, and thus |obs(v)| = 0.

Language support for verifying reconfigurable interacting systems

779

In other words, both the system Sys and the formula
¢ are not changed by our algorithm, and thus this case
holds easily (state information is sufficient to prove).

— Consider a descriptor formula ((O)¢):
By the semantics of LToL, we have

0> £(O)p ff mi O and osis1E¢

By our algorithm in Sect. 6.2, |obs({O)¢)| =1 (i.e.,
there is only one top-level observation O), and thus
we introduce a new state variable obso that stores the
satisfiability of O with respect to a previously taken
transition (see Eq. (2)).

The modified R-CHECK system Sys’ has computations
of the form o : (s9,00)(s1,01) . .., where o; € 2°°50 for
i >0 and 09 = 0 (no messages have been exchanged
earlier). Note that o; in a computation (except for op)
evaluates to true iff the predicate embed(O, 7)) is satis-
fiable for the previously executed send command 7} of
some sender k (recall that the embed is assigned as the
next assignment to obso (i.e., obsy,)).

By inspection, it is not hard to see that the semantics
of m; k£ O is actually equivalent to the satisfiability of
the predicate returned by embed(O, 7?) (or the value of
obsb). In other words, m; £ O implies 0,41 is true.

Now, ¢’ £ X(obsp A [¢]). Thus, for a modified R-
CHECK computation o’ : (sg,00)(s1,01) ..., we have
al; e X(obso A g)iff o, robsp and o,k [¢].

0"21.+1 £ 0bsp iff obsg is satisfiable and this is implied
by m; £ O.

0l E [¢] follows by 05,11 E ¢ and the induction hy-

pothesis.
 Consider a descriptor formula ([O]¢): This case is similar
to the previous one. O

Simulation R-CHECK provides an interactive interpreter
(or simulator) that allows the user to simulate the system ei-
ther randomly or based on the user choice. The simulator can
also backtrack from a specific state of the system. The lat-
ter feature is used to simulate the counterexamples from the
model-checking algorithm. Unlike the NuXMv simulator
used in the conference version [6] of this article, the current
interpreter is developed based on the interaction semantics
of ReCiPe and thus allows to simulate the interactions and
provides better understanding of the scenario under consid-
eration.

Note that in R-CHECK, we limit LToL specifications
to only refer to property identifiers of finite domains (e.g.,

boolean variables, channels, enums, and bounded integers).
This is important because the definition of embed requires,
for certain cases, existential (e.g., for e7) or universal (for
") quantification over the possible assignments to pv, and
thus we may need to enumerate all such assignments.

6.3 The R-CHECK frontend and interpreter

R-CHECK is implemented in a prototype tool, which can be
invoked from either a command line or a user-friendly web
interface (with graphical illustrations).

The web interface (e.g., Fig. 7) provides a rich text area
and support for model checking or simulation.

The text area permits writing high-level syntax corre-
sponding to the language of R-CHECK, providing syntax
colouring and highlighting to improve readability. The user
can build the model by compiling either to an SMT model
(with infinite state-space) or to a plain BDD (with finite state-
space) by hitting the Build model button. When the model is
ready, the user will also be provided with a representation of
the agents in the system as symbolic automata, shown in the
lower part of the interface (see Fig. 7).

For model checking purposes, the user can use different
options, depending on the model type. Currently, we sup-
port BDD-based symbolic model checking (which is Model
Checking (MC), which requires a BDD model), IC3, and
BMC (which require an SMT model). When either IC3 or
BMC is selected, a text field appears where a verification
bound can be specified; this is optional for IC3 and manda-
tory for BMC.

The user writes all specifications at the bottom of the
text area, and each specification should be prefixed by the
keyword SPEC. Once the model checking procedure is over,
the user gets a report with the verification outcome for each
specification.

The interpreter tab allows the user to interactively explore
the system’s executions. We set up the interpreter by hitting
the Start button. When this happens, the initial state is com-
puted,* a dropdown menu gets populated with all available
transitions, and the Start button itself is replaced by a Next
button. Then, the user makes the system evolve by choos-
ing a transition from the dropdown menu and hitting Next.
The Back button allows instead to undo the latest transi-
tion and go back to the previous step. The interpreter can be
restarted completely by hitting Reset. Additionally, when-
ever a verification task (in the Model Checking tab) finds a
counterexample, the user will be given the option to load it
into the interpreter.

4 To better handle systems with non-determinism in the initial state,
we plan to add an input field where the user can specify initial con-
straints.

Springer

780

Y.A. Alrahman et al.

1 channels: c, empty, g1, g2,vmml,vmm2,vmm3,t
2 enum rolevals {clnt, vm, mgr}
3 enum msgvals {reserve, request, release, buy, connect, full,complete}
4 message-structure: MSG : msgvals, LNK : channel
5 communication-variables: cv : rolevals
6 guard g(r rolevals, c channel, m channel) := (channel == *) && (@cv ==
r) | (channel == c¢) & & (@cv == mgr) | (channel == m) ;
7
8 agent Client
9 local: role : rolevals, cLink : channel, mLink : channel, tLink
channel
10 init: clLink == c && mLink == empty && tLink == t && role==clnt
11 relabel
1l cv <- role
1) receive-guard: (channel == *) | (channel == cLink) | (channel == tLink)
14
15 repeat: (
16 (sReserve: <cLink==c> *! g(role,cLink,mLink)(MSG
reserve)[cLink := c]
17 +
SMT model (allows for infinite-state verification) v Build model

(~Re1cm?\
%Bu,\'
SSolveALink?

&

rConnect? fConnect?

@

“onnect?

Fig. 7 The R-CHECK Web-based interface, after building a model

Let us now consider the R-CHECK example of Sect. 4
and show how to use the Web frontend to model check the
following specifications against it:

\/ F(sender =k A MSG = complete)true A (1)
keClient
/A F k—mLink # empty
keClient
G({sender = manager A MSG = request)true —
/A [sender = manager]k—cLink=c) (2)

keMachine

We expect property (1) to hold and (2) to be violated.
Informally, (1) states that eventually one client will initiate
the mission’s termination. Moreover, each client eventually
receives a mobile link. On the other hand, (2) states that once
the manager has forwarded the request, all machines will get
connected to the common link.

Figure 8a depicts the outcome of the IC3 model checker.
As we can see, the tool allows us to load the counterexample
for the second property into the interpreter. When we do that
(see Fig. 8b), we can easily see that after the manager sends a
request message from state 2, only machine1 and machine2
get connected to link c. This is not the case for machine3,
thus violating property (2).

Springer

/®

SRelease!

%Bu)f
SSolvel ALink?

Model Checking

Interpreter

b

7 Concluding remarks

We introduced the R-CHECK model-checking toolkit for
verifying and simulating reconfigurable MASs. We formally
presented the syntax and semantics of R-CHECK in relation
to the ReCiPe framework [1, 5], and we used it to model and
reason about a non-trivial case study from the realm of recon-
figurable and self-organising MASs. Our semantics approach
consisted of two types of semantics: structural semantics in
terms of automata to recover information about interaction
features and execution semantics based on ReCiPe. The in-
teraction information recovered in the structural semantics
is recorded succinctly in the execution one and thus permits
reasoning about interaction protocols and message exchange.
R-CHECK is supported with a command line tool, a web ed-
itor with syntax highlighting, and visualisation.

We integrated rtoL [l, 5] model checking intoR-
CHECK, thus allowing native reasoning about selective in-
teraction strategies. The integration consists of providing a
dynamic embedding of LToL descriptor formulas into the
model under consideration. We built R-CHECK based on a
compilation to NUXMV to enable both LToL and LTL verifi-
cation through symbolic, bounded, and IC3 model checking.

Language support for verifying reconfigurable interacting systems

781

70 rConnect: <cLink==c & MSG == connect> cLink? [cLink:= empty]

71

72

73 B

74 rFull: <clink==c && asgn & MSG == full> glink? [cLink:= empty, asgn:= 1

75)

76 .

77 rBuy: <MSG == buy> pLink? []

78)

79

80 system = (lient(clientl,) | Client(client2,) | Client(client3, 3 |
Manager(manager,) | Machine(machinel,glLink==g1l && pLink==vmml) | Machine(machine2,glLink==gl
8& pLink==vmm2) | Machine(machine3,glink==g2 8& pLink==vmm3)

81

82

83 SPEC \/ k : Client . F <sender=k & MSG=complete> & /\ j : Client . F (j-mLink I= empty);

84

85 SPEC G (<sender-manager & MSG=request> > /\ k : Machine .[sender-manager] k-cLink=c);

86

SMT model (allows for infinite-state verification) R Build model

“onnect?

Model Checking Interpreter

\/k : Client.((F(<(sender = k) & (MSG = complete)>(TRUE = TRUE)) & /\j : Client.(F(j-mLink !=

empty))))

Type | MC BMC ‘ Enter bound (optional for IC3)

G((!(<(sender = manager) & (MSG = request)>(TRUE = TRUE)) | Ak :
Machine.([sender = manager] (k-cLink = c))))

Forward!

(a) Model checker tab with verification outcome.

70 rConnect: <clink==c && MSG == connect> clink? [cLink:= empty]

71

72

73 +

74 rFull: <clink==c && asgn & MSG == full> gLink? [cLink:= empty, asgn:= 1

75 5)

76 +

77 rBuy: <MSG == buy> pLink? []

78)

79

80 system = Client(clientl,) | Client(client2,) | Client(client3, 2 |
Manager(manager,) | Machine(machinel,glink==g1 &% pLink==vmml) | Machine(machineZ2,glLink==g1
& pLink==vmm2) | Machine(machine3,glLink==g2 && pLink==vmm3)

81

82

83 SPEC \/ k : Client . F <sender=k & MSG=complete> & /\ j : Client . F (j-mLink != empty);

85 SPEC G (<sender-manager & MSG=requests> > /\ k : Machine .[sender-manager] k-cLink=c);

86

SMT model (allows for infinite-state verification) Al Build model

Model Checking

Back | Next

Sender:
Command: <cLink != empty>cL
Receivers: manager

Interpreter

‘£

client2

 cLink,mLink| [{cLink=c}]

2 client2: state: 2
manager: state: 1

Sender: manager
Command: <TRUE = TRUE>hLink!(TRUE = TRUE) ((MSG=request}) [{}]
Receivers: machine2, machinel

3 machine: state: 1, cLink: ¢
machine2:state: 1, cLink: ¢
manager: state: 2

>)
‘Conneet) @Il‘ull' @'

1 ‘Fconnect) @lmu"

Forward!

(b) Interpreter with a counter example to a violated specification.

Fig. 8 Using R-CHECK to analyze the system of Sect. 4

We showed that this specialised integration provides a pow-
erful tool that permits verifying high-level features such as
synchronisations, interaction protocols, joint missions, chan-
nel mobility, reconfiguration, and self-organisation.

As mentioned, our work is focused on MASs, which are a
special type of CASs. The difference here is that the number
of agents is usually small, and thus the issue of scalability is
not our main concern. Indeed, if we consider a large number
of agents, then qualitative reasoning with LToL would not be

sufficient and probabilistic techniques, like statistical model
checking [30], would be more appropriate.

Related works We report on closely related model-
checking toolkits.

MCMAS [31] is a successful model checker that is used
to reason about MASs and supports a range of temporal
and epistemic logic operators. It also supports ISPL, a high-
level input language with semantics based on interpreted

Springer

782

Y.A. Alrahman et al.

systems [23]. The key differences with respect to R-CHECK
are: (1) MCMAS models are enumerative and are exponen-
tially larger than R-CHECK ones; (2) actions in MCMAS
are merely synchronisation labels while command labels in
R-CHECK are predicates with truth values changing dynam-
ically at run-time, introducing opportunistic interaction; and
(3) lastly and most importantly, R-CHECK can model and
reason about dynamic communication structures with mes-
sage exchange and channel mobility while in MCMAS the
structure is fixed.

The MTSA toolkit [22] is used to reason about labelled
transition systems (LTSs) and their composition as in the sim-
ple multi-way synchronisation of Hoare’s CSP calculus [27].
MTSA uses Fluent Linear Temporal Logic (FLTL) [25] to
reason about actions, where a fluent is a predicate indicat-
ing the beginning and the end of an action. As the case of
MCMAS, the communication structure is fixed and there
is no way to reason about reconfiguration or even message
exchange.

A few other languages have been proposed that entirely
drop channel-based interaction, letting agents select their in-
teraction partners through attribute-based predicates. Here
we only report on those languages with an associated ver-
ification platform. In SCEL [19], each agent (or process)
has an associated fuple space and interaction happens by
attribute-based insertion, lookup, or deletion of tuples. This
makes the interaction mechanism somehow asynchronous,
in the sense that (i) the insertion of a tuple cannot be blocked
and (ii) there is no guarantee that a tuple insertion mod-
elling a service request will elicit a response within any time
bound. While SCEL is arguably a more dynamic language
than R-CHECK, featuring dynamic instantiation of names
and processes as well as higher order communication (i.e.,
exchanging processes by storing them in tuples), its verifica-
tion capabilities are based on statistical model checking [35].
This is due to the fact that SCEL’s models have typically
infinite state-space, both behaviourally (dynamic creation
of processes) and domain-wise (using infinite-domain state
variables). Thus, statistical reasoning fits more with SCEL.

AbC [3, 4] instead provides attribute-based multi-way syn-
chronisation as the core interaction primitive. AbC specifica-
tions may be verified through symbolic BMC [21]. This ap-
proach seems limited to verification of safety properties and
appears to be better suited for bug finding than for liveness
and fairness properties, since completeness of BMC depends
on choosing an appropriate verification bound. Compared to
SCEL and AbC, R-CHECK offers channel-based commu-
nication that may be further specialised through predicates
over properties. These, in turn, bear a loose resemblance to
attributes. Properties appear to be more flexible and to better
support encapsulation: the value of a property is the result
of an arbitrary expression over the state of agents, whereas

Springer

attributes either coincide with (AbC) or directly map to in-
ternal variables (SCEL). At the same time, properties are not
essential to the reconfigurable MAS aspects of R-CHECK.
For instance, agents may still block each other over multicast
channels even without send guards.

Other frameworks that deal with dynamic reconfiguration
include DREAM [20] and BIP [12]. In the former, compo-
nents (agents) live within motifs that also dictate rules for
components to interact with each other or migrate towards
another motif. In the latter, behaviour and interactions are
logically distinct layers. The behavioural layer only specifies
how a component communicates over a set of ports; the in-
teraction layer, in turn, specifies connectors that model links
and modes of synchronisation between ports. This modelling
style is known as exogenous, as opposed to the endogenous
style where coordination primitives are part of the compo-
nents’ behaviour. Proponents of exogenous modelling argue
that it enables abstract formal analysis of the coordination
model away from the behavioural layer. ReCiPe applies in-
stead an endogenous approach: the rationale is that we are
dealing with highly dynamic and reconfigurable systems.
The latter makes compositional verification (in terms of BIP
glue connectors) hard to achieve. Moreover, it is our objec-
tive to be able to model and verify both individual and joint
behaviour, and we find this approach more appropriate for
our domain. Another approach in [28] makes use of (global)
behavioural types to focus on interactions and completely
abstract away from local behaviour. However, we envision
reconfigurable MASs as systems populating a surrounding
environment. Thus, local behaviour that results from sensing
the environment is very important to model and reason about.
Indeed, in a previous work [2], we presented a concrete appli-
cation in the realm of reconfigurable power distribution grids
and showed how interaction protocols can be influenced by
local behaviours.

Moreover, R-CHECK is uniquely distinguished from ex-
isting formalisms, whether they are attribute-based such as
AbC or connector-based such as static BIP [13], due to run-
time reconfiguration of interaction interfaces. In attribute-
based communication, the interaction is based on value-
passing broadcast, and thus there is no way to create a ded-
icated communication structure at run-time. For connector-
based communication, the communication structure is static
and cannot be changed. R-CHECK could be viewed as a
generalisation of m-calculus [33] like reconfiguration in a
multi-party settings. It is worth mentioning that R-CHECK
is developed to be used as a specification language rather
than a programming language. Thus, implementation issues
are out of the scope of this article. For future work, we plan
to investigate a possible specialised implementation for the
Robot Operating System (ROS). This is in line with our
goals to target collective behaviour in small-scale settings.

Language support for verifying reconfigurable interacting systems

783

This would imply that a fully distributed semantics might not
be required.

Several model-checking toolkits support specification lan-
guages that are designed to reason about concurrent systems
and protocol design and thus allow to model processes that
may interact with each other, usually via channel synchroni-
sation. Examples include SPIN, mCRL [14], and CADP [24].
These toolkits are successful in reasoning about static coor-
dination protocols, mainly related to fixed-structure systems
like hardware and low-level communication protocols, but do
not expand their coverage to MAS features. They also can-
not handle infinite state systems, are usually tied to a limited
choice of verification algorithms, and have limited support
for interoperability; this last concern is partially mitigated
by third-party projects such as LTSmin [29]. By contrast,
the input language used by NuXmv [15] is designed at the
semantic level of transition systems, making it an excellent
candidate to serve as a backbone for special-purpose model-
checking tools. Furthermore, this toolkit implements a large
number of efficient algorithms for verification. These con-
siderations led us to integrate R-CHECK with NuXmv.

Future works We plan to equip R-CHECK with a richer
specification language that allows reasoning about the knowl-
edge of agents and the dissemination of knowledge in dis-
tributed settings. For this purpose, we will investigate the
possible integration of R-CHECK with MCMAS [31] to
make use of the specialised symbolic algorithms that are
introduced for knowledge reasoning. We also plan to inte-
grate the partial order semantics of ReCiPe models that were
introduced in [8].

Funding Open access funding provided by University of Gothen-
burg. This work was funded by the ERC consolidator grant D-
SynMA (No. 772459) and the Swedish research council grants SynTM
(No. 2020-03401) and VR project (No. 2020-04963).

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abd Alrahman, Y., Piterman, N.: Modelling and verification of re-
configurable multi-agent systems. Auton. Agents Multi Agent Syst.
35(2), 47 (2021). https://doi.org/10.1007/s10458-021-09521-x

10.

11.

12.

13.

14.

15.

Abd Alrahman, Y., Vieira, H.T.: A coordination protocol language
for power grid operation control. J. Log. Algebraic Methods Pro-
gram. 109 (2019). https://doi.org/10.1016/j.jlamp.2019.100487
Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for
collective-adaptive systems and its behavioural theory. Inf. Com-
put. 268 (2019). https://doi.org/10.1016/j.ic.2019.104457

Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming in-
teractions in collective adaptive systems by relying on attribute-
based communication. Sci. Comput. Program. 192, 102428 (2020).
https://doi.org/10.1016/j.scic0.2020.102428

Abd Alrahman, Y., Perelli, G., Piterman, N.: Reconfigurable inter-
action for MAS modelling. In: Seghrouchni, A.E.F., Sukthankar,
G., An, B, Yorke-Smith, N. (eds.) Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and Multiagent Systems,
AAMAS 20, Auckland, New Zealand, May 9-13, 2020, pp. 7-15.
International Foundation for Autonomous Agents and Multiagent
Systems (2020). https://doi.org/10.5555/3398761.3398768

Abd Alrahman, Y., Azzopardi, S., Piterman, N.: Model checking
reconfigurable interacting systems. In: Margaria, T., Steffen, B.
(eds.) Leveraging Applications of Formal Methods, Verification
and Validation. Adaptation and Learning - 11th International Sym-
posium, ISoLA 2022, Proceedings, Part III, Rhodes, Greece, Octo-
ber 22-30, 2022. Lecture Notes in Computer Science, vol. 13703,
pp- 373-389. Springer, Berlin (2022). https://doi.org/10.1007/978-
3-031-19759-8_23

Abd Alrahman, Y., Azzopardi, S., Piterman, N.: R-check: a model
checker for verifying reconfigurable mas. In: Proceedings of the
21st International Conference on Autonomous Agents and Multi-
agent Systems, AAMAS 22, pp. 1518-1520. International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland
(2022). https://doi.org/10.5555/3535850.3536020

Abd Alrahman, Y., Martel, M., Piterman, N.: A PO characteri-
sation of reconfiguration. In: Seidl, H., Liu, Z., Pasareanu, C.S.
(eds.) Theoretical Aspects of Computing - ICTAC 2022 - 19th
International Colloquium, Proceedings, Tbilisi, Georgia, Septem-
ber 27-29, 2022. Lecture Notes in Computer Science, vol. 13572,
pp. 42-59. Springer, Berlin (2022). https://doi.org/10.1007/978-3-
031-17715-6_5

Aceto, L., Ingoélfsdottir, A., Larsen, K.G., Srba, J.: Reac-
tive Systems: Modelling, Specification and Verification. Cam-
bridge University Press, Cambridge (2007). https://doi.org/10.
1017/CB0O9780511814105

Alur, R., Henzinger, T.: Reactive modules. Form. Methods Syst.
Des. 15(1), 7-48 (1999)

Alur, R., Henzinger, T., Kupferman, O.: Alternating-time tempo-
ral logic. J. ACM 49(5), 672-713 (2002). https://doi.org/10.1145/
585265.585270

Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time
components in BIP. In: 3th International Conference on Software
Engineering and Formal Methods (SEFM), pp. 3—12. IEEE, Pune
(2006). https://doi.org/10.1109/SEFM.2006.27

Bliudze, S., Sifakis, J.: The algebra of connectors - structuring in-
teraction in BIP. IEEE Trans. Comput. 57(10), 1315-1330 (2008).
https://doi.org/10.1109/TC.2008.26

Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de
Vink, E.P., Wesselink, W., Wijs, A., Willemse, T.A.C.: The mcrl2
toolset for analysing concurrent systems - improvements in ex-
pressivity and usability. In: Vojnar, T., Zhang, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 25th In-
ternational Conference, TACAS 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS
2019, Proceedings, Part II, Prague, Czech Republic, April 6-11,
2019. Lecture Notes in Computer Science, vol. 11428, pp. 21-39.
Springer (2019). https://doi.org/10.1007/978-3-030-17465-1_2
Cimatti, A., Griggio, A.: Software model checking via IC3. In:
Madhusudan, P., Seshia, S.A. (eds.) Computer Aided Verification

Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10458-021-09521-x
https://doi.org/10.1016/j.jlamp.2019.100487
https://doi.org/10.1016/j.ic.2019.104457
https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.5555/3398761.3398768
https://doi.org/10.1007/978-3-031-19759-8_23
https://doi.org/10.1007/978-3-031-19759-8_23
https://doi.org/10.5555/3535850.3536020
https://doi.org/10.1007/978-3-031-17715-6_5
https://doi.org/10.1007/978-3-031-17715-6_5
https://doi.org/10.1017/CBO9780511814105
https://doi.org/10.1017/CBO9780511814105
https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/585265.585270
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1007/978-3-030-17465-1_2

784

Y.A. Alrahman et al.

16.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

- 24th International Conference, CAV 2012, Proceedings, Berkeley,
CA, USA, July 7-13, 2012. Lecture Notes in Computer Science,
vol. 7358, pp. 277-293. Springer, Berkeley (2012). https://doi.org/
10.1007/978-3-642-31424-7_23

Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pis-
tore, M., Roveri, M., Sebastiani, R., Tacchella, A.: Nusmv 2: an
opensource tool for symbolic model checking. In: Brinksma, E.,
Larsen, K.G. (eds.) Computer Aided Verification, 14th Interna-
tional Conference, CAV 2002, Proceedings, Copenhagen, Den-
mark, July 27-31, 2002. Lecture Notes in Computer Science,
vol. 2404, pp. 359-364. Springer (2002). https://doi.org/10.1007/
3-540-45657-0_29

. Clarke, E.-M., Grumberg, O., Peled, D.A.: Model Checking. MIT

Press, Cambridge (2000)

. Cohen, PR., Levesque, H.J.: Intention is choice with commit-

ment. Artif. Intell. 42(2-3), 213-261 (1990). https://doi.org/10.
1016/0004-3702(90)90055-5

De Nicola, R., Latella, D., Lluch-Lafuente, A., Loreti, M.,
Margheri, A., Massink, M., Morichetta, A., Pugliese, R., Tiezzi,
F., Vandin, A.: The SCEL language: design, implementation, ver-
ification. In: Wirsing, M., Holzl, M.M., Koch, N., Mayer, P. (eds.)
Software Engineering for Collective Autonomic Systems - the AS-
CENS Approach. Lecture Notes in Computer Science, vol. 8998,
pp. 3-71. Springer, Berlin (2015). https://doi.org/10.1007/978-3-
319-16310-9_1

De Nicola, R., Maggi, A., Sifakis, J.: DReAM: dynamic reconfig-
urable architecture modeling. In: Margaria, T., Steffen, B. (eds.) 8th
International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA). LNCS, vol. 11246,
pp. 13-31. Springer, Limassol (2018). https://doi.org/10.1007/978-
3-030-03424-5_2

De Nicola, R., Duong, T., Inverso, O.: Verifying abc specifica-
tions via emulation. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation: En-
gineering Principles - 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Proceedings, Part
II, Rhodes, Greece, October 20-30, 2020. Lecture Notes in Com-
puter Science, vol. 12477, pp. 261-279. Springer (2020). https://
doi.org/10.1007/978-3-030-61470-6_16

D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA:
the modal transition system analyser. In: 23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE
2008), L'Aquila, Italy, 15-19 September 2008, pp. 475-476. IEEE
Comput. Soc., Los Alamitos (2008). https://doi.org/10.1109/ASE.
2008.78

Fagin, R., Halpern, J., Moses, Y., Vardi, M.Y.: Reasoning About
Knowledge. MIT Press, Cambridge (1995)

Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a
toolbox for the construction and analysis of distributed processes.
Int. J. Softw. Tools Technol. Transf. 15(2), 89—107 (2013). https://
doi.org/10.1007/s10009-012-0244-z

Giannakopoulou, D., Magee, J.: Fluent model checking for event-
based systems. In: Proceedings of the 9th European Software En-
gineering and 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 257-266. ACM, New
York (2003)

Gutierrez, J., Harrenstein, P., Wooldridge, M.: From model check-
ing to equilibrium checking: reactive modules for rational verifi-
cation. Artif. Intell. 248, 123-157 (2017). https://doi.org/10.1016/
j-artint.2017.04.003

Hoare, C.A.R.: Communicating sequential processes. In: Jones,
C.B., Misra, J. (eds.) Theories of Programming: The Life and
Works of Tony Hoare, pp. 157-186. ACM / Morgan & Claypool,
New York (2021). https://doi.org/10.1145/3477355.3477364
Inverso, O., Trubiani, C., Tuosto, E.: Abstractions for collective
adaptive systems. In: Margaria, T., Steffen, B. (eds.) Leveraging

Springer

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Applications of Formal Methods, Verification and Validation: En-
gineering Principles - 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Proceedings, Part
II, Rhodes, Greece, October 20-30, 2020. Lecture Notes in Com-
puter Science, vol. 12477, pp. 243-260. Springer (2020). https://
doi.org/10.1007/978-3-030-61470-6_15

Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk,
T.: Ltsmin: high-performance language-independent model check-
ing. In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 21st International Confer-
ence, TACAS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, Proceedings,
London, UK, April 11-18, 2015. Lecture Notes in Computer Sci-
ence, vol. 9035, pp. 692-707. Springer, London (2015). https://
doi.org/10.1007/978-3-662-46681-0_61

Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A.,
Grosu, R.: Statistical Model Checking, pp. 478-504. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_23
Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source
model checker for the verification of multi-agent systems. Int. J.
Softw. Tools Technol. Transf. 19(1), 9-30 (2017)

Loreti, M., Hillston, J.: Modelling and analysis of collective adap-
tive systems with CARMA and its tools. In: Bernardo, M., De
Nicola, R., Hillston, J. (eds.) Formal Methods for the Quantitative
Evaluation of Collective Adaptive Systems - 16th International
School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems, SFM 2016, Bertinoro, Italy, June
20-24, 2016. Advanced Lectures, Lecture Notes in Computer Sci-
ence, vol. 9700, pp. 83-119. Springer, Berlin (2016). https://doi.
org/10.1007/978-3-319-34096-8_4

Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes.
Inform. and Comput. 100(1), 1-40 (1992). https://doi.org/10.1016/
0890-5401(92)90008-4

Nenzi, L., Bortolussi, L., Loreti, M.: jsstl - a tool to monitor spatio-
temporal properties. In: Puliafito, A., Trivedi, K.S., Tuffin, B.,
Scarpa, M., Machida, F., Alonso, J. (eds.) 10th EAI International
Conference on Performance Evaluation Methodologies and Tools,
VALUETOOLS 2016, Taormina, Italy, 25th-28th Oct 2016. ACM,
(2016). https://doi.org/10.4108/eai.25-10-2016.2266978

Nicola, R.D., Latella, D., Lluch-Lafuente, A., Loreti, M., Margheri,
A., Massink, M., Morichetta, A., Pugliese, R., Tiezzi, F., Vandin,
A.: The SCEL language: design, implementation, verification. In:
Wirsing, M., Holzl, M.M., Koch, N., Mayer, P. (eds.) Software
Engineering for Collective Autonomic Systems - the ASCENS
Approach. Lecture Notes in Computer Science, vol. 8998, pp. 3-71.
Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-16310-
9_1

Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems.
In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.)
Handbook of Model Checking, pp. 27-73. Springer, Berlin (2018).
https://doi.org/10.1007/978-3-319-10575-8_2

Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd
edn. Wiley, New York (2009)

Zon, N., Gilmore, S., Hillston, J.: Rigorous graphical modelling of
movement in collective adaptive systems. In: Margaria, T., Steffen,
B. (eds.) Leveraging Applications of Formal Methods, Verifica-
tion and Validation: Foundational Techniques - 7th International
Symposium, ISoLA 2016, Imperial, Proceedings, Part I, Corfu,
Greece, October 10-14,2016. Lecture Notes in Computer Science,
vol. 9952, pp. 674-688 (2016). https://doi.org/10.1007/978-3-319-
47166-2_47

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-030-03424-5_2
https://doi.org/10.1007/978-3-030-03424-5_2
https://doi.org/10.1007/978-3-030-61470-6_16
https://doi.org/10.1007/978-3-030-61470-6_16
https://doi.org/10.1109/ASE.2008.78
https://doi.org/10.1109/ASE.2008.78
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1016/j.artint.2017.04.003
https://doi.org/10.1016/j.artint.2017.04.003
https://doi.org/10.1145/3477355.3477364
https://doi.org/10.1007/978-3-030-61470-6_15
https://doi.org/10.1007/978-3-030-61470-6_15
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.4108/eai.25-10-2016.2266978
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-47166-2_47
https://doi.org/10.1007/978-3-319-47166-2_47

	Language support for verifying reconfigurable interacting systems
	Abstract
	Introduction
	ReCiPe: a model of computation
	The R-CHECK language
	The semantics of R-CHECK

	Case study: autonomous resource allocation
	Model checking of R-CHECK systems
	The ltol specification logic
	ltol showcasing

	LTL and LTOL model checking and simulation
	Integrating ltl model checking into R-CHECK
	Integrating ltol model checking into R-CHECK
	Simulation

	The R-CHECK frontend and interpreter

	Concluding remarks
	Related works
	Future works

	References

