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Abstract
Multi-Agent Path Finding (MAPF) addresses the collision-free coordination
of multiple agents moving through a shared environment, finding applications
in warehouses, airports, and video games, to name a few. Classical MAPF as-
sumes discrete time and agents with pre-assigned goals, yet real-world scenar-
ios demand continuous-time operations with dynamically arriving tasks. This
thesis explores the techniques employed by scalable discrete-time MAPF and
Lifelong MAPF (LMAPF) solvers; the challenges that arise from extending
LMAPF to continuous time (LMAPFR); and how MAPF in continuous-time
(MAPFR) can be solved for optimal solutions.

We find that many scalable MAPF methods rely on prioritized planning,
windowed planning, and dimensional simplifications. These insights culmi-
nate in a method that solves LMAPF for hundreds of agents with competitive
throughput. Furthermore, addressing LMAPFR presents challenges related to
asynchronous movements, a dense search space, and volumetric agents com-
plicating real-time collision detection and resolution. Our proposed algorithm
is, to our knowledge, the first to address LMAPFR, capable of planning up
to a thousand agents in real time. Finally, Continuous-time Conflict-Based
Search (CCBS) was thought to be the sole MAPFR method for optimal so-
lutions. Recent work suggests otherwise. We explain why CCBS could, and
provide experimental evidence that CCBS does, return sub-optimal solutions.
Consequently, we present a new MAPFR solver — to our knowledge, the first
to provably return optimal solutions in finite time.

This work advances both the practical applicability and theoretical foun-
dations of MAPF, bridging the gap between discrete-time abstractions and
continuous-time realities.

Keywords: Multi-agent Path Finding, Continuous-time, Lifelong MAPF,
Optimal Planning, Conflict-Based Search
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CHAPTER 1

Introduction

Everyday, people weave through streets, bustling offices, and busy supermar-
kets, moving goods, meeting friends, or simply making their way home. Rarely
do we notice the complexity of the dances that we unknowingly and intuitively
perform with strangers without saying a word; somehow, we unconsciously
plan and adapt our path through a busy crowd using our sense of agency and
innate ability to avoid collisions with others — we are all collectively solving
the problem of Multi-Agent Path Finding (MAPF).

This innate ability to solve MAPF problems does not come as naturally to
computers, which live in the world of decided rationality. That is not to say
that computers are at a disadvantage; they do not suffer from bias and unpre-
dictability, unless we humans instill such tendencies upon them through our
algorithms. Computers follow the instructions that we as algorithm designers
lay out for them, and if we are careful enough, they might just solve problems
better and faster than what we ever could.

When mentioning the problem of MAPF, a reasonable first thought may
be of factories and warehouses with scores of logistical robots performing
tasks and carrying goods. This is indeed an increasingly common sight in
today’s industry [1–4]. However, MAPF finds application in diverse fields,
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Chapter 1 Introduction

such as video games [5, 6], traffic management systems [7, 8], airport surface
management [9, 10], search and rescue missions [11], collaborative robots in
office spaces [12, 13], and many more. These domains are united by having
multiple agents moving in a shared space where collisions must be avoided.

The two common goals among all MAPF applications are, with various
degrees of importance, to find good solutions fast. In fact, this is the general
goal within all forms of optimization. We certainly do not want to find bad
solutions, especially not if it takes a long time, and even worse if we never
obtain a solution at all. Many of the current algorithms to finding MAPF
solutions balance these two goals in various ways. Algorithms for real-time
use tend to search for good enough solutions in as short a time as possible,
or use all available time and return the thus-far best found solution. Then
there exists another class of algorithms that search for the best solution and
hope to succeed within a reasonable time. What constitutes a solution and
what makes it good or bad depends on the type of MAPF problem that we
are talking about. In most MAPF problems, however, a solution specifies how
each agent should move to eventually arrive at its goal without collision, and
a good solution gets the agents there sooner rather than later.

MAPF problems come in many flavors. In a one-shot [14] MAPF problem,
a fixed number of agents each begin at some start location and are tasked
with moving to some goal location. This is referred to as “one-shot” because
all information that is required to solve the problem is given at the start, and
a solution can be computed in a single attempt. Classical MAPF [15], which
“MAPF” often refers to, is a one-shot problem with discretized time. Time
being discrete means that at every timestep, each agent performs an action
to either move somewhere or wait where it is. The aim is then to decide how
each agent should act to eventually reach its goal while avoiding collisions with
other agents. The Continuous-time MAPF problem (MAPFR, “R” indicating
that real values in R are used) [16] is similar to classical MAPF, however, with
the one small difference that agents can perform actions at any time instead
of at discrete timesteps. As we will see in later chapters, this small change
comes with several fundamental challenges.

The alternative to one-shot problems — such as classical MAPF and MAPFR
introduced above — are lifelong problems, which evolve with new information
over time such that solving the problem once is not enough. The Lifelong
MAPF (LMAPF) problem [17] shares similarities with the classical MAPF
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problem in that time is discrete and each agent starts at a unique location.
However, in LMAPF, agents are not initially assigned a goal location. In-
stead, an endless stream of unassigned goals are revealed over time. The
planner then assigns revealed goals to agents and plans their movements to
those goals. This lifelong formulation better suits most industrial settings
where transport orders are placed over time, such as in a warehouse where
purchase orders require products to be fetched from shelves and moved to
outbound trucks. Finally, the combined problem of time being continuous
and tasks endlessly entering the system is referred to as the Continuous-time
Lifelong MAPF (LMAPFR) problem, defined in Paper B.

Almost all MAPF literature assumes that agents live and move on graphs,
such as the graph shown on the cover of this thesis. The breadth of structures
that a humble graph can represent is astonishing: roads and railways [18],
social networks [19], linguistics [20], financial systems [21], knowledge [22],
to mention just a few. Google’s original success relied on PageRank [23],
a method that represents the internet as a graph to rank websites. Many
high-profile scientific breakthroughs in recent years — such as AlphaFold [24]
for accurate protein structure prediction and GraphCast [25] for weather pre-
diction — have stemmed from the realization that machine learning can be
applied to graphs [26]. Even transformers [27], the underlying architecture
behind large language models, can be seen as fundamentally graph-based [28].
In MAPF, graphs represent the environment and come in various levels of
complexity, depending on the problem variant.

MAPF problems are generalizations of the shortest path problem, which
involves finding the shortest path between a start and a goal in a graph. This
problem was solved by Edsger W. Dijkstra in 1956 with what is now commonly
known as Dijkstra’s algorithm [29], which was later extended to the also well-
known A˚ algorithm [30]. One could apply Dijkstra’s algorithm or A˚ to each
agent individually to find a path from their start to goal, and hope that no
collisions occur. However, the chance of that working is exceptionally small
for most practical problems. Thus, smarter methods are needed.

The field of MAPF can be compartmentalized in several ways, with each
MAPF variant warranting distinct solution approaches. We have above in-
troduced classical MAPF, LMAPF, MAPFR, and LMAPFR. However, many
other variants exist that we briefly introduce throughout the subsequent chap-
ters. As we will see, MAPF belongs to the class of problems that are thought
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Chapter 1 Introduction

to be more difficult to solve than most other problems. This means that, as
the problem size grows, optimality and practical usefulness quickly form a
dichotomy; both cannot be obtained simultaneously. Eventually, finding the
optimal solution will take more time than what is available. Thus, this field
can also be divided into methods for optimal solutions that scale poorly, and
fast methods that return sub-optimal solutions. Our main focus in this work
is on practical approaches to finding sub-optimal solutions to the LMAPF and
LMAPFR problems, and theoretical results for guaranteeing to find optimal
solutions to the MAPFR problem within finite time.

This thesis invites you, the reader, on a journey through the fascinating
world of Multi-Agent Path Finding — a field where mathematics and algo-
rithmic design meet the everyday choreography of coordinated movement.
Together, we shall stand on the shoulders of giants and enjoy the view of
decades of foundational research, examine how the work presented here nudges
us closer to practical solutions and theoretical guarantees, and peer into the
future to imagine what new paths we might find.

1.1 Research Questions
The main topics of this thesis are centered around three research questions
which are formulated based on identified gaps in the existing MAPF literature.
Table 1.1 provides an overview of the coupling between each research question,
the chapter and paper where it is addressed, and the corresponding MAPF
variant.

The first research question explores how existing LMAPF algorithms suc-
cessfully handle large fleets of agents under real-time constraints, despite the
underlying MAPF problem’s complexity scaling exponentially with the num-
ber of agents [31]. Specifically, we aim to understand what techniques these
methods use to reduce problem complexity while finding acceptable solutions.
The first research question that we aim to address is:

RQ1: How can Lifelong MAPF algorithms achieve real-time perfor-
mance for large-scale industrial fleet management?

To answer this question, we explore the existing MAPF and LMAPF litera-
ture in Chapter 3 to identify common strategies used for achieving scalability.
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1.1 Research Questions

Table 1.1: The coupling between each research question, the chapter and paper
where it is addressed, and the corresponding MAPF variant.

One-shot MAPF Lifelong MAPF

Discrete Time RQ1
Chapter 3, Paper A

Continuous Time RQ3
Chapter 5, Paper C

RQ2
Chapter 4, Paper B

Then, in Paper A, these strategies are applied in a LMAPF solver to verify
their effectiveness.

The next topic explores the extension of LMAPF to the continuous-time
domain. Recently, there has been an increasing amount of attention placed
on continuous-time MAPF and its related aspects, as discrete time brings
with it several practically limiting assumptions. However, to the best of our
knowledge, no methods in the existing literature address the LMAPFR prob-
lem. Therefore, we seek to identify what key problems must be solved when
extending discrete-time approaches to continuous-time lifelong scenarios, and
explore how techniques from established solution methods can be effectively
utilized or modified for this domain. A critical consideration in this extension
is that lifelong algorithms typically operate under strict real-time constraints,
meaning that any approach to the LMAPFR problem must maintain computa-
tional tractability while handling the additional complexity of continuous-time
dynamics. Our second research question therefore addresses this challenge:

RQ2: What is required to extend discrete-time Lifelong MAPF to con-
tinuous time while maintaining computational tractability?

To find an answer to RQ2, we form insights in Chapter 4 about the
challenges with addressing the LMAPFR problem through comparison with
discrete-time LMAPF. These challenges are identified in the context of exist-
ing LMAPF literature, containing potential solution strategies. Paper B then
introduces an algorithm that addresses these challenges.

The third and final research question that we aim to address relates to
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the MAPFR problem. Based on our literature review, there exists only one
method for solving the MAPFR problem for optimal solutions: Continuous-
time Conflict-Based Search (CCBS) [16]. However, recent insights [32] have
raised important questions regarding CCBS, suggesting potential concerns
about finite-time convergence guarantees in its underlying theory and opti-
mality guarantees in its publicly available implementation. These observations
highlight a critical gap in the current state of MAPFR research: the need for
methods with clear theoretical foundations that can provably deliver optimal
solutions within finite time. This leads us to our third and final question:

RQ3: How can the continuous-time MAPF problem be solved in finite
time with guaranteed solution optimality?

To answer this question, we take a theoretical approach to identifying the
underlying mechanisms behind the existing MAPFR solution method’s prob-
lems. Learning from these insights, Paper C proposes a new method with the
desired guarantees.

1.2 Contributions
Toward answering research question RQ1 — How can Lifelong MAPF algo-
rithms achieve real-time performance for large-scale industrial fleet manage-
ment? — Chapter 3 provides a systematic analysis of existing MAPF and
LMAPF literature. Based on this analysis, we identify three common strate-
gies for enabling real-time performance in large-scale applications: prioritized
planning, windowed planning, and dimensional simplifications. Paper A pro-
poses the Fleet Manager that applies two of these strategies — prioritized
planning and dimensional simplifications — to achieve computation times in
the order of milliseconds for hundreds of agents while outperforming a widely
adopted existing method in terms of solution quality.

To answer research question RQ2 — What is required to extend discrete-
time Lifelong MAPF to continuous time while maintaining computational
tractability? — Chapter 4 identifies the key technical challenges that arise
when transitioning from discrete-time to continuous-time Lifelong MAPF.
These are:

• Asynchronized agent movements, impeding the use of common discrete-

8
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time strategies that rely on natural synchronization points when all
agents can execute their next action.

• Dense configuration spaces as a result of time being continuous, requiring
more sophisticated strategies for navigating the assignment space.

• Resolving collisions between volumetric agents. Time being continuous
requires agents to occupy space (unlike in discrete-time where agents
are typically represented as sizeless points). Consequently, the range
of ways for collisions to occur is greatly expanded, requiring solution
algorithms to handle collision resolution in a more generalized way.

• Real-time collision detection between volumetric agents. Since agents
occupy space, the task of detecting collisions becomes much more com-
putationally demanding. Therefore, methods must address this if the
algorithm is to be used in real-time.

Paper B addresses these challenges with the Continuous-Time Prioritized
Lifelong Planner (CPLP). Safe Interval Path Planning [33] is used to nav-
igate the dense assignment space, asynchronous windowed planning addresses
the asynchrony between agent movements, CCBS handles collision resolution,
and preprocessing strategies allow for real-time collision detection. Through
these strategies, CPLP addresses the identified challenges, demonstrating that
computational tractability can be maintained for up to a thousand volumetric
agents on large graphs with non-unit edge traversal times.

Finally, the contributions in Paper C address research question RQ3 —
How can the continuous-time MAPF problem be solved in finite time with
guaranteed solution optimality? CCBS is to the best of our knowledge the
only method aimed toward finding optimal solutions to the MAPFR problem.
Paper C introduces an analytical framework that provides sufficient criteria
for a CCBS-styled algorithm to guarantee the return of an optimal solution in
finite time. We find that CCBS does not satisfy these criteria, which merely
suggests that CCBS could return sub-optimal solutions. However, we provide
experimental evidence to show that CCBS does return sub-optimal solutions.
Paper C then introduces a new branching rule for CCBS and proves that it
satisfies the framework’s criteria. Thus, we provide to our knowledge the first
algorithm that provably guarantees to find an optimal solution to a MAPFR
problem in finite time.
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Chapter 1 Introduction

1.3 Methodology

We use complementary methodological approaches tailored to the distinct
nature of each research question, reflecting the progression from applied algo-
rithm engineering to fundamental theoretical analysis.

For answering research questions RQ1 and RQ2, we use a largely empirical-
constructive approach. Our methodology follows three general phases, applied
iteratively in practice. First, existing literature is analyzed to identify effec-
tive techniques with empirically proven efficiency at addressing the challenges
posed by the research question — real-time fleet management for RQ1 and
continuous-time extension challenges for RQ2. Second, we apply these in-
sights through iterative algorithm development. Finally, our methods are ex-
perimentally evaluated on large benchmark sets, systematically varying prob-
lem parameters to assess both effectiveness and scalability.

For RQ3, a fundamentally different theoretical-analytical approach is used,
centered on mathematical analysis and formal proof construction. Beginning
with the identified shortcomings in existing Continuous-time MAPF methods,
we develop a mathematical framework to explain these limitations and formu-
late conditions for algorithm soundness and solution completeness. Through
analytical exploration, we construct proofs that establish sufficient conditions
for these properties, then synthesize novel algorithms that satisfy these con-
ditions.

This form of logical exploration is — fittingly — comparable to path finding.
From a starting point, heuristically and logically guided steps (assumptions
and implications) can be taken, some leading to dead-ends, others in unpro-
ductive directions, and a select few toward our goal. One of the many explored
sequences of logical steps eventually forms a proof, with several proofs estab-
lishing the necessary conditions. The theoretical proofs we present are merely
one valid logical path through the space of possible demonstrations. Like op-
timal paths in MAPF, there likely exist alternative proof strategies that may
be more direct or intuitive. Our methodology prioritized establishing rigor-
ous results within available time constraints, while acknowledging that the
rich landscape of mathematical proof offers multiple valid routes to the same
theoretical destination.
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1.4 Thesis Outline

1.4 Thesis Outline
This thesis is divided into the two main parts: Part I: Overview provides the
necessary background to understanding the field of MAPF and the contribu-
tion of this work; Part II: Papers contains the papers on which this thesis
builds.

Part I consists of seven chapters. Chapter 1 (this chapter) introduces the
thesis as a whole, the research questions that it aims to address, the con-
tributions it makes to the field of MAPF, and the methodological approach
taken to do so. Chapter 2 then introduces general concepts surrounding algo-
rithms and how they are measured. Chapters 3, 4, and 5 respectively address
MAPF and LMAPF to answer RQ1, LMAPFR to answer RQ2, and MAPFR
to answer RQ3. Finally, Chapter 6 provides a short summary of each paper
included in Part II, and Chapter 7 draws conclusions, reflects on this work’s
place in the larger MAPF community, and formulates directions for future
work.
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CHAPTER 2

What are Problems, Solutions, and Algorithms?

Problem solving is fundamentally about finding solutions to problems; algo-
rithms are the tools that we use to do so. In this chapter, we introduce the
fields of problem solving and complexity analysis and thereby lay the ground
work for subsequent chapters.

Fundamentals

A computational problem defines an input/output relation, where the input
is an instance and the output is a solution [34]. This relationship is described
by constraints which are created from the problem and instance, and apply
to the solution. If a candidate solution satisfies the constraints, then it is
feasible and therefore a solution. If it does not satisfy the constraints, then
it is infeasible and not a solution. For example, the sorting problem is about
organizing a set of numbers in, say, ascending order. The sorting problem
and the instance i “ t2, 5, 1, 7, 8, 3u together define the constraints: a solution
must be a sequence containing the numbers in i in ascending order. The
candidate solution x1, 2, 3, 5, 7, 8y satisfies these constraints and is therefore a
solution, while x8, 1, 7, 10y does not since it does not contain all numbers in
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Chapter 2 What are Problems, Solutions, and Algorithms?

Figure 2.1: The search space, feasible set, and explored set. The explored set must
overlap with the feasible set for an algorithm to find a solution.

i and is not in ascending order. We refer to the set of all possible candidate
solutions as the search space, of which the feasible set comprises all solutions.

An algorithm is a well-defined computational procedure for finding a so-
lution to any problem instance [34]. To locate solutions, algorithms explore
what we refer to as the explored set — the subset of the search space con-
taining all candidate solutions that the algorithm actually considers during
execution. Figure 2.1 visualizes the relationship between the search space,
the feasible set, and the explored set. Algorithms that explore the entire
search space without a particular strategy are called brute-force algorithms.
Unfortunately, many interesting problems suffer from the curse of dimension-
ality [35], making the search space far too large for a brute force algorithm to
find a solution fast enough. On the other hand, the explored set of a brute
force algorithm usually contains all candidate solutions, including those in
the feasible set, consequently guaranteeing that a solution will eventually be
found. The goal of more sophisticated algorithms is, however, to reduce the
number of infeasible candidate solutions in the explored set and thereby min-
imize unnecessary exploration. To find any solution, it suffices to ensure that
at least some portion of the feasible set overlaps with the explored set; to find
all solutions, the feasible set must be a subset of the explored set.

The field of problem solving consists of, among others, decision problems
and optimization problems. Decision problems can be answered with a simple
“yes” or “no”, such as whether a number is prime or a path is Hamiltonian.

14



The sorting problem from above is a type of decision problem where we ask
“does there exists a sequence of numbers satisfying all constraints”. By provid-
ing such a sequence, the answer is “yes”. Optimization problems, on the other
hand, are about finding solutions that satisfy all constraints and have suffi-
cient quality. Thus, a notion of solution quality is needed, typically defined
by an objective function that takes a candidate solution as input and returns
some quantitative measure of quality. The search space of an optimization
problem is sometimes defined as the domain of the objective function [36].
Many optimization problems are about finding the optimal solution, that is
the solution optimizing (often minimizing) the objective function.

Two desirable properties of an algorithm are [37]:

• Soundness: when a sound algorithm for finding a solution to a problem
returns a candidate solution, we can trust that the candidate solution is
indeed a solution.

• Completeness: a complete algorithm for finding a solution to a prob-
lem is certain to find a solution if one exists, and to report the non-
existence of a solution if none exists.

Note that an algorithm for finding a solution to a problem cannot be complete
unless it is also sound; if an algorithm sometimes returns a non-solution, then
it does not always find a solution (if one exists) or report the non-existence
of a solution (when none exists). Incomplete and unsound algorithms may
still be useful, especially if they can find solutions to instances commonly
found in practice. Nonetheless, soundness and completeness guarantees that
an algorithm will work as intended for any instance. The formal definitions of
soundness and completeness are typically only formulated for decision prob-
lems. However, in the MAPF community, which deals with optimization,
these terms generally have the same meaning: a sound algorithm returns only
solutions and a complete algorithm finds a solution if one exists.

The terminology within the field of computer science can be seen as in-
consistent and somewhat confusing. For some, an optimal algorithm returns
only optimal solutions. For others, an optimal algorithm finds a solution with
minimal resource usage (runtime and memory). Established computer science
textbooks, such as [34] and [37], do not provide clear and decisive definitions
on these terms. However, [34] describes an optimal binary search tree as “... a
binary search tree whose expected search cost is smallest.”, a property that [37]
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Chapter 2 What are Problems, Solutions, and Algorithms?

refers to as optimal “time complexity”, suggesting that both textbooks adopt
the latter definition. In this thesis, we adopt the following definitions which we
find to be somewhat consistent within the broader computer science context:

• Exact: an exact optimization algorithm returns only optimal solutions.

• Approximate or Heuristic: an approximate (or heuristic) optimization
algorithm does not guarantee to return an optimal solution.

• Optimal: an optimal algorithm has the lowest possible expected run-
time or memory usage.

• Sub-optimal: a sub-optimal algorithm does not have the lowest possi-
ble expected runtime or memory usage.

Although the MAPF literature may not always be consistent with these terms
(e.g., [16] uses “optimal” to mean exact, [14] uses “suboptimal” to mean ap-
proximate), the meaning is often clear from context.

Complexity
Algorithms require computational resources in time and memory to execute [34].
These resources are finite and therefore limit what types of algorithms can be
run in practice. Thus, the field of complexity analysis is devoted to quantifying
the amount of resources required to solve problems [37].

Memory is relatively inexpensive and easily scalable in modern computing
environments. Therefore, we mainly care about an algorithm’s runtime. Typ-
ically, the time it takes to solve a problem grows with the problem’s size [34].
This is intuitive; a large crossword puzzle takes longer to solve than a small
one, assuming everything else is the same. Complexity theory, however, is less
concerned with the absolute runtime and more concerned with the asymptotic
behavior of runtime as the problem size grows. This approach abstracts away
hardware-specific factors and implementation details, focusing instead on how
the fundamental computational requirements scale with input size. Consider-
ing the N2 and 2N curves in Figure 2.2 provides motivation for this; although
2N is smaller than N2 for N between 2 and 4, 2N grows far beyond N2 as
N Ñ8.

An algorithm’s worst-case complexity is denoted using the O-notation.
Given an upper-bound on an algorithm’s worst-case asymptotic runtime as a
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Figure 2.2: A visualization of the grow-rates of the complexity classes constant (1),
logarithmic (log2 N), linear (N), polynomial (N2), and exponen-
tial (2N ).

function of the problem size N , the O-notation denotes the function’s highest-
order term [34]. For example, an algorithm with the worst-case runtime
upper-bounded by a polynomial of order k with respect to N has complexity
OpNkq, regardless of any lower-order terms. We then say that this algorithm
runs in polynomial time, or that it is a polynomial-time algorithm. Instead,
if the highest-order term is an exponential kN , then the algorithm has com-
plexity OpkN q. Complexity is often categorized as constant Op1q, logarithmic
Oplogk Nq, linear OpNq, polynomial OpNkq, or exponential OpkN q. Figure 2.2
visualizes the grow-rate of these complexity classes, showing their asymptotic
behavior as N grows.

A problem’s complexity denotes the amount of resources required to solve
it. It is relatively easy to find an upper-bound on a problem’s complexity;
find an algorithm for solving the problem, then the problem’s complexity is at
most the complexity of the algorithm. On the other hand, it is much harder
to find a problem’s lower-bound complexity as that would require showing
that no solution algorithm with a lower complexity than the lower-bound can
exist. We say that a decision problem is

• polynomial-time solvable if it can be solved in polynomial time, and
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Figure 2.3: The relation between the complexity classes P, N P, N P-complete,
and N P-hard.

• polynomial-time verifiable if a candidate solution can be verified to
indeed be a solution in polynomial time.

All polynomial-time decision problems belong to the complexity class P. Prob-
lems in P are sometimes called “easy”, which should not be interpreted lit-
erally since even problems with astronomically large polynomial complexity
order are included P [37].

The complexity class N P — nondeterministic polynomial — contains all
problems for which an algorithm can guess a solution that can then be veri-
fied in polynomial time [37]. That is, N P contains all polynomial-time veri-
fiable problems. The idea behind this is that problems in N P can be solved
in polynomial time with access to an arbitrary number of computers, since
each computer can guess its respective solution and then verify feasibility in
polynomial time [37]. Every polynomial-time solvable problem is certainly
polynomial-time verifiable, hence P Ď N P, as shown in Figure 2.3.

Reductions are algorithms that reformulate one problem into another [34].
This technique enables solving the original problem by applying an algorithm
designed for a target problem. If a polynomial-time reduction exists from an
N P problem to a P problem, then the N P problem becomes polynomial-
time solvable: the reduction takes polynomial time, and solving the resulting
P instance also takes polynomial time. Since P is a subset of N P, this would
prove that the original problem is in P — and if such reductions exist for
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all N P problems, it would prove that P “ N P. The question of whether
P “ N P remains as one of the greatest unanswered questions of our time,
with many computer scientists believing that P ‰ N P, although without
proof [37].

N P-complete is a special class of N P problems: there exists a polynomial-
time reduction from every problem in N P to every problem in N P-complete [34].
This implies that every N P-complete problem is at least as hard to solve as
every N P problem. Therefore, finding a polynomial-time algorithm to solve
any N P-complete problem implies that every N P problem is polynomial-time
solvable, making N P-complete the prime problem set to target if aiming to
determine if P “ N P.

The N P-hard complexity class can be considered to contain, as the name
suggests, the hardest problems of all. Similar to N P-complete problems,
there exists a polynomial-time reduction from every problem in N P to every
problem in N P-hard [34]. In other words, N P-hard problems are at least
as hard as N P problems. However, N P-hard problems are not necessarily
polynomial-time verifiable, nor are they necessarily decision problems. Many
optimization problems are neither polynomial-time solvable nor polynomial-
time verifiable, and therefore belong to N P-hard.
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CHAPTER 3

Classical and Lifelong Multi-Agent Path Finding

This chapter examines the classical MAPF problem — the foundational chal-
lenge behind much of the research in MAPF — and the Lifelong MAPF vari-
ant. Each of these problems are defined formally, followed by a short summary
of their respective variations found in the literature. A subsequent survey
highlights several prominent approaches to solving both MAPF and LMAPF,
identifying common techniques that enhance scalability across different meth-
ods. This analysis finalizes by answering research question RQ1.

3.1 Classical Multi-Agent Path Finding
The classical MAPF problem [15] is defined by a tuple

xG, N, s, gy

where G “ xV, Ey is a connected and directed graph with vertices V and
edges E Ď V ˆ V; N agents are located on G, starting at a unique vertex by
s : t1, .., Nu Ñ V and assigned a unique goal vertex (commonly referred to as
a target) by g : t1, .., Nu Ñ V. Although G is often undirected, alternative
formulations do appear in the literature with G being directed (e.g. [38–40])
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Chapter 3 Classical and Lifelong Multi-Agent Path Finding

since no component inherently relies on undirectedness. Time is discrete and
each agent executes an action at every timestep. There are two types of
actions: move actions and wait actions. A move action m “ xv, v1y P V ˆ V
(with xv, v1y P E) means that an agent moves from v at one timestep to arrive
at v1 in the next timestep. For such a move action, let fromv

pmq “ v and
tovpmq “ v1. A wait action w “ v P V instead means that an agent waits in v

until the next timestep. Let fromv
pwq “ tovpwq “ v.

Every agent i P t1, .., Nu executes a sequence of actions πi “ xa1, a2, . . . , any

called a plan, with the length |πi| “ n being individual to each agent and
varying across solutions. When deciding the agents’ plans, conflicts must be
avoided. A vertex conflict occurs when two agents occupy the same vertex at
the same time, and a swapping conflict occurs when two agents traverse the
same edge at the same time in opposite directions [15]. Most MAPF methods
consider only these two conflict types — as do we in the following. For a plan
πi to be valid,

1. the first action must start at i’s starting vertex — fromv
pa1q “ spiq,

2. each subsequent action must start where the previous ended — fromv
pakq “

tovpak´1q for all k “ 2, .., n, and

3. the last action must end at i’s goal vertex — tovpanq “ gpiq.

A joint plan Π “ tπ1, π2, . . . , πNu contains one plan for each agent. A
solution is a joint plan containing only valid plans and no conflicts. That is,
for all pairs xπi, πjy where πi, πj P Π, agents i and j are never located at
the same vertex or traverse the same edge in opposite directions at the same
timestep.

A solution’s quality is determined by its evaluation on an objective function.
The two most common objective functions σ in MAPF are the makespan,

σpΠq “ max
πPΠ

|π|,

and sum-of-costs (SOC), or flowtime,

σpΠq “
ÿ

πPΠ
|π|.

Letting S be the feasible set for a MAPF problem, an optimal solution Π˚ min-
imizes σ over S, Π˚ “ arg minΠPS σpΠq. Note that multiple optimal solutions
to a MAPF problem may exist, we seek any of them.
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Figure 3.1: A MAPF problem with three agents, each with a respective start cell
(circles) and goal cell (rings). Black cells are untraversable obstacles. A
solution taking each agent to their goal is shown, with agent B waiting
for two timesteps at a7 to avoid colliding with agent A.

Figure 3.1 illustrates a MAPF problem with three agents on a grid map.
Agents can wait at empty cells and move to adjacent cells, with black cells
representing untraversable obstacles. The underlying graph G has a vertex for
each empty cell with edges connecting adjacent empty cells. A solution is also
shown, where agents A and C perform only move actions until reaching their
goals, while agent B executes two wait actions at a7 to avoid colliding with
A. It takes 8 timesteps for agent A to arrive at its goal, 8 for B, and 9 for C,
resulting in the makespan maxp8, 8, 9q “ 9 and SOC 8` 8` 9 “ 25.

MAPF for optimal makespan, SOC, and total travel distance belongs to
the class of N P-hard problems [31]. Consequently, it is highly unlikely that a
polynomial-time algorithm exists for solving MAPF optimally (else P “ N P).
This computational complexity imposes practical upper bounds on the prob-
lem sizes that optimal MAPF algorithms can handle. The MAPF problem is
polynomial-time verifiable by checking every action pair for a conflict; with N

agents, each with at most n actions, we check pnNq2 action pairs — complex-
ity OpN2q. However, to our knowledge, there does not exist a polynomial-time
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Chapter 3 Classical and Lifelong Multi-Agent Path Finding

algorithm for verifying that a given solution is optimal, making it difficult to
confirm solution optimality.

MAPF Variants
The following introduces a few variations to the classical MAPF formulation.
However, we defer descriptions of the LMAPF problem to the subsequent
section, and the variants corresponding to continuous-time formulations to
subsequent chapters. The following MAPF variants, and many more, are well
documented in e.g. [15, 41–43].

In Anonymous MAPF, or Unlabeled MAPF, agents are not assumed to be
assigned a goal vertex beforehand. Instead, the problem involves both assign-
ing a goal vertex to each agent from a set of goals, and then planning their
paths to those goals [15, 41]. This problem shares similarities with LMAPF,
introduced in Section 3.2, below. A generalization of this is referred to as Col-
ored MAPF, where agents are grouped into teams, each team being assigned
a set of goals [15].

Including deadlines is useful in applications where agents must complete
their tasks before a maximum time [15, 44]. For instance: manufacturing
parts must be delivered before assembly or else production halts; airplanes
must be ready for take-off at their allotted time or else delays occur. Without
deadlines, if at least one solution exists for the MAPF problem then there
exists infinitely many (see Section 5.1). The inclusion of deadlines constrains
the feasible set to at most a finite set, since solutions cannot be delayed
arbitrarily. Although restricting the feasible set may present challenges, it also
presents opportunities for algorithms to reduce the explored set, potentially
leading to faster convergence to solutions.

The common stay-at-target assumption means that agents remain at their
goals until all other agents have arrived at their respective goals, as opposed to
the less common disappear-at-target which assumes that agents are removed
from the graph upon arrival. This means that, with the stay-at-target as-
sumption, a plan π contributes to the objective function with a value of |π|,
even if the agent momentarily visits its goal vertex at an earlier time than
|π| before leaving to later return. Although the disappear-at-target is less
common, it is still considered in some work [45].

In many real-world applications, agents represent untethered autonomous
mobile robots (AMRs) which rely on a finite on-board power source, such as
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3.1 Classical Multi-Agent Path Finding

a battery or fuel reserve. This consideration offers several aspects to incor-
porate into the planning of agent movements. Many methods aim to reduce
the power consumption by, for instance, considering the sum-of-fuel objective
function [15, 46] or optimizing the low-level control of agent’s kinematics [47].
Refueling operations commonly remove agents from transportation operations
for some time, leading to a reduction in the AMR-fleet’s transportation capac-
ity which indirectly impacts makespan and SOC. Work such as [48] consider
the refueling time directly when scheduling agents.

Several other types of conflicts are documented in [15]:

• edge conflicts — two agents traversing the same edge in the same direc-
tion at the same timestep,

• following conflicts — an agent is planned to occupy a vertex that was
occupied by another agent in the previous timestep, and

• cycle conflicts — a set of agents switch positions in a rotating cycle
pattern in the same timestep.

Edge conflicts are avoided by disallowing vertex conflicts, and neither following
conflicts nor cycle conflicts necessarily mean that agents collide (in the real-
world sense) with each other. These are the reasons, we believe, as to why our
literature review has not found any studies considering these three constraint
types.

In MAPF, robustness typically refers to a solution’s ability to handle timing
delays while still avoiding collisions. In the discrete-time MAPF formulation,
a k-robust solution allows for any subset of agents to be delayed by up to k

timesteps without collisions occurring [15, 49]. MAPF with Uncertainty is a
related problem where delay-uncertainty is incorporated into plans to obtain
a solution with a certain collision-free confidence level [41, 50].

Most MAPF formulations assume that traversing an edge takes exactly
one discrete timestep. This assumption arises from the discrete-time, lock-
step synchronization model where all agents execute actions simultaneously
at each timestep. If an edge required more than one timestep to traverse, that
agent would be unable to execute an action at the next timestep, violating the
fundamental assumption that agents can act at every discrete time interval.
Several approaches exist for handling non-unit-length edges in discrete-time
MAPF. One method, demonstrated in Paper A, treats edge lengths as integer
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Chapter 3 Classical and Lifelong Multi-Agent Path Finding

multiples of a base unit-length. During multi-step edge traversals, the agent’s
action is effectively decided (to continue traversing the edge) until it completes
the transition. An alternative approach to handling non-unit-length edges is
to assume, in practice, that agents remain idle at their respective destination
vertex until all agents have completed their actions. This strategy, however,
introduces artificial waiting periods that directly degrade solution quality for
time-based objective functions (e.g. makespan and SOC), as agents accumu-
late unnecessary delay times rather than making progress toward their goals.

Multi-Goal MAPF [51] is a variant where each agent is assigned multiple
goals, instead of just one, and must visit each of the goals at least once in any
order. This variant introduces the additional complexity of determining the
order in which to visit the goals, commonly known as the traveling salesperson
problem [52].

Transient MAPF [53] is a one-shot MAPF problem that provides more flex-
ibility compared to classical MAPF when used to solve Lifelong MAPF. By
repeatedly solving one-shot problems where one instance starts where the pre-
vious instance ended, Lifelong MAPF problems can be solved. However, the
drawback of using classical MAPF with the common stay-at-target assump-
tion for this is that agents are assumed to wait at their goals until all other
agents have arrived at their respective goals [15]. That is, in MAPF it is not
enough for an agent to have arrived at its goal; if an agent must move away
from its goal to let another agent pass, then it must thereafter return to its
goal. Transient MAPF assumes that an agent has reached its goal at the first
time it arrived there. Thus, in a solution to Transient MAPF, an agent must
have visited its goal but may not necessarily end its path there. Since agents
do not necessarily need to end their plans at their goals, the set of feasible
solutions is expanded, providing more flexibility and leading to better Lifelong
MAPF solutions in almost all tested cases [53].

3.2 Lifelong Multi-Agent Path Finding
In classical MAPF, we assume that all agents’ goals are known beforehand.
However, in the real world where uncertainty lives, it is not always reasonable
to assume that we have access to all information. For instance, stations in
a factory may need restocking as parts are consumed. We cannot assume to
know when every screw will be used and every production mistake will occur.
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However, these all contribute to when restocking is required and therefore
when an agent may need to transport goods to that station. Lifelong MAPF
(LMAPF) [17], sometimes referred to as Online MAPF, handles this uncer-
tainty and better reflects real-world never-ending operations by not assuming
to know beforehand when and where agents must be. Instead, previously un-
known tasks are released to the system at various times, each task specifying
a particular goal vertex. The problem involves assigning agents to tasks, and
then planning the agents’ paths to those tasks. In this problem, we assume
that there is no end to the incoming stream of tasks [17]. Therefore, the aim
is to continuously complete tasks as they enter the system, and thereby avoid
amassing a backlog.

Formally, a LMAPF problem [17] can be defined by a tuple

xG, N, s, T y

where G “ xV, Ey is a connected and directed graph with vertices V and edges
E ; each of the N agents start at a unique vertex by s : t1, .., Nu Ñ V; and T is
a possibly unbounded multiset over V ˆN containing tasks. Time is discrete.
Knowledge of a task τ “ xv, ty P T is released to the system at timestep t,
and is completed once an agent is located at v at some time ě t.

Just as in classical MAPF, agents execute move and wait actions at every
timestep, with multiple actions forming a plan πi “ xa1, a2, . . . , any. Contrary
to classical MAPF, however, a valid plan πi in LMAPF requires only starting
in the agent’s starting vertex, fromv

pa1q “ spiq, and every subsequent ac-
tion starting where the previous ended, @k “ 2, .., n : fromv

pakq “ tovpak´1q.
Since tasks enter the system over time, agent plans are periodically updated
to attend to new tasks. The prefix of a plan containing all actions before the
system’s current time cannot be changed, only the suffix containing actions
that have not yet begun executing. The same two conflict types as in clas-
sical MAPF, vertex and swapping conflicts, are also commonly considered in
LMAPF; no two agents can occupy the same vertex at the same time-step,
and no two agents can traverse the same edge in opposite directions. Thus, a
joint plan Π “ tπ1, ..., πNu containing one plan for each agent is a solution if
every plan is valid and no two plans together cause a conflict.

Figure 3.2 illustrates an LMAPF problem with three agents attending to an
incoming stream of tasks. At the current time t “ 8, the tasks τ1, . . . , τ7 have
been released to the system and assigned to agents. Agent A was assigned task
τ1 “ xb1, 0y at t “ 0 and completed it at t “ 2. Thereafter, it was assigned
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τ5 “ xe3, 6y and is planned to complete it at t “ 6 ` 5 “ 11. Likewise for
the other agents; B completed τ3 at time t “ 5, and is since t “ 7 attending
to τ7, C completed τ2 at t “ 3 and τ4 at t “ 7, and is since t “ 8 attending
to τ6. Future tasks, τ8–τ10, have not yet been released to the system and are
therefore unknown to the planner.

Defining optimality in LMAPF presents fundamental challenges that distin-
guish it from classical MAPF. Unlike classical MAPF, which has a well-defined
terminal state where all agents have reached their goal, LMAPF operates
continuously with a potentially unbounded task set T , making traditional
notions of global optimality ill-defined. That tasks are continuously released
complicates measuring solution quality, as it is affected by future informa-
tion unavailable at the time when decisions are to be made. This introduces
an inherent randomness that can dominate differences in performance across
methods. For instance, an agent positioned near a newly released task will
be able to complete the task earlier than if it were located farther away, all
else being equal. Consequently, comparing solutions based on metrics such as
makespan or SOC can be misleading. Furthermore, the makespan and SOC
of a solution grows with time, as more tasks enter the system, requiring some
arbitrary end-time to be set in order to obtain a remotely fair comparison
value. Therefore, many LMAPF works focus on throughput — the average
number of completed tasks per timestep. When averaged over an extended
period of time, the metric should be comparably stable and therefore provide
an indication of algorithmic performance independent of the time the system
is running.

LMAPF Variants
Relative to the classical MAPF problem, our literature review found fewer
variants of the LMAPF problem. We present these variants here, except for
the Continuous-Time LMAPF which is treated in detail in Chapter 4.

The Multi-agent Pickup-and-Delivery (MAPD) problem [17] can be re-
garded as a generalization of the LMAPF problem. In MAPD, tasks con-
tain both a pickup and delivery position; the assigned agent must first move
to the pickup position (supposedly to pick up goods) and then to the deliv-
ery position (to drop those goods off). MAPD represents a more realistic
formulation for many practical applications. Taxi drivers must first reach
passengers before transporting them to their destinations, and similarly, most
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Figure 3.2: An LMAPF problem with three agents (A, B, C) and with the system
currently at timestep t “ 8. Top: A timeline of agent movements and
task releases, with arrows showing which agents are assigned which
tasks. Bottom: An illustration of the agents in the environment as
they attend to tasks, showing at time t “ 8 their starting positions (un-
filled circles), current positions (filled circles), completed movements
(full lines), and planned movements (dashed lines).

29



Chapter 3 Classical and Lifelong Multi-Agent Path Finding

industrial AMR deployments involve collecting items from pickup locations
before delivery. LMAPF solution approaches can be adapted to MAPD prob-
lems through constrained task assignment. As demonstrated in [14], this is
achieved by treating pickup and delivery locations as paired tasks, where an
agent assigned to a pickup task must subsequently be assigned the corre-
sponding delivery task. The constrained assignment approach demonstrates
that LMAPF and MAPD are computationally related, with MAPD effectively
decomposable into constrained LMAPF instances.

Multiple LMAPF variants relate to the number of goals assigned to agents
and the order in which they must be visited. Multi-Goal Multi-Agent Pickup
and Delivery (MG-MAPD) [54] generalizes MAPD by allowing each task to
contain a sequence of vertices (instead of just one pickup and one delivery
vertex). An assigned agent must visit the vertices in the specified order. A
similar variant where agents can visit the goal vertices in any order is described
in [46]. These formulations are particularly relevant for industrial applications
where agents must perform multi-stage operations, such as collecting compo-
nents from multiple warehouse locations before assembly or visiting several
delivery points for a single pickup.

MAPD with External Agents [55] addresses scenarios where the team of con-
trolled agents must operate in an environment populated by moving external
agents that cannot be directly controlled. Such entities — including human
workers, autonomous vehicles from other teams, or human-controlled vehicles
— affect path planning and collision avoidance but follow their own objectives
and cannot be coordinated with the team agents. This variant reflects real-
istic warehouses where autonomous vehicles share the operational space with
other moving entities.

In Capacitated MAPD [56], agents can carry items from multiple tasks si-
multaneously rather than being limited to one item at a time. In this variant,
agents may pickup multiple items from different locations before delivering
them, thereby enabling more efficient task execution compared to single-item
transport. This extension increases the problem complexity since the decision
to collect additional items, and the order in which to do so, must be decided.

Cache-enhanced LMAPF [57] models warehouse environments with desig-
nated cache grids, allowing agents to temporarily store items during task exe-
cution. This spatial extension introduces optimization considerations beyond
traditional pickup-delivery constraints, enabling agents to strategically posi-
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tion items for future tasks. Naturally, this introduces additional complexity
to the problem.

3.3 Common MAPF and LMAPF Approaches
MAPF and LMAPF are computationally challenging problems, with scala-
bility often achieved through various strategic simplifications. This section
surveys prominent approaches and identifies three main strategies for scal-
ably solving MAPF and LMAPF:

• prioritized planning,

• windowed planning, and

• dimensional simplification.

We additionally introduce exact solution methods [58–61], as well as a few
methods [62–66] in the relatively young field of machine-learning-based MAPF.

Exact Methods

An exact algorithm is defined in Chapter 2 to only return optimal solutions.
Several exact algorithms for finding MAPF solutions have been introduced
in the literature. While typically unable to handle large agent counts or
complex scenarios within practical time limits, these methods are nonetheless
foundational for understanding the problem. A common theme among the
exact methods presented here, as we will see in this section, is the adoption
of a “lazy” approach where agent movements are planned individually, and
conflicts are only addressed as they occur.

M˚ [58] extends A˚ with sub-dimensional expansion to plan optimal paths
efficiently. The algorithm begins by computing individually optimal paths for
each agent (called a robot in [58]). If collisions are detected, the method then
adaptively expands into a higher-dimensional space where paths are consid-
ered jointly, to resolve collisions. This approach allows M˚ to safely ignore
regions of the search space representing paths for agents not involved in colli-
sions, where a shortest-path algorithm suffices. This significantly reduces the
average-case computational cost compared to the pure A˚ search in the full
space of jointly-considered agent paths [58].
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Increasing Cost Tree Search (ICTS) [59] uses a two-level search approach:
the high-level searches the Increasing Cost Tree where each node represents
a cost vector (one cost per agent), starting from individually optimal costs;
the low-level validates whether collision-free paths exist at those costs. If
a collision-free path for an agent with the cost specified by the node’s cost
vector does not exist, child nodes are generated by incrementing the cost for
one agent, continuing until a feasible collision-free solution is found.

Conflict Based Search (CBS) [60] is a widely adopted exact MAPF method,
with many extensions targeting various properties and MAPF variants [16,
67–71]. CBS is inspired by ICTS, using a similar two-level search approach:
the high-level searches the Constraint Tree (CT), where each node contains
a set of constraints and a candidate solution satisfying those constraints; the
low-level finds the optimal path for individual agents given their constraints.
Starting at the root with an empty constraint set, CBS validates the candidate
solution by checking for conflicts. When a conflict is detected between two
agents at a specific location and time, two CT child nodes are generated —
each adding a constraint for one of the conflicting agents to avoid that specific
collision — continuing until a conflict-free solution is found. If no solution
exists, CBS does not guarantee termination.

Lazy Constraints Addition Search for MAPF (LaCAM˚) [61] represents a
recent evolution in exact MAPF methods, combining optimality guarantees
with practical scalability. Unlike the previous exact methods, LaCAM˚ is an
anytime algorithm, meaning that it quickly finds sub-optimal solutions and
gradually refines them until a satisfactory solution is found or the available
computation time has been exhausted. LaCAM˚ performs a high-level search
in a tree of configurations, a configuration specifying the location of every
agent, with each node containing a constraint tree which initially contains
only a root node (representing no constraints). High-level nodes are expanded
multiple times, each expansion leading to the creation of a single child node
representing a possible configuration in the next time step. An expansion of
a node N entails:

• A node η in N ’s constraint tree is selected according to breadth-first
search. The constraint tree is structured such that each node at depth 1
constrains agent 1’s next action, each node at depth 2 constrains both
agents 1 and 2’s next action, etc.

• Priority Inheritance with Backtracking (PIBT) [72] (see next section)
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is used to generate a configuration for the next timestep satisfying the
constraints at η. This configuration is used to create a child node of N

with an empty constraint tree.

• The constraint tree node η is marked as searched, upon which its children
(one for each action of the next agent to be constrained) are spawned.

This method lazily searches in the direction of where PIBT goes, thereby
achieving remarkable scalability. LaCAM˚ is able to sub-optimally solve 99%
of benchmark instances from [15] with up to 10 000 agents within 30 seconds
while guaranteeing eventual convergence to optima.

While exact methods like M˚ and CBS remain foundational, the anytime
approach of LaCAM˚ demonstrates that optimality guarantees need not pre-
clude practical scalability. However, for the largest and most complex in-
stances, sub-optimal methods such as those explored in the following sections
remain necessary.

Prioritized Planning

Prioritized planning is a widely adopted strategy for achieving scalability,
where agents are planned sequentially, one at a time [73, 74]. The priority of
agents denotes the order in which they are planned, however, this prioritiza-
tion need not be explicit. For instance, randomly ordering agents and then
planning them sequentially implicitly enforces a prioritization. By planning
sequentially rather than jointly, the problem reduces to multiple instances
of single-agent path planning. This reduces the computational complexity,
though at the cost of completeness and optimality guarantees.

Cooperative Pathfinding [75] introduces the foundational prioritized plan-
ning approach to MAPF. The algorithm plans paths for agents sequentially
in an arbitrary order, with each agent using A˚ to search for a collision-free
route to its goal while treating previously planned agents’ paths as dynamic
obstacles. Three variants that build upon each other are proposed, progres-
sively enhancing performance. Cooperative A˚ (CA˚) uses a reservation ta-
ble, recording occupied space-time positions for previously planned agents,
excluding these from subsequent agents’ A˚ searches. CA˚ suffers from order-
sensitivity — agents that are planned early constrain later plans, potentially
causing failures when agents that should wait are planned too early. Hierarchi-
cal Cooperative A˚ enhances CA˚ with Reverse Resumable A˚ (based on Hi-
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erarchical A˚ [76]), which computes heuristics via backward search from each
goal in an agent-free environment, reusing the search state across evaluations
for better guidance without redundant computation. Windowed Hierarchical
Cooperative A˚ (WHCA˚) limits planning to w steps ahead, committing only
the actions within the immediate window and continuously re-planning dur-
ing execution. This reduces memory, mitigates order-sensitivity, and enables
adaptation to dynamic conditions at the cost of solution quality. While Coop-
erative Pathfinding establishes the prioritized planning paradigm, subsequent
work [17, 61, 72, 77, 78] extends these ideas to more complex problem variants
and with improved scalability.

Token Passing (TP) [17] extends prioritized planning to MAPD. Agents co-
ordinate via a shared token containing all planned paths and available tasks.
When idle, agents sequentially request the token, select unassigned tasks with
minimum heuristic cost, and plan collision-free space-time paths avoiding re-
served positions. TP guarantees completeness for certain types of MAPD
instances and efficiently handles hundreds of agents. An enhanced variant of
TP, Token Passing with Task Swaps, allows agents to swap previously assigned
tasks that have not begun execution, improving solution quality through lim-
ited inter-agent negotiation at the cost of additional computation.

While TP extends prioritized planning to lifelong scenarios, Priority Based
Search (PBS) [77] addresses a fundamental limitation: order sensitivity. PBS
systematically explores the space of different priority orderings. Rather than
committing to an arbitrary agent order like in CA˚ and TP, PBS uses a depth-
first search over a tree of partial priority orderings, branching to explore both
possible orderings between two agents when conflicts arise between them. This
approach shares similarities with exact methods like M˚ and CBS, which also
branch when conflicts arise. However, PBS operates differently: it establishes
agent-level priority relationships (agent i has priority over agent j), whereas
CBS and M˚ impose location-time specific constraints (forbidding the use of
specific vertices at specific times). In other words, PBS can be summarized
as applying CA˚ for different orders of agent priority, making it more effi-
cient but also leading to worse solutions. Despite these simplifications, PBS
achieves near-optimal solution quality while maintaining efficiency, solving in-
stances with 600 agents in under a minute and succeeding where fixed-priority
methods fail [77].

Priority Inheritance with Backtracking (PIBT) [72] addresses MAPF by
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iteratively planning one timestep at a time. Each agent receives a unique pri-
ority that persists until reaching its goal. Agents plan their next locations in
priority order, avoiding positions occupied by higher-priority agents. When a
low-priority agent blocks a higher-priority agent’s path, it temporarily inher-
its that priority when moving out of the way, allowing it to block otherwise
higher-priority agents. When an agent cannot move without causing conflicts,
backtracking signals to prior agents to reconsider their decisions. On bicon-
nected graphs, PIBT guarantees that the highest-priority agent will move
along its preferred edge, therefore guaranteeing that all agents will eventually
reach their goal within a finite time.

LaCAM˚ (introduced above in Exact Methods) demonstrates the effective-
ness of prioritized planning mechanisms within search-based approaches. For
instance, on the grid maps, every agent at each timestep executes one of 5
actions (move up, down, left, right, or wait). With N agents, there are up
to 5N possible configurations in the next timestep. Instead of searching the
entire 5N possible configurations in the next timestep, LaCAM˚ uses PIBT
to generate one high-quality configuration at a time and thereby initially nar-
rows the search, allowing it to broaden as time permits. This integration of
prioritized planning into a systematic search framework exemplifies how pri-
oritization strategies can scale to thousands of agents while retaining solution
quality.

Having introduced methods spanning pure sequential planning (CA˚, TP),
adaptive priority exploration (PBS), and dynamic one-step iterative meth-
ods using prioritized planning (PIBT, LaCAM˚), we now examine hybrid
approaches that combine prioritized planning with iterative refinement using
coupled planning.

MAPF-LNS [78] applies Large Neighborhood Search [79] to MAPF as an
anytime framework. Starting from an initial solution, it iteratively selects
subsets of agents, called neighborhoods, discards their paths, and re-plans
them to reduce total cost. The algorithm can use either prioritized planning
or coupled search (CBS, Explicit Estimation CBS [80]) for re-planning —
empirically, prioritized planning performs best by enabling more re-planning
iterations within time limits, as opposed to fewer, coupled, re-planning itera-
tions. The algorithm adaptively selects which agents to re-plan using multiple
strategies, adjusting its approach based on which selection successfully im-
proves the solution. MAPF-LNS2 [81] extends this framework to start from
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infeasible collision-containing solutions and repairs them until collision-free,
rather than improving an already conflict-free solution. By minimizing col-
lisions first, then switching to cost optimization, MAPF-LNS2 dramatically
improves scalability — achieving higher success rates than all other methods
that they compare with while maintaining a ă 1% sub-optimality in 99.5% of
benchmark instances with known optimal solutions.

Planning and Improving while Executing (PIE) [82] introduces a hybrid
framework, combining prioritized and coupled planning through concurrent
planning and execution. PIE decouples planning from execution — agents
begin executing immediately while the planner continues improving uncom-
mitted paths. It uses LaCAM˚ for fast prioritized initial solutions and MAPF-
LNS for coupled refinement of agent neighborhoods, committing only k actions
at a time. This substantially reduces goal achievement time for both one-shot
and lifelong MAPF. PIE is extended in [83] for robust execution policies and
delay-aware re-planning, improving throughput up to threefold as execution
delays occur.

TSWAP [84] addresses Anonymous MAPF, where any agent can be assigned
to any goal. TSWAP uses prioritized one-step planning similar to PIBT,
starting from an arbitrary target assignment and planning agents sequentially.
At every time step, each agent either (1) stays where it is if located at its goal,
(2) moves toward its target if the next node is available, (3) swaps goals with
an adjacent agent that is occupying the next vertex toward its goal, (4) resolves
a deadlock by rotating goal assignments, or (5) waits. This flexibility in target
assignment combined with prioritized planning enables TSWAP to efficiently
handle Anonymous MAPF, solving instances with 2 000 agents near-optimally
within seconds while guaranteeing eventual goal achievement.

Prioritized planning has evolved significantly from simple sequential ap-
proaches to sophisticated hybrid frameworks. Early methods like Coopera-
tive A˚ established the paradigm but suffered from order-sensitivity. Subse-
quent work addressed this limitation through systematic priority exploration
(PBS), dynamic priority mechanisms (PIBT), and integration with search-
based frameworks (LaCAM˚). Modern approaches increasingly combine pri-
oritized initialization with coupled refinements (MAPF-LNS, PIE), leveraging
the computational efficiency of sequential planning while recovering solution
quality through iterative improvement. The spectrum ranges from purely se-
quential methods achieving polynomial complexity to hybrid frameworks that
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approach near-optimal solutions. While prioritized planning sacrifices com-
pleteness guarantees, its computational tractability makes it the dominant
approach for practical large-scale applications, with recent methods scaling to
thousands of agents.

Windowed Planning

The concept of planning within a limited time-frame, know as windowed plan-
ning or windowed search, has been used in many fields for a long time. The
moving horizon approach used frequently in Model Predictive Control can be
traced back to the 60’s [85], with similar ideas from Bellman on finite-horizon
problems [35] laying the foundation of large parts of Dynamic Programming.
Planning within a horizon is an appealing way to reduce computational com-
plexity, as the problem can then be broken down into sequential steps, starting
at the current time and planning each window sequentially until a full solu-
tion is found. The drawback of this is often that guarantees of optimality
are forfeited, similar to when using prioritized planning, as the full problem
is never considered in its entirety. Several methods from the previous section
are revisted here.

As the name suggests, Windowed Hierarchical Cooperative A˚ (WHCA˚)
applies windowed planning. Figure 3.3 illustrates WHCA˚’s approach: agent
movements are planned within a w-timestep window into the future, ensuring
that collisions are avoided within this window. Thereafter, h ă w timesteps
(specifically, h “ w{2 in WHCA˚, while [14] generalizes h) of actions are
committed, upon which the movements for the next w-timesteps are com-
puted. Results in [75] show that windowed planning offers faster computation
times at the cost of potential incompleteness, with smaller window sizes being
particularly susceptible to deadlocks.

PIE takes a fundamentally different approach to windowed planning com-
pared to WHCA˚. Instead of planning for only a fixed window of w timesteps
ahead, PIE generates an initial feasible plan for each agent to reach their
goal and iteratively refines these plans during execution. As refinement oc-
curs, only the next k actions of the currently best solution are committed to
and executed by agents. In the meantime, the planner continues refining the
remainder of the plan beyond these committed actions. Thus, the commit-
ted interval k defines which actions of the currently best plan are executed,
while that plan is continuously refined from the end of the committed portion
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Commit

Figure 3.3: Windowed planning can be done by planning w timesteps into the
future, committing h ă w timesteps of actions, and then repeating
from h timesteps in the future.

onward.
Rolling Horizon Collision Resolution (RHCR) [14] uses a windowed ap-

proach similar to WHCA˚ to solve LMAPF. This approach is favorable in
LMAPF as it keeps agents continuously engaged, avoiding idle time and thus
increasing throughput, while generating flexible plans that adapt to contin-
uously incoming tasks. Multiple solvers are tested for planning within the
w-timestep window: CA˚ [75], PBS [77], CBS [60], and Enhanced CBS [67].
RHCR demonstrates two key contributions. First, it provides a flexible frame-
work for adapting MAPF solvers to the LMAPF problem, through windowed
planning. Second, the work highlights the scalability of windowed approaches
compared to solving the full problem, demonstrating that resolving collisions
over long time-horizons does not necessarily lead to significantly higher qual-
ity solutions. This windowed approach enables solving problems with up to
1 000 agents in large warehouse maps.

Windowed MAPF with Completeness Guarantees (WinC-MAPF) [86] solves
MAPF using a windowed approach while ensuring completeness. A drawback
of most windowed methods is that they can get stuck in deadlocks and live-
locks, typically when the size of the window is smaller than the length of an
escape plan. WinC-MAPF addresses these issues by introducing a memory
mechanism that prevents agents from repeating unproductive movement pat-
terns. It achieves this through an idea from single-agent path finding: when
an agent visits a state that does not lead to progress, the state is marked
with a penalty. Future planning therefore avoids these unproductive states.
However, to make this approach computationally tractable, WinC-MAPF fo-
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cuses its tracking on small groups of agents that actually interact with each
other. This makes the approach practical while maintaining completeness.
The framework is flexible enough to work with extremely short planning hori-
zons, one of their key contributions being Single-Step CBS [86] which plans
only one timestep ahead.

Similar to WinC-MAPF, TSWAP [84] is also able to find solutions — al-
though, for the Anonymous MAPF problem — by planning with a window of
one timestep into the future and also maintaining completeness. It does this
by leveraging the problem’s inherently flexible goal assignments. Due to its
one timestep strategy, TSWAP can apply to both one-shot and lifelong Anony-
mous MAPF. For offline problems, the short planning horizon allows for rapid
computation, allowing for problems with up to 2 000 agents being solved [84].
In online settings, the one-timestep approach provides inherent robustness
and flexibility to execution delay uncertainty and incoming tasks. That is, by
re-planning at every timestep, delayed agents that fall behind schedule or en-
counter obstacles are naturally accommodated for, making TSWAP suitable
for many real-world applications.

These windowed approaches highlight both the appeal and challenges of
horizon-limited planning for MAPF. The fundamental trade-off is the same
as for prioritized planning and remains consistent across methods: windowed
planning offers significant computational advantages — enabling faster com-
putation times, adaptability to dynamic environments, and scalability to hun-
dreds and thousands of agents — though at the cost of optimality and, in some
cases, completeness. However, the diversity of approaches shows different ways
of managing these tradeoffs. WHCA˚ and RHCR represent classical planning
within fixed horizons, prioritizing computational speed while accepting the
risk of deadlocks. PIE decouples execution from planning, continuously refin-
ing the solution while committing only to short action sequences, effectively
blending advantages of windowed and full-horizon planning. WinC-MAPF
tackles the completeness problem, showing that windowed planning — even
with a window of only one timestep — does not necessarily sacrifice theoreti-
cal guarantees. Together, these methods highlight that windowed planning is
not a single technique but a spectrum of approaches, each suited to different
applications with different requirements on computational efficiency, solution
quality, and robustness.
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Figure 3.4: Illustration of dimensional simplification, where 3-dimensional space-
time (x, y, t) is simplified to 2-dimensional space (x, y).

Dimensional Simplification

In this section — the last with a dedicated solution approach — we discuss
three methods: Space-Order CBS [87] and the already-introduced WHCA˚ [75]
and TSWAP [84]. These methods leverage simplifications in the typically
three-dimensional space in which agents move, consisting of two spatial di-
mensions and one time dimension. Figure 3.4 visualizes dimensional simplifi-
cation, showing how a 3-dimensional space-time is simplified by removing the
time dimension.

The hierarchical part of WHCA˚ computes heuristics by discarding the time
dimension and only considering the two spatial dimensions. More specifically,
it uses an A˚ search going backwards through the map, computing the shortest
spatial distance from every position to that goal. This precomputed spatial
distance serves as an admissible heuristic for the space-time A˚— that is, an
agent can never reach the goal faster than this spatially computed lower bound
allows. The heuristic is computed once per goal and then used repeatedly
throughout all windowed space-time searches, providing an early example of
dimensional simplification for achieving computational efficiency.

TSWAP essentially eliminates the time dimension entirely from the search,
with the one-timestep planning being done entirely in the spatial dimension.
That is, since the planning is done with a horizon of one timestep, agent’s
actions do not depend on planning through the time dimension but instead
depend on rules based on the current spatial configuration. Concretely, the
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action that an agent takes at some timestep depends entirely on its current
location and the current locations of other agents. When agents move, they
move according to time-independent planning — abandoning all timing as-
sumptions such as synchronization and delay probabilities. This approach
represents a fundamental reduction from the three-dimensional space-time
problem to a purely spatial problem. As a result, the algorithm runs excep-
tionally fast, solving instances with up to 2 000 agents near-optimally within
seconds. However, these results must consider that TSWAP solves the Anony-
mous MAPF problem, which allows for goal swapping. Nonetheless, the al-
gorithm provides an important perspective on dimensional simplification and
demonstrates how problem specific flexibility can compensate for extreme tem-
poral short-sightedness.

Space-Order CBS (SO-CBS) [87] is an adaptation of CBS [60], where high-
level branching is done on space-visitation orderings rather than on spatial-
temporal constraints. The key insight is to view paths as sequences where
agents visit specific locations in relative orders (e.g., 1st vs 2nd) as opposed
to specific timesteps. When a conflict is detected between two agents at a
location, resulting in branching in the high-level constraint tree, each branch
enforces an ordering between the two agents: one specifies that agent A visits
the location before agent B, while the other specifies the reverse ordering.
The low-level search then finds paths for each agent, satisfying the ordering
constraints present at the current high-level node. In this way, the high-level
search replaces absolute time with relative orderings, operating in the space
of all possible visitation orders rather than the three-dimensional space-time
problem. This directly produces a Temporal Planning Graph that explic-
itly minimizes coordination requirements, leading to greater robustness when
agents experience execution delays.

These three approaches demonstrate distinct strategies for dimensional sim-
plification, each leveraging different problem-specific attributes. WHCA˚ uses
pre-computed spatial heuristics to guide space-time search, TSWAP elimi-
nates temporal reasoning to instead utilize purely spatial-based rules, and SO-
CBS transforms the time-dimension into a space of relative orderings. These
methods, and those discussed in previous sections, illustrate a key principle:
problem simplification requires identifying which aspects of the problem that
are essential for solution quality and which can be approximated or eliminated
based on specific problem characteristics.
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Learning-Based Approaches

Recent times have seen an immense growth in the use of machine learning
(ML) based methods, commonly attributed to the exponential increase in data
availability and cheap computing power [88]. Consequently, ML is finding its
way into the field of MAPF, with challenges related to representing a MAPF
state, planning agent actions, and executing actions in uncertain real-world
environments [89]. In this section, we discuss the relatively new field of ML-
based methods for solving MAPF.

PRIMAL [62] is a decentralized framework for solving MAPF, where the
actions of each agent are governed by a policy based on the agent’s observable
environment. The policy is trained with Reinforcement Learning (RL) to find
efficient single-agent plans, and Imitation Learning (IL) from a centralized
planner that considers the movements of all agents jointly. This method is for
grid-worlds, where an agent’s state is the 10ˆ 10 grid centered at the agent’s
position, containing information about obstacles, the agent’s goal, and other
agents’ positions and goals. The policy is approximated using a Deep Neu-
ral Network (DNN) that takes the agent’s state as input and returns, among
other values, a five-vector with one element for each possible action (to move
in each of the four cardinal directions, or stay). Since this is a decentralized
framework, the number of agents has little impact on the computation time as
they each compute their own actions. Instead, the limitation lies in the kinds
of problems can be solved. Results are promising on maps with relatively
few obstacles, with high success rates with up to 1 024 agents. However, per-
formance degrades in obstacle-dense environments compared to sparse maps
where PRIMAL can match or exceed centralized planners.

PRIMAL2 [63] extends PRIMAL to MAPF and LMAPF, scaling to thou-
sands of agents on obstacle-dense maps. The approach incorporates richer
state representations and relies more heavily on IL from centralized planners
to learn jointly favorable behaviors that would be difficult to acquire through
RL alone. Results demonstrate improvements over PRIMAL, however, the
gains vary depending on scenario complexity and agent density.

Recent work [64] explores using Graph Neural Networks (GNNs) [26] for
solving MAPF. They too focus on decentralized control, however, extending
to allow communication between nearby agents. A Convolutional Neural Net-
work [90] is used to extract features from the agent’s state, which are then use
as node-features in the GNN to allow for the communication between agents.
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Finally, an action-vector (similar to PRIMAL) is returned. Although no com-
parison is done with PRIMAL, results do show how communication using the
GNN substantially increases the success rate compared to without.

FOLLOWER [65] addresses decentralized LMAPF by combining RL with
more a more traditional search algorithm. First, each agent plans a path using
a heuristic search algorithm which indirectly avoids potential collisions with
other agents. Specifically, A˚ is used to plan the agent’s path, with the cost
of transitioning to a cell consisting of both a static and dynamic component.
The static cost of a cell is inversely proportional to the average cost of the
paths starting in the cell and ending in all other cells. This is motivated by
considering that cells with lower path costs are more likely to be included
in shortest paths from one node to another, and therefore more likely to be
congested, such cells should therefore be avoided. The static cost depends
only on the map topology and therefore does not change. The dynamic cost
of a cell is unique to an agent, simply being 1 if the agent observes another
agent there, 0 otherwise. A Recurrent Neural Network [91, 92] is used to
approximate a policy function, taking as input a 2ˆmˆm tensor (m being
the observation range), with one channel containing obstacle locations and the
other containing the current path and other agent locations. Thus, the policy
is trained to follow the agent’s path while avoiding other agents. Experiments
show superior throughput compared to, among others, PRIMAL2, with up
to approximately 200 agents. However, RHCR with a 10 second time limit
outperforms FOLLOWER by a large margin on warehouse maps.

MAPF-GPT [66] relies entirely on IL to solve both MAPF and LMAPF in
a decentralized fashion. A transformer network [27] to taught to approximate
an expert MAPF solver by learning from recorded observation-action pairs.
LaCAM is used to solve MAPF problem to generate 1 billion observation-
action pairs, and RHCR is used to solve LMAPF problem to generate 90 mil-
lion observation-action pairs. Thus, LaCAM and RHCR are used as expert
MAPF solvers. Results show comparable performance compared to LaCAM
on MAPF problems with fewer agents, in the 8 ´ 32 range. However, the
success rate declines with more agents. Additionally, they test MAPF-GPT
— with and without fine-tuning on the LMAPF expert data — on LMAPF
problems. Both versions of MAPF-GPT is outperformed by both RHCR and
FOLLOWER on all maps.

The emerging ML-based MAPF methods show potential, however, current
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approaches typically handle tens to hundreds of agents compared to the hun-
dreds to thousands routinely solved by classical methods like CBS, RHCR, and
LaCAM˚. While methods such as PRIMAL, FOLLOWER, and MAPF-GPT
show promise in specific scenarios, they generally under-perform state-of-the-
art classical solvers. As the field matures through improved architectures,
larger datasets, and hybrid approaches, learning-based methods may develop
complementary strengths to traditional MAPF solvers.

3.4 Answering Research Question 1
To answer RQ1— How can Lifelong MAPF algorithms achieve real-time per-
formance for large-scale industrial fleet management? — we draw conclu-
sions based on the surveyed MAPF and LMAPF methods in Section 3.3, with
Paper A applying several of the identified strategies for a computationally
tractable LMAPF solver.

We identified three main strategies for achieving scalable MAPF and LMAPF
methods: prioritized planning, windowed planning, and dimensional simplifi-
cation. Several methods use combinations of these strategies. For instance,
WHCA˚ applies prioritized planning and windowed planning at its core and
dimensional simplification for computing heuristics, resulting in one of the ear-
liest computationally tractable algorithms. TSWAP exemplifies a more recent
application of these principles by applying prioritized planning and one-step
windowed planning using PIBT, and operating entirely in the spacial dimen-
sion with rule-based movements. TSWAP is complete and thereby shows that
these strategies do not necessarily lead to the loss of theoretical guarantees.
Therefore, these three main strategies provide a selection of ways to achieve
real-time performance for large-scale industrial fleet management.

Paper A verifies these insights by applying several of the identified strate-
gies, resulting in a computationally tractable Fleet Manager (FM) for solving
the LMAPF problem. The FM applies prioritized planning, with agents being
ordered by distance to the next task in the queue. Furthermore, FM applies
dimensional simplifications in its conflict manager when handling cascading
conflicts (where a conflict arises from an agent moving to avoid an earlier
conflict). Such conflicts are handled entirely in the spatial domain to reduce
complexity, with a strategy similar to PIBT. However, in FM this leads to po-
tential deadlocks, as described with more detail in Paper A. Finally, the path
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planner in FM applies a strategy similar to FOLLOWER’s dynamic cost.
That is, when an agent’s path is planned from its current location to its goal
location, transition costs are temporarily increased if another agent is sched-
uled to occupy it. This is also done entirely in the spatial domain, thereby
reducing complexity by avoiding the time dimension. Experiments comparing
the Fleet Manager to RHCR show how the Fleet Manager is able to achieve
superior throughput, with computation times in the milliseconds.
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CHAPTER 4

Lifelong Multi-Agent Path Finding in Continuous Time

The LMAPF problem introduced in Chapter 3 builds upon several underlying
assumptions: time is discrete, every agent executes an action at every timestep
and takes exactly one timestep to complete it, and agents are represented as
sizeless points. In the real world, time is continuous, agents take space, and not
all environments can be represented by neat grid-networks with equal-length
edges. Therefore, the assumptions made in LMAPF simplify the problem by
ensuring that agents move synchronously instead of asynchronously, and that
collision detection does not depend on the actual shapes of the agents but
instead on their location on the graph. Additionally, artificially constrain-
ing the problem to only allow for actions at fixed timesteps can potentially
lead to worse solutions than without such constraints, particularly if agents
must wait idly until the next timestep to begin the next action when they
otherwise could have proceeded along the path to their goal. As we will see
in this chapter, extending LMAPF to the continuous-time domain expands
the representational power of the graph by allowing any-length edges and in-
corporating real-world spatial properties that otherwise are abstracted away.
However, as there are no free lunches, we will explore several complications
that emerge when moving from discrete to continuous time.
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This chapter begins with a formal definition of the continuous-time LMAPF
problem (LMAPFR) and comparisons between it and LMAPF. Thereafter,
several challenges that emerge when time is continuous are highlighted. Fi-
nally, research question RQ2 is answered through the contents of this chapter
and Paper B.

4.1 A Formal Definition of LMAPFR

Beginning with formal definitions, an LMAPFR problem can be defined by a
tuple

xG, M, N, s, T y

where G “ xV, E , Wy is a directed, weighted, and connected graph with vertices
V, edges E Ď V ˆ V, and weights W : E Ñ R` mapping edges to traversal
times; M is a metric space, with Mpvq mapping a vertex v to a d-dimensional
position in Rd; N agents each start at a unique vertex by s : t1, .., Nu Ñ V;
and T is a possibly unbounded multiset over V ˆ R containing tasks, where
task τ “ xv, ty P T is released to the system at time t and is completed once
an agent is located at v at some time ě t.

There exists two types of actions: move actions and wait actions. Move
actions can be formulated in various ways. We adopt a simplified formulation
where agents are assumed to traverse edges in straight lines. Thus, a move
action m “ xe, ty P EˆR means that an agent traverses e “ pv, v1q in a straight
line from Mpvq to Mpv1q, starting at time t, taking Wpeq time to complete.
An alternative definition of a move action is provided in Chapter 5, where each
move action corresponds to one of potentially several trajectories starting at
Mpvq and ending at Mpv1q. Although this formulation of a move action could
likely apply to the LMAPFR problem with relatively little modification, we
adopt the straight-line formulation. Let fromv

pmq “ v and tovpmq “ v1 denote
the start and end vertices, and fromt

pmq “ t and totpmq “ t `Wpeq denote
the start and end times.

A wait action w “ xv, t1, t2y P V ˆ R ˆ R, with t1 ă t2, means that an
agent remains idle at Mpvq from time t1 until t2. For such a wait action, let
fromv

pwq “ tovpwq “ v, fromt
pwq “ t1, and totpwq “ t2.

Each agent i P r1, .., N s follows a plan πi “ xa
i
1, . . . , ai

ny consisting of actions,
with each action being either a move or wait action. A plan πi is valid if it
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4.1 A Formal Definition of LMAPFR

(a) A move-move conflict xmi, mjy, with
both agents moving.

(b) A move-wait conflict xmi, wjy, with
agent i moving while agent j waits.

Figure 4.1: Illustration of a move-move and a move-wait conflict between two
agents i and j. Each agent’s position at the start and end time of
the collision is shown by a dashed circle.

starts at i’s starting vertex at time 0,

fromv
pai

1q “ spiq ^ fromt
pai

1q “ 0,

and each subsequent action is connected in space and time to the previous,

fromv
pai

kq “ tovpai
k´1q ^ fromt

pai
kq “ totpai

k´1q, @k “ 2, .., n.

Each agent is associated with a hypervolume in M, describing the physical
space that its body occupies. LMAPFR commonly considers 2D M space
where agent shapes are described by areas. For the remainder of the text,
we remain consistent with MAPF literature by referring to agent shapes as
volumes [15]. We say that the agents are volumetric, sometimes referred to
as large agents [93]. Two agents collide when their volumes intersect; if the
volumes of agents i and j intersect while executing the actions ai and aj ,
respectively, then xai, ajy is a conflict. A conflict xmi, mjy containing two
move actions is a move-move conflict, and a conflict xmi, wjy containing a
move and a wait action is a move-wait conflict. Figure 4.1 illustrates these
two conflict types. Two plans πi and πj conflict if there exists a conflict in
πi ˆ πj . A joint plan Π “ tπ1, . . . , πNu contains a plan for each agent. A
solution is a joint plan containing only valid plans and no two of its plans
conflict with each other.

The main difference with discrete-time LMAPF is that in LMAPFR agents
can execute actions at any real-valued time instead of at every timestep, and
tasks can be released to the system at any real-valued time. There are a num-
ber of consequences that follow from this. In the discrete-time formulation,
the number of unique configurations which the system may be in is count-
able; at any timestep, each agent is located at a unique vertex. On the other

49



Chapter 4 Lifelong Multi-Agent Path Finding in Continuous Time

hand, the set of possible configurations in the LMAPFR problem is dense
and uncountable; agents can be located at any vertex or on any part of an
edge, since they may begin traversing edges with any real-valued length at any
real-valued time. Consequently, the search space for the LMAPFR problem
is dense, therefore requiring more sophisticated search routines than in the
discrete-time variant.

Another notable difference when going from LMAPF to LMAPFR is that
volumetric agents must be considered. In LMAPF, the physical shape of
the agents do not matter since conflicts only occur when agents occupy the
same vertex or traverse the same edge in opposite directions at the same
time. Based on this formulation, the graph does not need to encode spatial
information about the environment; only the graph’s topology is used when
computing plans and detecting collisions, not the physical positions that each
vertex and edge correspond to in the real world. Moving to continuous time, if
these simplified definitions of conflicts were to be used, then agents can move
arbitrarily close to each other without a conflict occurring. For instance, an
agent can leave a vertex at some arbitrarily small time before another agent
arrives there, thus avoiding a collision despite the agents being arbitrarily
close to each other. A solution including such an event is practically useless,
since robots in the real world take space and would therefore collide. Thus,
the LMAPFR problem must consider volumetric agents if the solutions are
they have practical value. An agent’s volume in metric space M describes
its physical shape, allowing for a natural definition of a conflict: two agents
collide when their volumes intersect. Therefore, two agents’ plans conflict if
the agents collide at any time while following these plans. With this definition
of a conflict, agents can no longer move arbitrarily close to each other, leading
to solutions that at least consider the physical size of agents.

This definition of a conflict between two volumetric agents requires the
explicit consideration of the agents’ positions in M. Therefore, the graph
must now encode spatial information about the environment. Hence, this is
the reason why every vertex v P V maps to a position in M, and a traversal
along an edge pv, v1q P E represents a trajectory from Mpvq to Mpv1q.

Figure 4.2 illustrates an LMAPFR problem with three agents on a graph
with non-unit-length edges. Since agents can begin and finish traversing edges
at any real-valued time, and tasks enter the system at real-valued times, the
agents’ movements are not synchronized to start and end at regular timesteps.
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past future
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Figure 4.2: An LMAPFR problem with three agents (A, B, C) and the current
system time set to t “ 8.0. Top: A timeline of agent movements and
task releases. Completed edge traversals are marked on each timeline,
and task assignments are denoted by arrows. The tasks in the future,
such as τ7 and later, are unknown at the current time and therefore
cannot be acted on. Bottom: An illustration of the agents in the
environment as they attend to tasks, showing at time t “ 8.0 their
starting positions (rings), current positions (circles), completed move-
ments (full lines), and planned future movements (dashed lines).
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Agents are also volumetric, unlike in LMAPF, such that movements must be
planned to avoid agent volumes from intersecting.

To our knowledge, Paper B is the first to address the LMAPFR problem.
We have since discovered one other related work [94] that has emerged since
Paper B’s dissemination, which we briefly introduce here. This work considers
a variant of LMAPFR with certain restrictions and extensions. The approach
restricts graphs to grid-networks where circular agents have diameters equal
to the unit-length of edges. However, it extends the LMAPFR problem by
incorporating kinematic constraints, modeling agents that move with constant
acceleration, maximum speed, and constant rotational speed. Additionally,
the work addresses tasks containing both pickup and delivery components.
That is, this is a form of continuous-time MAPD. The method employs a
Dijkstra-like search strategy that incrementally finds paths for agents while
avoiding collisions with previously scheduled routes. In other words, both
Paper B and [94] share a common approach by applying strategies related to
prioritized planning and Safe Interval Path Planning [33] (described in the
next section).

4.2 Challenges with Extending LMAPF to
Continuous Time

The four main challenges encountered when extending discrete-time LMAPF
to continuous-time are discussed here. The first two challenges are that ac-
tions now occur asynchronously between agents, and continuous time causes
the search space to be dense and uncountable. The third challenge is that
conflict resolution becomes a more complex problem to solve — as a conse-
quence of agents being volumetric — since a moving agent can cause conflicts
with agents in more ways than when only considering collisions on the same
edge or at the same vertex. This expanded range of possible conflict occur-
rences hinders the use of many existing discrete-time methods. Lastly, colli-
sion detection between two volumetric agents is computationally demanding.
Lifelong problems, with the known information evolving over time, inherently
model real-time systems where runtime is limited. Thus, the computational
complexity of collision detection must be addressed to achieve scalability.
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Asynchronous Actions in a Dense Search Space

Agents move asynchronously in LMAPFR. This fundamental departure from
discrete-time planning introduces two interconnected challenges that many
existing discrete methods cannot address, as will be discussed here.

The first challenge relates to the coordination of agent actions. Discrete-
time MAPF methods, such as PIBT [72] and RHCR [14], rely on synchro-
nization points where all agents’ states are considered simultaneously. For
instance, PIBT assumes that every agent is available to execute the next ac-
tion at the current timestep. From that state, it plans the next action for
each agent sequentially. However, when edge traversals take arbitrary dura-
tions, no natural synchronization point exists — agents complete actions at
different times. This problem persists with larger time windows, as in RHCR
which applies windowed planning. While agents might start a planning win-
dow synchronously, their actions complete at different times, leaving them
unsynchronized at the window’s end. One might artificially impose synchro-
nization by adding wait actions so that all agents finish simultaneously, but
such unnecessary delays degrade solution quality.

While PIBT and RHCR are two examples of methods that plan within a
time window, TSWAP [84] instead plans the next actions based purely on the
spacial configuration. However, this approach still fails for the same funda-
mental reason — it requires a well-defined “current state” where all agents
are ready to execute the next action. With asynchronous agents completing
actions at different times, there is no single spatial configuration to plan from.

The second challenge relates to the configuration space in continuous time
being dense. In discrete time, every action takes exactly one timestep to exe-
cute. Thus, the set of all possible configurations at any timestep is countable.
On the other hand, the configuration space in continuous time is dense since
at any given time, agents need not only be located at some vertex but can
also be located at any part of an edge. How should planners navigate such
a dense configuration space? Fixing all wait actions to a constant duration
and chaining them for longer delays, for instance, simply reintroduces time
discretization, abandoning the continuous-time formulation.

To address both challenges — asynchronous actions and dense configuration
spaces — many continuous-time MAPF approaches use Safe Interval Path
Planning (SIPP) [33], a method for planning the continuous-time movement
of a single agent in an environment with dynamic obstacles. In broad terms,
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SIPP finds a single-agent shortest path in a graph while treating already-
planned agents as moving obstacles that must be avoided. SIPP uses safe
intervals — a time interval during which an agent may occupy a vertex or
begin traversing an edge without collision.

Let the movements of a number of dynamic obstacles on a graph G “

xV, E , Wy be known. For each vertex v P V, we let the set ts
v Ď R contain

every time during which it is safe for the agent to occupy v without colliding
with any of the dynamic obstacles. For instance, if an obstacle passes through
v during some time interval, then all times in that time interval are unsafe and
therefore not included in ts

v. Likewise for all edges e P E , let ts
e contain every

time when it is safe for the agent to begin traversing e without colliding with
any of the dynamic obstacles. Provided that the agent only occupies vertices
and begins traversing edges during safe intervals, it will not collide with any
of the dynamic obstacles.

In the SIPP search, a state is defined by a tuple xv, Iy P V ˆR2 containing
a vertex v and a maximally connected safe interval I Ď ts

v. Suppose that the
agent arrives at vertex v at time t, this corresponds to the state xv, Ivy where
t P Iv. From this state, we now aim to find all times when is it is safe to
traverse a connected edge e “ pv, v1q P E .

Since the agent arrived at v at t, the agent can only traverse an edge to move
away from v at some time ě t. Additionally, letting Iv “ rtv

1, tv
2q, the agent

must leave v before tv
2 else a collision will occur. Furthermore, the agent can

only traverse an edge e at some safe time in ts
e, and arrive at the destination

vertex v1 at some safe time in ts
v1 . Thus, the set of all times when the agent

can safely traverse e is

ts
v,e “ rt, tv

2q X ts
e X ts

v1´Wpeq

where ts
v1´Wpeq

“ tt1 ´Wpeq | t1 P ts
v1u to compensate for e taking Wpeq time

to traverse. For every maximally connected interval rt1, t2q P ts
v,e, a move

action xe, t1y connects the state xs, Ivy to the state xv1, Iv1

y where t1`Wpeq P

Iv1 . Notably, SIPP always selects the earliest time t1 within a safe interval to
traverse the edge e.

To find a shortest-duration plan π to move the agent from a starting vertex
s P V at time t0 to a goal vertex g P V, SIPP performs a graph search (such
as Dijkstra’s [29] or A˚ [30]) from the state xs, Ivy with t0 P Iv to any state
xg, ¨y. The resulting path contains the move and wait actions constituting π.

54



4.2 Challenges with Extending LMAPF to Continuous Time

The figure on the cover of this thesis provides a visualization of the results
from applying SIPP. For the agent at the center of the graph, SIPP is used
to find the earliest time when the agent can arrive and remain indefinitely at
every vertex in the graph, while avoiding collisions with the other three agents
following their respective plans. Each vertex’s color represents the computed
time.

SIPP is used in many continuous-time MAPF method, such as Papers B
and C, Continuous-time CBS (CCBS) [16], and Prioritized SIPP (PSIPP) [95].
SIPP allows for the discretization of the continuous-time domain without en-
forcing fixed timesteps, thereby offering an approach to exploring the dense
continuous-time configuration space in a structured and non-constraining way.

Windowed planning is particularly suitable for lifelong problems since plan-
ning with a limited depth into the future allows for a higher degree of adaption
to new incoming information. To our knowledge, however, the handling of
asynchronous actions by way of windowed planning is relatively unexplored in
the existing continuous-time MAPF literature. Both CCBS and PSIPP solve
the one-shot continuous-time MAPF problem — CCBS is based on CBS [60]
and PSIPP plans each agent’s complete path by prioritized planning using
SIPP. Thus, CCBS plans all agents jointly (intractable in real-time settings
with many agents) and PSIPP computes entire agent plans (less suitable for
constantly changing environments). Therefore, neither of these methods ad-
dress the online planning of LMAPFR where asynchronous agent plans are
extended in real-time.

Resolving Collisions between Volumetric Agents
When agents are modeled as points on a graph, a move action creates conflicts
with only a limited set of other agents — specifically, agents at the destination
vertex or traversing the same edge in the opposite direction. However, the
sweep volume generated during movement by volumetric agents can collide
with any agent within the spatial vicinity. This expanded range of conflicts
fundamentally changes the nature of collision resolution.

Common conflict resolution strategies from discrete-time sizeless-agent meth-
ods cannot directly account for this increased potential for conflicts. Con-
sider PIBT: when an agent evaluates a potential edge traversal, it checks only
whether another agent will occupy the destination vertex at the next timestep.
If that vertex is occupied, the agent seeks an alternative; if an agent is cur-
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rently there but unplanned, PIBT attempts to move that agent away. With
volumetric agents, however, conflicts can occur not only at the destination
vertex but also with agents at nearby vertices or on nearby edges. The local-
ized conflict-checking assumption that makes PIBT efficient simply does not
hold.

Existing MAPF solvers for volumetric agents employ different strategies,
each with distinct limitations for online planning. CBS based methods, such
as CCBS and Multi-Constraint CBS [93], progressively add constraints to
resolve conflicts as they are detected, until no conflicts occur. While these
methods are complete and optimal, they suffer from scalability issues that
make them less suitable for online planning with limited computation time.

PSIPP combines prioritized planning with SIPP, sequentially planning each
agent’s complete path while treating already-planned agents as dynamic obsta-
cles. This approach is well-suited for one-shot MAPF, where all agents must
reach their goals and computational resources are sufficient to plan complete
paths. However, in online settings such as LMAPFR, planning each agent
all the way to its goal creates inefficiencies for two reasons. First, computa-
tion time is limited in online problems. PSIPP’s sequential approach risks
exhausting the computational budget before all agents have been planned,
leaving some agents without plans entirely. It is more effective to allocate
computation power such that all agents receive plans extending into the near
future, rather than some agents receiving complete plans while others remain
unplanned. Second, LMAPFR operates in a dynamic environment where avail-
able information constantly updates as new tasks enter the system. Planning
paths far into the future forces a dilemma: either abandon already-computed
plans to incorporate new information (wasting computational effort), or delay
the system’s response to new information until the precomputed plans are ex-
ecuted (reducing responsiveness). By planning only into the near future and
not beyond that, the system can more readily adapt to incoming information.

Therefore, online settings require a fundamentally different planning paradigm
from existing continuous-time methods — one that extends plans for all agents
incrementally and uniformly into the future, rather than planning agents se-
quentially to completion.
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Real-Time Collision Detection between Volumetric Agents

With volumetric agents, collision detection becomes significantly more compu-
tationally intensive [96]. Unlike point-based collision detection, which simply
checks whether two agents occupy the same vertex or traverse the same edge,
volumetric collision detection requires checking for overlapping volumes. De-
tecting intersections between arbitrary volumes is a computationally expensive
operation, making it unsuitable for real-time systems where computation time
is strictly limited.

This computational challenge can be addressed by shifting the burden from
runtime to preprocessing [95, 96]. Rather than computing volume intersec-
tions in real-time, we can leverage beforehand knowledge to pre-compute colli-
sion information which can then be used in real-time to compute safe intervals
for SIPP, thereby enabling faster runtime performance.

Consider an agent executing a move action m starting at time t “ 0. For
every other possible move action m1, we can pre-compute the time interval
Im,m1 such that if another agent begins executing m1 at some time t P Im,m1 , a
collision will occur. Similarly, for every vertex v P V, we can pre-compute Im,v

representing the time interval during which another agent waiting at v would
collide with the first agent executing m. By computing all such intervals for
every move-move and move-vertex pair, we obtain a complete lookup structure
for collision detection during runtime. When two agents execute actions at
specific times — for instance, agent 1 executes move action m at time t and
agent 2 executes m1 at time t1 — collision detection reduces to a simple lookup
and interval check: retrieve Im,m1 and check whether t1 ´ t P Im,m1 . If so, a
collision occurs. The memory and computation complexity of such a lookup
table is O

´

pm` |V|q2
¯

with m being the number of move actions. However,
in most environments the majority of move-move and move-vertex pairs are
too spatially distant compared to the size of the agents for a collision to occur.
This is useful for both memory and computation; no value needs to be stored
for such pairs, and using standard graphical collision detection methods [97]
can be used to reduce the number of pairs that are evaluated. Therefore, this
method is likely even more viable than what the quadratic complexity from
above suggests.

The total computation and memory requirements of this approach are in-
flated by fleet heterogeneity. Intersection intervals are based on agent volumes;
if all agents share the same shape, a single lookup table suffices. However, for
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Figure 4.3: Two agents respectively traversing e1 “ pv11, v12q at time t “ 0 and
e2 “ pv21, v22q at time t “ δ. Both agents are circular, respectively
with radii r1 and r2.

a heterogeneous fleet with n distinct agent types (each with a unique shape),
collision intervals must be computed for every type pair, requiring n2 lookup
tables. With each lookup table’s memory and computation complexity be-
ing O

´

pm` |V|q2
¯

, if every one of the N agents have a unique volume then

the upper-bound on the total complexity is O
´

pm` |V|q2 ¨N2
¯

. Therefore,
although this method is most efficient for homogeneous fleets, the memory
complexity is bounded by a polynomial in the size of the graph and number
of agents and is therefore likely a viable method to achieve real-time per-
formance. It is also possible in practice to approximate all agents with the
same volume, such as a sufficiently large circle, ensuring that all agents’ true
volumes are contained within the approximation.

For specific agent volumes, efficient algorithms exist for computing col-
lision intervals. In [95], a method is proposed for circular agents travel-
ing along straight edges at constant speed, with computation complexity
O pp|E | `Mq log |E |q where M is the number of edge pairs close enough for
potential collisions. Their approach builds on the Bentley-Ottmann algo-
rithm [98] for detecting line segment intersections, thereby avoiding compu-
tations for every |E |2 edge pairs. For any two intersecting edges in E , the
corresponding collision interval can be computed analytically [96]:

Suppose that two agents each traverse a respective edge, shown in Fig-
ure 4.3: agent 1 traverses e1 “ pv11, v12q starting at time t “ 0 and agent 2
traverses e2 “ pv21, v22q starting at time t “ δ, both traveling at constant
speed s. Let both agents be circular with radii r1 and r2, respectively. The
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agents’ velocity vectors are

V1 “
v12 ´ v11

|v12 ´ v11|
s and V2 “

v22 ´ v21

|v22 ´ v21|
s.

The agents’ positions over time are therefore

P1ptq “ v11 ` V1t and P2ptq “ v21 ` V2pt´ δq.

Observe that these position functions do not consider that the edges have
finite length; P1ptq is only valid for t P

”

0, |e1|

s

ı

and P2ptq is only valid for

t P
”

δ, δ ` |e2|

s

ı

. This will be addressed at a later stage. The squared distance
between the agents’ boundaries over time is

d2pt, δq “ |P1ptq ´ P2ptq| ´ pr1 ` r2q
2

“ pP1ptq ´ P2ptqq
2
´ pr1 ` r2q

2

“ pv11 ` V1t´ v21 ´ V2pt´ δqq
2
´ pr1 ` r2q

2

“ pv11 ´ v21
loooomoooon

v̄1

`pV1 ´ V2q
loooomoooon

V̄

t` V2δq2 ´ pr1 ` r2q
2

“ V̄ 2t2 ` 2V̄ V2tδ ` V 2
2 δ2 ` 2v̄1V̄ t` 2v̄1V2δ ` v̄2

1 ´ pr1 ´ r2q
2

“ At2 `Btδ ` Cδ2 `Dt` Eδ ` F

where

A “ pV1 ´ V2q
2, B “ 2pV1 ´ V2qV2,

C “ V 2
2 , D “ 2pv11 ´ v21qpV1 ´ V2q,

E “ 2V2pv11 ´ vv21q, F “ pv11 ´ v21q
2 ´ pr1 ` r2q

2.

This forms a conic section in the pt, δq-plane. The boundary at d2pt, δq “ 0
separates the space implying that a collision occurs from the space where no
collision occurs, shown in Figure 4.4 as an ellipse. A point pt1, δ1q within the
d2pt, δq “ 0 ellipse implies that if agent 1 begins traversing its edge at t “ 0
and agent 2 begins traversing its edge at t “ δ1, then at time t “ t1 the agents’
volumes will be intersecting. Agent 1 traverses e1 only during the time in-
terval

”

0, |e1|

s

ı

and agent 2 traverses e2 only during
”

δ, δ ` |e2|

s

ı

. Therefore,
a collision can only occur during these times, shown as a parallelogram in
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Figure 4.4: In pt, δq-plane, all interior points of the ellipse d2
pt, δq “ 0 imply that

the agents collide. The parallelogram contains all points when both
agents are on their respective edges. Thus, the intersection between
the ellipse and parallelogram contain points when a collision occurs
while the agents are traversing their respective edges. The minimum
and maximum δ-values in this region define the collision interval I.
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Figure 4.4. The space in the pt, δq-plane within the interior of both the par-
allelogram and the ellipse contains all pt, δq-points where a collision is both
possible and occurs. Thus, the minimum and maximum δ-value found among
these points defines the collision interval — the time interval during which if
agent 2 traverses e2, a collision will occur with agent 1.

This specific method for calculating collision intervals applies only to circu-
lar agents, traveling along edges at constant speed. However, the same general
framework can be used for arbitrarily shaped agents and move actions follow-
ing arbitrary trajectories: for each move-move and move-wait pair, compute
the time intervals (using any appropriate method) during which the agents’
volumes intersect. For circular agents traveling in straight lines with non-
negative speed, there will exist only one interval. However, in the general case
of non-straight-line move actions, there may be several disjointed intersection
intervals. In such cases, all intervals must be stored.

4.3 Updated Experiments for Paper B
After the publication of Paper B which introduces the Continuous-time Prior-
itized Lifelong Planner (CPLP), we discovered an error in the implementation
that lead to results indicating better performance than what would be possi-
ble in practice. This section is dedicated to highlighting these implementation
errors and detailing their corrections, performing new experiments, and dis-
cussing the results.

Implementation Corrections
The computation and execution timing of CPLP is illustrated in Figure 4.5. At
some time t, CPLP is given a computation budget ∆t to compute agent plans
starting at time tplan “ t ` ∆t. For a single prioritized agent-task-pair, an
entire plan from the agent’s current location to the task location is computed.
For all other agents, plans extending until at least tplan ` t̄ are computed to
move the agents toward, but not necessarily to, their task locations. That
is, t̄ is the approximate size of the planning window. Due to edges in the
environment graph having any real-valued weight, the agents’ plans do not
necessarily end at the same time. It is also possible in some cases that an
agent’s plan does not extend all the way until at least tplan ` t̄. This can
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happen if, for instance, there are no more tasks to assign to agents. However,
we can assume that the movements of most agents are planned until at least
tplan ` t̄. CPLP returns the newly computed plans, and a time tnext denoting
the start time of the next plans to compute. The time tnext is computed as
the maximum of tplan ` t̄ and tmin, with tmin being the minimum end-time
over all newly computed agent plans.

The time that CPLP actually needs to compute the plans, tcomp, should
ideally be less than the time available, tcomp ď ∆t. If tcomp ą ∆t, then
when CPLP returns plans, the time when those plans are supposed to begin
would have already passed, thereby invalidating them. On the other hand, if
tcomp ď ∆t, then the plans are valid and start at some time after they have
been computed. CPLP can then begin computing new plans at time t` tcomp.
In the original CPLP implementation, no guards ensured that CPLP only
begins computing new plans at the earliest from time t ` tcomp. This is an
error pertaining to the simulation of using CPLP in practice. Instead, new
plans were computed from time tnext ´∆t, without ensuring that t` tcomp ď

tnext´∆t. All experiments in Paper B use t̄ “ 1 and ∆t “ maxpN1.25, 500qms.
Assuming that tnext « t̄, the increasing value of ∆t with agent count N almost
certainly leads to t` tcomp ą tnext ´∆t for higher N .

Additionally, since t̄ “ 1 and ∆t “ maxpN1.25, 500q ms in all experiments,
it holds that ∆t ą t̄ for N ą 10001{1.25 « 251. This would then mean that
— assuming CPLP is ensured to only begin computing new plans after time
t`tcomp — the available time to compute new plans is longer than the duration
of those plans, meaning that constant engagement of agents to complete tasks
is not ensured. Instead, agents would occasionally have to wait idly while new
plans are being computed. To achieve continuous, never-ending movement so
that agents are always engaged with uncompleted tasks, we must ensure that
∆t ď t̄.

Experimental Setup and Discussions
The experimental setup is the same as in Paper B, however with some dif-
ferences. Most notably, CPLP’s computation time tcomp is used to ensure
that it is called earliest at t ` tcomp, better matching how it would be used
in practice. Additionally, we set t̄ “ ∆t. We ran 10 instances for each
N P t10, 25, 50, 100, 200, . . . , 1000u, with ρ “ t5, 10, 15u. A different sched-
ule for ∆t is used to better match the observed computation times with the
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Available Computation

Actual Computation

Execution

Figure 4.5: CPLP’s computation and execution timing. At t, CPLP is given ∆t

time to compute plans starting at tplan “ t ` ∆t. CPLP also computes
the time tnext when new plans should begin.

Figure 4.6: Benchmark results. Top: CPLP’s average and maximum computation
time (tcomp) for each agent count and number of vertices per agent
(ρ). The available computation time ∆t is also shown. Bottom: the
average throughput as a percentage of the incoming tasks.
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longer planning horizon t̄: ∆t “ maxpN1.5, 100q ms. All experiments are
run on a 2025 Mac Studio, 16-core M4 Max CPU, 64 GB RAM, macOS Se-
quoia (15.3). Besides these changes, all other parameters remain the same as
in Paper B.

The results are presented in Figure 4.6. The top part of the figure shows
the average and maximum computation time per call to CPLP, along with
the available computation time ∆t. Since the all computation times remain
below ∆t, this indicates that a real-world deployment of CPLP is viable for
up to 1000 agents. The lower part of the figure shows the achieved throughput
which remains around 100 % (with some deviation due to randomness in the
task release times), implying that CPLP is able to plan agents sufficiently well
to meet the specific task demand tested here.

These results suggest that CPLP is viable for real-world deployment, partic-
ularly for the agent counts often seen in industrial settings, which we believe
typically remain in the hundreds, if not less. We did not test for agent counts
beyond 1000. However, if the same trend continues then the computation time
will likely exceed ∆t when using the same schedule, ∆t “ maxpN1.5, 100q ms.
Higher values for ∆t could be used, but that would also mean that the plan-
ning horizon t̄ would also increase, leading to higher computation times as
well. Future work could look into quantifying the relationship between ∆t

and the observed maximum computation time, to obtain a function specify-
ing what value of ∆t would confidently result in CPLP’s computation time
not exceeding it. Further experimentation could also look into increasing the
rate of released tasks — currently at 1 tasks per agent every 20 seconds — to
find CPLP’s throughput limit.

4.4 Answering Research Question 2
To answer RQ2— What is required to extend discrete-time Lifelong MAPF
to continuous time while maintaining computational tractability? — four key
requirements emerge.

First, handling asynchronous agent actions. When actions take arbitrary
durations, agents no longer move in lockstep, eliminating the synchronized
timesteps that many discrete-time methods rely on. Typical formulations of
windowed approaches require synchronized start states, and even when such
states exist, this cannot be maintained since agents become desynchronized
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at the window end as actions generally complete at different times. This
necessitates planning methods that do not depend on global synchronization
points.

Second, discretizing the dense search space. With actions executable at
any real-valued time, the search space becomes dense. SIPP provides a so-
lution by discretizing continuous time into safe intervals, enabling systematic
search through this otherwise intractable space. However, SIPP is inherently
a single-agent planning algorithm, treating other agents as dynamic obstacles.
Therefore, SIPP must be combined with multi-agent coordination strategies
(typically prioritized planning) to achieve tractability.

Third, managing a larger range of possible conflicts between volumetric
agents. When agents have volume, their sweep volumes as the follow their
plans can collide with any agent in the spacial vicinity, not just those on
adjacent vertices or edges. This unbounded conflict space invalidates meth-
ods like PIBT and TSWAP that rely on localized conflict checking. Existing
continuous-time methods using prioritized planning typically compute entire
plans sequentially — an approach poorly suited for lifelong settings where
computing complete plans risks exhausting available computational resources
before all agents have been attended to, and where constantly updating in-
formation renders plans extending far into the future potentially suboptimal.
Tractability requires planning strategies that extend all agents’ plans incre-
mentally, rather than sequentially to completion.

Fourth, efficient collision detection for volumetric agents. Runtime col-
lision detection between arbitrary volumes is computationally prohibitive.
Tractability requires offloading computation to preprocessing: by pre-computing
collision intervals for all action pairs and storing them in lookup tables, run-
time collision detection reduces to simple interval lookups. This approach
works best for homogeneous fleets with limited shape variance.

Our approach in Paper B addresses these requirements by planning agents
incrementally beyond time windows using prioritized planning, employing a
form of truncated SIPP to navigate the dense search space, and assuming
circular agents that travel at constant speed to enable pre-computed collision
intervals.
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CHAPTER 5

Solving Continuous-Time MAPF for Optimal Solutions in
Finite Time

The MAPFR problem extends classical MAPF to continuous-time, allowing
actions to begin at any real-valued time, edge traversals to occur along any
trajectory in space-time, and agents to have arbitrary volumes. While meth-
ods exist for solving simplified versions of the problem or for finding sub-
optimal solutions, only one method was thought to guarantee finding opti-
mal solutions to the full MAPFR problem: Continuous-time Conflict-Based
Search (CCBS) [16]. Numerous continuation works have been published since
CCBS’s introduction, such as [99] for performance enhancements, T -Robust
CCBS [100] for solutions that are robust to delays, [101] for Any-Angle MAPF,
and Continuous-time Prioritized Lifelong Planner (Paper B) for LMAPFR.
Recent finding [32], however, suggest that CCBS’s theoretical description does
not guarantee termination, while its publicly available implementation1 does
not guarantee the return of an optimal solution. This reopens an important
question that the existing literature does not answer: RQ3 — How can the
continuous-time MAPF problem be solved in finite time with guaranteed so-

1https://github.com/PathPlanning/Continuous-CBS
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lution optimality? This chapter establishes the theoretical foundations for
understanding the shortcomings of CCBS and the resolution provided in Pa-
per C, thereby answering RQ3.

5.1 MAPF in Continuous Time
The MAPFR problem introduced here and in [16] combines several compo-
nents from the classical MAPF and the LMAPFR formulations introduced in
previous chapters, while incorporating further generalizations. In this section,
we formally define the MAPFR problem, introduce a few relevant methods,
and provide discussions surrounding aspects of the MAPFR search space in
the context of RQ3.

A Formal Definition of MAPFR

A MAPFR problem [16] can be defined by a tuple

xG, M, N, s, g, Ay

where G “ xV, Ey is a connected and directed graph with vertices V and edges
E Ď V ˆ V; M is a metric space, with Mpvq mapping a vertex v P V to a
position in M; each of the N agents start at a unique vertex by s : t1, .., Nu Ñ

V and are assigned a unique goal by g : t1, .., Nu Ñ V; and the set A contains
all move actions. The notation used here differs slightly from that in [16] and
Paper C, however, the underlying problem remains the same.

Move actions in this formulation take on a more general form than in the
previously introduced MAPF formulations. A move action m “ xmφ, mDy P

A specifies one of possibly several ways to traverse an edge e “ xv, v1y P E .
The motion function mφ : r0, mDs Ñ M defines a connected trajectory in
M and time, with duration mD P R`. Such a trajectory can take any path
through M and at any variable speed, so long as it starts at Mpvq and ends
at Mpv1q. Let fromv

pmq “ v and tovpmq “ v1. There exists at least one move
action associated with each edge in E . Figure 5.1 illustrates an edge with
three associated move actions (m, m1, and m2).

A wait action w “ xwφ, wDy (not included in A) takes the same form as
a move action, however, with two noticeable differences: the motion function
wφ : r0, wDs Ñ Mpvq maps only to the position of single vertex v P V, and
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Figure 5.1: An illustration of an edge with three associated move actions, m, m1,
and m2. Each move action takes a certain duration (mD, m1

D, m2
D) to

complete by following a certain trajectory (mφ, m2
φ, m2

φ).

Figure 5.2: A visualization of a plan, consisting of five timed move actions and two
timed wait actions. For this plan to be valid for an agent, v and v1 must
respectively be the agent’s start and goal vertices, every consecutive
timed action must be connected to the previous in space and time, and
the final wait action w7 must have infinite duration, w7,D “ 8.
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the duration wD P RY t8u may be infinite (implying that the agent waits at
v indefinitely). Let fromv

pwq “ tovpwq “ v.
Agents execute timed actions. A timed action xa, ty (with a either a move

or wait action) specifies not only which action is executed, but also when.
Thus, the position of an agent executing the timed action xa “ xaφ, aDy, ty is
aφpt

1 ´ tq for t1 P rt, t ` aDs. A plan πi for an agent i is a sequence of timed
actions,

πi “ xxa
i
1, ti

1y, xa
i
2, ti

2y, . . . , xai
n, ti

nyy,

where n is individual for each agent and varies over solutions. For πi to be
valid, it must start and end at i’s start and goal vertices,

fromv
pai

1q “ spiq ^ tovpai
nq “ gpiq,

every subsequent timed action must be connected to the previous in time and
space,

fromv
pai

kq “ tovpai
k´1q ^ ti

k “ ti
k´1 ` ai

k´1,D, @k “ 2, .., n,

and the final action ai
n must be a wait action with infinite duration, ai

n “

w “ xwφ, wDy with wD “ 8, to capture that agents wait indefinitely at their
final position. We define a plan πi’s duration as the sum of all timed actions’
durations, naturally excluding the final infinite timed wait action:

πi,D “

n´1
ÿ

k“1
ai

k,D

Figure 5.2 visualizes an example of a plan, moving an agent from v to v1,
consisting of five timed move actions and two timed wait actions.

All agents are volumetric for the same reasons as described in Chapter 4 for
the LMAPFR problem: if agents do not have a volume, then with continuous
time they can be moved arbitrarily close to each other without conflicting.
Therefore, each agent has a volume in M and two agents collide if their
volumes intersect. For two agents i and j, each respectively executing the
timed actions xai, tiy P πi and xaj , tjy P πj , if the agents collide while executing
these timed actions then xxai, tiy, xaj , tjyy is a conflict. We then say that πi and
πj conflict with each other. A move-move conflict xxmi, tiy, xmj , tjyy contains
two move actions, and a move-wait conflict xxmi, tiy, xwj , tjyy contains one
move and one wait conflict.
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A joint plan Π “ tπ1, π2, . . . , πNu contains one plan for each agent. If all
plans π P Π are valid and no two plans in Π conflict with each other, then Π
is a solution. With all solutions contained in the set S, an optimal solution
Π˚ “ arg min

ΠPS
σpΠq minimizes an objective function σ over S. Typically, σ

is the makespan or SOC. In Paper C, we only assume that σpΠq is strictly
monotonically increasing with the maximum duration over all plans π P Π,
which both makespan and SOC satisfy.

Relevant Methods

To the best of our knowledge, CCBS is the only exact method addressing the
full MAPFR formulation. However, several other methods exist for solving
either simplified MAPFR variants or for finding sub-optimal solutions. We
present a selection of these alternative methods here and defer the detailed
introduction of CCBS to Section 5.3.

Prioritized Safe Interval Path Planning (PSIPP) [95], which was introduced
in detail in Chapter 3, employs prioritized planning for a simplified MAPFR
problem where agents are modeled as circles moving at constant speed along
straight-line trajectories between vertices. The time to traverse edge e “

pv, v1q P E is determined by the Euclidean distance |Mpvq´Mpv1q|. We argue
that nothing with PSIPP inherently relies on any of these simplifications. In
broad terms, PSIPP simply applies SIPP [33] to compute conflict-free plans
sequentially for each agent, which could apply to the full MAPFR problem
if arbitrary move actions and agent volumes are used instead. Due to its
prioritized nature, this method sacrifices both exactness and completeness [73],
though it achieves significantly better scalability than CCBS.

Satisfiability Modulo Theory Conflict-Based Search (SMT-CBSR) [102] ad-
dresses a similar geometric simplification, assuming circular agents (with pos-
sible extensions to other shapes) traveling in straight lines at constant speed
on undirected graphs. Rather than branching as in traditional CBS, SMT-
CBSR reformulates conflict resolution within the SMT framework, adding
disjunctive constraints to eliminate conflicts without high-level branching. In
other words, SMT-CBSR offloads the high-level branching done in CBS to
whichever SMT solver is used, Glucose 4 [103] in their case. This approach
can find both makespan-optimal and SOC-optimal solutions while generating
significantly fewer search tree nodes than direct adaptions of CBS to conti-
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nuous time. Experimental results demonstrate that SMT-CBSR outperforms
CCBS by factors of 2–10 in runtime on tested instances [102].

The work in [104] searches for bounded sub-optimal solutions to the full
MAPFR problem. Their approach encodes MAPFR as satisfiability modulo
linear real arithmetic, enabling the use of off-the-shelf SMT solvers (Math-
SAT5 [105] in their case). The method demonstrates notably better runtime
scaling than CCBS as time budgets increase, particularly excelling on bot-
tleneck scenarios. Experimental comparisons show mixed results on success
rates across different problem classes, with the SMT-based approach achieving
superior performance in tightly constrained domains but occasionally under-
performing on simpler instances where CCBS terminates quickly.

Extended Increasing Cost Tree Search (E-ICTS) [106] continues on the orig-
inal ICTS algorithm [59] to handle non-unit cost domains. Rather than as-
signing fixed integer costs to each agent’s plan, E-ICTS defines cost ranges for
each agent with an incremental granularity. This formulation enables agents
to perform actions at non-integer timesteps and traverse edges with arbitrary
positive costs, applying to arbitrary weighted graphs with circular agents mov-
ing at constant speeds. While this approach handles non-unit costs and allows
finer temporal discretization than traditional discrete MAPF, it still requires
discretizing wait durations with fixed increments rather than permitting truly
continuous waits where agents can initiate actions at arbitrary real-valued
times.

The MAPFR Search Space

We will now show that the search space for both the classical MAPF and the
MAPFR problem is infinitely large. We consider candidate solutions to be
joint plans containing only valid plans. Recall that a valid plan is a sequence
of actions connected in time and space, starting at t “ 0 at the agent’s start
vertex and ending with ending with an infinite-duration wait action at the
agent’s goal vertex. Valid plans are easy enough to generate using, for in-
stance, SIPP [33]. Thus, the challenge is to find a collision-free joint plan —
a solution.

Consider any joint plan Π “ tπ1, π2, . . . , πNu in the search space. We can
construct a nearly identical joint plan Π1 by delaying the start of every plan
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in Π by some arbitrary amount ∆ P R: for every plan

π “ xxa1, t1y, . . . , xan, tnyy P Π,

let there exists a corresponding plan

π1 “ xxw, 0y, xa1, t1 `∆y, . . . , xan, tn `∆yy P Π1

with the initial wait action xw, 0y— where fromv
pwq “ fromv

pa1q and wD “ ∆
— prepended and each action delayed by ∆. These joint plans differ only in
when actions begin, not in their spatial trajectories or relative timing between
agents. The same transformation applies to classical MAPF by letting ∆ P

N and prepending ∆-many wait actions instead of just one. Since there is
no upper bound on ∆, infinitely many such joint plans can be constructed,
proving that the search space is infinite for both classical MAPF and MAPFR.

By the same reasoning, the feasible set is either empty or also infinitely
large. If at least one solution exists, the same delay transformation can be
applied to construct infinitely many solutions — each differing only in absolute
timing while preserving all spatial trajectories and relative action sequences.
Therefore, whenever the MAPFR problem is feasible, it admits infinitely many
solutions.

Unlike the classical MAPF formulation, however, the MAPFR search space
is dense. In classical MAPF, time is discrete and all action times must be inte-
gers. Consequently, ∆ from above must take integer values, ∆ P N, yielding a
countably infinite set of joint plans — infinite, yes, but with gaps between suc-
cessive values. In MAPFR, on the other hand, ∆ P R can take any arbitrary
real value. This means that between any two joint plans (say, with ∆1 and
∆2), there exists infinitely many other joint plans with delays ∆ P p∆1, ∆2q.
Therefore, the MAPFR search space contains uncountably infinite joint plans
with no gaps between them — that is, it is dense. By the same reasoning,
the feasible set is also dense if it is not empty. As we will see in the next
section, this density has critical implications for ensuring that solutions to the
MAPFR problem can be found in finite time.

5.2 The Challenges of Algorithmic Guarantees
Chapter 2 introduced the terms soundness, completeness, and exactness. For
simplicity, Paper C uses the term “soundness” to mean both soundness and
exactness. However, for clarity we keep these terms separate here.
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CCBS is not complete [16] for the same reason that CBS [60] is not complete.
Instead, [16] claims that CCBS satisfies only one of the two completeness
conditions: a solution will be returned if one exists. However, CCBS is not able
to detect an infeasible instance; in fact, CCBS applied to an infeasible instance
will never terminate. Thus, we define the weaker completeness variant:

• Solution Completeness: a solution-complete algorithm returns a so-
lution if one exists, but does not necessarily identify when no solution
exists.

In the remainder of this section, we discuss in general terms how the infinite
MAPFR search space can be navigated. The approach is similar to CCBS’s
strategy, however, we refrain from describing CCBS until the next section.
Thus, here we focus on how a general approach can and cannot guarantee
soundness, completeness, exactness, and solution completeness. We divide
these into two challenges: exactness and termination.

The Exactness Challenge
To achieve exactness, soundness is a good place it start. It is relatively easy
to ensure an algorithm’s soundness: return a candidate solution only if it
is feasible, otherwise, discard it and keep searching the search space. This
relies on it being relatively inexpensive to verify that a candidate solution is a
solution — a reasonable assumption in MAPFR. Therefore, we can construct
a search algorithm that explores each candidate solution in the search space,
and only returns a candidate solution if it is indeed a solution.

Ensuring an algorithm’s exactness presents a greater challenge than ensur-
ing soundness. With an infinitely large search space, determining whether a
candidate solution is optimal requires a systematic approach to navigate this
space effectively. One effective strategy — employed by CCBS [16] — is to use
a greedy search to progressively narrow down the set S of reachable candidate
solutions until an optimal solution is identified.

This approach relies on two key properties. First, any joint plan in the
search space can be evaluated on the objective function σ, regardless of its
feasibility. Second, we assume that there exists a mechanism for efficiently
finding the candidate solution Π “ arg min

Π1PS
σpΠ1q that minimizes σ over S.

The search begins with S equal to the entire search space and then proceeds
as follows:
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(a) At the first iteration, S is
equal to the entire search
space.

(b) If Π is not a solution, R
is removed from S and a
new Π and R are found.

(c) The set of reachable can-
didate solutions S is pro-
gressively reduced until a
solution is found.

Figure 5.3: An illustration of three iterations of the search strategy to find an
optimal solution in S. At each iteration, a candidate solution Π P S
minimizing σ is selected. If Π is not a solution, a region R containing
Π and other infeasible candidate solutions is removed from S.

1. If Π is collision-free, return it as the optimal solution. Since Π has the
lowest objective value among all candidate solutions in S (which initially
equals the entire search space), it must be optimal.

2. Otherwise, identify a region R Ă S containing Π and other infeasible
candidate solutions.

3. Remove R from the search space: S Ð SzR.

4. Obtain a new joint plan Π Ð arg min
Π1PS

σpΠ1q minimizing σ over S.

5. Return to step 1.

Figure 5.3 illustrates this procedure, demonstrating how S is reduced by R
at every iteration where Π is not a solution. Crucially, if R contains only
infeasible candidate solutions, then the first solution to be found is guaranteed
to be an optimal solution. If instead R contains solutions, then those solutions
are removed from S without ever being considered. Unless it is ensured that
any solution in R is sub-optimal, there is a possibility that all optimal solutions
end up being removed from the search. In that case, only sub-optimal solutions
remain. Thus, this search algorithm’s exactness relies on R never containing
solutions.
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The Termination Challenge
Ensuring solution completeness requires guaranteeing that an algorithm will
find a solution and return it whenever one exists. Full completeness further
requires that the algorithm also terminates when no solution exists, reporting
that the instance is unsolvable. Algorithms that fail to terminate in certain
cases are fundamentally problematic — without termination guarantees, it
becomes impossible to distinguish between a long-running search that will
eventually succeed and one that will never terminate. We now examine the
greedy search algorithm from above and identify three scenarios that can
prevent termination.

First, note that the greedy algorithm searches for solutions from the bottom
up, by always selecting the candidate solution minimizing σ. Suppose now
that R Ă S contains solutions. Then, it is possible at every iteration that
the algorithm selects an infeasible candidate solution and removes solutions
in R, such that the next candidate solution in the new search space S Ð SzR
minimizing σ is also infeasible. In other words, the algorithm would essentially
remove all solutions in front if it in its search. This would cause the algorithm
to never terminate.

Second, if the feasible set is empty, then the algorithm will never trigger its
termination criteria: return only when a solution is found. In that case the
search will indefinitely navigate the infinite search space. It is for this reason
that CBS and CCBS are are not complete, but instead solution complete.

Finally, suppose that the feasible set is not empty and R never contains
solutions. Then the algorithm is sound and exact. Under these conditions,
however, termination may still fail as a consequence of the search space being
dense. This crucially depends on the shape of R and if it results in a significant
part of S being removed at every iteration. We illustrate this with an example.
Let Π˚ be the optimal solution. Consider at some iteration an infeasible
candidate solution Π is selected, with σpΠq ă σpΠ˚q. Since the search space
is dense, it will always be possible to construct a region R containing all
candidate solutions Π1 with an objective value between σpΠq and σpΠ˚q,

σpΠq ă σpΠ1q ă σpΠ˚q.

By only removing all such candidate solutions, the search will approach but
never reach Π˚. Figure 5.4 visualizes the search asymptotically approaching
— but never reaching — Π˚ in the search space. Thus, if R does not remove
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Figure 5.4: An illustration of the search progressively removing regions from the
search space while asymptotically approaching the optimal solution
Π˚, without ever reaching it.

a “substantial” part of the search space, such that progress toward an optimal
solution is asymptotic toward zero, then even a sound and exact algorithm is
not guaranteed to terminate. Consequently, such an algorithm is not complete
or solution complete.

5.3 Continuous-Time Conflict-Based Search
CCBS’s approach to solving MAPFR for optimal solutions consists of a high-
level search and a low-level planner. The high-level search constitutes the
core of CCBS, which is done in a binary constraint tree (CT) with nodes rep-
resenting candidate solutions and constraint sets. A leaf node is selected at
each iteration, if it does not represent a solution then two child nodes are
created using a branching rule. The theoretical description in [16] of CCBS
presents one branching rule, while the publicly available implementation2 ap-
plies another. In this section, we introduce CCBS’s high-level search and

2https://github.com/PathPlanning/Continuous-CBS

77



Chapter 5 Solving Continuous-Time MAPF for Optimal Solutions in Finite
Time

low-level planner in detail, and thereafter discuss the limitations of each of
the branching rules as identified in [32] and formalized in Paper C.

Each node N in the CT is associated with a set of constraints NC and a
joint plan NΠ containing only valid plans that satisfy all constraints in NC .
NΠ is computed using the low-level planner, Constrained Safe Interval Path
Planning (CSIPP), which accepts a set of constraints and applies SIPP [33]
to find the shortest-duration valid plan satisfying those constraints. CCBS
considers two types of constraints: motion constraints xi, a, rt1, t2qy forbidding
agent i from executing action a starting at any time in rt1, t2q, and vertex
constraints xi, v, rt1, t2qy forbidding agent i from occupying vertex v P V during
rt1, t2q. In the CSIPP search, motion constraints form unsafe intervals on the
move actions between states and vertex constraints form unsafe interval at
vertices. Thereafter, SIPP is applied to find an agent’s shortest-duration valid
plan satisfying all constraints.

The high-level search starts at the root node of the CT, R, with RC “ ∅.
Since RC is empty, the joint plan RΠ contains for each agent the shortest-
duration valid plan over all valid plans, which is essentially the shortest path
from its start vertex to goal vertex without considering collisions with other
agents. At each iteration of CCBS, the high-level search performs the following
steps:

1. The CT leaf node
N “ arg min

N 1P CT leaves
σ
`

N 1
Π
˘

minimizing σ is selected. Let SN contain all candidate solutions satis-
fying NC , illustrated in Figure 5.5a.

2. If NΠ is collision-free, then it is returned as the optimal solution.

3. If NΠ is not collision-free, then an arbitrary conflict

xxai, tiy, xaj , tjyy P πi ˆ πj , πi, πj P NΠ,

is selected. A branching rule is applied to xxai, tiy, xaj , tjyy to obtain a
pair of constraints xci, cjy, where ci at least forbids agent i from execut-
ing xai, tiy and cj at least forbids agent j from executing xaj , tjy.

4. Two new children to N are created, N i and N j , each respectively with
N i

C “ NC Y tciu and N j
C “ NC Y tcju. Let Si Ă S and Sj Ă S respec-

tively contain all candidate solutions satisfying N i
C and N j

C , illustrated
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in Figure 5.5b along with the region R “ SzSizSj . R contains NΠ,
along with all other candidate solutions not satisfying at least one of ci

or cj .

5. The low-level planner is used to compute each child node’s joint plan,
N i

Π satisfying N i
C and N j

Π satisfying N j
C .

6. Repeat from step 1.

When branching on N , its children N i and N j inherit all constraints and ad-
ditionally gain new constraints. Constraints are never removed from parent to
child. Consequently, all candidate solutions contained in R are removed from
the set of reachable candidate solutions in the sub-tree below N . Figure 5.5c
visualizes the evolution of the set of reachable candidate solutions in the CT.
For each branching, the reachable candidate solution set (S) is divided into
two subsets (Si and Sj) with some region (R) removed.

CCBS is sound because it only returns collision-free joint plans, i.e., so-
lutions. However, exactness requires that if R contains any solutions, all of
those solutions must be sub-optimal — otherwise, the algorithm risks pruning
all optimal solutions from the set of reachable candidate solutions. Further-
more, termination demands two conditions: first, all solutions must not be re-
moved from the set of reachable candidate solutions as the search progresses;
and second, it must remove sufficiently large portions of the reachable candi-
date solution set to prevent infinite convergence toward the optimal solution
without ever reaching it. Since the branching rule determines R through the
constraint pair xci, cjy, both the exactness and solution completeness of CCBS
depend on the branching rule.

The Theoretical Branching Rule
A branching rule takes as input a conflict xxai, tiy, xaj , tjyy and returns a
constraint pair xci, cjy. The theoretical branching rule (TBR) is described
in [16]. The actions ai and aj may be move or wait actions, however, the
TBR does not differentiate between these. Given a conflict xxai, tiy, xaj , tjyy

between two agents i and j, the TBR applies the following steps to generate
xci, cjy:

1. Find the earliest time ti
u ą ti such that xxai, ti

uy, xa
j , tjyy is not a conflict.

That is, ti
u is the earliest time when agent i can execute xai, ti

uy without
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(a) For a CT node N , SN contains all
candidate solutions permitted under
NC , one of them being NΠ.

(b) Branching on N creates two chil-
dren N i and Nj . Si and Sj contain
all candidate solutions satisfying N i

C

and Nj
C , respectively. The region R

is removed from the search.

(c) At every branch in the CT, the set of reachable candidate solutions is split into two
subsets, with a region R not included in either.

Figure 5.5: An illustration of how branching nodes in the CT progressively reduces
the size of the set of reachable candidate solutions.
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colliding with agent j executing xaj , tjy. We denote rti, ti
uq as the unsafe

interval for i to execute action ai.

2. Similarly for agent j, find the earliest time tj
u ą tj such that xxai, tiy, xaj , tj

uyy

is not a conflict, forming the unsafe interval rtj , tj
uq.

3. Create two motion constraints: ci “ xi, ai, rti, ti
uqy and cj “ xj, aj , rtj , tj

uqy,
forbidding each agent from executing their respective actions during
their respective unsafe intervals. This results in the constraint pair
xci, cjy.

It is shown in [16] that the region R of candidate solutions not satisfying
at least one of ci or cj does not contain any solutions, implying that CCBS
using the TBR is exact. However, the work in [32] suggests that CCBS under
the TBR does not guarantee termination due to R not always removing suf-
ficiently large portions of the set of reachable candidate solutions. The issue,
as described in [32], originates from TBR’s handling of move-wait conflicts.
Consider a move-wait conflict xxmi, tiy, xwj , tjyy. The TBR generates the con-
straint pair xci, cjy with ci “ xi, mi, rti, ti

uqy and cj “ xj, wj , rtj , tj
uqy. In partic-

ular, cj forbids agent j from executing the specific wait action wj “ xwj
φ, wj

Dy

at any time in rtj , tj
uq. However, this does not forbid a nearly identical wait

action w “ xwj
φ, wj

D ` ϵy for any arbitrarily small ϵ P R. In other words,
although the constraint pair xci, cjy removes all joint plans containing the
specific conflict xxmi, tiy, xwj , tjyy, it does not remove joint plans with arbi-
trarily similar conflicts. Thus, [32] argues that CCBS using the TBR is not
guaranteed to terminate, implying that it is not solution complete.

We believe that the work in [32] suggests that CCBS using the TBR may not
be solution complete, however, they do not prove that CCBS using the TBR is
not solution complete. The termination proofs for the proposed branching rule
in Paper C relies on how the underlying path planner, CSIPP, plans individual
agent plans. It may be so that CCBS using the TBR is indeed solution
complete, perhaps even for similar reasons that the branching rule in Paper C
is guaranteed to terminate. However, the termination proofs in Paper C do not
directly apply to CCBS using the TBR since the TBR forbids wait actions of
a singular-valued duration and therefore does not produce vertex constraints,
whereas the termination proofs rely on both motion and vertex constraints
to ensure that substantial progress toward a solution is maintained at every
iteration. Nonetheless, [32] points toward a crucial yet unaddressed aspect of
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CCBS using the TBR for guaranteeing solution completeness.

The Implemented Branching Rule
The implemented branching rule (IBR) is used in the implementation of CCBS
— made available by the authors of [16]. Move-move conflicts are handled in
the same way in both the TBR and the IBR. However, the TBR and IBR
differ in how they handle move-wait conflicts.

Given a move-wait conflict xxmi, tiy, xwj , tjyy, the IBR constructs xci, cjy

through the following steps:

1. The same procedure as in the TBR is used to construct ci: find the ear-
liest time ti

u ą ti where xxmi, ti
uy, xw

j , tjyy is not a conflict. The unsafe
interval rti, ti

uq results in the motion constraint ci “ xi, mi, rti, ti
uqy.

2. The intersection interval I is defined as the time interval during which
the moving agent i would be in collision with the waiting agent j, if i

executes xmi, tiy and j waits indefinitely at vertex fromv
pwjq. I is then

used to create the vertex constraint cj “ xj, fromv
pwjq, Iy, forbidding

agent j from occupying vertex fromv
pwjq at any time in I.

The work in [32] provides two counterexamples showing how the IBR re-
moves solutions from the set of reachable candidate solutions. That is, they
show that R contains solutions. As discussed, R containing solutions does not
necessarily imply that CCBS is not exact since all solutions in R could be sub-
optimal. However, without any assurances that R contains only sub-optimal
solutions, these findings do indicate that CCBS may not be exact.

In Paper C, we complement these counterexamples by formalizing why so-
lutions are inadvertently removed from the set of reachable candidate solu-
tions. This is done by decomposing ci and cj into sets Ci and Cj , respec-
tively, of forbidding constraints. A forbidding constraint xi, a, ty forbids agent
i from executing the specific timed action xa, ty. We then show for some pair
xc1

i, c1
jy P Ci ˆCj that an assignment not satisfying either of c1

i or c1
j does not

necessarily contain a conflict — and therefore may be a solution — consistent
with [32] that R may contain solutions. In other words, we show together
with [32] that R may contain solutions in certain cases and additionally why
this happens. Ultimately, however, Paper C provides definitive evidence that
CCBS using the IBR does remove all optimal solutions in some cases. There-
fore, CCBS using the IBR is not exact.
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The limitations shown in this and the previous section — that CCBS using
the TBR is suspected to not terminate on solvable instances and CCBS us-
ing the IBR is not exact — reveal the core challenge for CCBS-styled optimal
MAPFR algorithms: the constraints produced by a branching rule must simul-
taneously preserve all solutions (for soundness and exactness) while removing
significant portions of the assignment space to ensure that a solution (if one
exists) will be reached in finite time (for termination). Since CCBS, to our
knowledge the only method for finding optimal solutions to the full MAPFR
problem, is shown in Paper C to not be exact, we therefore conclude that no
existing algorithm addresses MAPFR for optimal solutions within finite time.
This opens a gap in the research that Paper C addresses.

5.4 Answering Research Question 3
To answer research question RQ3 — How can the continuous-time MAPF
problem be solved in finite time with guaranteed solution optimality? — Pa-
per C introduces the CCBS branching rule δ-BR, based on the concept of
shifting constraints from [32]. δ-BR is shown to preserve all solutions in the
search by ensuring that a solution must satisfy at least one constraint in the
resulting constraint pair. Thus, δ-BR is guaranteed to not remove any solu-
tions from the search. Consequently, CCBS using δ-BR is sound and exact.
Furthermore, CCBS using δ-BR is guaranteed to terminate. This relies on
CSIPP always returning plans with action times at the start of safe intervals
(as is consistent with SIPP [33]) and that every branching removes a signif-
icant part of the search space. This leads to the search space between the
start of the search and an optimal solution to be exhausted within finite time,
guaranteeing termination within finite time under the existence of a solution.
Therefore, CCBS using δ-BR is also solution complete. To our knowledge, Pa-
per C provides the first provably sound, exact, and solution complete MAPFR
solver, thereby answering RQ3.
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CHAPTER 6

Summary of Included Papers

This chapter provides a summary of the included papers.

6.1 Paper A
Francesco Popolizio, Martina Vinetti, Alvin Combrink,
Sabino Francesco Roselli, Maria Pia Fanti, Martin Fabian
Online Conflict-Free Scheduling of Fleets of Autonomous Mobile
Robots
20th International Conference on Automation Science and En-
gineering (CASE), IEEE, Bari, Italy, 2024, pp. 3063-3068,
doi: 10.1109/CASE59546.2024.10711693
© 2024 IEEE. Reprinted, with permission, from Francesco Popolizio,
Martina Vinetti, Alvin Combrink, Sabino Francesco Roselli,
Maria Pia Fanti, Martin Fabian, Online Conflict-Free Scheduling
of Fleets of Autonomous Mobile Robots, 20th International Conference
on Automation Science and Engineering (CASE), Aug. 2024.

This paper presents the Fleet Manager (FM) to address a generalized variant
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of the Lifelong Multi-agent Path Finding problem, where edges may require
multiple timesteps to traverse and tasks have service times (requiring agents
to remain at task vertices for specified durations). The FM operates online,
being called at every timestep to iteratively assign tasks to idle agents and
coordinate three key components: the path planner, scheduler, and conflict
manager. The path planner computes a spatial path from the agent’s current
location to the task vertex using Dijkstra’s algorithm [29] on the map graph
with modified edge weights that penalize paths passing through locations of
assigned tasks and idle agents. The scheduler then computes temporal as-
signments for the path, minimizing the arrival time at the task vertex while
avoiding collisions with previously scheduled agents. Two scheduler variants
are implemented: one using the SMT solver Z3 [107], and another using a
Tailor-Made Scheduler (TMS), which schedules iteratively by starting with a
no-wait schedule and adding wait actions in chronological order until all col-
lisions are resolved. When the scheduler cannot find a collision-free schedule,
the conflict manager moves idle agents out of the way using a strategy anal-
ogous to the pebble motion problem [108]. The FM is not a complete solver
and may encounter rare deadlock situations. However, experimental results
demonstrate computation times in the milliseconds per task with up to 750
agents when using the TMS. Furthermore, the FM achieves solution through-
put 1.7–2.8 time higher than Rolling Horizon Collision Resolution [14].

Contributions: This paper extends the master thesis work of FP and MV,
supervised by SFR, MPF, and FM. FP and MV contributed to conceptualiza-
tion, software implementation, validation, and writing the original draft. AC
contributed to software implementation, validation, and writing the original
draft. SFR and MF provided supervision and contributed to writing through
review and editing, while MPF provided supervision.
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6.2 Paper B

Alvin Combrink, Sabino Francesco Roselli, Martin Fabian
Prioritized Planning for Continuous-time Lifelong Multi-agent Pathfind-
ing
11th International Conference on Control, Decision and Information
Technologies (CoDIT), IEEE, Split, Croatia, Jul. 2025.
To appear in conference proceedings.
Available online: https://arxiv.org/abs/2503.13175.

This paper presents the Continuous-time Prioritized Lifelong Planner (CPLP)
to address the Lifelong Multi-agent Path Finding problem in continuous time
with volumetric agents. CPLP is, to the authors’ knowledge, the first method
to address this combined problem and currently the only one applicable to gen-
eral graphs. CPLP employs prioritized planning with asynchronous windowed
planning, with agent movements planned within a time window. Task-agent
pairs are ordered by priority — specifically by the time since task release —
and planned one at a time. The highest-priority task-agent pair is planned en-
tirely to task’s vertex using a modified Continuous-time Conflict-Based Search
(CCBS) [16] that handles idle agents, ensuring eventual task completion. For
all other task-agent pairs, Safe Interval Path Planning [33] plans agent move-
ment toward their task vertices within a time horizon, though not necessarily
reaching them. To enable fast real-time performance with volumetric agents,
collision information is pre-computed using geometric lookup tables. CPLP is
computation-time aware, allowing a computation budget to be specified. Im-
portantly, the planning architecture ensures that agents will not collide even
if the computation budget is exceeded, as long as they execute their decided
plans. This is achieved by assuming agents remain idle indefinitely at their
last planned position, preventing other agents from planning paths through
those positions. CPLP does not guarantee that all agents will eventually reach
their task vertices, as the CCBS version used is not solution complete. To ad-
dress potential deadlocks, the algorithm employs random movement to shuffle
agents when no valid plan is found, which experimentally proved sufficient for
the tested instances. Experimental results demonstrate real-time performance
with up to 800 agents on graphs with up to 12 000 vertices, with computation
times consistently within the allocated budget and throughput near 100% for
the tested task release rate.
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Contributions: AC contributed to the original conceptualization, method-
ology, software, validation, and writing of the original draft. SFR and MF
contributed with supervision and writing through review and editing.

6.3 Paper C
Alvin Combrink, Sabino Francesco Roselli, Martin Fabian
Optimal Multi-agent Path Finding in Continuous Time
Under review in Artificial Intelligence, Elsevier, 2025.
Preprint available online: https://arxiv.org/abs/2508.16410.

This paper addresses optimal Multi-agent Path Finding problem in continuous-
time (MAPFR), motivated by recent findings [32] suggesting critical short-
comings in Continuous-time Conflict-Based Search (CCBS) [16] — to the au-
thors’ knowledge, the only method claimed to find optimal MAPFR solutions.
Specifically, it is suggested that the theoretically described CCBS fails to guar-
antee termination on solvable problems, while the publicly available reference
implementation can return sub-optimal solutions. To address this reopened
research gap, this paper introduces an analytical framework for understand-
ing CCBS-style branching rules, establishing sufficient (but not necessary)
conditions for ensuring that such algorithms are sound, exact, and solution
complete. Applying this framework to CCBS’s implemented branching rule
reveals violations of these conditions, with experimental evidence confirming
that CCBS is indeed not exact. The paper proposed δ-BR, a new branching
rule that provably satisfies all sufficient conditions, ensuring that CCBS us-
ing δ-BR is sound, exact, and solution complete. To the authors’ knowledge,
this represents the first MAPFR solver matching the algorithmic guarantees
of discrete-time Conflict-Based Search [60] — returning only optimal solu-
tions and guaranteed to terminate on any solvable MAPFR problem. The
guarantees hold for sum-of-costs, makespan, and any objective function that
is strictly monotonically increasing with respect to maximum agent arrival
time. Beyond its practical contribution, δ-BR serves as a drop-in replace-
ment for existing CCBS variants and extensions, requiring modifications to
the branching step. Furthermore, the analytical framework provides a tool for
rigorous analysis and development of next-generation MAPFR methods. Ex-
perimental results demonstrate that while the reference CCBS implementation
often finds solutions faster through aggressive pruning, this comes at the cost
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of occasional sub-optimality (up to 16% worse sum-of-costs in a constructed
example) and potential non-termination when all solutions are pruned. In
contrast, δ-BR preserves optimality and guarantees termination by design.

Contributions: AC contributed to the original conceptualization, method-
ology, software, validation, and writing of the original draft. SFR and MF
contributed to supervision and writing through review and editing.
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CHAPTER 7

Conclusions, Reflections and Future Work

7.1 Conclusions

MAPF is the problem of moving multiple agents in a shared space, from
where they are to where they should be, while avoiding collisions. The MAPF
research field has a growing range of real-world applications, from warehouses
and industrial manufacturing, to video games and office robots.

This thesis addresses three distinct challenges along the frontiers of current
MAPF research. Research question RQ1 aims to characterize the current
state of Lifelong MAPF by establishing which strategies underpin scalable
real-time performance. Three prominent strategies are identified in Chapter 3:
prioritized planning, windowed planning, and dimensional simplifications. Pa-
per A then applies a few of these strategies, achieving a Lifelong MAPF solver
scalable to hundreds of agents with competitive solution quality.

Research question RQ2 then aims to extend the insights gained from an-
swering RQ1 to continuous time — a domain where, to our knowledge, life-
long planning has not yet been explored. Chapter 4 establishes that extending
LMAPF to continuous time presents several challenges: asynchronous actions
hinder the use of many existing discrete-time methods; the dense search space
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requires sophisticated navigation strategies; and volumetric agents make col-
lision detection computationally demanding and collision resolution compli-
cated as the range of possible conflicts is expanded in comparison with non-
volumetric agents. Paper B addresses these challenges, providing a scalable
continuous-time Lifelong MAPF solver that ensures collision-free movement
even if computation budgets are exceeded.

Finally, research question RQ3 aims to address the recently reopened ques-
tion of how optimal solutions to the continuous-time MAPF problem can
be found, once thought settled by CCBS. Chapter 5 provides necessary back-
ground by introducing CCBS and the recent findings regarding its limitations.
Paper C then verifies these shortcomings by providing definitive evidence that
CCBS is not exact. Furthermore, the CCBS branching rule δ-BR is introduced
and subsequently proven to restore soundness, exactness, and solution com-
pleteness to CCBS.

Collectively, these contributions map current knowledge boundaries, extend
MAPF into continuous-time lifelong domains for the first time, and restore
theoretical guarantees to optimal continuous-time MAPF solvers.

7.2 Reflections
The two central themes of this thesis — achieving scalable MAPF and extend-
ing it to continuous-time — are deeply interconnected. Real-world systems in-
herently operate in continuous time, yet discrete-time formulations dominate
the MAPF literature. While discrete-time abstractions simplify computa-
tion, they constrain the set of solutions, limiting achievable solution quality.
Continuous-time formulations lift these artificial constraints, enabling solu-
tions that better reflect physical reality and potentially achieve higher quality.
The trade-off, however, is computational complexity. This partially reflects
the relative maturity of the two domains; discrete-time MAPF research dates
back to at least the 1980’s [74], whereas continuous-time MAPF first emerged
with SIPP [33] only in 2011. Even then, another eight years passed before
the introduction of the first versions of CCBS [109, 110] in 2019. This illus-
trates either the substantial challenges in coordinating multiple agents without
time discretization, the relative difference in research interest aimed toward
discrete-time compared to continuous-time MAPF, or both. As continuous-
time MAPF matures and benefits from sustained research attention — much
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as discrete-time MAPF has over decades — we anticipate future continuous-
time algorithms will achieve the scalability of today’s discrete-time methods
while delivering solutions of fundamentally higher quality than what discrete-
time formulations can provide.

7.3 Future Work
There is much work left to be done in the field of MAPF.

Direct Extensions to This Work
The most immediate extensions build directly upon the contributions of this
thesis. For CPLP, introduced in Paper B, several improvements would extend
its theoretical guarantees and lead to better scalability. Currently, CPLP uses
a modified variant of CCBS [16] to compute an entire plan for the prioritized
agent-task pair. The modifications pertain to handling agents without goal
vertices, a common occurrence in lifelong MAPF when there are, for instance,
fewer tasks than agents. However, Paper C shows that this original CCBS
variant lacks exactness guarantees. Future work could focus on using Pa-
per C’s CCBS with δ-BR in CPLP and ensure that the modifications made
in CPLP do not remove the exactness and — more importantly — the solu-
tion completeness guarantees. We postulate that these modifications indeed
do not affect CCBS’s guarantees since they target parts of CCBS’s low-level
planner that are not involved in Paper C’s theoretical proofs. With CPLP
using a solution complete modified CCBS, we can then ensure that the priori-
tized agent will (if a solution exists) reach its goal vertex. This would provide
CPLP with similar theoretical guarantees of reachability — defined in [72] as
all agents eventually reaching their goal vertex — for the LMAPFR problem
as is currently enjoyed by, e.g., PIBT for the discrete-time LMAPF problem.

CPLP’s scalability can be improved by shortening the length of plans com-
puted by CCBS and thereby reducing CPLP’s current bottleneck for scaling to
more agents — the maximum computation time-per-call. CPLP uses CCBS
to compute an entire plan for a prioritized agent-task pair. Ensuring that
the prioritized agent will reach its goal is critical for guaranteeing reachabil-
ity. However, this can also be achieved by ensuring that the prioritized agent
makes strict monotonic progress toward its target. For instance, CCBS could
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be used to compute a plan for the prioritized agent to any node closer to its
goal. In essence, CCBS would then be used to compute several short steps
instead of one entire plan, thereby spreading computations over several calls.
With CPLP’s maximum computation time-per-call reduced, more agents can
be planned before exceeding the available computation window. This would
have additional benefits: a reduced computation time-per-call means that a
lower computation window can be used. In turn, that would mean that the
planning window (which must be greater or equal to the computation window
for continuous movement) can be set to a lower value. This would lead to
computed plans being shorter, in general, and thereby lowering the amount
of computations performed per agent. CPLP would then be able to plan
for larger agent counts while also benefiting from improved reactivity to new
incoming tasks.

Even with a reduced maximum computation time, there may always be a
risk of CPLP exceeding the available computation time. This would likely not
be considered catastrophic in the real-world since CPLP’s planning ensures
that no collisions occur as long as all agents continue to follow their decided
plans and then remain idle. Despite this, CPLP lacks routines for handling
situations when the available computation time is exceeded. A simple way
to address this would be to abandon the plans that were computed when the
available time was exceeded, assume that all agents follow their plans and
then remain idle, temporarily increase the available computation time, and
compute new plans that start at the end of this larger computation window.
This could be repeated, increasing the available computation time for every
iteration, until CPLP is able to compute a plan in time. This would in prac-
tice lead to sub-optimal movement where agents remain idle for a period of
time, however, it would at least ensure that operations continue automatically.
Additionally, if ∆t is selected appropriately for normal operations then this
period of sub-optimal movement should be temporary.

Furthermore, many real-world applications require agents to visit sequences
of locations rather than single destinations — transporting goods from pickup
to delivery locations as in the MAPD problem, or more generally, the Multi-
Goal MAPD problem. Tasks involving multiple goal vertices can be handled
by single-goal algorithms, such as CPLP, by using the same approach as in [14]
with forced task-agent assignments. However, extending CPLP to explicitly
handle goal sequences could broaden its practical applicability, particularly
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in warehouse and manufacturing scenarios where sequential tasks seem to be
the norm rather than the exception, and potentially unlock solutions of higher
quality.

The lifelong nature of LMAPF also presents an opportunity to exploit pat-
terns in task arrival. In many applications, tasks exhibit recurring locations
— delivery routs, production cycles, or predictable traffic patterns. By ap-
plying statistical methods to predict where future tasks are likely to appear,
agents could be strategically positioned preemptively, reducing response times
and increasing throughput. Such predictive positioning could be incorporated
into CPLP by moving idle agents toward high-probability task locations rather
than remaining stationary.

Finally, future work could focus on adopting the numerous enhancements
and variants of the original CCBS to using δ-BR, thereby ensuring that they
too enjoy the same theoretical guarantees that Paper C provides.

Increasing Real-World Applicability
Several fundamental challenges must be addressed to aid the use of MAPF
algorithms in the real-world. These challenges stem from, for instance, the fol-
lowing three sources of uncertainty: agent control, environmental knowledge,
and execution dynamics.

Most MAPF studies assume idealized agent models with omnidirectional
movement and constant velocity. Reality imposes kinematic constraints —
agents may have limited turning radii, acceleration bounds, and directional
preferences. While discrete-time methods have addressed such constraints [111],
continuous-time approaches remain largely unexplored. CCBS’s flexible mo-
tion representation, which allows move actions to encode arbitrary trajecto-
ries, provides a foundation for incorporating kinematic constraints. However,
current formulations still assume agents can instantaneously reorient at ver-
tices. Exploring ways to combine high-level MAPF planning with low-level
trajectory planners, as done in [112], could yield solutions that better inte-
grate agent kinematics and collision avoidance maneuvers. If not integrating
low-level control at the planning stage, then at least quantifying the risks
associated with not doing so could offer MAPF algorithm practitioners with
valuable information for deciding safety margins.

Uncertainty in both agent control and environment knowledge manifests
as delays, unpredictable travel times, and dynamic obstacles. Discrete-time
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MAPF addresses execution robustness through k-robustness [49], which en-
sures schedules remain collision-free despite delays up to k timesteps, and
probabilistic robustness [50], which incorporates probability distributions over
delays. T -robustness [100] provides a fixed-buffer approach to continuous-
time MAPF, analogous to k-robustness. A natural extension would be to also
develop the probabilistic approach to continuous-time MAPF, which to our
knowledge has yet to be explored. The advantage of probabilistic methods
is their adaptability — they incorporate uncertainty directly into scheduling
decisions, rather than applying uniform safety margins regardless of actual
risk.

Novel Methodological Directions
As with many scientific fields, the capabilities of learning-based methods have
also begun to make an impact in the MAPF community [89]. However, ap-
plying machine learning (ML) to MAPF presents a fundamental challenge:
MAPF is a constrained optimization problem where assignments must satisfy
strict constraints to constitute valid solutions. Pure ML-based approaches of-
ten struggle to guarantee constraint satisfaction [113], making them unreliable
for safety-critical applications. Where ML excels for these types of problems,
however, is in learning heuristics to guide classical algorithms — combining
the guarantee structure of traditional methods with the pattern-recognition
capabilities of learned models.

An intriguing hybrid direction draws inspiration from the AlphaZero frame-
work [114], which revolutionized game-playing AI in chess, shogi, and go by
combining Monte Carlo Tree Search (MCTS) with learned value and policy
networks. MAPF shares key structural properties with these domains: state
transitions are deterministic (assuming known traversal times), solutions are
assumed to be reachable in a finite number of steps, and only a subset of
all discrete actions are feasible from any given state. A hybrid MAPF ap-
proach could leverage learned heuristics to guide classical search algorithms in
more promising directions, thereby potentially discovering novel coordination
strategies that humans might overlook. Such methods offer several advan-
tages: they could rapidly compute high-quality solutions, function as anytime
algorithms that progressively improve solutions over the available computa-
tion time, and learn task location patterns for preemptive agent positioning.
To our knowledge, the only method to successfully apply something similar
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to this type of framework in MAPF is the recent LaGAT [115]. More work
in this direction, and additionally addressing continuous-time formulations,
could provide algorithms with better scalability and solution quality. More-
over, learned models could implicitly capture kinematic constraint and exe-
cution uncertainty by training on data from realistic simulators or real-world
deployments, simultaneously addressing multiple challenges outlined earlier.

Another interesting and recent advancement is the Hierarchical Reasoning
Model [116] (strongly inspired by Danial Kahneman’s automatic thinking and
deliberate reasoning model of human thinking [117]), which was shortly after
extended to the Tiny Reasoning Model (TRM) [118] with with smaller net-
works and better performance. In broad terms, these architectures perform
multiple cycles of solution improvement, where each cycle starts with a con-
stant “current solution”, involves several inference steps (supposedly to reason
about improvements on the solution), and ends with an update of the current
solution by incorporating the improvement reasoning. TRM demonstrates su-
perior performance compared to existing LLMs on problems requiring multi-
step reasoning [118], such as the ARC-AGI benchmark [119], difficult Sudoku
puzzles, and finding optimal paths in 30ˆ 30 grid-based mazes. The latter is
essentially a single-agent path planning problem, easily solved using e.g. Dijk-
stra’s algorithm. However, TRM achieve roughly 75% accuracy using a purely
learning-based method. Combining TRM with classical search algorithms —
similar to AlphaZero’s combination of MCTS with deep neural networks —
could be a viable future direction to address multi-agent coordination.

The primary technical challenge which we identify for any learning-based
MAPF approach is representation invariance — models should ideally gen-
eralize across maps of different sizes, topologies, and agent counts. Many
ML architectures are inherently unable to handle non-fixed-sized inputs. Al-
though, there remain many ML architectures, such as the transformer [27] and
the graph neural network (GNN) [26]. Existing methods typically overcome
this by fixing the size of each agent’s observable surroundings and predicting
the agent’s next action [63, 65, 66, 115]. GNNs provide a natural solution
to this challenge since they operate directly on graph-structured data and
are inherently invariant to graph size and topology. A GNN could learn to
reason about congestion patterns, predict collision likelihood, guide coordina-
tion strategies, and encode spatial relationships in ways that transfer across
problem instances. Additionally, by leveraging GNN’s invariance to topolo-
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gies, ML-based methods for the non-grid-based continuous-time MAPF maps
could be developed.

To the best of our knowledge, there exist only a handful of ML-based meth-
ods for discrete-time MAPF and none for continuous-time MAPF. Therefore,
this provides one of the several frontiers in the MAPF research landscape
which we intend to explore.
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