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ARBITRARY ORDER APPROXIMATIONS AT CONSTANT COST FOR
TIMOSHENKO BEAM NETWORK MODELS

Moritz Hauck1,* , Axel Målqvist2 and Andreas Rupp3

Abstract. This paper considers the numerical solution of Timoshenko beam network models, com-
prised of Timoshenko beam equations on each edge of the network, which are coupled at the nodes of
the network using rigid joint conditions. Through hybridization, we can equivalently reformulate the
problem as a symmetric positive definite system of linear equations posed on the network nodes. This
is possible since the nodes, where the beam equations are coupled, are zero-dimensional objects. To
discretize the beam network model, we propose a hybridizable discontinuous Galerkin method that can
achieve arbitrary orders of convergence under mesh refinement without increasing the size of the global
system matrix. As a preconditioner for the typically very poorly conditioned global system matrix,
we employ a two-level overlapping additive Schwarz method. We prove uniform convergence of the
corresponding preconditioned conjugate gradient method under appropriate connectivity assumptions
on the network. Numerical experiments support the theoretical findings of this work.
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1. Introduction

Many applications in science and engineering involve geometrically complex structures composed of slender,
effectively one-dimensional objects. Examples include blood vessels [20], porous materials [10], or fiber-based
materials [31]. For such problems, resolving all microscopic details in a three-dimensional computer simulation
can be computationally very demanding. Therefore, in many cases, it seems appropriate to describe the geometry
by a spatial network represented by a graph 𝒢 = (𝒩 , ℰ) of nodes and edges which is embedded into a bounded
domain Ω ⊂ R3. The resulting spatial network model then involves one-dimensional differential equations on
each edge, coupled by algebraic constraints at the nodes of the graph. In the following, we consider the elastic
deformation of fiber-based materials, such as paper or cardboard, as a model problem. The spatial network
underlying this problem is constructed as follows: Nodes are placed at the intersections of fibers, and an edge
connects two nodes if a fiber is connecting them. Depending on the intersection area of the two fibers, additional
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nodes and edges may be added to strengthen the connection between the fibers. To obtain a spatial network
model, we equip each edge with a Timoshenko beam model, cf. [5,51], describing the elastic deformation of the
corresponding fiber. A well-posed problem is then obtained by enforcing the continuity of displacements and
rotations and the balance of forces and moments at the nodes of the spatial network, cf. [34]. For more details
on this model, particularly the construction of the graph representing the geometric structure of cardboard, we
refer to [21,23,31].

For practically simulating spatial network models, one needs to perform a discretization of the one-dimensional
Timoshenko beam equations posed on the edges. A popular approach for this are beam finite elements, which
differ mainly in the number and placement of the degrees of freedom; see, e.g., [16,30,35,50]. When discretizing
the Timoshenko beam equations using beam elements, one often observes a shear-locking effect, which leads to
an underestimation of the displacements. This effect is caused by underresolution and occurs mainly for beam
elements with few degrees of freedom; see, e.g., the theoretical study in [43]. Shear locking can be avoided by
increasing the local degrees of freedom by subdividing the edges and using multiple beam elements, or by using
higher-order beam elements. Note that shear locking can also be reduced by using numerical tricks such as
under-integration, cf. [46, 56]. An alternative to beam elements are so-called analytical ansatz functions, which
are derived by analytically solving the Timoshenko beam equations on each edge; see, e.g., [29,33,47]. However,
to find an explicit expression for the analytical solution, it is usually necessary to impose additional modeling
assumptions, such as that the material coefficients are constant or that the distributed loads and moments are
homogeneous or constant.

In this paper, we apply a hybridizable discontinuous Galerkin (HDG) method to discretize the spatial network
model under consideration. The use of such a discretization is motivated by the study in [49], where the authors
rigorously define and discretize diffusion-type problems on networks of hypersurfaces. There, the authors claim
that a hybrid formulation is natural for partial differential equations on hypergraphs and, by extension, they
should be discretized using HDG methods. In the special case of graphs, the nodes at which the one-dimensional
differential equations are coupled are zero-dimensional objects, whence the spatial network problem can be
equivalently reformulated as a symmetric positive definite system of linear equations posed on the nodes of the
network. For such problems, an HDG discretization can achieve arbitrary convergence orders without increasing
the number of globally coupled degrees of freedom. Following the paradigm of HDG methods that local solves
are essentially for free since the corresponding problems are small and they can be solved in parallel, cf. [13],
the proposed method can achieve arbitrary orders of convergence at (almost) constant computational cost.
We perform an a priori error analysis of the HDG method, where we prove optimal convergence orders under
mesh refinement. Note that the shear-locking effect of classical beam elements can be easily avoided by using
sufficiently high polynomial degrees.

Due to the complex geometry of the spatial network and possibly highly varying material coefficients, the
linear system of equations obtained by the HDG method is typically very poorly conditioned. Numerical exper-
iments demonstrate that standard black-box preconditioners, such as many algebraic multigrid variants (see,
e.g., the review article [55]), can typically not significantly speed up convergence. This is because they do not
sufficiently consider the geometry of the underlying problem. Also, preconditioners for HDG methods such
as [15, 18, 37–39, 53] are not suitable for the present application since they require a coarsening strategy that,
in the spatial network setting, would change the geometry of the underlying graph. Therefore, the injection
operators defined therein cannot be used directly. To overcome these difficulties, this paper employs a precon-
ditioner which is based on the observation that the network can be treated essentially as a continuous object
at sufficiently coarse scales. This allows one to place an artificial coarse mesh over the network and use finite
element techniques with respect to this mesh to introduce, e.g., a two-level overlapping Schwarz preconditioner
similar to [22]. We prove that the global system matrix is spectrally equivalent to an edge length weighted graph
Laplacian (in each component). Under certain network connectivity assumptions, this then allows us to prove
the uniform convergence of the corresponding preconditioned conjugate gradient method.

Note that, alternatively, multiscale methods such as the (Super-)Localized Orthogonal Decomposition (cf. [19,
25,28,41]) could be used to tackle the problem of large and ill-conditioned linear systems of equations, see [17,
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Figure 1. Fiber network model of paper at the millimeter scale.

24, 27]. These methods feature a compression property that allow one to significantly reduce the size of the
linear systems of equations to be solved, making them tractable again, e.g., by classical sparse direct solvers.
Also the use of other multiscale methods such as the Multiscale Spectral Generalized Finite Element Method
[2,40] or Gambles [44,45] seems possible for spatial network models. For a comprehensive overview of multiscale
methods, see also [1, 42].

The rest of this paper is organized as follows: In Section 2, we introduce a Timoshenko beam network model,
which is then discretized using a HDG method in Section 3. An a priori error analysis of the method is given in
Section 4, while an efficient preconditioner is presented in Section 5. The paper concludes with some numerical
experiments in Section 6.

2. Timoshenko beam network model

In this section, we derive a Timoshenko beam network model that describes the elastic deformation of fiber-
based materials such as paper or cardboard. The beam network model considers a finite number of initially
straight beams whose cross sections are constant along the length of the beams. Note that beams are slender
objects, i.e., their axial dimension is much larger than their cross sectional diameter. This motivates to represent
the network of beams by a graph 𝒢 = (𝒩 , ℰ), where 𝒩 = {n1, n2, . . . , n𝐾} is a set of zero-dimensional nodes
and ℰ = {e1, e2, . . . .e𝐿} is a set of locally one-dimensional edges. We assume that the graph 𝒢 is connected,
which is natural, since otherwise its connected components could be considered separately. In the following, a
three-dimensional setting is considered, i.e., the nodes and edges of 𝒢 are contained in R3. Each edge connects
two different nodes, and we write n ∼ e if the node n ∈ 𝒩 is an endpoint of the edge e ∈ ℰ . In the present paper
application, the nodes n ∈ 𝒩 model the joints of the beams, whereas the edges e ∈ ℰ represent the fiber segments
connecting two nodes; we refer to Figure 1 for an illustration of a fiber network model of paper. To describe
the deformation of the beam network in response to applied forces and moments, we use the Timoshenko beam
theory originally developed in [51]; see also [5]. In contrast to Euler–Bernoulli beam theory (see, e.g., [3]), it can
accurately capture shear effects.

2.1. Governing equations

The derivation of Timoshenko beam theory is based on the laws of linear elasticity. It relies on the assump-
tion that the cross sections of a beam are infinitely rigid in their plane and remain plain after deformation.
Furthermore, it is always assumed that the cross sections can rotate independently from the deformation of
the centroid line. Under these assumptions, Timoshenko beam theory states for each beam one-dimensional
differential equations describing its deformation. The deformation of the beam corresponding to edge e ∈ ℰ is
described by the beam’s centerline displacement 𝑢e : e → R3 and its cross section rotation 𝑟e : e → R3. These
variables will serve as primal unknowns in the Timoshenko beam equations. The corresponding dual unknowns



3110 M. HAUCK ET AL.

are 𝑛e : e → R3, the stress resultants from normal and shear forces, and 𝑚e : e → R3, the resultant moment
from torsion and bending moments. Denoting by n𝑘 and nℓ with 𝑘 < ℓ the endpoints of the edge e, we can define
the unit vector aligned with e as 𝑖e := (nℓ − n𝑘)

⧸︀
ℎe, where ℎe := |nℓ − n𝑘| denotes the length of e and | · | is the

Euclidean norm. We further define the (scalar) unit normals of the edge e by 𝜈e(n𝑘) := −1 and 𝜈e(nℓ) := +1.
The properties of the beams are determined by their material and shape parameters, which are encoded

into the coefficients 𝐶𝑛 and 𝐶𝑚; see also Remark 2.1. In the following, we assume that 𝐶𝑛 and 𝐶𝑚 are
symmetric R3×3-valued functions which satisfy uniform lower and upper spectral bounds, i.e., there exist 0 <
𝛼𝑛, 𝛼𝑚, 𝛽𝑛, 𝛽𝑚 < ∞ such that

𝛼𝑛|𝜉|2 ≤ (𝐶𝑛(𝑥)𝜉) · 𝜉 ≤ 𝛽𝑛|𝜉|2, 𝛼𝑚|𝜉|2 ≤ (𝐶𝑚(𝑥)𝜉) · 𝜉 ≤ 𝛽𝑚|𝜉|2 (2.1)

holds for all 𝑥 ∈ e and e ∈ ℰ .
Given the distributed force 𝑓 e : e → R3 and the distributed moment 𝑔e : e → R3, the one-dimensional

Timoshenko beam equations corresponding to edge e ∈ ℰ read

−𝐶𝑛(𝜕𝑥𝑢e + 𝑖e × 𝑟e) = 𝑛e, −𝐶𝑚𝜕𝑥𝑟e = 𝑚e, (2.2a)
𝜕𝑥𝑛e = 𝑓 e, 𝜕𝑥𝑚e + 𝑖e × 𝑛e = 𝑔e, (2.2b)

where 𝜕𝑥 denotes differentiation with respect to the spatial variable 𝑥 that varies along e with unit speed and
× denotes the cross product. We impose continuity and balance conditions at the nodes to couple the one-
dimensional differential equations on each edge. The continuity conditions enforce that the displacements and
rotations at each node coincide. Following the concept of hybridization, this can be reformulated by requiring
that for each node n ∈ 𝒩 there exist vectors 𝑢n, 𝑟n ∈ R3 such that

𝑢e(n) = 𝑢n, 𝑟e(n) = 𝑟n (2.2c)

holds for all edges e ∈ ℰ adjacent to n. The nodewise unknowns 𝑢n and 𝑟n will act as Lagrange multipliers in a
hybrid formulation of the problem. We also prescribe Dirichlet boundary conditions at a given set of Dirichlet
nodes ∅ ̸= 𝒩D ⊂ 𝒩 . More precisely, for each node n ∈ 𝒩D and given Dirichlet data 𝑢D

n , 𝑟D
n ∈ R3, we require

that
𝑢n = 𝑢D

n , 𝑟n = 𝑟D
n . (2.2d)

The balance conditions ensure an equilibrium of forces and moments at non-Dirichlet nodes. This means that
for all n ∈ 𝒩 ∖ 𝒩D and given concentrated forces and moments 𝑓n, 𝑔n ∈ R3, which are typically set to zero, it
should hold that

−J𝑛e𝜈eKn = −𝑓n, −J𝑚e𝜈eKn = −𝑔n, (2.2e)

where the summation operator J·Kn sums over all values that are attained at n. This notation is a generalization
of the jump operator in the context of discontinuous Galerkin methods; see, e.g., equation (2.10) of [49]. The
multiplication of equation (2.2e) with −1 is purely artificial at this point, but it will allow us later to deal with
positive definite instead of negative definite operators. In the engineering literature, nodes subject to conditions
(2.2c) and (2.2e) are typically called rigid joints, and elastic structures with rigid joints are sometimes called
frames. Problem (2.2) defines a frame of Timoshenko beams.

Remembering that 𝒢 is connected, there is a unique solution to (2.2), since there is at least one Dirichlet
node.

Remark 2.1 (Local formulation). In the literature, problem (2.2) is typically formulated in local coordinates,
which requires a change of basis between local and global coordinates. As local basis corresponding to edge
e ∈ ℰ we consider {𝑖e, 𝑗e,𝑘e}, where 𝑖e is as above, and 𝑗e and 𝑘e are chosen as the principal axes of inertia
of the beam’s cross section. As global basis the canonical basis of R3 is chosen, which we denote by {𝑖̂, 𝑗, 𝑘̂}.
We assume that {𝑖e, 𝑗e,𝑘e} is right-handed, i.e., it holds that 𝑖e = 𝑗e × 𝑘e. The change-of-basis matrix for the
beam e is then given by 𝑇 e := (𝑖e, 𝑗e,𝑘e) ∈ R3×3. Since the basis is right-handed and orthonormal, it holds that
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det(𝑇 e) = 1. Multiplying (2.2a) and (2.2b) from the left by 𝑇⊤e and using that 𝑇 e is orthogonal, we arrive at
the local problem

−𝐶𝑛

(︁
𝜕𝑥̂𝑢̂e + 𝑖̂× 𝑟e

)︁
= 𝑛̂e, −𝐶𝑚𝜕𝑥̂𝑟e = 𝑚̂e, (2.3a)

𝜕𝑥̂𝑛̂e = 𝑓 e, 𝜕𝑥̂𝑚̂e + 𝑖̂× 𝑛̂e = 𝑔̂e, (2.3b)

where local variables are indicated by hats. This problem is posed on [0, ℎe]×{0}2. Note that due to the choice
of local basis, the coefficient matrices 𝐶𝑛(𝑥̂) = 𝑇⊤e 𝐶𝑛(𝑥)𝑇 e and 𝐶𝑚(𝑥̂) = 𝑇⊤e 𝐶𝑚(𝑥)𝑇 e are diagonal for all
𝑥̂ ∈ [0, ℎe]× {0}2 and the components of 𝑢̂e and 𝑟e decouple. More precisely, we have the characterization

𝐶𝑛 = diag(𝐸𝐴, 𝑘𝐺𝐴, 𝑘𝐺𝐴), 𝐶𝑚 = diag(𝐺𝐼𝑡, 𝐸𝐼2, 𝐸𝐼3),

where 𝐸 is the elastic modulus, 𝐺 is the shear modulus, 𝐴 is the cross section area, 𝑘𝐴 is the corrected shear
area, 𝐼2 and 𝐼3 are the second moments of inertia of the cross section and 𝐼𝑡 is the polar moment of the cross
section. Note that the local formulation (2.3) is essential for implementing Timoshenko beam networks.

Remark 2.2 (Other HDG discretizations of Timoshenko beams). Our Timoshenko beam model is related to,
but not identical with, the Timoshenko beam model whose HDG discretization is discussed in [6–9]. Those
works consider a single beam (not a network) undergoing bending in one direction, neglecting other spatial
dimensions. In our notation and omitting physical constants, the model reads:

−𝜕𝑥̂𝑢̂− 𝑟 = 𝑛̂, −𝜕𝑥̂𝑟 = 𝑚̂, 𝜕𝑥̂𝑛̂ = 𝑓, 𝜕𝑥̂𝑚̂ = 𝑛̂.

If compared to (2.3), these equations lack the cross products and a summand in the fourth equation. Nonetheless
the discretization in [6–9] serves as an inspiration for our HDG scheme. However, we do not follow the post-
processing approach in [6] (although it can enhance the accuracy of our simulations) as we claim that the
polynomial degree does (almost) not influence the computational cost.

3. HDG discretization

This section derives an HDG method for the numerical solution of the Timoshenko beam network model
introduced in the previous section. To simplify the presentation, the following remark introduces a notation
to hide constants in estimates independent of the edge length ℎe and the stabilization parameter 𝜏e (to be
introduced in Sect. 3.2).

Remark 3.1 (Tilde notation). If 𝑎 ≤ 𝐶𝑏, where 𝐶 > 0 is a constant that may depend on the coefficients 𝐶𝑛

and 𝐶𝑚, the seminorms of the solutions 𝑢e, 𝑟e,𝑛e, and 𝑚e, but is independent of the edge length ℎe and the
HDG stabilization parameter 𝜏e (defined in Sect. 3.2), we write 𝑎 . 𝑏 to hide the constant. Similarly, we write
𝑎 & 𝑏 for 𝑎 ≥ 𝐶𝑏.

3.1. Hybrid dual mixed formulation

In the following, we present the hybrid dual-mixed formulation of the Timoshenko beam network model, which
will serve as the starting point for deriving the HDG method. It is based on the function spaces 𝑉 e

𝑢 := (𝐿2(e))3

and 𝑉 e
𝑛 := (𝐻1(e))3 defined locally on each edge e ∈ ℰ . Let us also introduce the 𝐿2(e)-inner product and

a lower-dimensional version of it acting on the nodes at the endpoints of e for all functions 𝑣,𝑤 ∈ 𝑉 e
𝑢 and

𝑝, 𝑞 ∈ 𝑉 e
𝑛 by

(𝑣,𝑤)e :=
∫︁

e

𝑣 ·𝑤 d𝜎, ⟨𝑝, 𝑞⟩e :=
∑︁
n∼e

𝑝(n) · 𝑞(n),
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where the point evaluation is meaningful due to the continuous embedding 𝐻1(e) →˓ 𝒞0(e) which holds in one
spatial dimension. Note that in an abuse of notation, we will also allow functions defined only on the nodes of
the networks to be plugged into ⟨·, ·⟩e, such as functions involving the unit normal 𝜈e, but also 𝑢n and 𝑟n.

Given the data

– 𝑓 e, 𝑔e ∈ 𝑉 e
𝑢 for all edges e ∈ ℰ ,

– 𝑓n, 𝑔n ∈ R3 for all free nodes n ∈ 𝒩 ∖ 𝒩D,
– 𝑢D

n , 𝑟D
n ∈ R3 for all Dirichlet nodes n ∈ 𝒩D,

the hybrid dual mixed formulation of problem (2.2) seeks

– 𝑢e, 𝑟e ∈ 𝑉 e
𝑢 for all edges e ∈ ℰ ,

– 𝑛e,𝑚e ∈ 𝑉 e
𝑛 for all edges e ∈ ℰ ,

– 𝑢n, 𝑟n ∈ R3 for all nodes n ∈ 𝒩 ,

we refer to as primal, dual, and hybrid unknowns, respectively. The hybrid unknowns should satisfy for all
n ∈ 𝒩D the Dirichlet boundary conditions (2.2d), while the dual unknowns should satisfy for all n ∈ 𝒩 ∖ 𝒩D

the balance conditions (2.2e). Moreover, for all edges e ∈ ℰ the following equations should hold for all 𝑝, 𝑞 ∈ 𝑉 e
𝑛

and 𝑣,𝑤 ∈ 𝑉 e
𝑢:

−
(︀
𝐶−1

𝑛 𝑛e,𝑝
)︀
e

+ (𝑢e, 𝜕𝑥𝑝)e − (𝑖e × 𝑟e,𝑝)e = ⟨𝑢n,𝑝𝜈e⟩e,
−

(︀
𝐶−1

𝑚 𝑚e, 𝑞
)︀
e

+ (𝑟e, 𝜕𝑥𝑞)e = ⟨𝑟n, 𝑞𝜈e⟩e,
(𝜕𝑥𝑛e,𝑣)e = (𝑓 e,𝑣)e,

(𝑖e × 𝑛e,𝑤)e + (𝜕𝑥𝑚e,𝑤)e = (𝑔e,𝑤)e. (3.1)

Note that from the first and second equations in (3.1), one can immediately conclude that 𝑢e, 𝑟e ∈ (𝐻1(e))3,
even though we only seeked functions in (𝐿2(e))3.

In the following, we will regularly view problem (3.1) as a local solver that maps the Dirichlet data and
distributed source terms corresponding to an edge to the solution on that edge. The following lemma proves
the well-posedness of this local solver.

Lemma 3.2 (Well-posedness of local solver). Consider the edge e ∈ ℰ and let the boundary data 𝑢n, 𝑟n ∈ R3

for the two nodes n at the endpoints of e as well as the source terms 𝑓 e, 𝑔e ∈ 𝑉 e
𝑢 be given. Consider the bilinear

forms

𝑎((𝑛e,𝑚e), (𝑝, 𝑞)) :=
(︀
𝐶−1

𝑛 𝑛e,𝑝
)︀
e

+
(︀
𝐶−1

𝑚 𝑚e, 𝑞
)︀
e
,

𝑏((𝑛e,𝑚e), (𝑣,𝑤)) := −(𝜕𝑥𝑛e,𝑣)e − (𝑖e × 𝑛e,𝑤)e − (𝜕𝑥𝑚e,𝑤)e,

and norms

‖(𝑛e,𝑚e)‖2𝑉 e
𝑛×𝑉 e

𝑛
:= ‖𝑛e‖2e + ‖𝜕𝑥𝑛e‖2e + ‖𝑚e‖2e + ‖𝜕𝑥𝑚e‖2e , (3.2a)

‖(𝑣,𝑤)‖2𝑉 e
𝑢×𝑉 e

𝑢
:= ‖𝑣‖2e + ‖𝑤‖2e . (3.2b)

Then, the local solver defined by problem (3.1) can be written as

𝑎((𝑛e,𝑚e), (𝑝, 𝑞)) + 𝑏((𝑝, 𝑞), (𝑢e, 𝑟e)) = −⟨𝑢n,𝑝𝜈e⟩e − ⟨𝑟n, 𝑞𝜈e⟩e,
𝑏((𝑛e,𝑚e), (𝑣,𝑤)) = −(𝑓 e,𝑣)e − (𝑔e,𝑤)e, (3.3)

and has a unique solution comprised of 𝑢e, 𝑟e ∈ 𝑉 e
𝑢 and 𝑛e,𝑚e ∈ 𝑉 e

𝑛. In particular, the following inf-sup
condition holds with a constant 𝛽 > 0:

inf
(𝑣,𝑤)∈𝑉 e

𝑢×𝑉 e
𝑢

sup
0̸=(𝑛e,𝑚e)∈𝑉 e

𝑛×𝑉 e
𝑛

𝑏((𝑛e,𝑚e), (𝑣,𝑤))
‖(𝑛e,𝑚e)‖𝑉 e

𝑛×𝑉 e
𝑛
‖(𝑣,𝑤)‖𝑉 e

𝑢×𝑉 e
𝑢

≥ 𝛽. (3.4)
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Proof. Note that rewriting (3.1) as saddle-point problem (3.3) allows us to apply classical inf-sup theory (see,
e.g., [4]) to establish well-posedness. Specifically, we need to verify the two BNB conditions, i.e., the coercivity
of 𝑎 on the kernel of 𝑏 and the inf-sup stability of 𝑏. These conditions involve the tuple spaces 𝑉 e

𝑢 × 𝑉 e
𝑢 and

𝑉 e
𝑛×𝑉 e

𝑛, whose canonical norms are given in (3.2). For proving the first BNB condition, which is the coercivity
of 𝑎 on ker(𝑏), we note that (𝑛e,𝑚e) ∈ ker(𝑏) implies that 𝜕𝑥𝑛e = 0 and 𝜕𝑥𝑚 = −𝑖e × 𝑛e. This, together with
the uniform spectral bounds for 𝐶𝑛 and 𝐶𝑚, cf. (2.1), yields for any (𝑛e,𝑚e) ∈ ker(𝑏) that

𝑎((𝑛e,𝑚e), (𝑛e,𝑚e)) & ‖𝑛e‖2e + ‖𝜕𝑥𝑛e‖2e + 1
2‖𝑚e‖2e + 1

2‖𝜕𝑥𝑚e‖2e −
1
2‖𝑖e × 𝑛e‖2e

≥ 1
2‖(𝑛e,𝑚e)‖2𝑉 e

𝑛×𝑉 e
𝑛
,

which is the desired coercivity property.
To prove the second BNB condition, which is the inf-sup condition (3.4) of 𝑏, we will choose for any given tuple

(𝑣,𝑤) ∈ 𝑉 e
𝑢 × 𝑉 e

𝑢 a tuple (𝑛e,𝑚e) ∈ 𝑉 e
𝑛 × 𝑉 e

𝑛 whose components 𝑛e and 𝑚e are defined as (minus one times)
the antiderivatives of 𝑣 and 𝑤 along the edge e, respectively. The integration constant of the antiderivatives is
set to zero. This yields

sup
(𝑛e,𝑚e) ̸=0

𝑏((𝑛e,𝑚e), (𝑣,𝑤))
‖(𝑛e,𝑚e)‖𝑉 e

𝑛×𝑉 e
𝑛

≥
(︁

1 + 4ℎ2
e

𝜋2

)︁−1/2 (𝑣,𝑣)e + (𝑤,𝑤)e + (𝑖e × 𝑛e,𝑤)e

‖(𝑣,𝑤)‖𝑉 e
𝑢×𝑉 e

𝑢

, (3.5)

for any (𝑣,𝑤) ∈ 𝑉 e
𝑢 × 𝑉 e

𝑢. Here, we used that ‖𝑛e‖e ≤ 2ℎe

𝜋 ‖𝑣‖e and ‖𝑚e‖e ≤ 2ℎe

𝜋 ‖𝑤‖e, where the constant
can be derived by explicitly computing the first eigenvalue of the Laplacian eigenvalue problem on the edge e

subject to mixed boundary conditions. Note that these estimates also imply that (𝑖e ×𝑛e,𝑤)e ≤ ‖𝑛e‖e‖𝑤‖e ≤
2ℎe

𝜋 ‖𝑣‖e‖𝑤‖e, which can be used to estimate the numerator on the right-hand side of (3.5) as

(𝑣,𝑣)e + (𝑤,𝑤)e + (𝑖e × 𝑛e,𝑤)e ≥
(︀
1− ℎe

𝜋

)︀
‖(𝑣,𝑤)‖2𝑉 e

𝑢×𝑉 e
𝑢
.

Thus, the bilinear form 𝑏 is inf-sup stable, cf. (3.4), if the edge length satisfies ℎe < 𝜋. Note that this limitation
can be easily overcome by rescaling the network, so it is not assumed in the following. The assertion can be
concluded using the classical inf-sup theory. �

In its above form, the hybrid dual mixed formulation involves primal, dual, and hybrid unknowns. To derive
an equivalent condensed problem involving only hybrid unknowns, we use an alternative interpretation of the
local solver defined in (3.1). More precisely, for each edge e ∈ ℰ , the local solver defines the following mappings:

𝑈 e : (𝑢n, 𝑟n,𝑓 e, 𝑔e) ↦→ 𝑢e, 𝑅e : (𝑢n, 𝑟n,𝑓 e, 𝑔e) ↦→ 𝑟e,

𝑁 e : (𝑢n, 𝑟n,𝑓 e, 𝑔e) ↦→ 𝑛e, 𝑀 e : (𝑢n, 𝑟n,𝑓 e, 𝑔e) ↦→𝑚e.
(3.6)

Note that we abuse the notation and require that each of the first two arguments contains the two values
corresponding to the nodes at the endpoints of e. In the case of homogeneous source terms, i.e., 𝑓 e = 𝑔e = 0,
we will omit the last two arguments.

Before we state the condensed problem, we need to introduce some notation. We denote the trial functions
which are set to zero at Dirichlet nodes by 𝜆,𝜑 : 𝒩 → R3. Writing 𝜆n and 𝜑n for the values of 𝜆 and 𝜑 at
the node n, respectively, this means that 𝜆n = 𝜑n = 0 for all n ∈ 𝒩D. Similarly, the test functions denoted by
𝜇,𝜓 : 𝒩 → R3 should also satisfy that 𝜇n = 𝜓n = 0 for all n ∈ 𝒩D. Denoting the function space the trial and
test functions are contained in by 𝑉𝜆, the condensed problem seeks (𝜆,𝜑) ∈ 𝑉𝜆 × 𝑉𝜆 such that

𝐴((𝜆,𝜑), (𝜇,𝜓)) = 𝐹 ((𝜇,𝜓)) (3.7)

holds for all (𝜇,𝜓) ∈ 𝑉𝜆×𝑉𝜆. The bilinear form 𝐴 of the condensed problem encodes the balance of forces and
moments conditions for the operator-harmonic (homogeneous source terms) extension of the nodal data (𝜆,𝜑),
cf. (2.2e), and is given by

𝐴((𝜆,𝜑), (𝜇,𝜓)) := −
∑︁

n∈𝒩∖𝒩D

[J𝑁 e(𝜆n,𝜑n)𝜈eKn · 𝜇n + J𝑀 e(𝜆n,𝜑n)𝜈eKn ·𝜓n]. (3.8)
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Inhomogeneous Dirichlet boundary data and source terms, as well as prescribed values for the balance conditions,
are incorporated by the bilinear form 𝐹 defined by

𝐹 ((𝜇,𝜓)) :=
∑︁

n∈𝒩∖𝒩D

[︀(︀q
𝑁 e(𝑢D

n , 𝑟D
n ,𝑓 e, 𝑔e)𝜈e

y
n
− 𝑓n

)︀
· 𝜇n +

(︀q
𝑀 e(𝑢D

n , 𝑟D
n ,𝑓 e, 𝑔e)𝜈e

y
n
− 𝑔n

)︀
·𝜓n

]︀
,

where we set 𝑢D
n = 𝑟D

n = 0 for all n ∈ 𝒩 ∖ 𝒩D. After having computed (𝜆,𝜑) as the solution to (3.7), the
solution to the hybrid dual mixed formulation can be retrieved as follows: The displacements and rotations at
the nodes can be obtained as 𝑢n = 𝜆n + 𝑢D

n and 𝑟n = 𝜑n + 𝑟D
n for all n ∈ 𝒩 and the unknowns 𝑢e, 𝑟e,𝑛e,𝑚e

can for all e ∈ ℰ be obtained from 𝑢n and 𝑟n using the local mappings defined in (3.6), i.e.,

𝑢e = 𝑈 e(𝑢n, 𝑟n,𝑓 e, 𝑔e), 𝑟e = 𝑅e(𝑢n, 𝑟n,𝑓 e, 𝑔e),
𝑛e = 𝑁 e(𝑢n, 𝑟n,𝑓 e, 𝑔e), 𝑚e = 𝑀 e(𝑢n, 𝑟n,𝑓 e, 𝑔e).

(3.9)

The following lemma shows that the bilinear form 𝐴 is symmetric positive definite, proving the well-posedness
of the condensed problem.

Lemma 3.3 (Properties of condensed problem). The bilinear form 𝐴 can be equivalently rewritten as the fol-
lowing symmetric expression

𝐴((𝜆,𝜑), (𝜇,𝜓)) =
∑︁
e∈ℰ

[︀(︀
𝐶−1

𝑛 𝑁 e(𝜆n,𝜑n),𝑁 e(𝜇n,𝜓n)
)︀
e

+
(︀
𝐶−1

𝑚 𝑀 e(𝜆n,𝜑n),𝑀 e(𝜇n,𝜓n)
)︀
e

]︀
. (3.10)

This implies that the bilinear form 𝐴 is symmetric and positive definite, and hence the well-posedness of problem
(3.7).

Proof. In this proof, we will abbreviate𝑁 e(𝜆n,𝜑n) and𝑁 e(𝜇n,𝜓n) by𝑁1
e and𝑁2

e , respectively, and analogous
abbreviations will be used for the other local mappings. Testing the first and second equations of system (3.1)
with 𝑁̄1

e and 𝑀̄1
e , respectively and using the symmetry of 𝐶𝑛 and 𝐶𝑚, we obtain that

−
⟨︀
𝜇n,𝑁1

e𝜈e

⟩︀
e

=
(︀
𝐶−1

𝑛 𝑁1
e ,𝑁

2
e

)︀
e
−

(︀
𝑈2

e , 𝜕𝑥𝑁
1
e

)︀
e

+
(︀
𝑖e ×𝑅2

e ,𝑁
1
e

)︀
e
, (3.11)

−
⟨︀
𝜓n,𝑀1

e𝜈e

⟩︀
e

=
(︀
𝐶−1

𝑚 𝑀1
e ,𝑀

2
e

)︀
e
−

(︀
𝑅2

e , 𝜕𝑥𝑀
1
e

)︀
e
. (3.12)

To rewrite the latter expressions, we test the third and fourth equations of system (3.1) with 𝑈̄2
e and 𝑅̄2

e ,
respectively, and note that 𝑓 e = 𝑔e = 0. Inserting the resulting equations into (3.11) and (3.12) and summing
up yields the identity

−
⟨︀
𝜇n,𝑁1

e𝜈e

⟩︀
e
−

⟨︀
𝜓n,𝑀1

e𝜈e

⟩︀
e

=
(︀
𝐶−1

𝑛 𝑁1
e ,𝑁

2
e

)︀
e

+
(︀
𝐶−1

𝑚 𝑀1
e ,𝑀

2
e

)︀
e
.

Equation (3.10) then follows after summing over all edges and using the definition of J·Kn.
To prove the positive definiteness of the bilinear form 𝐴, it only remains to show that 𝐴((𝜆,𝜑), (𝜆,𝜑)) = 0

implies that (𝜆,𝜑) = 0. However, this is a consequence of the well-posedness of the local solver (3.1) proved in
Lemma 3.2. The positive definiteness implies the invertibility of the operator 𝐴 and thus the well-posedness of
problem (3.7). �

3.2. Discretization

The HDG discretization for the numerical solution of the Timoshenko beam network model (2.2) is derived
by discretizing the hybrid dual mixed formulation. Note that only the local solvers defined in (3.1) must be
discretized since all other aspects are already finite-dimensional. For the discretization of the local solver corre-
sponding to the edge e ∈ ℰ we use the space of polynomials defined on e of degree at most 𝑝, where 𝑝 ∈ N is a
fixed number. This space and the corresponding space of componentwise polynomials are denoted by P𝑝(e) and
𝑉 e

𝑝 := (P𝑝(e))3, respectively.
Given the data as in Section 3.1, the HDG method seeks
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– 𝑢̄e, 𝑟e ∈ 𝑉 e
𝑝 for all edges e ∈ ℰ ,

– 𝑛̄e, 𝑚̄e ∈ 𝑉 e
𝑝 for all edges e ∈ ℰ ,

– 𝑢̄n, 𝑟n ∈ R3 for all nodes n ∈ 𝒩 ,

where the hybrid HDG unknowns should satisfy for all n ∈ 𝒩D the Dirichlet boundary conditions (2.2d). We
further require balance conditions for the numerical fluxes, which will be the discrete counterpart to the balance
conditions (2.2e). Given a stabilization parameter 𝜏e > 0, the numerical fluxes defined at the network nodes
additionally incorporate the 𝜏e-weighted difference between the primal and hybrid HDG unknowns to increase
the method’s stability. The stabilization parameter should always satisfy 𝜏eℎe . 1. The balance of numerical
fluxes then reads for all n ∈ 𝒩 ∖ 𝒩D as

−J𝑛̄e𝜈e + 𝜏e(𝑢̄e − 𝑢̄n)K𝑛 = −𝑓n, −J𝑚̄e𝜈e + 𝜏e(𝑟e − 𝑟n)K𝑛 = −𝑔n. (3.13)

Moreover, for all edges e ∈ ℰ we require that the HDG unknowns are connected by the following local equations,
which should hold for all 𝑝̄, 𝑞̄, 𝑣̄, 𝑤̄ ∈ 𝑉 e

𝑝 :

−
(︀
𝐶−1

𝑛 𝑛̄e, 𝑝̄
)︀
e

+ (𝑢̄e, 𝜕𝑥𝑝̄)e − (𝑖e × 𝑟e, 𝑝̄)e = ⟨𝑢̄n, 𝑝̄𝜈e⟩e,
−

(︀
𝐶−1

𝑚 𝑚̄e, 𝑞̄
)︀
e

+ (𝑟e, 𝜕𝑥𝑞̄)e = ⟨𝑟n, 𝑞̄𝜈e⟩e,
(𝜕𝑥𝑛̄e, 𝑣̄)e + 𝜏e⟨𝑢̄e, 𝑣̄⟩e = (𝑓 e, 𝑣̄)e + 𝜏e⟨𝑢̄n, 𝑣̄⟩e,

(𝑖e × 𝑛̄e, 𝑤̄)e + (𝜕𝑥𝑚̄e, 𝑤̄)e + 𝜏e⟨𝑟e, 𝑤̄⟩e = (𝑔e, 𝑤̄)e + 𝜏e⟨𝑟n, 𝑤̄⟩e. (3.14)

Compared to (3.1), this system additionally incorporates 𝜏e-weighted stabilization terms, strengthening its
diagonal. This is necessary because our choice of function spaces might render the proof of Lemma 3.2 invalid,
which relied on an inf-sup condition between the spaces 𝑉 e

𝑢 and 𝑉 e
𝑛. Problem (3.14) defines a discrete version

of the local solver from (3.1), which maps the Dirichlet data and distributed source terms corresponding to an
edge to the discrete solution on that edge. The following lemma proves this discrete local solver is well-posed
for any positive stabilization parameter.

Lemma 3.4 (Well-posedness of discretized local solver). Consider the edge e ∈ ℰ and let the boundary data
𝑢̄n, 𝑟n ∈ R3 for the two nodes n at the endpoints of e as well as the source terms 𝑓 e, 𝑔e ∈ 𝑉 e

𝑢 be given. Then, for
any stabilization parameters 𝜏e > 0, the discretized local solver defined by (3.14) has a unique solution comprised
of 𝑢̄e, 𝑟e, 𝑛̄e, 𝑚̄e ∈ 𝑉 e

𝑝 .

Proof. Since (3.14) induces a square linear system of equations, it is sufficient to prove that 𝑢̄n = 𝑟n = 0 and
𝑓 e = 𝑔e = 0 implies that 𝑢̄e = 𝑟e = 𝑛̄e = 𝑚̄e = 0. To this end, we test the individual equations of system (3.14)
with the test functions −𝑛̄e, −𝑚̄e, 𝑢̄e, and 𝑟e, respectively. Summing up the resulting equations then yields
that (︀

𝐶−1
𝑛 𝑛̄e, 𝑛̄e

)︀
e

+
(︀
𝐶−1

𝑚 𝑚̄e, 𝑚̄e

)︀
e

+ 𝜏e⟨𝑢̄e, 𝑢̄e⟩e + 𝜏e⟨𝑟e, 𝑟e⟩e = 0. (3.15)

By the positive definiteness of the matrices 𝐶𝑛 and 𝐶𝑚, cf. (2.1), this implies that 𝑛̄e = 𝑚̄e = 0. Integrating
the second equation in (3.14) by parts and exploiting that 𝑟e satisfies zero boundary conditions, cf. (3.15), we
observe that 𝑟e = 0. Finally, by the very same argument, the first equation of (3.14) reveals that 𝑢̄e = 0, which
concludes the proof. �

To establish a condensed formulation of the HDG method similar to (3.7), we introduce for all edges e ∈ ℰ
discrete analogs to the local mappings from (3.6). These are defined in terms of the discrete local solver (3.14)
and are denoted by

𝑈̄ e : (𝑢̄n, 𝑟n,𝑓 e, 𝑔e) ↦→ 𝑢̄e, 𝑅̄e : (𝑢̄n, 𝑟n,𝑓 e, 𝑔e) ↦→ 𝑟̄e,

𝑁̄ e : (𝑢̄n, 𝑟n,𝑓 e, 𝑔e) ↦→ 𝑛̄e, 𝑀̄ e : (𝑢̄n, 𝑟n,𝑓 e, 𝑔e) ↦→ 𝑚̄e.
(3.16)
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Recalling that 𝑉𝜆 denotes the space of R3-valued functions defined on 𝒩 with homogeneous Dirichlet boundary
conditions at the nodes in the set 𝒩D, the condensed formulation of the HDG method seeks the tuple (𝜆̄, 𝜑̄) ∈
𝑉𝜆 × 𝑉𝜆 such that

𝐴
(︀(︀
𝜆̄, 𝜑̄

)︀
,
(︀
𝜇̄, 𝜓̄

)︀)︀
= 𝐹

(︀(︀
𝜇̄, 𝜓̄

)︀)︀
(3.17)

holds for all (𝜇̄, 𝜓̄) ∈ 𝑉𝜆 × 𝑉𝜆. The bilinear form 𝐴 encodes the balance conditions of the numerical fluxes at
the free nodes of the network and is defined as

𝐴
(︀(︀
𝜆̄, 𝜑̄

)︀
,
(︀
𝜇̄, 𝜓̄

)︀)︀
:= −

∑︁
n∈𝒩∖𝒩D

[︁(︁q
𝑁̄ e

(︀
𝜆̄n, 𝜑̄n

)︀
𝜈e + 𝜏e

(︀
𝑈̄ e

(︀
𝜆̄n, 𝜑̄n

)︀
− 𝜆̄n

)︀y
n
· 𝜇̄n

+
q
𝑀̄ e

(︀
𝜆̄n, 𝜑̄n

)︀
𝜈e + 𝜏e

(︀
𝑅̄e

(︀
𝜆̄n, 𝜑̄n

)︀
− 𝜑̄n

)︀y
n
· 𝜓̄n

)︁]︁
. (3.18)

The linear form 𝐹 , which is used to incorporate inhomogeneous data, is defined as

𝐹
(︀(︀
𝜇̄, 𝜓̄

)︀)︀
:=

∑︁
n∈𝒩∖𝒩D

[︁(︀q
𝑁̄ e

(︀
𝑢D

n , 𝑟D
n ,𝑓 e, 𝑔e

)︀
𝜈e + 𝜏e𝑈̄ e

(︀
𝑢D

n , 𝑟D
n ,𝑓 e, 𝑔e

)︀y
n
− 𝑓n

)︀
· 𝜇̄n

+
(︀q
𝑀̄ e

(︀
𝑢D

n , 𝑟D
n ,𝑓 e, 𝑔e

)︀
𝜈e + 𝜏e𝑅̄e

(︀
𝑢D

n , 𝑟D
n ,𝑓 e, 𝑔e

)︀y
n
− 𝑔n

)︀
· 𝜓̄n

]︁
,

where we again set 𝑢D
n = 𝑟D

n = 0 for all n ∈ 𝒩 ∖𝒩D. After having computed the solution (𝜆̄, 𝜑̄) to the condensed
HDG formulation (3.17), the HDG solution can be retrieved as follows: The hybrid HDG unknowns are obtained
by 𝑢̄n = 𝜆̄n +𝑢D

n and 𝑟n = 𝜑̄n + 𝑟D
n for all n ∈ 𝒩 , and the primal and dual HDG unknowns 𝑢̄e, 𝑟n, 𝑛̄e, 𝑚̄e can

be obtained for all e ∈ ℰ similar to (3.9), but with the local mappings (3.16).

Remark 3.5 (Size of the global system of equations). Importantly, the global system of equations corresponding
to (3.17) does not change its size if the polynomial degree 𝑝 is increased. This is because the hybrid unknowns
live in a zero-dimensional domain, and a single parameter can characterize all polynomials in such a domain.

The following lemma also shows the symmetry and positive definiteness of the bilinear form 𝐴, which proves
the well-posedness of the condensed HDG formulation.

Lemma 3.6 (Properties of condensed HDG problem). The bilinear form 𝐴 can be equivalently rewritten as the
following symmetric expression

𝐴
(︀(︀
𝜆̄, 𝜑̄

)︀
,
(︀
𝜇̄, 𝜓̄

)︀)︀
=

∑︁
e∈ℰ

[︀(︀
𝐶−1

𝑛 𝑁̄ e

(︀
𝜆̄n, 𝜑̄n

)︀
, 𝑁̄ e

(︀
𝜇̄n, 𝜓̄n

)︀)︀
e

+
(︀
𝐶−1

𝑚 𝑀̄ e

(︀
𝜆̄n, 𝜑̄n

)︀
,𝑀̄ e

(︀
𝜇̄n, 𝜓̄n

)︀)︀
e

]︀
+

∑︁
n∈𝒩∖𝒩D

[︁q
𝜏e

(︀
𝑈̄ e

(︀
𝜆̄n, 𝜑̄n

)︀
− 𝜆̄n

)︀
·
(︀
𝑈̄ e

(︀
𝜇̄n, 𝜓̄n

)︀
− 𝜇̄n

)︀y
n

+
q
𝜏e

(︀
𝑅̄e

(︀
𝜆̄n, 𝜑̄n

)︀
− 𝜑̄n

)︀
·
(︀
𝑅̄e

(︀
𝜇̄n, 𝜓̄n

)︀
− 𝜓̄n

)︀y
n

]︁
.

Therefore, for any 𝜏e > 0, the bilinear form 𝐴 is symmetric and positive definite. Consequently, the condensed
formulation (3.17) of the HDG method is well-posed.

Proof. The proof of this result uses very similar arguments as the proof of Lemma 3.3, but applied to (3.14)
instead of (3.1). Therefore, it is omitted for the sake of brevity. �

4. Error analysis

In this section, we perform an a priori error analysis of the proposed HDG discretization for the Timoshenko
beam network problem. The error analysis focuses on the convergence of the HDG discretization with respect to
the edge length ℎe, for a fixed polynomial degree. While this may initially appear counterintuitive, as the network
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is assumed to be given, we implicitly consider a sequence of refined networks obtained by subdividing the edges.
Such refinement does not affect the exact solution of the beam network model. The error analysis is inspired by
[14], where a projection-based error analysis of the HDG method for an elliptic model problem is performed. The
projection is tailored to the HDG structure, allowing for a relatively simple and concise error analysis. In the
present setting of Timoshenko beam network problems, the edgewise defined projection is given by the mapping
Π: (𝐻1(e))3 × (𝐻1(e))3 → (P𝑝(e))3 × (P𝑝(e))3, whose components Π(𝑢e,𝑛e) = (Π1(𝑢e,𝑛e), Π2(𝑢e,𝑛e)) are for
all e ∈ ℰ defined by the following conditions:

(Π1(𝑢e,𝑛e), 𝑣̄)e = (𝑢e, 𝑣̄)e for all 𝑣̄ ∈ P𝑝−1(e), (4.1a)
(Π2(𝑢e,𝑛e), 𝑣̄)e = (𝑛e, 𝑣̄)e for all 𝑣̄ ∈ P𝑝−1(e), (4.1b)

[Π2(𝑢e,𝑛e)]𝜈 + 𝜏e[Π1(𝑢e,𝑛e)] = 𝑛e𝜈 + 𝜏e𝑢e for all n ∼ e, (4.1c)

where we recall that we write n ∼ e if the node n is an endpoint of the edge e. The well-posedness of this projection
can be concluded from Theorem 2.1 of [14], where the result was proved in a more general multi-dimensional
setting.

To simplify the notation of the following error analysis, we define the errors

𝜃𝑢
e = 𝑢e −Π1(𝑢e,𝑛e), 𝜖𝑢

e = Π1(𝑢e,𝑛e)− 𝑢̄e, 𝜃𝑢
e + 𝜖𝑢

e = 𝑢e − 𝑢̄e

𝜃𝑛
e = 𝑛e −Π2(𝑢e,𝑛e), 𝜖𝑛

e = Π2(𝑢e,𝑛e)− 𝑛̄e, 𝜃𝑛
e + 𝜖𝑛

e = 𝑛e − 𝑛̄e,
(4.2)

and similar definitions are used for the variables 𝑟e and 𝑚e.
The following lemma states projection error estimates for the operator Π, which are taken from Theorem 2.1

of [14]. We denote the 𝐻𝑘(e)-seminorm for any 𝑘 ∈ N0 by | · |e,𝑘.

Lemma 4.1 (Projection error estimates). Given 𝑝𝑢, 𝑝𝑛 ∈ [0, 𝑝], there holds for any edge e ∈ ℰ and all 𝑢e ∈
𝐻𝑝𝑢+1(e), 𝑛e ∈ 𝐻𝑝𝑛+1(e) that

‖𝜃𝑢
e ‖e . ℎ𝑝𝑢+1

e |𝑢e|e,𝑝𝑢+1 + 1
𝜏e

ℎ𝑝𝑛+1
e |𝑛e|e,𝑝𝑛+1

‖𝜃𝑛
e ‖e . 𝜏eℎ

𝑝𝑢+1
e |𝑢e|e,𝑝𝑢+1 + ℎ𝑝𝑛+1

e |𝑛e|e,𝑝𝑛+1,

and analogous estimates hold for 𝜃𝑟
e and 𝜃𝑚

e .

Recall that the primal unknowns are edgewise 𝐻1-regular and satisfy continuity conditions at the nodes.
Therefore, for any edge e ∈ ℰ and any node n ∼ e, 𝑢e(n) = 𝑢n and 𝑟e(n) = 𝑟n holds. This motivates omitting
the primal unknowns’ subscripts by simply writing 𝑢 and 𝑟. Similarly, we may omit the subscript of 𝑛e and
𝑚e. The following lemma states error equations that will be frequently used in the subsequent error analysis.

Lemma 4.2 (Error equations). For any edge e ∈ ℰ and all test functions 𝑝̄, 𝑞̄, 𝑣̄, 𝑤̄ ∈ (P𝑝(e))3, there hold the
identities

(𝜖𝑢
e , 𝜕𝑥𝑝̄)e =

(︀
𝐶−1

𝑛 (𝑛− 𝑛̄e), 𝑝̄
)︀
e

+ (𝑖e × (𝑟 − 𝑟e), 𝑝̄)e + ⟨𝑢− 𝑢̄n, 𝑝̄𝜈e⟩e, (4.3a)

(𝜖𝑟
e , 𝜕𝑥𝑞̄)e =

(︀
𝐶−1

𝑚 (𝑚− 𝑚̄e), 𝑞̄
)︀
e

+ ⟨𝑟 − 𝑟n, 𝑞̄𝜈e⟩e, (4.3b)
(𝜕𝑥𝜖𝑛

e , 𝑣̄)e = ⟨𝜏e(𝑢̄e − 𝑢̄n)− 𝜃𝑛
e 𝜈e, 𝑣̄⟩e, (4.3c)

(𝜕𝑥𝜖𝑚
e , 𝑤̄)e = ⟨𝜏e(𝑟e − 𝑟n)− 𝜃𝑚

e 𝜈e, 𝑤̄⟩e − (𝑖e × (𝑛− 𝑛̄e), 𝑤̄)e. (4.3d)

Furthermore, for any nodal functions 𝑣n,𝑤n with support in n ∈ 𝒩 ∖ 𝒩D we have that

0 = J𝜖𝑛
e 𝜈e + 𝜏e𝜖

𝑢
e − 𝜏e(𝑢− 𝑢̄n)Kn𝑣n + J𝜖𝑚

e 𝜈e + 𝜏e𝜖
𝑟
e − 𝜏e(𝑟 − 𝑟n)Kn𝑤n. (4.3e)

Proof. Error equations (4.3a) and (4.3b) can be derived from (3.1) and (3.14), using property (4.1a) of the
projection Π. To obtain (4.3c) and (4.3d), an integration by parts is necessary before property (4.1b) of Π can
be used. The error equation (4.3e) can be derived using property (4.1c) of Π and the balance conditions (2.2e)
and (3.13). �
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The following two lemmas provide preliminary results, combined in Theorem 4.5 to a full error estimate of
the proposed HDG discretization. The first lemma provides an estimate for the dual unknowns.

Lemma 4.3 (Estimate for dual unknowns). It holds that∑︁
e∈ℰ

‖𝜖𝑛
e ‖2e .

∑︁
e∈ℰ

[︀
‖𝜃𝑛

e ‖2e + ‖𝜃𝑟
e ‖2e

]︀
,

∑︁
e∈ℰ

‖𝜖𝑚
e ‖2e .

∑︁
e∈ℰ

[︀
‖𝜃𝑚

e ‖2e + ‖𝜃𝑛
e ‖e‖𝜖𝑟

e ‖e

]︀
. (4.4)

Proof. We begin this proof with the obvious identity

−⟨𝜖𝑛
e 𝜈e + 𝜏e𝜖

𝑢
e − 𝜏e(𝑢− 𝑢̄n),𝑢− 𝑢̄n⟩e = −⟨𝜖𝑛

e 𝜈,𝑢− 𝑢̄n⟩e + ⟨𝜏e(𝑢− 𝑢̄n)− 𝜏e𝜖
𝑢
e ,𝑢− 𝑢̄n⟩e. (4.5)

To derive an equivalent representation for the left-hand side of (4.5), we test (4.3a) with the test function 𝜖𝑛
e

and rearrange the terms which yields that

−⟨𝑢− 𝑢̄n, 𝜖𝑛
e 𝜈e⟩e =

(︀
𝐶−1

𝑛 (𝑛− 𝑛̄e), 𝜖𝑛
e

)︀
e

+ (𝑖e × (𝑟 − 𝑟e), 𝜖𝑛
e )e − (𝜖𝑢

e , 𝜕𝑥𝜖𝑛
e )e. (4.6)

The last term on the right-hand side of (4.6) can be further rewritten using the identity

(𝜕𝑥𝜖𝑛
e , 𝜖𝑢

e )e = ⟨𝜏e(𝑢̄e − 𝑢̄n)− 𝜃𝑛
e 𝜈e, 𝜖

𝑢
e ⟩e = ⟨𝜏e(𝑢− 𝑢̄n)− 𝜏e𝜖

𝑢
e , 𝜖𝑢

e ⟩e, (4.7)

which can be derived by testing (4.3c) with the test function 𝜖𝑢
e and using property (4.1c) of the projection Π.

Inserting (4.6) and (4.7) into (4.5) then yields that

−⟨𝜖𝑛
e 𝜈e + 𝜏e𝜖

𝑢
e − 𝜏e(𝑢− 𝑢̄n),𝑢− 𝑢̄n⟩e =

(︀
𝐶−1

𝑛 (𝑛− 𝑛̄e), 𝜖𝑛
e

)︀
e

+ (𝑖e × (𝑟 − 𝑟e), 𝜖𝑛
e )e

+ 𝜏e⟨𝜖𝑢
e − (𝑢− 𝑢̄n), 𝜖𝑢

e − (𝑢− 𝑢̄n)⟩e,
(4.8)

which is the desired equivalent representation.
Summing the latter identity over all edges e ∈ ℰ and using (4.3e) for the nodal functions 𝑣n = 𝑢− 𝑢̄n, we

obtain that

0 =
∑︁
e∈ℰ

[︀(︀
𝐶−1

𝑛 (𝑛− 𝑛̄e), 𝜖𝑛
e

)︀
e

+ (𝑖e × (𝑟 − 𝑟e), 𝜖𝑛
e )e

]︀
+

∑︁
n∈𝒩

𝜏e

r
(𝜖𝑢

e − (𝑢− 𝑢̄n))2
z

n
, (4.9)

where we interpret the square of a vector as a dot product with itself. Algebraic manipulations and the non-
negativity of the last term in (4.9) then yield the estimate∑︁

e∈ℰ

(︀
𝐶−1

𝑛 𝜖𝑛
e , 𝜖𝑛

e

)︀
e
≤

∑︁
e∈ℰ

[︀
−

(︀
𝐶−1

𝑛 𝜃𝑛
e , 𝜖𝑛

e

)︀
e
− (𝑖e × 𝜃𝑟

e , 𝜖𝑛
e )e

]︀
.

The first inequality in (4.4) can then be concluded from Hölder’s and Young’s inequalities and the uniform
bounds of the coefficients 𝐶𝑛 and 𝐶𝑚, cf. (2.1).

Similar considerations can be applied to the rotations and moments, which yields that

0 =
∑︁
e∈ℰ

[︀(︀
𝐶−1

𝑚 (𝑚− 𝑚̄e), 𝜖𝑚
e

)︀
e

+ (𝑖e × (𝑛− 𝑛̄e), 𝜖𝑟
e )e

]︀
+

∑︁
n∈𝒩

𝜏e

r
(𝜖𝑟

e − (𝑟 − 𝑟n))2
z

n
, (4.10)

and the second inequality in (4.4) can again be obtained by using the non-negativity of the last term in (4.10),
as well as Hölder’s and Young’s inequalities and bounds (2.1). �

The second lemma establishes an estimate for the primal unknowns based on an Aubin–Nitsche-type argu-
ment. This requires edgewise elliptic regularity of an auxiliary (dual) problem, whose data and solution we
denote by a dagger. The auxiliary problem coincides with (2.2), but with homogeneous concentrated forces,
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moments, and Dirichlet data; that is, 𝑓 †n = 𝑔†n = 0 for all n ∈ 𝒩 , and 𝑢†n = 𝑟†n = 0 for all n ∈ 𝒩D. In the
following, we always assume that the dual problem satisfies the elliptic regularity estimate:∑︁

e∈ℰ

[︁⃒⃒
𝑢†e

⃒⃒2
2,e

+
⃒⃒
𝑟†e

⃒⃒2
2,e

+
⃒⃒
𝑛†e

⃒⃒2
1,e

+
⃒⃒
𝑚†

e

⃒⃒2
1,e

]︁
.

∑︁
e∈ℰ

[︂⃦⃦⃦
𝑓 †e

⃦⃦⃦2

e
+

⃦⃦
𝑔†e

⃦⃦2

e

]︂
. (4.11)

Such an estimate holds if the coefficients 𝐶𝑛 and 𝐶𝑚 are edgewise Lipschitz continuous.

Lemma 4.4 (Estimate for primal unknowns). It holds that∑︁
e∈ℰ

[︁
‖𝜖𝑢

e ‖
2
e + ‖𝜖𝑟

e ‖
2
e

]︁
.

∑︁
e∈ℰ

(︀
ℎe + 𝜏eℎ

2
e

)︀2
[︁
‖𝜃𝑛

e ‖
2
e + ‖𝜃𝑚

e ‖
2
e + ‖𝜃𝑟

e ‖
2
e

]︁
+

∑︁
e∈ℰ

(︁
ℎe

𝜏e

)︁2[︁
‖𝜃𝑛

e ‖
2
e + ‖𝜃𝑟

e ‖
2
e

]︁
.

Proof. To simplify notation for the auxiliary problem, we henceforth write 𝑢† instead of 𝑢†e and 𝑢†n, and similarly
for 𝑟†, 𝑛†, and 𝑚†. This abuse of notation is justified, as the auxiliary problem satisfies the same continuity
properties as the original one, cf. (2.2). We begin the proof by deriving an equivalent expression for (𝜖𝑢

e ,𝑓 †e)e.
By the definition of 𝑛†, cf. (2.2b), integration by parts, and properties (4.1b) and (4.1c), we get that(︁

𝜖𝑢
e ,𝑓 †e

)︁
e

=
(︀
𝜖𝑢, 𝜕𝑥Π2

(︀
𝑢†,𝑛†

)︀)︀
e

+
⟨︀
𝜖𝑢
e , 𝜏e

(︀
Π1

(︀
𝑢†,𝑛†

)︀
− 𝑢†

)︀⟩︀
e

=
(︀
𝐶−1

𝑛 (𝑛− 𝑛̄e), Π2

(︀
𝑢†,𝑛†

)︀)︀
e

+
(︀
𝑖e × (𝑟 − 𝑟e), Π2

(︀
𝑢†,𝑛†

)︀)︀
e

+
⟨︀
𝑢− 𝑢̄n, Π2

(︀
𝑢†,𝑛†

)︀
𝜈e

⟩︀
e

+
⟨︀
𝜖𝑢
e , 𝜏e

(︀
Π1(𝑢†,𝑛†)− 𝑢†

)︀⟩︀
e
,

(4.12)

where we used (4.3a) in the last equality.
In the following, we will sum equation (4.12) over all edges e ∈ ℰ . For the last two terms in (4.12), this results

in ∑︁
e∈ℰ

[︀⟨︀
𝑢− 𝑢̄n, Π2

(︀
𝑢†,𝑛†

)︀
𝜈e

⟩︀
e

+
⟨︀
𝜖𝑢
e , 𝜏e

(︀
Π1

(︀
𝑢†,𝑛†

)︀
− 𝑢†

)︀⟩︀
e

]︀
=

∑︁
n∈𝒩

q
(𝑢− 𝑢̄n) ·

(︀
Π2

(︀
𝑢†,𝑛†

)︀
− 𝑛†

)︀
𝜈e

y
+

∑︁
n∈𝒩

q
𝜖𝑢
e · 𝜏e

[︀
Π1

(︀
𝑢†,𝑛†

)︀
− 𝑢†

]︀y
=

∑︁
n∈𝒩

q
[𝜖𝑢

e − (𝑢− 𝑢̄n)] · 𝜏e

[︀
Π1

(︀
𝑢†,𝑛†

)︀
− 𝑢†

]︀y
=

∑︁
e∈ℰ

(︀
𝜖𝑛

e , 𝜕𝑥𝑢
†)︀

e
. (4.13)

Note that the first equality follows after rearranging the summands and inserting the term
q
(𝑢− 𝑢̄n) · 𝑛†𝜈e

y
n

which equals zero since 𝑢− 𝑢̄n = 0 for all n ∈ 𝒩D and
q
𝑛†𝜈e

y
n

= 0 for all n ∈ 𝒩 ∖ 𝒩D. The second equality is
a direct consequence of (4.1c). To prove the last equality, we use the following two identities∑︁

n∈𝒩

q
[𝜖𝑢

e − (𝑢− 𝑢̄n)] · 𝜏eΠ1

(︀
𝑢†,𝑛†

)︀y
n

= −
∑︁
n∈𝒩

q
[𝜏e(𝑢̄e − 𝑢̄n)− 𝜃𝑛

e 𝜈e] ·Π1

(︀
𝑢†,𝑛†

)︀y
n
, (4.14)∑︁

n∈𝒩

q
[𝜖𝑢

e − (𝑢− 𝑢̄n)] · 𝜏e𝑢
†y

n
= −

∑︁
n∈𝒩

q
𝜖n
e 𝜈e · 𝑢†

y
n
, (4.15)

as well as (4.3c) and integrate by parts. Identity (4.14) can be concluded from (4.1c), and (4.15) follows from
(4.1c) and the balance condition J𝑛̄e𝜈e + 𝜏e(𝑢̄e − 𝑢̄n)Kn = J𝑛e𝜈eKn = 𝑓n.

Denoting by 𝜋 the edgewise 𝐿2-orthogonal projection onto polynomials of degree at most 𝑝 − 1, we finally
obtain for the sum of equation (4.12) over all edges e ∈ ℰ that∑︁

e∈ℰ

(︁
𝜖𝑢
e ,𝑓 †e

)︁
e

=
∑︁
e∈ℰ

(︀
𝐶−1

𝑛 (𝑛− 𝑛̄e), Π2

(︀
𝑢†,𝑛†

)︀
− 𝑛†

)︀
e

+
∑︁
e∈ℰ

(︀
𝑖e × (𝑟 − 𝑟e), Π2

(︀
𝑢†,𝑛†

)︀)︀
e
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−
∑︁
e∈ℰ

(︀
𝑛− 𝑛̄e, 𝑖e × 𝑟†

)︀
e

+
∑︁
e∈ℰ

(︀
Π2(𝑢,𝑛)− 𝑛, 𝜕𝑥𝑢

† − 𝜋𝜕𝑥𝑢
†)︀

e
,

where we used (4.13) as well as the identity(︀
𝐶−1

𝑛 (𝑛− 𝑛̄e),𝑛†
)︀
e

= −
(︀
𝑛− 𝑛̄e, 𝜕𝑥𝑢

† + 𝑖e × 𝑟†
)︀
e
,

which follows by the definition of 𝑛†, cf. (2.2). Note that the term 𝜋𝜕𝑥𝑢
† does not contribute anything since it

is a polynomial of degree at most 𝑝− 1.
Similar considerations can be applied to derive an equivalent representation for the sum of (𝜖𝑟

e , 𝑔†e) over all
edges e ∈ ℰ , which results in∑︁

e∈ℰ

(︀
𝜖𝑟
e , 𝑔†e

)︀
e

=
∑︁
e∈ℰ

(︀
𝐶−1

𝑚 (𝑚− 𝑚̄e), Π2

(︀
𝑟†,𝑚†)︀−𝑚†)︀

e
+

∑︁
e∈ℰ

(︀
𝜖𝑟
e , 𝑖e × 𝑛†

)︀
e

−
∑︁
e∈ℰ

(︀
𝑖e × (𝑛− 𝑛̄e), Π1

(︀
𝑟†,𝑚†)︀)︀

e
+

∑︁
e∈ℰ

(︀
Π2(𝑟,𝑚)−𝑚, 𝜕𝑥𝑟

† − 𝜋𝜕𝑥𝑟
†)︀

e
.

Combining the above representations, we obtain, after some algebraic manipulation, that∑︁
e∈ℰ

[︁(︁
𝜖𝑢
e ,𝑓 †e

)︁
e

+
(︀
𝜖𝑟
e , 𝑔†e

)︀
e

]︁
= −

∑︁
e∈ℰ

[︁(︁
𝐶−1

𝑛 (𝜖𝑛
e + 𝜃𝑛

e ), 𝜃𝑛†

e

)︁
e

+
(︁
𝐶−1

𝑚 (𝜖𝑚
e + 𝜃𝑚

e ), 𝜃𝑚†

e

)︁
e

]︁
−

∑︁
e∈ℰ

[︀(︀
𝜃𝑛

e , 𝜕𝑥𝑢
† − 𝜋𝜕𝑥𝑢

†)︀
e

+
(︀
𝜃𝑚

e , 𝜕𝑥𝑟
† − 𝜋𝜕𝑥𝑟

†
e

)︀
e

]︀
+

∑︁
e∈ℰ

(︀
𝑖e × 𝜃𝑟

e ,𝑛† − 𝜋𝑛†
)︀

−
∑︁
e∈ℰ

[︁(︁
𝑖e × (𝜃𝑟

e + 𝜖𝑟
e ), 𝜃𝑛†

e

)︁
−

(︁
𝑖e × (𝜃𝑛

e + 𝜖𝑛
e ), 𝜃𝑟†

e

)︁
e

]︁
, (4.16)

where the term 𝜋𝑛† could be inserted without contribution since it is a polynomial of degree at most 𝑝− 1.
Using the identity of norms[︃∑︁

e∈ℰ

[︁
‖𝜖𝑢

e ‖
2
e + ‖𝜖𝑟

e ‖
2
e

]︁]︃1/2

= sup
∑︀

e∈ℰ‖𝑓†e‖2

e
+‖𝑔†e‖2

e
=1

∑︁
e∈ℰ

[︁(︁
𝜖𝑢
e ,𝑓 †e

)︁
e

+
(︀
𝜖𝑟
e , 𝑔†e

)︀
e

]︁
,

which is a consequence of the Riesz representation theorem, as well as (4.16), Lemmas 4.3 and 4.1, classical
approximation properties of the 𝐿2-projection 𝜋, and the elliptic regularity result (4.11), we obtain with Young’s
and Hölder’s inequalities that∑︁

e∈ℰ

[︁
‖𝜖𝑢

e ‖
2
e + ‖𝜖𝑟

e ‖
2
e

]︁
.

∑︁
e∈ℰ

(︀
ℎe + 𝜏eℎ

2
e

)︀2
[︁
‖𝜃𝑛

e ‖
2
e + ‖𝜃𝑚

e ‖
2
e + ‖𝜃𝑟

e ‖
2
e

]︁
+

∑︁
e∈ℰ

(︀
ℎe + 𝜏eℎ

2
e

)︀2‖𝜖𝑟
e ‖

2
e

+
∑︁
e∈ℰ

(︁
ℎe

𝜏e

)︁2[︁
‖𝜃𝑛

e ‖
2
e + ‖𝜃𝑟

e ‖
2
e

]︁
.

For sufficiently small edge lengths ℎe, the assertion can be concluded by absorbing the term involving 𝜖𝑟
e in the

left-hand side, where we recall that 𝜏eℎe . 1. �

We are now ready to present the desired convergence result for the proposed HDG discretization. It provides
estimates for the 𝐿2-errors of the primal and dual variables in terms of the maximum edge length, denoted by

ℎ := max
e∈ℰ

ℎe.

The rates we prove agree with those found in classical HDG theory, cf. [14].
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Theorem 4.5 (Convergence of HDG method). Suppose that for any edge e ∈ ℰ it holds that 𝑢e, 𝑟e,𝑛e,𝑚e ∈
𝐻𝑝+1(e). Then, given a stabilization parameter which scales like ℎ𝑠

e for some 𝑠 ∈ {−1, 0, 1}, the HDG approxi-
mation converges to the solution of the Timoshenko beam network model with the error estimates[︂ ∑︁

e∈ℰ

[︀
‖𝑢e − 𝑢̄e‖2e + ‖𝑟e − 𝑟e‖2e

]︀]︂1/2

. ℎ𝑝+1−𝑠+
, (4.17)

[︂ ∑︁
e∈ℰ

[︀
‖𝑛e − 𝑛̄e‖2e + ‖𝑚e − 𝑚̄e‖2e

]︀]︂1/2

. ℎ𝑝+1−|𝑠|, (4.18)

where we denote 𝑠+ := max(𝑠, 0).

Proof. To prove the above error estimates, we use that the error can be written as the sum of a projection and
a discrete error, cf. (4.2). For estimating the projection error we use Lemma 4.1, while for the discrete error
Lemmas 4.4 and 4.3 can be used. For example, for the choice 𝜏e ∼ 1, this gives a convergence of order 𝑝 + 1 for
both the projection error and the discrete errors, and thus an overall convergence of order 𝑝 + 1, cf. (4.17) and
(4.18). �

Note that using the convergence result for the dual variable, it seems possible to follow classical HDG
postprocessing techniques to boost the convergence of the primal variables to order 𝑝 + 2.

5. Domain decomposition preconditioner

A practical implementation of the proposed HDG method requires solving the linear system of equations
corresponding to (3.17). The linear systems of equations that typically arise when simulating, for example, the
structural properties of paper-based materials, cf. Figure 1, can easily become intractable for direct solvers due
to their large size. In addition, they are typically poorly conditioned, requiring appropriate preconditioners.
This section introduces a two-level overlapping additive Schwarz preconditioner similar to [22], which we will
use within a preconditioned conjugate gradient method.

The domain decomposition and coarse space used by the proposed preconditioner are constructed using an
artificial (coarse) mesh 𝒯𝐻 of a bounding domain Ω ⊂ R3 of the spatial network. For simplicity, we will assume
that Ω is a box equipped with a uniform Cartesian mesh. Note that for thin materials such as cardboard, the
corresponding artificial mesh may contain much fewer elements in one spatial dimension than in the others.
With respect to the artificial mesh, we then introduce the set of trilinear basis functions {𝜙𝑖}𝑚

𝑖=1, where 𝑚 is
the number of nodes of the artificial mesh, and corresponding supports 𝑈𝑖 := supp(𝜙𝑖). An illustration of an
artificial mesh and corresponding basis functions in a two-dimensional setting can be found in Figure 2. The
space of continuous piecewise trilinear functions with respect to 𝒯𝐻 , satisfying Dirichlet boundary conditions on
boundary segments where the network nodes are fixed, is denoted by 𝑉𝐻 . Note that the domain of the functions
in 𝑉𝐻 is considered to be the nodes of the spatial network.

We employ a preconditioner based on the subspace decomposition

𝑉𝜆 = 𝑉𝜆,0 + 𝑉𝜆,1 + · · ·+ 𝑉𝜆,𝑚

with the coarse space 𝑉𝜆,0 := 𝑉𝐻 × 𝑉𝐻 × 𝑉𝐻 and local subspaces defined for 𝑖 = 1, . . . ,𝑚 by 𝑉𝜆,𝑖 := {𝑣 ∈ 𝑉𝜆 :
supp(𝑣) ⊂ 𝑈𝑖}. Given this decomposition, we introduce for any subspace a corresponding subspace projection
operator 𝑃𝑖 : 𝑉𝜆 × 𝑉𝜆 → 𝑉𝜆,𝑖 × 𝑉𝜆,𝑖 such that

𝐴(𝑃𝑖(𝜆,𝜑), (𝜇,𝜓)) = 𝐴((𝜆,𝜑), (𝜇,𝜓))

holds for all (𝜇,𝜓) ∈ 𝑉𝜆,𝑖 × 𝑉𝜆,𝑖. Note that the existence and uniqueness of such an operator is a direct
consequence of 𝐴 being an inner product on 𝑉𝜆 × 𝑉𝜆. A preconditioned version of the operator 𝐴 can then be
defined as follows:

𝑃 := 𝑃0 + 𝑃1 + · · ·+ 𝑃𝑚.
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Figure 2. An artificial mesh 𝒯 𝐻 over a network (left) and a basis function 𝜙𝑖 with the boundary
of its support marked in red (right).

The preconditioner, denoted by 𝐵, is then given by the relation 𝑃 = 𝐵𝐴. Note that the preconditioner is never
explicitly formed. In practice, only the preconditioned operator must be computed, which requires the direct
solution of a coarse global problem and 𝑚 local problems, all of which can be solved independently. Because
this approach involves direct solves, it is sometimes called semi-iterative. In the following, we will use this
precondition for the conjugate gradient method.

The uniform convergence of the resulting preconditioned conjugate gradient method was proved in Theo-
rem 4.3 of [22] under the assumption that the considered linear system of equations is spectrally equivalent
to the graph Laplacian, and under certain homogeneity, connectivity, and locality assumptions on the spatial
network at coarse scales. The proof is inspired by classical Schwarz theory (see, e.g., [32,52,54]) and constructs a
quasi-interpolation operator in the spatial network setting, whose approximation and stability properties could
be proved using Poincare’s and Friedrichs’ inequalities on subgraphs. In practice, this preconditioner has demon-
strated its ability to cope with the typically complex geometry of spatial networks and highly varying material
properties; see, e.g., [23]. We emphasize that, in contrast, for example standard black-box preconditioners from
the class of algebraic multigrid methods, cf. [36, 55], may perform very poorly when applied to spatial network
problems. This is because they do not sufficiently consider the problem’s geometry.

To formulate the aforementioned spectral equivalence assumption required to prove the convergence of the
preconditioned iteration, we introduce two bilinear forms acting on the space 𝑉𝜆. The first bilinear form is
a mass-type operator, while the second is a weighted graph Laplacian operator. They are for any functions
𝜆,𝜇 ∈ 𝑉𝜆 defined by

ℳ(𝜆,𝜇) :=
∑︁
n∈𝒩

1
2

∑︁
e∼n

𝜆n𝜇nℎe, ℒ(𝜆,𝜇) :=
∑︁
n∈𝒩

1
2

∑︁
e∼n

e=(n,n′)

(𝜆n − 𝜆n′) · (𝜇n − 𝜇n′)
ℎe

, (5.1)

where the weighting with the edge length ℎe is chosen to be the same as for the mass and stiffness operators in
a one-dimensional finite element implementation.

The following theorem shows that the condensed problem (3.7) is spectrally equivalent to the weighted graph
Laplacians defined in (5.1) in each component. This is done by explicitly computing the solutions to the one-
dimensional Timoshenko beam equations, where we assume for simplicity that the material coefficients are
edgewise constant. Under suitable assumptions on the discretized local solver (3.14), we expect that this result
can be transferred to the condensed formulation of the HDG method in (3.17).
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Theorem 5.1 (Spectral equivalence to graph Laplacian). Assume that the maximal edge length is sufficiently
small and that the material coefficients 𝐶𝑛 and 𝐶𝑚 are edgewise constant. Then, there holds for all (𝜆,𝜑) ∈
𝑉𝜆 × 𝑉𝜆 that

ℒ(𝜆,𝜆) + ℒ(𝜑,𝜑) . 𝐴((𝜆,𝜑), (𝜆,𝜑)) . ℒ(𝜆,𝜆) + ℒ(𝜑,𝜑), (5.2)

where the hidden constants depend only on the reciprocal of

𝜆min := min
𝜇∈𝑉𝜆∖{0}

ℒ(𝜇,𝜇)
ℳ(𝜇,𝜇)

, (5.3)

which characterizes the smallest eigenvalue of the generalized eigenvalue problem with the bilinear forms ℒ and
ℳ defined in (5.1) on the left- and right-hand sides, respectively.

Note that 𝜆min can be uniformly bounded from below using results from classical graph theory; see [11, 12].
The bounds typically involve the constant of a 𝑑-dimensional isoperimetric inequality, which is a measure for
the connectivity of the underlying graph.

Proof. The proof is done in two steps. First, for each beam, we explicitly solve the corresponding local Tim-
oshenko beam equations, where the Dirichlet boundary data at the beam endpoints is given and the source
terms are set to zero. Second, these explicit local Timoshenko solutions are used to derive the desired spectral
equivalence result.

Step 1. We consider an arbitrary but fixed edge e ∈ ℰ and denote its associated local basis by {𝑖e, 𝑗e,𝑘e}. As
global basis we use the canonical basis of R3, denoted by {𝑖̂, 𝑗, 𝑘̂}. To explicitly solve the local Timoshenko
equations corresponding to e we write them in local coordinates similar to Remark 2.1. In the following,
we denote local variables by hats and write 𝑇 e for the change of basis matrix between local and global
coordinates. Recall that the local coefficient matrices 𝐶𝑛 = 𝑇⊤e 𝐶𝑛𝑇 e and 𝐶𝑚 = 𝑇⊤e 𝐶𝑚𝑇 e are diagonal with
positive diagonal entries, cf. Remark 2.1. The local Timoshenko equations are posed on the domain [0, ℎe]×
{0}2, which we parametrize with the interval [0, ℎe]. We omit the subscript e to simplify the notation in the
following.
Let the following Dirichlet data for the displacement and rotation be given:

𝑢̂(0) = 𝜆̂1, 𝑢̂(ℎe) = 𝜆̂2, 𝑟(0) = 𝜑̂1, 𝑟(ℎe) = 𝜑̂2. (5.4)

Similar to the definition of the local solver in (3.1), the local source terms are set to zero. To derive the local
Timoshenko solutions, we first note that 𝜕𝑥̂𝑛̂ = 0 and hence 𝑛̂ = −𝑐 for some 𝑐 ∈ R3. This implies for the
displacement that 𝜕𝑥̂𝑢̂ = −𝑖̂ × 𝑟 + 𝐶−1

𝑛 𝑐. To derive an explicit expression for the rotation 𝑟 we note that
𝜕𝑥̂𝑚̂ = −𝑖̂× 𝑛̂ = 𝑖̂× 𝑐, which implies that 𝑚̂ = (𝑖̂× 𝑐)𝑥̂−𝑑 for some 𝑑 ∈ R3. The equation 𝜕𝑥̂𝑟 = −𝐶−1

𝑚 𝑚̂
can then be used to obtain an explicit expression for the rotation. Combining the above considerations yields
the following expressions for the displacement and rotation:

𝑢̂ = 1
6

(︁
𝑖̂× 𝐶−1

𝑚

(︁
𝑖̂× 𝑐

)︁)︁
𝑥̂3 − 1

2

(︁
𝑖̂× 𝐶−1

𝑚 𝑑
)︁
𝑥̂2 −

(︁
𝑖̂× 𝜑̂1

)︁
𝑥̂ + 𝐶−1

𝑛 𝑐𝑥̂ + 𝜆̂1,

𝑟 = − 1
2𝐶−1

𝑚

(︁
𝑖̂× 𝑐

)︁
𝑥̂2 + 𝐶−1

𝑚 𝑑𝑥̂ + 𝜑̂1.

To determine the constants 𝑐 and 𝑑, we use the second and fourth conditions of (5.4), which we have not yet
incorporated in the above formula for 𝑢̂ and 𝑟. Below, we use the abbreviations 𝜆̂Δ := 𝜆̂2−𝜆̂1, 𝜑̂Δ := 𝜑̂2−𝜑̂1,
and 𝜑̂Σ := 𝜑̂1 + 𝜑̂2 to simplify the notation. For 𝑐 we obtain, after some algebraic manipulations, the
expression

𝑐 = 1
ℎe

𝐶𝑛𝜆̂Δ + 1
2𝐶𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁
+ ℎ2

e

12 𝐶𝑛

(︁
𝑖̂×

(︁
𝐶−1

𝑚

(︁
𝑖̂× 𝑐

)︁)︁)︁
,
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where 𝑐 still appears also on the right-hand side. We explicitly evaluate the cross products to move the term
involving 𝑐 to the left-hand side. Introducing the matrix

𝐷 := 13 + ℎ2
e

12 diag
(︁

0,
(︁
𝐶𝑛

)︁
22

(︁
𝐶−1

𝑚

)︁
33

,
(︁
𝐶𝑛

)︁
33

(︁
𝐶−1

𝑚

)︁
22

)︁
,

where (·)𝑖𝑗 denote the 𝑖𝑗-th entry of a matrix, this results in

𝑐 = 1
ℎe

𝐷−1𝐶𝑛𝜆̂Δ + 1
2𝐷−1𝐶𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁
.

This equation can then be used to derive the following explicit expression for 𝑑:

𝑑 = 1
ℎe

𝐶𝑚𝜑̂Δ + 1
2

(︁
𝑖̂×

(︁
𝐷−1𝐶𝑛𝜆̂Δ

)︁)︁
+ ℎe

4

(︁
𝑖̂×

(︁
𝐷−1𝐶𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁)︁)︁
.

Inserting the above expressions for the constants 𝑐 and 𝑑 in the equations 𝑛̂ = −𝑐 and 𝑚̂ = (𝑖̂ × 𝑐)𝑥̂ − 𝑑,
we obtain for the forces and moments that

𝑛̂ = − 1
ℎe

𝐷−1𝐶𝑛𝜆̂Δ − 1
2𝐷−1𝐶𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁
,

𝑚̂ = 1
2ℎe

(︁
𝑖̂×

(︁
𝐷−1𝐶𝑛𝜆̂Δ

)︁)︁
(2𝑥̂− ℎe) + 1

4

(︁
𝑖̂×

(︁
𝐷−1𝐶𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁)︁)︁
(2𝑥̂− ℎe)− 1

ℎe
𝐶𝑚𝜑̂Δ.

To establish an expression for the bilinear form 𝐴 in terms of the Dirichlet data at the nodes, we will use
its equivalent representation given in Lemma 3.3. This representation includes integrals involving the forces
and moments, which can be computed as follows:∫︁ ℎe

0

𝐶−1
𝑛 𝑛̂ · 𝑛̂ d𝑥̂ = 1

ℎe
|𝐷−1𝐶1/2

𝑛 𝜆̂Δ|2 + 𝐷−1𝐶1/2
𝑛 𝜆̂Δ ·𝐷−1𝐶1/2

𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁
+ ℎe

4

⃒⃒⃒
𝐷−1𝐶1/2

𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁⃒⃒⃒2
,∫︁ ℎe

0

𝐶−1
𝑚 𝑚̂ · 𝑚̂ d𝑥̂ = 1

ℎe

⃒⃒⃒
𝐶1/2

𝑚 𝜑̂Δ

⃒⃒⃒2
+ ℎe

12

⃒⃒⃒
𝐶−1/2

𝑚

(︁
𝑖̂×

(︁
𝐷−1𝐶𝑛𝜆̂Δ

)︁)︁⃒⃒⃒2
+ ℎe

48

⃒⃒⃒
𝐶−1/2

𝑚

(︁
𝑖̂×

(︁
𝐷−1𝐶𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁)︁)︁⃒⃒⃒2
+ ℎ2

e

12

(︁
𝐶−1/2

𝑚

(︁
𝑖̂×

(︁
𝐷−1𝐶𝑛𝜆̂Δ

)︁)︁)︁
·
(︁
𝐶−1/2

𝑚

(︁
𝑖̂×

(︁
𝐷−1𝐶𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁)︁)︁)︁
.

To prove the lower bound in (5.2), we sum up the previously computed integrals and bound the result from
below using the weighted Young inequality. This yields for any 0 < 𝜖 < 1, which we will specify later, that∫︁ ℎe

0

𝐶−1
𝑛 𝑛̂ · 𝑛̂d𝑥̂ +

∫︁ ℎe

0

𝐶−1
𝑚 𝑚̂ · 𝑚̂ d𝑥̂

≥ 1
ℎe

⃒⃒⃒
𝐷−1𝐶1/2

𝑛 𝜆̂Δ

⃒⃒⃒2
+ 1

ℎe

⃒⃒⃒
𝐶1/2

𝑚 𝜑̂Δ

⃒⃒⃒2
+ ℎe

4

⃒⃒⃒
𝐷−1𝐶1/2

𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁⃒⃒⃒2
+

(︁
𝐷−1𝐶1/2

𝑛 𝜆̂Δ

)︁
·
(︁
𝐷−1𝐶1/2

𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁)︁
≥ 1−𝜖

ℎe

⃒⃒⃒
𝐷−1𝐶1/2

𝑛 𝜆̂Δ

⃒⃒⃒2
+ 1

ℎe

⃒⃒⃒
𝐶1/2

𝑚 𝜑̂Δ

⃒⃒⃒2
− ℎe(1−𝜖)

4𝜖

⃒⃒⃒
𝐷−1𝐶1/2

𝑛

(︁
𝑖̂× 𝜑̂Σ

)︁⃒⃒⃒2
.

Using the uniform bounds on the coefficients (2.1) and the assumption that the edge length ℎe is sufficiently
small, the latter estimate can be simplified to∫︁ ℎe

0

𝐶−1
𝑛 𝑛̂ · 𝑛̂ d𝑥̂ +

∫︁ ℎe

0

𝐶−1
𝑚 𝑚̂ · 𝑚̂ d𝑥̂ & 1−𝜖

ℎe

⃒⃒⃒
𝜆̂Δ

⃒⃒⃒2
+ 1

ℎe

⃒⃒⃒
𝜑̂Δ

⃒⃒⃒2
− 𝐶 ℎe(1−𝜖)

4𝜖

⃒⃒⃒
𝑖̂× 𝜑̂Σ

⃒⃒⃒2
, (5.5)

where 𝐶 > 0 only depends on the bounds of the coefficients.
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Step 2. Estimate (5.5) was formulated in local coordinates, but it also holds in global coordinates, i.e., without
hats. This is a direct consequence of the orthogonality of the change-of-basis matrix 𝑇 e. Summing up the
global estimates for all edges then yields that∑︁

e∈ℰ

∫︁
e

𝐶−1
𝑛 𝑛e · 𝑛e d𝜎 +

∑︁
e∈ℰ

∫︁
e

𝐶−1
𝑚 𝑚e ·𝑚e d𝜎

&
∑︁
e∈ℰ

e=(n,n′)

(︁
1−𝜖
ℎe
|𝜆n − 𝜆n′ |2 + 1

ℎe
|𝜑n − 𝜑n′ |

2 − 𝐶 ℎe(1−𝜖)
4𝜖 |𝑖e × (𝜑n + 𝜑n′)|

2
)︁
. (5.6)

Rearranging the above sum into a sum over all nodes and another sum over all edges adjacent to the nodes,
one observes that the first and second terms in (5.6) can be written in terms of the bilinear form ℒ of the
graph Laplacian defined in (5.1). Similarly, the last term in (5.6) can be estimated using the mass-type
operator ℳ. This and using the definition of 𝜆min in (5.3) yields that

(5.6) ≥ (1− 𝜖)ℒ(𝜆,𝜆) + ℒ(𝜑,𝜑)− 𝐶 1−𝜖
𝜖 ℳ(𝜑,𝜑)

≥ (1− 𝜖)ℒ(𝜆,𝜆) +
(︀
1− 𝐶 1−𝜖

𝜖 𝜆−1
min

)︀
ℒ(𝜑,𝜑).

An investigation shows that for any 𝜖 ∈
(︀

𝐶
𝜆min+𝐶 , 1

)︀
, the terms in the above estimate are positive, which

proves the lower bound in (5.2). The upper bound can be proved using similar arguments, and the proof is
omitted for brevity. This concludes the proof.

�

6. Numerical experiments

In this section, we present numerical experiments that support the theoretical predictions of this paper. The
numerical experiments have been implemented in the HyperHDG software package [48], which is described in
detail in [49]. There, numerical experiments demonstrating the convergence of the HDG method for diffusion-
type problems on hypergraphs were presented. The code to reproduce the numerical experiments of this paper
is available at https://github.com/HyperHDG/, and the data describing the fiber network model of paper used
in the second numerical experiment can be found at [26].

Optimal order convergence of HDG method

The first numerical example considers a toy problem to study the convergence properties of the proposed
HDG method for Timoshenko beam networks. Specifically, we consider a network representing a two-dimensional
unit cross embedded in the three-dimensional Euclidean space, i.e.,(︀

[−1, 1]× {0} ∪ {0} × [−1, 1]
)︀
× {0}.

Before mesh refinement, the network consists of four edges and five vertices. Dirichlet boundary conditions are
imposed at the four nodes located at the tips of the cross. The bounding domain is chosen to be Ω = [−1, 1]2×{0}.
To construct suitable data and corresponding solutions, we use the method of manufactured solutions. More
precisely, we consider homogeneous material coefficients, i.e., 𝐶𝑛 = 𝐶𝑚 = 1, and choose the force terms such
that the problem admits the following displacements and rotations as its solutions:

𝑢(𝑥, 𝑦, 𝑧) =

⎛⎝ 0
cos(𝜋𝑦)
cos(𝜋𝑥)

⎞⎠, 𝑟(𝑥, 𝑦, 𝑧) =

⎛⎝ 0
sin(𝜋𝑥)
sin(𝜋𝑦)

⎞⎠.

Figure 3 shows convergence plots for the 𝐿2-error of the primal HDG variables, which we will subsequently
abbreviate by err𝐿2(𝑢, 𝑟), cf. (4.17). In the top right and bottom left convergence plots, one observes optimal

https://github.com/HyperHDG/
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Figure 3. All four plots show the 𝐿2-errors of the primal variables. The top left, top right, and
bottom left plots show the errors for the polynomial degrees 1 (blue), 2 (red), 5 (black), and
6 (magenta) as a function of the mesh size, for different choices of the stabilization parameter
𝜏 . The bottom right plot shows the errors for the beam lengths 1 (cyan), 2−1 (purple), 2−4

(gray), and 2−5 (brown) as a function of the polynomial degree.

(𝑝 + 1)-th order convergence for the classical choices of stabilization parameters 𝜏e ∼ 1 and 𝜏e ∼ ℎ−1
e . Note

that for 𝜏e ∼ ℎ−1
e one encounters a pre-asymptotic regime with even faster convergence. For the stabilization

parameter 𝜏e ∼ ℎe one observes a suboptimal 𝑝-th order convergence, cf. Figure 3 (top left). These convergence
results are consistent with the theoretical predictions of Theorem 4.5. Note that the convergence rates we obtain
are also consistent with those found in the literature. Convergence tests for the dual variables also confirm the
rates predicted by Theorem 4.5. For the sake of brevity, however, the corresponding plots are not shown here. In
addition to the convergence under mesh refinement, we also want to numerically investigate the convergence as
the polynomial degree is increased. The corresponding plot can be found at the bottom right in Figure 3. One
observes an exponential convergence as the polynomial degree is increased, with the rate of decay depending on
the fixed mesh size. A similar exponential convergence behavior can also be observed for the dual variables.
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Figure 4. Left: an illustration of the network before (blue) and after (red) deformation is
shown. Right: a convergence plot of the preconditioned conjugate gradient method. There the
relative residual is plotted as a function of the iteration number for constant material parameters
(black) and realistic material parameters (orange).

Figure 5. Relative residual of the preconditioned conjugate gradient method as a function of
the iteration number for different polynomial degrees 𝑝 and stabilization parameters 𝜏 . The
black, red, and green curves correspond to 𝑝 = 1, 5, 10 for 𝜏 = 1, while the orange and blue
curves represent 𝜏 = 1000, 0.001 for 𝑝 = 5.

Elastic deformation of paper

The purpose of the second numerical experiment is to demonstrate the applicability of the proposed HDG
method to a realistic example. We consider the elastic deformation of about 2 mm×4 mm piece of paper, where
our collaborators at the Fraunhofer-Chalmers Centre (FCC) provided the corresponding spatial network and
material parameters. The spatial network consists of about 615K edges and 424K nodes. We consider the
stretching of the paper caused by inhomogeneous Dirichlet boundary conditions at nodes at the lateral boundary.
We use a HDG discretization with polynomial degree 5 for all edges. The resulting linear system of equations
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is then solved by the preconditioned conjugate gradient method with the domain decomposition preconditioner
as described in Section 5. For the preconditioner, we use an artificial coarse mesh consisting of 64 elements,
where only one element is used in the 𝑧-direction. The local subproblems arising within the preconditioner are
solved with a conjugate gradient method without preconditioning using a termination criterion of a relative
residual of 10−3. This is practically feasible since we use a mild termination criterion. The computations were
performed in parallel on a cluster with 64 cores. For the case of constant material parameters, our solver needed
46 iterations and about 9 h to solve the problem up to a relative residual of 10−10. For the realistic parameters,
it took 218 iterations and about 33 h to reach the same accuracy. The resulting deformed piece of paper and
the convergence plot of the preconditioned conjugate gradient method are shown in Figure 4.

Influence of polynomial degree and stabilization parameter

We next examine the influence of the polynomial degree 𝑝 and the stabilization parameter 𝜏 on the convergence
behavior of the preconditioned conjugate gradient method. To this end, we consider a smaller network consisting
of 14K edges and 10K nodes, using realistic material parameters similar to the previous numerical experiment.
As shown in Figure 5, varying 𝑝 and 𝜏 have almost no impact on the convergence. It is worth noting that the
iteration counts are comparable to those observed in the previous experiment. However, due to the significantly
smaller network size, the computational cost per iteration is considerably smaller.
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