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A B S T R A C T 

A crucial chemical link between stars and their orbiting exoplanets is thought to exist. If universal, this connection could affect 
the formation and evolution of all planets. Therefore, this potential vital link needs testing by characterizing exoplanets around 

chemically-diverse stars. We present the discovery of two planets orbiting the metal-poor, kinematic thick-disc K-dwarf TOI- 
2345. TOI-2345 b is a super-Earth with a period of 1.05 d and TOI-2345 c is a sub-Neptune with a period of 21 d. In addition to the 
target being observed in four TESS sectors, we obtained five CHEOPS visits and 26 radial velocities from HARPS. By conducting 

a joint analysis of all the data, we find TOI-2345 b to have a radius of 1 . 504+ 0 . 047 −0 . 044 R⊕ and a mass of 3 . 49 ± 0 . 85 M⊕; and 

TOI-2345 c to have a radius of 2 . 451+ 0 . 045 −0 . 046 R⊕ and a mass of 7 . 27+ 2 . 27 −2 . 45 M⊕. To explore chemical links between these 
planets and their host star, we model their interior structures newly accounting for devolatized stellar abundances. TOI-2345 

adds to the limited sample of well-characterized planetary systems around thick disc stars. This system challenges theories 
of formation and populations of planets around thick disc stars with its Ultra-Short Period super-Earth and the wide period 

distribution of these two planets spanning the radius valley. 
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 I N T RO D U C T I O N  

ince the discovery of the first exoplanet orbiting a main sequence 
tar, 51 Peg (M. Mayor & D. Queloz 1995 ), the field has been
xponentially growing. Beginning with radial velocity (RV) surveys 
n the late 1990s and early 2000s (e.g. D. Queloz et al. 2000 ; N.
. Santos et al. 2004 ) a few hundreds of exoplanets were detected,

he majority of which are of high masses such as Jupiter. During the
ast decades instruments such as High Accuracy Radial Velocity 
lanet Searcher (HARPS; F. Pepe et al. 2000 ; M. Mayor et al.
003 ), ESPRESSO (F. Pepe et al. 2021 ) or EXPRES (C. Jurgenson
t al. 2016 ) obtaining higher precisions, as well as our ability to
odel stellar activity, has opened the door to measure smaller mass

lanets down to that of Earth (e.g. J. I. González Hernández et al.
024 ; D. A. Turner et al. 2025 ). However, the main increase in
he number of exoplanet detections over the last 15 yr was due
o space-based photometric missions detecting transiting planets 
nd deriving their radii. NASA’s Kepler mission (W. J. Borucki 
t al. 2010 ) observed a fixed field in the Northern Hemisphere
rom 2009 to 2013. This mission discovered nearly 3000 confirmed 
nd validated planets (NASA Exoplanet Archive 2025 , accessed 
n 2025 July 17). After the failure of two of the four reaction
heels the Kepler mission was continued as K2 (S. B. Howell 

t al. 2014 ) observing several fields around the ecliptic until 2018,
dding to the sample of transiting planets. Since 2018, NASA’s 
ransiting Exoplanet Survey Satellite ( TESS ; G. R. Ricker et al.
015 ) has been performing an all-sky survey and has detected 643
lanets to date (NASA Exoplanet Archive 2025 , accessed on 2025 
uly 17). Additionally, ESA’s photometric mission, CHaracterizing 
xOPlanet Satellite ( CHEOPS ; W. Benz et al. 2021 ), is following
p discovered transiting planets and planet candidates to derive their 
adii more precisely. By the end of 2026, ESA’s upcoming PLAnetary
ransits and Oscillations of stars mission ( PLATO ; H. Rauer et al.
025 ) is expected to launch. As this mission will observe bright and
earby targets for at least two years and with up to 24 cameras,
t is expected to reach higher precisions than TESS and CHEOPS
llowing to better characterize transiting planets and discover further 
ystems. PLATO ’s long continuous observation will also enables 
nding planets of longer orbital periods including outer planets in 
nown systems with short period planets (Y. N. E. Eschen et al. 2024 ;
. Rauer et al. 2025 ). 
Among these newly discovered planets by Kepler were two planet 

ypes not found in our own Solar system: super-Earths and sub-
eptunes (N. M. Batalha et al. 2013 ). The large sample of Kepler
lanets allowed demographics studies with these planet types found 
o be the most common in our Milky Way (A. W. Howard et al. 2012 ;
. A. Petigura, G. W. Marcy & A. W. Howard 2013 ). By studying

heir radius distribution, a dearth of planets between ∼1.5–2 R⊕ was 
ound (B. J. Fulton et al. 2017 ; R. Burn et al. 2024 ), named the
adius valley. For FGK dwarfs the radius valley seems to arise from
tmospheric mass-loss (V. Van Eylen et al. 2018 ). In addition to
tmospheric escape from either photoevaporation or core-powered 
ass-loss (J. E. Owen & H. E. Schlichting 2024 ) the radius valley can

lso be explained by formation and evolution models (J. Venturini 
t al. 2020 ). Importantly, the radius valley is stellar mass and orbital
eriod dependent (C. S. K. Ho & V. Van Eylen 2023 ). However,
ot many multiplanetary systems that span the valley, especially at 
ong orbital periods, have been studied. Hence these systems remain 
xciting to study and provide insights into planet formation and 
volution processes. 

Below the radius valley lie super-Earths. Within this sample, a 
opulation of Ultra-Short Period (USP) planets have been discovered 
R. Sanchis-Ojeda et al. 2014 ; E. R. Adams et al. 2021 ). These are
lanets that orbit their host star in less than or roughly 1 d (A. V.
oyal & S. Wang 2025 ) and are hence highly irradiated. Therefore

hey have likely lost their atmospheres and can provide insights into
he deeper interior of small planets (J. N. Winn et al. 2017 ; F. Dai
t al. 2019 ). Since several hundreds of these planets have been found
o date (NASA Exoplanet Archive 2025 , accessed on 17 July 2025),
hey have been part of several demographics studies (J. N. Winn, R.
anchis-Ojeda & S. Rappaport 2018 ). These include the findings of
. Dai, K. Masuda & J. N. Winn ( 2018 ) reporting that USPs have
igher mutual inclinations than other systems. P.-W. Tu et al. ( 2025 )
ound that USPs are more often found around older thick disc stars
nd the period spacings between them and outer bodies seem to
ncrease with age. Since their origin and evolution is still not fully
nderstood they remain interesting planets to characterize. Overall, 
he origin and evolution of USPs is not fully understood, even though
t is commonly thought that these planets migrated inwards through 
nteractions with outer companions (e.g. C. Petrovich, E. Deibert & 

. Wu 2019 ; B. Pu & D. Lai 2019 ; S. C. Millholland & C. Spalding
020 ). 
Since the planetary radius and orbital inclination can be derived 

rom the photometric data and the mass multiplied by the inclination
rom RV observations, combining the two methods is valuable to 
haracterize systems well. Knowing the bulk density of small planets 
in this context RP < 4 R⊕) allows modelling of their interior structure
C. Huang, D. R. Rice & J. H. Steffen 2022 ; P. Baumeister &
. Tosi 2023 ; J. A. Egger et al. 2024 ). This provides insight into
lanet formation and evolution mechanisms such as core accretion 
nd atmospheric escape (J. E. Owen & R. Murray-Clay 2018 ; P. J.
rmitage 2020 ; D. Kubyshkina & L. Fossati 2022 ). As found by V.
dibekyan et al. ( 2021 ), T. G. Wilson et al. ( 2022 ), V. Adibekyan

t al. ( 2024 ) there may be a compositional link between the host star
bundances and the interior structure of these planets since they are
ormed from the same material and the abundances are unlikely to
ave changed significantly during the formation (A. Thiabaud et al. 
015 ; J. Nielsen et al. 2023 ; J. H. Steffen et al. 2025 ) as seen by the
bundances of refractory elements in the proto-Sun and Earth (H. S.
ang, C. H. Lineweaver & T. R. Ireland 2019a ). 
However, there is a lack of planets around metal-poor and α-

nhanced stars which is not clear if it arises from physical or obser-
ational origin. Hence to identify trends linking stellar and planetary 
omposition, and perform demographic studies, this sample needs to 
e increased. Metal-poor and α-enhanced stars are most likely to be
ound in the kinematic thick disc of the Milky Way (K. Fuhrmann
998 ; M. R. Hayden et al. 2015 ). This is due to the Interstellar
edium (ISM) being enriched in α-elements due to more massive 

tars ( M > 8 M�) exploding in type II supernova at the earlier stages
f the Milky Way. With more time low-mass stars evolved into white
warfs and type Ia supernova could enrich the ISM with iron-peak
lements (J. C. Wheeler, C. Sneden & J. W. Truran 1989 ; P. Gondoin
024 ; J. H. Steffen et al. 2025 ). Hence stars in the thin disc are
ound to be metal-rich while stars in the thick disc mainly remain
etal-poor (M. R. Hayden et al. 2015 ). Hence, to add to the sample

f small transiting planets around metal-poor stars, we characterize 
MNRAS 544, 2614–2636 (2025)
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he planets orbiting the kinematic thick disc star TOI-2345 hosting
n USP and a sub-Neptune spanning the radius valley. 

We present the data we took with TESS , CHEOPS , and HARPS to
iscover and characterize this system as well as the ground-based
hotometry and imaging in Section 2 , characterize the host star
roperties in Section 3 , model the planetary parameters in Section 4
nd discuss its internal structure, atmospheric evolution and place it
n the context of other thick disc stars orbited by super-Earths and
ub-Neptunes in Section 5 . Finally, we conclude in Section 6 . 

 OBSERVATION S  

n order to characterize the TOI-2345 system, it was observed
ith photometric surveys including TESS , CHEOPS , ASAS-SN, and
ASP; spectroscopy from HARPS and imaging observations from

OAR. 

.1 TESS 

he Transiting Exoplanet Survey Satellite ( TESS ; G. R. Ricker et al.
015 ) has been performing an all-sky survey since 2018. TESS
onsists of four cameras each containing four CCDs. To cover the
ntire sky it divided it up into sectors which are each observed for
7.4 d. Since its launch, it has identified 7655 planet candidates
nd discovered 643 new planets (NASA Exoplanet Archive 2025 ,
ccessed on 2025 July 17). Being at the end of its second extended
ission now, TESS has changed the cadence at which it is observing

argets from the original 30 mins in the prime mission, 10 mins during
he first extension, and finally the current 200s cadence. Additionally,
ESS observes selected targets at a cadence of 2 min during the
rimary mission and 20 s during the extensions. 
TESS data is downlinked every 13.7 d. The data are processed

y the Science Processing Operations Centre (SPOC; J. M. Jenkins
t al. 2016 ; D. A. Caldwell et al. 2020 ) into light curves following
he procedures of the Kepler pipeline (J. M. Jenkins et al. 2010 ).
he produced light curves contain flux values obtained from Simple
perture Photometry (SAP; J. D. Twicken et al. 2010b ; R. L.
orris et al. 2020 ) as well as the Pre-search Data Conditioning

AP (PDCSAP; J. D. Twicken et al. 2010a ; J. C. Smith et al. 2012 ;
. C. Stumpe et al. 2012 ), which is the SAP flux detrended using
o-trending Basis Vectors and hence showing less systematic trends.

n these light curves the combined differential photometric precision
CDPP) over 2 h is reported (J. L. Christiansen et al. 2012 ). 

Produced light curves by SPOC go through a several staged vetting
rocess described in N. M. Guerrero et al. ( 2021 ). First, a search for
ransit like signals is conducted. Signals that occur twice or more
nd have a statistical significance of 7.1 σ or more as well as some
tatistical tests pass this stage and are called Threshold Crossing
vents (TCEs). To these a transit model is fitted and a summary report

ncluding several diagnostic tests gets produced. Within this step the
ipeline also searched for further transits in the light curve. These data
re then passed on to an automated Triage, TESS -ExoClass (TEC) 1 

ased on Kepler ’s Robovetter (J. L. Coughlin et al. 2016 ; S. E.
hompson et al. 2018 ). Finally targets, passing these tests get vetted
anually by a team of Vetters going through the produced reports.
dditionally, several teams have developed independent searching

nd vetting tools (e.g. M. Montalto et al. 2020 ; D. L. Feliz et al.
021 ; G. Olmschenk et al. 2021 ; M. Montalto 2023 ; Y. N. E. Eschen
 M. Kunimoto 2024 ; M. Kunimoto et al. 2025 ) 
NRAS 544, 2614–2636 (2025)

 https://github.com/christopherburke/TESS-ExoClass 

w  

O  

1  
In this vetting process, two transiting planet candidates around
OI-2345, TOI-2345.01 and TOI-2345.02, were alerted. Hereafter,
e refer to these planets as TOI-2345 b and c. TOI-2345 was observed
uring TESS ’s Primary mission in sectors 3 and 4 (20 September
018 to 14 November 2018) with a cadence of 30 min. The target
as observed again in the first Extended Mission within which TESS

ollected data with a cadence of 10 min in sectors 30 and 31 (2020
eptember 23–2020 November 16). TESS will re-observe TOI-2345

n October 2025 and Summer 2026 according to TESS -POINT (C. J.
urke et al. 2020 ). We show and summarize the details of the cur-

ently available TESS observations in Fig. 1 and Table 1 , respectively.
To perform our own analysis on this target, we downloaded the

ESS SPOC High-level-science product light curves, for sectors 3,
, 30, and 31. We removed bad quality data (QUALITY > 0) points
nd analysed the PDCSAP flux in this study. 

.2 CHEOPS 

he CHaracterising ExOPlanet Satellite ( CHEOPS ; W. Benz et al.
021 ) is a S-class ESA mission launched in 2019. One of its goals
s to follow-up known planets in order to derive their radii more
recisely which supports constraining planet formation and evolution
heories. While TESS produces Full Frame Images and makes these
ublicly available, CHEOPS produces window images which contain
he observed target. Due to the nadir-locked, Sun-synchronous, low-
arth orbit of CHEOPS , each visit contains gaps from Earth occulta-

ion that is represented by a observational efficiency. We obtained a
otal of five CHEOPS visits within the CHEOPS X-Gal programme
ID: PR120054, PI: Wilson) within the Guaranteed Time Observing
rogramme, see Fig. B1 . These visits cover four transits of TOI-
345 b and one transit of TOI-2345 c and are summarized in Table 2 .
In addition to the aperture photometry from the CHEOPS Data

eduction Pipeline (DRP; S. Hoyer et al. 2020 ), where we select the
ptimal aperture per visit based on the lowest RMS value, we used
he PSF Imagette Photometric Extraction (PIPE; A. Brandeker, J. A.
atel & B. M. Morris 2024 ) to re-extract the CHEOPS photometry
sing PSF photometry. We fit each visit individually in PYCHEOPS (P.
. L. Maxted et al. 2023 ) using LMFIT (M. Newville et al. 2014 ) and
he parameters obtained by a TESS only fit in JULIET (N. Espinoza, D.
ossakowski & R. Brahm 2019 , See Section 4.1 ). Within PYCHEOPS

ubsets detrending vectors are fitted simultaneously with the transit
odel. By assessing the Bayes Factor of models containing different

ombinations of detrending vectors, we are able to obtain the
etrending vectors of each visit. We report these selected detrending
ectors in Table B1 . We use the suggested detrending vectors as linear
egressors in JULIET in order to decorrelate the five CHEOPS visits.

e apply a 3 σ clipping, removing outliers that are further away than
 σ from the mean of the data. This leaves us with two sets of five
etrended CHEOPS visits each, one using aperture photometry from
he DRP and one using PSF photometry from PIPE. 

.3 HARPS 

e collected 26 high-resolution spectra of TOI-2345 with the High
ccuracy Radial Velocity Planet Searcher (HARPS; F. Pepe et al.
000 ). HARPS is a high-resolution Echelle spectrograph mounted
n the ESO 3.6 m telescope in La Silla. HARPS has a wavelength
ange from 380 to 680 nm and a resolving power of 90,000. These
bservations were taken between 2023-07-01 and 2025-01-30 which
e show in Fig. C1 . The typical SNR of these observations at
rder 50 is 33.44. These observations were taken as part of the
11.254R programme (PI: Wilson) with an exposure time of 1800 s.

https://github.com/christopherburke/TESS-ExoClass
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Figure 1. TESS data of TOI-2345 in sectors 3, 4, 30, and 31. Top: TESS data binned at 10 h. Middle: Transit and GP model in blue plotted on top of the data 
points in grey. Bottom: Transit model and TESS data points with the GP model subtracted. 

Table 1. TESS observations of TOI-2345. 

Sector Camera CCD Start date End date Cadence 2-h CDPP #Transits of #Transits 
( UTC ) ( UTC ) (s) (ppm) Planet b Planet c 

3 2 2 2018-09-20T13:04:29.861 2018-10-17T21:05:07.754 1800 181.3 17 1 
4 2 1 2018-10-19T10:05:08.066 2018-11-14T08:04:33.593 1800 191.2 18 1 
30 2 2 2020-09-23T09:24:09.487 2020-10-20T14:34:38.274 600 200.2 21 2 
31 2 1 2020-10-22T00:24:38.474 2020-11-16T10:43:57.592 600 184.6 21 1 

Table 2. CHEOPS Observations of TOI-2345. 

Visit Planets Start date Duration Data points File key Efficiency Exp time 
( UTC ) (h) (#) (per cent) (s) 

1 b 2022-10-16T12:30:42 12.67 529 CH PR120054 TG001001 71.5 60 
2 c 2022-10-25T16:21:42 17.29 771 CH PR120054 TG002401 74.2 60 
3 b 2022-11-05T13:31:42 13.97 674 CH PR120054 TG001002 80.3 60 
4 b 2022-11-20T09:50:42 11.44 428 CH PR120054 TG003201 62.3 60 
5 b 2022-11-21T12:37:43 12.41 448 CH PR120054 TG003202 60.1 60 
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he data were processed with the HARPS Data Reduction Software 
DRS 3.2.5 C. Lovis & F. Pepe 2007 ). Within the DRS the RVs
s well as activity indicators such as the FWHM, BIS and contrast
re computed using the cross-correlation function with a K2 mask. 
dditionally further activity indicators, including the S, H α, Na and 
a II indices, are computed from the spectra. The HARPS RVs and
ctivity indicators are shown in Tables C1 and C2 . 

As shown by A. M. Silva et al. ( 2022 ), the precision of RVs can be
mproved by extracting them through template matching. Hence we 
dditionally derive RVs using Semi-Bayesian Approach for RVs with 
emplate-matching ( S-BART ; A. M. Silva et al. 2022 ). We re-extracted

he RVs using the 2D spectra from the DRS and a combination
f different template-matching parameters and quality checks and 
ompare the results to find the best combination of these. The
emplate matching fitting parameters include RV steps of 0.1, 0.5, 
.0 m/s, RV limits of 200, 500, 1000 m s−1 and the classical and
aplacian method S-BART applies. As quality checks we apply 
inimum order SNRs of 1.5, 5, and 10, airmasses of 1.5, 2.0, 2.2 and

.6 and RV errors of 5, 6, 7, and 10 m/s. We obtain a median error of

.04 m s−1 and an RMS of 3.57 m s−1 when taking the median of all
-BART time series median errors and RMS. This is lower than the
edian error and RMS obtained from the RVs of the DRS which are

.12 and 4.61 m s−1 , respectively. Since S-BART is reducing the un-
ertainties, we use it in the further analysis in Section 4 . We describe
ow we select the optimal RV time series produced by S-BART from
ifferent template matching and quality parameters in Section 4.2 . 
MNRAS 544, 2614–2636 (2025)
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Figure 2. 5 σ detection sensitivity of the SOAR I -band observation of 
TOI-2345. 
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.4 ASAS-SN 

he All-Sky Automated Survey for SuperNovae (ASAS-SN; B. J.
happee et al. 2014 ; C. S. Kochanek et al. 2017 ) is photometrically
onitoring the entire sky to detect transients. As this survey also
onitor stars over a long time span it can be used to monitor

tellar activity. TOI-2345 was observed in the ASAS-SN V band
rom January 2012 to September 2018 and the g band by ASAS-SN
rom 2017 September to 2025 August. In the 13 yr, 1062 and 5497
ata points were collected for the V and g band, respectively. We
pply a magnitude cut-off at V = 15 mag and g = 15 mag and 5 σ
lipping to this data, which removes 6 and 280 data point, leaving us
ith 1056 and 5217 measurements, respectively. 

.5 WASP 

he Wide Angle Search for Planets (WASP; D. L. Pollacco et al.
006 ) has been monitoring stars since 2004 in the Northern and
outhern hemisphere to search for transiting planets. This resulted

n 170 planet discoveries, of which the majority are Hot Jupiters
s these have deep transits. WASP is not precise enough to detect
lanets as small as Earth, however its long term monitoring can be
sed to identify the rotation period of stars. TOI-2345 was monitored
ith WASP from 2006 June 17 to 2014 December 19. During this

ime WASP collected 12 235 data points. We remove data points
ith relative magnitude errors above 0.01, leaving us with 10 324
ata points. Applying a 5 σ clipping to the remaining data points,
emoves an additional two, leaving 10 322 measurements for further
nalysis. 

.6 Imaging 

igh-angular resolution imaging is needed to search for nearby
ources that can contaminate the TESS photometry, resulting in an
nderestimated planetary radius, or be the source of astrophysical
alse positives, such as background eclipsing binaries. We searched
or stellar companions to TOI-2345 with speckle imaging on the 4.1-
 Southern Astrophysical Research (SOAR) telescope (A. Tokovinin

018 ) on 2020 December 3 UT , observing in Cousins I band, a similar
isible bandpass as TESS . This observation was sensitive with 5-
igma detection to a 5.0-mag fainter star at an angular distance of
 arcsec from the target. More details of the observations within the
OAR TESS survey are available in C. Ziegler et al. ( 2020 ). The
 σ detection sensitivity and speckle autocorrelation functions from
he observations are shown in Fig. 2 . No nearby stars were firmly
etected within 3 arcsec of TOI-2345 in the SOAR observations. 

 STELLAR  C H A R AC T E R I Z AT I O N  

.1 Spectral analysis 

e analysed the co-added high-resolution HARPS spectrum with
he software Spectroscopy Made Easy 2 ( SME ; J. A. Valenti &
. Piskunov 1996 ; N. Piskunov & J. A. Valenti 2017 ) to obtain

he stellar effective temperature ( Teff ), surface gravity (log g� ), and
bundances ([Fe/H], [Mg/H], [Si/H]). This software fits observations
o computed synthetic spectra based on a chosen stellar atmosphere
rid (Atlas12; R. L. Kurucz 2013 ) and atomic and molecular line data
rom VALD (T. Ryabchikova et al. 2015 ). We fitted one parameter
NRAS 544, 2614–2636 (2025)

 http://www.stsci.edu/∼valenti/sme.html 

3

s

t a time following C. M. Persson et al. ( 2018 ). We fixed the
icro- and macro-turbulent velocities to 0.1 km s−1 and 1.0 km s−1 

nd fitted a large number of iron lines to obtain the projected
quatorial rotational velocity of the star ( V sin i� ). The parameters
erived are Teff = 4687 ± 60 K, log g = 4 . 57 ± 0 . 06 dex, and [Fe/H]
 −0 . 10 ± 0 . 07 dex. 
An additional independent spectral analysis was done with

RES + MOOG as described in N. C. Santos et al. ( 2013 ) and S.
. Sousa ( 2014 , 2021 ). We used the latest version of ARES 

3 (S.
. Sousa et al. 2007 , 2015 ) to consistently measured the equivalent
idths (EW) for the iron line list presented in S. G. Sousa et al.

 2008 ). The best spectroscopic parameters are found using the
onization and excitation equilibrium. In this process, it is used for
 grid of Kurucz model atmospheres (R. L. Kurucz 1993 ) and the
adiative transfer code MOOG (C. A. Sneden 1973 ). The parameters
erived ( Teff = 4669 ± 122 K, log g = 4 . 55 ± 0 . 07 dex, and [Fe/H]
 −0 . 11 ± 0 . 05 dex) are very consistent with the adopted values

erived by SME. 

.2 Radius, mass, and age 

e determined the stellar radius of TOI-2345 using a MCMC
odified infrared flux method (IRFM–D. E. Blackwell & M. J.
hallis 1977 ; N. Schanche et al. 2020 ). Within this framework we
onstructed spectral energy distributions (SED) from two stellar
tmospheric models catalogues (R. L. Kurucz 1993 ; F. Castelli &
. L. Kurucz 2003 ) constrained by our spectroscopically derived

tellar parameters. To obtain the stellar bolometric flux, synthetic
hotometry was produced by the SEDs and compared to observed
uxes in the following bandpasses: 2MASS J , H , and K , WISE
 1 and W 2, and Gaia G , GBP , and GRP (M. F. Skrutskie et al.

006 ; E. L. Wright et al. 2010 ; Gaia Collaboration 2023 ). From the
olometric flux, we derived the effective temperature and angular
iameter that was converted into the stellar radius using the offset-
orrected Gaia parallax (L. Lindegren et al. 2021 ). To account for
tellar atmosphere model uncertainties, we took a Bayesian Model
 The latest version, ARES v2, can be downloaded at https://github.com/ 
ousasag/ARES 

http://www.stsci.edu/~valenti/sme.html
https://github.com/sousasag/ARES
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Table 3. Stellar properties of TOI-2345. 

TOI-2345 

2MASS J02553208-3458391 
Gaia DR3 5049575943053753088 
TIC 91555165 
LP 942-63 
Parameter Value Note 
α [J2000] 02h 55m 32 . 10s 1 
δ [J2000] −34◦58

′ 
39 . 09

′′ 
1 

μα [mas yr−1 ] 202.481 ±0.011 1 
μδ [mas yr−1 ] −104.354 ±0.014 1 
� [mas yr−1 ] 12.297 ±0.015 1 
d [pc] 81.27 ±0.30 1 
RV [km s−1 ] 58.14 ±0.21 1 
U [km s−1 ] −29.972 ±0.056 5a 

V [km s−1 ] −100.23 ±0.12 5a 

W [km s−1 ] −13.10 ±−0.19 5a 

V [mag] 11.48 ±0.08 2 
GBP [mag] 11.599 ±0.003 1 
G [mag] 11.030 ±0.003 1 
GRP [mag] 10.316 ±0.004 1 
J [mag] 9.51 ±0.03 3 
H [mag] 8.94 ±0.06 3 
K [mag] 8.85 ±0.02 3 
W1 [mag] 8.76 ±0.02 4 
W2 [mag] 8.84 ±0.02 4 
Teff [K] 4687 ± 60 5; spectroscopy 
log g [cm s−2 ] 4 . 57 ± 0 . 06 5; spectroscopy 
[Fe/H] [dex] −0 . 10 ± 0 . 07 5; spectroscopy 
[Mg/H] [dex] 0 . 02 ± 0 . 11 5; spectroscopy 
[Si/H] [dex] −0 . 12 ± 0 . 09 5; spectroscopy 
V sin i� [km s−1 ] 2 . 3 ± 0 . 9 5; spectroscopy 
R� [R�] 0.729 ± 0.007 5; IRFM 

M� [M�] 0.727 ± 0.033 5; isochrones 
t� [Gyr] 6.3 ± 4.7 5; isochrones 
L� [L�] 0.231 ± 0.013 5; from R� and Teff 

ρ� [ ρ�] 1.88 ± 0.10 5; from R� and M� 

ρ� [kg m−3 ] 2645 ± 142 5; from R� and M� 

Notes. [1] Gaia Collaboration ( 2023 ), [2] E. Høg et al. ( 2000 ), [3] M. F. 
Skrutskie et al. ( 2006 ), [4] E. L. Wright et al. ( 2010 ), [5] This work 
a Calculated via the right-handed, heliocentric Galactic spatial velocity for- 
mulation of D. R. H. Johnson & D. R. Soderblom ( 1987 ) using the proper 
motions, parallax, and RV from [1]. 
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veraging of the stellar radius posterior distributions from the two 
atalogues. This is reported in Table 3 . 

We then inputted the stellar effective temperature Teff , metallicity 
Fe/H], and radius R� along with their uncertainties in the isochrone 
lacement routine (A. Bonfanti et al. 2015 ; A. Bonfanti, S. Ortolani
 V. Nascimbeni 2016 ) to derive the stellar mass M� and age t� from

volutionary models. Following interpolation within pre-computed 
rids of PARSEC 

4 v1.2S (P. Marigo et al. 2017 ) isochrones and
racks we obtained M� = 0 . 727 ± 0 . 033 M� and t� = 6 . 3 ± 4 . 7 Gyr.
ll the stellar parameters are listed in Table 3 . 

.3 Rotation period 

ince ASAS-SN and WASP cover a long baseline of photometric 
ata as shown in Fig. D1 , they can be used to identify stellar rotation
eriods (e.g. T. G. Wilson et al. 2022 ; D. A. Turner et al. 2025 ). We
 PA dova and T R ieste S tellar E volutionary C ode: https://stev.oapd.inaf.it/cgi- 
in/cmd 

p  

t  

o  

c

25
ence run a Lomb–Scargle periodogram (N. R. Lomb 1976 ; J. D.
cargle 1982 ) on each data set individually, dividing the ASAS-
N data into two sets to cover the V and g -band observations,
espectively. We remove peaks due to the cadence of the observations, 
eason length and the moon. The three resulting periodograms for 
SAS-SN and WASP respectively are shown in Fig. 3 . The two
rbital periods of the planets are highlighted in purple and green.
lthough TESS covers a shorter baseline than these two surveys, we

un a Lomb–Scargle periodogram on the consecutive sectors 3 and 
 a well as 30 and 31 using the SAP flux and remove the transit
ignals using WOTAN (M. Hippke et al. 2019 ). The underlying data
s well as the two periodograms are shown in Figs A1 and A2 . In all
eriodograms, we do not find any significant peaks, concluding that 
OI-2345 is inactive from these data. 

.4 Kinematic analysis 

aia DR3 (Gaia Collaboration 2023 ) reports stellar kinematic 
roperties including the position, parallax, RV, and proper motion 
f stars. The stellar properties of TOI-2345 measured by Gaia 
re reported in Table 3 . D. R. H. Johnson & D. R. Soderblom
 1987 ) derive transformations of coordinates and velocities using 
he equatorial and galactic coordinates of the star as well as its
arallax, RV, and proper motion. Based on the coordinates of the
orth Galactic Pole and the position angle of the North Celestial
ole, they compute a transformation matrix. Multiplying this matrix 
ith a coordinate matrix constructed for the star and its RV and
roper motion the components of the galactic space-velocity can be 
omputed. Performing this computation for TOI-2345, we obtain ( U ,
 , W ) = ( −29 . 972 ±0.056, −100 . 23 ±0.12, −13 . 10 ±0.19) km s−1 

n this heliocentric frame. Since this computation is using a right-
anded coordinate system, U is positive in the direction of the
alactic Centre, V is positive towards the Galactic rotation, and 
 is positive towards the North Galactic Pole. Since the galactic

pace-velocities derived previously are heliocentric, we correct them 

or the solar motion in the local standards of rest from V. V. Koval’,
. A. Marsakov & T. V. Borkova ( 2009 ), R. Schönrich, J. Binney &
. Dehnen ( 2010 ), B. Cos ¸kunoğlu et al. ( 2011 ), V. V. Bobylev and
. T. Bajkova ( 2014 ), C. Francis & E. Anderson ( 2014 ), H.-J. Tian

t al. ( 2015 ), and F. Almeida-Fernandes & H. J. Rocha-Pinto ( 2018 ).
To compute the galactic kinematic probabilities of the thin disc, 

hick disc, and halo we follow T. Bensby, S. Feltzing & I. Lundström
 2003 ). They assume that the stellar populations follow Gaussian
istributions which are normalized by the characteristic velocity 
ispersions of each group ( σU , σV , σW 

) and V is corrected using the
symmetric drift. Since the local number densities of each population 
re different they multiply the probabilities by the observed fraction 
f each population to obtain the relative likelihood of a star belonging
o either population. T. Bensby et al. ( 2003 ) report values for the
elocity dispersions, stellar fractions and asymmetric drift of each 
f these populations. However, since their work several other studies 
ave reported their own values which slightly vary. The studies we
sed in our analysis are T. Bensby et al. ( 2003 , 2014 ); B. E. Reddy, D.
. Lambert & C. Allende Prieto ( 2006 ); D.-C. Chen et al. ( 2021b ).
omputing the thick disc probability with all combinations of the 

ocal standards of rest and the different velocity dispersions, stellar 
ractions and asymmetric drifts, we obtained a weighted thick disc 
robability of 85 per cent. From this kinematic analysis, we conclude
hat TOI-2345 is in the Milky Way’s thick disc. Due to the cool nature
f the host star, we are unable to confirm its place in the thick disc
MNRAS 544, 2614–2636 (2025)

hemically. 

https://stev.oapd.inaf.it/cgi-bin/cmd


2620 Y. N. E. Eschen et al.

M

100 101 102 103

Period (days)

0.00

0.01

0.02

0.03

P
ow

er

100 101 102 103

Period (days)

0.00

0.01

0.02

0.03

P
ow

er

100 101 102 103

Period (days)

0.000

0.001

0.002

0.003

0.004

P
ow

er

Figure 3. Lomb–Scargle periodogram of TOI-2345 of the ASAS-SN V band (left), ASAS-SN g band (middle), and WASP (right) data. The orbital periods of 
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the grey continuous, dashed and dotted line, respectively. 
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 PLANET  FITTING  

o understand the planetary properties, we used JULIET (N. Espinoza
t al. 2019 ), a joint fitting tool using BATMAN (L. Kreidberg 2015 )
or photometric data and RADVEL (B. J. Fulton et al. 2018 ) to fit
he RV data. We make use of JULIET to fit the photometric and RV
ata individually and jointly. JULIET uses DYNESTY (J. S. Speagle
020 ) for nested sampling and computes Bayesian evidences
llowing model comparisons. We derive the planetary radii and
asses by converting the fitted planet-to-star radius ratios and RV

emi-amplitudes fitted in the following and the radius and mass of
he star as reported in Section 3.2 . 

.1 Photometry 

round this star two planet candidates at periods of 1.05 and 42 d
ere alerted by the TESS team. To verify these, we perform our own

earch for the periods of the two planets using a Box Least Squares
eriodogram (BLS; G. Kovács, S. Zucker & T. Mazeh 2002 ). This
nalysis also found a planet at the same period as the TESS team,
1.05 d, with a log likelihood of logL = 133. The second signal we

icked up with logL = 192 was at ∼21 d as shown in green in Fig. 4 .
his signal is half the period that was recorded by the TESS vetting

eam. 
A planetary signal of ∼21 d is longer than the continuous TESS

bservations which are downlinked every 13.7 d. Therefore, ∼21 d
s a factor of 1.5 times the downlink and sector gaps. Hence, the
ven transits of the longer period sub-Neptune, TOI-2345 c lie just
NRAS 544, 2614–2636 (2025)
t the edge of TESS ’s sector observation gaps and are only partially
btained. We show these two even transits with the best-fitting model
n Fig. A3 . This caused the TESS vetting team to flag the system at
wice the period. The CHEOPS visit of the outer planet covers the
ven transit. Based on the transit times alone, we cannot differentiate
etween the 21 and 42 d period. However, coupling the stellar density
ith the transit durations from TESS and CHEOPS , allows us to

avour the 21 d period. For this, we run a fit of the TESS and CHEOPS
ata in JULIET fitting for the period, P , mid-transit time, t0 , planet-to-
tar ratio, RP / R∗, impact parameter, b and stellar density which are
ummarized in Table 4 . Additionally we fit the jitter, the offset relative
ux and the limb darkening coefficients parametrized following D.
. Kipping ( 2013 ), q1 and q2 for each photometric instrument, i.e.

ESS and CHEOPS summarized in Table E1 . We included a Gaussian
rocess (GP) with a Matern-3/2 kernel, implemented in JULIET (S.
mbikasaran et al. 2015 ; D. Foreman-Mackey et al. 2017 ), and
tted for the GP amplitude and time-scale as reported in Table E1 to
ccount for any residual systematic noise in the TESS photometry.
o determine the period of the outer planet we altered its period prior
hich we set to be uniformly distributed between 10 and 50 d as this

ncludes both possible periods. Since the eccentricity can impact the
ransit duration, we also let it vary uniformly between 0 and 0.5 as
ell as the argument of periastron from 0◦ to 360◦ for the outer planet

n this fit. As shown in Fig. 1 , the model picks up the signal of the outer
ransiting planet at ∼21 d and fits the even transits which are only
artially covered by TESS observations. This model identifies the
1 d planetary signal which also agrees with our previous BLS search.
ence, we determine a period of 21 d for the outer planet by analysing

he TESS data carefully to spot transits close to the gaps and account-
ng for the stellar density in our fit. We use this period for the further
nalysis. 

Using this period and fixed eccentricity, we run joint photometric
nalyses of the TESS and CHEOPS data using priors as listed in
s listed in Table 4 . We run two fits in order to compare the
HEOPS aperture photometry obtained from the DRP and the
HEOPS PSF photometry obtained by PIPE. In both analyses we
pply the same GP as described above to the TESS data. The fit
sing the TESS and CHEOPS DRP photometry results in radii of
 . 48 ± 0 . 05 and 2 . 45 ± 0 . 05 R⊕, while the TESS and CHEOPS
IPE photometry obtain radii of 1 . 48+ 0 . 04 

−0 . 05 and 2 . 48 ± 0 . 06 R⊕ for
he inner and outer planet, respectively. These results are within
 1 σ agreement with each other. Since the PIPE photometry
median flux error = 0.00052, RMS = 0.00063) has a lower flux
ncertainty and RMS than the DRP data (median flux error = 0.00056,
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Table 4. Fitted and derived planetary parameters. Uniform distributions are noted by U . 

Planet b Planet c 

Parameter Unit Prior Posterior Prior Posterior 
T0 (BJD) U (2459116 . 63 , 2459116 . 83) 2459116 . 7208+ 0 . 0011 

−0 . 0020 U (2459120 . 20 , 2459120 . 40) 2459120 . 3007+ 0 . 0014 
−0 . 0013 

P (days) U (0 . 95 , 1 . 15) 1 . 0528573+ 0 . 0000025 
−0 . 0000026 U (20 . 96 , 21 . 16) 21 . 064302+ 0 . 000041 

−0 . 000041 

RP / R∗ U (0 , 1) 0 . 01891+ 0 . 00057 
−0 . 00052 U (0 , 1) 0 . 03082+ 0 . 00049 

−0 . 00050 

b U (0 , 1) 0 . 27+ 0 . 11 
−0 . 16 U (0 , 1) 0 . 056+ 0 . 053 

−0 . 037 

K (m s−1 ) U (0 , 100) 2 . 71+ 0 . 66 
−0 . 66 U (0 , 100) 2 . 08+ 0 . 65 

−0 . 70 

Derived parameters 

a / R∗ – 5 . 030+ 0 . 044 
−0 . 049 – 37 . 07+ 0 . 32 

−0 . 36 

i deg – 86 . 9+ 1 . 3 
−1 . 8 – 89 . 914+ 0 . 083 

−0 . 057 

RP (R⊕) – 1 . 504+ 0 . 047 
−0 . 044 – 2 . 451+ 0 . 045 

−0 . 046 

a (au) – 0 . 01705+ 0 . 00022 
−0 . 00023 – 0 . 1257+ 0 . 0016 

−0 . 0017 

MP (M⊕) – 3 . 49+ 0 . 85 
−0 . 85 – 7 . 27+ 2 . 27 

−2 . 45 

ρP (g/cm3 ) – 5 . 64+ 1 . 48 
−1 . 46 – 2 . 71+ 0 . 86 

−0 . 93 

Teq (K) – 1478 ± 20 – 544 ± 7 

SP (S⊕) – 791 ± 43 – 14 . 57+ 0 . 79 
−0 . 80 

TSM – 43 ± 11 – 33+ 10 
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Figure 5. TTV Analysis of TOI-2345. Top: TOI-2345 b in purple. Bottom: 
TOI-2345 c in green. 
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MS = 0.00089), we use the CHEOPS PIPE data for the further
nalysis. 

Within the TESS and CHEOPS photometric observations, we 
hecked for transit timing variations that could be caused by potential 
urther planets in the systems. For this we perform a further analysis
n the TESS and CHEOPS data in JULIET . In addition to fitting to
he photometric priors used before, we also fit for a perturbation for
ach transit. This analysis does not identify any significant transit 
iming variations as shown in Fig. 5 . We note that the uncertainties
n the transit times of the TOI-2345 b are large. This is due to the
ery shallow transit, which is challenging for the transit model to 
dentify in individual transits. 

.2 Radial velocity time series assessment 

s described in Section 2.3 , our S-BART re-extraction resulted in 
everal sets of RVs extracted with different template matching and 
uality parameters. To determine the optimal RV time series for use 
n our joint fit, we fitted each of our RV sets in JULIET and kept the
eriod and mid-transit time fixed at the values obtained from the 
hotometry only analysis given their precise determination. In our 
nalysis we allow the semi-amplitudes and HARPS instrumentals 
offset and jitter) to vary. Due to the number of RV data points
eing relatively low, we also kept the eccentricity and argument of
eriastron fixed at a circular orbit ( e = 0; ω = 90◦). We selected
he RV data set that resulted in the lowest jitter in these fits. This
as the case for the template matching parameters of an RV step of
.5 m s−1 and an RV limit of 200 m s−1 using the S-BART ’s classical
ethod. This analysis selected S-BART outputs with quality checks 

f a minimum order SNR of 1.5, an airmass of 2.2 and RV errors of
 m s−1 . This set of RV data points has a median error of 2.04 m s−1 

nd a RMS of 3.42 m s−1 . We show these re-extracted S-BART RVs
n comparison to the DRS RVs in Fig. C1 . 

Additionally, we searched the activity indicators produced by 
he HARPS DRS for stellar activity signals using Lomb–Scargle 
eriodograms (N. R. Lomb 1976 ; J. D. Scargle 1982 ) for each activity
ndicator. As in the photometric analysis of stellar activity, we do not
nd any significant peaks at the 1 per cent false alarm level or lower at

ypical rotation periods. As no activity indicators peak at the periods
f the two planets (highlighted in purple and green in Fig. 6 ), we
onclude that the two signals in the RV data are indeed caused by
he two planets and not stellar activity. We also show Lomb–Scargle
eriodograms of the HARPS DRS and re-extracted S-BART RVs in 
ig. 6 showing that there are no significant additional signals that
ould hint at RV only planets. Given the low number of RVs, there
re no significant peaks at the orbital periods of TOI-2345 b and
OI-2345 c. Therefore, we conclude that it is fundamental to jointly
t the photometry and RVs to retrieve the masses for both planets. 

.3 Joint fit 

e combine the photometric observations taken by TESS and 
HEOPS with the RV observations taken by HARPS and reprocessed 
sing S-BART in a joint fit. As for our photometric analysis, we apply
 GP as described in the photometry to the TESS data. Since we did
ot find a stellar activity signal as shown in Section 3.3 , we do not
se any GPs for the RV data. 
Using JULIET , we fit for the photometric priors as described in

ection 4.1 as well as the semi-amplitude, K , for planet b and c,
espectively which are summarized in Table 4 . 
MNRAS 544, 2614–2636 (2025)



2622 Y. N. E. Eschen et al.

M

0.0

0.5 DRS RV

0.0

0.5 S-BART RV

0.0

0.5 FWHM

0.0

0.5 BIS Span

0.0

0.5 Contrast

0.0

0.5 S-Index

0.0

0.5 Hα

0.0

0.5 Na

100 101 102 103

Period (days)

0.0

0.5 Ca

P
ow

er

Figure 6. Lomb–Scargle periodograms of the RVs (extracted from the 
HARPS DRS and S-BART ) and activity indicators recorded by the HARPS 
DRS. The false alarm levels of 1 per cent, 0.1 per cent, and 0.01 per cent are 
shown by the grey straight, dashed and dotted line, respectively. The orbital 
periods of the two planets are shown by the purple and green highlights. 

 

d  

q  

F  

a  

 

w  

fi  

a  

a  

r  

fi  

6  

f

f  

m  

d  

a  

G  

c  

n

5

5

U  

t  

E  

f  

o  

i  

m  

N  

a  

A  

m  

r  

 

f  

v  

T  

e  

o
 

e  

F
b

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/544/2/2614/8293221 by C
halm

ers tekniska högsko
Additionally we fit the jitter the offset relative flux and the limb
arkening coefficients parametrized following D. M. Kipping ( 2013 ),
1 and q2 for each photometric instrument, i.e. TESS and CHEOPS .
or the HARPS, we fit the instrumental parameters of the offset and
 jitter added in quadrature to the error bars summarized in Table E1 .

Due to the limited number of RV observations, we run one fit
ith the eccentricity and the argument of periastron in our priors
xed resulting in a circular orbit for both planets ( e = 0, ω = 90◦)
nd another fit where we let them vary uniformly between 0 and 0.5
s well as 0◦ and 360◦, respectively. The eccentric fit allows us to
NRAS 544, 2614–2636 (2025)
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igure 7. Phase folded transits of TOI-2345 b (purple) and TOI-2345 c (green) w
ottom panel shows the residuals. Left: TESS data. Right: CHEOPS data. 
eport a 3 σ upper limit on the eccentricity of 0.31. Since the circular
t results in a better lnZ (circular: lnZ = 66320, eccentric: lnZ =
6300), we report the results from the circular fit and use these values
or the further analysis. 

We obtain a radius of 1 . 504+ 0 . 047 
−0 . 044 R⊕ and mass of 3 . 49 ± 0 . 85 M⊕

or the inner planet, TOI-2345 b, and a radius of 2 . 451+ 0 . 045 
−0 . 046 R⊕ and

ass of 7 . 27+ 2 . 27 
−2 . 45 M⊕ for the outer planet, TOI-2345 c. The fitted and

erived values are summarized in Table 4 . The phase-folded transits
nd RV curves of this joint fit are shown in Figs 7 and 8 , respectively.
iven the large upper bounds on the GP hyper-parameters, we

onclude that the GP applied to the TESS data accounts for residual
oise in the photometry. 

 DI SCUSSI ON  

.1 Interior structure modelling 

sing the stellar and planetary parameters of the system, we model
he interior structure of the two planets using plaNETic (J. A.
gger et al. 2024 ). plaNETic is an interior structure modelling

ramework that was first introduced in the analysis of the three planets
rbiting TOI-469 (J. A. Egger et al. 2024 ). As these planets are also
n the super-Earth and sub-Neptune regime, this interior structure
odelling is tailored well to our planets. plaNETic is using Deep
eural Networks which are trained on mass regimes from 0.5–6

nd 6–15 M⊕ of which both of the planets around TOI-2345 fall.
dditionally, each mass range has two different interior structure
odel databases, one with a water rich and one with a water poor prior

epresented by the top and bottom row in Figs 9 and 10 , respectively.
Within the high and low water prior models, three different priors

or the planetary abundances of Fe, Mg, and Si are modelled. These
ary from being the same as the stellar abundances as suggested by A.
hiabaud et al. ( 2015 ), iron-enriched as suggested by V. Adibekyan
t al. ( 2021 ) or uniformly sampled with an upper limit of 75 per cent
f Fe compared to the other two refractory elements. 
As stars and planets are formed from the same material (J. Nielsen

t al. 2023 ) there is a strong connection between the abundances
−4 −2 0 2 4
ours)

ith the best-fitting model from the joint fit in JULIET in the top panel. The 
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f the host star and the planets which can also be seen for the
un and the Earth (H. S. Wang et al. 2019a ). In plaNETic, this

s accounted for by the first composition prior. However, this is
nly the case for refractory elements and not volatiles. Indeed, V. 
dibekyan et al. ( 2021 ) showed that the connection between stellar

nd planetary composition may not be one-to-one. H. S. Wang et al.
 2019b ) developed a tool, ExoInt, to devolatilize stars and obtain the
bundances of elements in orbiting planets. Hence we apply ExoInt to 
ur host star in order to obtain the devolatized element abundances 
hat are expected to make up the bulk composition of its orbiting
lanets. We use the stellar abundances for [Fe/H], [Si/H], and [Mg/H]
s recorded in Table 3 . ExoInt also requires an abundance of [O/H].
s TOI-2345 is a cool star, it is challenging to determine the oxygen

bundance well from the obtained HARPS spectra. So we use the 
ublic APOGEE DR17 (D. L. Nidever et al. 2015 ; S. R. Majewski
t al. 2017 ; Abdurro’uf et al. 2022 ) catalogue and select stars with
he TOI-2345 Teff , log g, and [Fe/H] values within the uncertainties. 
e also remove stars of bad quality flags as recommended by
POGEE. This leaves us with 1265 out of the ∼700000 stars with

ecorded abundances in APOGEE DR17. Averaging these and their 
ncertainties, we obtain [O/H] = −0.09 ± 0.07. Using these stellar 
bundances, we devolatize TOI-2345 using ExoInt. This results in 
ew abundance ratios for the refractory elements of the planets that
ay reflect the devolatized abundance ratios in the protoplanetary 

isc better than assuming purely stellar abundances. ExoInt and 
laNETic both record the abundances as 10[X / Fe ]∗ , where X is Si
r Mg. For the stellar abundances in plaNETic, we obtain these to be
.12 for Si and 1.62 for Mg; using ExoInt they are 1.00 and 1.63 for
i and Mg, respectively. We use these planetary abundances for Mg
nd Si from ExoInt as an additional prior in plaNETic. 

We find the result of this additional model as shown by the pink
ine in Figs 9 and 10 to be in agreement with the other three priors
f plaNETic. Especially, we note that the ExoInt priors (A4 and B4)
re similar to the stellar abundances (A1 and B1). However they are
MNRAS 544, 2614–2636 (2025)
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Figure 10. plaNETic posterior distributions for TOI-2345 c. The different abundance priors are shown by the different colours. The median of each posterior 
is marked by the vertical dashed line. Top: water-rich prior. Bottom: water-poor prior. 

Table 5. Core, mantle, water, and atmospheric mass fraction modelled by plaNETic for planet b and c using devolatized stellar abundances from ExoInt (4) 
and the water-rich (A) and water poor (B) priors. 

Planet Model CMF MMF WMF AMF 

TOI-2345 b A4 0 . 16+ 0 . 11 
−0 . 11 0 . 80+ 0 . 11 

−0 . 11 0 . 026+ 0 . 043 
−0 . 019 0 . 000021+ 0 . 000185 

−0 . 000018 

TOI-2345 b B4 0 . 167+ 0 . 099 
−0 . 111 0 . 763+ 0 . 107 

−0 . 094 0 . 00028+ 0 . 00034 
−0 . 00028 0 . 070+ 0 . 039 

−0 . 070 

TOI-2345 c A4 0 . 10+ 0 . 074 
−0 . 071 0 . 526+ 0 . 158 

−0 . 098 0 . 367+ 0 . 094 
−0 . 213 0 . 011+ 0 . 019 

−0 . 011 

TOI-2345 c B4 0 . 16+ 0 . 12 
−0 . 11 0 . 83+ 0 . 11 

−0 . 11 0 . 000053+ 0 . 000038 
−0 . 000029 0 . 0113+ 0 . 0034 

−0 . 0036 
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lightly higher in the core and lower in the mantle which is due to the
evolatizing of ExoInt and hence having slightly higher abundances
f refractory (heavier) elements in our priors. As summarized in
able 5 , we find from our interior structure analysis that the inner
lanet has a low core and high mantle mass fraction for the water-
oor and water-rich priors. As expected for a highly irradiated
uper-Earth its atmospheric mass fraction is very low and nominally
onsistent with 0 for both sets of priors. The outer planet has a similar
istribution of core and mantle mass to the inner planet in the water-
oor prior. However, the water-rich prior increases the water content
f this planet significantly while shrinking the core and mantle mass
ractions. Since we do not know the formation path of these planets,
e cannot differentiate between the water-rich and water-poor priors.

.2 Atmospheric evolution modelling 

e evaluated the atmospheric evolution of TOI-2345 b and c using
he P lanetary A tmosphere and S tellar Ro T ation R A te ( PASTA ; A.
onfanti et al. 2021 ) code. The tool works in the Markov chain Monte
arlo (MCMC) framework MC3 developed by P. Cubillos et al.
 2017 ) and at each chain step and for each exoplanet it computes the
volutionary track of the atmospheric mass fraction fatm 

( t) from the
ime of dispersal of the proto-planetary disc tdisc , assumed to be 5 Myr,
p to the present age of the system t� . To do so, PASTA assumes that:
i) no migration has occurred after tdisc , (ii) the atmosphere is H-
ominated, and (iii) the atmospheric mass-loss is driven by thermal
echanisms, that is high energy (X-ray + EUV: XUV) flux from

he stellar host (photoevaporation; see e.g. H. Lammer et al. 2003 ;
. Chen & L. A. Rogers 2016 ) and core-powered mass-loss (e.g.
. Ginzburg, H. E. Schlichting & R. Sari 2018 ; A. Gupta & H. E.
chlichting 2019 ). 
NRAS 544, 2614–2636 (2025)
PASTA is model-dependent and uses the MESA isochrones and
tellar tracks (MIST; J. Choi et al. 2016 ) to trace the evolution of
tellar parameters over time, a gyrochronological relation Prot ( t) in
he form of a broken-power law as presented in A. Bonfanti et al.
 2021 ), a set of empirical relations to convert the stellar rotation
eriod Prot into the emitted XUV-flux at any given epoch (A. Bonfanti
t al. 2021 , and references therein), a model for computing the atmo-
pheric mass-loss (D. Kubyshkina et al. 2018a , b ), and a planetary
tructure model that links the planetary observables with the expected
tmospheric content (C. P. Johnstone et al. 2015b ). PASTA requires
nput parameters both on the stellar side ( M� , t� , and Prot ,� ) and on the
lanetary side ( Mp , Rp , and a for each exoplanet in the system). The
resent-day stellar rotation period Prot ,� has been inferred by inverting
he gyrochronological relation from S. A. Barnes & Y.-C. Kim
 2010 ), while all other system parameters are taken from Tables 3
nd 4 . Once a given MCMC step has been performed, for each
lanet the code builds its fatm 

( t), it converts it into the corresponding
volutionary track in radius Rp ( t) according to the planetary structure
odels and checks whether Rp ( t� ) is consistent with the observed Rp .

f so, that chain step is accepted and the consequent fatm 

( tdisc ) ≡ f start 
atm 

alue builds up the posterior distribution for the initial atmospheric
ass fraction of the planet. As a by-product, we also get the stellar

otation period when the star was young. 
Fig. 11 (left panel) compares the posterior distribution of Prot 

hen the star was 150 Myr old (thick blue histogram) with the Prot 

istribution of stars belonging to 150-Myr-old open clusters and
aving a mass comparable to M� (thin black histogram; taken from
. P. Johnstone et al. 2015a ), which suggests that TOI-2345 was likely
orn as a slow rotator. The other two panels of Fig. 11 , instead, show
he posterior distribution of f start 

atm 

for planet b and c, in comparison
ith the present-day atmospheric content expected if the atmosphere
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Figure 11. Posterior distributions (thick blue histograms with the underneath area normalized to (1) as outputted by PASTA for the stellar rotation period when 
the star was 150 Myr old Prot , 150 ( left panel ) and for the initial atmospheric mass fraction f start 

atm 

of TOI-2345 b ( middle panel ) and TOI-2345 c ( right panel ). 
The purple area represent the 68 per cent highest probability density intervals. The thin black histogram in the left panel depicts the Prot , 150 distribution of 
open-cluster stars with masses comparable to that of TOI-2345 as taken from C. P. Johnstone et al. ( 2015a ). The black lines in the middle and right panels 
represent the present-day atmospheric content of the planets (which is negligible for TOI-2345 b), while the orange horizontal lines mark that uniform priors 
were imposed on the f start 

atm 

jump parameters. This is in agreement with our interior structure modelling results from plaNETic which also found the inner planet 
to have a negligible atmosphere, while the atmospheric mass fraction of the outer planet agrees with the present day value found from the atmospheric evolution 
modelling. 
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s H-dominated (black line). In the middle panel, the black line is
asically compatible with zero (i.e. no atmosphere is expected around 
he highly irradiated USP) and this condition is reached regardless 
f f start 

atm 

. Finally, the right panel shows that the present-day fatm 

of
OI-2345 c is similar to the inferred f start 

atm 

, with the planet that has
ikely lost only a small fraction of its initial atmospheric content. 

.3 Assessment with synthetic planet population 

o understand the broader formation and evolution conditions that 
he TOI-2345 planets have undergone, we placed the system in the 
ontext of a synthetic planet population. As host star properties have 
 strong impact on the underlying physical processes that impact 
rbiting planets, we retrieved the results of a synthetic population 
hat most closely match the spectral type of TOI-2345 (R. Burn
t al. 2021 ). These simulations of 999 K-dwarf systems each with
0 initial planetary embryos were produced by a detailed formation 
nd evolution framework (A. Emsenhuber et al. 2021 ). In brief, the
mbryos undergo formation and growth in a coupled gas and dust
isc with the amount of refractory and volatile elements accreted 
uring formation being monitored. This is useful in understanding 
he interior structures of these synthetic planets. Within the theoret- 
cal framework evolution is handled via atmospheric escape, giant 
mpacts, and gas-driven, tidal-forces, and planet–planet scattering 
igration. Importantly, the evolution of the synthetic planetary 

ystems is also coupled to the evolution of the host star from
ormation to the end state of the simulation at 5 Gyr. 

For our comparative analyses, we selected TOI-2345-like systems 
ollowing the procedures outlined in J. A. Egger et al. ( 2024 ).
his was done by taking the TOI-2345 b and c radii, masses, and
emimajor axes derived from our joint fit (see Table 4 ), and choosing
ynthetic planets within 25 per cent or 3 σ (choosing the larger) of
he TOI-2345 planets. 

To test the tentative stellar-planetary compositional link, we 
ssessed the interior structures of the synthetic planets as a function 
f stellar metallicity. To do so, we further restrict the TOI-2345 b
nd c-like planets to those that orbit a star with a similar [Fe/H] to
hat of TOI-2345. This results in eight TOI-2345 b-like bodies and 
6 TOI-2345 c-like planets. For the inner planets, we find core-to- 
antle mass ratios of 0.24–0.32 which agrees within 1 σ of our value

0.20 ± 0.14) from our A4 interior structure modelling reported 
n Table 5 . Interestingly, the TOI-2345 c-like planets that orbit a
ompositionally-similar star have more constrained core-to-mantle 
ass ratios of 0.24–0.25 with a wider range of water and atmospheric
ass fractions. Whilst again slightly lower than predicted values, our 
4 interior structure modelling core-to-mantle mass ratio for TOI- 
345 c (0.19 ± 0.15) also agrees with the synthetic planets. 
Given the wide period gap between the two detected TOI-2345 

lanets, we aimed to search the synthetic systems to understand the
arity of such a configuration when considering the formation and 
volution processes include in the framework (A. Emsenhuber et al. 
021 ). To do this, we selected multiplanet synthetic systems that
ost at least two bodies that resemble TOI-2345 b and c without the
tellar metallicity constraint. Of the 999 systems, only one appears 
OI-2345-like via this criteria. However, this synthetic system also 

ncludes two additional planets between the TOI-2345 b and c-like 
odies with orbital periods of ∼4.0 and 11.5 d. The masses of these
odies ( ∼7.1 and 11.5 M⊕) result in RV semi-amplitudes of ∼4.6
nd 5.4 m s−1 , respectively. Should such an architecture be present
n the TOI-2345 system it would be detectable in our HARPS data
s the RMS scatter of the residuals to our HARPS fit is ∼2.6 m s−1 .
iven the simulated co-planarity, these additional planets would also 
e apparent in the TESS photometry. However, no such signals exist.
hile the number of simulated systems we compared to TOI-2345 

s relatively small and the theoretical framework may not include all
mportant processes (such as pebble accretion or MHD wind driven 
iscs), it could still provide a good population overview. Therefore, 
he TOI-2345 system may be considered architecturally rare via this 
omparison and worthy of future dynamical studies to understand 
he migration history. 

.4 TOI-2345 in the context of thick disc systems 

s computed in Section 3.4 , TOI-2345 is kinematically a thick disc
tar ( P (TD) = 85 per cent). In order to compare this system to other
inematic thick disc systems, we download all known exoplanets 
rom the NASA Exoplanet Archive (NASA Exoplanet Archive 
025 ). As we rely on the stellar kinematic properties recorded by
aia to compute kinematic probabilities, we also filter for targets 

hat have a recorded Gaia ID, which leaves us with 5605 planets. To
ocus on systems hosting small planets that are well characterized, 
e apply cut-offs of V < 13 mag and RP < 4 R⊕ determined with
 precision better than 10 per cent. To make sure we only include
ystems with a measured mass we filter for the mass provenance 
MNRAS 544, 2614–2636 (2025)
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Figure 12. Toomre Diagram of the stellar sample and galactic classifications 
of D.-C. Chen et al. ( 2021a ). Stars of the thin disc are shown in green, stars of 
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thick disc systems from Table 6 are shown in black of which the kinematics 
are computed using the LSR from H.-J. Tian et al. ( 2015 ). TOI-2345 is shown 
by the purple star with the black border and clearly placed in the thick disc. 
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ag to be ‘mass’. We only include systems with MP < 30 M⊕ and
easured with a precision better than 30 per cent, similar to our

nner planet. This leaves us with 207 planets. In our stellar kinematic
nalysis, we use the most recent Gaia DR3 data, however as the
ASA Exoplanet Archive used Gaia DR2, we cross-match the Gaia
R2 IDs with the Gaia DR3 IDs using TOPCAT (M. B. Taylor 2005 )

nd Gaia -ARI (Gaia Collaboration 2023 ). Following the process
escribed in Section 3.4 , we compute the kinematic probabilities for
ach of these systems which are shown in Fig. 13 . 

Out of the remaining 207 planets, we find that 19 planets are
rbiting a host star with a kinematic thick disc probability of above 50
er cent. 12 of these are in multiplanetary system around 6 different
ost stars. In one of these systems, K2-111 (A. Mortier et al. 2020 ),
he second planet is not transiting and consequently does not have
 radius measurement. The second planet orbiting HIP 9618 is only
etected with a 3 σ upper mass limit (H. P. Osborn et al. 2023 ).
ence we do not include these two systems in our comparison. The

emaining four well-characterized systems are HD 136 352 with a
omputed weighted thick disc probability of 92 per cent orbited by
hree small planets (S. Udry et al. 2019 ; L. Delrez et al. 2021 ),
epler-10 with a thick disc probability of 79 per cent that hosts two

ransiting and one non-transiting small planets (F. Fressin et al. 2011 ;
. M. Batalha et al. 2011 ; A. S. Bonomo et al. 2025 ), TOI-178 that
as a thick disc probability of 55 per cent and six small planets out of
hich three are well characterized to fulfil our comparison criteria

A. Leleu et al. 2021 ), and HIP 8152 with a computed weighted
hick disc probability of 52 per cent orbited by two small planets
J. M. Akana Murphy et al. 2023 ; A. S. Polanski et al. 2024 ). As
here are only four thick disc systems that contain two or more well-
haracterized transiting planets below 4 R⊕, the discovery of the two
lanets transiting TOI-2345 adds to this limited sample. Among these
ystems it has the second highest thick disc probability, just below
D 136352, and falls within the range of stellar metallicities. 
We demonstrate the location of TOI-2345 in a Toomre diagram

n Fig. 12 in which we plot the kinematic properties and galactic
lassifications of the LAMOST–Gaia –Kepler sample from D.-C.
hen et al. ( 2021a ). Placing TOI-2345 in context of the other
NRAS 544, 2614–2636 (2025)
ell-characterized systems from Table 6 which are shown in black,
e find that TOI-2345 is clearly kinematically a thick disc star. 
In order to understand the population of small planets around thick

isc stars further and explore trends in their composition, the sample
as to be expanded and TOI-2345 contributes to this. For example, the
ell-characterized interior structures of the TOI-2345 planets can be
sed to test planet density predictions for thick discs stars in galactic
hemical evolution models (J. H. Steffen et al. 2025 ), and assess
lanet frequency statistics across stellar kinematic and chemical
amilies (J. Nielsen et al. 2023 ). J. M. D. Kruijssen, S. N. Longmore
 M. Chevance ( 2020 ) predicted that planets below the radius valley

hould be less frequent around low-density phase space stars that
re predominantly found in the Galactic thick disc (A. J. Mustill, M.
ambrechts & M. B. Davies 2022 ). The super-Earth and sub-Neptune
rbiting TOI-2345 span the radius valley as shown in Fig. 13 and so
rovide evidence to refute this prediction. This is also found for HD
36352, Kepler-10, and TOI-178. However, also this is still a very
estricted sample and so importantly TOI-2345 adds to this. 

Additionally, TOI-2345 b is on a 1 d orbit and hence also increases
he sample of USPs around thick disc stars. In combination with
he wider orbital spacing of planets b and c, the TOI-2345 system is
n agreement with the broader stellar kinematic-planet architecture
rends seen in a Kepler -based sample of USPs (J. N. Winn et al. 2018 ;
.-W. Tu et al. 2025 ). Following A. Castro-González et al. ( 2025 ),
SPs could have formed through high-eccentricity migration (C.
etrovich et al. 2019 ), low-eccentricity migration (B. Pu & D. Lai
019 ) or obliquity-driven migration (S. C. Millholland & C. Spalding
020 ). As we do not find a high eccentricity for TOI-2345 b which
ould hint at high-eccentricity migration, nor planetary neighbours
n close-in orbits in < 10 d, which are expected in a obliquity-driven
igration scenario, the most likely formation of TOI-2345 is the

ow-eccentricity scenario. 

 C O N C L U S I O N S  

e present the discovery of a super-Earth and sub-Neptune orbiting
he thick disc star TOI-2345. We detected these two planets using
hotometry from TESS and CHEOPS , and RV observations from
ARPS. We characterized the star to be slightly metal-poor and
inematically determined that TOI-2345 is a member of the Milky
ay’s thick disc. The photometric and spectroscopic observations

llowed us to derive a radius of 1 . 504+ 0 . 047 
−0 . 044 R⊕ and 2 . 451+ 0 . 045 

−0 . 046 R⊕
nd mass of 3 . 49+ 0 . 85 

−0 . 85 M⊕ and 7 . 27+ 2 . 27 
−2 . 45 M⊕ for the inner and outer

lanet orbiting the star at periods of 1.05 and ∼21 d, respectively.
he accurate determination of the radii and masses of these planets
nabled us to model the interior structure using plaNETic. To account
or the connection in refractory elements between host stars and
lanets, we devolatize the host star with ExoInt and use the obtained
bundances as priors in our interior modelling for the first time. This
esults in predicted interior structures which are in agreement to the
nterior structures obtained when using the stellar abundances as a
rior. We obtained the interior structure of the inner rocky planet to
ave a large mantle, small core and nearly no atmosphere, while the
uter planet also has a small core and large mantle but is gas-rich
nd has an atmospheric mass fraction of approximately 1 per cent.
dditionally, performing atmospheric escape modelling we find that

he Ultra-Short-Period inner super-Earth has lost its atmosphere,
hile the outer sub-Neptune has likely only lost a small fraction of

ts initial atmosphere. Finally, we place the TOI-2345 system in the
ontext of thick disc stars. The characterization of TOI-2345, which
ontains a USP super-Earth below the radius valley, demonstrates
hat such small planets around thick disc stars are more common
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Table 6. Well-characterized planet below 4 R⊕ orbiting kinematically thick disc stars. References: [1] A. Mortier et al. ( 2020 ), [2] A. S. Bonomo et al. ( 2023 ), 
[3] A. Shporer et al. ( 2020 ), [4] R. Luque & E. Pallé ( 2022 ), [5] J. M. Akana Murphy et al. ( 2023 ), [6] A. S. Polanski et al. ( 2024 ), [7] M. S. Peterson et al. 
( 2018 ), [8] A. W. Mayo et al. ( 2018 ), [9] E. Thygesen et al. ( 2023 ), [10] S. Udry et al. ( 2019 ), [11] L. Delrez et al. ( 2021 ), [12] M. Montalto et al. ( 2024 ), [13] 
N. Heidari et al. ( 2025 ), [14] N. M. Batalha et al. ( 2011 ), [15] A. S. Bonomo et al. ( 2025 ), [16] F. Fressin et al. ( 2011 ), [17] J. A. Burt et al. ( 2021 ), [18] F. 
Murgas et al. ( 2022 ), [19] A. Leleu et al. ( 2021 ), [20] H. P. Osborn et al. ( 2023 ). 

Planet RP MP ρP Teq P (TD) [Fe/H] #planets Reference 
(R⊕) (M⊕) (g/cm3 ) K 

K2-111 b 1 . 820 + 0 . 11 
−0 . 090 5 . 58+ 0 . 74 

−0 . 73 5 . 0+ 1 . 1 
−1 . 0 1309 ± 19 0.991 −0.46 ± 0.05 2 [1,2] 

GJ 1252 b 1 . 193 ± 0 . 074 1 . 32 ± 0 . 28 4 . 2+ 1 . 3 
−1 . 1 1089 ± 69 0.987 + 0.1 ± 0.1 1 [3,4] 

TOI-669 b 2 . 59+ 0 . 13 
−0 . 11 10 . 0 ± 1 . 4 3 . 17+ 0 . 73 

−0 . 95 1125 ± 19 0.965 −0.06 ± 0.09 1 [5,6] 

Wolf 503 b 2 . 043 ± 0 . 069 6 . 27+ 0 . 85 
−0 . 84 4 . 03+ 0 . 72 

−0 . 64 789 ± 16 0.965 −0.47 ± 0.08 1 [7,2] 

K2-180 b 2 . 466+ 0 . 110 
−0 . 096 11 . 4+ 2 . 4 

−2 . 2 4 . 16+ 1 . 10 
−0 . 92 797 . 5+ 8 . 4 

−8 . 5 0.953 −0.65 ± 0.10 1 [8,9] 

HD 136352 b 1 . 664 ± 0 . 043 4 . 72 ± 0 . 42 5 . 62+ 0 . 72 
−0 . 66 905 ± 14 0.926 −0.24 ± 0.05 3 [10,11] 

HD 136352 c 2 . 916+ 0 . 075 
−0 . 073 11 . 24+ 0 . 65 

−0 . 63 2 . 50+ 0 . 25 
−0 . 23 677 ± 11 0.926 −0.24 ± 0.05 3 [10,11] 

HD 136352 d 2 . 562+ 0 . 088 
−0 . 079 8 . 82+ 0 . 93 

−0 . 92 2 . 88+ 0 . 43 
−0 . 40 431 ± 7 0.926 −0.24 ± 0.05 3 [10,11] 

TOI-5076 b 3 . 489+ 0 . 100 
−0 . 094 16 . 1 ± 2 . 5 2 . 08+ 0 . 35 

−0 . 34 550 ± 14 0.921 + 0.20 ± 0.08 1 [12,13] 

TOI-2345 b 1 . 504+ 0 . 047 
−0 . 044 3 . 49 ± 0 . 85 5 . 64+ 1 . 48 

−1 . 46 1478 ± 20 0.850 −0.10 ± 0.07 2 This work 

TOI-2345 c 2 . 451+ 0 . 045 
−0 . 046 7 . 27+ 2 . 27 

−2 . 45 2 . 71+ 0 . 86 
−0 . 93 544 ± 7 0.850 −0.10 ± 0.07 2 This work 

Kepler-10 b 1 . 47+ 0 . 03 
−0 . 02 3 . 24 ± 0 . 32 5 . 54+ 0 . 66 

−0 . 62 2188 ± 16 0.789 −0.15 ± 0.04 3 [14,15] 

Kepler-10 c 2 . 355 ± 0 . 022 11 . 29 ± 1 . 24 4 . 75 ± 0 . 53 579 ± 4 0.789 −0.15 ± 0.04 3 [16,15] 

TOI-1231 b 3 . 65+ 0 . 16 
−0 . 15 15 . 4 ± 3 . 3 1 . 74+ 0 . 47 

−0 . 42 329 . 6+ 3 . 8 
−3 . 7 0.785 + 0 . 05 ± 0 . 08 1 [17] 

HD 20329 b 1 . 72 ± 0 . 07 7 . 42 ± 1 . 09 8 . 06 ± 1 . 53 2141 ± 27 0.621 −0.07 ± 0.06 1 [18] 

TOI-178 b 1 . 152+ 0 . 073 
−0 . 070 1 . 50+ 0 . 39 

−0 . 44 5 . 4+ 1 . 9 
−1 . 7 1040+ 22 

−21 0.545 −0.23 ± 0.05 6 [19] 

TOI-178 c 1 . 669+ 0 . 114 
−0 . 099 4 . 77+ 0 . 55 

−0 . 68 5 . 62+ 1 . 50 
−1 . 30 873 ± 18 0.545 −0.23 ± 0.05 6 [19] 

TOI-178 f 2 . 287+ 0 . 108 
−0 . 110 7 . 72+ 1 . 67 

−1 . 52 3 . 60+ 1 . 20 
−0 . 83 521 ± 11 0.545 −0.23 ± 0.05 6 [19] 

HIP 9618 b 3 . 75 ± 0 . 13 8 . 40 ± 2 . 00 0 . 90 ± 0 . 20 685 ± 17 0.528 −0.10 ± 0.09 2 [20,5] 

HIP 8152 b 2 . 54+ 0 . 16 
−0 . 14 8 . 90 ± 1 . 70 2 . 97+ 0 . 81 

−1 . 08 795+ 14 
−13 0.525 −0.09 ± 0.09 2 [5,6] 

HIP 8152 c 2 . 52+ 0 . 15 
−0 . 14 10 . 7+ 2 . 1 

−2 . 2 3 . 63+ 1 . 02 
−1 . 38 651 ± 11 0.525 −0.09 ± 0.09 2 [5,6] 
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Figure 13. Comparison of the two planets orbiting TOI-2345 to other well characterized planets below 4 R⊕ colour-coded by the respective weighted kinematic 
thick disc probability of the host star. TOI-2345 is shown by the stars in purple with the black border, where the colour is representing its high thick disc 
probability. Multiplanetary systems are highlighted by circles. Left: Radius-Period diagram. Right: Radius-mass diagram. We show compositional lines for 100 
per cent iron, Earth-like rocky, pure rock, 100 per cent water at 1000 K and 50 per cent water at 1000 K at the respected colour-coded lines following L. Zeng 
et al. ( 2019 ). Additionally, we show the maximum collision stripping following R. A. Marcus et al. ( 2010 ) by the grey line. 
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han previously thought. Moreover, the orbital period of the planets
nfer that the USP underwent low-eccentricity migration. Since only
 limited sample of small planets around thick disc stars has been
ell characterized to date, TOI-2345 adds on to this sample which
ill enable demographic studies of planets in this stellar population

n the future. 
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Figure A1. TESS SAP flux of TOI-2345 in sectors 3, 4, 30, and 31. 

100 101 102

Period (days)

0.000

0.005

0.010

0.015

0.020

P
ow

er

100 101 102

Period (days)

0.000

0.002

0.004

0.006

P
ow

er

Figure A2. Lomb–Scargle periodogram of the available TESS data of sectors 3 and 4 (left) and sectors 30 and 31 (right). The orbital periods of TOI-2345 b and 
TOI-2345 c are shown by the purple and green line, respectively. 
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Figure A3. TESS photometry and our best-fitting model in juliet of the even transits of TOI-2345 c (transit 2 and 4) that are close to the sector gaps and were 
missed in the TESS vetting process. The signals of planet b are removed and the model is only showing planet c. 
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Table B1. Selected CHEOPS detrending vectors for DRP and PIPE of each visit. The detrending vectors are abbreviated as 
time (t), roll angle ( φ), background (bg), and centroid offset (x, y). 

Visit Aperture DRP PIPE 

(pixel) Detrending Detrending 

1 R16 bg, t, cos φ y, cos2 φ, sin3 φ, cos3 φ
2 R17 bg, sin φ, y2 , cos φ, sin2 φ, y, cos2 φ cos2 φ, y, x2 , x, cos3 φ
3 R17 bg, x, x2 y, cos2 φ, bg, x, cos φ, sin3 φ
4 R16 bg, t, sin φ, x sin φ, cos2 φ, bg cos3 φ
5 R16 bg, x, sin φ sin φ, y, sin3 φ, cos2 φ, x2 , t 
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PPEN D IX  C :  H A R P S  R A D I A L  VELOCITI ES  
Figure C1. HARPS RVs as extracted from the DRS (purple) and 

Table C1. RVs from the HARPS DRS and the S-BART ext

Time (RJD) DRS RV (m s−1 ) σDRS RV (m s−1

60126.93 58248.8 2.8 
60129.92 58240.6 4.0 
60139.93 58245.0 4.7 
– – –
MNRAS 544, 2614–2636 (2025)

S-BART (green) taken between 2023-07-01 and 2025-01-30. 

raction. 

 ) S-BART RV (m s−1 ) σS-BART RV (m s−1 ) 

58251.3 1.9 
58240.4 2.4 
58243.7 2.6 

– –
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M

Table C2. Activity indicators from the HARPS DRS. 

Time (RJD) 
FWHM 

(m s−1 ) BIS (m s−1 ) Contrast S-Index H α Na Ca 

60126.93 6620.9 ± 5.5 −32.3 ± 5.5 65.877 ± 0.055 195.5 ± 4.3 0.25766 ±
0.00045 

0.13288 ±
0.00031 

0.1576 ± 0.0041 

60129.92 6618.2 ± 8.0 −14.8 ± 8.0 66.166 ± 0.080 174.0 ± 7.1 0.25955 ±
0.00069 

0.13122 ±
0.00046 

0.1369 ± 0.0068 

60139.93 6619.0 ± 9.4 −25.7 ± 9.5 65.888 ± 0.093 182.0 ± 7.9 0.25758 ±
0.00083 

0.13309 ±
0.00056 

0.1446 ± 0.0076 

– – – – – – – –
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Figure D1. Light curves from ASAS-SN V band (left) and AS
AS-SN g band (middle) and WASP (right) of TOI-2345. 
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PPEN D IX  E:  P R I O R S  A N D  FITTED  

A R A M E T E R S  
able E1. Stellar and instrumental parameters of the joint fit in JULIET . Uniform
istributions by L . 

arameter Unit 

∗ (kg/m3 ) 

Pρ TESS (d) 

Pσ TESS (ppm) L (

1 TESS –

2 TESS –

1 CHEOPS –

2 CHEOPS –

itter TESS (ppm) 

itter CHEOPS (ppm) 

ffset TESS –

ffset CHEOPS –

itter HARPS (m s−1 ) 

ffset HARPS (m s−1 ) 
MNRAS 544, 2614–2636 (2025)

 distribustions are noted by U , normal distributions by N and log-uniform 

Prior Posterior 

N (2645 , 142) 2172+ 57 
−63 

L (0 . 001 , 1000) 21+ 291 
−21 

0 . 000001 , 1000000) 0 . 0000098+ 0 . 0000363 
−0 . 0000069 

U (0 . 0 , 1 . 0) 0 . 31+ 0 . 19 
−0 . 17 

U (0 . 0 , 1 . 0) 0 . 20+ 0 . 29 
−0 . 14 

U (0 . 0 , 1 . 0) 0 . 106+ 0 . 092 
−0 . 058 

U (0 . 0 , 1 . 0) 0 . 63+ 0 . 24 
−0 . 30 

L (0 . 1 , 1000) 3 . 57+ 31 . 28 
−3 . 25 

L (0 . 1 , 100000) 193 . 60+ 21 . 58 
−22 . 62 

N (0 , 0 . 1) −0 . 0000337+ 0 . 0000061 
−0 . 0000065 

N (0 , 0 . 1) 0 . 000017+ 0 . 000010 
−0 . 000010 

L (0 . 001 , 100) 1 . 69+ 0 . 56 
−0 . 52 

U (58200 , 59300) 58248 . 06+ 0 . 51 
−0 . 49 
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uai Ernest-Ansermet 30, CH-1211 Genève 4, Switzerland 
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