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Abstract

The multivariate generalized Pareto distribution arises as the limit of a suitably normal-
ized vector conditioned upon at least one component of that vector being extreme. Statisti-
cal modelling using multivariate generalized Pareto distributions constitutes the multivariate
analogue of peaks over thresholds modelling with the univariate generalized Pareto distri-
bution. We introduce a construction device which allows us to develop a variety of new and
existing parametric tail dependence models. A censored likelihood procedure is proposed to
make inference on these models, together with a threshold selection procedure and several
goodness-of-fit diagnostics. We illustrate our methods on two data applications, one con-
cerning the financial risk stemming from the stock prices of four large banks in the United
Kingdom, and one aiming at estimating the yearly probability of a rainfall which could cause
a landslide in northern Sweden.

1 Introduction

1.1 Background

Peaks over threshold modelling of univariate time series has been common practice since the
seminal paper of Davison and Smith! (1990)), who advocated the use of the asymptotically mo-
tivated generalized Pareto (GP) distribution (Balkema and de Haan| 1974; Pickands| 1975
as a model for exceedances over high thresholds. The multivariate generalized Pareto distri-
bution was introduced in [Tajvidi (1996), Beirlant et al.| (2004, Chapter 8), and
, but still, statistical modelling using this approach has thus far received rela-
tively little attention. Partially this is because theoretically equivalent dependence modelling
approaches, based on the so-called “point process approach”, have already been in existence
for some time (Coles and Tawn, [1991)). Nonetheless, the multivariate GP distribution has con-
ceptual advantages over that of the point process representation, in so much as it represents a
proper multivariate distribution on an “L-shaped” region, where at least one variable is extreme,
{yeR:y % u}; see Figure Furthermore, the GP distribution permits modelling of data on
this region without the need to perform any marginal transformation, which is common in other
extremal dependence modelling approaches. The justification for the use of multivariate GP
distributions as models for the tails of essentially arbitrary distributions is the limit property
in .

There is a growing body of probabilistic literature devoted to multivariate GP distributions
(e.g. Rootzén and Tajvidi (2006]), [Falk and Guillou (2008), Falk and Michel (2009)), [Ferreiral




Figure 1: Tlustration of the support of the multivariate GP distribution as an “L-shaped” region
in two dimensions. Left-hand side: grey area represents the support of the GP distribution;
right-hand side: filled points represent values that might be modelled by a GP distribution.

and de Haan| (2014), Rootzén et al.| (2016)). To our knowledge, however, there are only a few
papers that exploit these as a statistical model (Thibaud and Opitz, 2015; [Huser et al., 2016)).

This paper forms a companion to Rootzén et al.| (2016), which collates new and existing
probabilistic results on multivariate GP distributions. We briefly recall necessary elements from
this paper, but our main focus is on statistical modelling and inference.

1.2 Extremal dependence types

The premise of statistical modelling using limiting distributions such as the GP distribution is
that we assume the limit model holds sufficiently well in o sufficiently extreme region. Care is
needed, however, to ensure that the postulated model is indeed appropriate.

An important consideration when modelling multivariate extremes is the concept of asymp-
totic dependence. Random variables Y7 and Y, with distribution functions F; and Fy, respec-
tively, are said to be asymptotically dependent if

P[F (Y1) > q, F»(Y2) > (]

x12(q) == P[F1(Y1) > q | F2(Y2) > q] = 1—gq

— X122 > 0, q— 1.

Existence of the limit is an assumption, and the limit being positive characterizes asymptotic
dependence, whereas y1.2 = 0 defines asymptotic independence. An extension of y1.o to a
general dimension d > 2 is given by

P[Fl(Yl) >q,... ,Fd(Yd) > q]
1—¢q

Xl:d(Q) = — X1:d- (11>
When x1.4 > 0, there is a positive probability of the most extreme events occurring simul-
taneously in all d variables. Multivariate GP distributions are useful mostly when yi.q > 0.
When xi1.4 = 0 then the corresponding limiting GP distribution does not place any mass in
d-dimensional space, with all the mass lying in some lower dimensional subspace instead. This
situation is challenging to deal with, as in practice the data do belong to the full d-dimensional
space. Whilst modelling of such possibilities is not precluded in the censored likelihood frame-
work that we adopt, we do not consider it further here.

Yet other subtleties arise, since even when x1.4 > 0, this does not rule out the possibility of
a distribution placing mass on some lower-dimensional subspace. However, for the remainder of
the paper, we consider the simplified situation where there is no mass on any lower-dimensional
subspace.



1.3 Outline

The contributions of this paper are the following. In Section [2] we present some of the key
results and properties of multivariate GP distributions that are useful for statistical modelling.
In Section Bl we introduce a construction device for GP-distributed random vectors and use it to
develop a variety of new and existing models in Section [l Inference using a censored likelihood-
based approach is detailed in Section |5 together with threshold selection and goodness-of-fit
diagnostics. In Section [6] we fit GP models to returns of four UK-based banks and to rainfall
data in the context of landslide risk estimation, showing that multivariate GP modelling can
be more useful for financial risk handling than one-dimensional methods, and that our models
can respect physical constraints in a way which was not possible before. We conclude with a
discussion in Section [7l

2 Background on GP distributions

Let Y be a random vector in R? with distribution function F. A common and broadly-applicable
assumption on Y is that it is in the so-called maz-domain of attraction of a multivariate max-
stable distribution, G. This means that if Y7, ..., Y, are independent and identically distributed
copies of Y, then one can find sequences a,, € (0, oo)d and b, € R? such that

P[{lrgiag);lﬁ —b,}/a, < z] = G(x), (2.1)

with G having non-degenerate margins. In and throughout, vectors are boldface, and
operations involving vectors are to be interpreted componentwise, with shorter vectors being
recycled if necessary. The resulting max-stable distribution G has marginal location, scale and
shape parameters denoted p, a and -y, respectively, and the lower endpoints of its support are
determined by these parameters. If 1 denotes this vector of lower endpoints, and o = pu — oy,
its components are 7; = —o;/v; if 75 > 0 and 7; = —oo otherwise. We assume o > 0,
which is always possible through appropriate choice of a,, and b,,. Max-stable distributions are
not a primary concern of this paper, but the above mild assumption leads us to an analogous
convergence theorem for multivariate threshold exceedances. Specifically, if convergence
holds, then

Y-b
max{ n,n}]YﬁbniX, as t — 0o, (2.2)
an
where X follows a multivariate GP distribution (Beirlant et al., 2004; Rootzén et al., [2016).
We let H denote the distribution function of X, and Hj,..., Hy its marginal distributions.
Typically the margins H; are not univariate GP, due to the difference between the conditioning
events {Y; > by ;} and {Y £ b,} in the one-dimensional and d-dimensional limits. However,
the marginal distributions conditioned to be positive are GP distributions. That is, writing
a+ = max(a,0), we have
H () =PX; > 2| X;> 0] = (1+ya/0;); " 2.3
j (@) =PX;>2|X; >0 =1+yx/05) "7, (2.3)
where o; and vy; are as previously defined, giving the link between marginal parameterizations
for the two convergences. The full link between H and G is H(z) = {log G(min(x,0)) —
log G(x)}/{log G(0)}, and we say that such a H and G are associated. The support of the
multivariate GP distribution H is included in the set

{:I:E]Rd::chnj forall j =1,...,d, and z; > 0 for some j}.



The dependence structure of H does not have a finite-dimensional parameterization (Beirlant
et al [2004), but it does satisfy certain properties that can be used to construct flexible para-
metric models. In Section [ we give several examples, some of which are GP models that are
associated to well-known max-stable models.

Following common practice in the statistical modelling of extremes, H may be used as a
model for data which arise as multivariate threshold excesses in the sense Y £ w. In particular, if
u € R%is a threshold that is “sufficiently high” in each margin, then from (2:2), max{Y —u,n} |
Y £ wu can be approximated by a member of the class of multivariate GP distributions, with
o, 7, the marginal exceedance probabilities P(Y; > u;), and the dependence structure to be
estimated. In practice the truncation by the unknown vector 7 is only relevant when dealing
with mass on lower-dimensional subspaces. Following the discussion in Section we suppose
that Y —w | Y £ u is to be approximated by a GP distribution. A member of the class of GP
distributions X has a representation on {x € R?: x £ 0} as

Xoy _ 1
x4s8 —=
Y

, (2.4)
where X is a “standard form” GP random vector, that is, a GP vector on a standardized scale
v = 0 and o = 1. Its construction will be further discussed in Section For v; = 0, the
corresponding component of the right-hand side of equation is simply 0, X0 ;.

The following are useful properties of the GP distributions; for further details and proofs
we refer to Rootzén et al.| (2016).

Threshold stability. GP distributions are threshold stable, meaning that if X ~ H follows
a GP distribution with marginal parameters o and ~ then for w > 0 such that H(w) < 1 and
o+~yw >0,

X —w | X £ wis GP with parameters o + yw and ~.

This property states that if we increase, or at least do not decrease, the level of the threshold
in each margin, then the distribution of conditional excesses is still GP, with a new set of scale
parameters, but retaining the same vector of shape parameters.

A special role is played by the levels w = w; := o(tY — 1)/~: these have the stability
property that for any set A C {z € R?: z £ 0} it holds that, for t > 1,

P[X € w, + 7A] = P[X € A]/t, (2.5)

where wy + tYA = {w; + tYx : * € A}. This follows from equation along with the
representation of Xy to be given in equation (3.1)). The j-th component of wy, o;(t% — 1)/v;,
is the 1 — 1/t quantile of H;r Equation provides one possible tool for checking if a
multivariate GP is appropriate; see Section

Lower dimensional conditional margins. Lower dimensional margins of GP distributions
are typically not GP, as the conditioning event leading to the distribution involves all d variables,
and not only the variables in a lower dimensional margin. Let J C {1,...,d}, with X; = (z; :
j € J), and similarly for other vectors. Then X; | X; £ 0 does follow a GP distribution.
Combined with the threshold stability property above, we also have that if w; € R/l is such
that Hy(wy) <1 and o+ vjwy; > 0 then X7 —wy | X; £ wy follows a GP distribution.

Constant conditional exceedances. For a GP distribution H we define the conditional
dependence measure xr(q) by

P[H1(X31) > q,..., Ha(Xq) > q]

xm(q) = - , q€(0,1). (2.6)
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By property (2.5), for a suitable choice of A, it holds that x(q) is constant for ¢ sufficiently
large such that H;(X;) > ¢ implies X; > 0 for j € {1,...,d}. As ¢ T 1, the limit of
coincides with the d-dimensional dependence measure xi.4 in and thus choices of H for
which this matches the observed value are candidate models. This property can also help inform
threshold selection; see Section

Sum-stability under shape constraints If X follows a multivariate GP distribution, with
scale parameter o and shape parameter v = 1, then for weights a; > 0 such that 25:1 a; Xj >
0 with positive probability, we have

Z] 105X |Z] 105 X5 >0~ GP(Z 10505,7)- (2.7)

That is, weighted sums of components of a multivariate GP distribution with equal shape pa-
rameters, conditioned to be positive, follow a univariate GP distribution with the same shape
parameter and with the scale parameter equal to the weighted sum of the marginal scale param-
eters. The dependence structure of the GP distribution does not affect this result, but it does
affect the probability of the conditioning event, i.e., the probability that the sum of components
is positive. Further details can be found in [Rootzén et al.| (2016).

3 Model construction

3.1 Standard form densities

We focus on how to construct suitable densities for the random vector Xy, which through
equation , leads to densities for the multivariate GP distribution with marginal parameters
o and 7.

Let E be a unit exponential random variable and let T be a d-dimensional random vector,
independent of E. Define max(T') = max;<;j<q 7. Then the random vector

Xo=E+T —max(T) (3.1)

has the required properties to be a GP vector with support included in the set {x € R?: g £ 0}
and with ¢ = 1 and v = 0 (interpreted as the limit for v; — 0 for all j). Moreover, every
such GP vector can be expressed in this way (Rootzén et al.l |2016]). The probability of the j-th
component being positive is P[Xo; > 0] = E[eZs™2(T)] which, in terms of the original data
vector Y, corresponds to the marginal exceedance probability P[Y; > u; | Y £ wu], i.e., the
probability that the j-th component exceeds its corresponding threshold given that one of the
d components does.

Suppose T has a density fr on (—oo,00)?. By Theorem 5.1 of Rootzén et al. (2016), the
density of X is given by

hr(x;1,0) = l{m:zix($> 0} / fr(z +logt)t—!dt. (3.2)
One way to construct models therefore is to assume different distributions for T', which provide
flexible forms for A, and for which ideally the integral in can be evaluated analytically.

One further construction of GP random vectors is given in Rootzén et al. (2016). If U is
a d-dimensional random vector with density fyy and such that E[eY/] < oo for all j = 1,...,d,
then the following function also defines the density of a GP distribution:

I{max(x) >0
hy(x;1,0) = {E[ (0] }/ fu(x +logt)dt. (3.3)




The marginal exceedance probabilities are now P[Xg ; > 0] = E[eY]/E[e™>*U)] for j = 1,...,d.
Formulas and can be obtained from one another via a change of measure linking fr
and fy.

Where fr and fry take the same form, then the similarity in integrals between and
means that if one can be evaluated, then typically so can the other; several instances of this are
given in the models presented in Section [, What is sometimes more challenging is calculation
of the normalization constant E[e™**(V)] = Joo{1 — Fy(logt1)} dt in (3.3). Nonetheless, the
model in has the particular advantage over that of that it behaves better across
various dimensions: if the density of the GP vector X is hyy and if J C {1,...,d}, then the
density of the GP subvector X; | X; £ 0 is simply hy,. This property is advantageous when
moving to the spatial setting, since the model retains the same form when numbers of sites
change, which is useful for spatial prediction.

3.2 Densities on the observed scale

In Section |3.1] we presented densities in the standardized form o = 1, v = 0. Using transforma-
tion , we obtain a general form for the corresponding densities for threshold excesses, X,
which in terms of the original data, is an approximation for the conditional density of ¥ — u
given that Y & u:

1

—_—. 3.4
o5 +75%5 34

d
h@: o) = h (L 1og(1 +v2/0):1,0) ]
j=1

In , h may be either hp or hyy. Observe that it is always possible to transform this density
to be suitable for large values of Y itself, i.e., to a density for the conditional distribution of Y
given that Y & u by replacing by & — u in the expression above.

The models detailed in Section [3.1] are built on a standardized scale, and then transformed
to the observed, or “real” scale. Alternatively a model can be constructed directly on the real
scale, which gives the possibility of respecting structures, say additive structures, in a way which
is not possible with the other two models; this approach will be used to model ordered data in
Section One way of presenting this is to define the random vector R in terms of U in
through the componentwise transformation

R, — (0/75) exp(;Uj), v # 0, (3.5)
o;Uj % =0,
and develop suitable models for R. This gives the GP density
1 {max(z) >0} [ s d
hr(x;o,7) = Ejemax0)] ), 125=17 g ((Q(t;xjaajﬁj))jﬂ) dt, (3.6)

where fr denotes the density of R and where

i (w5 +05/v), v #0,

L, x5, 05,7) =
9(t; x5, 05,7;) {xj+ajlogt, v; = 0.

The d components of U are found by inverting equation (3.5). For ¢ = 1 and v = 0, the
densities (3.3) and (3.6]) are the same.

4 Parametric models

Here we provide details of certain probability distributions for T, U and R that generate
tractable multivariate GP distributions. Below we refer to these probability distributions as



“generators”. Several articles have previously focused on the use of random vectors to generate
dependence structures for extremes, for example |Segers| (2012) and |Aulbach et al.| (2015) among
others. The literature on max-stable modelling for spatial extremes also relies heavily on this
device (Schlather, [2002; [Davison et al., 2012).

In order to control bias when using a multivariate GP distribution, we often need to use
censored likelihood (see Section [5)) and thus not just to be able to calculate densities, but also
integrals of those densities. These considerations guide our choice of models presented below.
For each model we give the uncensored densities in the subsequent subsections, whilst their
censored versions are given in Appendix [A]

In Sections [£.1] and [£.2] we consider particular instances of densities fr and fy to evaluate
the corresponding densities hr and hgy in and . As noted in Section even if
fr = fu, the GP densities hy and hy are still different in general. Thus we will focus on the
density of a random vector V' with density fy and create two GP models per fy by setting
fr = fv and then fy = fy, in the latter case with the restriction E[e¥7] < co. The support
for each GP density given in Sections |4.1|and 4.2/is {x € R? : 2 £ 0}. In Section [4.3| we exhibit
a construction of hg in with support depending on ~ and o.

In all models, identifiability issues occur if T" or U have unconstrained location parameters
B3, or if R has unconstrained scale parameters A. Indeed, replacing 3 or XA by 8 + k or cA,
respectively, with £ € R and ¢ > 0, lead to the same GP distribution (Rootzén et al. [2016,
Proposition 1). A single constraint, such as fixing the first parameter in the vector, is sufficient
to restore identifiability.

4.1 Generators with independent components

Let V € R? be a random vector with independent components and density fy, so that fy (v) =
H;l:l fj(vj), where f; are unspecified densities of real-valued random variables. The dependence
structure of the associated GP distributions is determined by the relative heaviness of the tails
of the marginal distributions: roughly speaking, if one component has a high probability of
being “large” compared to the others, then the dependence is weaker than if all components
have a high probability of taking similar values. Throughout, € R? is such that max(z) > 0.

Generators with independent Gumbel components

Let
fi(vj) = ajexp{—a;(v; — Bj)} exp[—exp{—a;(v; — B;)}],  a; >0, B; €R.

Case fr = fy. Density (3.2) is

d
[e'S) —a; T Bain—cus
hr(x;1,0) = e max(m)/ t! H a; (texi*ﬁj) T et g (4.1)
0 b
If 1 = ... = ag = « then the integral can be explicitly evaluated:

— max(z) d—1 I'(d) ngl e~z —55)

hr(x;1,0) =e¢ T
(Z?:1 e—a(fﬂj—ﬁj))

Case fy = fy. The marginal expectation of the exponentiated variable is

B; — , .

_ (1 —-1/ay), a; >1,

[eU]] {oo ’ ].< 1
) a; > 1.



For mini<j<qa; > 1, density (3.3) is

fO ] 1aj (texji'gj)_aj e*(tezjiﬁj)faj dt

0= = (4.2)
o (1 - H?:l e=(t/e%) aﬂ) dt
If a7 = ... = ag = « then this simplifies to:
ho (:1,0) = a®1T(d - 1/a) H;,lzl o—a(z;=5;)

(Z?:1 efa(zj—ﬁj))d_l/ar(l —1/a) (Z?:l @'Bja)l/a‘

Observe that if in addition to a3 = ... = ag = «, we also have 8; = ... = 83 = 0, then this is
the multivariate GP distribution associated to the well-known logistic max-stable distribution.

Generators with independent reverse Gumbel components

Let

fi(vj) = ajexp{a;j(v; — Bj)} exp[—exp{ay(v; — B;)}],  a; >0, B; €R.
As the Gumbel case leads to the multivariate GP distribution associated to the logistic max-
stable distribution, the reverse Gumbel leads to the multivariate GP distribution associated to

the negative logistic max-stable distribution[ﬂ Calculations are very similar to the Gumbel case,
and hence omitted.

Generators with independent reverse exponential components

Let
fi(v;) = exp{(vj + Bj)/aj}/ej,  vj € (—00,—B;), aj >0, B € R.

Case fr = fy. Density (3.2) is

e— max(z+p3)

hy(x;1,0) = ¢~ (@) / t H (te®i TPyt es gt
0 1%

— max(x)—max(z+3) 3¢ 1/a d
_¢ ; j=11/¢; Hi xj+5] 1oy (4.3)
Zj:l 1/aj j=1 Y

Case fy = fv. The expectation of the exponentiated variable is E[eY] = 1/ {e/ (a; 4+ 1)},
which is finite for all permitted parameter values. Density (3.3)) is

e~ max(z+B) d

1 1
hy(x;1,0) = / — (te®i Byl gy
E[emax(U)] 0 JI;II (o7
— max(xz+09) 24:1 1/aj+1 1 d 1
e J ZitBin]/cus
=4 E ma)x(U) d [ —(esto)t/e. (4.4)
e ] L+ 370 1 aj 500

The normalization constant may be evaluated as

R [emax(U)] :/ (1 — [T, min(e™t, 1)1/%) at
0

!The authors are grateful to Clément Dombry for having pointed out this connection.



H?:l eﬁj/o‘j
d
Z» 11/aj+1

6/
1 6
+ Z J i+

i=1 j z+11/a[J]+1

— e B — 6—5(1)(2?:1 1/a;+1)

<6—5<i+1>(§3?z¢+1 Vag+1) _ o=Bw (Zjzin 1/%1“)) ,

where B(1) > B9) > -+ > B(q) and where qy;) is the component of a with the same index as ;)
(thus the ap;s are not in general ordered). As far as we are aware the associated max—stable
model is not well known.

Generators with independent log-gamma components

Let
[i(vj) = exp(a;v;) exp{—exp(v;) }/T'(a;), a; >0, vj € (—00,00),

ie., e¥i ~ Gamma(aj, 1).

Case fr = fy. Density (3.2) is

d

—maxa: eIty Z‘i: aj—1 —t3d | e
hr(x;1,0) H teei=1 e =197 dt

I (Z;'l:1 Oéj> 62?:1 ajzj—max(x)
szl INCT) (Z?Zl e@y‘)Z?:l a;’

Case fy = fy. The marginal expectation of the exponentiated variable is E[eVi] = a;, hence
finite for all permitted parameter values. Density (3.3) is

d e
1 i Tj 00 a a o
hy(x;1,0) = ———— | | < > / th:laje*th:1e T dt
( ) E[emaX(U)] e F(Oéj) 0

1 r (Zj’lzl o+ 1) 625’1:1 ajx;—max(x)

E[emaX(U)] H;'lzl F(aj) (Z;‘lzl ewj)z:?:l o+l

The normalization constant is

r (Zdzl aj +1 ) L.
E[emaX(U)] = ; / max(ug,...,u H du1 oo dug_q,
Hj:l I'(a;) Ad-1 j=1
where Ay = {(u1,...,uq) € [0,1]%: ug+---+uyg = 1} is the unit simplex, and the integral can

be easily computed using the R package SimplicialCubature. This GP distribution is associated
to the so-called Dirichlet max-stable distribution (Coles and Tawn, [1991; Segers, 2012).

4.2 Generators with multivariate Gaussian components

Let fy(v) = (2n)~42|8| 712 exp{—(v — B)TS " (v — B)/2}, where 3 € R? is the mean param-
eter, and ¥ € R¥9 is a positive-definite covariance matrix. As before, € R? is such that
max(x) > 0. For these calculations, it is simplest to make the change of variables s = logt in

equations (3.2)) and (3.3)).



Case fr = fy. Density (3.2) is

o (9r)~d/
hT<m;1,0>=e—max<m>/ ) e (L@ =B —s1)TS (@ — B — s1)} ds

oo B[V
(27r)(1_d)/2|2‘_1/2

_ 1 T
— (AT 11172 exp {—5(33 - B) Alx —B) — max(a:)} (4.5)
with Tt
Y14 ¥
A=yt _= - = 4.
17y-11 7 (4.6)
a d X d matrix of rank d — 1.
Case fy = fyv. As required, the expectation E[er] = ePit¥ii/2 ig finite for all permitted

parameter values, where ¥;; denotes the jth diagonal element of ¥. Density (3.3) is

00 —d/
hy(x;1,0) = ! @] / (2m) 2exp{—%(m—ﬂ—sl)TZ‘_l(CC—,B—Sl)+S} ds

Elem =7
_ (2m)=D/2 5| ~1/2 1 T (x—pB)'v 111
- E[emax(U)](lTE—ll)l/Q exp —5(:13 - /8) A(:I: - /8) +2 1Ty -11 )

with A as in . The distribution for this case is already known; it is the GP distribution
associated to the Brown—Resnick or Hiisler—Reiss max-stable model (Kabluchko et al., 2009;
Hiisler and Reiss|, 1989). A variant of the density formula with E[eY/] = 1 (equivalently 3 =
—diag(X)/2) was given in Wadsworth and Tawn| (2014). Although they focussed on Poisson
point process inference, one can use their expressions to derive the associated GP distribution in
a straightforward manner. The normalization constant is [ [1 — ®4(logt1 — 3; )] dt, where
®4(+;2) is the zero-mean multivariate normal distribution function with covariance matrix 3.
This normalization constant can also be expressed as a sum of multivariate normal distribution
functions, see Huser and Davison| (2013). Observe that in high dimensions, the normalization
constant for the density based on U may be onerous to compute, whilst the density based on
T does not require this.

4.3 Generators with structured components

In Sections and we considered several distributions for U and T'. Here we present a
model for R based on cumulative sums of exponential random variables. Cumulative sums will
lead to a vector R whose components are ordered; for the components of the corresponding
GP vector to be ordered as well, we will assume that v = v1 and o = o1. This model will be
of interest in Section where we will focus on modelling cumulative precipitation amounts
which may trigger landslides.

Case v = 0. By construction, the densities hg(-;1,0) and hyy(-;1,0) coincide since R = U.
Let R € (—o0,00)? be the random vector whose components are defined by

1 iid .
R; = log (zgzlEi) . B SExpy),  j=1,....d,

where Ai,...,Ag > 0 are the rate parameters, i.e., P[E; > z;] = exp (—Ajz;) for z; > 0. Its
density, fgr, is given by

fr(r) = { (H;‘lzl Aje”) exp {_ Z?:l()\j - )\j+1)€rﬂ} , ifr <<y,

0, otherwise,
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where we set Agy1 = 0. In view of (3.3)), R < ... < Ry (or equivalently U; < ... < Uy) implies
Xo,1 < ... < Xpq. The density of Xy is given as follows: if 1 < ... < x4, then

d

hr(x;1,0) = (24 > 0) H Aje” / tTexp { —t Z()\j — N\jy1)e™ dt

eRd
j=1

_ L(zq > 0)d! [T, Aje® (4.7)

(Z;’l=1 )‘j_l) (Z;lzl()‘j - Aj+1)€”j)d+1’

while hg(x; 1,0) is zero otherwise. The density hg(z; o, 0) is then directly obtained from (3.4)).

For d = 2, the dependence measure xi.o from takes the simple form xi.0 = 1 —
A1/(2(A1+ A2)). Some properties of the structured components model can be inferred from this
expression; when A1 = Ao, then y12 = 0.75 regardless of the value of the parameter. If \; > Ao,
then yi12 — 0.5; if Ao > Ay, then x12 — 1. It is natural that this model cannot approach
asymptotic independence, since it is based on cumulative sums.

Case v > 0. Let R € (0,00)? be the random vector whose components are defined by

J
=SB, E;¥Exp(N),  j=1,....d,
=1

where Ay, ..., A\g > 0 are the rate parameters. Its density, fgr, is given by
d d .
fR(T) _ <Hj:1 )\j) exp{—zjzl()\j —/\j+1)7“j}, fo<r <...<rg
0, otherwise,

where we set A\g41 = 0. Then

2] -2 s, (22)"] - (2) "2 e

The distribution of Ry is called generalized Erlang if A\; # A; for all i # j (Neuts, 1974)), and,
letting fr, denote its density we get

()=l ]= () [
_ (i)l/vzd:)\i 5 —>\ /Ooorl/»yemi dr

i=1 J=1,j#1¢
d
’)/)1/’7 1 —1/v )\j
— (L) (=41 :
G o) (15
=1 j=Lj#i "7
If A\ = ... = Ay, then R, follows an Erlang distribution. By (3.6)), the density of X becomes,

forxg>...>x1 > -0/,

(T 20) S5 exo {47 00 = Ay} (as + /) }
(%)IME [Rcll/’y]
10> 0) (o) ()71 (0 2) e (2)

d+1/v -1 i ’
(S0 = Aoz + /) S AT (T 25

hr(®;0,7) = 1(za > 0)
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5 Likelihood-based inference

Working within a likelihood-based framework for inference allows many benefits. Firstly, com-
parison of nested models can be done using likelihood ratio tests. This is important as the
number of parameters can quickly grow large if margins and dependence are fitted simultane-
ously, thus we can test for simplifications in a principled manner. Secondly, incorporation of
covariate effects is straightforward in principle. For univariate peaks over thresholds, such ideas
were introduced by Davison and Smith| (1990), but nonstationarity in dependence structure
estimation has received comparatively little attention; an exception is Huser and Genton| (2016)
in the context of max-stable processes. Thirdly, such likelihoods could also be exploited for a
Bayesian approach to inference if desired.

5.1 Censored likelihood

The density (3.4) is the basic ingredient in a likelihood, however, we will use (3.4) as a contri-
bution only when all components of the observed translated vector Y — w are “large”, in the
sense of exceeding a threshold v, with v < 0. The reasoning for this is twofold:

1. For 7; > 0, the lower endpoint of the multivariate GP distribution is —c;/7v;. We would
like to avoid the situation where small values of a component can affect the fit of the
upper tail of that component too strongly.

2. Without censoring, bias in the estimation of parameters controlling the dependence can
be larger than for censored estimation, see Huser et al.| (2016).

Let D ={1,...,d} and C C D be the subset of indices denoting which components of Y — u
fall below the corresponding component of v, i.e., ¥; —u; < vj for j € C, and Y; — u; > v
for j € D\ C, with at least one such Y; > u;. For each realization of Y, we use the likelihood
contribution

he(yp\c — up\csve; Y, o) = / h(y —u;v,0)dyc,  yo = (yj)jec, (5.1)
X jec(—o0,uj+vj]

which is equal to with = y — u if C is empty. Appendix [A| contains forms of censored
likelihood contributions for the models included in Section Thus, for n independent obser-
vations yi,...,Yyn of Y | Y £ u, the form of the censored likelihood function to be optimized
is

n

L(0,0,v) = HhCi (yi,D\C - uD\Cv”C;07077)7 (5.2)

i=1
where C; denotes the censoring subset for y;, which may be empty, and 8 represents parameters
related to the model that we assumed for the generator.

5.2 Model choice

When fitting multivariate GP distributions to data on the observed scale we have a large
variety of potential models and parameterizations. For non-nested models, Akaike’s Information
Criterion (AIC = —2 x log-likelihood + 2 x number of parameters) can be used to select a
model with a good balance between parsimony and goodness-of-fit. When looking at nested
models, e.g., to test for simplifications in parameterization, we can use likelihood ratio tests.
Because of the many possibilities for model fitting, to reduce the computational burden we
propose the following model-fitting strategy, that we will employ in Section

(i) Standardize the data to common exponential margins, Yz, using the rank transformation
(i.e., the probability integral transform using the empirical distribution function);

12



(ii) select a multivariate threshold, denoted w on the scale of the observations, and ug on the
exponential scale, using the method of Section

(iii) fit the most complicated standard form model within each class (i.e., maximum number
of possible parameters) to the standardized data Yy —ug | Yg £ ug;

(iv) select as the standard form model class the one which produces the best fit to the stan-
dardized data, in the sense of smallest AIC;

(v) use likelihood ratio tests to test for simplification of models within the selected standard
form class, and select a final standard form model;

(vi) fit the GP margins simultaneously with this standard form model, to Y —u | Y £ u by
maximizing ([5.2));

(vii) test for simplifications in the marginal parameterization.

Although this strategy is not guaranteed to result in a final GP model that is globally optimal,
in the sense of minimizing an information criterion such as AIC, it should still result in a sensible
model whilst avoiding enumeration and fitting of an unfeasibly large number of possibilities.
The validity of the fit of the selected model can be assessed via diagnostics.

5.3 Threshold selection and model diagnostics

An important issue that pervades extreme value statistics — in all dimensions — is the selec-
tion of a threshold above which the limit model provides an adequate approximation of the
distribution of threshold exceedances. Here this amounts to “how can we select a vector w such
that Y —u | Y £ w is well-approximated by a GP distribution?”. There are two consider-
ations to take into account: Y; —wu; | Y; > u; should be well-approximated by a univariate
GP distribution, for j = 1,...,d, and the dependence structure of Y — u | Y £ u should be
well-approximated by that of a multivariate GP distribution. Marginal threshold selection has a
large body of literature devoted to it; see Scarrott and MacDonald (2012) and |Caeiro and Gomes
(2016) for recent reviews. Threshold selection for dependence models is a much less well studied
problem, though recent literature that begins to address this topic includes Lee et al.| (2015)
who consider threshold selection via Bayesian measures of surprise, and [Wadsworth! (2016|) who
examines how to make better use of so-called parameter stability plots, offering a method that
can be employed on any parameter, pertaining to the margins or dependence structure.

Here we propose using the “constant conditional exceedance” property of multivariate GP
distributions outlined in Section [2| to guide threshold selection for the dependence structure. If
Y ~FandY —u|Y £ u ~ H, then on the region ¢ > max; Fj_l(uj'), we have x1.4(¢) = xu(¢)
with ¢ = {q — F(u)}/{1 — F(u)}. A consequence of this is that x1.4(¢) should be constant on
the region Y > w, if u represents a sufficiently high dependence threshold. Hence if we identify
¢* =inf{0 < ¢ <1:x14(q) =xV q> g}, then u = (F;'(¢*),...,F;*(¢*)) should provide an
adequate threshold for the dependence structure. Once suitable thresholds have been identified
for margins, u.,, and dependence, uq, then a threshold vector which is suitable for the entire
multivariate model is w = max(um, uq).

To illustrate this idea, let X1.4(¢) denote the empirical version of x1.4(¢q), defined by

> L {ﬁl(}q) > g, Fy(Yy) > q}
n(l—q) ’

yl:d(‘]) = qe [07 1)’ (5'3)

where ﬁl, . ,ﬁd represent the empirical distribution functions. Figure |2| displays X1.4(q) for
data in the domain of attraction of a GP distribution. From the right-hand panel it appears
that the estimate looks reasonably constant after ¢ = 0.8. In addition to aiding threshold
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Figure 2: Illustration of dependence threshold selection using x1.4(¢). Left: two-dimensional
data in the domain of attraction of a multivariate GP distribution; right: corresponding X(q).
This appears constant for ¢ > 0.8, and the data satisfying this are given as filled points on the
left. Approximate 95% pointwise confidence intervals are obtained by bootstrapping from the
sample {Y;: i1 =1,...,n}

selection, such plots also aid determination of whether the multivariate GP distribution forms
a suitable model for the data: if it appears that xi1.4(¢) J 0 as ¢ T 1 then we should explore
further whether it is reasonable to assume that the data are asymptotically dependent.
Having identified a multivariate GP model to fit, and a threshold above which to fit it, a key
concern is to establish whether the goodness-of-fit is adequate. For the dependence structure,
one diagnostic comes from comparing X1.4(¢) for ¢ — 1 to x1.4, which for models Az in
has the form
eTj—max(T) ]
X1:d = )

E [1%% E(eT5i—max(T))

whilst for models Ay in (3.3]) we get the form

E[min
X1:d = 1r§nj1£dE(er) .

The formula of x1.4 stemming from hgr models then follows through equation . In some
cases these expressions may be evaluated analytically, but they can always be evaluated with
arbitrary accuracy by simulation; see [Rootzén et al.| (2016). A further diagnostic could exploit
the fact that P[X; > 0] = E[e©s—max(T)] = E[eYs] /E[e™**(U)] (see Section . Thus one would
compare P[Y; > u; | Y £ u] with the relevant model-based probability. In the event that the
u;j are equal marginal quantiles, P[Y; > u; | Y £ u| = P[Y; > u;]/P[Y £ wu] is the same for
each margin.

Equation suggests a model-free diagnostic of whether a multivariate GP model may be
appropriate. To exploit this, one defines a set of interest A, and compares the number of points
of Y —u | Y £ u that lie in A to t times the number of points of (Y —u —wy)/t7 | Y £ u
lying in A for various choices of ¢ > 1. According to , the ratio of these numbers should
be approximately equal to 1. We exploit this diagnostic in Section Note that setting
A ={z:x > 0} is equivalent to computing xg with Hy, ..., Hy replaced by H; ..., Hj.

Finally, in the event that the margins can be modelled with identical shape parameters, one
can test property by examining the adequacy of the implied univariate GP distribution
from a multivariate fit. This will be used in Section [6.1] below.
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6 Applications

6.1 UK bank returns

We examine the weekly negative raw returns on the prices of the stocks from four large banks in
the UK: HSBC (H), Lloyds (L), RBS (R) and Barclays (B). Data were downloaded from Yahoo
Finance. Specifically, letting Z;;, j € {H, L, R, B}, denote the closing stock price (adjusted for
stock splits and dividends) in week ¢ for bank j, the data we examine are Y;; =1 —Z;/Z; 1,
so that large positive values of Yj; correspond to large relative losses for that index. The
observation period runs from 29 October 2007 to 17 October 2016, with a total of n = 470
datapoints.

Figure 3] displays pairwise plots of the negative returns. There is evidence of strong extremal
dependence from these plots, as the largest value of Y7, YR, Yp occurs simultaneously, with
positive association amongst other large values. The largest value of Yy occurs at a different
time, but again there is positive association between other large values. Figure |4| shows an
estimate of the function xgrrp(q) for these data. As is common in practice the value of
XuLrB(q) generally decreases as ¢ increases, but is plausibly stable and constant from slightly
above ¢ = 0.8. Consequently, we proceed with fitting a GP distribution.

Ultimately, we wish to fit a parametric GP model to the raw threshold excesses {Y; — u :
Y, £ u}. In view of the large variety of potential models and parameterizations, we use the
model selection strategy detailed in Section Throughout we use censored likelihood with
v=0.

We begin by selecting a threshold and finding a standard form model for the marginally
transformed data. On the basis of Figure 4] the 0.83 marginal quantile is used as the thresh-
old in each margin; there are a total of 149 observations with at least one exceedance of the
corresponding marginal threshold.
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Figure 3: Pairwise scatterplots of the negative weekly returns of the stock prices of four UK
banks: HSBC (H), Lloyds (L), RBS (R) and Barclays (B), from 29 October 2007 to 17 October
2016.
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Figure 4: Negative UK bank returns: estimate of xyrrp(q) with HSBC (H), Lloyds (L),
RBS (R) and Barclays (B). Approximate 95% pointwise confidence intervals are obtained by
bootstrapping from {Y; : t =1,...,n}.

We fit five dependence models from Section 4| specifically the models with densities ,
, , and , to the standardized data. The smallest AIC is given by model ,
i.e., where fr is the density of independent Gumbel random variables. We therefore select this
class and proceed with item of the procedure in Section to test for simplifications within
this class. The results are summarized in Table [I} indicating that in fact a model with a single
parameter is adequate, since both possible sequences of likelihood ratio tests between nested
models lead to M4 when adopting a 5% significance level. This is a useful simplification, since
with relatively few data points it places us in a better position for fitting a full GP distribution.

Table 1: Negative UK bank returns: parameterizations of model (4.1)) for the standardized data
and their maximized log likelihoods.

Model Parameters Number Maximized log-likelihood
M1 041,042,043,044,)\1,)\2,)\3 7 —-917.0
M2 Qaq, 0, 03, 0y 4 —918.2
M3 Oé,)\l,)\g, Ag 4 —920.8
M4 « 1 —-921.0

Finally we use the selected dependence model to fit a full GP distribution, and test for
simplifications in the marginal parameterization. Marginal parameter stability plots suggest
that the 0.83 quantile is adequate for these purposes, which is also supported by diagnostics
from the fitted model (Appendix [B| Figure 12). At a 5% significance level, a likelihood ratio
test for the hypothesis of v = vf, = yr = vp provides no evidence to reject the null hypothesis,
whereas a further test for o = 0, = ogr = op is rejected. The maximum likelihood estimates
of parameters from the final model are displayed in Table

To scrutinize the fit of the model, we examine marginal, dependence, and joint diagnostics.
Quantile-quantile (QQ) plots for each of the univariate GP distributions implied for Y;; —
uj | Y;; > u; are displayed in Figure 12 of Appendix indicating reasonable fits in each

Table 2: Negative UK bank returns: maximum likelihood estimates (MLE) and standard errors
(SE) of parameters from the final model for the original data.

« og oL OR oB Y

MLE 1.29 0.020 0.041 0.038 0.035 0.43
SE 0.14 0.0026 0.0053 0.0052 0.0049 0.082
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case. Estimates of the pairwise x;;(q), ¢ # j € {H, L, R, B}, are plotted in Figure |5 with
the corresponding fitted value and threshold indicated; tripletwise plots were also examined
and showed similarly good agreement. Since the model has a single parameter, all pairs are
exchangeable and hence have the same fitted value of y for any fixed dimension. The fitted
value for the quadruple xgrrp is 0.40, which can be seen on Figure [4] to be appropriate.
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Figure 5: Negative UK bank returns: estimates of pairwise yx;;(q) with fitted pairwise x;;
(horizontal line), for HSBC (H), Lloyds (L), RBS (R) and Barclays (B). Clockwise from top left:
XHL, XHR> XHB> XRB> XLB>, XLR- The vertical line represents the threshold used. Approximate
95% pointwise confidence intervals are obtained by bootstrapping from {Y; : t =1,...,n}.

Other model diagnostics are available either by theoretical properties of the GP distribution,
or by simulation from it (Rootzén et al., [2016)); recall Section One useful property outlined
in Section [2| is that of sum-stability under shape constraints, given in equation . As a
diagnostic, we fit a univariate GP distribution to

> (Y —uy) ’ > (V=) >0, (6.1)

je{H,L,R,B} je{H,L,R,B}

with scale parameter estimate (standard error) obtained as 0.10 (0.021), and shape parameter
estimate 0.45 (0.17). QQ plots suggest that the fit is good; see Figure 13 of Appendix (Bl For
comparison, we have ) jE{H,L,R,B} 0; = 0.13 with standard error 0.014 obtained using the delta
method, whilst the maximized univariate GP log-likelihood is 63.5, and that for the parameters
obtained via the multivariate fit is 62.2, showing that the theory holds well.

We now use the fitted multivariate GP model, combined with property , to investigate
assessing portfolio risk, noting that weighted sums of raw stock returns correspond to portfolio
performance. We consider two commonly-used risk measures, Value at Risk (VaR) and Ezpected
Shortfall (ES) to describe the losses one could expect to see for different portfolio configurations
containing these stocks. VaR is an estimate of the loss that is exceeded with probability p over
a specified time horizon; since we have weekly returns, we consider a time horizon of one week.
Thus, if the conditional distribution of }; a;(Y:; — u;) given the event 3 a;(Y; —u;) > 0 is
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GP(>_;aj05,7), then

VaR(p) = Zajuj + 2594% { (gb)7 - 1} : (6.2)

g p

where ¢ = P[Zj a;(Yy; —uj) > 0] and 0 < p < ¢, so that is the unconditional 1 — p
quantile of > j a;Y; j. The probability ¢ is estimated by maximum likelihood using the binomial
assumption  , 1{}> . a;(Ys j—u;) > 0} ~ Bin(n, ¢), and in the univariate model it is orthogonal
to the GP parameters of the conditional excess distribution. In the multivariate model, one can
in theory express

P30y — u) > 0] =P [05(Yi5 — ) > 0| Yi £ | PY; 2 ]
= p(6) ¢, (6.3)

where p(0) is an expression involving the parameters of the multivariate GP model, and b is
the proportion of points for which Y; £ uw. The expression p(0) is not tractable here, thus
we continue to estimate ¢ as the binomial maximum likelihood estimate, and as a working
assumption treat it as orthogonal to the other parameters. However, an estimate of p(€) could
be obtained by simulation given known or estimated parameters 6, and the utility of this will
be demonstrated in Figure [7}

The expected shortfall is defined as the expected loss given that a particular VaR threshold
has been exceeded. Under the GP model, and provided v < 1, it is given by

ES(p) =E |:Zj a;Yej | D005 > VaR(p)}

2. a0+ [VaR(p) -2 ajuj}
= VaR(p) + -~ . (64)

Asymptotic theory suggests that a univariate GP model fit directly to >, a;(V;,; — u;) or the
implied GP(3_; a;o;,7) model obtained from the multivariate fit could be used. An advantage
of using the GP(3_; a;0;,7) model derived from the multivariate fit is reduced uncertainty,
combined with consistent estimates across different portfolio combinations.

Figures [6] displays VaR curves and delta-method 95% pointwise confidence intervals for two
different weight combinations and for both the univariate fits and implied multivariate fits,
whilst Figure 14 of Appendix [B] displays the corresponding ES curves. For both sets of plots,
empirical counterparts are shown for model validation. For VaR (Figure @, the univariate
fit is closer in the body whilst the multivariate fit apprears to be closer to the data in the
tails. The reduction in uncertainty is clear and potentially quite useful for smaller p, though we
note that at such levels the uncertainty is likely to be asymmetric, and profile likelihood-based
confidence intervals would perhaps be more useful; however, we do not pursue this here. For
ES (Appendix Figure 14) the univariate fit estimates smaller values than the multivariate fit
in each case, and seems to reflect the observed data better. However, the empirical ES values
fall within the 95% (approximate) confidence intervals obtained via the multivariate model,
suggesting that the model is still consistent with the data for this quantity. For the univariate
fit the clear shortcomings of delta-method confidence intervals can be seen with the coverage of
negative values.

Finally, Figure |7] illustrates how use of a multivariate model provides more consistent es-
timates of VaR across different portfolio combinations compared to use of multiple univariate
models. To produce the figures, we suppose that Zj aj = 100 represents the total amount
available to invest. The value ay = 10 is fixed, with other weights varying, but with each
a; > 1. Two estimates making use of the multivariate model are provided: one for which a
model-based estimate of p(@) from (6.3)) is used (with estimation based on 100000 draws from
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Figure 6: VaR estimates and pointwise 95% delta-method confidence intervals for portfolio
losses based on the weights given as percentages invested in HSBC, Lloyds, RBS and Barclays
as in the figure title. Estimates based on the multivariate GP fit are on the left; estimates based
on the univariate fit are on the right.

the fitted model), and one where the empirical estimate of ¢ is used, as in Figure |§| and in Fig-
ure 14 of Appendix [Bl We observe that both sets of multivariate estimates suggest much more
consistent behaviour across portfolio combinations than the use of univariate fits. In particular,
the behaviour is very smooth once a model-based estimate for p(8) is included.

6.2 Landslides

Rainfall can cause ground water pressure build-up which, if very high, can trigger a landslide.
The cause can be either short periods with extreme rain intensities, or longer periods of more
moderate, but still high rain intensities. |Guzzetti et al. (2007) consolidate many previous
studies and find that the majority of rainfall events that cause landslides have a duration
between one hour and three days (Guzzetti et al. 2007, Figure 6A). Moreover, they propose
threshold functions such that rainfall below these thresholds are unlikely to cause landslides.
These functions link duration in hours, D, with total rainfall in millimeters, P. For highland
climates in Europe this threshold function is

P =17.56 x D"52, (6.5)

Thus, e.g., a one-hour rainfall amount below 7.5 mm, a one-day amount below 39.5 mm, a
two-day amount below 56.6 mm, or a three-day amount below 69.9 mm are all unlikely to cause
a landslide.

We will use a long time series of daily precipitation amounts P, ..., Py collected by the
Abisko Scientific Research Statimﬂ in northern Sweden between January 1, 1913, and December
31, 2014, to estimate a lower bound for the probability of the occurrence of rainfall events which
exceed the threshold in , and which may hence lead to landslides.

http://polar.se/en/abisko-naturvetenskapliga-station /vaderdata,/
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Figure 7: Maximum likelihood estimates of VaR(0.001) for 3, a;Y; ; with ay = 10 and ap =
90 — ay, — ar for four UK banks, HSBC, Lloyds, RBS and Barclays. Left: from multivariate
model including simulation to estimate p(@) from ([6.3); centre: from multivariate model using
purely empirical estimate of ¢; right: from univariate model fit to each combination separately.
Note the different colour scales on each panel.

The total cost of landslides in Sweden is typically around SEK 200 million/year. There
have been several landslides in the Abisko area in the past century, for instance in October
1959, August 1998, and July 2004 (Rapp and Stromquist, [1976; |Jonasson and Nyberg, [1999;
Beylich and Sandberg), 2005). The rain causing the landslides are clearly visible in the data,
with 24.5 mm of rain on October 5, 1959, 21.0 mm of rain on August 24, 1998, and 61.9 mm
of rain on July 21, 2004. The 2004 rain amount is well above the 1-day risk threshold, whereas
the 1959 and 1998 rain amounts are below the 1-day threshold. The explanation may be that
the durations of the latter two rain events were actually substantially shorter than 24 hours,
and that the threshold in was still exceeded. However, the 1-day data resolution is not
sufficient to be able to verify this.

We wish to construct a dataset Yi,...,Y;, € R3, for n < N, whose components represent
daily, two-day, and three-day extreme rainfall amounts respectively. We limit ourselves to
d = 3 because of the findings in |Guzzetti et al. (2007). Based on a mean residual life plot
and parameter stability plots (not shown here) for the daily rainfall amounts P,..., Py, we
choose the threshold u = 12, which corresponds roughly to the 99% quantile. Figure shows the
cumulative three-day precipitation amounts P+ P; 1+ P12 fori € {1,..., N—2}. The threshold
u chosen above is used to extract clusters of data containing extreme episodes; because extreme
rainfall occurs when either the daily, or the two-day, or the three-day precipitation amounts are
extreme and these quantities are ordered, we consider three-day precipitation amounts exceeding
u. The data Y7,...,Y, are then constructed as follows:

1. Let ¢ correspond to the first sum P; + P;11 + P;+2 which exceeds the threshold u and set
Py = max(P;, Piy1, Pito).

2. Let the first cluster C(y) consist of Py plus the five values preceding it and the five values
following it.

3. Let Y71 be the largest value in C’(l), Y12 the largest sum of two consecutive non-zero values
in C(y), and Yi3 the largest sum of three consecutive non-zero values in Cy).

4. Find the second cluster C(9) and compute Yo = (Y21, Y22, Y23) in the same way, starting
with the first observation after C'y).

Continuing this way, we obtain a dataset Y7,...,Y,, with n = 580.
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Three—-day rainfall amounts in Abisko
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Figure 8: Precipitation data in Abisko: cumulative three-day precipitation amounts F; + P 1+
Py forie {1,...,N — 2} with threshold v = 12 in red.

Time trend

A similar dataset has previously been analysed in Rudvik| (2012, where a univariate generalized
extreme value model with a linear trend in the location parameter was fitted to annual maxima,
with the conclusion that there is no significant trend. We investigate the question whether
there is a trend in the daily, two-day or three-day rainfall amounts by fitting a univariate
GP distribution with a fixed shape parameter v but a loglinear trend for the scale parameter,
logo(t) = a+ bt for t € (0,1], to the marginal components of the series (Y;)" ;. To this end,
we need to select marginal thresholds above which we fit the univariate GP distributions. For
the first component, we take u; = 12 as found previously; for the second and third components,
we take ug = 13.5 and us = 14 respectively, based on inspection of parameter stability plots.
For the first component, the time ¢ corresponds to the indices i € {1,..., N} for which P; >
uy; for the second and third component, we use the time corresponding to max(P;, P;y1) and
maX(Pz‘, Piyq, Pi+2)-

In Table [3] we report the parameter estimates for the univariate GP fit above these thresh-
olds. The final line shows the deviance, i.e., —2 times the difference in log-likelihood with
respect to a model with o(t) = 0. We compare to the 95% quantile of a x? distribution, given
by 3.84. Likelihood ratio tests show that the absence of a linear trend in the logarithm of the
scale parameter cannot be rejected.

We do not adopt any trend and Table[d]shows the result of fitting univariate GP distributions
to the margins conditional on exceeding the previously mentioned thresholds. Observing that
the estimated shape parameters are all around zero, we would like to test if the simpler model
~ = 0 would suffice and we find that such a restricted model cannot be rejected either. Moreover,
the overlap in the confidence intervals of &; suggest the plausibility of a model where o = o1.
Note that a common ¢ and  only implies that the marginal distributions are equal conditional
on exceeding the threshold; it does not imply that the unconditional probabilities P[Y; > u;]
are equal. In the following analysis, we will set & = 01 and v = 1, and we will fit both a
model with v = 0 and one with v > 0.

Dependence structure

We wish to approximate the distribution of ¥; — u | Y; £ u by a multivariate GP distribution
on {x € R?: x % 0}; because the components of our data vectors are strictly increasing, the
structured components model from Section may be appropriate. We consider a model with
v = 0 and a more general model with v > 0. Recall that we need to impose a restriction on
the parameters for identifiability; we set Ay = 1 for both models. We estimate the parameters
(A2, A3,0) in the first case and the parameters (A2, A\3,0,7) in the second case. We choose
u = ul with u = 24 since parameter estimates more or less stabilize for thresholds around this
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Table 3: Precipitation data in Abisko: estimates of the parameters of marginal GP models with
logo(t) = a+ bt and shape ~ for thresholds u = 12, u = 13.5 and u = 14 respectively; standard
errors in parentheses.

Y Yo Y3
5 -0.09 (0.06) -0.05 (0.06) -0.03 (0.06)
a 2.01 (0.12) 2.13 (0.11) 2.21 (0.11)
b 0.24 (0.21)  0.24 (0.19)  0.21 (0.17)
deviance 1.17 1.49 1.46

Table 4: Precipitation data in Abisko: estimates of the parameters of marginal GP models for
thresholds v = 12, v = 13.5 and u = 14 respectively; standard errors in parentheses.

Y1 Yio Yis3
20.06 (0.05) -0.02 (0.06) -0.01 (0.05)
8.26 (0.69)  9.34 (0.74)  9.96 (0.74)

Q) =)

value and we continue with the 142 datapoints whose third components exceed u = 24.

Table [5| shows the parameter estimates obtained from maximizing the censored likelihood
in (5.2]) with censoring threshold v = 0. Again, the hypothesis of v = 0 cannot be rejected. We
see that the estimates of ¢ are somewhat higher than we saw in the marginal analysis, which
is intuitively reasonable since the maximum likelihood estimators for v and o are negatively
correlated and since 7 is positive for the second model.

We wish to estimate the probability of a future landslide using formula , i.e., we wish
to calculate P[Y £ y] where y = (39.5,56.6, 69.9), which is such that y > u. In the first model,
v =0, we can write

PY £y =PlY —ufy—u|Y £u] P[Y £ u] ={1-H(y —u;o,7)} P[Y3 > u]
:{1_H<yau 1 0)} P[Y; > u]. (6.6)

The first term of (6.6) is calculated directly by integrating the density of the structured compo-
nents model given in , where we plugged in the parameter estimates ()\1, /\g, )\3, o) from the
top row of Table Slnce we are interested in the yearly exceedance probability, we estimate
P[Y3 > u] by counting the number of years with and without exceedances and computing the
empirical probability. We obtain

P[Y; > 39.5 or Y3 > 56.6 or Y3 > 69.9] ~ 0.062. (6.7)

We find that the probability of rain amounts which could lead to a landslide in any given year is
0.062, which is higher than the result in |Rudvik! (2012). The data used in |Rudvik! (2012) is for
the period 19132008 and based on daily, three-day and five-day precipitation amounts, which
might explain the difference.

Goodness-of-fit

For a visual test we consider QQ-plots for each of the marginal conditional GP distributions
(Yij —u) | Yij > u, with u = 24 as before. Figure [9]shows that for the model with v = 0, the fit
is less good for the first component due to the restriction o = o1. This restriction is used to
ensure that the components are ordered. Plots for the model with v > 0 (not shown) are very
similar.
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Table 5: Precipitation data in Abisko: parameter estimates for the structured components
model with u = 24; standard errors in parentheses.

u =24 A1 Ao A3 o Bl Maximized log-likelihood
0

Model 1: =0 1.00 0.84 1.08 10.17 -870.0
—~  (0.13) (0.18) (0.80)  —

Model 2: v >0 1.00 083 106 914 0.1 -868.9
—  (0.12) (0.18) (0.99) (0.08)
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Figure 9: Precipitation data in Abisko: QQ-plots for the univariate GP distributions of the
three variables Y;1, Yio and Y;s3 (left to right) for the model with v = 0 with parameters implied
by Table The 95% pointwise confidence intervals are obtained by a transformation of the
beta distributed order statistics of a uniform distribution.

For the dependence structure, we start by looking at the goodness-of-fit diagnostic suggested
by equation ([2.5)) (see also Section [5.3]). Since we set v = 0, we look at the ratio

PY —ucAl|ly £ u
tPlY —u—ologt€e A|Y £ ul’

(6.8)

where o denotes the vector of scale parameter estimates of the marginal GP models above
u = 24. We consider the sets A; = {z € R3: z; > 0} for j € {1,2,3}. Figureshows that the
result is satisfactory, i.e., expression is near one, so that a MGP model seems appropriate
for this dataset. The result for A; shows more variability than the other two since the number
of exceedances in the first component is relatively low.

Next, we would like to compare the pairwise and trivariate x (formulas can be found in
Appendix to their empirical counterparts; see Section Figure |11) shows the results,
where the horizontal lines represent the model-based x’s based on A1, A2 and A3 from the top
row in Table 5] Again, the fit is satisfactory.

Finally, we consider the goodness-of-fit diagnostic which consists of comparing the model-
based probabilities A

Uj 7oAt
PX; > 0] = E[Ifrix(gf)] - Zfi:l 1217
i=1"%

with the empirical probabilities P[Y; > u; | Y £ u] for j € {1,2}. We find P[X; > 0] = 0.34
(0.03) and P[X2 > 0] = 0.63 (0.03) using the values from the top row in Table |5} the standard
errors are obtained using the delta method. For u = (24, 24,24), the empirical probabilities are
0.32 and 0.69 respectively. Plots of the empirical probabilities for a range of thresholds w = ul
(not shown) confirm the chosen threshold value u = 24.

A more formal way to assess the goodness-of-fit of the dependence structure of this model
is by calculating the test statistic presented in |[Einmahl et al. (2016, Corollary 2.5). The test
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Figure 10: Abisko precipitation data: ratio for A € {A1,As, A3} with u = 24. Ap-
proximate 95% pointwise confidence intervals are obtained by bootstrapping from {Y; : i =
1,....Y,}.
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Figure 11: Precipitation data in Abisko: pairwise and trivariate Y (¢q) (dots) and model-
based limiting x (horizontal lines) for u = 24, with parameters implied by Table [5| for
~ = 0. Approximate 95% pointwise confidence intervals are obtained by bootstrapping from
{Y;:i=1,....Y,}.

statistic proposed there is based on the difference between the value of (x12, X13, X23, X123) and an
empirical estimator thereof. It depends on a sequence k € {1,...,n} where k — co and k/n — 0
as n — 0o, which represents the threshold value used: a low value of k corresponds to a high
threshold. The test statistic converges to a chi-square distribution with 2 degrees of freedom;
its 95% quantile is equal to 5.99. Computing the test statistic for k& € {50, 75,100, 125,150},
where we set again \; = 1, we find the values 1.08, 4.48, 1.17, 5.42, and 0.99 respectively, so
that we cannot reject the structured components model for any value of k.

7 Discussion

We have outlined several new models for multivariate GP distributions, along with their un-
censored and censored likelihoods. The models were applied to two types of data: stock price
returns, where advantages in terms of consideration of a portfolio were demonstrated; and rain-
fall data, where the context dictated that extremes of ordered cumulative data were the object
of interest. Methods to select a multivariate threshold and diagnostics for the fitted models
have been considered and demonstrated through the applications.

The threshold selection method suggested in Section[5.3]is relatively conservative in the sense
that a multivariate GP model could hold with lower thresholds in some margins. Better ways to
select a multivariate threshold, ideally incorporating marginal and dependence considerations
simultaneously, remains an interesting problem.
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A key issue that was highlighted in Section was the idea of asymptotic (in)dependence,
and how we can detect when multivariate GP distributions form an appropriate model. In
particular, we have not dealt with the situation where the GP distribution places mass on a
lower dimensional subspace, with the models outlined in Section [4| placing no mass on lower-
dimensional subspaces of the d-dimensional space {x € Re:x £ 0}. In principle, parameters
assigning mass to such lower-dimensional spaces could be introduced and estimated through
censored likelihood, although it seems likely that information on these parameters would be
weak, and alternative ways of handling this situation are much needed.

If certain subsets of variables display asymptotic dependence, then, depending on questions
of interest, it may be worth considering these separately. However, if all pairwise x;; = 0,7 > 1,
then no asymptotic dependence exists amongst any variables, and no multivariate GP model
would be approporiate, since the limiting model places mass only on one-dimensional lines. In
this context, methods from Ledford and Tawn| (1997)), Heffernan and Tawn| (2004) or Wadsworth
and Tawn| (2013) may prove useful.

A Censored likelihoods

Here we detail forms of censored likelihoods for the models detailed in Section [3| For simplicity
they are presented in standardized (o = 1, v = 0) form, i.e.,

he(zpyc,ve; 1,0) :/ h(z;1,0)dzc, (A1)
X jec (—00,v5]

for v; < 0 and h corresponding to either Az or hyy. The generalized form of a censored likelihood
is easily obtained from (A.1)) as

1
ho(@pyorveio,7) = he (§108(0 +y@pi0 /@), Jlog(1 +yve /@) 1,0) T

The support for each density is {x € R?: 2 £ 0}, and we let |C| denote the cardinality of the
set C.

Generators with independent Gumbel components

Case fr = fy.
hc(wD\c,'Uc; 1, 0) =e max(a / 1 H —(te" 7)™ H a; (texf*fgj)_aj ef(texj_ﬂj)_aj dt.
jec jeED\C
If all aj are equal to a:
—|C|— —a(z;—PB;
sy @@ - O [epyo e M)

he(xzp\c,ve;1,0) = e _—
<2jec e~oi=hi) 4 > jeD\C e—a(ﬂﬂj—ﬁj)>

Case fy = fv.

fO jece te vi Bj)_aj H]ED\C O[J (te 5 ﬁ]) e (te j Bj)_aj dt

r(1 - 1/0) (S ebe)

ho(xp\o,ve; 1,0) =

If all aj are equal to a:

d-‘C'—lnd 101 = Y [jepc e )

ho(xp\osve;1,0) = )d—|C|—1/a'

(1 — l/a) (Z 1 ebjo ) <Zj€C e—a(vj—5;) + ZjED\C e—al(zj—B;)
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Generators with independent reverse exponential components
Case fr = fy.

hC(mD\Cv ve; 17 O) =e max(z) X

o~ MaXje p\C (@5 +85)

/ ¢ [ mincte %, )t T i(tezﬁﬁf)l/af dt (A.2)
; .

[0
jec jep\c

To evaluate this, consider two cases: (i) maxjec(v; + 8;) < maxjep\c(z; + B;); and (ii)
let V(1) + 6(1) > 0> v+ B(k) > maxjeD\C(xj + BJ) > Vg41) T /8(k+1) > ... for j € C' and
k <|C|. In case (i), we have
" max(@) Hjec elvi+B5)/a; HjeD\C(l/aj)e(Bjﬂj)/aj

(S 1/0y) (ssem o)t

ho(xp\o,ve;1,0) = e

since on the range t € (0, e~ ™jen\c¢(@i+55)) the term | e min(te’ P 1)1/ in (A.2) is equal
to Hjec(te”j+f3j)1/ @ . In case (ii) this term will vary over that range, and one needs to split
the integral as follows:

() FB(2) —max;e p\¢(2;+8;)

e
+ +
/o /€<“(1>+B(1>> /e<”(k>+5<k>)

An evaluation of each integral yields that e™<(®) e (x p\¢»vc; 1,0) is equal to

Hjec e(vi+Bi)/y HjeD\C(l/aj)€($j+5j)/af
(S 1/ ) (Pt i /e
+ kZi Mjccy, €7 [ e pyo (1 ag)elatP/e
i=1 2jecy 1/ + Ljepe 1/

X |:(6v(i+1)+5(i+1)) ~ Xjecq Ve Xep\e ey - (6”(1')—&-,3@)) T Zjecq) T Riep\e 1/%} }

e~y thay)

Hjec(k) e(vi+B8;)/ HjeD\c(l/@j)e(gEjJrﬁj)/aj
Zjec(k) 1/aj + ZjGD\C’ 1/aj
(mﬁ'ﬁj)) ~Ljeoyy Vi—Xjepve /ey B (

V) Bk

« |:(6manED\C )*Zjec(k) ej=3ep\c 1/0‘j:|

with C;y = C\{(1),..., (i)}, i.e., with the indices corresponding to the i largest v; +3; removed.
Case fy = fy. Is found similarly by noting the relation between these two approaches.

Generators with independent log-gamma components

Case fr = fy. Let Fj denote the cumulative distribution function of a Gamma(c;, 1) random
variable. Then

eiTi

['(ay)

ho(zpyc,ve;1,0) = e ™ T
jeED\C

o .
/0 T e ) | [ Facte) | dt.

jED\C jec
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Case fy = fy. Defining C; = fAd—l max(uq,...,uq) H;l:l u?j_l duq - -+ dug_1, we have

oyl % o
he(xzp\c,ve;1,0) = y d H eIt H F(aj)/ H trete H F;(te) | dt.
r (Zj:l aj + 1) jeD\C jec 0 jeD\C jec
Generators with multivariate Gaussian components

Case fr = fy. For the Gaussian model, using abbreviated notation, the key observation is
h(x

/ h(z) dzc = hD\c(a:D\o)/ h() dzc, (A.3)

XjEC(foovvj] Xjec(foo,vj] D\C (wD\C)

and the ratio in the second integral can be written as a proper Gaussian density function (with
parameters that depend on xp\¢). The integrand is

h($) emaneD\C T (ITEB{01)1/2 ‘ED\CP/Q (27r)(d_|c‘_1)/2

hpc(@p\c) emax(e)  (1Ty-11)1/2 |S[1/2 (27)@d-1)/2

X exp {; [(z—B)TA(x — B) — (®p\c — Bprc) Ap\c(xpc — Bp\0)] } (A.4)

with -
AD\C = EB{C - Dﬁz_l f\c
D\C
Firstly note that
eMAXjeD\C Tj — emax(cc)

as the maximum will not occur among the censored components. By a completion of the square
it can be shown that expression (A.4)) is in fact equal to

(gﬂ)(lc\fd)ﬂ

1 _
e {3t - W e - )

with
p=—(KLAKS) ' KcAKp\o(zpyc — Bp\o)

and
I = (KLAKe) ™,

where K¢ (respectively Kp\¢) is a d x [C| [respectively d x (d — |C[)] matrix of Os with 1s in
the (Cg, 1)t position, for Cj the kth index in C and k =1,...,|C|, I =1,...,|C| (similarly for
Kp\¢). Therefore equation (A.3)) resolves as

hpve(®p\¢) i (ve — Bo; p, T)
with @) -5, ') the cdf of a |C|-variate multivariate Gaussian distribution with location vector

p and covariance matrix I'.

Case fy = fy. Again this can be found similarly to the above noting the relation between
these two forms; see also [Wadsworth and Tawn, (2014)).
Generators with structured components

Recall that since this is a model on the random vector R, we need to differentiate between v = 0
and v > 0. We present the case v = 0 only, since the case v > 0 is very similar. Moreover, we
set v = v1 as in Section [6.2]
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Case v = 0. The censored likelihood has an analytical expression but is tedious to write down.
Note that, since the density h(x;1,0) is non-zero only for 27 < ... < x4, we censor in |C| = k

components if 21 < ... <z <V < Tpy1 < ... < xg. If k=1, then for 1(v < x2 < ... < xq)
and 1(z4 > 0),

d! H;j 1 / H?:l e’
1 d+1
Tim A e (20— Ape)en)

o (d_ 1)'62J 2% H] 1 d —d
S {(jz;AA”l )

hC(l‘QIda U3 15 O) —

dxl

J=17y
d —d
- (()\1 —A2)e’ + ) (N - /\j+1)€xj) }7
j=2
where z9.q = (x2,...,24). Expressions for £ > 1 follow naturally by repeated integration of the

above result.

B Supporting information for Section 6

Supporting information for Section 6.1
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Figure 12: Negative UK bank returns: marginal QQ-plots using the fitted GP distribution.
From left to right: HSBC, Lloyds, RBS and Barclays. The 95% pointwise confidence intervals are
obtained by a transformation of the beta distributed order statistics of a uniform distribution.

Supporting information for Section 6.2

For the three-dimensional structured components model fitted in Section 6.2, the dependence
measures X13, x23 and x123 are

A(A2 + A3)?

BT  + 2h0) (0 + 20a) (s Ak + Ahg)
Aa(A1 + A2)?
X =1- ()\1 + 2)\2)()\2 + 2/\1)()\2)\3 + AMA3 + )\1)\2)’
Yigs = 1 — A1 MA2(4A1 A2 + A1 A3 + 303 + Ao )s)

2001 +A2)  3(2M1 + A2) (202 + A3) (A da + Aidg + Aag)
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Figure 13: Negative UK bank returns: QQ-plots for GP distribution fitted by maximum like-
lihood to (6.1) (left) and for GP distribution with scale and shape parameter determined by
the multivariate fit and Proposition 5.7 of Rootzén et al| (2016)) (right). The 95% pointwise
confidence intervals are obtained by a transformation of the beta distributed order statistics of
a uniform distribution.
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