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ABSTRACT
Manual analysis of diagrams and legend sheets in engineering projects is time consuming and needs automation. The lack of 
standardized legend formats complicates creating a general method for automated information extraction. Existing approaches 
require training and custom rules for each project. This study proposes a novel solution combining optical character recognition 
with vision language models and multimodal prompt engineering to automate information extraction from diverse legend sheets 
without training. It integrates legend information with information extracted from diagrams, unlike studies that only focus on 
diagrams. Our study shows that VLMs, guided by multimodal prompts, can accurately extract information from diverse legend 
sheets, enabling automatic information extraction in diagrams across engineering projects. We validate our method through a 
case study involving the extraction of instruments from piping and instrumentation diagrams (P&IDs) and their legends across 
three projects with varied formats and standards. The proposed method achieved 100% accuracy in legend classification and 
information extraction, and 99.68% precision and 95.91% recall in generating instrument listings. The results demonstrate the 
effectiveness of our approach, significantly enhancing the accuracy and efficiency of information extraction from diagrams. This 
method can be adapted to different legend formats and diagrams, providing a versatile solution for various industries.

1   |   Introduction

Many industries, including engineering, construction, and 
manufacturing, rely on complex technical diagrams such as di-
agrams, schematics, and blueprints. These documents serve as 
essential references for designing, constructing, and maintain-
ing industrial systems. However, these diagrams often employ 
simplified representations of equipment to enhance readability, 
omitting critical details about full equipment assemblies. As a 
result, engineers must reference external legend sheets that map 
simplified symbols to their detailed counterparts to fully inter-
pret these diagrams [1]. This process is critical during the early 
phases of projects, such as feasibility studies, tendering, and de-
sign validation, where rapid and accurate analysis of diagrams 

is crucial. An example legend of a piping equipment assembly 
is shown in Figure 1. It highlights the discrepancy between the 
simplified representation found in diagrams and the detailed as-
sembly described in the legend sheet.

This reliance on external legend sheets creates a significant 
bottleneck in diagram analysis. During the tender phase of en-
gineering projects, engineers must manually cross-reference 
legend sheets with the diagrams to analyze the diagrams. 
Such manual processes have been reported to be time con-
suming and error prone [2]. The manual nature of this process 
introduces inefficiencies, delays, and the risk of misinterpre-
tation, particularly in large-scale projects involving thousands 
of diagrams. This challenge is not limited to a single industry. 
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Similar workflows exist in various domains where technical 
diagrams and external reference documents must be cross-
verified, such as electrical schematics in power systems, avi-
onics blueprints in aerospace, and mechanical diagrams in 
manufacturing.

The problem is further compounded by the lack of standardiza-
tion in legend sheet formats, which can vary significantly across 
projects and industries [3]. Unlike diagrams, which often follow 
industry standards (e.g., IEC or ANSI standards [4, 5]), legend 
sheets do not have universally accepted formats, making au-
tomation of information extraction particularly difficult. This 
variability requires any automated system to be adaptable to di-
verse legend structures without requiring extensive retraining 
or manual customization.

Existing research on information extraction from diagrams has 
predominantly focused on unimodal object recognition meth-
ods [2, 6–11, 36]. Attempting to integrate legend information 
using traditional AI approaches would require extensive train-
ing on multiple legend formats or custom heuristic rules for each 
project. Given the high variability in legend formatting, such an 
approach is neither scalable nor practical for real-world indus-
trial applications.

Recently, vision language models (VLMs) have demonstrated 
significant potential in both extracting information from images 
and understanding the contextual structure within them. These 
models can be prompted using textual instructions and images, 
which enables them to be tailored to a wide range of application 
scenarios [12]. This capability could be particularly beneficial in 
industries dealing with diagrams, where legend sheets can vary 
significantly from project to project. Thus, VLMs could provide 
a flexible and adaptable solution in the case of legend sheet in-
formation extraction.

Another limitation of existing research in digitalizing dia-
grams focuses on extracting text and symbols exactly as they 
are depicted on these diagrams [2, 6–11, 13, 36]. However, as 
previously stated, diagrams often show only a subset of the 
actual assemblies and materials. Thus, to enable comprehen-
sive digitalization, an effective method must go beyond simple 
extraction and incorporate legend-based contextual under-
standing, allowing for the automatic reconstruction of full 
equipment assemblies.

In our earlier work [14], we demonstrated that AI could extract 
assembly information by correlating simplified diagram rep-
resentations with their detailed counterparts in legend sheets. 
However, our previous approach relied on a fixed legend format, 

requiring manual adjustments for different projects. This con-
straint limited its scalability and applicability in diverse engi-
neering documents.

Based on the identified research gaps, this research is guided by 
the following research questions: 

•	 How can information be extracted from legend sheets fol-
lowing diverse formatting and standards in a training-free 
manner?

•	 How can legend information be incorporated into diagram 
information extraction?

This manuscript extends our previous research [14] by devel-
oping a generalized method for integrating diverse legend in-
formation into engineering diagram analysis. Unlike our prior 
approach, the new method does not require the implementa-
tion of specific rules for customization to different projects. 
Instead, it leverages VLMs, multimodal prompt engineering, 
and in-context learning to dynamically adapt to varying leg-
end formats. This novel approach addresses the fundamental 
challenge of legend sheet formatting variability. Furthermore, 
the method uses traditional optical character recognition 
(OCR) methods to extract information from the diagrams. 
This hybrid approach ensures high adaptability while main-
taining precision in engineering applications. Importantly, 
our method is designed to be industry-agnostic, making it ap-
plicable to a wide range of domains where complex diagrams 
and external legends must be interpreted together.

The main contribution of the research is the following:

We introduce the first method for integrating diverse legend 
information into automated diagram information extraction, 
combining traditional OCR techniques and VLMs. This novel 
approach enables information extraction and integration of 
any legend format without requiring training. The method en-
ables the extraction of components not explicitly depicted in the 
diagrams. This contrasts with previous studies that only extract 
information from diagrams.

We validate our method using a case study. We focus on extract-
ing a listing of instruments from typical instrument assemblies in 
piping and instrumentation diagrams (P&IDs) and their legend 
sheets. The P&IDs show a simple representation, showing only 
a subset of the instruments in the assemblies, while the legends 
show both the simple representation and the detailed assembly. 
We evaluate our method on three different engineering proj-
ects following diverse legend formats and drawing standards. 
Importantly, the method achieves 100% information extraction 

FIGURE 1    |    Example legend of a piping equipment assembly showing the simplified representation in a diagram and its corresponding detailed 
assembly.
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from the typical instrument assembly legends. Additionally, the 
instrument generation approach achieved an overall 95.91% re-
call and 99.68% precision.

Our method has the potential to benefit a wide range of in-
dustries reliant on technical diagrams for decision-making. It 
addresses the challenge of diagram information extraction in 
contexts where external reference documents, such as legend 
sheets, are required. The incorporation of external information 
in diagram information extraction is a concern wherever sim-
plified representations of assemblies are used to improve the 
readability of diagrams. The proposed method contributes to 
the broader field of automated document understanding, offer-
ing a scalable solution for industries that require accurate and 
efficient interpretation of complex technical documents.

The remainder of this manuscript is structured as follows: 
Section 2 reviews current research on extracting information from 
industrial diagrams. Section 3 describes the research methodology. 
Section 4 introduces the proposed method to integrate diverse leg-
end information with diagram data. Section 5 describes the valida-
tion case study. Section 6 presents the results. Section 7 discusses 
the results in terms of the prior work on the topic, the limitations 
of the study, and the directions for future work. Finally, Section 8 
summarizes the contributions and potential impacts of our work.

2   |   Related Work

Information extraction in industrial diagrams has traditionally 
relied on object recognition pipelines that combine deep learn-
ing models for symbol, text, and line detection with heuristics to 
associate the recognized objects [2, 6–10]. While effective at dig-
itizing what is explicitly depicted on a diagram, these methods 
are fundamentally limited as they do not account for implicit in-
formation, such as detailed component assemblies that are only 
described in external legend sheets.

Recently, there has been a shift toward exploring multimodal 
models for information extraction from diagrams. Khan et  al. 
[13] fine-tuned the Florence-2 VLM [15] to extract geometric 
dimensioning and tolerancing information from diagrams. The 
authors report achieving an F1 score of 61.51% in terms of ex-
traction. Furthermore, Doris et al. [16] evaluate contemporary 
multimodal large language models (MLLMs), such as GPT-4o, 
on a benchmark that evaluates the MLLMs' ability to interpret 
engineering documents. The authors report that these models 
face challenges in recognizing technical components in CAD 
images and analyzing diagrams.

Nevertheless, a significant limitation of industrial diagram in-
formation extraction methods is that they do not incorporate 
information from the diagrams' legend sheets about simple and 
detailed representations of complex components. Sarkar et  al. 
[11] proposed a method that references legend sheets to extract 
individual symbols from diagrams based on similarity match-
ing. However, their method focuses solely on individual symbols 
and does not account for assemblies of elements or components 
represented through textual description. This limitation makes 
their method unsuitable for diagrams where components are 
represented in an abstract manner.

To advance research in this area, our previous study presented a 
method to extract complex components based on their simple dia-
gram representation and their detailed legend representation for a 
single legend format [14]. Despite this progress, the diverse legend 
formatting standards employed by different engineering projects 
necessitate further research to generalize this method so that it 
can be easily customized to any legend format.

This review highlights several limitations in existing methods:

•	 Most diagram information extraction methods [2, 6–11, 
13, 36] extract information exactly as it is depicted in the 
diagrams and do not account for implicit components 
represented only in reference documents, such as legend 
sheets.

•	 Although our previous study [14] proposed a method to cap-
ture implicit components targeting a single legend format, 
no existing work proposes an easily adaptable solution that 
addresses the formatting variability of the diagrams' legend 
sheets across projects.

To address the identified research gaps, our proposed method of-
fers a novel solution to integrate diverse legend information into 
diagram extraction and enable the extraction of implicit compo-
nents. It can easily be applied across different projects and stan-
dards. This advancement has the potential to significantly enhance 
the accuracy and efficiency of information extraction in diagrams, 
benefiting various industries that rely on these critical documents.

3   |   Research Methodology

The research was executed at McDermott, an international 
Engineering, Procurement, and Construction (EPC) company 
undertaking construction projects in the energy sector. The 
study employed dominant Action Research as its methodol-
ogy [17], which involves mixing the Action Research method 
[18] with another research method. Given that the research-
ers were members of the case company, we used action re-
search to study common challenges engineers experience at 
McDermott and to propose a method to solve these challenges. 
Furthermore, we employed a Case Study [19] to validate our 
proposed method. Despite potential biases arising from the re-
searchers' direct involvement in the development process [20], 
the AR methodology offers the substantial advantage of grant-
ing unique access to industry-specific data that would not be 
accessible to external researchers.

The research process is guided by the CRISP-DM framework 
[21]. The activities involved in the research method are shown 
in Figure  2. Initially, we identified the problem based on the 
practices and experiences of engineers within McDermott. Our 
action research revealed that the full lifecycle of producing the 
full instrument listing by referring to the legend sheets for a 
single P&ID, including multiple revisions, requires an average 
of three engineering hours, confirming it as a significant time-
intensive undertaking. The identified problem of incorporating 
legend information in the diagram information extraction is 
presented in Figure 3. As can be seen, engineers manually an-
alyze diagrams and their legends to produce documents listing 
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the equipment on the diagrams. This process can be time con-
suming and error prone whenever engineers need to analyze 
many diagrams. Next, we proposed a method for automatically 
extracting and integrating information from legends with di-
verse formats in the diagram information extraction process. In 
addition, we proposed a case study to validate our method based 
on an activity McDermott's engineers perform during the tender 
phase of EPC projects. The case involves the creation of instru-
ment lists based on common instrument assemblies, which are 
represented by a simple representation on P&IDs, and their de-
tailed representation is visualized in the P&IDs' legends. After 
the case study was proposed, we collected the case data. The 
training and evaluation data for the case study validation of the 
method was collected from past projects executed and owned 
by McDermott. The data consisted of P&IDs, as well as their 
legends, which are solely McDermott's intellectual property. 
None of the training data was used in the evaluation process. 
Finally, the proposed method was validated via the case study. 
A selected group of McDermott engineers were involved in the 
case study validation. Specifically, they evaluated the accuracy, 
precision, and recall of the method's extraction and integration 
of legend and diagram information. The proposed method, case 
study, data collection, and evaluation are explained in more de-
tail in the following chapters.

The desired organizational change we aim to achieve with this 
research is to reduce the engineering hours required for the 
manual analysis of diagrams and legend sheets during the ten-
der phase of EPC projects. The method could also reduce errors 
made by engineers. Compared with other methods, our method 
integrates legend information to extract components that are not 
explicitly depicted on the diagrams.

4   |   Method for Enhanced Diagram Analysis via 
Training-Free Legend Extraction

This section presents our proposed general method for integrat-
ing legend information with diagram information extraction, 

given the variability of legend formats. The method is based on 
prior work on visual prompting and in-context learning, as well 
as information extraction from diagrams. Firstly, the processing 
of legends involves the use of a VLM and multimodal prompt en-
gineering. Unlike traditional object recognition methods, VLMs 
have been shown to solve tasks without the need for fine-tuning 
via textual and visual prompting [12, 22, 23]. Additionally, this 
could also be achieved by providing the VLMs with in-context 
examples [24]. These abilities can be utilized to handle the vari-
ability of legend sheet formats without training specialized mod-
els and defining distance-based heuristic rules for each legend 
type. Furthermore, traditional computer vision methods, such 
as symbol recognition and text recognition, are employed to 
extract information from the diagrams. Moreover, existing di-
agram analysis methods have previously utilized heuristics to 
associate extracted information [2]. Thus, the extracted legend 
information can be integrated along with the information from 
the diagrams via heuristics to produce documents such as equip-
ment lists. The overall approach is illustrated in Figure 4.

Initially, our automated solution for processing various legend 
sheets needs to determine the type of each legend. Thus, we 
explored the use of in-context learning with VLMs to iden-
tify the legend sheet type. This involves providing an image 
showing an example of each legend type, along with a textual 
instruction to determine the type of the query legend image 
based on the example. Depending on the identified legend type, 
an appropriate legend extraction method is selected for further 
execution.

Similarly to the legend identification method, the legend ex-
traction method involves the use of a VLM along with a prompt-
ing method for information extraction. This method is inspired 
by prior work on visual in-context learning [24], where visual 
examples are provided to the VLMs to enable them to solve new 
tasks, as well as visual prompt engineering [23], where the que-
ried image is modified to guide the attention of the model in the 
modified regions. In the context of this research, given a query 
legend, the method involves providing an example legend where 

FIGURE 2    |    Dominant action research activities [17].

FIGURE 3    |    Manual process of incorporating legend information in diagram analysis.
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regions of interest are annotated to guide the VLM to identify 
similar regions in the query legend. Furthermore, textual in-
structions are provided to guide the model on how to process 
each region. This approach allows for easy customization of var-
ious legend sheet types without the need for fine-tuning, unlike 
traditional computer vision methods.

A key advantage of this approach is its adaptability to new, pre-
viously unseen legend formats. The process for handling a new 
format is straightforward and does not require any model re-
training. An engineer would simply need to 

1.	 select a single, representative example of the new legend 
format;

2.	 manually annotate the example image by drawing a circle 
using a standard image editor to highlight the key informa-
tion regions, if the layout is ambiguous;

3.	 adapt the textual portion of the prompt to describe the new 
layout and instruct the VLM on the desired extraction logic 
for that specific format.

This training-free customization process makes the system 
highly scalable and practical for real-world industrial environ-
ments where project-specific documentation is common, unlike 
traditional computer vision methods that would require exten-
sive retraining.

Because diagrams are more standardized compared with leg-
ends, traditional computer vision extraction methods can be 

utilized to extract the text and symbols from the diagrams 
[2, 6, 14]. This extracted information can be used to expand the 
information in diagrams based on the information in the legend 
sheets. This would allow for the proper extraction of informa-
tion, such as generating equipment lists.

5   |   Validation Case Study: Extracting Instrument 
Listings From P&IDs

We validate our proposed method for integrating legend infor-
mation across diverse legend formats in diagram information 
extraction via a case study. The case involves extracting a list-
ing of instruments from typical instrument assemblies in P&IDs 
given diverse legend sheets. This section provides background 
information on the specific problem, a description of the appli-
cation of our method to the problem, as well as the evaluation 
strategy and data collection.

5.1   |   Background

A type of diagram heavily used in the EPC industry is the P&ID. 
P&IDs visualize the equipment and the instruments required to 
control processes in EPC projects [25]. When engineers analyze 
P&IDs, they often need to create documents listing the equip-
ment in the diagrams. An example of this is the “Instrument 
Index” document, which lists all utilized instruments in the 
P&IDs [26]. These listing documents are used in the later stages 
of engineering project execution.

FIGURE 4    |    Proposed method for seamless integration of diverse legend information in diagram information extraction.

 20477481, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70072 by Statens B
eredning, W

iley O
nline L

ibrary on [23/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 19 Journal of Software: Evolution and Process, 2025

In the safety-critical context of EPC projects, generating docu-
ments like the “Instrument Index” is a significant challenge. The 
accepted quality standard for final documentation is effectively 
100% accuracy, a stringent requirement met through a manda-
tory human verification and sign-off stage for any workflow. 
This practice of human oversight is essential for both manual 
and automated processes and aligns with emerging regulations 
like the EU AI Act [27]. While the initial drafting is traditionally 
performed manually, this task is prone to human oversight and 
highly inefficient. For instance, based on McDermott project 
execution statistics, our previous study reports that manually 
processing a single P&ID through its revision lifecycle averages 
three engineering hours [14]. Although academic literature 
lacks formal metrics on manual error rates, the value of auto-
mation is evident. Its primary benefit lies in streamlining the 
initial, labor-intensive generation, transforming the engineer's 
role from data entry to the more manageable task of verification.

The P&IDs often show typical assemblies of instruments via a sim-
plified schematic. An example of a simplified instrument assembly 
representation in a P&ID is shown in Figure 5. It indicates a typ-
ical assembly of instrument devices via the typical number “UV-
04” but only depicts the instrument type “XZV” with tag number 
“60107.” Furthermore, the typical number “UV-04” acts as a 

reference to the actual instrument assembly, which is indicated in 
the legends of the EPC project. The legend for this typical assembly 
is shown in Figure 6, which shows the detailed assembly with all 
the utilized instrument equipment, alongside the simple schematic 
representation visualized on the P&ID. Thus, to generate the list-
ing of instrument devices, engineers need to analyze the P&IDs 
and refer to their legend sheets. The process of listing all utilized 
instruments in the P&IDs is time consuming and error prone.

A challenge to the automation of this process is that there is a lack 
of legend format standardization across EPC projects. For exam-
ple, Figure 7 shows another legend sheet, which has different for-
matting and structure compared with the legend in Figure 6. An 
additional challenge is that some legend sheets do not indicate a 
clear separation between the simplified P&ID representation and 
its detailed representation. Figure 7 shows an example of this chal-
lenge, where some of the equipment of the detailed assembly is 
next to the instruments of the simplified diagram representation. 
Thus, it may not be trivial to create heuristic rules to extract and 
group the legend information separately for the simplified diagram 
representation and the detailed instrument assemblies.

5.2   |   Automating Instrument Listings

The following section explains how the proposed method for incor-
porating diverse legend information in the diagram information 
extraction process, introduced in Section 4, was applied and cus-
tomized to address the problem of generating a list of instruments 
in P&IDs despite the lack of format standardization in legends.

Specifically, we applied the method to 3 large EPC projects ex-
ecuted by McDermott, which we will refer to as A, B, and C. 
These projects were not chosen at random but were specifically 
selected because their legend formats represent a spectrum of 
key real-world formatting challenges:

•	 Project A (the unstructured case): This format represents 
the most ambiguous challenge, where the simplified and 
detailed components lack any clear visual demarcation or 
consistent alignment.

FIGURE 5    |    Simplified instrument assembly representation in a pip-
ing and instrumentation diagram (P&ID).

FIGURE 6    |    Legend detailing the simplified representation of instrument assembly “UV-04” depicted in P&IDs and its corresponding detailed 
representation.
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•	 Project B (the semistructured case): This format is more com-
plex, featuring multiple assemblies stacked vertically on a 
single page without explicit separators, relying only on spa-
tial grouping.

•	 Project C (the structured case): This format represents a well-
structured layout with an explicit vertical line separating 
the simplified and detailed representations.

By testing our method against these distinct patterns, from 
clean and structured to dense and ambiguous, we aimed to rig-
orously evaluate its adaptability. The specific legend format for 
each project can be seen in Figure 8.

A key architectural choice for this case study was the hybrid use 
of a VLM for legend analysis and specialized deep learning mod-
els for P&ID text extraction. We opted for this approach because 
using a VLM for the P&ID extraction stage proved impracti-
cal. Processing a full, dense P&ID image with a VLM in a sin-
gle pass resulted in incomplete text extraction, missing critical 
identifiers. Processing the diagram in smaller “tiles” also failed 
as VLMs cannot reliably output the precise bounding box coor-
dinates necessary to accurately merge the tiled results. On the 
other hand, specialized OCR models provide both complete text 
detection and the accurate coordinate map required for our as-
sociation step. Our hybrid design is therefore a pragmatic choice, 
leveraging the precision and speed of OCR for the standardized 
P&IDs while reserving the VLM's powerful contextual reason-
ing for the unstandardized and highly variable legend sheets.

5.2.1   |   Instrument Assembly Legend Classification

As mentioned in Section 4, we explored the use of VLMs and 
multimodal prompting to identify the type of legend. We pro-
vide an image showing an example of each typical instrument 
assembly legend type, along with textual instructions to deter-
mine the type of the query legend based on the examples. The 
prompt for typical instrument assembly legend classification is 
shown in Figure 9. The example image features a single typi-
cal instrument assembly for the legends of Projects A and C, as 
well as several typical assemblies for Project B, as the legends 
of Project B visualize multiple assemblies in a single legend. 
Furthermore, none of the typical assemblies in the example 
image were used as query images. Based on the response of the 
VLM, the pipeline determines the specific legend extraction 
prompt to apply to the VLM.

5.2.2   |   Instrument Assembly Legend Extraction

We utilize a VLM along with multimodal prompt engineering 
to extract typical instrument assembly information from leg-
ends. As previously mentioned, the legends of Projects A and 
B are ambiguous and do not visually indicate a clear separa-
tion between the simplified and detailed assembly representa-
tions. To handle such cases, we employ a prompting method, 
where an annotated visual example is combined with detailed 
textual instructions.

FIGURE 7    |    Another example of a typical instrument assembly legend following a different formatting, which does not indicate a clear separation 
between the simplified P&ID representation and its detailed representation.
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The creation of these multimodal prompts was a systematic, 
multistep process. It began with selecting a representative exam-
ple for each legend type that required visual guidance (Projects 
A and B). As the legends of Project B involved multiple typicals 
on separate rows, we cropped a single representative example. 

This example image was then manually annotated using a stan-
dard image editor to draw simple colored circles around the 
simplified and detailed assemblies. This annotated image serves 
as the visual component of the in-context learning example. 
Concurrently, the textual instructions were codeveloped and 

FIGURE 8    |    Legend formats of Projects A, B, and C.

FIGURE 9    |    Legend classification prompt.
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refined through several iterations with domain experts. This 
iterative process was crucial for creating precise prompts that 
could reliably instruct the model on how to interpret the anno-
tated regions, what text to extract, and what to ignore.

This general process was then tailored to handle the specific 
complexities of each project. For the unstructured format of 
Project A, the textual instructions explicitly described the rel-
ative positions and visual characteristics of the simplified and 
detailed assemblies to help the model locate them. For the dense 
format of Project B, which contains multiple assemblies on a sin-
gle page, the prompt instructed the VLM to identify all distinct 
“rows” containing a simplified-detailed pair and to process each 
pair sequentially. Finally, for the structured format of Project C, 
which has an explicit dividing line, a simpler text-only prompt 
was sufficient. The final prompts used for each project are 
shown in Figures 10–12.

To ensure a consistent and parsable response across all ex-
traction tasks, a specific output format was required at the end 
of each prompt's instructions, though this is omitted from the 
figures for brevity. The model was instructed to structure its re-
sponse as follows:

This structured output was essential for the reliable downstream 
processing of the extracted information.

5.2.2.1   |   Heuristic-Based Baseline for Compari-
son.  To provide a direct comparison for our novel legend 
extraction method, we implemented a robust, rule-based 
baseline designed to replicate traditional document analysis 
techniques. This baseline employs a hybrid image segmen-
tation strategy that first identifies strong structural cues, 
such as vertical lines, and then falls back to a more general 

FIGURE 10    |    Legend information extraction prompt for Project A.
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FIGURE 11    |    Legend information extraction prompt for Project B.

FIGURE 12    |    Legend information extraction prompt for Project C.
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analysis of whitespace if these cues are absent. The process is 
as follows:

1.	 Horizontal row segmentation: The method begins by ana-
lyzing the entire legend image to identify distinct horizon-
tal rows. This step is crucial for handling layouts like those 
in Project B, where multiple legend entries are stacked 
vertically on a single page. To achieve this, the algorithm 
creates a histogram that sums the pixel content for each 
horizontal line of the image. By finding contiguous regions 
in this histogram with very little to no pixel content, it can 
identify the large horizontal white spaces that separate the 
different entries. The image is then sliced at the midpoint 
of these detected gaps to create individual images for each 
legend entry.

2.	 Vertical column segmentation: For each extracted row, the 
baseline then attempts to find a vertical separator to dis-
tinguish the “simplified” from the “detailed” assembly. It 
employs a two-stage approach:
1.	Line detection (primary method): It first searches for 

a prominent, solid vertical line near the center of the 
image. This is a strong, unambiguous feature found in 
many structured legends (like those in Project C). If a 
qualifying line is detected, its horizontal position is used 
as the split point.

2.	Gap detection (fallback method): If no line is found, the 
method falls back to a similar whitespace analysis. It com-
putes a histogram of pixel content for each vertical col-
umn of the row and identifies the largest contiguous white 
space. The midpoint of this largest gap is then used as the 
vertical split point. This fallback is designed to handle lay-
outs that are columnar but lack explicit line separators.

This multistage heuristic is designed to be as robust as possible 
for structured and semistructured layouts. However, as demon-
strated in our results, it is inherently brittle and fails on unstruc-
tured layouts (like those in Project A) where these geometric 
assumptions do not hold.

The performance of this baseline is sensitive to several key pa-
rameters, which were chosen empirically based on an analysis 
of our dataset. To be considered a valid separator, a horizontal 
gap was required to be at least 40 pixels high, and a vertical 
gap at least 50 pixels wide. These thresholds were selected 
to ensure the algorithm ignored small, incidental spaces be-
tween words or symbols, and only identified the larger gaps 
that define the main layout. For line detection, a line was re-
quired to span at least 70% of the image's height to be con-
sidered a global separator, a constraint designed to filter out 
shorter, incidental vertical lines that are part of the diagrams' 
symbols.

5.2.3   |   P&ID Text Extraction

To detect text within P&IDs, the Progressive Scale Expansion 
Network (PSENet) [28] was employed. This model is noted for 
its efficiency in densely populated areas and its ability to han-
dle text in various orientations, making it particularly suited 
for extracting information from P&IDs. Additionally, text 

recognition is carried out using the pretrained PP-OCR recog-
nizer [29].

The PSENet detector's training process involves a tiling tech-
nique [30]. Each P&ID is divided into 16 overlapping sections, 
or “tiles,” with a 200-pixel overlap to enhance the detection of 
small text elements. The training utilized the Adam optimizer 
with a learning rate of 0.001 across 40 epochs and a batch size 
of eight tiles.

During text extraction, the P&IDs are initially split into overlap-
ping tiles. Then, the PSENet detector locates the bounding box 
coordinates of each text in the tiles. Following this, the bound-
ing boxes are translated into the full P&ID, and overlapping de-
tections due to the overlapping tiling are merged. The resulting 
text regions are then cropped and processed using the PP-OCR 
recognizer to extract the textual content.

5.2.4   |   Instrument Listings Generation

The generation of the instrument listing is visualized in 
Figure 13 and is based on our earlier work [14]. The instrument 
listing generation begins by identifying all typical numbers that 
are found both in the legend sheet and the extracted P&ID text. 
Following this, the method determines the instruments linked 
to these typical numbers by locating the nearest texts using 
Euclidean distance. Only those texts that match the instruments 
from the legend's simplified representation are retained. Next, 
the method identifies the tag numbers for these instruments. 
This is accomplished by finding the closest text to one of the 
identified instrument types using Euclidean distance and then 
applying engineering knowledge rules to ensure the text com-
plies with tag number formatting. Finally, the relevant instru-
ments within the typical assembly are generated by assigning 
the identified tag number to the instruments from the detailed 
representation in the legend. This methodology adheres to the 
conventional practices employed by instrumentation engineers.

5.3   |   Data Collection

The training dataset for the P&ID text detector, as well as the 
evaluation dataset for the methods for legend information ex-
traction and the method for incorporating legend information 
into the diagram information extraction, comprised hundreds 
of industrial P&IDs from past large-scale EPC projects exe-
cuted by McDermott. The diagrams and the legends are solely 
McDermott's proprietary data. Specifically, the training dataset 
for the P&ID text detector comprises 355 P&IDs from different 
EPC projects. Furthermore, the P&IDs comprising the evalua-
tion dataset were collected from three large EPC projects exe-
cuted by McDermott. Each evaluation project had unique legend 
and drawing standards. As previously mentioned, we will refer 
to these evaluation projects as A, B, and C. All P&IDs were 
initially in PDF format and were subsequently converted into 
image files. Furthermore, the data were heavily augmented to 
remove IP traces.

In total, the evaluation dataset consists of 50 P&IDs and 10 
typical instrument assemblies in the legends of each project. 

 20477481, 2025, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.70072 by Statens B
eredning, W

iley O
nline L

ibrary on [23/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 19 Journal of Software: Evolution and Process, 2025

None of the evaluation P&IDs were used in the training data 
of the PSENet detector. The distribution of the total number of 
typical instrument assemblies in the legends and the P&IDs 
per evaluation project are shown in Table  1. Project B con-
tains fewer P&IDs as the scale of the P&IDs is larger, and each 
diagram contains more information compared with the dia-
grams of the other two projects. As a result, the project had 
fewer P&IDs.

5.4   |   Evaluation

The following sections detail the methodologies and eval-
uation criteria for the methods for the legend classifica-
tion and information extraction, text extraction from P&ID 
diagrams, and instrument listing generation. Additionally, we 
document the setup and evaluation of the VLM and querying 

process used for classifying and extracting information from 
legends.

5.4.1   |   VLM and Querying Setup

To classify and extract information from the legends, we uti-
lized the GPT-4o model (version “2024-11-20”) via McDermott's 
Azure OpenAI API (version “2024-02-01”). The prompts were 
executed using the LlamaIndex library, which facilitates the 
construction of the multimodal API requests.

Several key configurations were implemented to ensure reliable 
and high-quality responses. We configured the requests to pro-
cess images at high detail, providing the model with the best 
possible visual information for accurate interpretation. To han-
dle the structured data output, the response length was capped 
at a limit of 1024 tokens for even the most complex legends. 
Additionally, to ensure robustness against transient network is-
sues, the API calls were configured with a 180-second timeout 
and up to five automated retries.

The model's temperature was set to 0 to promote deterministic 
and consistent outputs. Moreover, previous research reports that 
the LLMs and VLMs can produce variable results despite setting 
the temperature to 0 [31, 32]. Thus, all experiments involving the 
VLM were executed 20 times.

FIGURE 13    |    Instrument listing generation method, which integrates the extracted information from the typical instrument assembly legends 
with the information from the P&IDs.

TABLE 1    |    The distribution of the total number of typical instrument 
assemblies in the legends and the P&IDs per evaluation project.

Project A Project B Project C

Typical instrument 
assemblies

10 10 10

P&IDs 20 10 20
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5.4.2   |   Evaluation of Legend Classification Method

We evaluate the legend classification method by calculating the 
classification accuracy of the VLM, that is, the number of cor-
rectly classified legends out of all legends: 

As previously stated, each input legend is queried three times, 
and the results are averaged.

5.4.3   |   Evaluation of Legend Extraction Method

We evaluate the legend information extraction method by cal-
culating the number of correctly grouped instruments in the 
typical representation and the detailed representation out of all 
instruments: 

Furthermore, we calculate the accuracy of the text recognition 
of the VLM, that is, the number of correctly recognized instru-
ments out of all instruments on the legends: 

Similarly to the legend identification method, each input legend 
is queried three times, and the results are averaged.

5.4.4   |   Evaluation of P&ID Text Extraction Method

The text extraction method is evaluated based on the precision 
and recall of all extracted typical numbers, that is, the percent-
age of correctly extracted typical numbers out of all extracted 
typical numbers and the percentage of correctly extracted typi-
cal numbers out of all ground truth typical numbers: 

The same evaluation is done for the instruments associated with 
the typical numbers and their corresponding tag numbers.

5.4.5   |   Evaluation of Instrument Listing 
Generation Method

The final end-to-end performance of our method is evaluated by 
calculating the precision and recall of the generated instrument 
instances. For this evaluation, a single “generated instrument” 
is defined as the unique combination of an instrument type from 
the legend's detailed assembly and the corresponding tag num-
ber extracted from the P&ID. For example, if the P&ID shows 

the typical number V11 associated with tag number 06158, and 
the legend's detailed assembly for V11 contains the types XZV 
and XZZC, the method is expected to generate two distinct in-
strument instances: XZV06158 and XZZC06158.

A correctly generated instrument is therefore defined as a gener-
ated instance where both the instrument type and the assigned 
tag number perfectly match the ground truth. The total count of 
these correct instances is then used to calculate precision and 
recall. 

In these formulas, the “Total number of generated instruments” 
is the complete set of unique instrument instances produced 
by our method across all P&IDs. The “Total number of ground 
truth instruments” is the complete set of all instances that 
should have been generated according to the ground truth data. 
This per-instance evaluation provides a granular and accurate 
measure of the entire integration pipeline's performance.

6   |   Results

This section presents the results of the case study for extract-
ing instrument listings from P&IDs. Specifically, it reports the 
results of the methods for legend classification and extraction, 
the P&ID text extraction, and the instrument listing generation. 
Each subsection showcases the accuracy and reliability of the 
methods used for different projects.

6.1   |   Instrument Assembly Legend Classification 
Results

The results of the legend identification method for each project 
are presented in Table 2. As can be seen, the method achieved 
100% classification accuracy for each typical in the legend sheets 
in the three projects. These results showcase that VLMs can suc-
cessfully be applied for automating the legend information ex-
traction process, given the variability of legend formats.

6.2   |   Instrument Assembly Legend Extraction 
Results

The results of the legend information extraction method for each 
project are presented in Table  3. As can be seen, the method 

Accuracy =
Number of correctly classified legends

Total number of legends
× 100

Grouping Accuracy =
Number of correctly grouped instruments

Total number of instruments
× 100

Recognition Accuracy=
Number of correctly recognized instruments

Total number of instruments
×100

Precision =

Number of correctly extracted typical numbers

Total number of extracted typical numbers
× 100

Recall =
Number of correctly extracted typical numbers

Total number of ground truth typical numbers
× 100

Precision =

Number of correctly generated instruments

Total number of generated instruments
× 100

Recall =
Number of correctly generated instruments

Total number of ground truth instruments
× 100

TABLE 2    |    The accuracy results of the instrument assembly legend 
classification method.

Project A Project B Project C

Classification 
accuracy

100% 100% 100%
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achieved 100% grouping and recognition accuracy for each typi-
cal in the legend sheets in the three projects.

We also explored alternative prompting strategies. A purely tex-
tual prompt without a visual example was insufficient, as the 
VLM struggled to accurately group the instruments. Conversely, 
we tested a full few-shot approach by providing the annotated 
example image along with its correct output. This common tech-
nique proved detrimental by causing the model to hallucinate 
and copy content from the example answer into its response for 
the new query. This finding revealed a critical trade-off in mul-
timodal prompting for this task. Our final strategy of combining 
a visual annotation to guide attention with a separate textual 
instruction proved to be the most robust, as it effectively guided 
the model without overly biasing its output.

To evaluate the effectiveness of our proposed method, we com-
pared its performance against the heuristic-based baseline 
described in Section 5.2.2.1. The primary metric for this com-
parison is Grouping Accuracy, which measures the percentage 
of correctly grouped instruments into “simplified” and “de-
tailed” categories for each legend entry. The results are summa-
rized in Table 4.

The performance of the heuristic-based baseline clearly demon-
strates the limitations of rule-based approaches when faced 
with format variability. On the perfectly structured legends 
of Project C, which contain clean vertical line separators, the 
baseline achieved 100.0% accuracy. However, its performance 
degraded to 96.5% on the semistructured format of Project B, 
where it struggled with horizontal regions with limited vertical 
whitespace separation. Most notably, the baseline's performance 
collapsed to 24.1% on the unstructured format of Project A, as 
the absence of vertical whitespace separation rendered the rule-
based segmentation ineffective.

6.3   |   P&ID Text Extraction Results

The extraction models achieved 100% extraction precision 
and recall on all instruments and their tags in all projects. 
Furthermore, the typical number identification results are 
shown in Table  5. The text extraction methods were able to 
recognize 95.75% of typical numbers across the three projects. 

As can be seen, some typical numbers were not detected in the 
P&IDs. These typical numbers were likely missed as the text 
was positioned close to other text elements. The results indicate 
their reliability for P&ID information extraction. An example of 
a missed typical number is shown in Figure 14, where the detec-
tion captured additional information besides the typical num-
ber, preventing its proper recognition.

6.4   |   Instrument Listing Generation Results

The instrument assembly generation results are shown in Table 6. 
These results demonstrate our method's ability to generate the in-
struments in typical assemblies accurately across projects. The 
missed instruments reported in Table  6 are due to the missed 
typical numbers reported in Table 5. Furthermore, the wrongly 
expanded instruments in Table 6 are due to an incorrectly associ-
ated instrument tag number, due to the Euclidean distance asso-
ciation heuristic. An example of this issue is shown in Figure 15, 
where Instrument “MOV QM0001” is closer to the typical num-
ber “TYP.C4” compared with the instrument “MOV QM0015.” 
Nevertheless, most of the instruments were generated correctly.

7   |   Discussion

This study introduces a novel method for automating infor-
mation extraction from technical diagrams by integrating 

TABLE 3    |    The grouping and text recognition accuracy results of the 
instrument assembly legend extraction method.

Project A Project B Project C

Grouping accuracy 100% 100% 100%

Recognition 
accuracy

100% 100% 100%

TABLE 4    |    Grouping accuracy of heuristic-based baseline legend 
information extraction method.

Project A Project B Project C

24.1% 96.5% 100.0%

FIGURE 14    |    An example of a missed typical number due to a detec-
tion bounding box, which captures additional text.

TABLE 5    |    Typical number extraction results.

Project A Project B Project C Total

Correct 51 218 69 338

Missed 4 11 0 15

Wrong 0 0 0 0

Recall 92.73% 95.20% 100.00% 95.75%

Precision 100.00% 100.00% 100.00% 100.00%
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information from external, variably formatted legend sheets. 
The following discussion analyzes our findings in the context 
of prior work, evaluates the practical implications of our re-
sults, and outlines the limitations and future directions of this 
research.

7.1   |   Comparison With Alternative Methods

A significant limitation of most previous studies on diagram 
information extraction [2, 6–10, 13, 36] is their focus on ex-
tracting only what is explicitly depicted, overlooking implicit 
components detailed in reference documents like legends. The 
few methods that do reference legends, such as that of Sarkar 
et al. [11], are limited to simple symbol matching and cannot 
handle complex assemblies. In comparison with these studies, 
we propose a novel method that integrates information from 
both the diagrams and their corresponding legend sheets. We 
validated our method via a case study focusing on integrat-
ing legend and diagram information to produce a listing of all 
instruments listed on the diagrams. This case study involved 
three large EPC projects with varying legend formats and dia-
gram standards, demonstrating the flexibility and robustness 
of our approach.

To provide a direct quantitative comparison for the novel task 
of legend extraction, we evaluated our VLM-based approach 
against a rule-based baseline using hybrid line and gap detec-
tion heuristics. As detailed in our results (Table 4), the heuris-
tic baseline's performance was highly dependent on the legend 
format. It achieved 100% accuracy on the perfectly structured 
layouts of Project C but saw its performance degrade on the 
semistructured (96.5%) and unstructured (24.1%) formats of 
Projects B and A, respectively. In contrast, our VLM-based 
method achieved 100% accuracy across all formats. This result 
empirically validates that our approach is not just effective but 
is fundamentally more robust and adaptable than traditional 
methods, which are too brittle to handle the document variabil-
ity common in real-world industrial settings.

For the P&ID text extraction component of our pipeline, we 
chose the PSENet detector. This decision was informed by our 
prior comparative research [10, 36], which demonstrated its su-
perior performance on dense engineering diagrams compared 
with other detectors, such as EAST [33] and CRAFT [34]. By 
leveraging a proven, state-of-the-art model for this established 
subtask, we focused our novel contributions on the primary 
challenge of legend integration.

7.2   |   Practical Implications

The performance of our end-to-end pipeline, particularly the 
overall 95.91% recall and 99.68% precision, must be interpreted 
within its real-world industrial context. In this workflow, an 
automated tool generating an initial “Instrument Index” draft 
with such high accuracy is considered very good. This level 
of performance provides engineers with a highly reliable and 
nearly complete document, transforming their task from one of 
laborious creation from scratch to one of efficient validation and 
correction.

The errors produced by the method also have practical implica-
tions. The false negatives (missed instruments) are potentially 
critical, as their omission could lead to material shortfalls and 
subsequent project delays if not rectified. Conversely, the cost of 
false positives is relatively low, typically resulting in a negligible 
amount of surplus material. The primary goal of our automated 
approach is to minimize such omissions during the initial draft-
ing stage. While these errors must be managed, the cost of the 
verification step itself is significantly lower than the cost of a 
fully manual generation process from scratch, representing a 
substantial net gain in efficiency.

However, a manual review remains an essential step in the 
process to achieve the 100% accuracy required for final, safety-
critical deliverables. The established, multistage engineering re-
view process is specifically designed as a safeguard to identify 
and correct any errors from the generation phase. For an expe-
rienced engineer, this review is conceptually straightforward 
but can be meticulous and time consuming. The key benefit of 
our method is that it fundamentally simplifies the work of en-
gineers. Instead of the complex cognitive load of creating a list 
from scratch, the engineer's role shifts to the more manageable 
task of validating a nearly complete list, a significantly faster 
and less error-prone activity.

FIGURE 15    |    An example of a missed typical number due to a detec-
tion bounding box, which captures additional text.

TABLE 6    |    Instrument listing generation results.

Project A Project B Project C Total

Correct 443 1614 430 2487

Missed 18 88 0 106

Wrong 0 8 0 8

Recall 96.10% 94.83% 100.00% 95.91%

Precision 100.00% 99.51% 100.00% 99.68%
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7.3   |   Generalizability and Scalability 
of the VLM-Based Approach

This study provides strong evidence that VLMs, guided by mul-
timodal prompt engineering and in-context learning, can enable 
information extraction from diverse technical documents in a 
training-free manner. The 100% accuracy in legend classifica-
tion and extraction across varied formats indicates that VLMs, 
when properly prompted, can interpret complex visual and tex-
tual data, making them a powerful tool for automating docu-
ment understanding.

While our method involves manual annotation for the in-context 
examples, this requirement is minimal. It only necessitates the 
annotation of a single example per legend type, a stark contrast 
to traditional deep learning methods that require thousands of 
annotated samples for training. This efficiency makes our ap-
proach practical and scalable, allowing for quick adaptation to 
new projects with different legend formats without undermin-
ing its feasibility.

The proposed method is highly generalizable. The use of VLMs 
and multimodal prompting allows for the handling of diverse 
legend formats without the need for extensive retraining or the 
creation of custom heuristic rules for each new project. This 
adaptability makes our method applicable to a wide range of in-
dustries beyond EPC, such as aerospace (for avionics blueprints), 
manufacturing (for mechanical diagrams), and healthcare (for 
medical device schematics), where similar workflows of cross-
referencing simplified diagrams with detailed reference doc-
uments exist. It represents a versatile solution for any domain 
requiring accurate and efficient interpretation of complex tech-
nical documents.

7.4   |   Deployment and Performance Considerations

For practical application in an industrial setting, our hy-
brid method is deployed as a secure web application. This 
section outlines the computational requirements and 
performance considerations for both the VLM and local OCR 
components.

A key aspect of our deployment is the use of the McDermott 
Azure OpenAI API for all VLM-based tasks. This enterprise-
grade service ensures that all data remains within a secure, 
private corporate environment, addressing critical data privacy 
and confidentiality concerns.

The OCR-based P&ID processing is computationally intensive 
and is optimized to run on GPU-enabled infrastructure. To 
achieve high throughput, the processing environment requires 
a GPU with 16 GB of VRAM and 12 GB of system RAM. We 
also leverage a tiling preprocessing technique, which not only 
improves detection accuracy but also significantly enhances 
scalability. This allows the system to process up to 200 P&IDs 
in a single batch operation. With these resources, the system 
achieves a processing throughput of 100 P&IDs in 25 min for the 
text extraction stage.

7.5   |   Limitations

Our study presents significant advancements in the field of infor-
mation extraction from diagrams incorporating legend informa-
tion. Nevertheless, several limitations should be acknowledged.

One significant limitation of this study is the challenging re-
producibility due to the confidentiality of the data used. The 
training and evaluation datasets comprised industrial P&IDs 
and legend sheets from past projects executed by McDermott, 
which are proprietary and cannot be publicly shared. This re-
stricts other researchers' ability to replicate our experiments and 
validate the results independently. While we have provided a 
detailed methodology, the lack of access to the specific datasets 
used in this study may hinder the reproducibility and verifica-
tion of our findings. Thus, it is recommended that other indus-
tries and researchers replicate our methods using their specific 
datasets. This would enable them to determine the applicability 
of our method in other use cases.

Furthermore, our evaluation was conducted on three distinct 
legend formats. These formats were specifically selected to rep-
resent a spectrum of real-world challenges—from highly struc-
tured (Project C) to dense and semistructured (Project B) to fully 
unstructured (Project A). However, they do not encompass all 
possible variations. Other complex layouts, such as those with a 
vertical orientation, undoubtedly exist. Although our method's 
training-free adaptability is designed to handle such variability 
by simply creating a new one-shot prompt, its performance on 
formats beyond those tested has not been empirically validated.

Another limitation is the need to evaluate alternative VLM mod-
els. While the study employed the GPT-4o model, other VLMs 
were not extensively investigated. It would be beneficial to in-
vestigate the effectiveness of the method using alternative mod-
els. This could provide deeper insights into the robustness and 
applicability of our approach.

We did not systematically investigate the effect of visual noise 
and congestion, which could impact the performance of our hy-
brid pipeline. The impact of these factors, however, is likely to 
differ between the two main components of our method. Legend 
sheets are typically clean documents but can still suffer from 
low-resolution scans or degradation, which could affect the 
VLM's text recognition. Furthermore, while uncommon, hand-
written annotations on a legend could potentially interfere with 
our multimodal prompting strategy, which uses colored shapes 
to guide the model's attention. In contrast, P&ID diagrams are 
far more susceptible to visual degradation. They are often dense, 
subject to revision clouds and markups, and can contain over-
lapping annotations. Based on our prior work, which showed 
that such occlusions can negatively affect symbol recognition 
[9], it is reasonable to expect that heavy congestion or noise on 
the P&IDs could degrade the performance of the PSENet text 
detector. This could lead to missed typical numbers or instru-
ment tags, directly impacting the recall of the final instrument 
list. A detailed analysis of the pipeline's robustness to varying 
levels of noise and congestion on P&IDs remains a key direction 
for future work.
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A limitation of the legend extraction method is that its accuracy 
might depend significantly on the utilized prompt [35]. While 
our prompting methods have demonstrated success, variations 
in prompt construction could lead to different levels of accuracy 
in the extracted information.

Lastly, although our method was validated by a selected group of 
McDermott engineers, we have not deployed the method across 
the entire organization. Thus, at this time, we cannot gauge 
whether the method will be adopted by the organization and en-
able the reduction of manual engineering hours.

7.6   |   Future Work

As discussed, the validation of the proposed method has high 
results in terms of legend classification and extraction, diagram 
information extraction, as well as integrating the legend and 
diagram information. Nevertheless, additional research is still 
needed.

As we only explored the GPT-4o VLM, it is needed to investigate 
the performance of alternative VLMs with different parameter 
sizes. This includes assessing models with fewer parameters to 
see if they can achieve similar accuracy, as well as models with 
more parameters to determine if they offer improved perfor-
mance. This research could provide insights into the scalability 
and efficiency of various models.

Future work should systematically investigate the impact of 
noise and congestion, particularly on the P&ID processing stage. 
This would involve creating a benchmark dataset of diagrams 
with varying levels of degradation (e.g., low-resolution scans, 
handwritten markups, and high component density) to quan-
tify the performance limits of the text detector. Investigating 
techniques to make multimodal prompts more resilient to un-
expected annotations on legend sheets would also be a valuable 
contribution.

Another area for future research could be the study of alternative 
prompting methods for information extraction from blueprints 
and legends with diverse formatting. This involves experiment-
ing with different prompt methods and analyzing their impact 
on extraction accuracy. Future work should include a compre-
hensive evaluation of various prompt engineering techniques to 
determine their effectiveness across different legend formats.

Another promising direction is to improve the instrument asso-
ciation strategy. Our current Euclidean distance heuristic can 
fail in visually congested areas where multiple tag numbers are 
near a single instrument. Future work could develop a hybrid, 
two-stage process. First, the fast heuristic would identify all 
potential associations. Then, only for ambiguous cases where 
multiple candidates have similar distances, the system would 
trigger a VLM. This would involve cropping a small “region of 
interest” containing the instrument and its candidate tags and 
feeding it to the VLM to make the final determination. This tar-
geted use of the VLM would resolve the most challenging errors 
while maintaining overall efficiency by avoiding unnecessary 
API calls.

8   |   Conclusion

This research aimed to automate the extraction of information 
from diagrams that require referencing external legend sheets 
for correct diagram analysis. The challenge of integrating legend 
information into an automated pipeline arises from the different 
formats of legends in various industries.

Prior research in diagram information extraction has focused 
predominantly on extracting information exactly as it is depicted 
on the diagrams, without considering components that are not 
explicitly presented. The diagrams' legend sheets are essential 
for understanding the diagrams as they present the simplified 
representations of components often found in diagrams, as well 
as their detailed representation. Thus, if this legend information 
is not incorporated, this can lead to the incomplete and inac-
curate digitalization of diagrams. Furthermore, the legends can 
vary in formatting across engineering projects and industries. 
As existing methods typically rely on unimodal information 
extraction techniques, they require extensive training and the 
development of custom heuristic rules, thereby limiting their 
scalability and adaptability.

This study introduces a novel method that integrates informa-
tion from both diagrams and their corresponding legend sheets, 
which enables the inclusion of elements that are not explicitly 
depicted in the diagrams. By leveraging a novel integration of 
traditional OCR tools along with VLMs, multimodal prompt en-
gineering, and in-context learning, our approach can extract in-
formation from legend sheets with diverse formats. The method 
enables a more comprehensive and accurate extraction of in-
formation, incorporating the information in the legend sheets, 
which is crucial for the accurate interpretation of diagrams.

The method was validated through a case study involving ex-
tracting a list of instruments from three large EPC projects, 
each with unique legend formats and diagram standards. The 
results demonstrated the flexibility and robustness of our ap-
proach, achieving high precision and recall rates in information 
extraction and integration. Specifically, the instrument listing 
extraction approach attained an overall recall of 95.91% and 
precision of 99.68%, highlighting the method's reliability in ex-
tracting and utilizing information from both the diagrams and 
legends.

Our study also provides evidence that VLMs, guided by mul-
timodal prompts, can classify and extract information from 
diverse legend sheets with 100% accuracy in both legend clas-
sification and information extraction. This indicates that VLMs 
are capable of interpreting complex visual and textual data in 
legend sheets, making them a powerful tool for automating the 
information extraction process.

One of the significant advantages of our method is its minimal 
annotation requirement. It only necessitates the annotation of a 
single example per legend type, significantly reducing the anno-
tation effort compared with traditional methods. This efficiency, 
combined with the adaptability of VLMs and multimodal 
prompting, makes our method practical for quick adaptation to 
new projects with different legend formats.
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Furthermore, the proposed method is highly generalizable and 
can be easily customized for various use cases, industrial dia-
grams, and legend formats. This generalizability ensures that 
the method can be applied across a wide range of industries and 
projects, providing a versatile solution for information extraction 
from industrial diagrams and legends. The adaptability of the 
method can significantly reduce the time and potential errors 
associated with the manual analysis of industrial diagrams, en-
hancing the accuracy and efficiency of information extraction.
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