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Abstract

As more than one-third of global greenhouse gas emissions are related to the operation of
buildings, reducing building energy demand is a key area in the architecture, engineering, and
construction (AEC) industry. One promising means is to conduct early-stage building energy
optimization. Early-stage energy optimization offers substantial potential, as influential
architectural design variables (ADVs) can be adjusted at low cost to achieve significant
efficiency gains. However, existing optimization workflows depend heavily on energy
simulations, which are time-consuming and computationally expensive. To address this, this
thesis investigates the application of machine learning (ML) for accelerating early-stage
building energy optimization, focusing on three key areas: developing ML prediction models,
extending their generalizability through transfer learning (TL), and embedding them into
practical optimization workflows.

A key contribution of this research lies in systematically identifying influential ADVs through
both literature review and stakeholder surveys. Findings highlight building plan, window-to-
wall ratio (WWR), and wall material as consistently important across sources, while
practitioners additionally emphasize orientation, shading devices, storey number, storey height,
roof type, and roof material. The thesis incorporates ADVs from both evidence-based and
practice-based perspectives to ensure the development of robust and practically relevant ML
models. Comparative ML experiments further provide recommendations for algorithm
selection: Support Vector Machine (SVM) for small datasets, Multiple Linear Regression
(MLR) for limited and low-diverse datasets, Artificial Neural Network (ANN) for larger and
diverse datasets, and Random Forest (RF) when accuracy outweighs computational efficiency.
Guidelines are also proposed for synthetic dataset generation, stressing the need for adequate
size and diversity to achieve reliable predictions.

To evaluate generalizability, an ANN model trained on Gothenburg data is transferred to five
cities with different climates through transfer learning (TL). TL substantially improves
prediction accuracy in heating-dominant contexts (Stockholm, Seattle, Chicago), reducing the
need for up to 1,600 training samples and saving over 180 hours of computation. Its
effectiveness declines in cooling-dominant climates (Madrid, Miami) but remains beneficial
when data availability is limited. While its effectiveness is highest in heating-dominant
contexts with data scarcity, the results confirm TL’s potential to reduce training requirements
and computational time.

Finally, the ML model is integrated into a Grasshopper-based optimization workflow and
exemplified with a case study. Results show that while ML-based optimization yields slightly
higher energy demand than simulation-based methods, it drastically reduces computation time
and provides comparable design outcomes.



Overall, this thesis advances methodological knowledge on selecting ADVs, algorithms, and
datasets for ML-based building energy prediction, while also confirming the feasibility of
cross-climate adaptation and workflow integration. The findings offer valuable guidance for
researchers, software developers, and practitioners seeking to accelerate sustainable building
design.

Keywords: Machine Learning, Building Energy, Early-stage Optimization, Stakeholder,
Synthetic Dataset, Transfer Learning
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ANN
SVM
SVR
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MLR
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PC
MAE
RMSE
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IDF
RNN
DNN
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LCC
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Architecture, Engineering, and Construction

Greenhouse Gas

Machine Learning
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Mean Absolute Error
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Life Cycle Assessment
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eXtreme Gradient Boosting
Extreme Learning Machine
Convolutional Neural Network
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Chapter 1

Introduction

1.1. Background

Buildings account for more than one-third of global greenhouse gas emissions, making them a
major contributor to environmental issues [1][2][3]. Consequently, finding ways to reduce
energy use in buildings has become important in working toward sustainability goals. One
means to achieve this is to conduct building energy optimization in the early design stages, as
70% of decisions related to a building’s sustainability are made during the early stage [4] and
these decisions are responsible for 80% of the building’s environmental impact throughout its
life cycle [5]. Building energy simulation models have played an important role in early-stage
building energy optimization. Being able to predict building energy at an early stage can
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support architects in developing more sustainable design proposals and, therefore, reduce
building energy demand significantly.

Building energy optimization at an early stage often combines the methods of parametric
design, energy simulation, and optimization algorithms simultaneously [6]. The goal of
building energy optimization is to determine the optimal design by identifying the combination
of different architectural design variables (ADVs) that results in a low energy demand. ADVs
are the physical design elements that describe the building’s physical and thermal features, such
as building shape, orientation, and U-values of materials. To facilitate optimization in the early
stage, various computational optimization tools have been developed to facilitate design
choices and develop optimal solutions. Today, there are multiple approaches to developing
these tools. One mainstream way is through physics-based modeling, which means developing
tools based on physics-based energy simulation engines such as Energy Plus [7], IES [8], and
Daysim [9]. These approaches typically demand detailed information and a thorough
understanding of the building and its energy systems [10]. Furthermore, physics-based building
energy prediction models can be very time-consuming and computationally heavy. During the
optimization process, many design alternatives with different ADVs are generated. This
requires running hundreds or even thousands of simulations to identify the optimum design.
Even though one building energy simulation may take only a few minutes, a large number of
simulations consume a lot of time, up to a few days. Therefore, these optimization tools are
generally very time-consuming [11] and inefficient for the early stage.

More recently, to solve this problem, many researchers are turning to machine learning (ML)
as a means to improve the speed and efficiency of these optimization tools[12]. ML is a
collection of methods used to fit mathematical models from historical data and to make quick
and accurate predictions [13]. Figure 1.1 presents the three steps of the current building energy
optimization process: generation of numerous design alternatives with various ADV settings
through parametric design; conduct of building energy simulation to identify each alternative’s
energy demand value; application of optimization algorithms to select one or multiple design
alternatives with lower energy demand. Figure 1.1 shows how ML models can replace the
existing building energy simulation engine in the current optimization process and improve
efficiency and speed.

ﬁuilding energy optimization \

»@ﬁ»ﬁ

@ Design alternatives @ Building energy @ Optimization

generation simulation algorithms application
»,
/N T~
NV ) S0
SN substitute < W
L== 2N
@ v
ML energy

K prediction model /

Figure 1.1. Workflow of building energy optimization and how ML models could be used.
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1.2 Problem Statement

While showing promise, these ML prediction models are difficult to use in early-stage
optimization. As shown in Figure 1.1, the key to an ML-based building energy optimization
tool is to develop an ML energy prediction model to substitute the time-consuming simulation
engine. Figure 1.2 shows what an ML energy prediction model comprises. To develop this
model, the ADVs used as input data must be defined first. Second, the output energy demand
for various building design alternatives is required. A dataset containing both the input ADVs
and the respective energy demand values output is used to train the proposed ML model. Finally,
a separate dataset is used to test the model. A high-quality training dataset and a suitable ML
algorithm are significant in developing an ML model with good performance.

,’ ML Model N,

Training data set

o DATASET . '

® ML OUTPUT
ALGORITHM (Energy

Demand)

| Input ADVs

I Energy demand

Figure 1.2. The composition of an ML model for building energy prediction.

Most existing ML energy prediction models rely on measured data, and the available datasets
include data of ADVs that can typically only be retrieved at a later stage, e.g., the number of
heated rooms, the fabric of the built envelope, and insulation conditions [14][15][16]. To
provide an alternative, researchers have started to train ML models on synthetic datasets
[17][18]. Synthetic data refers to data that is artificially manufactured rather than generated by
real-world events. In this case, it means the building configurations that are generated by the
software and the simulated energy demand. However, even with synthetic datasets, some
studies used ADVs that are difficult to determine at the early stage, such as equipment density
and lighting [19]. Others did use early-stage ADVs as input, but their selected ADVs are often
not the ones used in optimization. For instance, building area is an ADV frequently used as an
input in early-stage ML energy prediction; however, it is usually pre-defined before the
architects start to design. Furthermore, including all ADVs in one optimization model not only
exponentially increases the number of potential solutions but also the computational costs [20].
In general, there is a lack of proper datasets with the right ADVs for developing ML energy
prediction models for early-stage optimization.



It is well-known that the size and diversity of training datasets are crucial for developing ML
prediction models [21]. As such, most previous studies use very large datasets with data points
exceeding 10000 when developing ML energy prediction models to ensure accuracy [22].
Therefore, the synthetic dataset cannot be as large as the researchers want. Under this context,
the questions ‘How much data is enough?’ and ‘How diverse should the data be?’ are often
raised. The size and the diversity of synthetic datasets in current ML-based early-stage building
performance optimization vary [23][24][25]. At the same time, the applied ML algorithms also
vary. However, no single ML algorithm has been proven to outperform other ML algorithms
for all circumstances. Previous studies only investigated the best-performing algorithms in
terms of accuracy under specific training datasets [22][26][27], or different training datasets in
terms of size [28], or how to most efficiently increase data points to have better model
performance [29]. So far, there have been no studies looking into the compatibility between
different ML algorithms and datasets with different sizes and diversity at the same time in
building energy predictions. Therefore, there is a lack of understanding of which algorithm
works best, in terms of accuracy and computational efficiency, for which synthetic dataset.

Apart from the data scarcity, another major limitation of the ML building energy prediction
models is the lack of generalizability, especially in the climatic context. Building energy
performance is highly influenced by local climate conditions. The ML model trained on
building samples in one specific location can only learn the pattern between building
configuration and energy demand under the specific climate conditions. When such models are
applied to buildings in a different location with distinct weather patterns, energy codes, or usage
habits, their predictive performance tends to degrade significantly. This geographic
dependency limits the scalability and practical application of ML-based energy models. To
predict building energy under different locations or climatic conditions, it is necessary to
regenerate the dataset and retrain the machine learning model, which can be time-consuming
and computationally expensive. Therefore, overcoming this limitation is critical to enable
broader adoption of data-driven methods in diverse climatic contexts. Transfer learning (TL)
can be a solution to tackle the generalizability problem. TL techniques can apply the knowledge
gained from relevant data in a previous ML task of data-rich scenarios to improve the
performance of a newly given target ML task that lacks sufficient data [30]. However, there are
certain gaps in applying TL in building energy prediction models. First, most previous research
mainly applied TL from one or a few buildings to another building (Figure 1.3. A). Both the
base dataset from the data-rich scenario and the insufficient dataset from the target data-poor
scenario are collected from one or a few limited buildings. To develop a data-driven model for
early-stage building energy prediction, it is typically necessary to have a dataset containing
information including various ADVs from multiple building configurations (Figure 1.3. B),
instead of having data from only one or a few buildings. Moreover, most applications of TL in
the building domain have been limited to buildings located in the same city, making it unclear
whether such methods can be effectively transferred across different climate zones.



m H ‘
Transfer Leaming ! q Transfer Leaming q
——
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n
1

Dataset contains Dataset contains few
the data-rich building the data-poor building many building building
configurations configurations
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Figure 1.3. Applying TL in building energy prediction.

1.3 Aim and Research Questions

To address the above problems, the aim of this thesis is to investigate how ML can support
early-stage building energy optimization. To achieve this aim, three research questions (RQ)
are further explored:

RQ1. Which ADVs should be the input for an ML-based early-stage building energy
optimization tool?

RQ2. How should the synthetic dataset be developed for training, and which ML algorithm
should be used when developing an ML-based building energy prediction model?

RQ3. How can an existing ML model for early-stage optimisation be applied to other climates
to avoid new data generation and the model tuning process?

1.4 Research Design

Four studies were conducted to answer the above research questions shown in Figure 1.4. It is
worth noting that all case studies take places in Gothenburg, Sweden.

Study A aims to identify the most influential ADVs for early-stage building energy optimization
and use them as input for ML building energy prediction models. Currently, sensitivity analysis
based on computer simulations is the most commonly used means to identify which ADVs are
the most influential in the early stage. However, although valid, this method primarily
investigates individual cases only in their specific contexts, thereby restricting their
generalization to other contexts. Therefore, Study A suggests a combination of the methods of
literature review and stakeholder survey. Bringing in a stakeholder’s perspective is beneficial
as on the one hand, stakeholders are experts in the relevant fields, and they possess not only
domain-specific knowledge and expertise but also a contextual understanding that can greatly
enhance the development and effectiveness of optimization tools [40]. Their engagement can
improve the optimization tools by providing actual practical experience. Some stakeholders are
also the end users of the optimization tools, and extensive research in areas such as user-design
and user-driven development [31][32][33] clearly shows the importance of integrating users in
the development process for an effective product or service result. Further, previous research
also indicates that users should be engaged during the early stage to improve a building’s final
performance [34]. Study A combines a literature review with survey data from 24 architects
and sustainability consultants in the Nordics. By comparing and analyzing the results, the most
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influential ADVs in early-stage building energy optimization were found. These ADVs could
be used as the input for the ML energy prediction model. A paper detailing Study A is published
and attached in Part II.

To answer research question two, Study B investigates the best-performing ML algorithm in
building energy prediction models as well as the characteristics of the corresponding synthetic
dataset. The performance of ML algorithms are evaluated from the perspective of accuracy and
computational efficiency. A literature review was first conducted on which ML algorithms are
the most frequently used in building energy prediction models. A parametric model was
developed to generate random building design alternatives based on different input ADVs that
were identified in Study A within nine building shapes. Synthetic datasets with different
characteristics, including the size of the dataset and the diversity of data points were generated
in this step. ML experiments were later carried out to test the best algorithms depending on the
different characteristics of synthetic datasets. Multiple combinations of ML algorithms and
synthetic datasets were proposed as outcomes. A paper detailing Study B is published and
attached in Part II.

To answer research question three, Study C takes an ML model developed from Study B as an
example and applies it to five different cities using TL to investigate the effectiveness of
transfer learning (TL) approaches in improving the accuracy of energy prediction models for
residential buildings across different climate zones when having limited data availability for
early-stage optimization. Parametric modeling is once again used to generate datasets for
different climates. Multiple TL models will be developed based upon the pre-trained ML model,
and fine-tuned using the training dataset from a target city. Subsequently, the testing dataset
from the same test city is used to test and evaluate the fine-tuned TL model. Meanwhile, an ML
model will also be developed from scratch using the insufficient data from the target city. The
new model will be used as a comparison to evaluate whether applying TL can improve the
model’s performance. A submitted manuscript detailing Study C is attached in Part II.

Study D integrates the ML model developed in Study B into an early-stage building energy
optimization workflow to exemplify the implementation of ML in early-stage optimization.
Two optimization tasks, including a single-optimization task on building energy and a multi-
objective optimization task on both building energy and embodied carbon emissions, are
proposed. An optimization workflow based on a simulation engine is also developed as a
benchmark. A case study is carried out to test the proposed optimization workflows.

Combining Study A and Study B, recommendations on how to develop an ML building
prediction model to support early-stage building energy optimization, including the selection
of input ADVs, the best-performing ML algorithm, and the generation of synthetic training
datasets, are provided in this thesis. Study C provides TL models that could be applied to other
climates with limited datasets. Study D provides an ML-based early-stage building energy
optimization workflow for residential buildings in Gothenburg. These outcomes can support
researchers and developers who want to integrate ML into the building energy optimization
workflow in the early stage to accelerate the process, and demonstrate the potential of applying
ML to significantly improve the efficiency of building energy optimization processes.
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1.5 Research Scope

1.5.1 Climate context

The ADVs for energy demand can vary depending on the climate context and local policies.
Apart from Study C, where the main focus is to transfer the developed ML model to other
climates, this thesis mainly focuses on the Nordic countries’ context, as Nordic countries are
among the global sustainability leaders [35][36]. Nordic countries include Sweden, Denmark,
Finland, Norway, and Iceland.

1.5.2 Building type

This thesis focuses on residential buildings as the Nordic residential sector has one of the
highest resource requirements in the Nordic countries due to the harsh climate. It is argued that
sustainable housing is thus key to the AEC industry's sustainability [37]. It is also worth noting
that this thesis only focuses on newly constructed buildings. This is because there is a greater
flexibility in terms of choosing ADV's compared to renovation projects. The methods developed
here can also be adaptable to retrofit contexts in the future, where informed decision-making
remains critical despite greater constraints.

1.5.3 Early-stage

This thesis only focuses on optimization in the early stage of building design. There are many
ways to define the early stage and what will be done in this stage. This thesis takes the definition
of Stage 1-3 from the Royal Institute of British Architects [38] and ‘Preliminary study’ and
‘Programming’ from Swedish building design process. More descriptions can be seen at
Section 2.1.

1.5.4 Stakeholders

There are many stakeholders involved in the early stage of building design, such as architects,
consultants, engineers, clients, contractors, public authorities, etc. In this thesis, stakeholders
only include architects and consultants. Architects consider both the building’s aesthetic and
functional aspects when creating the building plans, blueprints, and facades and are responsible
for making the final decisions regarding the building’s design. Consultants, especially
sustainability consultants, are generally not directly designing a building but rather providing
sustainability insights into building projects. For example, their role can involve assessing the
environmental impact of a building’s different design alternatives and developing strategies to
improve a building’s sustainability. Of note is that consultants are usually more familiar with
the computational optimization process and energy simulation than architects.

1.5.5 ADVs and features

ADVs in this thesis mainly refer to the architectural design variables which are the physical
design elements that describe the building’s physical and thermal features. The process of
identifying influential ADVs to use as input to feed into an ML model for the prediction of
certain building performance objectives is referred to as feature selection in the ML context.
The input ADVs in this study are the features in an ML model. To avoid confusion, this thesis
only refers to them as input ADVs.
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1.5.6 Training dataset size

When the training dataset is large in size, for instance, containing over 10000 data points
[15][23], the accuracy of the developed ML model is high. However, as previously mentioned,
when using synthetic datasets, it takes too much computational time to generate large datasets.
Therefore, this thesis only considers small training datasets. The largest training datasets in the
experiments in this study only contain 4800 data points, however, they are referred to as ‘large
datasets’ in the result section.

1.6 Structure of the Thesis

This thesis contains two parts. The first part consists of background, methodology, findings,
discussion, and conclusion. Chapter 1 provides the general background as well as the problem
statement, aim, and research questions, research scope, and research design. Chapter 2
introduces the extended background of previous research. Chapter 3 presents the methods
applied in this thesis. Chapter 4 includes the crucial findings of the conducted studies. Chapter
5 provides discussions, limitations, and outlook. Chapter 6 indicates the main contribution of
the work. The second part of the thesis presents the appended papers and manuscripts detailing
the conducted studies.
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Chapter 2

Extended Background

2.1 Early Stage in the Building Design Process and ADVs

This thesis mainly focuses on the early stage of the building design process. The early stage is
a general statement, and different researchers can interpret it differently depending on the
geographical context as well as local regulations. This thesis adopts both the building design
process proposed by RIBA (Royal Institute of British Architects) as it is the most frequently
used process in the literature regarding early-stage optimization and the Swedish building
design process as this thesis is conducted in Sweden and takes Swedish residential buildings
as a case study. The design process and the selected stages can be seen in Figure 2.1. According
to RIBA, the building design process consists of eight stages, Stage 1 ‘Preparation and
Briefing’, and Stage 2 ‘Concept Design’ align with the definition of ‘early stage’ [38]. The
Swedish design process is similarly organized according to the delivery of a sequence of
drawing packages [39]. In the Swedish design process, ‘Preliminary study’ and ‘Programming’
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can be considered as early stage. In general, the main tasks in the early stage are to develop the
architectural concept for the project and determine an initial design. Figure 2.1 also shows that
the greatest potential for design optimization is in the early stage [40]. As the design progresses
and deepens, optimizing the architecture becomes increasingly difficult. Therefore, the early
stage is the most efficient and proper time to conduct building sustainability optimization.

high A

RIBA

. Project | Preliminary Programming , Technical Building Construction Furnishing
Swedish  initiation | study | systems permit and use

Figure 2.1. Design effort and cost of design changes across project Stages (adapted from
‘Paulson curve’ [41])

The main subject to optimize is the ADVs. As mentioned in the introduction section, ADVs
are the physical design elements that describe the building’s physical and thermal features,
such as building shape, orientation, and materials. Common ADV categories include the
composition of the opaque building envelope, such as wall thickness and material; the
composition of the transparent building envelope, such as g-value and u-value of windows,
shape, and form; the type of mechanical systems; and the operation of the mechanical systems
[42]. The ADV decisions made are critical for a building’s sustainability performance. For
example, selecting the right wall material can lead to approximately a 17% energy cost
reduction [43] while adjusting window scenarios can improve the useful daylight illuminance
by approximately 20% [44]. As such, optimizing a building’s ADVs in its early stage can
significantly reduce the building’s environmental impact. However, it is worth noting that not
all influential ADVs can be decided in the early stage. ADVs related to concept design such as
the shape of the building or the main material are usually defined in the early stage, while
ADVs related to technical design such as the mechanical systems or interior materials might
be decided much later in the design process. This leads to a main common drawback in
conducting optimization in the early stage: the accuracy might be compromised due to
insufficient information on ADVs [45].

2.2 Stakeholders' Engagement in Early Stage

Researchers agree that high-performance buildings are best achieved when a project’s relevant
stakeholders are involved early in the design process. To capture stakeholders’ insights, Study
A developed surveys to ask related stakeholders’ opinions on the influential ADVs to include
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in the building energy optimization. Literature related to different stakeholders and their main
roles have been reviewed. The major category of stakeholders, their job descriptions, and
whether they are active in the early stage and listed in Table 2.1.

Table 2.1. Stakeholder categories

Stakeholder alternative names in Main responsibilities If active in
category the literature early stage
Architects Architect[46][47][48]  clarify the requirements of the building
Design professionals project
[49] clarify project scope and condition
Design and drafting . develop the building plan o
personnel [50] decide all related ADVs for the building
project
sometimes assist with the building’s
sustainability assessment
Sustainability Sustainability assess the project’s sustainability \
consultants consultants [48] performance and improve it.
LCA experts [49] consult the design per all requirements
Environmental and standards for different sustainability
impact consultants objectives
[46] provide technical advice if necessary
Consultants [51] coordinate between architects and
Estimators [50] engineers to satisfy certification
conditions and environmental compliance
Engineers Structure engineers in charge of the technical design of the x
[47] building structure
Building service confirm primary engineering
engineers [46] configurations and specifications
align the building project with safety
requirements.
Clients Clients [48][51] provide financial support \
Clients and project participate in deciding ADVs as well as
managers [47] assess the aesthetics of the design and the
Building owners [46] sustainability performance
Financial constantly communicate with architects
organization [51] and sustainability consultants
Home buyers [50]
Contractors Contractors [51] ensure environmental management occurs X
and the project is delivered within budget
and time.
Public Building permission law and policy-making and funding V
authorities authorities [47] provision.
Government [49][51]
Local authorities [46]
End users End users [46] use the building once the project is fully x

finished and put into use.

As shown above, the AEC industry involves many different types of stakeholders, but not all
of them have significant influence in the early stage. It is worth noting that although end users
normally do not get involved in the early stage, recently, user-design and user-driven
development [31][32][33] clearly shows the importance of integrating users in the early
development process for an effective product or service result. Therefore, it is encouraged that
end users should be engaged during the early stage to improve a building’s final performance
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[34]. The criteria for the chosen stakeholders in this study are that they need to be active in the
early stage, and have to either be involved in ADVs’ selection or the energy performance
assessment. Architects and Sustainability consultants are the stakeholders who have the most
interest and influence in the early stage. Architects have the most power towards deciding the
ADVs while sustainability consultants are most familiar with building energy performance.
Engineers are also involved in deciding ADVs but in a supporting role compared to architects.
However, they are not active in the early stage. Contractors are also only active in later stages
and therefore excluded from this research. Clients, public authorities, and end users are also
the influential stakeholders who are involved in the early stage and related to either the ADVs’
selection or the energy performance assessment. Clients will be engaged in the decision of
ADVs and energy performance assessments during their interaction with architects and
sustainability consultants by providing feedback. Public authority is one of the most important
decision-makers concerning several specific ADVs, such as shape and orientation. However,
they are excluded in this thesis for two reasons. One reason is that although they are important,
their influence and interest in the early stage are much less compared with architects and
consultants. The other reason is that it was found only very limited stakeholders in the above
three categories are willing to participate in the research. The results would not be valid when
there are only a few participants involved. In summary, this study only considers architects and
sustainability consultants as related stakeholders.

2.3 Building Energy Optimization Tools in Early Stage

Building energy optimization tools are software applications or platforms designed to assist
architects, consultants, or other related stakeholders in designing more sustainable buildings
with lower energy demand by proposing one or multiple design alternatives with the best
energy performance. Since the turn of the millennia, publications about building optimization
have roughly increased tenfold due to the advances and developments in computer science
[52]. As mentioned in Figure 1.1 in Section 1, a building energy optimization tool always
consists of three parts: design alternative generation through parametric modeling, building
energy simulation, and optimization algorithm application.

Parametric modeling is always conducted with computer-aided tools such as Grasshopper in
Rhino, or Dynamo in Revit. The basic idea of parametric modeling is to use parametric
equations to describe the ADVs of building design alternatives. Compared with the traditional
design method where architects use CAD or even draw their designs on paper, parametric
design can allow architects to change the ADVs quickly and immediately see how the new
design looks. Moreover, the main advantage of the parametric approach is that it can generate
numerous different ADVs quickly and easily. Once a parametric model has been developed,
generating further design alternatives is nearly effortless [53]. Therefore, parametric modeling
can provide numerous design alternatives for the optimization algorithm to choose from. The
ADVs that the tool wants to optimize are also defined in the parametric modeling step. For
instance, if the optimization tool aims to achieve a low energy demand by optimizing the shape
of the building, the dimensions of the building have to be included in the parameterized ADVs;
when the aim is to find the most proper building materials that can lead to better energy
performance, the materials need to be included in the parametric modeling while the
dimensions of the building do not need to. In previous studies, the optimized ADVs can vary
depending on the focus of the research, such as building shape [54][55], the layout of the
building design [56][57], the setting for the HVAC system [58], the materials [59], window
scenarios [60][61], etc.
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Energy simulation is an important step in building energy optimization. Most studies use
detailed building energy simulation tools or custom-developed tools [62]: including TRNSYS
[63], DOE-2 [64], EnergyPlus [65], and ASHRAE toolkit [66] for building load calculations.
However, the use of these tools requires detailed information about the design and needs special
expertise to avoid garbage-in and garbage-out, therefore, is very time-consuming [62]. To
avoid the time-consuming detailed building energy simulations, many studies introduce ML
surrogate models to predict building energy demand. These ML prediction models are
mathematical models derived from numerous actual measurements or detailed building energy
simulations. These models can then be used as a replacement for the detailed building energy
simulation during the optimization process for less computational time with an acceptable
margin of error. Further information about applying ML in developing energy prediction
models for optimization is discussed in section 2.4.

Optimization means finding the best solution(s) among different feasible alternatives, where
feasible solutions mean those that satisfy all the constraints [67]. It is summarized that there
are mainly three optimization methods applied to building energy optimization tools:
exhaustive methods, calculus methods, and stochastic methods [68]. Exhaustive methods aim
to list all possible building alternatives with the combination of ADVs and find the best
solution. This method can guarantee finding the most optimal solution, however, might take
way too much computational time. Calculus methods use mathematical expressions or
gradients to find the value of a variable that yields the optimal value of the objective function.
Stochastic methods include randomness in the optimization process. This method could reduce
computational time, but might only find the relative optimal solution rather than the absolute
optimal solution.

In general, when developing an energy optimization tool, how to define the parameterized
ADVs, which simulation and optimization methods to use highly depends on the nature of the
problem. However, the energy simulation part is most time-consuming in most cases.
Therefore, many studies have been focusing on finding a less computationally expensive
alternative for building energy simulation methods while maintaining the accuracy of the
assessments in an acceptable range to improve the efficiency of building energy optimization
tools.

2.4 ML Algorithms in Developing Building Energy Prediction
Models

As mentioned in Section 2.3, as energy simulation can be very time-consuming in building
energy optimization, studies are increasingly developing ML-based energy prediction models
to accelerate the optimization process due to their low time consumption and high performance
[69]. ML is a collection of methods used to fit mathematical models from historical data and
to make predictions [29]. Based on the historical data, with suitable models and algorithms,
machine learning methods could “learn” the non-linear relationship between the independent
variables and target variables [27]. There are two types of algorithms, regression and
classification. Regression algorithms are used to predict continuous values while classification
algorithms are used to predict discrete values. The algorithms used in developing the building
energy prediction model for early-stage optimization are the regression models. To investigate
the most proper algorithms for this study, a literature review of the existing review papers of
the most frequently used ML algorithms for developing building energy prediction models is
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conducted. The literature review is conducted in Web of Science and Scopus. The combination
of the keywords in the search is shown in Figure 2.2.

W e h mm o mm o mma W mm a mm o mm o = a o=  mm o mm n mm s omm o o= w W mm a mm o mm n = a omm

(machzne learning) or I . I . I . I
 (deep learning) or . 1 (ar(hltfzct.ure) or | 1
| (artificial intelligence) | l (building) 1 :

Figure 2.2. Literature search keywords for the most frequently used ML algorithms for
developing building energy prediction models.

In total 35 review papers were found and reviewed in this study. Table A in Appendix A
summarizes the algorithms mentioned in the 35 review papers. Figure 2.3 presents the top ten
most frequently mentioned ML algorithms and their occurrence.
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Figure 2.3. The most frequently mentioned ML algorithms from the literature review

Figure 2.3 shows that ANN, SVM, RF, MLR, and DT are the most frequently used ML
algorithms in developing building energy prediction models.

Artificial Neural Network (ANN) ANN is the most frequently used
algorithm in developing a building energy prediction model. ANN is an ML algorithm with a
structural design based on the human brain [70]. The main computational aspects of ANN are
their ability to learn from given instances, and then determine patterns and consistencies in data
through self-organization [71]. ANN can efficiently emulate the complex relationships of
biological networks to answer complex prediction problems [72]. In a neural network,
information is broken down into many small pieces, each of which is contained within a single
neuron. A neural network can be seen as a sort of “box” that can give an answer to a question
or provide an output in the presence of one or more inputs [17]. Many studies have used ANN
to develop building energy prediction models. Elbeltagi at el. developed an ANN model
through parametric modeling to predict residential building energy consumption using a
database of 12000 data points and achieve a mean absolute percentage error (MAPE) of 5.36%
[70]. Li et al. developed an ANN-based fast-building energy consumption prediction method
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for complex architectural forms at the early design stage with accuracy within £10% [73].
Aruta et al. used ANN to develop building energy load prediction models in different climates
[17]. In general, ANN can achieve a high accuracy performance when using it for building
energy prediction models.

Support Vector Model (SVM) SVM is centered on the kernel, a
technique primarily designed for resolving regression problems developed by Vapnik in the
early 1990s [74]. SVM is considered an effective model due to its exceptional characteristic of
dealing with samples of extremely high dimensionality [75]. SVM does not especially rely on
large amounts of data for training [27]. Fu et al. proposed using SVM to predict the load at a
building’s system level based on weather predictions and hourly electricity load input and
achieve a root mean square error (RMSE) of 15.2% and mean bias error (MBE) of 7.7% [76].
Dong et al. applied SVM to predict building energy consumption in tropical regions with
coefficients of variance (CV) less than 3% and percentage error within 4% [77]. Liu et al.
developed a few ML building energy prediction models and stated that SVM performed best
[27].

Random Forrest (RF) RF is one of the most applied ML models in
predicting building energy and related performance: Tian et al. developed an RF model to
predict the energy performance of office buildings based on building form with a root mean
squared error (RMSE) of 2 kWh/m? [78]; Fang et al. used RF to predict construction stage
carbon emissions of buildings in the early design phase [79], Olu-Ajayi et al. developed an RF-
based building energy prediction strategy with an RMSE of 1.69 kWh/m? [28]; and Singh et al.
combined RF with building information modeling in supporting the early stage design, reached
a mean-absolute-percentage-error (MAPE) 0f 2.02% [80]. The RF Regressor combines several
Decision Tree Regressors to form an ensemble model. Each decision tree splits a feature into
‘branches’, which ultimately end at a ‘leaf” node, where a final value is decided. Since the RF
Regressor combines several independent Decision Tree Regressors, it is known for being
robust to overfitting [81]. Like all tree-based ML models, it provides feature importance as an
output, which can be used to interpret the model. The speed of the RF Regressor largely
depends on the ‘number of estimators’ hyperparameters; this instructs the model on how many
independent Decision Tree Regressors should be used in the ensemble model. A high value
(exceeding 600 estimators) can sometimes decrease the number of errors but at the cost of
greatly slowing down the model’s prediction time [81].

Multiple Linear Regression (MLR) An MLR model could also be
considered an ML model when it uses the principles of supervised learning, where an algorithm
learns to predict a target variable from a set of input features. In previous studies, MLR has
been used in estimating commercial building energy [82], analyzing the relationship between
ADVs and energy [83], and integrating building performance simulation in an agent-based
model using trained regression surrogate models to simulate a building’s energy use, with a
MAPE of 4% [84]. An MLR model is also often chosen as a baseline to gauge the minimum
number of errors that would be reasonable for the given use case. The Linear regression’s
version of feature importance is the estimated coefficients assigned to each feature after a
model has been fitted to the data. Additionally, the MLR is likely to outperform all ML models
in terms of speed since it is the simplest regression model.

Decision Tree (DT) DT uses a tree-like flowchart to partition data into

groups [75]. DT is an adaptable process that could advance with an enlarged amount of training
data [85]. A DT model manifests itself as a graph consisting of a root node and a couple of
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branch nodes. The model starts from the root node in which the input data are split into different
groups based on predefined criteria. These split data are then disseminated to sub-nodes as
branches emanating from the root node. The data on sub-nodes will undergo either further or
no splits. The former are the internal nodes where the subsequent data split is conducted to
form new subgroups as son-branches emanated graphically at the next level. Meanwhile, the
latter are leaf nodes, treating their corresponding data group at the current level as their final
outputs. DT is also used in previous studies for predicting building energy: Tso et al. use DT
to predict building electricity energy consumption [86]. Yu et al. apply DT in building energy
demand modeling [87].

2.5 TL in Building Energy Prediction

The definition of TL is: Given a source domain Dy and learning task 7, a target domain Drand
learning task 77, TL aims to help improve the learning of the target predictive function fr(+) in
Dr using the knowledge in Ds and Ts, where Ds # Dr, or Ts # Tr. In this thesis, the source
domain Dy refers to the datasets in the base scenario, and the source task Ts refers to the
building energy prediction for the base scenario. The target domain refers to the datasets in the
target cities, and the target task 77 refers to the building energy prediction for the target cities.

TL has been applied to many fields, including healthcare [88], computer vision, and language
processing. Recently, researchers have conducted exploratory work on applying TL in building
energy prediction. TL can be applied across multiple scales, ranging from the prediction of
appliance-level consumption via non-intrusive load monitoring (NILM), to specific systems
such as heating, ventilation, and air conditioning (HVAC), as well as wastewater treatment
processes. Furthermore, TL has been utilized at district and whole-building levels, with
temporal resolutions varying from hourly to monthly. Among these applications, whole-
building energy prediction has emerged as the most extensively studied topic in the context of
smart buildings, largely due to the widespread availability of relevant data. Fang et al. [89]
used transfer learning to enhance energy prediction in buildings with few labelled data,
employing an LSTM as feature extraction and further fine-tuning a regression layer for domain
adaption, studying the effects of different time horizons, architectures, and buildings. Fan
et al. [90] compared several parameter-based architectures to enhance building forecasting
prediction, analysing how data availability and duration period affect performance. Lastly, Cai
et al. [91] exploited TL to increase the accuracy of incentive-based Demand Response (DR),
characterized by stochastic and sporadic events, using data from similar customers. Li et al.
developed an Artificial Neural Network (ANN) based energy prediction model for information-
poor buildings using TL; Jung et al. used TL to enhance building monthly electric load
prediction in different districts, with a DNN-based forecasting model on the source data, fine-
tuned on the target data [92]; Ozer et al. employed TL to perform short-term load prediction,
and proposed an effective method on how to find the single building most useful to perform
weight-initialization TL [93]; Qian et al. exploited information of a building with a detailed
sensor system to perform an energy prediction on another building with few available data
using TL [94]. Previous research has proved that implementing TL can reduce the amount of
training data required for the development of the target model, save time for tuning and training
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models, and improve prediction performance [10]. TL also has the potential to enhance energy
model adoption and broaden the applicability of existing building energy prediction models.

However, as stated in Section 1.2, most previous research mainly applied TL from one or a few
buildings to another building instead of from a dataset containing information including various
architectural design variables from multiple building configurations to another one, which is
what is required for early-stage building energy optimization.
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Chapter 3

Method

This chapter presents the six-step method applied in this thesis to explore applying ML in early-
stage building energy optimization. The overall workflow for the methods is presented in
Figure 3.1. Study A investigates identifying input ADVs for the ML prediction model by
combining a literature review and stakeholder survey. Study B investigates how to generate a
synthetic dataset and select the most suitable ML algorithm. The synthetic dataset is generated
by using parametric modeling and visualized by principal component analysis (PCA). In step
3, a literature review is conducted first to select the most frequently used ML algorithms.
Multiple ML models with different algorithms are trained on different datasets.
Hyperparameter tuning is applied to find the best-performing model. The developed ML
models are evaluated by accuracy and computational efficiency at the end to provide
recommendations for selecting the most suitable algorithm. Study C explores the ML model’s
generalizability by applying the ML models developed in step 3 to predict the energy of the
same building type in different climates using TL. In step 4, target cities are defined and smaller
synthetic datasets on respective climates are generated through parametric modeling, as in step
2. Multiple TL models were developed in step 5 based on the ML model trained in step 3,
aiming to predict building energy consumption across different climatic conditions.
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Simultaneously, baseline ML models were trained from scratch to serve as benchmarks for
evaluating whether TL can enhance prediction accuracy and computational efficiency. In the
final step, the developed ML model is embedded in an optimization workflow to exemplify
howML can help accelerate the optimization process at early stage by using a case study.
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Figure 3.1. Workflow of the methods applied in this thesis.
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3.1 Study A: Identification of Input ADVs

The most influential ADVs are investigated by combining a literature review and a stakeholder
survey.

3.1.1 Literature review

A literature review is a critical analysis and synthesis of existing literature, research, and
scholarly articles relevant to a particular topic or research question [95]. A literature review
serves many different purposes and entails a wide variety of activities including the
identification of the research gap by examining the inconsistencies in current publications,
contextualization of current knowledge, and providing the broader academic discourse [96]. In
this thesis, it is mainly used to understand what is going on in the related research field and to
identify the trends.

The assumption for the literature review in finding the most influential ADVs for building
energy is the ones that are most investigated. If one particular ADV occurs frequently in related
literature, it is implied that the ADV holds relatively greater significance. For instance, the
‘window-to-wall ratio’ is the most frequently encountered ADV when searching for literature
focused on early-stage building energy optimization, thus indicating its paramount importance
in this context.

The literature review in this thesis was conducted by utilizing two academic search engines: (1)
Web of Science, renowned for its comprehensive database of scholarly works and sophisticated
search features [29]; and (2) Scopus, esteemed in the realm of architectural research. In Web
of Science, the topic search (TS) function was employed, while in Scopus, the Title-Abstract-
Keywords search function was applied. The combination of the keywords in the search is
shown in Figure 3.2. A two-round article selection was adopted to filter the preliminary results.
Duplicate articles and articles from other disciplines that were out of context are removed first.
For example, many studies found were from computer science due to the search term
“architecture”, which can refer to software architecture, among others. The articles that only
dealt with certain technical parts of a building, e.g., HVAC system, energy storage system, as
well as those that did not focus on newly constructed buildings, e.g., renovations, or historical
buildings, were also removed.

| (early stage) or (early . | (architecture) or I | (variable) or I |

phase) | l (building) 1 l (parameter) 1

Figure 3.2. Literature search keywords for the most influential ADVs for building energy
optimization
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3.1.2 Stakeholder survey

The purpose of stakeholder interaction is to ask stakeholders which ADVs they consider
important or influential for building energy optimization. There are many approaches for
retrieving information from stakeholders, such as focus groups [97], interviews, and surveys.
However, both focus group and interview methods require extensive time from participants.
Upon contacting several potential participants, it became evident that they were hesitant to
commit extensive time helping academic research. Consequently, the survey methodology was
adopted at the end. Surveys consist of a series of questions, crafted by a researcher and centered
on a particular topic. They are self-administered, with questions presented in a fixed and
standard order to all participants [98]. In contrast to other methods, it can be distributed online,
reaching a broader and more international audience, and garnering more responses efficiently.

A straightforward rating system was adopted in the survey. Participants were asked to rate the
influence of each ADV on a scale from 1 to 5, where 1 means the ADV has nearly no influence,
and 5 means the ADV has extremely significant influence. Other than the rating system, the
survey also included questions related to the respondent’s professional background, work
location, years of experience, and job description. An open-ended question asking respondents
if there were any other variables that they thought were important were also included. The
survey can be seen in the appended paper. It in total included 15 questions and took around 10
minutes to complete. The surveys were distributed between August 2022 to November 2022.
They were distributed on LinkedIn and in person in three architecture firms in Sweden. A
follow-up interview of 5 to 15 minutes will be initiated if the respondent’s survey answers are
not clear enough or if the respondent is willing to further explain their answers, in which a free-
flowing discussion will be initiated.

24 completed survey responses were collected: 12 from architects and 12 from consultants.
The respondents were primarily from Sweden and Norway, and relevant experience varied
between 2 and 35 years. All responding architects had experience in residential building design,
and the responding consultants all had experience in improving building sustainability. Six
follow-up interviews including four with architects and two with consultants were conducted
at the end.

3.1.3 Comparison and analysis

To rate the influence that early-stage ADVs had in building energy in the literature review, an
indicator that equals the occurrence of an ADV for one objective divided by the total number
of papers found looking at building energy was created. For instance, the ADV building plan
is mentioned 19 times in the 31 papers looking at building energy, so the rating for the influence
of building plan is 19 divided by 31, which is 0.61. The higher the rating value is, the more
influential the ADV is. The ADVs appearing at least in half the papers are considered influential,
which means the more influential ADVs from the literature should have a rating higher than
0.5. For the survey analysis, the average ratings of all participants were calculated. The ADVs
with an average rating higher than 3 are considered as influential as the scale is from 1 to 5.
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3.2 Study B: Identification of Algorithms and Dataset for ML
Energy Prediction Model.

3.2.1 Synthetic dataset generation

3.2.1.1 Parametric modeling

As previously indicated, parametric modeling enables the efficient generation of datasets with
diverse building design alternatives. Since the influential ADVs have already been identified,
the first step in the parametric modeling process is to parameterize these ADVs. Given that the
definition and representation of ADVs can be broad, different studies may adopt different
parameterization strategies. In this thesis, the parameters corresponding to the identified
influential ADVs—including their symbols, units, descriptions, value ranges, and step sizes—
are presented in Table 3.1. It should be noted, however, that not all parameterized variables are
directly used as inputs to the ML prediction model. Several ADVs are represented by derived
parameters that are computed within the Grasshopper script rather than explicitly
parameterized. These calculated input variables are summarized in Table 3.2.
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To investigate the diversity of the training dataset’s impact on different ML model
performances, a GH script that can generate nine shapes of building alternatives was developed
(Figure 3.3). The nine building shapes were chosen and adapted from [99]. For each building
shape, multiple building configurations with different ADV's were generated.

Figure 3.3. Nine building shapes generated in parametric modeling.

Figure 3.4 presents the part of the parameters used in this study representing building plan for
various building shapes. Table 3.3 presents the range and unit of the parameters. It is worth
noting that these parameters are not the ones fed into the ML model as input values. The
parameters representing building plan that serve as input for the ML model are building area,
building perimeter, circulation area, and circulation perimeter. The calculation method and
explanation for these parameters are presented in Table 3.3.
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Figure 3.4. Parameters used in representing building plan for various building shapes.

Table 3.3. Parameters related to building plan for different building shapes and their range
(Unit: meter, Step:1)

I- L- U- T- Z- H- O- F- E-

shape shape shape shape shape shape shape shape shape
HW1 X 5-25 5-15 X X X 10-20 10-20 10-20
HW2 X X X 5-20 5-20 5-20 10-20 X X
HW3 X X X X X X X X X
HL1 20-100  15-70 15-40 15-40 15-40 10-30 15-30 15-30 15-30
HL2 X X X 15-40 15-40 10-30 X X X
VW1 5-30 5-25 5-20 X 5-20 5-20 10-20 X 10-20
VW2 X X 5-20 5-20 5-20 5-20 10-20 10-20 10-20
VW3 X X X X X X X 10-20 10-20
VL1 X 15-70 10-30 15-40 5-15 8-25 15-30 15-30 10-15
VL2 X X X X X X 10-15 10-15
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Figure 3.5 takes the I-shape building as an example to show how the building configuration,
including building appearance and building plan layout, can vary within one building shape.

(a) Building configuration variations in I-shape building in terms of building appearance

L] l I i I

| T E

l:l Corridor and vertical circulation core D apartment

(b) Building configuration variations in I-shape building in terms of building layout

Figure 3.5. Building configuration variations in I-shape building, including building
appearance and layout.

Honeybee was then used to generate energy model for each building design alternative and
create the input data file (IDF). Colibri was used to iterate through all ADV combinations and
compile the resulting data into a CSV of input values (ADVs) and output values (IDF files) per
iteration. All generated IDF files were later imported into a Python script that uses EnergyPlus
to simulate the energy result for various building alternatives in parallel. The Energy Plus
settings were based on a typical residential building scenario in Gothenburg, Sweden [100].
The model used a standard heating system for common Swedish residential buildings instead
of an individual heating system. There are two types of thermal zones on each floor, the living
area thermal zone and the corridor zone, which includes the vertical circulation core and
corridors. The living area zone’s heating set point is 21°C and the unoccupied zone’s set point
1s 10°C. Since the location is in Sweden, there is no requirement for activating a cooling system.
The unit of energy demand is kWh/m2. More settings for the energy simulation can be seen in
Appendix B.

3.2.1.2 Synthetic dataset development and principal component analysis (PCA)

The final complete dataset contains the values of different ADVs as input and takes the annual
energy demand per square meter from Energy Plus as output. Figure 3.6 presents the workflow
of formulating the testing dataset and different training datasets.
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Figure 3.6. Workflow of synthetic dataset development.

The complete synthetic dataset contains a total of 22500 data points of different building
alternatives within nine types. The testing dataset contains 125 data points selected from each
building type randomly, in total 1125 data points. To investigate the influence of training dataset
size and diversity on the ML model’s performance, multiple training datasets were formulated
from the rest of the data points in the developed dataset. 32 training dataset categories were
developed, from Al to D8. The letter indicates the diversity of datasets while the number
indicates the size of the datasets. The A1 dataset category has only 2 building types and in total
contains 100 data points while the D8 dataset category has 8 building types and contains 4800
data points. In each dataset category, the number of data points of each building type is the total
data points divided by the included building types. For instance, in the dataset category C3, the
total data points are 600, and 6 building types are included, the data points in each building
type are 600 divided by 6, which is 100. Five datasets with different selections of building types
were formulated and applied in each category. The final performance for each training dataset
category was calculated by the average performance for the five datasets.

-33-



PCA was used to reduce the data features and visualize the diversity in datasets. PCA is a
statistical approach for identifying principal features based on the total variance [101]. It is a
general-purpose dimension reduction and data analysis tool, which is mainly used in the
machine learning field [102]. It generates linear combinations of original features that are
capable of projecting original data on a reduced dimensional space [103]. PCA works by
transforming the original features into a new set of orthogonal features called principal
components (PC). The PCs are orthogonal to each other and capture the maximum amount of
variance in the data [104]. By retaining only the two PCs, the dataset can be easily visualized
while preserving most of the important information since the PCs are linear combinations of
uncorrelated attributes that best describe the variance among data. Figure 3.7 presents the
visualization of the diversity of the complete synthetic dataset (a) and the testing dataset (b) by
using PCA to show the distribution of the data points. The further the distance between two
data points, the greater the diversity gap between them.

(a) Distribution of the complete synthetic dataset
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Figure 3.7. Distribution of the complete synthetic dataset (a) and the testing dataset (b) using
PCA.

Figure 3.8 shows examples of the distribution of the testing dataset and different training datasets.
It can be seen how different training datasets vary regarding size and diversity, and how much they
cover the testing dataset.

-34-



(a) Diversity of an example training dataset A3
and testing dataset

(b) Diversity of an example training dataset A7
and testing dataset
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Figure 3.8. Distribution of examples of A3 (a), A7 (b), B3 (c), and B7 (d) training dataset
categories and testing dataset.

3.2.2 ML model development for building energy prediction.

Various training datasets developed in the previous step were used to train different ML models
with multiple algorithms. The performance of developed models is evaluated in terms of
accuracy and computational efficiency. Through the literature review, five algorithms were
selected in the ML model development, including Artificial Neural Network (ANN), Support
Vector Machine (SVM), Decision Tree (DT), Random Forrest (RF), and Multiple Linear
Regression (MLR). The reasons for choosing these five algorithms and their respective
introductions are in Chapter 2. The models were developed in the Python 3.9 environment
using Scikit-learn.
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(1) Hyperparameter tuning

To generalize diverse data structures, most ML models require specific constraints or learning
rates or weights [105]. These values set within the model are known as hyperparameters.
Default hyperparameter settings cannot guarantee optimal performance and additional
attention should be directed to this critical step. To reach robust performance results with these
ML models, their respective hyperparameters must be optimized. The process of choosing a
group of optimal hyperparameters for an ML algorithm is known as hyperparameter tuning.
Hyperparameter tuning is performed for ANN, SVM, DT, and RF in this thesis. For MLR, no
tuning is required as MLR has no hyperparameters and assumes a logit relationship between
response and predictors.

(2) Cross-validation

Cross-validation is a resampling-based technique for the estimation of a model’s predictive
performance. The basic idea is to split the given dataset into multiple segments using a user-
defined number of partitions. The dataset is split into k folds first, and k-1 sets are used as
training datasets while the remaining one is used as the validation dataset. This process is
repeated k times by changing the validation dataset [106]. Cross-validation provides a more
reliable estimate of model performance compared to a single train-validation split. Applying
cross-validation in hyperparameter tuning can also help mitigate overfitting by providing a
more robust estimate of model performance across different subsets of the data [107]. In this
thesis, the training dataset is split into ten folds to perform cross-validation in hyperparameter
tuning.

(3) RandomizedSearchCV

RandomizedSearchCV is a popular technique for hyperparameter tuning in Scikit-learn. In
contrast to GridSearchCV, which does an exhaustive search over specified parameter values
for an estimator, not all parameter values are tried out in RandomizedSearchCV, but rather a
fixed number of parameter settings is sampled from the specified distributions.
RandomizedSearchCV is more time-efficient than GridSearchCV. However, the most optimal
hyperparameters retrieved from RandomizedSearchCV might not be as optimal as the ones
retrieved from GridSearchCV. The number of parameter settings that are tried is given by users.
In this thesis, it is set that 40 random combinations for all parameters are tried, and the best-
performing ones are considered the most optimal parameters.

3.2.3 Evaluation methods

The developed ML models are evaluated from two perspectives: accuracy and computational
efficiency.

(1) Accuracy

When working with ML models, it's crucial to evaluate performance quantitatively using
evaluation metrics. These metrics offer objective and measurable insights into a model's
predictive accuracy, especially when ML models are always treated as ‘black box’ as they can
be used without requiring people to understand what is going on within the model. For
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regression tasks, the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are
the most common and well-studied metrics.

n
1
MAE = ;Zlyi—yll )
i=

Where n= the number of samples; i= the ith sample; yi=the true value of the ith sample’s target value;
y,= the predicted value of the ith sample’s target value.

The MAE (1) subtracts the predicted value from the true value for each sample, removes the
direction of the error, and takes the mean across the entire test set. In this way, the MAE retains
the scale of the target variable, which allows for an intuitive interpretation of the output. For
example, an MAE of 2.35 for this study means that the model makes an average error of 2.35
kWh/m2 when predicting the normalized district heating demand.

RMSE = @)

Where n= the number of samples; i= the in sample; yi=the true value of the i sample’s target value;
y,= the predicted value of the in sample’s target value.

Similar to the MAE, the RMSE (2) subtracts the predicted value from the true value; however,
it squares the error before taking the mean across the test set. The root square is added at the
end to adjust the result to the same scale as the target variable. This results in a greater weight
placed on larger errors, which can help detect outliers and substantial deviations from the
ground truth.

(2) Computational efficiency

Computational efficiency is an essential evaluation metric as the main purpose of using ML to
develop a building energy prediction model is to accelerate the speed of early-stage
optimization. Computational efficiency is evaluated from two aspects: the time used for
hyperparameter tuning during the ML model development and the time needed for a model to
predict the entire testing dataset.
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3.3 Study C: Exploring ML models’ Generalizability.
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Figure 3.9. The main workflow of applying and evaluating TL in Study C.

The primary research methodology and workflow of Study C are illustrated in Figure 3.9. A
base ML model trained from the previous step will be integrated here to ensure robust initial
performance. Then, multiple TL models will be developed based on the pre-trained model and
fine-tuned using the training dataset from a target city. Subsequently, the testing dataset from
the same test city is used to test and evaluate the fine-tuned TL model. Meanwhile, an ANN
model will also be developed from scratch using the insufficient data from the target city. The
new ANN model will be used as a comparison to evaluate whether applying TL can improve
the model’s performance.

3.3.1 Development of base models

The base model was developed to predict heating energy demand for residential buildings in
Gothenburg, Sweden, following the logic in Section 3.2. The training dataset is part of the
synthetic dataset developed in Section 3.2.1, including building shape Z, U, T, L, I, and H. The
input features for the base ML model are the same as listed in Section 3.2.1.1. The target
prediction output of the base models is the annual heating energy demand per square meter
(kWh/m?). Energy Plus was used to simulate the annual energy demand for each building
configuration. The base model was developed using ANN, as mentioned in Section 2.4. The
model structure, training dataset size, and model performance, including root mean square error
(RMSE), mean absolute error (MAE), R-squared (R?), and mean absolute percentage error
(MAPE), are listed in Table 3.4. The explanation for model performance metrics can be further
seen in Sections 3.2.3 and 3.3.3.

Table 3.4. Characteristics of the Base Model

Training Structure RMSE MAE R? MAPE
Dataset Size (kWh/m?) (kWh/m?)
12000 14-20-28-14-1 1.97 1.23 0.97 1.51%
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3.3.2 Target cities’ dataset development

To investigate the generalizability of TL for building energy prediction across diverse climatic
conditions, five representative cities are selected based on the Koppen climate classification
system [108], which categorizes global climates according to temperature and precipitation
patterns. The K&ppen system is one of the most widely used methods for categorizing global
climates, combining temperature and precipitation patterns to define major climate zones such
as tropical (A), arid (B), temperate (C), continental (D), and polar (E). Each major category is
further subdivided based on seasonal characteristics. Due to its simplicity, spatial coverage,
and climate-relevant grouping, the Koppen classification is widely used in building energy and
environmental studies to distinguish climatic influences on energy demand [109], [110].
Following this system, we selected five target cities across different climate zones to represent
a broad climatic spectrum. We excluded zone E as there is no major city with a high population
in zone E. The selected target cities are listed as follow:

e Miami, USA (Am) — Tropical monsoon climate with high temperatures and no heating
demand required, dominated by cooling loads.

e Madrid, Spain (Bsk) — Hot-summer Mediterranean climate with dry summers and
mild winters, creating a mixed demand for both heating and cooling.

e Seattle, USA (Csb) — Warm-summer Mediterranean climate with wet winters and mild
summers, resulting in moderate year-round energy use.

e Chicago, USA (Dfa) — Cold winters and warm to hot, often humid summers, exhibiting
high heating demands for much of the year, with moderate but non-negligible cooling
requirements during the summer season.

e Stockholm, Sweden (Dfb) — Warm-summer humid continental climate, characterized
by significant heating needs, between the maritime temperate and continental subarctic
climates.

The source domain city used for the pre-trained ANN model is:

e Gothenburg, Sweden (Cfb) — Temperate oceanic climate featuring mild winters and
cool summers. The dominant energy demand type for Gothenburg is heating energy.

Figure 3.10 presents the global distribution of climate zones based on the K&ppen classification,
along with the climate types of the selected target cities and their relative similarity to the
source city.
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Chicoga Stockholm

Figure 3.10. Global climate zones based on K&ppen climate classification (adapted from [108])
and selected target cities.
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Figure 3.11. The distribution of the energy demand of the six selected cities.
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For the target cities, the synthetic datasets were generated using the same parametric modeling
approach employed in the database development for the base scenario, as shown in section 2.1.
The building shapes are identical to those in the base model scenario. Appendix C lists Energy
simulation settings for each target city's buildings. The developed datasets were further
formulated into various sizes for the experiment settings, from 200 to 2000 data points. Figure
3.11 presents the distribution of energy demand, including heating energy and cooling energy,
of all data points in the six cities.

3.3.3 Transfer learning implementation

There are multiple approaches to implementing TL. For a neural network model, the easiest
and most typical way to apply TL is to copy the base network model’s first n layers to the first
n layers of the target model [111]. The copied layers will be frozen and do not need to be trained
with new data. The remaining layers of the target network will then be randomly initialized and
trained using the target train dataset in the target task [10]. In this study, the features of the new
models and the base models are the same as the process tends to work if the features are general,
meaning suitable to both base and target tasks, instead of specific to the base task [112].
Therefore, the first selected TL method is to freeze the first n layers and retrain the rest with
new data. Based on this approach, we developed three TL models by freezing different numbers
of layers from the original ANN model: the first layer (A-1), the first two layers (A-2), and the
first three layers (A-3). The implementation is illustrated in Figure 3.12.
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Figure 3.12. TL implementation method for model A-1, A-2, A-3.

One efficient way to mitigate the issue of the discrepancy in data distributions between source
and target cities caused by differences in climate conditions and energy usage patterns is to
employ a domain-adaptive transfer learning framework using a Gradient Reversal Layer (GRL)
embedded in the neural network architecture [113]. Therefore, the second selected TL method
integrates a GRL into the existing ANN architecture. The GRL passes features forward
unchanged, but during backpropagation, it reverses gradients associated with domain-specific
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signals, acting as an implicit regularizer. This discourages overfitting to city-specific patterns
and promotes the extraction of domain-invariant features, improving the model’s
generalization ability across cities [114]. Without requiring an explicit domain classifier or
labeled data from the target city, this approach enables effective knowledge transfer under
different climatic conditions. Following the GRL, we added several additional fully connected
layers to form the task-specific regression head, which refines domain-invariant features into
accurate energy predictions. These layers are fully trainable and preserve the model’s capacity
to learn expressive, task-optimized representations while benefiting from adversarial domain
adaptation. Based on this approach, we developed three TL models by freezing different
numbers of layers from the original ANN model: the first layer (B-1), the first two layers (B-
2), and the first three layers (B-3). For each model, we added three more layers after the GRL:
the first layer contains 20 neurons, the second 16 neurons, and the third 8 neurons. The
implementation is illustrated in Figure 3.13.
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Figure 3.13. TL implementation method for model B-1, B-2, B-3.

It is worth noting that if the target dataset is large or the number of features is small, overfitting
becomes less of a concern. Although the target dataset is not considered large in this study,
there are only 14 features, which is quite small, so overfitting is not considered a problem. The
TL models were developed in the Python 3.9 environment using Scikit-learn. For each TL
model development, five experiments were conducted, and the results are the average value of
all experiments. Table 3.5 summarizes the details of the experimental setting, including the TL
models, how many layers they freeze, and the training dataset sizes.

Table 3.5. TL experiment setting.

. C. Retrain
Method A. Freezing Layers B. GRL+New Layers Model
Name A-1 A2 A-3 B-1 B-2 B-3 C
Frozen Layer Number 1 2 3 1 2 3 X
Base Model Training Data 12000 X
Target City Training Data 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000
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3.3.4 Evaluation method

The primary logic of the evaluation is to apply TL to the base models on the new tasks’ datasets
to assess whether this approach improves the prediction accuracy compared to developing a
new ML model from scratch using the dataset of the new task. The three evaluation metrics
selected in this study are root mean squared error (RMSE), determination coefficient (R?), and
mean absolute percentage error (MAPE). Apart from RMSE, the description could be seen at
Section 3.2.2, the description of the rest two metrics can be seen below. Time efficiency is also
included as an evaluation metric as reducing model developing time is one of the main reasons
to apply TL to begin with.

(1) R?
2 1 _ ZimOimI?
R*=1 2?:1(371'_?)2 (3)

Where n= the number of samples; i= the is sample; yi=the true value of the i, sample’s target
value; y,= the predicted value of the i sample’s target value; y = the mean of the actual values.

The R? indicates the proportion of the variance in the dependent variable that is explained by
the independent variables in the model. A higher R? value means that the model explains more
of the variability in the data. When R? equals 1, it indicates all predicted values match the actual
values; when R? equals 0, it indicates all model explains none of the variance in the data, and
predictions are no better than using the mean of the actual values; when R? is negative, it
indicates the model fits the data worse than simply predicting the mean of the data.

(2) MAPE

1 Yi=Y
MAPE =2 31, |y—| X 100 (&)
Where n= the number of samples; i= the i, sample; y=the true value of the i, sample’s target
value; y,= the predicted value of the i sample’s target value.

MAPE calculates the average of the absolute percentage differences between predicted and
actual values and is always expressed as a percentage. A lower MAPE indicates a more accurate
model. For example, an MAPE of 3% means the model's predictions are off by an average of
3% from the actual values.
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3.4 Study D: Exemplify the Implementation of ML Models.

The ML heating energy prediction model developed in Study B is tested in an optimization
workflow using a case study to compare its performance with that of an optimization workflow
utilizing a simulation engine. Two tasks are designed in this study to exemplify how the ML
models can accelerate the optimization. Task 1 is a single-objective optimization task, which
optimizes building energy demand only. Task 2 is a multi-objective optimization task that
optimizes both building energy demand and embodied carbon emissions. Embodied carbon
emissions is this study refer to greenhouse gas emissions related to material production in life
cycle module A1-A3 according to EN15978 [115]. The embodied carbon factors are taken from
the Swedish database [116].

Both tasks use the same case study. It should be noted that evaluating the best optimization
algorithms is not the primary focus of this study; rather, the aim is to exemplify applying ML
models in optimization workflow and demonstrate the potential of using ML in supporting
early-stage energy design decisions.

3.4.1 Case study description

The selected case study is a residential building project designed by Kaminsky Arkitektur. The
project is located in Bjorlanda, Gothenburg, Sweden. The design concept features a centralized
circulation area and four apartments, each with a corner location. The length of the initial
design is 32.3 meters, and the width is 15.8 meters. There are in total four floors, and each floor
has four apartments, two of which are 87 square meters and two are 70 square meters. There is
an equipment room that is 30 square meters. The initial building plan can be seen in Figure
3.14.

Apartment @ = Apartment
RS

\J
Apartment U} Apartment
=4

- . A . g

15.8 meter

Equipment Room

32.3 meter

Figure 3.14. Initial plan of the case study project.

The heating setpoint for the living area (apartments) is 21°C, the heating setpoint for
unoccupied areas (staircases and equipment room) is 10 °C. The rest of the energy setting is
listed in Appendix B. The initial energy demand for this project is 99.53 kWh/m?.
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3.4.2 Parameter setting

The aim of the early-stage optimization is to optimize the design to achieve a better
sustainability performance, but at the same time, keep the architect’s design concept. As

mentioned in Section 1, the first step of the optimization is to use parametric modelling to
generate numerous building design configurations. In this case, the building project is
parameterized in Grasshopper, Rhino. Table 3.6 presents the ADVs, the parameters that control

them, both in the initial design and the range in the optimization.

Table 3.6 Parameter setting.

ADV Parameter  Description Unit Value in If fixedin Range Step
the initial optimization
design
Building  Building The total area m? 475 N
Plan Area of each floor.
Building The width of Meter 15.8 X 8-18 0.1
width the building.
WWR Window  The height of ~ Meter 0.6 v
height each window.
Windon The ratio of 0.5 X 0.2- 0.1
length/ window length 0.8
wall length  to wall length.
Building angle The angle degree 24.5 V
orientation between the
main
orientation of
the building and
the north.
Storey Storey Number of 4 \
number floors.
Storey Height ofeach ~ Meter 3 x 3-35 0.1
height floor.
Shading Shading Type of 0 x 0-2 1
device type shading: 0
means
horizontal
shading, 1
means vertical
shading, 2
means
combination
shading
Shading Width of Meter 0.2 X 0.2- 0.1
length overhang 0.8
Envelope Wall U Wall U value ~ W/m>K 0.30 X 0.10- 0.01
Material value 0.60
Roof U Roof U value W/m*K 0.15 X 0.10- 0.01
value 0.20
Floor U Floor U value @ W/m*K 0.15 X 0.10- 0.01
value 0.20
Window U Window U W/m?-K 1.5 X 1.0- 0.1
value value 2.0
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For Task 1, the parameters listed in Table 3.3 are sufficient, since the objective is to simulate
and predict building operational energy, which only requires the U-values of the envelope
materials rather than their specific compositions. In contrast, Task 2 involves calculating
embodied carbon emissions, which necessitates more detailed material information. The
parameter settings of the ADVs, including Building Plan, WWR, Building Orientation,
Number of Storeys, and Shading Device, are consistent with those presented in Table 3.3. The
only exception is the parameter setting of the Envelope Material, which differs and is detailed
in Table 3.7.

Table 3.7 Envelope material parameter setting for Task 2

ADV  Parameter range Step Unit Valuein If fixed in description
the initial  optimization
design
Wall Index 0-2 1 X 0 X Different wall
composition
Insulation  100- 10 mm 300 X The thickness of the
thickness 500 insulation layer in
the wall composition
Roof Index 0-3 1 X 0 X Different roof
composition
Insulation  100- 10 mm 300 100-500 The thickness of the
thickness 500 insulation layer in
the roof composition
Window WindowU 1.1 x x x v x
value

Table 3.8 lists all the wall and roof archetypes used in this study. Each table lists the
construction type, its material layers arranged from interior to exterior. These archetypes are
retrieved and adapted from Boverket [116], serve as the candidate options for the optimization
process in Task 2, ensuring consistent and standardized representation of building envelope
configurations.

Table 3.8 Building Envelope Archetypes with Material Layers.

Construction Index Material Layers
Type
Wall 0 Gypsum board — Mineral wool — Sheathing — Vapor control layer —
Timber cladding

1 Gypsum board — CLT 120 mm — Mineral wool — Timber cladding
2 Concrete 150 mm — Mineral wool — Concrete 70 mm
Roof 0 Gypsum board — Mineral wool — Sheathing — Bitumen waterproofing
1 Concrete 200 mm — XPS — Bitumen waterproofing
2 Metal — Mineral wool — Bitumen waterproofing
3 Concrete 200 mm — Bitumen waterproofing — XPS insulation — 50 mm
screed

The optimization tasks keep the building design concept while optimizing the building shape
and envelope. Figure 3.15 presents the three design configurations in the parametric model
with different parameter settings as examples.
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Figure 3.15. Three example configurations in parametric modelling.

3.4.3 Optimization workflow development.
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Figure 3.16. The composition of an ML model for building energy prediction.

Figure 3.16 presents the two workflows applied in this study. The two workflows are developed
based on the concept presented in Figure 1.1. Workflow A represents the current most common
optimization workflow that uses the simulation engine. In contrast, workflow B represents the
proposed optimization workflow in this thesis that uses an ML model for more time-efficient
predictions. Both workflows are developed in Grasshopper, Rhino. The two workflows are
nearly identical; the only difference lies in the handling of the final evaluation. Since the
prediction values generated by the ML model do not perfectly match those from the actual
simulation engine, Workflow B includes an additional step at the end—re-simulating the most
optimal building design configuration obtained from the optimization process using the
original simulation engine.

The simulation in workflow A is achieved by using Honeybee, which uses the Energy Plus
simulation engine. The ML prediction model is an ANN model that was developed in Study B
and applied in Study C. The details of the ANN model can be seen in Table 3.1 in Section 3.3.1.
The ML model is integrated into the parametric design workflow using a custom Flask-based
inference server. First, a local API server was built using Flask, TensorFlow, and supporting
Python libraries to host the trained ANN model. This server receives input parameters in JSON
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format and returns prediction results via HTTP POST requests. To connect the server with the
Grasshopper environment, a GHPython scripting component was developed, allowing the user
to send the input ADVs directly to the server. The server processes the input and returns
predicted performance metrics, which are then visualized within Grasshopper. This setup
enables real-time feedback during the optimization process.

The embodied carbon emission calculation for Task 2 are based on material emission factors
and metadata retrieved from the Boverket material database [116]. A Python 3 script is
embedded in Grasshopper to conduct the calculation by multiplying material quantities derived
from layer thickness and element area by the respective emission factors, and then summing
across all layers to produce the total embodied carbon for a given envelope configuration. This
workflow ensures that each archetype evaluated in the optimization is associated with a
traceable, standardized embodied carbon value.

Wallacei was employed as the optimization tool within the Grasshopper environment. Wallacei
is a multi-objective evolutionary optimization engine based on the Non-dominated Sorting
Genetic Algorithm II (NSGA-II), a widely used multi-objective evolutionary algorithm. The
algorithm follows the principles of natural selection and evolutionary biology, where a
population of solutions evolves over successive generations toward better performance in terms
of the defined objectives. A key feature of NSGA-II is the preservation of a diverse set of
Pareto-optimal solutions. The algorithm uses a crowding distance mechanism to maintain
diversity within the population, preventing premature convergence toward a single solution.
This ensures that the outcome is not one single "best" solution, but rather a Pareto front that
illustrates the trade-offs between competing objectives. Moreover, compared with other
optimization plugins, Wallacei provides comprehensive recording of the entire optimization
process, including parameter values, objective scores, and population evolution across all
generations. Wallacei extends this functionality by integrating visualization tools and data
analytics, allowing users to explore and compare the evolutionary process, examine the
distribution of solutions across the objective space, and select configurations that best align
with project-specific priorities.

In the optimization setting, each iteration has 100 population, and the optimization process is
configured to terminate if the best solution remains unchanged for five consecutive iterations.
The rest of the settings for the optimization in this study are listed in Table 3.7. It should be
noted that the specific optimization settings are not the primary focus of this study; rather, the
aim is to validate the overall approach and demonstrate the potential of using an ML model in
supporting early-stage energy design decisions, rather than identifying the absolute best
configurations in this context.

Table 3.7. Optimization settings

Setting Parameter Value
Elitism 0.5
Mult. Probability 0.2
Mutation Rate 0.75
Crossover Rate 0.8
Population Size 100
Max. Generation 30
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3.4.4 Evaluation metrics.

Two key metrics are commonly used to evaluate optimization algorithms: computational time
and solution quality [117]. In this study, the first metric is the total computing time required to
complete the optimization. The second metric is task-dependent: For Task 1, solution quality
is measured by the best objective value obtained. For Task 2, solution quality is assessed using
the Hypervolume as an indicator. The Hypervolume measures the size of the objective space
dominated by the Pareto optimal solutions. It inherently reflects both the convergence quality
of the solutions and their diversity, since a more widely spread Pareto front results in a larger
hypervolume [118]. The higher the hypervolume value, the better the quality of the optimized
Pareto optimal solutions.

3.5 The Use of Al.

The four-year period during which this thesis was developed coincided with a rapid
acceleration in Al technologies, particularly in large language models. These developments
created new opportunities to enhance research workflows while maintaining methodological
rigor. In this thesis, Al tools such as ChatGPT, GitHub Copilot, Google Gemini, and DeepSeek
were used in a limited and transparent manner to support specific aspects of the research
process.

The use of Al is primarily focused on two areas. First, Al-assisted language tools were
employed to refine the clarity, coherence, and academic tone of English writing. This includes
improving sentence structure, strengthening argumentation, and ensuring stylistic consistency
across chapters. All conceptual content, analytical reasoning, and scientific conclusions remain
the author’s own work. Second, Al-based coding assistants were used to support programming
tasks, particularly for Python scripting, debugging, and generating alternative implementations
for comparison. These tools were especially useful for improving code efficiency, identifying
syntax errors, and exploring different approaches within the parametric modeling and machine
learning workflow. However, all algorithms, data-processing pipelines, and model-
development decisions were designed, tested, and validated by the author.

Overall, the integration of Al tools reflects contemporary research practice and serves as a
means to enhance productivity, accuracy, and clarity. Their use was carefully managed to
ensure that the intellectual contributions, technical decisions, and scientific insights presented
in this thesis are the result of independent scholarly work.
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Chapter 4

Findings

4.1 Study A: Influential ADVs for Early-stage Building Energy
Optimization

Study A reveals the most influential ADVs for building energy optimization from both a
literature and a stakeholder point of view. The selected ADVs, their definitions, and the
influence of various ADVs in building energy demand from the literature review using the
metrics mentioned in Chapter 3 as the influential factor can be seen in Table 4.1. It is
presented that the window-to-wall ratio (WWR) on the four different facades has the biggest
impact on building energy demand, reaching an influential factor of 0.81. This means that
more than 80% of the academic papers looking into building energy optimization include
WWR as input ADV. As mentioned in Chapter 3, an ADV is considered influential in
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literature when the rating is over 0.5, which indicates more than half of the previous studies
include it. Under this criterion, building plan and building orientation are also influential
ADVs for building energy, as they have 0.61 and 0.58 influential factors respectively.

Table 4.1. Selected ADVs, their definitions, and their influence on building energy
demand from the literature

ADV Definition Influential factor on
building energy
demand
Window-to-wall ratio on Fraction of the exterior wall above grade 0.81/0.81/0.81/0.81

north/south/west/east that is covered by fenestration on the north

(WWR N, WWR S, /south/west/east fagade, respectively

WWR_E, WWR_ W)

Building plan Vertical projection onto a horizontal plane 0.61

cutting through the building, showing the
size and arrangement of spaces

Wall material Material used for external walls 0.58
Building orientation Relationship of a building and the 0.35

positioning of its windows, rooflines, and

other features to the building site
Roof material Material used for the roof 0.32
Shading device An integrated component of a window or | 0.32
protecting the interior space from direct
sun, overheating, and glare

Storey height Height of each floor 0.26
Storey number Number of floors 0.16

Figure 4.1 provides the average rating that the surveyed architects and sustainability
consultants provided for the influence each ADV has on building energy demand. The ADVs
with an average rating higher than 3 are considered influential as the scale was from 1 to 5. The
color of the legend implies the influence a certain ADV has on building energy demand. Red
indicates high influence while blue indicates low influence. While the two stakeholder groups
gave similar ratings across the ADVs, sustainability consultants tended to give higher ratings
than the architects. Both architects and consultants consider WWR_N, WWR_S; shading
device, and wall material influential ADVs, while consultants also consider WWR _E,
WWR_ W, storey number, roof type, and roof material influential.
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Figure 4.1. Rating of ADV influence on building energy demand from stakeholders.
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Figure 4.2 compares the influence of ADVs from the literature and stakeholder perspective.
The ratings from stakeholders are the mean value of all 24 participants, including 12 architects
and 12 sustainability consultants. It can be seen that WWR, building plan, and wall material
are considered influential by both literature and stakeholders, while the stakeholders’ opinion
on the influence of WWR S is stronger than in the literature yet the influence of building plan
is weaker than In the literature. Building orientation, shading device, storey number, storey
height, roof type, and roof material are influential according to stakeholders but not in the

literature.
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Figure 4.2. Comparison of ADV influence on building energy between the literature and
stakeholders.

In summary, the ADVs that should be the input for the ML building energy prediction model
are building plan, building orientation, WWR on four facades, shading device, storey number,
storey height, roof type, roof material, and wall material. However, it is worth noting that
although roof type is considered influential, it is not included in the further ML model
development. This is because most mid-rise residential buildings in Sweden have cold roofs,
which means the insulation is installed at the ceiling level, not on the roof itself. In this case,
roof type will not influence the building’s energy performance and therefore are excluded.
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4.2 Study B: Synthetic Dataset Recommendations for ML Energy
Prediction Models in Early-stage Optimization.

4.2.1 ML models’ accuracy with various training datasets

The performance of the ML models in this study includes accuracy and computational
efficiency. The size of the training dataset in this study refers to how many data points the
dataset contains, and the diversity of the training dataset refers to how many building types the
dataset contains. Figure 4.3 visualizes the training datasets in terms of size and diversity. Since
the testing dataset contains nine building types, the training dataset with the lowest diversity
covers around 22% of the testing dataset while the training dataset with the highest diversity
covers around 89% of the testing dataset.

Size

small large

—

100 data 300 data 600 data 1440 data 2280 data 3120 data 4800 data
points points points points points points points

Diversity

low high
2 building types 6 building type

: (covers around 22% of (covers around 44% of (covers around 67% of (covers around 89% of

. the testing dataset) the testing dataset) . the testing dataset) . the testing dataset)

Figure 4.3. Visualization of the characteristics of the training datasets.

4.2.1.1 ML models’ accuracy when increasing training dataset size

The five selected algorithms are applied to all 32 training dataset categories to investigate how
the ML model’s accuracy performance changes when increasing the size of the training dataset.
In each training dataset category, five training datasets were developed with randomly selected
building types. The value of RMSE and MAE presented in Figure 4.4 is the average value of
all five sets of experiments.
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Figure 4.4. RMSE and MAE for five ML models when increasing dataset size for dataset with
different diversity.

When the training dataset size is smaller than 300, increasing the dataset size can improve the
ML model’s accuracy significantly, especially when the algorithm is ANN. When increasing
the dataset size from 300 to 1440, there is still an evident improvement in model performance.
However, the accuracy of all ML models does not improve by more than 5% by increasing the
dataset size after the dataset size reaches 1440 in general. Therefore, when generating synthetic
datasets for an ML energy prediction model in the early stage, it might not be necessary to have
more than 1440 data points in the training dataset considering that the generation of data points

can be very time-consuming.
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It Is also worth noting that the Impact on ML models’ accuracy when Increasing data points
also depends on the diversity of training datasets under certain circumstances. Before the
dataset size reaches 600, increasing training data points can make more improvement for the
ML model that is trained on lower-diversity datasets compared with the models trained on
higher-diversity datasets. However, after the dataset size reaches 600, the extent of
improvement for models trained on datasets with different levels of diversity does not show
much difference when increasing data points.

Among the five algorithms, ANN is the most sensitive in terms of the training dataset size.
When using ANN as the ML algorithm, it is more productive to improve the model’s accuracy
by increasing the number of data points in the training dataset, especially from 100 data points
to 600 data points. Compared with other algorithms, MLR is the least sensitive algorithm in
the size of the training dataset. Increasing the training dataset size does not make much impact
on MLR’s accuracy.

4.2.1.2 ML models’ accuracy when increasing training dataset size

Dataset categories A3-D3 (600 data points with different diversity), AS5-D5 (2280 data points
with different diversity), and A8-D8 (4800 data points with different diversity) were taken as
examples to investigate the impact of increasing dataset diversity on the ML models’ accuracy
performance under small, medium, and large dataset sizes.

Figure 4.5 shows that in general, increasing the training dataset’s diversity can improve ML
model accuracy significantly, especially when the dataset’s diversity goes from covering only
around 22% of the data in the testing dataset (2-type-building training set) to covering around
67% of the data in the testing dataset (6-type-building training set). However, the accuracy of
all ML models does not improve by more than 10% by increasing the dataset size after the
dataset contains more than six building types, covering around 76% of the building types in the
testing dataset. It is also presented in Figure 4.5 that enhancing data diversity can achieve more
improvement when the training dataset size is smaller. In general, the results achieved give the
impression that increasing data diversity is more beneficial for reaching higher accuracy than
increasing dataset size after the training dataset reaches 600 data points in this case.
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Figure 4.5. RMSE and MAE for five ML models when increasing dataset diversity under
various sizes.

Among the five ML algorithms, SVM and RF are more sensitive to data diversity, which means
that they improve more when increasing data diversity compared with other algorithms. DT is
the least sensitive algorithm for training data diversity; its accuracy does not improve much
when increasing dataset diversity. In the most extreme case, when increasing the training data
diversity from 6 building types to 8 building types for 600-point datasets, the DT model’s
accuracy even worsens. This is further discussed in Chapter 5.

4.2.2 ML models’ computational efficiency

Figure 4.6 presents the training time for five ML models when increasing dataset diversity for
various sizes. It can be seen that MLR requires less than 0.005 seconds for the training process,
which is the least amount of required time among the five algorithms. DT also has good
performance in computational efficiency, the training time for DT does not exceed 40 seconds
even for the biggest and the most diverse training datasets. The longest required training time
for ANN and SVM does not exceed 110 seconds and 600 seconds respectively. RF has the
worst performance in computational efficiency, the required training time can go up to more
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than 5000 seconds when the dataset is large. Even when the training dataset is small and has
low diversity, the training time for RF is always the longest among all five selected algorithms.
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Figure 4.6. Training time for five ML models when increasing dataset size for various
diversity.

It is also presented that the model computational efficiency is only influenced by the training
dataset size, not diversity. Except that MLR’s computational efficiency performance is always
consistent regardless of the characteristics of the training dataset, the required training time for
the rest ML models increases when the training dataset’s size increases. However, the level of
sensitivity for different ML models is different. The correlation between the growth rate of
required training time and the growth rate of dataset size for SVM is exponential, while it is
linear for the other algorithms. Specifically, Table 4.2 presents how much training time
increases for all ML algorithms except for MLR for every 1000 more data points.
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Table 4.2. The increase in training time for different ML algorithms

ML algorithm Increased training time for every 1000 more data points (seconds)
ANN Around 17
DT Around 7
RF Around 1100
SVM From around 45 to around 230 depending on the size of the training datasets

Figure 4.7 shows that for all developed ML models, the predicting time for the entire testing
dataset does not exceed 0.3 seconds, which means that the predicting time for one building
configuration takes less than 0.0003 seconds. This is a significant improvement compared to
using a building energy simulation engine such as Energy Plus, which takes around three
minutes for one simulation on the same computer.
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Figure 4.7. Testing time of five models.

4.2.3 Recommendations for developing ML energy prediction model for early-stage
optimization

4.2.3.1 Recommendations for selecting algorithms for various training datasets

Figure 4.4 and Figure 4.5 show that different ML algorithms perform differently for different
training datasets, and the best-performing algorithm varies. Figure 4.8 presents the best-
performing ML algorithms for different training datasets in terms of accuracy. The X-
represents the diversity of the training dataset while the Y-axis represents the size of the training
dataset. The best-performing algorithms for each dataset category are listed. In general, SVM
is the ML algorithm that performs best for almost all training datasets. MLR performs best
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compared to other algorithms when the training dataset is very small or has low diversity. RF
performs best for medium-size training datasets with low-to-medium diversity. ANN performs
best when the training dataset has high diversity and large size. DT has the worst performance
in terms of accuracy in all training dataset categories and therefore is not a suitable algorithm
for predicting building energy demand.

low Diversity high
small Al BI 1
SVM, MLR SVM, MLR SVM, MLR
A2 B2 2
SVM, MLR SVM, RF SVM, MLR, RF
A3 B3 3
SVM, MLR SVM, RF SVM, RF

. A4 B4
Size SVM, MLR, RF SVM, RF SVM, ANN

A5 B5
SVM, MLR, RF ANN, SVM

SVM, ANN

SVM, RF, ANN SVM, ANN

large SVM, RF, ANN SVM, ANN

Figure 4.8. Best-performing ML algorithms for various training datasets in accuracy.

When selecting the most appropriate ML algorithm for developing energy prediction models,
it is also important to take computational efficiency into consideration. Although RF performs
well for certain datasets, the hyperparameter tuning for RF can require much more
computational time compared to other algorithms. Taking the training dataset category A8 as
an example, the time for training the RF model is almost eight times more than the SVM model.
On the other hand, for smaller training datasets, MLR is also a good option. MLR models have
the second-best accuracy performance for small datasets and require nearly no training time as
they do not have the hyperparameter tuning process.

In summary, it is recommended to use SVM as the algorithm for building energy prediction
models as it is the best-performing one for most training dataset categories, and the required
training time is also in the middle position among all selected algorithms. When the training
dataset has low diversity and/or small size, it is recommended to consider MLR. MLR has a
relatively high accuracy performance and costs nearly no time in the training process. Moreover,
MLR is one of the basic ML algorithms and is very easy to pick up. When the training dataset
has high diversity and/or large size, ANN is also recommended.

4.2.3.2 Recommendations for generating synthetic datasets for different algorithms

As mentioned in Chapter 1, generating a synthetic dataset can be very time-consuming.
Therefore, when developing ML building energy prediction models, it is essential to
understand how many data points are enough and how diverse are enough. Figure 4.9 presents
the accuracy performance of the five models using different training datasets.
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Figure 4.9. RMSE and MAE for five models with different training datasets.

When developing an ML prediction model for early-stage optimization, it is considered that an
RMSE that is lower than 7% (around 5.5 in this study) and an MAE that is lower than 5%
(around 4 in this study) are reasonable performance for early-stage predictions based on
previous studies [70] [73] [78] [80]. Under this circumstance, SVM, ANN, and RF are the
proper algorithms to select as they have the best accuracy performance among all the
experiments. Table 4.3 presents the least requirement of a training dataset for each ML
algorithm to have reasonable performance.
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Table 4.3. The least requirement of a training dataset for each ML algorithm to have
reasonable performance

ML Size and diversity of the corresponding training dataset
algorithm

SVM Size: 1440 data points

Diversity: 6 building types (cover around 67% of the diversity in the testing
dataset)

ANN Size: 2280 data points Size: 1440 data points
Diversity: 6 building types (covers Diversity: 8 building types (covers
around 67% of the diversity in the around 89% of the diversity in the testing

testing dataset) dataset)
RF Size: 3120 data points
Diversity: 8 building types (covers around 89% of the diversity in the testing
dataset)

In general, a synthetic dataset with more than 1440 data points and a diversity that covers
around 67% of the testing dataset with SVM is the least requirement for a high-performance
ML model. A training dataset containing more than 3120 data points and a diversity that covers
around 89% of the testing dataset with either of the three mentioned algorithms can guarantee
to develop a high-performance model.

However, when willing to slightly compromise the accuracy of the ML model for higher
efficiency and less time in generating the training dataset, multiple ML algorithms can be
considered. For instance, if the set goal is to achieve an RMSE that is lower than 10% (around
7.8 in this study) and an MAE that is lower than 7% (around 5.5 in this study), small training
datasets can also be enough for developing the ML models. A training dataset with 300 data
points and a diversity that covers around 67% of the diversity in the testing dataset can be
enough for developing an MLR, RF, or SVM model with the above accuracy performance; a
training dataset with 600 data points and a diversity that covers around 67% of the diversity in
the testing dataset can be enough for developing an ANN model with the above accuracy
performance. Although it is normally very time-consuming to conduct hyperparameter tunning
for the RF model, the tuning time is only around 200 seconds when the dataset contains only
300 data points, making the process more affordable. In general, the dataset size can be smaller
when comprising the accuracy for higher time efficiency, but the dataset diversity always needs
to be up to at least covering around 67% of the diversity in the testing dataset.

4.2.4 Synthesis of Study B

Study B reveals the performance of five selected algorithms regarding training datasets with
different sizes and diversity and makes recommendations. In terms of selecting the ML
algorithm, SVM performs well in terms of accuracy for all training datasets and has an
acceptable performance in computational efficiency. MLR is recommended for training
datasets with smaller sizes and lower diversity while ANN is recommended for training datasets
with larger sizes and higher diversity. In terms of generating synthetic training datasets, to
achieve reasonable accuracy, the dataset needs to have more than 1440 data points and a
diversity that covers around 67% of the diversity in the testing dataset. Overall, this section
provides recommendations for developing an ML energy prediction model for building early-
stage optimization.
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4.3 Study C: Applying ANN Early-stage Building Energy
Prediction Models to Alternative Climates Using TL

4.3.1 Improvement of applying various TL models for different scenarios.

Figure 4.10 presents the RMSE of various TL models and retrained ANN models in predicting
heating energy demand in the selected target cities. The horizontal axis represents the size of
the target city training dataset, while the vertical axis indicates the model’s RMSE. As several
selected metrics exhibit similar trends, only the RMSE results are presented in this section,
while MAE, MAPE, and R? can be found in Appendix D.

As shown in Figure 4.10, the results indicate that multiple TL models outperform models
trained from scratch in predicting heating energy demand across the four target cities. However,
the number of effective TL models and the degree of improvement vary. In both Stockholm
and Chicago, all TL models outperform the baseline retrained model. In Seattle, all TL models
except for A-1 show better performance. For Madrid, only the TL models developed by method
2 yield improved results.
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Figure 4.10. RMSE of TL models and retrained ANN models under different training
dataset sizes in predicting heating energy demand for four cities.

Figure 4.11 presents the RMSE of various TL models and retrained ANN models in predicting
total energy demand in the selected target cities. The results suggest that the performance of
TL models in predicting total energy demand across different target cities generally follows a
similar trend to that observed in heating energy demand prediction in Figure 4.10. Since
Stockholm does not require cooling energy, it is excluded from Figure 4.11. The patterns
observed in Seattle and Chicago in Figure 10 are consistent with those for heating energy in

-64-



Figure 4.10, where the majority of TL models improve the prediction accuracy of total energy
demand. In contrast, TL performance in Madrid and Miami is less effective. For Madrid, only
models B-2 and B-1 show improvements compared with retraining, while for Miami, only
model B-1 is more effective than retraining, and even then, the improvement is limited.
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Figure 4.11. Accuracy of TL models and retrained ANN models under different training
dataset sizes in predicting total energy demand for four cities.

Overall, it can be observed that when applying TL models to predict building energy demand
in target cities that differ from the source domain city, the performance of Methods A and B
depends on the similarity between the two cities. When the target and source cities share similar
climatic conditions, the differences between Methods A and B are not prominent. In such cases,
for heating demand prediction, all TL configurations tend to yield improvements regardless of
the number of frozen layers, and the impact of the number of frozen layers is relatively small.
For total energy demand, freezing one or two layers performs better, while freezing three layers
may not lead to further improvement. Conversely, when the target and source cities differ
significantly in climate and energy type composition, Method B substantially outperforms
Method A and tends to require fewer frozen layers. In general, Method B shows superior
performance across settings, with better results observed when fewer layers are frozen.

4.3.2 Improvement of applying TL in target cities for various dataset sizes.

The best-performing TL model for each scenario are selected and evaluated its performance
gain compared to the retrained model (Method C). Figure 4.12 presents the improvement
achieved by the TL models over retraining from scratch. Specifically, Figure 4.12 (a) shows
the results for heating energy prediction, while Figure 4.12 (b) illustrates those for total energy
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prediction. Two evaluation metrics are used—R? and MAPE—since R? is bounded by 1 and
MAPE is a percentage, making them more interpretable and comparable across different cases.
The x-axis of Figure 4.12 represents the size of the training dataset for the target city. At the
same time, the y-axis indicates the improvement in R? and the reduction in MAPE achieved by
the best-performing TL model relative to the retrained model.

(a) Improvement of the best-performing TL model for heating energy demand prediction

R2 MAPE

(b) Improvement of the best-performing TL model for total energy demand prediction

R2 MAPE

Figure 4.12. Improvement of the best-performing TL for heating and total energy demand
prediction.

As shown in Figure 4.12, except for the case where the training dataset size for Miami is 2000,
under which TL fails to improve prediction accuracy, TL consistently enhances performance
across all other settings. The trends in Figure 4.12 are clear: in general, the smaller the training
dataset size for the target city, the greater the performance improvement achieved by TL. For
heating energy demand prediction, the greatest improvement is observed for Seattle, which is
the city most similar to the source domain city (Gothenburg) in terms of climate (they are both
in climate zone C), while the smallest improvement occurs for Madrid, which is the most
dissimilar. A similar trend is observed in total energy demand prediction: TL provides the most
significant gains for Seattle and the least for Miami. In general, these results highlight that TL
is particularly beneficial when training data in the target city is limited and when the source
and target cities share similar energy behavior characteristics.

4.3.3 Difference of TL performance in predicting heating energy demand and total
energy demand for various target cities.

Figure 4.13 illustrates the performance improvement of the best-performing TL model over the
retrained model in predicting both heating and total energy demand for the same target city,
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across different training dataset sizes. Only three cities—Seattle, Chicago, and Madrid—are
included in this figure, as they require both heating and cooling energy. Stockholm and Miami
were excluded because the former only has heating demand and the latter only has cooling
demand.
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Figure 4.13. Accuracy of TL models and retrained ANN models for heating and total
energy.

As shown in Figure 4.13, in most cases, except for the prediction of building energy in Seattle
with a training dataset size of 1000, the TL model yields greater performance improvement for
heating energy demand prediction, which aligns with the energy type used in the base model.
This trend becomes more evident and consistent when the target city differs more significantly
from the source domain city in terms of climate conditions and energy type composition.

4.3.4 Improvement of applying TL in time efficiency.

One of the key advantages of using TL is the significant reduction in model development time.
Figure 4.14 presents the average training time required to predict energy demand with and
without TL. As shown in Figure 4.14, the training time needed to predict heating and total
energy demand in different target cities is considerably lower when using various TL models
compared to retraining a full ANN model from scratch. We selected the average value to
indicate the training time, as the trends for different cities are consistent.
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Figure 4.14. Average training time of TL models and retrained ANN models under
different training dataset sizes for energy prediction of target cities.

It can be seen that, regardless of the TL approach used, the training time is consistently much
shorter than that of full retraining. Moreover, within the TL models, freezing three layers of the
original ANN requires the least training time, followed by freezing two layers, and then one
layer. This trend is more pronounced in Method B. However, although freezing more layers
leads to shorter training times, the differences are not substantial. Even the slowest TL model
completes training in under three minutes, demonstrating the efficiency of the TL approach.

4.3.5 Reduction in required training data by applying TL.

It is well known that ML models typically require large volumes of training data to achieve
high performance. However, generating such training datasets, particularly in the context of
building energy simulation, can be time-consuming and computationally expensive. Figure
4.14 does not account for the time required to generate training data. Figure 4.15 shows the
minimum data requirement at varying accuracy levels with and without TL.

(A). Minimum Data Requirement at Varying Accuracy Levels for Predicting Combined Heating and Cooling Energy
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(B). Minimum Data Requirement at Varying Accuracy Levels for Predicting Heating Energy
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Figure 4.15. Minimum Data Requirement at Varying Accuracy Levels with and without
TL.
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It can be seen in Figure 4.15 that TL can use substantially smaller training datasets while
achieving comparable prediction accuracy to models trained from scratch with much larger
datasets. This trend appears to be more pronounced when the target city shares greater
similarity with the base city. For instance, in the case of heating energy prediction, TL enables
the model to achieve an R? of 0.85 for Seattle while using 1,600 fewer training samples
compared to retraining. Similarly, when predicting the total energy demand (heating and
cooling combined) for Chicago, TL achieves a MAPE of 4% with 1,400 fewer samples.
However, in the case of Miami, where the energy demand is entirely cooling-based and the
climatic conditions differ substantially from the source city, the maximum data savings
achieved by TL is limited to 600 samples, with the corresponding R? reaching only 0.70. In this
study, generating a single data point takes approximately seven minutes on average. By
applying TL, the amount of required data can be significantly reduced, resulting in time savings
of up to 186 hours, which is more than a whole week. Therefore, in addition to reducing model
training time, TL significantly improves overall time efficiency from a data generation
perspective. This further highlights the practical advantage of TL in accelerating the model
development cycle, especially in data-scarce or resource-constrained scenarios.

4.3.6 Synthesis of Study C.

Study C explores the generalizability of the developed ML building energy prediction model
by applying it to make energy predictions in different climate contexts using TL. The results
suggest that TL in general can be an effective strategy, but it performs best when the target city
shares similar climatic conditions and energy use patterns with the base city, such as Seattle,
Stockholm, and Chicago, and its effectiveness decreases when the climate difference is large,
as seen in the case of Madrid and Miami. It is also suggested that TL models’ performance is
more evident when the target dataset contains limited data (below 600 data points), and the
improvement becomes smaller as the amount of training data of the target city increases. The
effectiveness of TL also differs depending on the energy type being predicted, TL is more

effective when predicting heating energy than total (heating + cooling) energy demand within
the same target city. Since the base model is trained specifically for heating energy in a cold
climate, its internal representations align more closely with heating-dominant patterns.

One of the most significant advantages of generalizing an existing ML model using TL instead
of developing a new one is its potential to drastically reduce the time and data needed to
develop reasonably accurate prediction models. In some cases, TL required 10001600 fewer
training samples to reach comparable performance to a fully retrained model. Given that
generating each training sample in this study took about 7 minutes, TL could save up to 186
hours of computational time. Moreover, applying TL can also improve decent accuracy, like an
R? of 0.85 and an MAPE of 5% with limited data as few as 600.

In summary, this study confirms the potential of generalizing ML models by using TL to
support efficient, data-light, and scalable energy prediction across geographic regions. It
highlights TL as a promising tool for accelerating the development of early-stage building
energy optimization tools.

-69 -



4.4 Study D: Evaluation and Comparison of the ML-based Early-
stage Building Energy Optimization.

4.4.1 Results for Task 1.

Task 1 is a single objective optimization task that aims to find the building design configuration
with the minimum building energy demand. Table 4.4 presents the optimization results based
on the settings presented in Section 3.4. Optimization workflow A utilizes Energy Plus as the
simulation engine, whereas optimization workflow B integrates the ML prediction model,
rather than relying on simulation. The results show that the computational time of Workflow B
is 38 hours less than Workflow A, which is a prominent improvement in time efficiency.
Although the energy demand of the optimal building design configuration proposed by
Workflow A is a bit lower than Workflow B, the difference between them is only 0.29 kWh/m?.

Table 4.4. Optimization results comparison of Task 1.

Optimization Optimization
Workflow A Workflow B
Number of Iterations 22 28
Optimization Time 38 hours 37 22 minutes 47
minutes 42 seconds
seconds
Simulated Energy Demand of the Optimal Building 72.82 73.11
Design Configuration (kWh/m?)
Parameters of the Building width (Meter) 9.9 9.9
Optimal Building Window length/ wall length 0.8 0.7
Design Configuration Storey height (Meter) 3.0 3.0
Shading type 1 0
Shading length (Meter) 0.2 0.2
Wall U value (W/m?-K) 0.1 0.1
Roof U value (W/m?-K) 0.1 0.1
Floor U value (W/m?-K) 0.1 0.1
Window U value (W/m?-K) 1.0 1.0

Figure 4.16 presents the optimal building design configuration proposed by the two Workflows.
It can be seen from both Figure 4.16 and the parameters of optimal building design
configurations from Table 4.4 that the two configurations are highly similar. The most
influential ADVs are the same, including the building width, storey height, and envelope U
values. This proves that the ML-based building energy optimization workflow proposes the
optimal solutions in the same direction as the simulation engine-based building energy
optimization workflow, but with a much higher computational efficiency.
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(a) Optimal Building Design Configuration proposed by
Optimization Workflow A

(b) Optimal Building Design Configuration proposed by
Optimization Workflow B

Figure 4.16. Optimal building design configurations proposed by the two optimization
workflows.

4.4.2 Results for Task 2.

Task 2 is a multi-objective optimization task that aims to find the building design configuration
with the minimum building energy demand and embodied carbon emissions. Figure 4.17
presents the Pareto front results of the two proposed optimization workflows. It is worth noting
that in this study, the k-means clustering algorithm was applied to the obtained Pareto solutions.
This procedure groups the solutions into 10 clusters, which facilitates a more structured
analysis of the Pareto front and enables clearer comparisons across optimizations.
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Figure 4.17. Pareto front of the solutions proposed by the two optimization workflows.

Figure 4.17 illustrates that Workflow A exhibits a broader coverage of the objective space, with
its solutions extending closer to both axes. In contrast, Workflow B produces a more
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concentrated set of solutions within the mid-range of energy demand (72—82 kWh/m?), yet with
relatively higher embodied carbon values in the low-energy region. This indicates that
Workflow A achieves more favorable trade-offs between minimizing embodied carbon and
reducing building energy demand, whereas Workflow B demonstrates competitive
performance in lowering energy demand but provides less benefit in carbon reduction. Given
that both optimizations employed the same algorithm, the most plausible explanation for the
superior Pareto coverage of Workflow A lies in the evaluative fidelity: Workflow A was
assessed using a simulation engine, while Workflow B relied on a machine learning surrogate
model, with the higher fidelity of the simulation engine likely contributing to the enhanced
performance of Workflow A.

Table 4.5 presents the evaluation metrics for both optimization workflows. For the
Hypervolume calculation, it is necessary to define a reference point that is worse than all
obtained solutions. In this study, the reference point was determined by taking the maximum
values of each objective among all solutions from both workflows and then adding a margin of
5 units to each objective. Based on this procedure, the reference point was set to have 91.92
kWh/m? energy demand and 54.90 kgCO,e/m? embodied carbon emission. Using the same
reference point for both workflows ensures that the Hypervolume values are directly
comparable. As mentioned in Section 3.4.4, a higher value in hypervolume indicates higher
quality solutions. Table 4.5 shows that although Workflow A has a higher quality solution,
Workflow B demonstrates a remarkable improvement in computational efficiency, completing
the optimization nearly sixty hours faster than Workflow A.

Table 4.5. Evaluation results comparison of Task 2.

Evaluation Metric Workflow A Workflow B
Computational Time 62 hours, 36 minutes, and 3 1 hour, 40 minutes, and 50 seconds
seconds
Hypervolume 416.98 367.40
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Chapter 5

Discussion

5.1 Towards a Holistic Perspective in Identifying Input ADV's

Study A identified the most influential ADVs for building energy optimization through a
literature review and a stakeholder point of view and used them as the input for the ML energy
prediction model. Section 4.1 discussed how the opinions of stakeholders and literature are not
always aligned. This finding is not specific to building energy, when applying the same method
to investigate the influential ADVs for other sustainability objectives, such as daylight or
embodied carbon, the discrepancies between the literature and the stakeholders are observed
(see appended paper).
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The discrepancies between the literature and the stakeholders can represent the discrepancies
between academia and industry when it comes to early-stage optimization. It could be
explained by multiple reasons. First, most academic studies use computer simulation as the
main method when trying to evaluate a building’s performance or investigating how to optimize
a building design. Computer simulation is a reasonable and feasible alternative as it has an
acceptable level of accuracy and is easy to implement, yet it is also very well-known that
simulation results can differ from reality [119]. There are multiple reasons leading to this. For
instance, the computational simulation always needs weather data as input, which can lack
accuracy; most simulation engines use simplified modeling assumptions, which may not fully
capture the intricacies of real-world conditions; occupants’ behaviors may be unclear, and
equipment performance in real-world conditions may differ from that in a simulation.
Furthermore, the simulation results are normally very specific to a certain case and context.
Many studies state that their results are valid only for the particular situation and are not
generalizable [120][121]. Therefore, it is crucial to include stakeholders’ opinions as their
experience is usually based on working with real building projects, and their knowledge could
compensate for the shortcomings of computer simulation results, especially when developing
a tool that is highly based on ML.

However, this does not mean that the stakeholders always hold objective answers. Through the
six follow-up interviews, it was found that the respondents’ answers can sometimes be very
subjective. First, the stakeholders are more willing to give an ADV a lower rate and consider it
to be less influential when they feel reluctant to change it for a lower building energy demand.
For instance, according to section 4.1, building plan is more influential in the literature than for
stakeholders, and this is because changing building plan takes much more than changing for
example WWR. Thus, some stakeholders said that they tend to give it a lower rating as they
are not willing to change it to improve the building’s performance. Another reason is that the
stakeholders could give higher ratings when they are more familiar with the subject. This
statement is also supported by the fact that sustainability consultants tend to give higher ratings
than architects as they are more familiar with the energy optimization process. However,
although stakeholders’ opinions are not entirely objective and consistent, it is still reasonable
to consider them. This is because the stakeholders will be the end users of the developed
optimization tools, and it is crucial to make sure that their preferred ADVs are included to
guarantee that they are willing to use the tools in the first place.

It is worth noting that although this thesis only focuses on the Nordic countries, the literature
review of identifying ADVs is not restricted to the Nordics. Not only did many articles not
specify the geographical region, but if the focus were only on the Nordics, there would not
have been a sufficient number of papers for analysis. However, it is argued here that the
influential ADVs for building energy do not necessarily change across the regions. This is
further explained in Appendix E.

While surveys are used as the main method to gain stakeholder insights, surveys with closed-
ended questions may have a lower validity rate. Further, our study involved only 12 architects
and 12 consultants. To check the validity of our results, we took answers from ten randomly
chosen respondents for each stakeholder category to calculate the comparative results
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(Appendix F). The difference between the mean rating for 20 respondents and that for 24
respondents is small: 98% of the difference in average rating is from 0 to 0.2, with most results
around 0.05. The small difference in the rating between 20 respondents and 24 respondents
indicates that an increase in the number of respondents would most likely not lead to a different
result.

In general, Study A tries to include stakeholders’ insight into the process of developing an ML-
based building energy optimization tool by including the input ADVs the stakeholders consider
as influential. Incorporating stakeholders’ opinions in developing ML-based tools is crucial as
they have a better contextual understanding and can offer not just field-specific knowledge but
also practical insights. This study chose to include stakeholders’ insight in the process of
selecting input AD Vs as stakeholders are also the end users of the developed tool, and including
the ADVs they want to use in the ML tool can ensure usability. However, according to previous
research, there are also multiple other ways to introduce stakeholders in the process of
developing tools [122]. For instance, stakeholders can be included in the process of
parameterizing ADVs, or in the process of tool interface design to make sure it is user-friendly
enough, or in defining the optimization criterion. Other methods of integrating stakeholders’
opinions can be further investigated in the future.

5.2 Reflections on Developing ML Early-stage Building Energy
Prediction Models.

5.2.1 Reflections on the generation of synthetic datasets.

Study B investigated the best-performing ML algorithm depending on different characteristics
of synthetic datasets and provided recommendations for selecting algorithms and generating
synthetic datasets. In the ML experiments’ setting, the maximum dataset size was 4800 and it
is defined in this study as a large dataset. However, it can be frequently seen in previous
research that a training dataset that contains more than ten thousand or even twenty thousand
data points is used in developing ML energy prediction models for buildings [15][70]. Having
such large training datasets can for sure guarantee the model’s accuracy; however, as mentioned
in Chapter 1, it is not easy to acquire large existing datasets or generate large synthetic datasets.
Therefore, this study chose to specifically explore how to develop an ML energy prediction
model with smaller training datasets. It is summarized in the literature review that the minimum
size of the training dataset in developing an ML model in building energy prediction with high
performance is around 5000 data points [123][124]. Therefore, this study only investigated
small datasets with data points below 5000 to see if the ML model could achieve reasonable
performance with limited data points to improve efficiency and make ML more affordable for
researchers and practitioners to apply in early-stage optimization.

Nine different building types were developed in parametric modeling to investigate the
influence of synthetic dataset diversity on ML models’ performance. As defined in this study,
low-diversity datasets only contained very few building types while high-diversity datasets
could contain more building types. There are a few limitations in this regard. First, the building
types here were only developed to simulate how different diversity in training datasets can
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influence the model’s performance in a theoretical way, therefore, the building types only
represent the difference between building shapes and are not always the most common building
shape in reality. Second, the testing dataset here has nine building types in total and this
represents the diversity of the use case. In this context, a dataset that contains eight building
types can be considered a high-diversity dataset. However, it is worth noting that the definition
of high-diverse datasets and low-diverse datasets highly depends on the situation of the use
case. For instance, when the developed ML model is mainly used for a big city with a high
diversity of building styles, even a training dataset that contains eight building types can still
be considered a low-diverse dataset. The scenario of the real use case should be considered
when integrating the recommendation given in section 4.2.3.

Section 4.2.3 indicates that when using the best-performing algorithm, the synthetic dataset
does not need to be too big. Compared with dataset size, increasing diversity has more impact
on the ML model’s performance after the size reaches around 1440. Therefore, when generating
synthetic datasets, before the dataset size reaches 1440, the focus should be on increasing the
dataset size, after that the focus should be on increasing the diversity. However, it is also worth
noting that the parametric modeling in this study is specifically developed for residential
buildings in Nordic countries, and the results might not be widely applicable to a more general
context. The same methods could be applied to other building types, like commercial buildings
or office buildings, to see if the results are the same or different. The methods could also be
applied to other regions, such as tropical climates. The general trend from the findings that can
be generalized is that when developing ML building energy prediction models, the size of the
training dataset impacts the model’s accuracy performance more when the dataset size is very
small, but after reaching a certain size, enhancing training datasets diversity is more important
than increasing dataset size.

However, although the training dataset size does not necessarily need to be as large as previous
studies indicate, it can not be overly small. When the dataset is overly small, the ML models
might not give valid results. For instance, Section 4.2.3 shows that increasing diversity in the
training dataset does not improve the model’s accuracy when the dataset size is smaller than
600. In the most extreme scenario, increasing diversity for a very small dataset can make the
model’s performance even worse. This uncommon phenomenon is probably due to the overly
small size of the training dataset. Although this study investigates ML’s performance on a small
dataset, in general, ML is a method that highly depends on large training data. When the dataset
is overly small (smaller than 600 in this case), ML might give uncommon and surprising results.

5.2.2 Reflections on the selection of best-performing ML algorithms.

Section 4.2.3 presents the recommendations for selecting the best-performing ML algorithms
for different training datasets. Most previous studies choose accuracy as the main criterion for
models’ performance. However, since this study focuses on developing ML energy prediction
models for accelerating early-stage optimization, computational efficiency is also included in
performance. For future development, more criteria for models’ performance could be included,
such as the complexity of the model, and the difficulty of implementation. It is worth noting
that in terms of accuracy, SVM is the most appropriate algorithm for almost all datasets. It
might be overly ambitious to expect one single ML algorithm to effectively address the diverse
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range of datasets available. This could be explained by multiple reasons. Firstly, SVM might
have higher adaptability than other algorithms as it is found that the optimal hyperparameters
for each SVM model can be very different even if the training datasets are similar. Secondly,
SVM is known as the most accurate and robust ML algorithm [125]. Thirdly, previous studies
confirmed that SVM produces better outcomes in small datasets [126] [127] [128], and all
training datasets used in this study can be generally considered small in size. Figure 5.1 presents
the accuracy of the five models on a training dataset containing eight building types and 19000
data points. It is presented that SVM does not have the best performance when the training
dataset is large.

Accuracy of the five algorithms
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Figure 5.1. Accuracy of the five ML algorithms on a training dataset containing eight
building types and 19000 data points

The limitations in the simplified hyperparameter tuning process can also influence the models’
performance. The hyperparameter tuning in this study uses RandomizedSearchCV instead of
GridSearchCV for less computational time. The drawback of this method is that the most
optimal hyperparameter might not be found as the search process is not exhaustive. Moreover,
the hyperparameter tuning process for RF is even more simplified in this study as RF’s tuning
time is extremely long. Therefore, RF could perform better in accuracy as the hyperparameters
used in this study might not be the most optimal ones.

Among all the ML models developed with various training datasets in this study, most do not
have a very high accuracy. Even the best models developed in this study can only reach an
RMSE of 5.5 kWh/m? (around 7% on average) and an MAE of around 4 kWh/m? (around 5%
on average), which are not as high as the ML prediction models developed in some previous
studies [15][23] using large datasets in training. However, the balance between achieving
sufficient accuracy and the ability to provide highly flexible and fast feedback to architects is
still today's base for discussion [129]. It is argued that when the ML prediction model is
developed for aiding early-stage optimization, the accuracy level does not need to be very high
as it is still in the early stage where most information is not entirely in place. Therefore, it is
reasonable to use the ML model trained on small datasets to acquire faster results with a
compromise in accuracy. Moreover, the goal of early-stage optimization is often to find an
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indication of a few designs that lead to less energy demand instead of only predicting the energy
demand of one building in detail. A more detailed energy simulation is usually initiated later in
the design process when all information is in place and the design is complete to evaluate the
energy performance.

Based on the literature review, this study only considers the five selected ML algorithms. In
future studies, more ML algorithms, such as Recurrent Neural Network (RNN), Deep Neural
Network (DNN), Gaussian Processes (GP), as well as hybrid methods, could be investigated
to improve the accuracy.

5.3 Generalizability of Early-stage Building Energy Prediction
Models to Different Scenarios.

Based on the experiments conducted in Study C and results presented in Sections 4.3.1 and
4.3.2, it is suggested that TL generally enhances model performance in accuracy when
predicting energy demand in residential buildings in cities different than the base model city,
compared to retraining a new ML model for the target cities from scratch. When predicting the
same energy type, heating energy in this case, the improvement is particularly evident under
conditions where the training dataset in the target city is more limited (below 600 data points).
The benefit of TL in this context appears to be positively correlated with the similarity between
the source and target cities in terms of both climate characteristics and energy demand profiles.
For example, TL yielded the greatest improvement for Seattle, which shares a climate zone
with Gothenburg—the source domain city—and exhibits similar heating energy demand ranges
(2060 kWh/m?/year), as shown in Figure 6. In contrast, Madrid, which lies in a distinctly
different climate zone, showed the smallest performance gain.

As shown in Section 4.3.3, predicting the same energy type (heating energy) in new cities can
achieve higher accuracy than predicting combined heating and cooling energy. However, when
predicting building energy demand in other cities, discrepancies in energy demand composition
compared to the base city are often inevitable. When the energy type changes between the
source and target prediction tasks, to predict combined heating and cooling energy demand
instead of heating energy in this case, TL still provides measurable improvements in most cases.
However, the influence becomes smaller as the amount of training data increases. The same
factors, including data availability and climate similarity, still play an important role when
predicting the same type of energy use. In particular, for Miami, where energy demand is
entirely cooling demand and differs climatically from Gothenburg, the improvement from TL
is marginal or even negative in some cases when the data size from the target city reaches 2000.
These observations suggest that while TL is a flexible approach, its effectiveness depends on
the alignment of energy type and climatic context between the source and target domains.
Applying TL across differing energy types is not infeasible, but it offers limited advantages
compared to applying it within the same energy domain. These results align with the previous
research on applying TL for image recognition tasks [130], which suggests that one of the key
conditions for effective TL performance is a certain degree of similarity between the two
domains.
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5.4 Reflection on TL Model Development.

5.4.1 TL Model development with limited training data.

Typically, the base model for TL is trained on a large-scale dataset to ensure sufficient
generalization capability across domains. However, in this study, the base model was trained
on a relatively modest dataset of only 12,000 samples, and the target city training datasets are
significantly smaller, ranging from just 200 to 2,000 samples. Despite this data limitation, the
TL framework demonstrated notable performance improvements over the ANN models
retrained from scratch. This finding highlights that even when both the source and target
datasets are relatively limited in size, TL can still be effective. Moreover, by exploring the
feasibility of applying TL using a base model trained on a relatively small dataset, which
substantially lowers the entry barrier for implementing TL in real-world applications. In
practice, acquiring large-scale labeled datasets for building energy modeling can be
computationally and time-consuming, especially in early design stages when detailed
information is limited. By demonstrating that TL can still be effective under limited data
conditions, this study highlights the potential of lightweight and accessible TL frameworks to
support building energy prediction tasks in data-scarce scenarios.

Although Study C demonstrates that a base model trained on a relatively small dataset can still
be used effectively for TL model development, there are practical limitations. If the base model
is trained on an extremely small dataset, its representational capacity may be insufficient to
support successful knowledge transfer. In general, a larger base model dataset tends to improve
TL performance. Moreover, the required size of the base model is not universal—it also
depends heavily on the similarity between the base city and the target city. To investigate this
aspect further, Figure 5.2 presents the TL models’ performance when using three different base
models of various training data sizes—6000 (Base Model 1), 9000 (Base Model 2), and 12000
samples (Base Model 3, which was used throughout the main experiments in this study)—to
predict the combined heating and cooling energy demand of buildings in two target cities:
Seattle and Miami. The TL approach used in all cases was Method A-3, as it has quite average
performance among all TL models.
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Figure 5.2. Accuracy of applying TL using base models with various data points on
predicting building energy for Seattle (a) and Miami (b).

Overall, the results from Figure 5.2 suggest that the size of the base model training dataset
positively correlates with TL performance. However, the degree of improvement varies with
the similarity between cities. For Seattle, which is climatically closer to the base city
(Gothenburg), all three base models provide performance improvement over training from
scratch, though Base Model 1 performs the worst. Interestingly, Base Model 2 and Base Model
3 show similar outcomes, suggesting that beyond a certain point (9000 samples in this case),
additional base data yield diminishing returns.

In contrast, for Miami, which differs substantially from Gothenburg in both climate and energy
use composition, only the largest base model (Base Model 3) offers clear benefits, and only
when the target training dataset is smaller than 800 samples. From the trend observed across
the three models, it can be inferred that increasing the base model size beyond 12,000 samples
could potentially lead to even better TL outcomes in dissimilar cities like Miami. This would
even be potentially beneficial in cases where the target city dataset is larger (over 1000 samples),
as the current base models struggle to outperform the retrained model in those scenarios.

These findings suggest that while TL with a base model with a limited training dataset is
feasible and effective in many situations, especially for climatically similar target cities, the
relationship between base model size, target city similarity, and available training data must be
carefully considered. A one-size-fits-all strategy does not apply in this context. Instead,
practitioners should assess the compatibility between source and target domains when deciding
the necessary scale and complexity of the base model for TL.
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5.4.2 TL model development with a simplified framework.

The TL framework adopted in this study is intentionally kept simple and interpretable,
primarily by applying a basic layer-freezing strategy and incorporating a GRL with more new
layers instead of relying on complex architecture modifications (e.g., multi-source transfer
learning) [131] or advanced meta-learning techniques (e.g., Model-agnostic Meta-learning)
[132]. This streamlined design contributes to significant computational efficiency, as evidenced
by the short fine-tuning times observed even when only a single layer of the base model is
frozen. It also facilitates easy implementation and adaptation in professional practice,
especially in scenarios where model developers may not have access to high-performance
computing resources. Additionally, the use of a straightforward TL strategy enhances the
interpretability of the model architecture. Enhanced interpretability fosters trust and
transparency, which are essential for stakeholders to understand and trust the model's
predictions [133], [134]. This interpretability and simplicity not only facilitate more transparent
model behavior but also help to bridge the gap between tool developers and stakeholders such
as architects and consultants, enabling them to better understand, trust, and adopt ML tools in
design workflows [135]. This is particularly important in multidisciplinary contexts where
model transparency and ease of communication are essential for successful integration [136].

This work provides opportunities for future research in several directions. First, a more
systematic analysis could be conducted to determine how the size and quality of source and
target datasets interact with TL performance, particularly under residential building energy
prediction. Second, integrating layer selection or adaptive freezing strategies could further
enhance the robustness of the TL framework. Finally, extending this lightweight TL strategy to
more diverse building types, climates, and policy contexts would help validate its broader
applicability and strengthen its relevance for practical deployment.

5.4.3 TL Model for early-stage building energy optimization.

Study C demonstrates that TL can effectively transfer knowledge from one dataset comprising
diverse building configurations to another with different configurations while maintaining
strong performance, which makes it feasible for an energy prediction model for building early-
stage optimization. This significantly enhances the feasibility of applying ML models for early-
stage energy performance prediction in buildings, particularly in the context of building energy
optimization during the design phase.

In contrast to most prior research on TL in building energy prediction, which typically focused
on transferring models trained on one or a few buildings to one another or several similar
buildings, this study emphasizes a broader scope. Specifically, early-stage energy prediction
for building energy optimization relies heavily on architectural design variables such as
building shape, orientation, facade configuration, including window-to-wall ratio. As such,
developing a reliable prediction model for this phase requires a dataset that represents a wide
diversity of building configurations rather than repeated samples from a limited number of
buildings.

Another important consideration is the level of predictive accuracy required for early-stage
design. Unlike detailed energy audits or operational phase simulations, early-stage energy
modeling primarily serves as a decision-support tool to compare different design alternatives,
rather than to generate exact energy demand values. Therefore, it does not demand the same
level of precision as post-occupancy models. In this vein, Table 5.1 outlines the minimum
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number of training samples from the target city required to achieve acceptable prediction
accuracy using TL in this study, defined as RMSE < 5 kWh/m?, MAE < 4 kWh/m?, MAPE <
5.5%, and R? > 0.8. These thresholds are informed by benchmarks proposed in previous
research specifically for early-stage energy modeling applications [137].

Table 5.1. Minimum data requirement of developing a TL model in each target city for
early-stage building energy optimization

City Stockhol Seattle Chicago Madrid Miami
m
Energy Heating Heating Heating Heating  Heating Heating Heating Cooling
Type + + +
Cooling Cooling Cooling
Required 800 600 600 600 600 1400 600 1800
Data

As shown in Table 5.1, applying TL allows the development of reasonably accurate energy
prediction models for early-stage building energy optimization using only a limited amount of
training data from the target city.

5.5 Applying ML Prediction Model in Optimization Workflow.

In this thesis, two optimization tasks are conducted to exemplify how to implement ML models
in building energy optimization workflows. Task 1 is a single objective optimization, which
focuses on whether the ML model can direct the optimization process in a similar direction;
Task 2 represents a multi-objective optimization problem, which is more closely aligned with
real-world application scenarios. As shown in Figure 4.16, in task 1, the optimal building
design configurations proposed by the two workflows are nearly identical, which proves that
the ML model is capable of directing the optimization in the same direction. Figure 4.17 shows
that although the simulation-based optimization proposes solutions with slightly higher quality,
the difference between them and the solutions proposed by ML-based optimization is not very
prominent. The improvement of computational efficiency when replacing the simulation
engine with the ML model is significant. This demonstrates the ML approach’s strength as a
rapid and efficient tool for early-stage design support. Since design decisions will continue to
evolve after the early stage, and since accurate energy performance can only be reliably
simulated in later design stages, the priority at early stages is not perfect accuracy, but rather
fast and informed guidance. Moreover, real-world energy use will always deviate from
predictions due to factors such as weather and occupant behaviour, reinforcing the value of
quick, data-driven decision support over exact estimates at this phase.

Although being a promising tool, the ML-based optimization tool does have its limitations in
accuracy: the predicted value and the simulated value are not the same. This could be further
seen in Appendix H.

5.6 Open-Source Code and Data Sharing.

The method developed in this thesis is built upon open-source tools, including simulation and
modelling tools such as EnergyPlus, Honeybee, Grasshopper, and coding tools such as
GHPython and its scientific libraries. In alignment with the values of open science, this thesis
also seeks to contribute back to the academic community. All core materials developed in the
project, including the synthetic datasets, the Grasshopper scripts used for parametric modeling,
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and supporting documentation, have been uploaded to a publicly accessible GitHub repository
[138]. These resources are intended to facilitate replication of the experiments, provide
reference examples for other researchers, and support methodological adaptation in future
studies. In addition, the developed ML models will be further before their public release.

By openly sharing both the computational framework and the synthetic datasets, this thesis
aims to contribute not only methodological insights, but also durable and practical resources
that can support reproducibility and enable cumulative knowledge-building within the
community. These efforts reflect a broader commitment to collaborative scientific development
and the advancement of data-driven approaches in sustainable building design

5.7 Limitations and Outlook

This thesis investigates applying ML and related methods within early-stage building energy
optimization workflows. Although previous chapters have demonstrated that ML models are
effective for time-efficient energy prediction and can be successfully integrated into
optimization workflows, ML as a data-driven method still has several limitations.

First, ML models require a large volume of training data to achieve acceptable accuracy. In the
context of building energy prediction, this means generating a substantial number of building
design configurations along with their corresponding energy demand results. While Study B
explored the feasibility of training ML models using a limited dataset, the data generation
process still requires a lot of time. Furthermore, for the ML model to perform accurately, the
target building must exhibit similar characteristics to those in the training data. For instance, in
Study D, the layout of the test building differed from any of the building shape in Study B’s
training dataset. Although the ML model was still able to perform the optimization effectively,
it showed noticeable discrepancies in prediction accuracy when compared with actual
simulation results (see Appendix G).

Another limitation lies in the rigidity of the ML prediction model. If end users wish to include
new ADVs or modify the energy settings, the model needs to be retrained. Although Study C
explored the generalizability of the ML model through TL, the results show that its
effectiveness is highly dependent on the similarity between the new target domain and the
source domain used for training. As it is well-established that TL performs best when the source
and target domains share common features, Study C deliberately restricted the experimental
scope to cities where mid-rise residential buildings dominate the housing stock. Cities like
Stockholm, Seattle, Chicago, and Madrid were selected due to their comparable building
typologies. Future work could expand the range of building typologies to explore how much
geometric variability a TL framework can tolerate before prediction accuracy deteriorates.
Additionally, further research could assess whether TL models can generalize across building
types (e.g., from residential to commercial buildings) within the same city or across different
urban contexts. It is also important to note that even with TL, a small amount of new data is
still required for fine-tuning, meaning that data acquisition and dataset generation remain
unavoidable challenges in ML-based workflows, especially when compared to traditional
simulation-based methods.

Another limitation of this thesis is related to the ML development process itself. Both the ML
model developed in Study B and the TL model in Study C were trained using relatively small
datasets. The rationale for this choice is discussed in Section 5.2.1. However, this also
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introduces a constraint: the findings of this thesis are primarily applicable to ML models trained
on limited data, and may not generalize to models developed using larger datasets. Moreover,
the ML algorithms adopted in this thesis were intentionally basic. The five selected algorithms
in Study B were chosen for their simplicity, as simpler models are computationally more
efficient and faster to train and test—an important consideration when data and time are limited
[139]. Additionally, complex ML models often require larger datasets to perform effectively
[140], which was beyond the scope of this study. Simpler models also offer greater
explainability and interpretability compared to more complex “black-box” models, allowing
for better integration with design workflows and higher user trust, especially in the early design
stage [141]. These models are also easier to implement in tools like Grasshopper, streamlining
collaboration between designers and engineers [142]. Similarly, Study C adopted a relatively
simple TL framework with minimal tuning (as explained in Section 5.4) to prioritize efficiency
and clarity. However, future studies may explore more advanced TL architectures—such as
progressive layer unfreezing, domain-adaptive regularization, or attention-based feature
transfer—to enhance prediction accuracy, particularly in cities with energy use patterns that
diverge from the original training context.

Lastly, in Study D, the ML model was embedded into the Grasshopper workflow using Flask
and GHPython. While this setup is relatively lightweight and effective, it does require manual
operations from users, making it less user-friendly compared to traditional optimization plug-
ins that can be directly installed in Grasshopper. Future work could involve developing the ML
prediction model into a dedicated plug-in for Grasshopper, allowing for seamless integration
and broader adoption. Furthermore, the optimization task in Study D only investigated energy
demand and embodied carbon emissions. The approach developed in this thesis could also be
adapted to other early-stage sustainability objectives, such as daylighting or thermal comfort.
The appended study identifies the most influential ADVs for these objectives, which can serve
as inputs for developing specialized ML prediction models. Similarly, the methods used in this
thesis—both in identifying suitable algorithms and in generating synthetic datasets—can be
applied to develop ML models for different sustainability goals. Multi-objective optimization
workflows could also benefit from ML-based prediction if developers train multiple ML
models tailored to different objectives and include the corresponding ADVs within the design
workflow.
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Chapter 6

Conclusion

This thesis explores applying ML in early-stage building energy optimization to improve
efficiency, and provides deliverable ML models for residential building energy predictions in
Gothenburg, multiple TL models for residential building energy predictions in different
climates, and an ML-based early-stage optimization workflow.

Study A and B together investigate how to develop an ML building energy prediction model to
replace the time-consuming energy simulation in optimization processes. Recommendations
for developing ML energy prediction models are provided from the perspective of identifying
input architectural design variables (ADVs), selecting the most appropriate ML algorithm, and
generating the training dataset. The influential ADVs for building energy optimization are
defined by conducting a literature review and a stakeholder survey. The best-performing ML
algorithms, as well as the acquisition of proper synthetic datasets, are investigated through
multiple ML experiments. Through the literature review, it is found that building plan, window-
to-wall-ratio (WWR), and wall material are considered influential in early-stage building
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energy optimization. However, stakeholders also consider building plan, building orientation,
shading device, storey number, storey height, roof type, and roof material as influential ADVs.
To get a holistic point of view, this thesis recommends including influential ADVs from both
perspectives for ML energy prediction models, as it is essential to consider stakeholders’
subjective points of view in developing ML-based tools. Bringing in a stakeholder’s
perspective is beneficial as they are experts in the fields with practical knowledge and
experiences that can greatly enhance the development and effectiveness of ML-based tools. In
terms of selecting the ML algorithm, Support Vector Machine (SVM) is recommended in
general when developing a building energy prediction model with a training dataset smaller
than 5000 as it performs well in terms of accuracy for all training datasets in the ML
experiments and has an acceptable performance in computational efficiency. When the training
dataset is small in size and has low diversity, Multiple Linear Regression (MLR) is
recommended. Artificial Neural Network (ANN) is recommended for training datasets with
larger sizes and higher diversity. Although RF does perform well in accuracy, its training time
is extremely long. It is only recommended to select Random Forrest (RF) when not considering
computational efficiency. In terms of generating synthetic training datasets, to achieve a
reasonable accuracy performance, the dataset needs to have more than 1440 data points and a
diversity that covers around 67% of the diversity in the testing dataset.

Study B developed the ML model for the Swedish context, focusing on residential buildings in
Sweden, while Study C investigates the developed ML model’s generalizability by applying
the model to five different climatic contexts using TL. The results suggest that TL in general
can be an effective strategy, but it performs best when the target city shares similar climatic
conditions and energy use patterns with the base city, such as Seattle, Stockholm, and Chicago,
and its effectiveness decreases when the climate difference is large, as seen in the case of
Madrid and Miami. It is also suggested that TL models’ performance is more evident when the
target dataset contains limited data (below 600 data points), and the improvement becomes
smaller as the amount of training data of the target city increases. The effectiveness of TL also
differs depending on the energy type being predicted. TL is more effective when predicting
heating energy than total (heating + cooling) energy demand within the same target city. Since
the base model is trained specifically for heating energy in a cold climate, its internal
representations align more closely with heating-dominant patterns. One of the most significant
advantages of TL highlighted in Study C is its potential to drastically reduce the time and data
needed to develop reasonably accurate prediction models. In some cases, TL required 1000—
1600 fewer training samples to reach comparable performance to a fully retrained model. Given
that generating each training sample in this study took about 7 minutes, TL could save up to
186 hours of computational time.

Study D integrates the developed ML model into an optimization workflow in Grasshopper
and exemplifies the workflow using a case study. The results show that although the energy
demand of the optimal building design configuration proposed by the ML-based optimization
workflow is slightly higher than the simulation-based optimization workflow, the required time
is reduced significantly, and the final proposals are almost identical. This proves that using an
ML prediction model to replace the time-consuming energy simulation engine is feasible for
guiding early-stage design decisions.
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Overall, this thesis provides recommendations on how to develop the ML building energy
prediction model from the perspective of selecting input ADVs, ML algorithms, and generating
synthetic datasets. Moreover, this thesis also proves the feasibility of applying existing ML
models to other climates with limited data. These outcomes can support researchers and
software developers who want to integrate ML into the building energy optimization workflow
in the early stage, and architects and consultants who want to accelerate the design optimization
process.
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Appendix A. ML algorithms mentioned in the literature

Table A. ML algorithms mentioned in the literature and their occurrence

Reference ML Algorithms Year
ANN SVM MLR DT RF GP DNN XGBoost ELM CNN

[16] N N N 2018
[143] \ \ \ 2018
[144] v v \ v A 2021
[145] \ \ v v 2022
[146] \ \ NN 2021
[147] \ v \ 2022
[148] \ \ \ \ 2019
[149] \ \ \ 2020
[150] v v 2019
[151] \ 2019
[152] \ \ NN 2019
[153] N 2020
[154] \ \ v \ 2020
[155] \ v \ \ \ v 2023
[156] \ \ \ \ 2023
[157] \ \ v \ 2023
[158] \ v v oA 2021
[159] \ v v v oA 2022
[160] \ N \ \ v v 2022
[161] v v 2022
[162] \ v v \ v A 2021
[163] v \ \ 2020
[164] v \ 2019
[165] \ 2022
[166] v 2021
[167] v 2021
[168] \ \ \ 2022
[169] \ \ 2021
[170] \ \ \ \ 2022
[171] \ v 2020
[172] \ v 2022
[173] v oW \ v 2022
Total 25 22 12 12 13 6 7 8
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Appendix B. Energy simulation setting

The settings for energy simulation are adapted from [174].

Table B. Energy plus setting for simulation

Energy system Input parameter Value and unit
Heating system  Heating setpoint for living area 21°C
(apartment)

Heating setpoint for the unoccupied area 10 °C
(circulation area)

Internal load Occupancy 36 m*/person
Heating output 80 W/person
Period 14 hours

(0-8 o’clock, 18-24 o’clock)
Household electricity per occupied area  3.46 W/m?*h

Radiance fraction 0.7
Water system Hot water demand per occupied area 0.057 L/h*m?
Ventilation Ventilation + infiltration 0.0005 m*/s*m?
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Appendix C. Energy simulation settings for other cities.

The settings for the energy simulation for Stockholm are adapted from [174]. The settings for
energy simulation for Seattle, Chicago and Miami are adapted from U.S. Department of
Energy (DOE). The settings for energy simulation for Madrid are adapted from [175].

Table C-1. Energy Plus Setting for Stockholm.

Energy system Input parameter Value and unit
Heating system  Heating setpoint for living area 21°C
(apartment)

Heating setpoint for the unoccupied area 10 °C
(circulation area)

Internal load Occupancy 36 m*/person
Heating output 80 W/person
Period 14 hours

(0-8 o’clock, 18-24 o’clock)
Household electricity per occupied area  3.46 W/m?*h
Radiance fraction 0.7
Ventilation Ventilation + infiltration 0.0005 m*/s*m?

Table C-2. Energy Plus Setting for Seattle and Chicago.

Energy system Input parameter Value and unit
Heating system  Heating setpoint for living area 20 °C
(apartment)

Heating setpoint for the unoccupied area 13 °C
(circulation area)

Cooling system Cooling setpoint for living area 26 °C
(apartment)
Cooling setpoint for the unoccupied area 28 °C
(circulation area)

Internal load Occupancy 36 m*/person
Heating output 80 W/person
Period 14 hours

(0-8 o’clock, 18-24 o’clock)
Household electricity per occupied area  3.46 W/m?*h

Radiance fraction 0.7
Ventilation Ventilation rate per unit floor area 0.000294105 m*/s*m?
Infiltration Flow per exterior surface area 0.00056957225 m?/s*m?

Table C-3. Energy Plus Setting for Madrid.

Energy system Input parameter Value and unit
Heating system  Heating setpoint for living area 20 °C from
(apartment) 8 hto 23 hand 17 °C from 23
hto7h

Heating setpoint for the unoccupied area 13 °C
(circulation area)

Internal load Cooling setpoint for living area 25 °C from 16 hto 23 h and
(apartment) 27°C from23hto7h
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Cooling setpoint for the unoccupied area 28 °C

(circulation area)
Occupancy

36 m*/person

Heating output 80 W/person
Ventilation Ventilation rate 0.76 ac/h
Infiltration Infiltration rate 0.3 ac/h
Table C-4. Energy Plus Setting for Miami.
Energy system Input parameter Value and unit

Cooling system

Internal load

Water system
Ventilation
Infiltration

Cooling setpoint for living

(apartment)

Cooling setpoint for the unoccupied area

(circulation area)
Occupancy
Heating output
Period

Household electricity per occupied area

Radiance fraction

Hot water demand per occupied area
Ventilation rate per unit floor area

Flow per exterior surface area

26 °C
28 °C

36 m*/person

80 W/person

14 hours

(0-8 o’clock, 18-24 o’clock)
3.46 W/m**h

0.7

0.00000366 L/h*m?
0.000294105 m*/s*m?
0.00056957225 m*/s*m?
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Appendix D. Accuracy of TL models and retrained ANN
models under different training dataset sizes in predicting
energy demand for four cities.
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Figure D-1. MAPE of TL models and retrained ANN models under different training dataset
sizes in predicting heating energy demand for four cities.
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Figure D-2. R? of TL models and retrained ANN models under different training dataset
sizes in predicting heating energy demand for four cities.
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Figure D-3. MAPE of TL models and retrained ANN models under different training dataset
sizes in predicting heating energy demand for four cities.
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Figure D-4. R? of TL models and retrained ANN models under different training dataset
sizes in predicting heating energy demand for four cities.

111



Appendix E. Influential ADVs for building energy
optimization under different climates from the literature

review.

Figure E further explores this by showing the percentage of the mentioned time for each ADV

regarding various climate zones. The results show that most ADVs, especially the most
influential ones, such as WWR and building plan, do not vary across different climate contexts.
Therefore, it is reasonable to include the literature beyond the Nordics when identifying
influential ADVs. However, certain ADVs do vary across geographical regions. For instance,
building orientation is more influential in desert continental climate than the rest climate zones.
Future research could investigate how and why certain influential ADVs differ across
geographical regions. In the same vein, this study is also limited to the influential ADVs for
residential buildings, thus a similar study should be conducted to identify influential ADVs for
other building types such as commercial and industrial buildings.
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Figure E. Influential ADVs for building energy optimization under different climates
from the literature review.
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Appendix F. Average rating with all 24 respondents and
random 20 respondents.
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Figure F. Average rating with all 24 respondents and random 20 respondents.
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Appendix G. Discrepancies in prediction accuracy
compared with actual simulation results.

The final test case in Study D differs in spatial and geometric configuration from the building
plans represented in the model's training dataset in Study B. As a result, the model's predictive
accuracy decreases, and the gap between predicted and simulated energy values becomes more
apparent. Nevertheless, as shown in Figure G, although the predicted values from the ML
model do not perfectly match the actual simulation results, the overall trend of the optimal
energy consumption across generations still shows a clear downward trajectory. Even though
occasional increases occur due to prediction errors, the general direction of performance
improvement aligns closely with that of the simulation-based optimization. This consistency
indicates that the ML-based approach is capable of effectively guiding the search toward better-
performing design solutions and can, to a large extent, serve as a surrogate for simulation in
the context of energy optimization. To further improve the predictive accuracy of the ML model,
it would be beneficial to expand and diversify the training dataset. A larger and more
representative database would enhance the model's generalization ability and reduce
discrepancies between predicted and simulated results in future applications.

Predicted and Simulated Energy Demand of the Optimal
Configuration in ML-based Optimization in Each Iteration
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Figure G. The predicted and simulated energy demand of the optimal configuration in
ML-based optimization in each iteration.
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