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Abstract

We report on the results of the on-sky test and science demonstration conducted with the 2 mm receiver system,
B4R, on the 50 m Large Millimeter Telescope (LMT), located at an altitude of 4600 m in Mexico. The B4R
receiver was developed based on the dual-polarization sideband-separating mixer technology of the Atacama
Large Millimeter/submillimeter Array and is equipped with a fast Fourier transform digital spectrometer, XFFTS.
The primary science objective is the spectroscopic redshift identification of high-redshift dusty star-forming
galaxies, complementing the existing 3 mm Redshift Search Receiver by enabling the detection of multiple carbon
monoxide lines. Additionally, the B4R receiver broadens the range of science cases possible with the LMT,
including astrochemistry, as the 2 mm band encompasses unique molecular lines such as deuterated molecules and
shock tracers. During on-site commissioning in 2018 and 2019, we successfully demonstrated on-the-fly mapping
and position-switching observations toward the Orion Molecular Cloud 1 and bright high-redshift dusty star-
forming galaxies, respectively. We confirmed that the installed B4R system largely met its basic performance
specifications. Furthermore, we measured the LMT’s aperture efficiencies across the entire B4R frequency range
(130–160 GHz), finding them to be roughly consistent with expectations based on a surface accuracy of 100 μm
and the receiver optics design. These results with the B4R will enable the most sensitive single-dish spectroscopic
observations at 2 mm using the LMT.

Unified Astronomy Thesaurus concepts: Millimeter astronomy (1061); Heterodyne receivers (727); Spectroscopy
(1558); Astrochemistry (75); High-redshift galaxies (734)

1. Introduction

The 2 mm (150 GHz) range is rich in scientific opportu-
nities, and the Band 4 receivers, covering an observing
frequency range of 125–163 GHz, were developed and

installed on the Atacama Large Millimeter/submillimeter
Array (ALMA) 12 m array and the Atacama Compact Array
(S. Asayama et al. 2014). One of the major scientific cases for
ALMA Band 4 is the detection of redshifted carbon monoxide
(CO) lines in dusty star-forming galaxies (DSFGs), also
known as submillimeter galaxies (SMGs). Both the cosmic star
formation rate density and the redshift distribution of SMGs
have been found to peak around a redshift (z) of 2–3 and likely
extend up to z = 6–7 (e.g., P. Madau & M. Dickinson 2014).
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These dusty galaxies have been relatively easily surveyed
through blank-field continuum observations at wavelengths of
0.3–2 mm using ground-based telescopes such as the James
Clerk Maxwell Telescope (e.g., I. Smail et al. 1997;
A. J. Barger et al. 1998; D. H. Hughes et al. 1998; J. E. Geach
et al. 2017), the Atacama Submillimeter Telescope Experiment
(e.g., Y. Tamura et al. 2009; B. Hatsukade et al. 2011;
M. S. Yun et al. 2012), and the Herschel Space Observatory
(e.g., S. Eales et al. 2010). However, determining their
spectroscopic redshifts in optical/infrared (opt/IR) observa-
tions remains challenging. One approach to redshift determi-
nation with ALMA and other millimeter single-dish telescopes
is to use CO ladders (i.e., J = 1–0, 2–1, 3–2, 4–3; rotational
transitions of CO) or the ionized carbon [C II] line. For the
redshift range z = 2–4, CO lines are the most useful, and even
at higher redshifts (z = 4–6), they can provide more precise
redshifts than a single [C II] line detection. To determine an
unambiguous redshift, at least two detections of CO lines (or a
combination of CO and one or two neutral carbon [C I] lines)
are required. The 2 mm receivers can supplement the second
and third detections of CO lines in addition to the initial
detection with 3 mm receivers. Thus, combining 2 and 3 mm
receivers would be ideal for redshift determination (e.g.,
T. J. L. C. Bakx & H. Dannerbauer 2022).
In addition, the 2 mm range covers unique and important

molecular lines for astrochemistry. Deuterated molecular lines,
DCO+ J = 2–1 and DCN J = 2–1, are examples observable in
this range and allow us to estimate the D/H ratio, a key tool
for investigating the chemical fractionation of deuterated
molecules in cold star-forming molecular cores and commen-
tary chemistry. Additionally, major transitions of well-known
shock tracers, such as methanol (CH3OH), silicon monoxide
(SiO J = 3–2, v = 0), and sulfur oxides (SO and SO2), can be
observed in this range. Moreover, it covers various dense
molecular gas tracers, including carbon monosulfide lines,
such as CS J = 3–2 and its isotopologues (C34S, C33S, 13CS),
as well as formaldehyde (H2CO) and cyanoacetylene (HC3N)
lines.
Here, we developed the 2 mm receiver system, B4R, for the

50 m Large Millimeter Telescope (LMT; D. H. Hughes et al.
2020). The primary goal of the B4R is to determine the
spectroscopic redshift of dusty galaxies in conjunction with the
3 mm receiver on the LMT, the Redshift Search Receiver
(RSR; N. Erickson et al. 2007). The LMT is the largest single-
dish telescope capable of 2 mm observations, and the addition
of the 2 mm receiver, equipped with a high spectral resolution
spectrometer, significantly enhances its capabilities as a
redshift search machine and expands its potential for a variety
of scientific investigations. In this paper, we provide an
overview of the B4R system and present the results of recent
science demonstration observations.

2. B4R System and Installation

The B4R system consists of a single-beam, dual-polariza-
tion, sideband-separating (2SB), superconductor-insulator-
superconductor (SIS) 2 mm receiver and a fast Fourier
transform (FFT) digital spectrometer, XFFTS. In the following
subsections, both the 2 mm receiver and the digital spectro-
meter are described, along with details on their installation,
sky conditions, and other relevant factors during the on-sky
test and science demonstration.

2.1. The 2 mm Receiver

The 2 mm receiver is based on the ALMA Band 4 2SB
mixer (S. Asayama et al. 2014). We redesigned the receiver
dewar to accommodate a two-stage Sumitomo Gifford-
McMahon 4 K cryocooler (RDK-408D2P). The optics of the
B4R is designed to fully illuminate the 50 m diameter of the
LMT telescope with an edge taper of −12 dB. The warm
optics layout for the B4R is shown in Figure 1. It includes a
flat pick-up mirror (the #5 mirror), followed by a flat mirror
(#6) and an ellipsoidal mirror (#7). The specifications of the
receiver are summarized in Table 1, along with those of the
XFFTS spectrometer. The first intermediate frequency (IF)
range is 4–8 GHz, and the first local oscillator (LO) consists of
a synthesizer and a multiplier chain. The first IF is down-
converted using a second LO signal from another synthesizer
to produce the final IF signal DC–2.5 GHz. Four sets of IF
signals are fed into the spectrometer via bandpass filters.
During the on-sky test and science demonstration observa-
tions, the first IFs (5.6–8.1 GHz) were down-converted to the
baseband (DC–2.5 GHz) using a second LO frequency of
8.1 GHz. The receiver block diagram is shown in Figure 2.

2.2. Digital Spectrometer

The XFFTS (B. Klein et al. 2012) is an FFT digital
spectrometer developed by Radiometer Physics GmbH. We
utilize four XFFTS boards with the standard configuration,
each providing a DC–2.5 GHz IF coverage and 32,768 spectral

LMT#4
Mirror

#5 Mirror
for B4R

#7 Mirror
for B4R

#6 Mirror
for B4R

to LMT#4 Mirror 

#5 Mirror
for B4R 

#7 Mirror
for B4R 

#6 Mirror
for B4R 

Figure 1. Left: photo of the B4R in the LMT Receiver Cabin. Right: drawing
of the B4R and its warm optics.

Table 1
Specification of the B4R System

Item Specification Comment

RF frequency 125–163 GHz ALMA Band 4 spec.
Polarization Two, Linear ALMA Band 4 spec.
Image rejection ratio >13 dB ALMA Band 4 spec.
TRX <60 K ALMA Band 4 spec.
IF frequency 4–8 GHz ALMA Band 4 spec.
Backend 4 XFFTS boards Expandable to 8
Bandwidth 2.5 GHz/board 10 GHz in total
Number of channels 32,768/board 131,072 in total
Frequency resolution 76.3 kHz 0.16 km s−1
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channels. The FFT processing is performed using a flat-top
window function. At an observing frequency of 140 GHz, the
corresponding channel separation and spectral resolution are
0.163 km s−1. The XFFTS board can achieve up to 25 times
higher resolution than the standard mode by replacing the
firmware, albeit at the cost of reduced simultaneous frequency
coverage (B. Klein et al. 2012). The IF/LO system is designed
to be upgradable to a full eight-board XFFTS configuration;
however, currently, only four boards are installed for the on-
sky test and science demonstration.
We operate the XFFTS system with a 10 Hz sampling rate.

The spectral data are stored on a solid state drive using the
vendor-provided software, FFTS, running on the control
machine. The data are recorded in raw float binary format
and time-stamped by a network time protocol clock. Data
conversion to software-readable formats (the MeasurementSet
version 2.0 for the Common Astronomy Software Applications
package, CASA; The CASA Team et al. 2022) and frequency
conversion from the topocentric frame are performed using a

dedicated data reduction pipeline, b4r,21 developed by
our team.

2.3. Installation, On-sky Test, and Science Demonstration

The installation of the B4R system on the LMT was
successfully completed in 2018 March. The subsequent on-sky
test began in 2018 June, as described in the next section, along
with the technical checkout of the B4R receiver performance,
receiver optics alignment, spectrometer performance, and
other system components in the receiver cabin of the LMT.
The initial on-sky test aimed to verify whether the B4R system
and observing software functioned properly. This was done
through spectroscopic observations of bright sources such as
Orion-KL, and continuum observations of strong 3C sources
and planets such as Uranus. Through this initial test, we
confirmed that the B4R receiver system is suitable for

DC~2.5 GHz

RF: 4-8 GHz

IF: DC~2.5 GHz

~40 dB4-8 GHz
~15 dB

Divider

Divider

Divider
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Amp.
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Att.

Att. Att. Att. Att.

to LAN

(GbE)
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(eSATA)

(IRIG-B)
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4 x FFTS boards

XFFTS

1st LO Signal Generator
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2nd LO Signal Generator

Power Meter

Sw. Driver

Sp. Analyzer
Dewar

IF Box

Reciever

(RX room: upper floor)
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SIS Bias

HEMT Bias

DC Power Supply

DC Power Supply

HEMT Bias
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Temperature monitor

Vacuum monitor

ethernet
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ethernet
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ES188
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Moter Driver

Att.
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Figure 2. Block diagram of the B4R. The upper part is installed in the receiver cabin, and the lower part is located in the backend room. The components highlighted
with red squares are controlled by computers.

21 https://github.com/b4r-dev/b4r
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astronomical observations, although a few issues were
identified and needed to be addressed. A more detailed on-
sky test commenced in 2018 October to evaluate system
performance and assess the technical feasibility of observing
modes such as position switching (PSW) and on-the-fly (OTF)
mapping, along with science demonstration observations.
Additional on-sky tests were also conducted in 2024 May.
Observations were carried out at night, as is standard for the
LMT operations with other instruments (D. H. Hughes et al.
2020). The observational parameters used during the on-sky
tests and science demonstration are listed in Table 2.

3. Results of On-sky Test

3.1. Beam Map

The beam map at 129.36 GHz was obtained by observing
SiO masers (J = 3–2, v = 1) in Orion-KL in 2019 November.
Approximately 21 beam maps taken under good wind and
optimal focus conditions were stacked to improve the signal-
to-noise ratio (S/N). The half power beamwidth (HPBW;
θbeam) was measured to be ≈11″ along two orthogonal
directions, as shown in Figure 3. This measurement is
consistent with the value calculated from the illumination
pattern with an edge taper of −12 dB, such as 1.2 × λ/D,
where λ is the observing wavelength and D is the telescope
diameter. Faint first and second sidelobes can be seen in the
map, with their levels remaining below ∼3% of the main
lobe peak.

3.2. Aperture Efficiency

We observed Uranus in 2018 and 2019 at various
frequencies to measure the aperture efficiency of the LMT.
The temperature scale was calibrated with the conventional
chopper-wheel method. In 2019, the measured efficiencies
were 48% to 33% for 130 to 160 GHz (see Figure 4). The
systematic errors in the efficiency are estimated to be about
20%, accounting for various uncertainties, including the
assumed surface temperature of Uranus, the chopper-wheel
calibration, and the measured beam sizes. The obtained values
roughly agree with those expected under the assumptions of a
surface accuracy of 100 μm and 65% efficiency at zero
frequency. The zero-frequency efficiency is consistent with the
value independently derived by multiplying two major factors:
the illumination efficiency for the edge taper of −12 dB,
calculated to be approximately 77% (e.g., using the GRASP
software), and the blockage and shadowing efficiency,
estimated to be roughly 85% (D. H. Hughes et al. 2020).
The efficiencies measured at frequencies above 150 GHz are
systematically lower than expected from the 100 μm curve,

and some values at lower frequencies also show unexpected
reductions. The degradation of pointing accuracy or focus
during the efficiency measurements may have contributed to
these lower efficiencies. Therefore, we consider that it will be
necessary to carefully reevaluate the efficiencies. The beam
parameters expected under the above assumptions (HPBW,
aperture efficiency ηA, main beam efficiency ηB, and gain) are
summarized in Table 3.

3.3. Pointing

The SiO J = 3–2, v = 1 maser emission was used for the
“offset” pointing observations using the XFFTS spectrometer.
For this purpose, SiO maser sources with sufficient intensity
were searched for near the target sources in advance.
Additionally, planets such as Mars and Uranus, as well as
continuum sources like bright 3C sources, were also used.
Considering the accuracy of the global pointing derived from
the 3 mm observations using the multiple-beam receiver
SEQUOIA, pointing sources with an apparent separation angle
much smaller than 20°–30° from the target seemed necessary.

Table 2
Observational Parameters

Year, Month, Date Frequency TSYS
a τ225 GHzb

(GHz) (K)

2018 Oct 2–8 127–159 100–300 0.15–0.40
2019 Nov 10–29 127–162 100–200 0.1–0.3

Notes.
a The values of a single sideband.
b The values were measured by the 225 GHz radiometer of the LMT
(D. Ferrusca & J. R. Contreras 2014).
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Figure 3. Beam pattern at 129.36 GHz. The red and blue lines represent the
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southeast in horizontal coordinates, respectively.
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Pointing calibrations were performed approximately every half
to one hour, and the pointing drift between calibrations was
typically measured to be 3″–5″ under stable weather conditions
(e.g., wind speed <10 m s−1).

3.4. Baseline Ripple Suppression

In the on-sky test conducted in 2018, we observed
sinusoidal baseline ripples in the spectra, with a cycle of
roughly 1.2 GHz. These ripples were particularly noticeable in
the redshifted CO spectra of apparently hyperluminous
infrared galaxies (HyLIRGs; LIR > 1013L⊙, e.g., H. Fu
et al. 2013; R. J. Ivison et al. 2013), which are typically weak
and wide in velocity (e.g., 500–1000 km s−1 in full width at
zero intensity, corresponding to 0.25–0.5 GHz). Such wide
spectra would be challenging to detect. We identified a
possible root cause of the baseline ripples as a standing wave
between the ZITEX (microporous polytetrafluoroethylene)
film inserted as an IR filter at the 40 K stage and the SIS
mixer or feed horn at the 4 K stage. Initially, the ZITEX film
was aligned perpendicularly to the feed horn axis. Before the
on-sky test in 2019, the ZITEX film was tilted by
approximately 10° from its initial position. As a result, the
baseline ripples were reduced by a factor of more than 10 in

amplitude, appearing to be less than about 1 mK in Ta in the
obtained CO spectra of high-z HyLIRGs (see Figure 5).

3.5. Other Issues and Improvements

During on-sky tests and science demonstration observations,
we identified several issues with the B4R system. Some of
these issues were already resolved, while others were deferred
as items for future upgrades.
The first issue was the vibration of the receiver’s mechanical

structure, which was induced by the acceleration and
deceleration of the receiver cabin while the antenna was
moving. Before starting the test in 2019, an additional outer
frame was installed to increase structural strength and reduce
vibrations. It was confirmed that the vibrations were reduced to
a negligible level.
The second issue was that the two IF outputs from one of the

two polarizations (A-pol) were slightly unstable compared to
the other two outputs from the opposite polarization (B-pol).
These instabilities were observed during tests in both 2018 and
2019. The possible causes investigated were an unstable mixer
bias box for one SIS mixer in A-pol and an issue with the SIS
mixer itself. The bias box was replaced with a new one, and
the electrical connection between the SIS junction and the bias
line was also improved in 2024 September. Following these
modifications, A-pol appears to have recovered. All results
presented in Section 4 were obtained using B-pol. If data from
both A-pol and B-pol were available, the S/N in the maps or
spectral lines would improve by a factor of 2 .
The third issue concerns “bad” channels caused by spurious

signals in the XFFTS spectra. Several of the 32,768 spectral
channels were identified as spurious due to the spectrometer
itself. These bad channels are primarily located at the first one
or two channels, as well as at approximately 0.75, 1.25
(center), and 2.5 GHz in the spectra (e.g., 0, 0.75, 1.25, and
2.5 GHz). The exact cause of these bad channels has not yet
been determined. Observations conducted in the topocentric
reference frame appear to produce fixed bad channels, but the
conversion to vLSR can shift their locations and spread them
across multiple channels in the final spectra. Some offline data

Table 3
Beam Parameters

Frequency θbeama ηAb ηBc Gain
(GHz) (arcsec) (%) (%) (Jy K−1)

130 10.97 48 57 2.91
140 10.16 46 54 3.05
150 9.51 44 52 3.21
160 8.91 41 49 3.39

Notes.
a Half power beamwidth.
b Aperture efficiency assuming the rms surface error of 100 μm.
c Main beam efficiency.

Figure 5. Redshifted CO and [C I] spectra covering a frequency range of 2.5 GHz, taken toward one of the Planck-selected, strongly lensed HyLIRGs, PJ020941.3,
at z = 2.55. In each panel, v = 0 km s−1 corresponds to the line redshift obtained from our observations (see Table 4).
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processing will be required to remove these bad channels at the
earliest stage of spectral data analysis.
The fourth issue involves aliased spectral lines identified at

the spectral band edges. Some of these aliased lines originate
from the second down-conversion of relatively strong lines
from 4 to 8 GHz to the baseband (0–2.5 GHz), as well as
aliasing caused by the analog-to-digital conversion (ADC; e.g.,
a 2.6 GHz signal is aliased to 2.4 GHz via the ADC). This
issue arises because the antialiasing filters at the baseband are
not perfect; the current filters attenuate signals by only
∼4–5 dB at 2.6 GHz. Careful identification of weaker spectral
lines is particularly necessary near the band edges (see also
Section 4.3 and T. Yonetsu et al. 2025).

4. Results of Science Demonstration

4.1. PSW Observations of High-z HyLIRGs

We carried out PSW observations of seven apparent HyLIRGs
at redshift z ∼ 2–4 in 2019 November. Each observational scan
consisted of 10 s hot-load measurement and a total of 600 s of on-
source and off-source switching observations. Our targets were
originally identified by Planck (Planck Catalog of Compact
Sources; Planck Collaboration XXVIII 2014), Herschel (Herschel
Stripe 82 Survey; M. P. Viero et al. 2014), and WISE
(“AllWISE” Data Release; R. M. Cutri et al. 2013), and their
spectroscopic redshifts were determined through CO emission
lines in previous studies (R. Cañameras et al. 2015, 2018;
J. E. Geach et al. 2015; K. C. Harrington et al. 2016, 2021).
Here, we present three emission-line spectra of one of the

targets, PJ020941.3, taken with the B4R, shown in Figure 5.
The spectra cover a frequency range of 2.5 GHz with a flat
baseline. The redshift of this target was determined to be
zspec = 2.5534 ± 0.0002 (K. C. Harrington et al. 2016) through
the detection of the redshifted CO J = 3–2 line
(νobs = 97.314 GHz) with the RSR installed on the LMT
(see also J. E. Geach et al. 2015). Subsequently, K. C. Harrin-
gton et al. (2021) reported multiple CO and [C I] line detections
using IRAM and APEX and conducted detailed modeling of
the gas’s physical properties utilizing the comprehensive CO
and [C I] data.

We observed three redshifted emission lines: CO J = 4–3
(νobs = 129.746 GHz), CO J = 5–4 (νobs = 162.174 GHz), and
[C I] 3P1–

3P0 (νobs = 138.504 GHz). These emission lines were
detected and reported in previous studies (J. E. Geach et al.
2018; K. C. Harrington et al. 2019, 2021). In Table 4, we
summarize the observation logs of PJ020941.3 obtained with
the B4R mounted on the LMT. All three lines detected in this
source are presented in Figure 5 (all other spectra for line-
detected sources will be presented in Table 5 and Figure 11 in
the Appendix.)
After the observations, we carried out data reduction as

follows. First, we applied chopper-wheel calibration to each
10 s measurement of the hot load and to a total of 300 s of on-
source and off-source observations. Here, this observation set
is referred to as a “scan.” Second, we replaced spurious signals
(or bad channels) with random values following the noise
distribution of the observation. Next, we integrated the high-
quality scans with S/N greater than 3.5. We binned 512
frequency channels to improve the S/N (Nfreq = 64 after
binning), resulting in a velocity resolution of ∼80 km s−1 at
145 GHz. After that, we applied linear baseline subtraction to
the CO J = 4–3 and CO J = 5–4 spectra. For the [C I] 3P1–

3P0
spectrum, we subtracted the baseline by combining a
sinusoidal curve and a linear line to remove the baseline
ripple. Finally, we converted antenna temperature to flux
density by ηA in Section 3.2, θbeam ≈ 10″ (at ≈140 GHz), and
SCO [Jy] = 1.42/ηA × TA [K].
For the CO and [C I] spectra in four of the five line-detected

sources (other than PJ011646.8) shown in Figures 5 and 11,
we compared the spectral shapes and integrated intensities
with those previously obtained by the IRAM 30m and ALMA
(J. E. Geach et al. 2018; K. C. Harrington et al. 2019, 2021).
As a result, we confirmed that the spectral shapes are
consistent with each other. To check the consistency between
the integrated intensities from the B4R and those measured by
IRAM 30m/ALMA in K. C. Harrington et al. (2021), we
compared them as shown in Figure 6. Here, we adopt a
systematic error of 20% following K. C. Harrington et al.
(2021), which includes atmospheric and receiver instability,
calibration of gain conversion (ηA), baseline subtraction
procedure, and pointing and focusing accuracy. The line

Table 4
Observation Logs of One of the High-z Targets Obtained with the B4R on the LMT

CO J = 4–3 CO J = 5–4 [C I] 3P1–
3P0

Target name PJ020941.3
Target coordinates (J2000) α = 02h09m41.s3, = +00 15 59

Observation date 2019 Nov 21, 22, 26 2019 Nov 26 2019 Nov 26, 27
The total number of scans 8 4 4
Tatm [K] 275.4–277.2 277.2–277.3 276.6–276.8
Opacity at 220 GHz (min, max) (0.15, 0.35) (0.16, 0.19) (0.10, 0.14)
System noise temperature [K] (min, max) (106, 152) (119, 124) (95, 129)

B4R first-LO frequency [GHz] 137.0 155.3 145.3
XFFTS frequency range [GHz] 128.9–131.4 160.9–163.4 137.2–139.7
512-ch binned channel width [GHz] 0.04 (90 km s−1) 0.04 (72 km s−1) 0.04 (84 km s−1)

Integration time at on-source position [s] 600 600 900
Integration time at off-source position [s] 600 600 900
Baseline subtracted function linear linear linear + sine curve

Line redshift 2.5543 ± 0.0001 2.5540 ± 0.0001 2.5538 ± 0.0001
Noise level [mJy] 3.84 4.63 2.43
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intensities obtained by the B4R are mostly consistent with
those from IRAM 30m/ALMA. However, we found an
inconsistency for PJ105322.63, where the intensity from the
B4R is ∼40% of that from IRAM 30m. The possible cause of
this result is a large pointing error in the B4R observations due
to the large angular distance of ∼30 deg between the target and
the pointing source. In addition, this line was detected at the
edge of the lower frequency side of the B4R, where the power
response could have an issue. (K. C. Harrington et al. 2021
included an additional 5%–10% uncertainty for emission-line
intensities detected at the lower frequency edge of the EMIR
receiver on IRAM 30m, considering similar effects.) In fact,
the peak of our obtained spectrum is about twice fainter than
that reported in K. C. Harrington et al. (2021).
The CO J = 4–3 and CO J = 5–4 data were also analyzed

using a new data-scientific method (A. Taniguchi et al.
2021),22 with only one scan for each CO line. We confirmed
that the spectral shapes obtained here are consistent with those
presented in the paper. The advantages and future prospects of
these methods will be further discussed in Section 5.3.

4.2. OTF Mapping of OMC-1

We carried out several OTF mapping observations of Orion
Molecular Cloud 1 (OMC-1). The OTF maps, with a size of

×10 10 , were taken with two frequency settings in 2018, and
the maps with ×5 5 were taken with two other frequency
settings in 2019. Only x-scans along R.A. were performed in the
OTF mapping, with scan separations of 7″ and 3″ in the 2018
and 2019 observations, respectively. The total observing time
for each map was 90minutes for ×10 10 maps and

75minutes for ×5 5 maps (the on-source time was 3030 s
and 2526 s, respectively). The OTF maps were made using a
standard method with an appropriate gridding function, and 3D
data cubes with 32,768 frequency channels in FITS format were
created. Data reduction and analysis, such as channel binning
and making integrated intensity maps, were performed in
CASA. Examples of the OTF maps are shown in Figures 7 and
8, where no additional analysis, such as destriping, was applied.
Even simple observations and data reductions provide us with

high-quality images of molecular lines. The typical rms noise in
channel maps after binning 8 or 10 frequency channels
(corresponding to 1.8 km s−1) is ∼0.25 K and ∼0.1 K in Ta for
the 2018 and 2019 OTF data, respectively. The observed
frequency coverages for both the lower sideband (LSB) and
upper sideband (USB) are summarized in Figure 9. Note that the
second LO frequency was set to 8.1 GHz for all OTF mapping.
In 2019, ×1.5 1.5 OTF maps were obtained from

observations to make beam maps using SiO maser lines
(J = 3–2, v = 1) as described in Section 3.1. The OTF maps of
DCN and DCO+ J = 2–1 lines were obtained using the beam
map data, with no degradation of pointing accuracy due to
wind during the observations (K. Taniguchi et al. 2024). Other
deuterated molecules such as CCD and HDCO, CCS, and
2 mm continuum emission were also successfully imaged
using the beam map data.

4.3. Spectral Scan of Orion-KL

We obtained spectra on CASA by averaging within a circle with
a diameter of 11–12″, centered on both the hot core and compact
ridge, using the OTF spectral fits made with channel binning.
Since the distance to Orion-KL is 418 pc (M. K. Kim et al. 2008),
the spatial resolution of 11″–12″ corresponds to 0.02 pc. We
covered a total of ∼16GHz for the frequency range, from
127.9GHz to 152.4GHz. The typical rms noise of the spectra is
∼100mK (1σ, 10 ch binning) in Ta for the 2019 data. Note that the
on-source time for the spectra in the 2019 data is roughly 5 s.
Nearly 400 lines were detected above the 3σ level from the

×5 5 OTF data. Examples of the four different spectra from the
×5 5 OTF data covering 2.5 GHz are shown in Figure 10.
The molecular line identification was carefully performed

first by eye, rejecting spurious signals, contamination from

Figure 6. A comparison of the integrated CO or [C I] intensities between the
B4R on the LMT and the IRAM 30 m telescope or ALMA, as measured in
K. C. Harrington et al. (2021). The circle, crosses, and plus sign correspond to
the intensities of CO J = 4–3, CO J = 5–4, and [C I] 3P1–

3P0, respectively.
The different colors represent different targets. The systematic error in the
intensity measured with the B4R is taken to be 20% for each spectrum.
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Figure 7. ×10 10 integrated intensity map of CS J = 3–2
(146.969033 GHz) toward OMC-1 (including Orion-KL) observed in 2018.

22 Data analysis codes are available at https://github.com/astropenguin/
taniguchi-2021-analysis.
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corresponding other sidebands, aliasing signals due to A/D
conversion in XFFTS, and contamination from out-band
signals due to down-conversion. Some results of the spectral
line identifications are also shown in Figure 10. We also used
the XCLASS software (T. Möller et al. 2017) on CASA. The
detailed results of the spectral line identifications and

comparisons with previous studies using TRAO 14 m,
FCRAO 14 m, and IRAM 30m telescopes (L. M. Ziurys &
D. McGonagle 1993; C. W. Lee et al. 2001; B. Tercero et al.
2010) will be presented in the forthcoming paper by
T. Yonetsu et al. (2025). It is evident that the B4R system
is very powerful for spectral scans.

CS(J=3-2) C33S(J=3-2) H35α

H2CO(2(1,1)-1(1,0)) HC3N(J=16-15) c-C3H2(4(1,4)-3(0,3))

Figure 8. ×5 5 integrated intensity maps of various emission lines toward OMC-1 observed in 2019. The rest frequencies and beam sizes are CS
(146.969033 GHz, 14″), C33S (145.7557316 GHz, 14″), H35α (147.046848 GHz, 15″), H2CO (150.4983334 GHz), HC3N (145.560946 GHz), and c–C3H2
(150.851908 GHz), respectively.

141.6 - 144.1 GHz127.9 - 130.4 GHz

145.6 - 148.1 GHz131.9 - 134.4 GHz

149.9 - 152.4 GHz

145.1 - 147.6 GHz131.4 - 133.9 GHz

128.9 - 131.4 GHz 142.6 - 145.1 GHz

136.2 - 138.7 GHz

Figure 9. Observational frequency ranges for the five sets of OTF mapping toward OMC-1: two ×10 10 , two ×5 5 , and one ×1.5 1.5 OTF mapping. The blue
and red boxes represent the LSB and USB, respectively.
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By comparing the spectra between LSB and USB, we
estimated the image rejection ratios of the receiver using
strong lines such as SO (Tpeak ∼ 45 K), H2CO (Tpeak ∼ 25.5 K).
We confirmed that the obtained values are in the range of 15 to
20 dB and meet the specification.

5. Future Upgrade of the B4R System

5.1. Upgrade of the Receiver

One of the important capabilities required for receivers on
the LMT is the ability to be remotely tuned. For such remote
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Figure 10. Spectra (in the Ta scale) taken toward the hot core (shown in blue) and compact ridge (shown in red) in Orion-KL. The spectra were obtained using the
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tuning of standard SIS receivers, optimizing LO power for
each observing frequency setting (i.e., the corresponding LO
frequency) is necessary to minimize the receiver noise
temperature. The LO power can be optimized using GPIB23-
controlled attenuators. Another essential capability is receiver
housekeeping, which involves monitoring the temperature of
the 4 K stage, vacuum gauge output, and other key parameters.
The systems required for the B4R were integrated into the
current receiver system in 2024 May and are now ready for
future use.

5.2. Upgrade of Spectrometer

The receiver output consists of four sets of 4–8 GHz IF
signals. However, only four sets of 2.5 GHz-wide IFs are
currently processed using four XFFTS boards. The cradle for
the boards installed on the LMT can accommodate up to eight
XFFTS boards. Adding more boards and IF converters would
enable processing of the full IF outputs. Two additional
XFFTS boards and the necessary IF components have already
been prepared and will be integrated in the near future.

5.3. Data-scientific Methods for Spectroscopic Observations

The data-scientific method (A. Taniguchi et al. 2021), i.e.,
low-rank and sparse decomposition using the GoDec algorithm
(T. Zhou & D. Tao 2011), applied to the PSW observations, is
highly effective in achieving a higher S/N and eliminating
systematic errors caused by atmospheric effects, such as
spectral baseline ripples. The proposed method demonstrated a
1.67-fold improvement in S/N in the integrated spectra
compared to those obtained from the same data set but
analyzed using conventional methods, i.e., direct on–off source
subtraction and polynomial baseline subtraction. This
improvement enables more efficient spectroscopy using the
PSW mode, particularly for detecting faint molecular or
atomic line emissions from high-z objects. Additionally,
GoDec-based methods may also be applicable to the OTF
mapping mode. The detailed algorithm and analysis tool are
currently under development.
The Frequency Modulation Local Oscillator (FMLO;

A. Taniguchi et al. 2020) is another data-scientific method
for the PSW observations. Since it does not require off-source
measurements, the efficiency of on-source measurements is
expected to improve by a factor of ≳2, and software-based
sideband separation is achieved. The FMLO method was
tested using the B4R on the LMT in 2018, demonstrating its
basic functionality. The system required for the FMLO method
has been prepared24 and will be integrated into the B4R in the
near future.

6. Summary

We developed and installed the 2 mm receiver system, B4R,
on the 50 m LMT telescope, located at an altitude of 4600 m in
Mexico. The B4R receiver was developed based on the ALMA
dual-polarization 2SB mixer technology and is equipped with
an FFT digital spectrometer, XFFTS. We tested three
observing modes: the OTF mode, the PSW mode, and the
spectral scan mode.

1. It was confirmed that the B4R receiver system installed
on the LMT mostly meets the basic specifications in
terms of receiver performance, such as receiver noise
temperature and image rejection ratio. Uranus was
observed multiple times to estimate the aperture
efficiency of the LMT. The estimated values across the
entire frequency range of the B4R (130–160 GHz) were
roughly consistent with those expected based on a
surface accuracy of approximately 100 μm and the
receiver optics design. Further investigation of the
efficiencies will be required for a more accurate under-
standing of the telescope’s performance.

2. The OTF-mode observations were successfully per-
formed toward OMC-1. Thanks to the high sensitivity
of the LMT, excellent sky conditions, and the wide
frequency coverage of the XFFTS spectrometer while
maintaining high spectral resolution, high-quality and
high-sensitivity OTF maps were obtained for major lines
such as CS and H2CO , as well as for very weak lines
such as C33S and H35α.

3. The PSW-mode observations were successfully per-
formed toward lensed HyLIRGs at z ∼ 2–4. It was
confirmed that CO lines can be detected with a relatively
flat baseline in the spectrum, covering 2.5 GHz (corresp-
onding to approximately 5000 km s−1 in velocity). For
very bright SMGs, CO or [C I] lines were detected with a
10 minute on-source integration. Much fainter high-z
SMGs, where pointing sources are available within
separations �10–15 deg would be detectable in CO and
[C I] lines with deeper integrations (i.e., repeating the
PSW observations while inserting pointing calibrations
at optimized time intervals).

4. The spectral scan capability was also tested and
demonstrated using the OTF data, although no specifi-
cally designed spectral scan observation has been
conducted in the science demonstration.

5. Currently, the B4R on the LMT, which has two polarizations
and four available XFFTS boards, is operational for general
observing with the remote tuning system. However, a few
remaining issues need to be resolved as soon as possible,
such as upgrading the spectrometer to six XFFTS boards
(with a future expansion to eight full boards). We have
demonstrated that the B4R on the LMT enables the most
sensitive single-dish spectroscopic observations at 2mm.
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Appendix
Emission-line Spectra Detected in Other High Redshift

HyLIRGs

Figure 11 shows all the other spectra for emission-line-
detected high-z lensed HyLIRGs, except for PJ020941.3,
which is presented in Section 4.1. The spectroscopic redshifts
of these sources were also identified via CO lines in previous
studies (K. C. Harrington et al. 2016, 2021; R. Cañameras
et al. 2018). Table 5 summarizes the targets and our
observations.

Figure 11. Redshifted CO spectra taken toward four other Planck-selected, strongly lensed HyLIRGs at z = 2–3.5. The spectroscopic redshifts of these sources were
previously identified via CO emission-line detections (K. C. Harrington et al. 2016, 2021; R. Cañameras et al. 2018). In each panel, v = 0 km s−1 corresponded to the
line redshift obtained from our observations (see Table 5).

Table 5
Observation Logs of High-z Targets Obtained with B4R on the LMT

Target Name PJ011646.8 PJ022634.0 PJ105322.63 PJ105353.15
Target Coordinates (R.A., Decl.)
(J2000) (01h16m48.s8, 24 37 02 ) (02h26m34.s0, +23 45 28 ) (10h53m22.s63, +60 5147.1) (10h53m53.s15, +05 56 18.8)
Target Line CO J = 4–3 CO J = 5–4 CO J = 5–4 CO J = 5–4

Observation date 2019 Nov 28 2019 Nov 27 2019 Nov 28 2019 Nov 26
The total number of scans 2 1 1 2
Tatm[K] 275.2–275.4 277.1 274.8 276.6–276.7
Opacity at 220 GHz 0.08 0.10 0.10 0.12
System noise temperature [K]

(min, max)
(134, 210) 112 (124, 129) (94, 98)

First LO frequency [GHz] 141.2 146.7 133.6 137.0
XFFTS frequency range [GHz] 146.8–149.3 138.6–141.1 125.5–128.0 142.6–145.1
512-ch binned channel width [GHz] 0.04 (79 km s−1) 0.04 (84 km s−1) 0.04 (92 km s−1) 0.04 (81 km s−1)

Integration time at on-source posi-
tion [s]

600 300 300 300

Integration time at off-source posi-
tion [s]

600 300 300 300

Baseline subtracted function linear + sine curve linear linear linear

Line redshift 2.1255 ± 0.0001 3.1204 ± 0.0001 3.5486 ± 0.0001 3.0054 ± 0.0001
Noise level [mJy] 5.07 5.03 4.92 3.71
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