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Danish Anwer1, Nicola Pietro Montaldo2,3, Elva Maria Novoa-del-Toro2,4, Diana Domanska2,4,5,
Hilde Loge Nilsen2,3 & Annikka Polster1,2

Parkinson’s disease (PD) is a progressive neurodegenerative disorder. DNA repair dysfunction and
integrated stress response (ISR) dysregulation have been implicated in PDpathophysiology, however,
their role during the prodromal phase remains unclear. We analyzed longitudinal blood transcriptomic
data from the Parkinson’s Progression Markers Initiative to assess DNA repair and ISR genes in
healthy individuals, prodromal PD, and those with established PD. Logistic regression classifiers
showed thatDNA repair and ISRexpression distinguishedprodromal PD fromhealthy individuals,with
accuracy peaking in later prodromal stages. In contrast, these pathways did not separate established
PD fromcontrols, suggesting amoreprominent role early in progression.Gene expression variability in
prodromal PD was high at baseline but decreased over time, indicating convergence as disease
advances. Notably, 50% of DNA repair genes and 74% of ISR genes showed non-linear patterns,
suggesting a transient adaptive response fading with progression. Feature importance analysis
highlighted several predictors of prodromal PD, including ERCC6, PRIMPOL, NEIL2, and NTHL1.
These findings indicate that DNA repair and ISR dysregulation are relevant in prodromal PD and may
be biomarkers for early detection and intervention. Future research should validate these results in
larger cohorts and evaluate diagnostic and therapeutic potential.

Parkinson’s disease (PD) is a progressive neurodegenerative disorder clas-
sically defined bymotor symptoms (bradykinesia, tremor, rigidity, postural
instability), which emerge only after significant neurodegeneration has
occurred1,2. Years before this motor symptoms onset, patients often
experience a prodromal phasemarked by subtle non-motor features such as
REM sleep behavior disorder, olfactory loss, constipation, depression, and
anxiety.

This temporal progression from prodromal to established PD suggests
a window of opportunity to identify disease-driving molecular processes
before extensive dopaminergic (DA) neuron loss. Understanding the
molecular changes and pathogenic mechanisms in prodromal PD is
therefore critical, as it may allow for diagnosis before significant neuronal
loss occurs, when neuroprotective interventions are likely most effective, as
well as identify novel treatment targets.

Among the emerging mechanisms implicated in PD pathogenesis is
genomicDNAdamage and repair dysfunction3. Growing evidence suggests

that the accumulation of DNA lesions in neuronsmay play an active role in
driving disease onset and progression4,5. Dopaminergic neurons are meta-
bolically active and exposed to high levels of endogenous reactive oxygen
species (ROS) as by-products of dopamine metabolism and mitochondrial
respiration6,7. PD is associated with impaired mitochondrial electron
transport and mitophagy, which further exacerbates DNA damage. Over
time, this chronic oxidative DNA damage may overwhelm the capacity of
the repair pathways8.

This results in the accumulation of both single-strand and double-
strand breaks (SSBs and DSBs, respectively), which are hazardous. In
addition to these breaks, a plethora of base lesions can accumulate, each
having distinct effects on transcription. In mitochondrial DNA (mtDNA),
which has limited DNA repair capacity, the relevance of these might be
more important. PD patients, in fact, exhibit a higher burden of somatic
mtDNA mutations in striatal nigral neurons compared to age-matched
controls9.
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Cells counteract oxidativeDNAdamageprimarily via the base excision
repair (BER) pathway, which recognizes and excises oxidized bases10. The
BER pathway is especially important in mitochondria, where it is the only
fully functional DNA repair mechanism11. However, paradoxically, BER
itself can become a source of stress if dysregulated. Our recent study using a
Caenorhabditis elegans (C. elegans) PD model demonstrated that BER
activity initiated by the DNA glycosylase NTH-1 leads to accumulation of
repair intermediates (single-strand breaks) that trigger neurotoxicity during
physiological aging. In this study, reducingNTH-1 levels by knocking out or
siRNA-mediated knockdown was actually neuroprotective, preventing
neurodegeneration8. This highlights that while DNA repair pathways are
essential for cell survival, overactivation or lack of coordination in handling
toxic intermediates, such as SSBs and DSBs, can cause harm by depleting
resources or generating toxic DNAbreak ends. Consistently, genetic studies
in humans have begun to link subtle variants in DNA repair genes to PD
risk. For example, rare variants in the BER glycosylase NEIL2 (which, like
NTHL1, the humanortholog ofNTH-1, repairs oxidative base lesions)were
found enriched inPDpatients compared to controls8. Furthermore, Sanders
et al. demonstrated that genetic variants of theBERgenes increase the risk of
PD in combination with pesticides known to affect mitochondrial
function12. Taken together, these findings indicate that oxidative DNA
damage and an impaired or maladaptive repair response are key con-
tributors to PD pathogenesis from its earliest stages.

A major challenge in studying DNA repair in PD is the inaccessible
nature of the affected tissue, as one cannot easily monitor DNA damage or
repair activity in relevant cell types in living patients. This has spurred
interest in peripheral biomarkers that might reflect central neurodegen-
erative processes. Therefore, blood-based transcriptomics are of high
interest in current PD research. However, previous transcriptomic studies
have primarily focused ondifferentiating PDpatients from controlswithout
addressing that inPDpatients, substantial cell death of up to80%of relevant
cell types had already occurred2. Therefore, how these gene expression
patterns change during the prodromal phase is largely unknown.

Given the evidence that DNA damage and repair defects are involved
early in PD, a logical hypothesis is that prodromal PD patients likely exhibit
distinct changes in DNA repair pathways before clinical manifestation.
Detecting such changes in peripheral blood could provide a non-invasive
marker of ongoing neurodegenerative processes. Additionally, comparing
prodromal versus established PD could reveal whether there is an early,
perhaps compensatory upregulation of repair mechanisms that later
becomes dysfunctional as the disease advances.

By utilizing longitudinal transcriptomics from healthy and prodromal
individuals aswell as establishedPDpatients andapplyingmachine learning,
this study thus aims to explore the dynamic regulation of DNA repair gene
expression in these groups and reveal patterns within curated pathways.

Results
Differential expression analysis
To orient our gene set-based analyses, we first examined global differential
expression patterns across diagnostic groups at baseline (Fig. 1). The
number of strongly differentially expressed genes increased progressively
across comparisons: from no significant changes between healthy and
prodromal PD, to extensive changes in prodromal vs. established PD, and
healthy vs. established PD. Despite these broad shifts, genes from the
mtDNArep,DNArep, and ISRpathwayswere largely absent from the top 50
differentially expressed genes in each comparison. Only one gene, LITA-
F(ISR), appeared in healthy vs. established PD.

This limited representation of curated pathway genes among the most
strongly differentially expressed genes suggests that their role in PDmay be
more subtle and relevant later in thedisease progression, rather thanmarked
by initial large expression shifts in individual genes. These findings con-
firmed the need to conduct longitudinal analyses to detect coordinated and
potentially progressive changes in expression. Full differential expression
results are provided in Supplementary Table Z2 at https://zenodo.org/
records/17286840.

Classification of healthy vs. PD stages on DNA repair and ISR
genes expression
We evaluated whether gene expression patterns in mitochondrial DNA
repair, nuclearDNArepair, or the ISRcoulddistinguish individualswithPD
from healthy controls. Across all the time points, classification accuracy
ranged from 50 to 64% (Fig. 2A, corresponding AUC in Fig. 3A), indicating
performance only slightly above random chance. These results suggest that
peripheral blood expression of these pathways does not provide a consistent
or strong enough signal to reliably differentiate individuals with established
PD from healthy individuals. Accuracy did not show any consistent trend
over time, further supporting the conclusion that these transcriptional
profiles remain relatively stable once the disease is clinically diagnosed and
are not sufficient for robust classification.

Classification of healthy vs prodromal PD stages on DNA repair
and ISR genes expression
In contrast, classification accuracy was high when distinguishing healthy
individuals from those in the prodromal phase of PD for all three gene sets
(DNArep, mtDNArep, and ISR), except for the baseline visit (Fig. 2B,
corresponding AUC in Fig. 3B). Accuracy steadily increased over time for
themitochondrialDNArepair gene set, reaching apeak of 0.89 atmonth 36,
and was highest for the ISR gene set at month 24, with an accuracy of 0.91.
Gene expression variabilitywas greatest at baseline anddecreased over time,
with the lowest variance observed at month 24. This pattern suggests that
gene expression levels becomemore uniform among prodromal individuals
as the disease advances. The reduction in variability likely contributes to
improved classification accuracy and supports the idea that molecular dis-
ruptions in these pathways aremost dynamic early in the prodromal period,
becoming more consistent as individuals approach clinical diagnosis.

Classification of prodromal PD vs. established PD onDNA repair
and ISR genes expression
Similarly, classification accuracy between prodromal and established PD
was consistently high at most time points, apart from the baseline visit for
the prodromal group (Fig. 2C, corresponding AUC in Fig. 3C). However,
accuracy showeda slight decline at the later timepoints, suggesting that gene
expression differences between these two stages become less pronounced as
the disease advances toward clinical diagnosis.

PD-associated and core PD gene sets
Wealso evaluated theperformanceofPD-specific gene sets, including a core
set of well-established PD-related genes (PD core) and a broader set of PD-
associated genes (PD assoc), to compare their classification ability against
the DNA repair and ISR pathways. This analysis aimed to determine
whether genes directly linked to PD show clearer transcriptional differences
than the more general stress and repair pathways.

Classification of healthy vs. PD on PD-associated and core PD
gene sets
Neither the PD core nor the PD-associated gene sets could reliably distin-
guish healthy individuals from those with established PD in this peripheral
blood dataset (Fig. 2D, corresponding AUC in Fig. 3D). Classification
accuracy remained low across all time points, ranging from 49 to 65%,
indicating limited transcriptional differences in these pathways once PD is
clinically established.

Classification of healthy vs. prodromalPDonPD-associated and
core PD gene sets
In contrast, both PD core and PD-associated gene sets performed well in
distinguishing healthy individuals from those in the prodromal phase,
supporting the validity of our approach (Fig. 2E, corresponding AUC in
Fig. 3E). Accuracy ranged from 65 to 87%, with the highest values observed
at intermediate time points. The PD assoc gene set showed slightly stronger
performanceoverall.However, aswithother gene sets, accuracywas lower at
the prodromal baseline and showed a slight decline at later visits.
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Classificationof prodromal vs. establishedPDonPD-associated
and core PD gene sets
The PD core and PD-associated gene sets also achieved high accuracy when
distinguishing between prodromal and established PD, consistent with
results from the DNA repair and ISR pathways (Fig. 2F, corresponding
AUC in Fig. 3F). Classification accuracy peaked at month 24 in the pro-
dromal group, while baseline again showed weaker separation between
groups.

Global gene expression-based classification: lack of dis-
crimination between healthy and PD
To determine whether any genes or gene combinations could robustly
distinguish healthy individuals from established PD at any time point, we
additionally conducted a classification analysis on the full dataset. Notably,
classification accuracy remained low (53–67%) across time points (Sup-
plementary Fig.Z1 athttps://zenodo.org/records/17286840), indicating that
peripheral blood RNA sequencing does not provide reliable biomarkers for
established PD.

Longitudinal gene expression
We examined how gene expression changed over time within each diag-
nostic group. In both healthy individuals and those with established PD,

gene expression remained relatively stable across all time points, with only
minor changes observed. In contrast, individuals in the prodromal phase
showed greater variability. Many genes had the highest expression varia-
bility at baseline and became more consistent by month 24 (see Supple-
mentary Figs. Z2–Z4 at https://zenodo.org/records/17286840). This early
variability likely contributed to lower classification accuracy at baseline and
the improved accuracy observed at later time points.

Notably, many genes in the prodromal group did not follow a simple
upward or downward trend. Instead, they displayed dynamic, non-linear
patterns over time. About half of the DNA repair genes and nearly three-
quarters of the ISR genes showed non-linear trajectories, where expres-
sion first increased and then decreased, or vice versa, or a mixed pattern.
These results suggest that the prodromal phase is marked by an active but
temporary transcriptional response to early disease processes. As the
disease progresses, this response appears to decline or collapse, resulting
in the more stable but less distinct gene expression patterns seen in
established PD.

Feature importance
To better understand the classification results, we identified the genes that
contributed most to group separation by analyzing the feature importance
scores frommonths 12, 24, and 36. Baseline valueswere excludeddue to low

Fig. 1 | Differential gene expression analyses at baseline. Volcano plots of dif-
ferential gene expression across diagnostic groups at the baseline time point. The x-
axis represents log₂ fold change, and the y-axis represents –log₁₀(p-value), high-
lighting both the magnitude and statistical significance of expression changes. Each
dot corresponds to a gene: red indicates genes meeting both significance and fold
change thresholds, blue indicates significance-only, green indicates fold change-
only, and gray denotes non-significant genes. A Comparison between healthy
controls and individuals with established Parkinson’s disease (PD) revealed wide-
spread differential expression, suggesting substantial transcriptional alterations

associated with disease state. Only one gene (LITAF) of the selected gene sets was
differentially expressed in this comparison. B In the comparison between healthy
controls and prodromal PD, no genes were differentially expressed, reflecting a
subtler transcriptomic shift in early disease stages. C The contrast between pro-
dromal and established PD showed extensive differential expression, indicating
pronounced molecular changes. The relative lack of significant gene expression
changes between healthy controls and prodromal PD (B), contrasted with the
marked differences observed in establishedPD (A,C), supports a progressive pattern
of transcriptomic dysregulation across the clinical course of Parkinson’s disease.
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classification accuracy. Table 1 details the top 5 genes for each time point
across the three gene sets. For each gene set, we further report the most
important genes across time points in the following chapter. Full rankings
are provided in Supplementary Tables Z3–Z8 (https://zenodo.org/records/
17286840), and Supplementary Fig. S1 illustrates the longitudinal expres-
sion variability of the top genes.

Feature importance analysis on mtDNA_rep gene set
In themtDNA_rep gene set, classifying healthy vs. prodromal PD, the genes
ERCC6 and PRIMPOL consistently ranked in the top 10 in all three time
points. NEIL2, NTHL1, RAD23A, and DNA2 ranked top 10 in M12 and
M24, whileMUTYH ranked top 10 in M24 and M36.

When classifying prodromal vs. established PD, NEIL2 and ERCC6
consistently ranked in the top10 in all three timepoints.ERCC2 andNTHL1
ranked top 10 in M12 and M24. Notably, NTHL1 sank to rank 26 in M36.
DNA2 ranked top 10 in M24 and M36.

All rankings are shown in Supplementary Tables Z3 and Z4 at https://
zenodo.org/records/17286840.

Feature importance analysis on DNA_rep gene set
In the DNA_rep gene set, classifying healthy vs. prodromal PD, the genes
POLD4, XPC, POLE3, andMAD2L2 consistently ranked in the top 20 in all
three time points. H2AX, ERCC6, NEIL2, APEX1, GTF2H1, and APTX

ranked top 20 in M12 and M24, and POLB, PRKDC, REV3L, and POLE4
ranked top 20 in M24 and M36.

When classifying prodromal vs. established PD, POLD4, POLE4, and
ERCC6 consistently ranked in the top 20 in all three time points. RIF1,
MAD2L2, REV1, APEX1, POLA1, H2AX, and MMS19. Notably, APEX1,
POLA1, H2AX, and MMS19 dropped in rank substantially in M36.
RAD23B, MBD4, PRKDC, and REV3L were in the top 20 in both M24 and
M36. All rankings are shown in Supplementary Tables Z5 and Z6 at https://
zenodo.org/records/17286840.

Feature importance analysis on ISR gene set
In the ISR gene set, classifying healthy vs. prodromal PD, the genesKDM6B,
CEBPB, CDC42, S100P, HLA-DRB1, LITAF, CARS2, ATF2, IRF7, PSEN1,
ERVW-1, ATF4, NFE2L2, SLC38A2, CREBBP, LARS1, CXCL8, IARS1, and
ATF6 consistently ranked in the top 20 in all three time points. PTGS2,
CARS1, CREB1, and RPS6KA3 ranked top 20 in M12 and M24, whereas
IARS1 ranked top 20 in M24 and M36.

When classifying prodromal vs. established PD, NFE2L2, CXCL8,
CEBPB, ATF6, and IARS1 consistently ranked in the top 20 in all three time
points.POLR2C, CARS1, BBC3, andCSF1R ranked top 20 inM12 andM24,
whereasKDM6B, STAT3, RPS6KA3, DISC1, andGRIN2A ranked top 20 in
M24 andM36. All rankings are shown in Supplementary Tables Z7 and Z8
at https://zenodo.org/records/17286840.

Fig. 2 | Classification accuracy performance of predefined gene sets in distin-
guishing healthy controls, prodromal PD cases, and individuals with established
PD based on peripheral blood gene expression using logistic regression classi-
fiers. This figure illustrates how well predefined gene sets distinguish between
healthy individuals, individuals in the prodromal stage of PD, and individuals with
established PD, based on gene expression in peripheral blood. We used logistic
regression classifiers to test whether expression patterns from specific gene sets could
accurately classify individuals into their correct diagnostic group. A–C show results
for gene sets involved in mitochondrial DNA repair (mtDNArep), nuclear DNA
repair (DNArep), and the integrated stress response (ISR).D–F show results for core
Parkinson’s disease-related genes (PD-core) and a broader set of PD-associated
genes (PD-assoc) identified from genetic studies. Each heatmap displays classifi-
cation accuracy, defined as the proportion of individuals correctly identified by the
model. For example, an accuracy of 0.80means that 80%of individuals were assigned
to the correct group (e.g., healthy, prodromal, or PD) based on their gene expression
profile. Accuracy was assessed at four time points: baseline (BL), 12 months (M12),

24months (M24), and 36 months (M36). Darker shading indicates higher accuracy.
Classification accuracies above 70% can be considered strong, values above 80%
indicating high discriminatory power, and accuracies approaching or exceeding 90%
reflecting excellent group separation despite biological variability. Gene sets related
to DNA repair and ISR showed limited ability to distinguish healthy individuals
from PD patients (A), but performed substantially better when distinguishing
prodromal cases from either healthy individuals (B) or PD patients (C). A similar
trend was observed for PD-core and PD-assoc gene sets (D–F). Notably, classifi-
cation accuracy increased over time in prodromal individuals, especially for
mtDNArep and ISR gene sets, suggesting that molecular signatures become more
distinct as disease progresses. These results highlight the potential of blood-based
gene expression patterns to detect early, preclinical changes in Parkinson’s disease. A
label permutation test confirmed that all observed classification accuracies were
significantly above random chance (p < 0.001), supporting the robustness of the
results.
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Discussion
This study investigated longitudinal changes in DNA repair and ISR gene
expression during the prodromal stages of PD using peripheral blood
transcriptomics. Previous studies on DNA repair dysfunction in PD have
predominantly relied on cross-sectional analyses conducted after clinical
diagnosis, largely overlooking the critical prodromal period. Consequently,
little is known about how gene expression patterns associated with DNA
repair dysfunction and ISR evolve before clinical symptoms emerge and
how these early molecular changes relate to disease progression. Under-
standing these dynamic transcriptional changes in the prodromal phase is
crucial, as it could reveal early biomarkers of PD and provide insights into
potential compensatory mechanisms activated prior to extensive
neuronal loss.

Ourfindings add a novel nuance to the disruptions in the expression of
DNA repair genes occur long before PD symptoms manifest. This aligns
closely with previous cross-sectional evidence of DNA damage and
impaired genome maintenance mechanisms in PD patients3. Addressing
this important gap, our longitudinal analysis provides novel dynamic sig-
nature of DNA repair and ISR gene expression throughout the prodromal
stages of PD. Utilizing rigorous classification analyses on peripheral blood
transcriptomic data, we identified that gene sets related to DNA repair and
ISR effectively distinguished prodromal PD individuals from healthy con-
trols and established PD. Conversely, these gene expression signatures did
not reliably differentiate patientswith clinically established PD fromhealthy
individuals, underscoring that the most pronounced peripheral signals of
DNA repair and ISR occur early in disease progression, well before classical
motor symptomsmanifest. Interestingly, accuracy in distinguishing healthy
from prodromal PD tended to decline at later timepoints, which may be
expected if the prodromal cases move towards established PD.

Our data further highlight substantial transcriptional variability early
on in prodromal PD and, importantly, non-linear expression patterns in
many genes. Approximately half of the genes involved in DNA repair

Fig. 3 | Receiver-operating characteristic (ROC) area under the curve (AUC) for
all classifiers. Mean AUCs with the same panel layout as Fig. 2, summarizing
discrimination performance across pairwise comparisons (Healthy vs. PD, Healthy

vs. Prodromal, Prodromal vs. PD) and visits (BL, M12, M24, M36). Each value
reflects the average over 1000 bootstrap iterations of logistic-regression models
trained on the indicated gene sets. Darker shading denotes higher AUC.

Table 1 | Top five genes ranked by feature importance of the
respective time point

mtDNA_rep

Healthy vs. Prodromal Prodromal vs. PD

M12 M24 M36 M12 M24 M36

NEIL2 DNA2 POLB NEIL2 DNA2 PRIMPOL

LIG3 POLQ PRIMPOL NTHL1 NEIL2 RAD23A

NTHL1 NEIL2 PNKP LIG3 NTHL1 BRCA1

CRY1 NTHL1 ERCC6 MPG ERCC6 NEIL2

ERCC6 OGG1 PARK7 ERCC6 CRY1 DNA2

nDNA_rep

Healthy vs. Prodromal Prodromal vs. PD

M12 M24 M36 M12 M24 M36

POLE3 ERCC6 POLB POLD4 POLE3 SMUG1

XPA MAD2L2 RBX1 POLE3 MAD2L2 POLD4

H2AX POLD4 POLD4 XPA MMS19 POLL

POLD4 POLE POLI H2AX APEX1 POLB

MAD2L2 PRKDC PRKDC APEX1 MBD4 POLE3

ISR

Healthy vs. Prodromal Prodromal vs. PD

M12 M24 M36 M12 M24 M36

CEBPB NFE2L2 KAT2B NFE2L2 ATF6 KDM6B

NFE2L2 PTGS2 KDM6B PTGS2 IARS1 KAT2B

CARS2 ATF6 CEBPB POLR2C PSEN1 NFE2L2

CARS1 KDM6B CDC42 NARS1 BBC3 SQSTM1

ATF2 CEBPB S100P IRF7 CEBPA CXCL8
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pathways and nearly three-quarters of ISR-associated genes demonstrated
such non-linear expression trajectories. These complex temporal patterns
may reflect an initial adaptive response aimed at mitigating accumulating
genomic stress, followed by an eventual decline as the compensatory
mechanisms become insufficient with disease advancement.

The relative absence of curated DNA repair and ISR genes among the
top differentially expressed genes suggests that these pathways may not be
driven by large changes in individual gene expression but instead reflect
subtle, coordinated shifts across many components. This underscores the
limitations of single-gene DE analysis in capturing early disease signatures
and reinforces the rationale for pathway-level and integrative modeling
approaches.

Feature importance analysis further strengthened our findings by
consistently identifying specific DNA repair genes, most importantly
ERCC6, PRIMPOL, NEIL2, and NTHL1, as significant and recurring
molecular predictors of prodromal PD. ERCC6 and NEIL2 consistently
ranked highly across multiple assessments, suggesting a potential role as
early biomarkers. Interestingly,NTHL1 emerged as a strong early important
feature but declined in importance at later stages, suggesting an important
role in the initial prodromal phase, which may reflect an eventually over-
whelmed compensatory repair mechanism as the disease progresses.

ERCC6, also known as CSB, is crucial for transcription-coupled
nucleotide excision repair (TC-NER), targeting actively transcribed genes
for repair. It facilitates access for repair enzymes and interacts with key
factors such as TP53 and RNA Polymerase II13,14. ERCC6 dysfunction
results in defective oxidative DNA repair, contributing to nerve cell death,
photosensitivity, and premature aging. Mutations in ERCC6 cause Cock-
ayne syndrome type II, a disorder characterized by neurodevelopmental
deficits and premature aging15. Notably, NER importance is evidenced as
ERCC1-mediated DNA repair is necessary for the preservation of dopa-
minergic neurons16. Mice heterozygous for Ercc1 defects display signs of
dopaminergic pathology and PDpatients’ peripheral cells exhibit inefficient
nucleotide excision repair16.

NEIL2, a DNA glycosylase involved in BER, plays a crucial role in
maintaining genomic integrity in both the nucleus and the mitochondria11.
NEIL2 associates with RNA polymerase II and other repair proteins, sug-
gesting its involvement in transcription-coupled repair17. Iron and copper,
which accumulate in neurodegenerative diseases, inhibit NEIL2 activity,
potentially exacerbating oxidative DNA damage18. This inhibition can be
reversed by metal chelators, including curcumin, indicating therapeutic
potential18.

PrimPol, a recently discovered primase-polymerase, plays crucial roles
in both nuclear and mitochondrial DNA maintenance19. It functions as a
DNA polymerase, capable of extending primers and bypassing various
lesions, and as a primase, catalyzingDNAprimer formation, and is essential
for efficient DNA replication in both the nucleus andmitochondria19,20. It is
specifically required for replication reinitiation after mtDNA damage21.
PrimPol’s ability to start synthesis of DNA chains with deoxynucleotides
and bypass common oxidative lesions makes it unique among primases22.
Given its critical role in bypassing oxidative DNA lesions during mtDNA
replication, PrimPolmay play a key role in the cellular response to oxidative
stress in prodromal PD.

Interestingly, NTHL1 initially emerged as an early prodromal marker,
but its relevance sharply declined with disease progression. This is in line
with a working model where NTHL1 takes part in a potentially critical
compensatory DNA repair mechanism occurring early in disease patho-
genesis. The C. elegans ortholog NTH-1 has been implicated in the age-
dependent accumulation of single-stranded DNA breaks, contributing to
PDandAlzheimer’s disease pathology inC. elegans. In these diseasemodels,
NTH-1 generates strand breaks during physiological aging, and its loss is
associated with a protective phenotype characterized by reduced proteo-
toxicity and activationof cellular defenses that improveoverall health aswell
as cognitive function8,23. Recent studies have also linked NTHL1-initiated
DNA repair to mitochondrial fitness and adaptive stress responses in
human cells24.

Collectively, ourfindings indicate that dynamic changes inDNArepair
dysfunction and ISR pathways occur early in PD pathogenesis and can be
reliably captured in peripheral blood, highlighting their promising utility as
early-stagemolecular biomarkers. The longitudinal transcriptomic changes
we report here suggest that the DNA repair perturbations may dynamically
evolve as individuals transition from prodromal stages to established PD.

One compelling observation in our analysis is that, in contrast to
established PD, prodromal individuals exhibit substantial gene expression
volatility andnon-linear trajectories, indicating an active biological response
aimed at compensating for accruing molecular stress. The non-linear
expression patterns observed in half of the DNA repair genes during pro-
dromal stages, which were absent in established PD, support this inter-
pretation. We propose that this adaptive transcriptional flexibility reflects a
transient attempt to counteract oxidative and genomic stress, aligning with
experimental evidence of a compensatory phase before symptom onset. As
PD progresses, this responsemay become overwhelmed, ultimately shifting
to diminished homeostatic equilibrium. Interestingly, variance in expres-
sion levels inprodromalPDwashighest at baseline,which is reflected by low
sensitivity in our classifications at that time point. This may reflect an initial
chaotic response to disease onset, or other unknown biological processes
that remain to be elucidated. Importantly, exploring this initial variability
further may provide valuable insights into the earliest molecular perturba-
tions of PD. Future studieswith larger cohortswill beneeded to stratify these
early responses and determine their diagnostic or prognostic relevance.

Our study has several notable strengths. The longitudinal design
enabled us to capture dynamic gene expression changes related to DNA
repair dysfunction and ISR during prodromal PD, a perspective often
missed by cross-sectional studies. Using the high-quality PPMI dataset,
combined with rigorous statistical validation through extensive cross-vali-
dation, enhances the reliability and reproducibility of our findings. Addi-
tionally, the comprehensive evaluationofmultiple biologically relevant gene
sets ensured hypothesis-driven analyses, thereby minimizing the potential
for statistical biases associated with exploratory analyses or selective
reporting of findings.

However, several limitations warrant consideration. Because whole
blood gene expression correlates only moderately with gene expression in
the brain, peripheral blood samples should be viewed as useful yet incom-
plete proxy for central nervous system processes25. This limits the direct
mechanistic interpretability of our findings in relation to CNS-specific
pathophysiology, and caution is warranted in translating peripheral tran-
scriptomic signatures into central disease mechanisms. Importantly, given
the systemic, multi-organ features reported in prodromal PD, relevant
molecular alterations are likely to arise outside the CNS, suggesting value in
sampling additional tissues alongside blood.

While whole blood gene expression provides a useful screening-level
readout, it its moderate correlation with brain expression limits direct
mechanistic interpretation. Peripheral assays can nevertheless identify
candidate biomarkers for follow-up in more informative systems such as
CSF, neuroimaging, or nasal swabs, which could capture both mitochon-
drial genome maintenance and α-synuclein as potential compound bio-
markers. Integrating multi-omics approaches with such tissue-specific
sampling, together with advances in brain-wide mitochondrial mapping26,
may help bridge peripheral signatures with central neurodegenerative
mechanisms.

To account for possible sex-related mechanisms, we conducted sex-
stratified classifier analyses; accuracies in these analyses were similar or
lower than pooled analyses, likely due to small subgroup sizes.We therefore
presented only pooled results and acknowledged limited power to detect
sex-specific effects. Further, variability in gene expression could also be
influenced by external factors such as immune status, medication use, or
comorbid conditions. Medication use in the established PD group may
further have influenced the expression levels of our genes of interest, thus
obscuring classification accuracy. Importantly, transcript levels do not
directly correlate to protein levels and thus do not provide insights into all
potentially relevant factors. Stratifying established PD by medication,
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severity, or comorbidities was infeasible as it resulted in very small subgroup
sizes down to n = 1, also due to high variation in medication use over time,
we therefore did not pursue subgroup analyses and acknowledge this as a
limitation. Although we describe transcriptomic changes associated with
prodromal PD, we did not perform functional validation or assess protein-
level correlations, which would further strengthen the biological inter-
pretation of ourfindings. Future studies integrating proteomic or functional
assayswill be important to confirm the downstream impact of the identified
gene expression changes. Lastly, the demographic characteristics of our
cohort potentially limit the generalizability of results.

Despite these limitations, our study provides valuable insights into the
molecular dynamics of prodromal PD and presents several important areas
that merit further investigation. Given the promising potential biomarkers
identified, future research should validate their diagnostic potential in larger,
more diverse cohorts, ideally incorporatingmulti-center studies to enhance
generalizability, and further explore the biological mechanisms at play with
in vitro or in vivo models of PD. Additionally, integrating multi-omics
approaches, such as proteomics, metabolomics, or epigenomics, could
deepen our understanding of DNA repair dysfunction and ISR pathways in
prodromal PD and increase mechanistic understanding. Lastly, research
exploring interventions targeting the early compensatory mechanisms
identified through our longitudinal data could lead to novel therapeutic
strategies for delaying PD progression. As the prodromal subset of PPMI
currently has no conversion events; we will further evaluate a pre-specified
biomarker score prospectively as conversions accrue and, where possible, in
external incident-PD cohorts.

In conclusion, this longitudinal study offers novel insights into the
dynamics ofDNArepair dysfunction and ISRgene expression inprodromal
PD. Our findings highlight distinct molecular changes that occur prior to
clinical diagnosis, identifying specific genes as promising biomarkers for
early detection. While not all individuals in the prodromal group may
ultimately convert to clinical PD, ongoing follow-up will be essential to
determine the prognostic value of these molecular signatures. Despite
current limitations, our findings advance the understanding of early-stage
PDpathology and lay the groundwork for future studies. Stratified analyses,
interactions with aging or genetic background, and pathway-level investi-
gations will be key to unraveling the heterogeneity of prodromal PD and
supporting more personalized approaches to early detection.

Methods
Overview
To investigate how gene expression in DNA repair and stress response
pathways changes across Parkinson’s disease stages, we analyzed long-
itudinal transcriptomic data from blood samples collected in the PPMI
cohort27. We focused on biologically curated gene sets and used logistic
regression, a supervised machine learning method, to assess whether their

expression patterns could distinguish between diagnostic groups (healthy,
prodromal PD, and established PD) over time. We further evaluated how
gene importance and expression variability changed throughout the disease
course. This analysis used data openly available from PPMI.

Weacknowledge theuseofChatGPT(OpenAI) for editorial assistance,
including grammar refinement. The authors retained full responsibility for
the interpretation and presentation of the data.

Data
To examine longitudinal gene expression changes across PD progression,
transcriptomic data from PPMI27 were analyzed across three participant
groups: healthy individuals, prodromal PD, and idiopathic PD at four time
points: Baseline (BL), after 12 months (M12), after 24 months (M24), and
after 36months (M36).Whole transcriptome sequencingwas performedon
ribo- and globin-depleted RNA from PaxGene Tubes at HudsonAlpha
using Illumina NovaSeq6000. RNA was processed via directional cDNA
synthesis and NEB/Kapa library prep, aligned to GRCh38p12 using STAR.
Data from the IR3 sequencing version was downloaded as Transcripts Per
Million (TPM) values (generated using the Salmonmethod28) from https://
ida.loni.usc.edu/.

Demographics and clinical characteristics
Participants included in this study were obtained from the Parkinson’s
ProgressionMarker Initiative27. The cohort consisted of healthy controls (at
baseline n = 188, 35.4% female), prodromal PD subjects (at baseline n = 58,
20.6% female), and established PD patients (at baseline n = 393, 34.5%
female). Detailed age distributions across the four time points are shown in
Fig. 4.

Gene sets
We selected five gene sets representing distinct biological processes: (1)
mitochondrial DNA damage repair (mtDNArep), (2) general DNA
damage repair (DNArep), (3) the integrated stress response (ISR), (4) core
PD-related genes (PD-core), and (5) PD-associated genes (PD-assoc). The
DNArep, mtDNArep, and ISR gene sets were manually curated by HLN
and MN, domain experts in DNA repair mechanisms. The PD-core set
was compiled through manual curation from publicly available sources,
including informational material from the Michael J. Fox Foundation.
The PD-assoc list was derived from a recent meta-analysis29. The lists are
presented in Supplementary Table Z1 at https://zenodo.org/records/
17286840.

Differential gene expression analysis
Differential gene expression analyses at the baseline time point were con-
ducted using PyDESeq230, a Python implementation of the DESeq2 meth-
odology. Three comparisons were included: healthy vs. established PD,

Fig. 4 | Age distribution across time points by diagnosis. Distribution of parti-
cipant ages across different time points for the three diagnostic groups: Healthy,
established Parkinson’s Disease (PD), and prodromal PD. Boxplots depict the
median, interquartile range (IQR), and outliers for each group at each visit.

Individual data points are overlaid, with colors indicating specific time points:
baseline (BL), 12 months (M12), 24 months (M24), and 36 months (M36). The
numbers above each boxplot denote the sample size at each visit.
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healthy vs. prodromal PD, and prodromal PD vs. established PD. Differ-
ential expression was modeled to assess differences between diagnostic
groups while accounting for plate, age, and sex as potential confounders.

Raw gene-level count data was filtered to include only protein-coding
genes by parsing the GTF annotation file (Homo_sapiens.GRCh38.104.gtf)
to extract entries where the gene biotype was “protein_coding”. Lowly
expressed genes were further removed based on a Counts Per Million
(CPM) threshold: genes were kept if they had CPM ≥ 1 in at least half of the
samples in a given comparison group. Normalization was handled intern-
ally via size factor estimation to account for differences in library size and
sequencing depth. Significance testing was performed usingWald tests, and
p-values were adjusted for multiple testing using the Benjamini–Hochberg
method to control the false discovery rate. Genes with adjusted p-values <
0.05 were considered significantly differentially expressed. Both raw and
adjusted p-values are reported, and results are visualized through vol-
cano plots.

Classifier analysis
To evaluate the differential activity of biological processes represented by
gene sets across healthy, prodromal, and established PD states, we per-
formed classification analyses using logistic regression. These logistic
regression classifiers are supervised machine learning models that estimate
the probability of group membership based on predictor variables such as
gene expression. These models are well-suited to high-dimensional tran-
scriptomic data andwere trained todistinguish betweenhealthy individuals,
prodromal PD patients, and individuals with established PD. Performance
was evaluated using classification accuracies on bootstrap validation.
Classification accuracy is a measure of howwell a model correctly identifies
or predicts group membership. It is calculated as the proportion of correct
predictions out of all predictionsmade. For example, if a model classifies 80
out of 100 samples correctly, the classification accuracy is 80%.We initially
conducted both logistic regression and RandomForest analyses to compare
model performance. As both achieved similar accuracy in these compar-
isons, we chose to utilize logistic regression for its simplicity and inter-
pretable coefficients for feature importance analysis, avoiding the ‘black-
box’ limitations of more complex models.

We conducted this analysis for the respective pairwise comparisons
(healthy vs. prodromal and prodromal vs. PD) across four time points: BL,
M12, M24, and M36. To ensure the reliability and robustness of our find-
ings, we performed bootstrap validation by running 1,000 iterations of the
logistic regression on randomly split training and test sets for each gene set.
In each iteration of the classifier, we randomly selected an equal number of
subjects from each group to prevent class imbalance and minimize bias in
the results. The data were stratified into training (80%) and testing (20%)
sets, with the logistic regression model trained on the training set using
Scikit-Learn with default hyperparameters and evaluated on the test set.
Classification accuracy was recorded for each iteration and averaged across
all iterations to obtain a stable and reliable measure of model performance.

To assess the importance and relative contribution of individual genes,
we extracted the genes’ coefficients from the logistic regression model at
each iteration.Toenhance the robustness of thesefindings,we calculated the
average coefficient value across the 1000 iterations of each classifier. These
average coefficients were then ranked based on their absolute values, with
larger absolute values indicating higher importance of the gene in distin-
guishing between the groups.

To capture shifts in gene importance over time and visualize trends in
disease progression,we analyzed the temporal dynamics of gene importance
rankings across different time points.

Data availability
This analysis used data from the PPMI database, which is available and can
be accessed by researchers at the following link https://www.ppmi-info.org/
access-data-specimens/download-data. All Supplementary Figures and
Tables are deposited at https://zenodo.org/records/17286840.

Code availability
Code is provided at https://github.com/Polster-lab/Longitudinal-DNA-
Repair-Parkinson and deposited at Zenodo (https://zenodo.org/records/
17286840).All theAnalyseswereperformedwithPython software (v3.12.0).
All machine learning models were implemented using the Scikit-learn
Python library (v1.7.1).NumPy (v2.3.3)was used for numerical calculations
and data manipulation. Visual plots were created using Seaborn (v0.13.2)
and Matplotlib (v3.10.6).
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