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ABSTRACT: The biological functions of intrinsically disordered
proteins (IDPs) are governed by the conformational states they
adopt in solution and the kinetics of transitions between these states.
We apply writhe, a knot-theoretic measure that quantifies the crossings
of curves in 3D space, to analyze the conformational ensembles and
dynamics of IDPs. We develop multiscale descriptors of protein
backbones from writhe to identify slow motions of IDPs and
demonstrate that these descriptors can provide a superior basis for
constructing Markov state models of IDP conformational dynamics
compared to traditional distance and dihedral angle descriptors.
Additionally, we leverage the symmetry properties of writhe to design
an equivariant neural network architecture to sample conformational
ensembles of IDPs with a denoising diffusion probabilistic model. The
writhe-based frameworks presented here provide a powerful and
versatile approach to understanding how the structural ensembles and conformational dynamics of IDPs influence their biological
functions.

■ INTRODUCTION
Intrinsically disordered proteins (IDPs) populate heteroge-
neous conformational ensembles of interconverting structures
in solution and comprise approximately one-third of the
human proteome.1 While the physiological interactions and
cellular functions of folded proteins are largely determined by
their three-dimensional (3D) structures, the biological
functions of IDPs are dictated by the properties of the
dynamic conformational ensembles they adopt in solution and
when bound to their physiological interaction partners.2−8 The
physiological interactions of IDPs are determined by the
populations of the conformational states they adopt in solution
(their structural ensembles), the kinetics of the conformational
transitions between these states (their kinetic ensembles), and
the thermodynamics and kinetics of their binding events and
folding-upon-binding pathways. There has been substantial
progress in efforts to characterize the structural ensembles of
IDP at atomic resolution.2−5 Methods to determine atomic
resolution kinetic ensembles of IDPs, which describe the
structures, populations, and interconversion rates of IDP
conformational states, have only recently begun to emerge.6,7

Due to their highly dynamic nature, characterizing structural
and kinetic ensembles of IDPs in atomic detail with biophysical
experiments is extremely challenging and generally requires

integrating biophysical experiments with all-atom molecular
dynamics (MD) computer simulations.4,7,8 Advances in the
accuracy of physical models, or force f ields, used in all-atom
MD simulations have dramatically enhanced the reliability of
atomistic IDP ensembles.2,3,5,9,10 Identifying kinetically distinct
conformational states of IDPs, however, remains a substantial
challenge. Markov state models (MSMs), which describe the
dynamics of stochastic systems as a transition network of
memoryless, probabilistic jumps between conformational
states, are a promising approach for building kinetic ensembles
of IDPs from MD simulations.11−14

Building accurate MSMs of IDPs requires identifying
molecular features that describe the slowest structural
fluctuations observed in MD simulations and using these
features to partition MD trajectories into discrete, metastable
states. As IDPs have a large number of degrees of freedom,
their conformational space is extremely high-dimensional, and
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identifying slowly evolving structural features to partition IDP
trajectories into structurally and kinetically distinct conforma-
tions is challenging.6,7 The variational approach to Markov
processes (VAMP) provides a powerful theoretical framework
to identify slowly evolving molecular features in MD
simulations quantitatively.15−20 The VAMP method, which is
based on time-lagged canonical correlation analysis
(tCCA),15,21,22 uses a family of dimensionality reduction
methods and variational scores to identify slowly varying
collective variables among a collection of candidate features
and transform these features into slowly evolving, low-
dimensional reaction coordinates. VAMP methods have
proven highly valuable for building MSMs from biomolecular
simulations.15−18,20

General and robust sets of molecular features that effectively
describe the conformational dynamics of IDPs have yet to be
identified. Due to the heterogeneity of IDP conformational
spaces and their highly diffusive dynamics, many conventional
molecular features used to characterize kinetic ensembles and
build MSMs of structured proteins are ineffective for IDPs.
Fluctuations of similarity measures to 3D reference structures
(such as RMSD), dihedral angles, Euclidean interatomic
distances, and secondary structure order parameters often fail
to meaningfully separate IDPs into kinetically distinct
conformational states, as these properties can fluctuate within
conformational substates of IDPs on fast nanosecond time
scales. Global order parameters that fluctuate on longer-time
scales, such as the radius of gyration or total solvent-accessible
surface area of IDP conformations, are often too coarse to
identify conformational states of IDPs at the fine-grained
resolution required to provide insight into their physiological
interactions and biological functions.

The fields of knot theory23,24 and differential geometry25,26

offer promising alternatives to traditional molecular features for
identifying discrete, metastable conformational states of IDPs
and characterizing their transition kinetics. The geometric
descriptor writhe, which quantifies the orientations of crossings
of curves in 3D space, has previously been applied to compare
the conformations of folded proteins27−31 and characterize the
coiling of DNA.28 Here, we demonstrate that the writhing of
protein backbones provides a powerful basis for characterizing
the structural ensembles and conformational dynamics of
IDPs.

In this study, we develop descriptions of the writhing of
protein backbones on multiple length scales. We show that
these descriptors capture distinct structural properties with
unique relaxation time scales and form a general and robust
basis for constructing atomic resolution kinetic models of IDP
conformational dynamics. We use multiscale writhe descriptors
to build MSMs from long-timescale all-atom MD simulations
of several IDPs and a fast-folding protein and compare these to
MSMs derived using traditional Euclidean distance features
and dihedral angles. We find that writhe descriptors identify
more kinetically and structurally distinct conformational states
than traditional distance features and that MSMs built from
writhe descriptors capture more kinetic variance and resolve
longer-time scale processes than MSMs built from distance
descriptors for all systems examined in this study. We use
multiscale writhe descriptors to build an MSM of the
conformational dynamics of the intrinsically disordered Aβ42
peptide from a large collection of previously reported MD
simulations.7 Our analysis demonstrates that the kinetic
metastability of the Aβ42 conformational states can be

intuitively understood in terms of the relative orientations of
backbone chain crossings. Together, these results demonstrate
that the writhe descriptors presented here provide a powerful
basis for describing the conformational dynamics of IDPs
observed in molecular simulations.

Generative artificial intelligence (AI) is an emerging
alternative approach to modeling conformational ensembles
of proteins at substantially reduced computational cost.32−35

Instead of explicitly simulating physical motions, as in MD
simulations, generative AI models learn from data (e.g.,
experimental structures, protein sequences, or MD trajecto-
ries) to predict unknown structures directly from protein
sequences. Recent breakthroughs in AI-driven protein
structure prediction, such as AlphaFold, are revolutionizing
the computational modeling of folded proteins and other
systems characterized by single structures.36,37 Notable works
aimed at sampling ensembles of structures include Boltzmann
generators,35 which utilize molecular dynamics force fields to
generate structures and their Boltzmann weights, and implicit
transfer operators, which learn to advance the state of a system
over variable time steps to overcome long-time scale barriers
that hinder sampling in simulation.34 Recent applications of
deep generative techniques to IDPs show substantial
promise,32,38,39 but many methodological questions remain
open.

It is currently unclear what generative AI model
architectures, input features, and training strategies will most
efficiently produce physically realistic IDP ensembles. Recent
studies34,40,41 have shown that neural networks trained to
sample protein conformations in generative models can be
made substantially more robust by satisfying relevant
symmetry constraints. For MD simulation data, it is highly
desirable for such neural networks to have the property of
SE(3)-equivariance, meaning that the neural network responds
predictably when input structures are rotated or translated.
SE(3)-equivariant neural network architectures ensure that
distributions of conformations from generative models are not
affected by global rotations and translations of molecular
structures.40 Another important property of SE(3)-equivariant
all-atom generative models of protein structures is that they do
not invert the chirality of L-amino acids and D-amino acids in
generated structures.34 Here, we show that the orientations of
IDP chain crossings in one-particle-per-residue representations
of IDPs popular in coarse-grained simulations and generative
models39,42,43 also exhibit chirality. We demonstrate that IDP
chain crossings with mirror-image-reflected orientations have
oppositely signed writhes (i.e., writhe is a parity-odd
pseudoscalar). We leverage this symmetry property of writhe
to design an efficient SE(3)-equivariant neural network to
sample IDP conformations with a score-based denoising
diffusion probabilistic model44 (DDPM) and present a proof
of principle demonstrating this architecture can be used to
accurately reproduce IDP conformational distributions ob-
tained from MD simulations.

■ RESULTS
Calculating the Writhe of Protein Conformations. The

field of knot theory studies the geometry, deformation, and
equivalence of closed curves in three dimensions (3D).45,46

The central challenge in knot theory is to determine whether
two knots are equivalent or isotopic. Equivalence is confirmed
by finding a set of deformations that map one knot to another
without breaking or passing through itself.45,46 Many ideas and
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mathematical descriptions from knot theory can be used to
characterize conformational states of polymers, given that
many of their conformational transitions are governed by

similar principles.47,48 Mathematical knots are commonly
represented via knot diagrams, where a 3D curve is projected
onto a 2D plane and drawn to preserve the oriented crossings.

Figure 1. Computing the writhe of protein conformations. (A) Two conformations sampled from an unbiased, long-time scale equilibrium MD
simulation of a 20-residue fragment of α-synuclein69 that exhibit backbone chain crossings with opposite-signed writhe. Structural representations
of the α-synuclein fragment are colored with a blue-to-red gradient from the N-terminus to the C-terminus. (B) Illustration of backbone segments
constructed from displacement vectors between neighboring (Cαi-Cαi+1) Cα atoms. (C) Sign and handedness of the segment crossings enclosed
with solid black boxes in panel (B). (D) Symmetric “writhe matrix” (scaled) displaying the pairwise writhe values between all Cαi-Cαi+1 segments
for the conformations displayed in panel (B). The matrix indices enclosed by dashed lines correspond to the writhe of segments contained in the
region marked with a dashed box in panel (A).

Figure 2. Geometric computation of writhe between two backbone segments of a protein. (A) Cα atoms of a protein backbone conformation are
shown as spheres and colored with a gradient from the N-terminus (blue) to the C-terminus (red). Cαi-Cαi+1 segments defining the protein’s
backbone trace are shown as dashed lines. The segment crossing enclosed in a black box is magnified to the right, showing the view direction
vectors (d⃗ij) between the end points of the segments used in the computation of the writhe (shown as solid black lines). The writhe of a pair of
discrete segments is defined as the summation of apparent crossings as observed from the perspective of each of the four view direction vectors, d⃗ij.
(B) Projecting orthogonally to each d⃗ijgenerates a view where the points Pi and Pj appear to coincide (Pi,j, red-blue points), and two corresponding
view direction vectors create a vertex that admits the angle, θi,j. The four vertices defining a spherical quadrilateral (shown in panel (C)) are shown
from the perspective of each view direction, d⃗ij. (C) Placing each view direction vector at the origin and its associated vertex on the surface of the
unit sphere constructs a spherical quadrilateral (or quadrangle). The surface area (SA) of the quadrangle normalized by 2π is equal in magnitude to
the writhe.
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By specifying the directionality of the curve, one can designate
oriented crossings as positive or negative. The total writhe of a
knot diagram can be computed as the sum of its signed (or
oriented) crossings. For a continuous curve in 3D, the writhe
can be expressed as the Gaussian integral:23,28

× ·T T r r
r r

s s s s
s s

ds ds
1

4
( ) ( ) ( ( ) ( ))

( ) ( )

L L

0 0

1 2 1 2

1 2
3 1 2

2 1

(1)

Here, r(s) represents the position vector of a point along the
curve parametrized by the arc length, s, which takes values in
the interval [0, L]. This interval represents the entire length of
the curve, L. The function T(s) is the unit tangent vector at s,
defined as T(s) = dr/ds, which describes the local direction of
the curve. The parameters s1 and s2 serve as integration
variables, allowing the curve to be integrated over itself to
account for all possible pairs of points that contribute to the
writhe. Additional discussion of the calculations of Gaussian
integrals of continuous curves is included in the Supporting
Information section “Gaussian integrals and writhe of
continuous curves”.

To compute the writhe of a protein conformation, an open
polygonal curve can be constructed from normalized displace-
ment vectors between atoms along the backbone, resulting in a
set of segments (Figure 1). These segments serve as finite
approximations of the tangent vector T(s) in eq 1. One
possible segmentation is to describe the protein backbone as a
series of segments connecting consecutive Cα atoms (i.e.,
vectors from Cαi to Cαi+1).

28,29 After segmenting the curve
into a finite number of elements, the writhe can be computed
pairwise between all segments and the resulting set of crossings
can be organized into a symmetric matrix that we refer to as

the writhe matrix (Figure 1D). In the discrete formulation, the
writhe is determined from the relative orientations of
segments, which implicitly depend on their spatial separations
(eq 1, Figure 1, and Figure S1). We note that, as in previous
applications of writhe29,48 to analyze protein conformations,
we compute writhe only between segments of protein
backbone and do not consider virtual segments linking the
termini of the protein to form a closed loop. We therefore
utilize the writhe as a pairwise geometric descriptor between
sections of the protein chain. As a result, the writhe matrix not
only resembles a contact map but also encodes the relative
orientation between each pair of segments. We visualize the
correspondence between writhe and contact populations by
comparing the ensemble averages and fluctuations of writhe
and contact matrices for a previously reported 30 μs MD
simulation of ACTR2 in Figure S2. Further discussion of the
numerical computation of the writhe from line segments is
provided in the Supporting Information, Appendix A,
“Numerical computation of the writhe and algorithms.”

Here, we use a geometric approach to compute the writhe of
a chain defined by discrete segments.28,29 We evaluate the
integral in eq 1 for individual pairs of segments by computing a
solid angle that quantifies their apparent crossing from all
viewpoints in space.28 We visualize the computation of the
writhe with this geometric approach for a single pair of
segments in Figure 2. Figure 2B illustrates that this
computation is equivalent to computing the surface area of a
spherical quadrilateral enclosed by vertices defined by the
relative orientation of the crossing segments as seen from the
perspective of each view direction vector, d⃗i,j. In Appendix A in
the Supporting Information, we provide an overview of existing

Figure 3. Describing geometric properties of proteins at different length scales with writhe. (A) Writhe (scaled) of a conformation taken from an
unbiased, long-time scale (319 μs) equilibrium MD simulation of wild-type HP35 calculated from segments between adjacent Cα atoms (Wrl=1)
and every third Cα atom (Wrl=3). Structures are colored with a blue (N-terminus)-to-red (C-terminus) gradient and are shown with select
segments between Cα atoms used in the computation of the writhe as black, dashed lines. The matrices of all pairwise contributions to the writhe
are shown to the right of each structure, with segments corresponding to the H1, H2, and H3 domains highlighted along the diagonal with solid
black ones. In the Wrl=3 writhe matrix, off-diagonal elements reflecting the relative orientations of the H2 domain with H1 and H3 domains are
highlighted with dashed lines. (B) Projections of each simulation frame onto the two dominant time-lagged canonical components obtained from
performing time-lagged canonical correlation analysis (tCCA) on writhe descriptors computed from Wrl=1 and Wrl=3. Projections are colored by the
solvent-accessible surface area and the alpha helical order parameter, Sα.51 Representative structures are shown adjacent to the projections with the
handedness of the crossing demarcated where relevant.
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algorithms for the numerical calculations of writhe and
introduce a new algorithm to efficiently compute the writhe
with reduced wall-clock times (Supplementary Table 1).
Characterizing Protein Conformations Using Writhe

at Multiple Length Scales. The writhe of a protein
backbone can be computed on multiple length scales. In
previous studies, segments have predominantly been con-
structed from displacement vectors between adjacent Cα
atoms (Cαi-Cαi+1) (Figure 1).29−31,47,48 A previous approach
to obtain higher order writhe descriptors of protein structures
was introduced by Rogan et al., who investigated higher order
Gaussian integrals inspired by Vassiliev knot invariants to
identify similarities between the global fold structures of
proteins to classify them.30,47,49 We develop multiscale writhe
descriptors by simultaneously analyzing the writhe of protein
conformations using multiple segment lengths. Here, the
segment length l specifies the offset of Cα atoms (Cαi-Cαi+l)
used to define segments in a writhe calculation. Increasing the
segment length effectively smooths the polygonal curve
representing the protein’s backbone.31 This reduces the signal
from local backbone crossings, such as the presence of the
secondary structure and more effectively captures longer length
scale structural features and fluctuations (Figure 3).

To denote the segment length (l) used to compute a set of
writhe features, we adopt the shorthand notation Wrl. Wrl=1
features correspond to writhe features computed from (Cαi-
Cαi+1) segments, while Wrl=3 features correspond to writhe
features computed from (Cαi-Cαi+3) segments. We illustrate
the geometric differences in writhe features computed from
segment lengths l = 1 (Wrl=1) and l = 3 (Wrl=3) for
conformations of the fast-folding protein, HP35, in Figure 3.
Figure 3A shows a representative conformation of HP35,
obtained from a previously published 319 μs MD simulation,50

depicted with segments of length l = 1 and l = 3. The
corresponding Wrl=1 and Wrl=3 writhe matrices for this
conformation are also presented. This conformation contains
three helical domains: H1, H2, and H3. H1 and H3 are right-
handed helices, and H2 contains a left-handed helical turn. The
handedness of the helices is resolved by the sign of the writhe
features computed at Wrl=1 (Figure 3A). In contrast, the Wrl=3
matrix shows reduced fluctuations in the values of the writhe of
neighboring segments and more effectively captures the
relative orientations of the helical domains, seen as off-
diagonal elements in the Wrl=3 writhe matrix (Figure 3A).

In Figure 3B, we visualize the results of time-lagged
canonical correlation analysis15 (tCCA; see Methods) applied
to writhe features computed for all frames of the 319 μs
simulation of HP35. The analysis was performed using either
Wrl=1 or Wrl=3 features; we compare projections of the HP35
MD trajectory onto the two slowest evolving time-lagged
canonical components obtained with each segment length. We
characterize the 2D tCCA projections using 2D histograms
colored by the average values of the α-helical order parameter
Sα51,52 and the solvent-accessible surface area of all the
conformations in each bin. We observe that the tCCA
projection of Wrl=1 writhe features is sensitive to the presence
of the local secondary structure in HP35 and clearly separates
states based on the number and location of canonical helical
elements, as quantified by the α-helical order parameter Sα.51

In contrast, the Wrl=3 tCCA predominantly captures more
global chain rearrangements with larger differences in the
distribution of the solvent-accessible surface area (SASA).
Representative structures from high SASA regions in the Wrl=3

tCCA projection exhibit delocalized crossings with differing
orientations involving residues distant from each other in
sequence (Figure 3B). These results demonstrate that writhe
features computed at different length scales are sensitive to
distinct conformational rearrangements, motivating our use of
multiscale writhe descriptors to build kinetic models of IDP
conformational dynamics.
Characterizing the Conformational Dynamics of

Intrinsically Disordered Proteins Using Multiscale
Writhe Descriptors. To assess the ability of multiscale
writhe descriptors to characterize IDP conformational states
and elucidate slow dynamic modes, we compute the writhe
using several segment lengths (l) for a diverse set of previously
published long-time scale molecular dynamics simulations.
This simulation data set includes long-time scale equilibrium
MD simulations of four IDPs performed with the a99SB-disp
protein force field and a99SB-disp water model:2 a 73 μs
simulation of α-synuclein (140 residues),2 30 μs simulations of
the partially helical IDPs ACTR (71 residues)2 and PaaA2 (71
residues),2 and a 100 μs simulation of the α-helical molecular
recognition element of NTAIL (21 residues, which we
subsequently refer to as “NTAIL”).

52 We also analyze a 319
μs simulation of wild-type HP35 (35 residues), the fast-folding
Villin headpiece subdomain,50 performed with the amber
ff99SB*-ILDN53,54 protein force field and TIP3P water
model55 and a collection of 5120 independent MD simulations
(with an aggregate simulation time of 315 μs) of Aβ42 (42
residues) performed with the CHARMM22* protein force
field56 and the TIP3P water model. These trajectories were
selected based on their excellent agreement with experimental
data, as reported in their original publications.2,7,50,52

For each MD trajectory, we apply tCCA to writhe features
computed at different segment lengths, inter-residue distances,
and dihedral angles, respectively, and compare the resulting
kinetic variances (eq 3). The kinetic variance of tCCA is
equivalent to the “VAMP-2 score”,15−17 a metric used in the
variational approach to Markov processes (VAMP) framework
that quantifies how well a set of features captures the slowest
time scale dynamics of a system.20 A larger kinetic variance
indicates that a set of features is better suited to MSM
construction. In Figure S3, we compare the kinetic variance
captured by the 10 largest tCCA components of writhe
features computed with different segment lengths and inter-
residue distances for each MD trajectory. We evaluate writhe
features computed at single segment lengths (Wrl=1, Wrl=3, or
Wrl=5). We also applied tCCA to concatenated writhe features
computed at multiple segment lengths, which we refer to as
“multiscale writhe descriptors”. The multiscale writhe
descriptors considered here include Wrl=1,3, Wrl=1,2,3, and
Wrl=1,3,5 (where Wrl=1,3 indicates that both Wrl=1 and Wrl=3
features were used as inputs for tCCA). In Figure S4, we add
the kinetic variance captured by the 10 largest tCCA
components computed using the sine and cosine of backbone
dihedral angles ϕ and ψ for comparison.

For each system examined, we observe that tCCA performed
using Wrl=1 captures more kinetic variance than the distance
and dihedral features. This demonstrates that the simplest
description of chain writhe captures more kinetic variance
writhe than conventional distance and dihedral descriptors. We
further observe that the multiscale writhe features, Wrl=1,2,3 and
Wrl=1,3,5, capture the greatest kinetic variance in each system,
demonstrating that multiscale writhe descriptors more
effectively describe longer-time scale kinetic processes in
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long-time scale MD simulations. We observe that dihedral
angles, which are inherently local descriptors, yield increasingly
lower VAMP-2 scores relative to writhe and distance features
as the length of IDPs increases. We therefore restrict further
analyses to only writhing and distance features.

For additional insight, we compare the autocorrelation times
of writhe features computed at different length scales for α-
synuclein, ACTR, PaaA2, HP35, and NTAIL in Figures S5−S9.
We find that writhe features computed at longer segment
lengths are less sensitive to structural fluctuations at short
length scales and more sensitive to structural fluctuations
between segments more distant in sequence. In contrast, we
observe that writhe features computed at segment length l = 1
excel at capturing local structural features like α-helices (Figure
3). Taken together, our results show that multiscale writhe
descriptors effectively describe long-time scale structural
fluctuations of IDPs that are not well described by Euclidean
distances, dihedral angles, or writhe computed at a single
length scale.
Building Markov State Models of Intrinsically

Disordered Proteins Using Writhe. We illustrate the
impact of incorporating writhe in the construction of kinetic
models by comparing MSMs built from writhe to MSMs built
from inter-residue distances for a 30 μs simulation of ACTR
(see Methods). To enable a direct comparison of writhe input
features and distance input features with similar dimensions,
we first performed tCCA and constructed MSMs from the
ACTR MD trajectory using inter-residue distances and writhe
features computed at a single segment length, Wrl=1. We
compare the properties of the tCCA projections obtained from
writhe and from distances in Figure 4. We project the free-
energy surface of the ACTR MD trajectory onto the two
slowest evolving tCCA components obtained from Wrl=1 or
inter-residue distances in Figure S10. We observe that the
slowest evolving tCCA component obtained from distances
and Wrl=1 resolves a similar number of states, which
corresponds to a process in which ACTR collapses into a
compact state. There is a large difference in the number of
distinct states resolved by the second slowest evolving tCCA
component (Figure 4 and Figure S10). We observe that the

second slowest evolving tCCA component from Wrl=1 isolates
several additional free-energy basins compared to the second
largest tCCA component from inter-residue distances. We
quantify the structural resolution of each coordinate for a series
of K-means57 cluster assignments using the silhouette score58

(a measure of the consistency of a clustering) (Figure 4B). We
observe that the silhouette scores for the distance and writhe
tCCA projections are maximized at k = 3 and k = 6 K-means
clusters, respectively. We observe that the silhouette score of
K-means clusters obtained from writhe does not significantly
decline until k = 10 clusters, while the silhouette score of K-
means clusters obtained from inter-residues substantially
declines after k = 3 clusters. These results demonstrate that
fluctuations in Wrl=1 resolve substantially more distinct states
than fluctuations of inter-residue distances.

We proceed to estimate 40-state MSMs of ACTR by
applying K-means clustering on the three slowest evolving
tCCA components obtained from writhe and inter-residue
distances, independently (see Methods). We compare the
maximum likelihood59 estimates of the largest implied time
scales (ITS) of these MSMs as a function of model lag time in
Figure 4C. The largest ITS describes the time scale of the
slowest processes captured by an MSM. We observe that the
largest ITS of the Wrl=1 MSM converges to a substantially
larger value (∼2.0 μs) than the largest ITS of the distance
MSM (∼0.375 μs). The largest ITS of the writhing MSM also
converges at shorter lag times. This demonstrates that the
ACTR MSM constructed from Wrl=1 input features capture
slower dynamic processes than an MSM constructed from
inter-residue distances. We compute an additional ACTR
writhe MSM using the Wrl=1,3,5 feature set, which was found to
capture the most kinetic variance in the ACTR MD simulation
(Figures S3 and S4). We estimate an MSM using the three
slowest evolving tCCA components, 40 K-means clusters, and
a lag time of 6 ns (see Methods). We coarse-grain the ACTR
MSM to seven macrostates using PCCA++ spectral cluster-
ing60−62 and display MSM validation metrics in Figure S11.

For additional insight into the ACTR MSM computed using
the Wrl=1,3,5 feature set, we compare the populations of
intramolecular contacts (Figure S12) and the average Wrl=1

Figure 4. Comparing reaction coordinates, states, and MSM observables derived from writhe and Euclidean distances. (A) Reaction coordinates
obtained from time-lagged canonical correlation analysis (tCCA) on writhe features computed using segments obtained from adjacent Cα atoms
(Wrl=1) (red) and Euclidean distances between all Cα atoms (gray), for all frames from a continuous 30 μs equilibrium MD simulation of the
intrinsically disordered protein ACTR. (B) Silhouette scores, reflecting the quality of cluster assignments, as a function of the number of K-means
clusters applied to the one-dimensional reaction coordinates.58 (C) Longest implied time scales obtained from Markov state models (MSMs)
constructed by clustering the first three dominant time-lagged canonical components from each data set using 40 K-means clusters.
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values (Figure S13) of each macrostate. We observe that each
state is structurally and topologically distinct. We also compare
nuclear magnetic resonance (NMR) paramagnetic relaxation
enhancements (PREs) and small-angle X-ray scattering
(SAXS) curves computed from each state with experimental
values and the ensemble-averaged values from the entire MD
trajectory (Figure S14). We observe that each state produces
unique experimental observables, demonstrating that the
conformational states obtained from writhe descriptors have
distinct biophysical signatures. We further compare how the
empirical populations of each MSM macrostate change when
NMR chemical shifts, PREs, residual dipolar couplings
(RDCs) and SAXS data computed from the MD trajectory
are used to perform maximum-entropy reweighting against
experimental values (Figure S15), using trajectory weights
calculated as previously described.4 We observe that each
MSM macrostate is populated in the reweighted ensemble,
demonstrating that each state contributes to the experimentally
refined ensemble, which is in excellent agreement with
biophysical experiments.4

We next use Wrl=1,3,5 multiscale writhe descriptors to build
an MSM from a previously reported set of 5120 independent
MD simulations (315 μs of cumulative simulation time) of the
Alzheimer’s disease-associated peptide Aβ42.7 These simu-
lations were previously used to construct an MSM using the
deep learning VAMPnet approach with inter-residue distance
inputs.7,63,64 We performed tCCA on this simulation data set
using Wrl=1,3,5 descriptors and inter-residue distances as inputs
(see Methods). We compare projections of the Aβ42
trajectories onto the two slowest evolving tCCA components
obtained from writhe and the two slowest evolving tCCA
components obtained from distances in Figure S16. We
observe that the distance tCCA projections resolve four free-
energy basins, while the Wrl=1,3,5 tCCA projection resolves
several additional free-energy basins.

We proceed to construct an MSM from the extensive Aβ42
MD simulation data set and find that we can construct a valid
five-state MSM using the multiscale Wrl=1,3,5 writhe descriptors
(see Methods). We present a visual depiction of the
conformational ensembles and the average writhe matrices of
the five metastable conformational states in an MSM transition

Figure 5. Markov state model (MSM) of Aβ42 derived constructed from multiscale writhe descriptors. Transition network representation of the
transition probabilities and transition rates obtained from a coarse-grained MSM derived from 315 μs of MD simulations of Aβ42 using multiscale
writhe features. Representative structures of each Markov state are displayed in circles along with their stationary probabilities (p). In representative
structures of each state, Aβ42 is colored with a blue-to-red gradient from the N-terminus to the C-terminus. Transition probability fluxes between
states are indicated with directed arrows, and the thickness of the arrows is proportional to the magnitude of the flux between states. Mean first
passage times between states are reported in μs. All errors indicate the mean of the upper and lower deviations of the 95% confidence interval
calculated from bootstrapping using 1000 samples.
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network in Figure 5. We present MSM validation metrics of
the Aβ42 writhe MSM in Figure S17. We display the
macrostate transition flux and mean first passage time
(MFPT) matrices of the Aβ42 writhe MSM in Figures S18
and S19, respectively. Figure 5 illustrates that the kinetic
separation of the metastable states observed in the simulations
of Aβ42 can be intuitively understood by the orientation of
long-range contacts in each state. Comparison of the
equilibrium-weighted, average writhe matrices of states 4 and
2 illustrates that their long-range contacts have opposite
crossing orientations. Consequently, there is little transition
flux between these states directly, and interconversions
primarily proceed through state 1, the most disordered and
extended metastable state.

To further demonstrate the ability of writhe descriptors to
describe the conformational dynamics of IDPs, we systemati-
cally compare the properties of MSMs estimated from writhe
and distances for α-synuclein, ACTR, PaaA2, Aβ42, HP35, and
NTAIL (see Methods). For MD simulations of each protein, we
perform tCCA on inter-residue distances and perform tCCA
on multiscale writhe features. For each system, we identify the
set of writhe features that produce the largest kinetic variance
obtained from tCCA (Figures S3 and S4) and use this writhe
feature set to construct MSMs. We compare MSMs
constructed from the selected writhe feature set with MSMs
constructed from inter-residue distances using several combi-
nations of tCCA projections and numbers of clusters. We apply
K-means clustering to 2, 3, 5, and 10-dimensional tCCA
projections and estimate MSMS using 10, 20, 40, 60, 80, and
100 cluster centers. In Figure S20, we compare the
convergence of the largest implied time scale of each MSM
estimated with grid scans over the number of cluster centers
and tCCA dimensions as a function of the MSM lag time. We
observe that MSMs built using writhe produce longer implied
time scales (describing slower processes) with substantially
improved convergence for all simulation data sets over this
wide range of MSM hyperparameters. This demonstrates that
the ability of writhe to characterize slower time scale motions
in MD simulations is not highly sensitive to MSM hyper-
parameter selections. In contrast, MSMs estimated from
distance futures result in poorly converged ITS for three of
the six MD trajectories analyzed here (Aβ42, HP35, and
NTAIL) across different numbers of clusters and model lag
times, demonstrating that the dynamics of the resulting MSMs
are highly sensitive to MSM hyperparameters and do not
consistently capture the same dynamic processes.

To confirm that writhe MSMs estimated here are not overfit
to local fluctuations in subsets of the MD trajectories, we
compared 5-fold cross validated VAMP-2 scores evaluated on
MSMs constructed over a range of numbers of clusters and lag
times (Figure S21). For these analyses, we fixed the tCCA
dimension hyperparameter of each feature set to a value that
produced the best convergence of ITS as a function of lag time
(Figure S20). We then computed cross validated VAMP-2
scores as a function of lag time using different numbers of
MSM clusters (10, 20, 40, 60, 80, and 100 clusters). We
observed that when comparing MSMs with converged ITS,
cross validated VAMP-2 scores from writhe MSMs are
consistently superior to cross validated VAMP-2 scores from
distance MSMs regardless of hyperparameter selections. We
note that for Aβ42, HP35, and NTAIL, distance MSMs with
comparable cross validated MSM VAMP-2 scores to writhe
MSMs do not have converged ITS as a function of lag time

(Figure S20) and therefore cannot be considered valid MSMs.
For each system studied, we selected an optimal number of
clusters by selecting the smallest value where the cross
validated VAMP-2 score stopped increasing as a function of
the number of clusters (Figure S21). After selecting an optimal
number of tCCA dimensions and clusters, we identify the
MSM with the shortest lag time that has converged to a stable
ITS as the best model of the dynamics of each system (Figures
S20 and S21).
Using Writhe to Construct a Generative Model of an

IDP Ensemble. There is a growing interest in developing
generative models to predict the conformational ensembles of
IDPs directly from sequence.32,36−38,65 Modeling protein
conformations requires neural networks that conserve and
exclude certain geometric and symmetry properties of
coordinate data. We next asked if writhe could be a useful
geometric property to parametrize SE(3)-equivariant neural
network architectures for use in generative models of protein
structures and IDP structural ensembles. We hypothesized that
writhe would be useful for parametrizing SE(3)-equivariant
functions because it behaves identically to a Euclidean distance
under rotations and translations but changes sign (is
equivariant) under reflections, making it a parity-odd
pseudoscalar. As a result, scalar functions of the writhe
distinguish mirror-image-reflected protein conformations,
while functions of Euclidean distances alone cannot. In Figure
S22, we show that the set of Euclidean distances for a structure
and its mirror image are identical (invariant to parity), while
the writhe for a structure and its mirror image is distinguished
exactly by a change in sign (odd parity). This demonstrates
that the writhe can be considered equivariant to parity. As a
result, score-based denoising diffusion probabilistic models
(DDPM)44 trained to sample protein conformations using
E(3)-equivariant functions of Euclidean distances have been
shown to be insensitive to chiral features, such as the torsions
angles and the presence of L-amino acids vs D-amino acids,
observed in training data from MD.34,40 We hypothesize that
DDPMs trained using E(3)-equivariant functions of Euclidean
distances will not be capable of differentiating populations of
chain crossings with oppositely signed writhe and will therefore
not accurately reproduce conformational distributions of IDPs
in MD training data. We further hypothesize that SE(3)-
equivariant functions of writhes will remedy this deficiency and
DDPMs trained with these functions will accurately reproduce
conformational distributions of IDPs in MD training data.

To test this hypothesis, we leverage the odd-parity symmetry
of writhe to design an efficient SE(3)-equivariant neural
network to sample IDP conformations with a score-based
DDPM44 and compare the ability of this model to accurately
sample of conformational distribution of an IDP ensemble
from MD training data with an otherwise equivalent E(3)-
equivariant DDPM trained using functions of Euclidean
distances and displacement vectors. We build our model by
integrating functions of writhe (see Methods and the
Supporting Information, Appendix B) into the previously
reported, E(3)-equivariant, polarizable atom interaction net-
work (PaiNN)34,41 to obtain an SE(3)-equivariant model. The
PaiNN architecture is a message passing graph neural network
(MPNN) designed for molecular property prediction that has
been used for protein structure generation in previous
studies.34,41 The PaiNN architecture uses direction vectors
between atoms and their magnitudes (Euclidean distances) to
parametrize equivariant functions, making it efficient and
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scalable to high-dimensional MD data sets composed of many
samples. Previous work has shown that the original PaiNN
architecture systematically generates conformations and their
mirror images with equal likelihood due to its E(3)-equivariant
symmetry.34,40 On account of their symmetry, E(3)-equivar-
iant generative models sample protein structures comprosed of
amino acids with inverted chirality in all-atom models. Here,
we observe that when this architecture is applied to generate
IDP ensembles with a one-particle-per-residue resolution,
popular in coarse-grained IDP models, it also inverts the sign
(i.e., writhe) of backbone chain crossings and torsion angles
(vide inf ra, Figure 6). We emphasize that our aim is to

demonstrate our writhe-based architecture’s ability to over-
come inconsistencies observed in protein structure ensembles
generated from E(3)-equivariant architectures reported in
previous studies34 by performing a comparative analysis of our
model and the E(3) equivariant PaiNN architecture on a single
test data set as a proof-of-principal. We therefore are not
training a single model on multiple IDP sequences to obtain a
pretrained DDPM that generalizes to arbitrary IDP sequences,
which will be the subject of future work.

To obtain a computationally efficient model that appropri-
ately distinguishes the populations of structures and their
mirror images, we modify the PaiNN architecture using SE(3)-
equivariant functions derived from writhe and cross-product
vectors normal to the oriented planes containing each pair of
segments used to compute the writhe (Supporting Informa-
tion, Appendix A).66,67 To construct message passing neural
network layers between atoms, we derive a writhe-graph
Laplacian68 that maps pairwise writhe features between
segments to pairwise writhe features between atoms (see
Methods and Supporting Information, Appendix B). We refer
to this neural network architecture as “Writhe-PaiNN”. As a
proof of principle, we train denoising diffusion probabilistic
models (DDPMs) using the original PaiNN and the Writhe-
PaiNN neural network architectures on Cα-coordinate data
obtained from a previously published69 100 μs MD simulation
of a 20-residue C-terminal fragment of the intrinsically
disordered protein α-synuclein and use both DDPMs to
generate Cα-coordinate ensembles of this fragment.

To demonstrate that the Writhe-PaiNN architecture
appropriately models the chirality of generated structures and
achieves SE(3) equivariant symmetry, we compare the
populations of positive and negative writhe crossings in
ensembles generated by the Writhe-PaiNN and PaiNN
architectures (Figure 6). To compare the relative populations
of positive and negative crossings, we separately sum the
negative Wrl=1 values and positive Wrl=1 values in each frame
and compare the distributions of these sums obtained from
each ensemble with a kernel density estimate. We observe a
clear asymmetry in the distribution of positive and negative
Wrl=1 values in the target MD ensemble training data, with a
substantially larger population of negative writhe crossings
(Figure 6). We observe that the distributions of negative
writhe crossings and positive writhe crossings obtained from
the DDPM trained with the E(3) PaiNN architecture are
symmetric, in disagreement with the original MD trajectory. In
contrast, the DDPM trained using the SE(3)-equivariant
Writhe-PaiNN architecture accurately reproduces the pop-
ulations of positive and negative crossings observed in the
original MD trajectory.

For parity-invariant observables like the radius of gyration
and an intramolecular bend-angle formed by Cα atoms 1, 10,
and 20, we observe that the distributions obtained from the
PaiNN and Writhe-PaiNN DDPMs are in close agreement,
indicating that the Writhe-PaiNN architecture only impacts
parity equivariance (Figure S23). To provide a comprehensive
comparison of the ability of each model to reproduce
conformational distributions observed in MD, we compare
the distributions of intramolecular distances, backbone
torsions, and pairwise writhe (Wrl=1) produced by both
generative models to the original MD trajectory (Figures
S25−S27). We do so by training both DDPMs using the same
number of message passing layers (8), embedding dimension
(64) and sample each model via the probability flow ordinary
differential equation (ODE)44,70 every 25 training epochs, up
to 500 epochs. In Figure S25, we plot the Frećhet inception
distance (FID) of generated Cα distances, dihedral angles, and
Wrl=1 from MD. In Figure S26, we visualize the convergence of
the generated radius of gyration distributions to the MD
distribution. In Figure S27, we project generated Cα distances,
torsion angles, and Wrl=1 values onto the corresponding tCCA
components obtained from MD and visualize the resulting 2D
free-energy surfaces. We observe that both DDPMs reconstruct
MD distributions of parity-invariant observables like the radius
of gyration and Euclidean distances (Figures S25−S27) with
equivalent fidelity. However, the FID between MD and
generated distributions of parity equivariant observables like
the writhe and torsion angles quickly plateaus for the E(3)
equivariant PaiNN model, whereas the SE(3) equivariant
Writhe-PaiNN model generates ensembles that are arbitrarily
close to MD for all observables as the number of training
epochs increases (Figure S25). Further discussion of our
implementation of the PaiNN architecture and model training
protocol is provided in the Supporting Information, “PaiNN
architecture implementation and DDPM training”.

■ CONCLUSIONS
Our results demonstrate that writhe-based structural descrip-
tors provide a powerful basis to capture slow dynamic
processes, metastable states, and large-scale conformational
transitions in IDPs. By leveraging the geometric and
topological properties of writhe, we develop a multiscale

Figure 6. A writhe-based SE(3) denoising diffusion probabilistic
model (DDPM) accurately reproduces the populations of positive
writhe and negative writhe backbone chain crossings observed in an
all-atom MD simulation. We compare the populations of positive and
negative Wrl=1 chain crossings observed in a target all-atom MD
ensemble of a 20-residue C-terminal fragment of α-synuclein and
ensembles obtained from DDPMs trained using the E(3)-equivariant
PaiNN architecture and the SE(3)-equivariant Writhe-PaiNN
architecture. To compare the relative populations of positive and
negative chain crossings in each ensemble, we take separate sums of
negative Wrl=1 values and positive Wrl=1 values in each frame and
compare the distributions of these sums obtained from each ensemble
with a kernel density estimate.
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description of IDP ensembles that identifies kinetically distinct
conformational states more effectively than distance and
dihedral features. We find that writhe describes slow
conformational changes in IDPs processes more effectively
than Euclidean distances because it changes sign (is
equivariant) under mirror reflection and therefore distin-
guishes the chirality of local and global structural features of
IDPs that are not distinguished by Euclidean distances.
Moreover, we rationalize that the writhe offers a better
description of slow processes than dihedral angles because it
provides a global description of the protein’s topology by
assigning a value of the writhe between all residue pairs
whereas backbone dihedral angles only capture local geometric
information. We show that multiscale writhe descriptors
provide a general and robust framework to describe structural
and kinetic ensembles of IDPs by applying these descriptors to
analyze long-time scale MD simulations of a diverse set of
IDPs and a fast-folding protein. We demonstrate that writhe
features consistently outperform Euclidean distances in
describing the kinetic variance of MD trajectories and facilitate
the construction of Markov state models (MSMs) that
describe longer-time scale dynamics. These findings highlight
the potential of using a writhe as a general framework for
analyzing high-dimensional conformational landscapes of IDPs.

We further demonstrate that the symmetry properties of the
writhe can be used to build an SE(3)-equivariant neural
network architecture and that this architecture can be used to
construct a generative model of an IDP ensemble. Specifically,
we incorporate a writhe into the PaiNN neural network
architecture, augmenting its symmetry from E(3) to SE(3). We
apply this framework to train a denoising diffusion probabilistic
model (DDPM) on an IDP conformational ensemble from a
long-time scale all-atom MD simulation. Our results
demonstrate that the generated conformational ensemble
produced from our model accurately reproduces the MD
distributions of Euclidean distances, torsion angles, and chiral
backbone chain crossings (i.e., writhe), while the distribution
obtained from a DDPM trained with an E(3)-equivariant
architecture is only able to accurately model the distribution of
Euclidean distances but fails for both torsional angles and
chiral backbone chain crossings.

We emphasize that the DDPMs presented in this work are
trained on a single MD simulation data set to evaluate the
ability of each neural network architecture to faithfully
reproduce a target ensemble. Our generative modeling results
are presented as a proof of principle to illustrate that the
symmetry properties of writhe can be exploited to parametrize
SE(3) equivariant neural networks for protein structures.
Scaling our model and training data to generalize to arbitrary
IDP sequences will be explored in future work.

Our findings demonstrate that writhe-based descriptors can
be applied to improve the resolution of structural and kinetic
models of IDPs and data-driven approaches for modeling IDP
ensembles. In addition to improving the quality of MSMs and
providing a new tool to incorporate into training generative
models, we anticipate that writhe descriptors may be valuable
for evaluating and improving enhanced sampling approaches
for IDP simulations. As writhe is a slowly varying order
parameter in MD simulations of IDPs, it may serve as an
effective collective variable for biasing enhanced sampling all-
atom MD simulations, such as metadynamics71 or umbrella
sampling,72 to efficiently explore rare conformational tran-
sitions in IDPs. Extensions of writhe-based approaches,

including using higher order writhe descriptors such as those
described by Rogen and co-workers,30,48 may also be useful for
developing improved dimensionality reduction and clustering
methods for IDPs. Writhe descriptors could potentially serve
as global shape coordinates for applications in autoencoders
and VAMPnets,64 facilitating interpretable representations of
IDP state spaces. We anticipate that the writhe descriptors
described here may be valuable for assessing the topological
complexity of coarse-grained IDP models and generative
models of IDPs, to identify areas where those models can be
improved to more closely model ensembles obtained from all-
atom MD.

Our results demonstrate that writhe is a powerful descriptor
of IDP conformational ensembles, capable of enhancing the
analysis of molecular simulations and improving machine
learning approaches for understanding the behavior of
intrinsically disordered proteins (IDPs). To facilitate the use
of writhe to analyze protein ensembles, we provide an open-
source Python package for computing writhe-based descrip-
tors, which we anticipate will serve as a valuable resource for
the structural biology and biophysics communities.

■ METHODS

Markov State Models and Time-Lagged Canonical
Correlation Analysis (tCCA). In the context of protein
biophysics, Markov state models (MSMs) are multiscale
stochastic models used to describe the dynamics of transitions
between discrete conformational states.59,73 Under the
assumption that interconversions between states are approx-
imately Markovian, MSMs are a rigorous tool to predict
dynamic and stationary experimental observables from the MD
simulation data. MSMs are validated through self-consistency
measures. Physical observables like relaxation time scales
predicted by MSMs should be invariant to the model’s lag
time, and the evolution of the transition matrix should adhere
to the Chapman-Kolmogorov equation.73−75 However, the
practical utility of MSMs and the insight they provide are
based on their spatiotemporal resolution. Loosely speaking,
optimizing the spatial-temporal resolution of a model is
equivalent to finding the model that is valid at the shortest lag
time and has the largest number of kinetically distinct states,
whose transition statistics are sampled sufficiently.

To visualize feature sets and provide a numerical
quantification of their usefulness in constructing kinetic
models, we utilize time-lagged canonical correlation analysis
(tCCA).15,16,20 Canonical correlation analysis (CCA) can be
viewed as a dimensionality reduction that relates two sets of
variables (or data sets) by finding orthogonal transformations
(or linear combinations) of each that maximize their
correlation.21,22 CCA is computed by the singular value
decomposition of the whitened correlation matrix of the two
data sets. Here, we consider two data sets composed of the
same number of n samples and d features, X and Y ×n d and
the averages of each of the d features, μ⃗x and μ⃗x d. The CCA
decomposition can be written in terms of sample covariance
matrices (C*):
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Here, U and V are the left and right singular functions,
respectively, that yield the orthogonal transformations and Σ is
a matrix with the singular values (σi) on the diagonal and zeros
everywhere else. The singular values are the correlations of the
transformed data (see ref 17 for more details). Low-
dimensional representations of the data are obtained by
projecting onto the dominant singular functions, i.e., those
with the largest singular values.

Time-lagged canonical correlation analysis is a special case of
CCA where the data sets are time-lagged versions of each
other. Therefore, tCCA finds projections of the data with
maximal autocorrelation. In this case, the singular values are the
autocorrelations of the transformed data. If the data are sampled
from equilibrium, the sum of the squared singular values
describes the kinetic variance captured by their corresponding
singular functions and can be used as a variational score (or
VAMP-2 score)19 to find an optimal set of input features for
capturing slow processes and building MSMs.15−20 The kinetic
variance is defined as

= =C C Ckinetic variance X XY Y F i
1/2 1/2 2 2

(3)

where ∥ · ∥F2 denotes the Frobenius norm of the whitened
correlation matrix. While this exact expression is sometimes
defined as a VAMP-2 score, we use the term kinetic variance to
differentiate from the contexts where a VAMP-2 score is used
as an optimization target for VAMPnets64 and related deep
learning approaches for constructing MSMs.6,63

tCCA is closely related to time-independent component
analysis (tICA).11,22,76 Both find projections of the data with
maximal autocorrelation; however, tCCA is more general as it
can natively handle off-equilibrium statistics due to its
formulation using the SVD. In contrast, tICA explicitly
enforces reversibility by symmetrizing the autocovariance
matrix between the instantaneous (A) and time-lagged data
(B) to obtain real eigenvalues (Λ) and orthonormal
eigenvectors (V) by solving the generalized eigenvalue
problem: 1

2
(CXY + CYX)V = CVΛ where X and Y are time-

lagged versions of the same data set and the sample covariance
matrix of the full data set is denoted as the matrix, C.
Markov State Model Construction. For all systems, we

build MSMs by first computing writhe and Euclidean distance
features. We determine the best writhe feature set for each
system by performing tCCA on several combinations of writhe
features and computing the kinetic variance of each projection,
as shown in Figure S3. The writhe feature set with the largest
kinetic variance score is considered optimal and is utilized in
further analysis. We proceed by building two MSMs for each
system, one using the optimal writhe feature set and the other
using inter-residue distances for comparison. In either case,
projections of the features onto a variable number of tCCA
components (2, 3, 5, and 10) are used to cluster the trajectory
over a range of K-means clusters (10, 20, 40, 60, 80, and 100).
The clusters obtained from all combinations of tCCA
components and K-means clusters are utilized to estimate

MSMs over a range of lag times. We scan MSM results by
plotting the longest implied time scale (ITS) from each model
as a function of the lag time (Figure S20). After identifying
combinations of hyperparameters that yield models with
converged ITS (i.e., valid MSMs), we compared 5-fold cross
validated VAMP-2 scores evaluated on MSMs constructed over
a range of numbers of clusters and lag times (Figure S21). For
these analyses, we fixed the tCCA dimension hyperparameter
of each feature set to value that produced the best convergence
of ITS as a function of lag time (Figure S20). We then
computed cross validated VAMP-2 scores as a function of lag
time using different numbers of MSM clusters (10, 20, 40, 60,
80, and 100 clusters). For each system studied, we selected an
optimal number of clusters by selecting the smallest value
where the cross validated VAMP-2 score stopped increasing as
a function of the number of clusters (Figure S21). After
selecting an optimal number of tCCA dimensions and clusters,
we identify the MSM with the shortest lag time for which the
ITS is converged as the best model of the dynamics of each
system (Figures S20 and S21). It is worth noting that the
VAMP-2 scores obtained for MSMs without converged ITS (a
baseline measure of validity14,75) are trivial and should not be
considered in any comparative analysis or selection criteria.

We identified suitable hyperparameters for the MSMs of
Aβ42 and ACTR using the grid search defined above and
proceeded to construct coarse-grained models with a small
number of states. To construct coarse-grained models, we
found that using 40 initial clusters and 3 tCCA components
strikes the best balance between interpretable and reproducible
metastable state definitions and capturing slow dynamical
processes. For Aβ42, we used an MSM lag time of τ = 2.5 ns
(shortest lag time with converged ITS) to increase statistical
efficiency, given that the simulation data are composed of
thousands of short trajectories (maximum length ∼90 ns). For
ACTR, we utilized an MSM lag time of τ = 6 ns based on ITS
convergence and generalization at longer lag times (Figure
S17). We determined the number of metastable states for each
model based on the number of ITS resolved by the MSM and
the consistency of the PCCA++ algorithm60 in identifying the
same set of metastable states from an ensemble of boot-
strapped MSMs. All MSM observables are reported with 95%
confidence intervals obtained from bootstrapped ensembles of
MSMs containing 1000 samples generated using Bayesian
Markov models.73,74 Mean first passage times (MFPTs) and
transition probability fluxes were computed using transition
path theory77−79 analysis. MSM estimation and transition path
theory analysis were performed using the deeptime80 Python
software package.
Score-Based Generative Models. Score-based generative

diffusion models are probabilistic generative models used to
infer independent samples from a data distribution by learning
a so-called score f ield that reverses (or denoises) a time-
inhomogeneous stochastic process that gradually corrupts data
to random noise.44,70,81−83 The data distribution, p(x0), is
gradually transformed to a simple prior distribution, p(xT),
through the following stochastic differential equation (SDE) in
Ito form:44,70

= + Wdx f x t dt g t d( , ) ( )t t
(4)

where t is a continuous time variable defined over [0, T]
referred to as the diffusion time, dW is the standard Wiener
process, f(·, t) is a known vector valued function referred to as
the drift coefficient, and g(·) is often treated as (and is here) a
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known scalar function referred to as the diffusion coefficient of
x(t). A backward dif fusion process described by the following is
used to transform samples from a simple prior, p(xT), to
samples from the data distribution.44,84

= [ | ] +f x Wdx t g t p x t dt g t d( , ) ( ) log ( ) ( )t t
x

t2
t (5)

where ∇xt log p(xt|t) is the score field and can be approximated
by a deep neural network that directs samples from a simple
prior to the data distribution via a series of noisy perturbations
in the direction of maximum likelihood.
Geometric Deep Learning. Here, we define a function, f,

as “invariant” under a group-action g if f(x) = f(Sgx) and
“equivariant” if Tg f(x) = f(Sgx), where Sg and Tg are linear
representations of the group element g.34 For molecular
coordinates free to globally translate and rotate in 3
dimensions, the relevant symmetry groups are the special
Euclidean group (proper rotations and translations), SE(3), and
the Euclidean group (proper rotations, translations, and parity
or reflections), E(3). It has been shown that probability
distributions estimated from score-based diffusion models are
invariant to the same transformations their corresponding
score fields are equivariant to.40 This can be leveraged to guide
the construction of models by using physical principles. For
chiral molecules such as proteins sampled from MD, predicted
distributions should be invariant to rotations and translations
because these transformations do not change the conforma-
tional state of the molecule. Thus, we require an SE(3)-
equivariant neural network.

Here, we construct an SE(3)-equivariant model by
modifying the symmetry of the E(3) equivariant, polarizable
atom interaction neural network (PaiNN).41 We modify the
PaiNN architecture to align with the general formulism of
SE(3)-equivariant vector functions based on invariant scalars
given by Villar et al.66,67 PaiNN is a message passing graph
neural network architecture that parametrizes equivariant
functions using invariant scalar features (si), equivariant
vectorial features (vi⃗), interatom direction vectors (ri⃗,j), and
Euclidean distances, ∥ri⃗,j∥. Here, i and j index atoms of the
molecular structure. All features used in the model are
obtained from atomic coordinates, apart from the invariant
scalar features (si) and equivariant vectorial features (vi⃗) of
each atom, which are used internally to govern the symmetry
properties of the model and to make predictions. Invariant
scalars (si) are updated in the message block of PaiNN using
atom-wise continuous filter convolutions85 parametrized by
Euclidean distances and invariant scalar features:

s r( ( ) ( ))s j s i j i, , where φ denotes a generic multilayer
perceptron (MLP) and is an MLP composed with a
cos ine (+) and s ine (−) pos i t iona l encoding:

{ }=± =
x( ) sin , cosn x

L
n x

L n

d

1

/2
that embeds distances, ∥ri⃗,j∥, to

the dimension of the model.41 We use a similar approach for
scalar writhe features, except positional encodings of writhe
features consist of only sines to retain their odd parity. We

denote sine only positional encodings as { }=
=

x( ) sin n x
L n

d

1

/2
.

We incorporate atom-wise scalar writhe features (Supporting
Information, Appendix A), wi,j, into continuous filter
convolutions by concatenating embedded scalar writhe features
and Euclidean distances. We denote the concatenated scalar
writhe and distance features as zi,j = φ ± (∥ri⃗,j∥) ⊕ φ−(wi,j),
where ⊕ denotes concatenation across the feature dimension.

The residual of the scalar message (m) update function is
defined as

= =s s z s z( ( ) ( )) ( ) ( )i
m

s j s i j i j s j s i j, , (6)

where the sum is taken over the j neighbors of atom i to update
its invariant scalar features, si, and ◦ denotes the Hadamard
product. We modify the equivariant vector function of PaiNN
to SE(3) using the cross-product vector between segments (T1
× T2 in Figure S1) obtained from the computation of each
scalar value of the writhe, wi,j. In the following, we denote the
writhe-derived cross-product vectors as w⃗i,j (for ease of
notation. Similarly to our treatment of the scalar writhe and
Euclidean distances, we incorporate cross-product vectors (w⃗i,j)
following the same approach as the interatom direction vectors
(ri⃗,j) in the original PaiNN architecture by including w⃗i,j in the
weighted sum of equivariant vectors used to update equivariant
vector features, vi⃗. The residual of the vector message (m)
update function is defined as

= +

+

v v s z
r

r
s z

w s z
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paper is freely available from GitHub (https://github.com/
paulrobustelli/Sisk_IDP_writhe_2025). A general-purpose
implementation of the methods developed in this study for
computing writhe and analyzing molecular dynamics simu-
lation data is available as the open-source Python package
writhe_tools, which is freely distributed via the Python
Package Index (PyPI) and can be installed using pip install
writhe_tools. The freely available MD trajectories of α-
synuclein, ACTR, PaaA2, HP35, and NTAIL analyzed in this
work are available for noncommercial use by request from D.E.
Shaw Research (Trajectories@DEShawResearch.com). MD
trajectories of Αβ42 are freely available from https://zenodo.
org/record/4247321.
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neural network training and implementation details,
validation and comparison of generated structural
ensembles from DDPMs (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Paul Robustelli − Department of Chemistry, Dartmouth
College, Hanover, New Hampshire 03755, United States;

orcid.org/0000-0002-9282-8993;
Email: Paul.J.Robustelli@Dartmouth.edu

Authors
Thomas R. Sisk − Department of Chemistry, Dartmouth
College, Hanover, New Hampshire 03755, United States

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.5c01133
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

L

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01133/suppl_file/ct5c01133_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01133/suppl_file/ct5c01133_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01133/suppl_file/ct5c01133_si_001.pdf
https://github.com/paulrobustelli/Sisk_IDP_writhe_2025
https://github.com/paulrobustelli/Sisk_IDP_writhe_2025
https://zenodo.org/record/4247321
https://zenodo.org/record/4247321
https://pubs.acs.org/doi/10.1021/acs.jctc.5c01133?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01133/suppl_file/ct5c01133_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Paul+Robustelli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9282-8993
https://orcid.org/0000-0002-9282-8993
mailto:Paul.J.Robustelli@Dartmouth.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thomas+R.+Sisk"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Simon+Olsson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c01133?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Simon Olsson − Department of Computer Science and
Engineering, Chalmers University of Technology and
University of Gothenburg, SE-41296 Gothenburg, Sweden;

orcid.org/0000-0002-3927-7897
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.5c01133

Author Contributions
P.R. conceived, designed, and supervised the research. P.R. and
T.R.S. conceived and designed the trajectory analysis and
dynamic modeling portion of the research. T.R.S. and S.O.
conceived and designed the generative deep learning portion of
the paper, while T.R.S. was visiting Chalmers University of
Technology. T.R.S. and P.R. wrote the paper. T.R.S., P.R., and
S.O. edited and revised the paper.
Funding
This work was supported by the NIH under award
R35GM152750 (P.R. and T.R.S.). T.R.S. additionally acknowl-
edges the support of a GAANN Fellowship from the
Department of Education (GAANN P200A240037). This
work was also supported by and the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation (S.O.).
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors acknowledge Peter Ro̷gen for valuable discussions
and for sharing code, and Mathias Schreiner for valuable
discussions regarding the implementation of the PaiNN neural
network architecture.

■ REFERENCES
(1) Babu, M. M.; van der Lee, R.; de Groot, N. S.; Gsponer, J.

Intrinsically disordered proteins: regulation and disease. Curr. Opin.
Struct. Biol. 2011, 21 (3), 432−440.
(2) Robustelli, P.; Piana, S.; Shaw, D. E. Developing a molecular

dynamics force field for both folded and disordered protein states.
Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (21), E4758−E4766.
(3) Piana, S.; Robustelli, P.; Tan, D.; Chen, S.; Shaw, D. E.

Development of a Force Field for the Simulation of Single-Chain
Proteins and Protein-Protein Complexes. J. Chem. Theory Comput.
2020, 16 (4), 2494−2507.
(4) Borthakur, K.; Sisk, T. R.; Panei, F. P.; Bonomi, M.; Robustelli,

P. Determining accurate conformational ensembles of intrinsically
disordered proteins at atomic resolution. Nat. Commun. 2025, 16,
9036.
(5) Best, R. B.; Zheng, W.; Mittal, J. Balanced Protein-Water

Interactions Improve Properties of Disordered Proteins and Non-
Specific Protein Association. J. Chem. Theory Comput. 2014, 10 (11),
5113−5124.
(6) Sisk, T. R.; Robustelli, P. Folding-upon-binding pathways of an

intrinsically disordered protein from a deep Markov state model. Proc.
Natl. Acad. Sci. U. S. A. 2024, 121 (6), No. e2313360121.
(7) Löhr, T.; Kohlhoff, K.; Heller, G. T.; Camilloni, C.; Vendruscolo,

M. A kinetic ensemble of the Alzheimer’s Aβ peptide. Nature
Computational Science 2021, 1 (1), 71−78.
(8) Bonomi, M.; Heller, G. T.; Camilloni, C.; Vendruscolo, M.

Principles of protein structural ensemble determination. Curr. Opin.
Struct. Biol. 2017, 42, 106−116.
(9) Lindorff-Larsen, K.; Trbovic, N.; Maragakis, P.; Piana, S.; Shaw,

D. E. Structure and Dynamics of an Unfolded Protein Examined by
Molecular Dynamics Simulation. J. Am. Chem. Soc. 2012, 134 (8),
3787−3791.

(10) Coyle, D.; Hampton, L. 21st century progress in computing.
Telecommunications Policy 2024, 48 (1), No. 102649.
(11) Noé, F.; Clementi, C. Kinetic Distance and Kinetic Maps from

Molecular Dynamics Simulation. J. Chem. Theory Comput. 2015, 11
(10), 5002−5011.
(12) Brunton, S. L.; Proctor, J. L.; Kutz, J. N. Discovering governing

equations from data by sparse identification of nonlinear dynamical
systems. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (15), 3932−3937.
(13) Lu, H.; Tartakovsky, D. M. Extended dynamic mode

decomposition for inhomogeneous problems. J. Comput. Phys. 2021,
444, No. 110550.
(14) Husic, B. E.; Pande, V. S. Markov State Models: From an Art to

a Science. J. Am. Chem. Soc. 2018, 140 (7), 2386−2396.
(15) Wu, H.; Noé, F. Variational Approach for Learning Markov

Processes from Time Series Data. J. Nonlinear Sci. 2020, 30 (1), 23−
66.
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