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Preface

This modelling handbook was developed as part of a project to strengthen the civil de-
fence capacity in Sweden, run jointly by the Public Health agency of Sweden (PHAS),
Chalmers University of Technology, the Swedish defence forces, and the Swedish
Defense Research Agency (FOI). The project was financed by the Swedish Contingency
Agency (MSB).

The COVID-19 pandemic highlighted the use of mathematical modelling as a tool for
planning and for communication. It also demonstrated difficulties concerning communi-
cation of model results to a wider audience, especially when different groups present
contradictory forecasts. A large number of models were rapidly developed and commu-
nicated in both academia and within public authorities in Sweden and internationally. In
Sweden, the PHAS regularly developed national scenarios forecasting the potential de-
velopment of the pandemic for the upcoming three months, and these scenarios were
widely communicated and used. During the same period, on the regional level a number
of universities supported relevant actors with models focusing on the local situation us-
ing local data, especially the need for hospital beds. Due to the urgency of the pandemic,
there was no time nor possibility to initiate collaborations between the PHAS and the
other groups producing mathematical models. Such collaborations would have been
beneficial from many perspectives, and such collaboration is the aim of this project.

In the aftermath of the COVID-19 pandemic, the PHAS, Chalmers University, and FOI
jointly wrote a proposal to the MSB to create a network of modelers in Sweden that would
strengthenrelations, trust, and communication in preparation for the next pandemic. The
overall aim of this project is to increase the national capacity to model contagious dis-
eases during a crisis like a pandemic by supporting wider collaboration regarding math-
ematical modelling. The network now includes mathematical modelers from both uni-
versities and national authorities and is engaged in several ongoing activities. In addition
to the establishment of the network itself, this handbook was developed to present and
discuss important modelling concepts and tasks. We believe that this handbook, devel-
oped by modelers, will support future collaboration between modelers by providing a
common platform for collaboration and communication around mathematical model-
ling.

We would like to thank our external advisory board consisting of Lasse Engbo
Christensen, Birgitte Freiesleben de Blasio, Helen Johnson, Bo Bernhardsson, and
Mathew Biggerstaff for providing useful comments and suggestions on a preliminary ver-
sion of this handbook.
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Chapter 1: Introduction

The increased use of models is not unique to epidemiology, butis a general trend in both
the natural and social sciences. However, the term ‘model’ has different meanings in dif-
ferent disciplines, which can cause confusion in interdisciplinary projects where partici-
pants may have diverse viewpoints on what models are and how to best to utilize them.
Two of the authors of this handbook have addressed this challenge previously (Gerlee
and Lundh 2016), where the following definition of a scientific model was suggested:
Models are descriptions, abstract or material, that reflect or represent, and hence provide
access to, selected parts of reality. The scope of this handbook is narrower than that pre-
vious publication, and we will focus here on mathematical models of disease transmis-
sion and their connection to public decision-making.

Mathematical modelling plays a central role in infectious disease epidemiology both in
terms of prospective studies, where future events are described, and retrospective stud-
ies in which past events inform us about disease characteristics. Mathematical and sta-
tistical models play an important role when crucial data are missing or when there are
large uncertainties regarding key parameters of disease transmission because such
models can extrapolate from existing data and provide decision-makers with an overview
of possible outcomes.

The recent COVID-19 pandemic showcased both the benefits and shortcomings of math-
ematical modelling for decision-makingin public health. The results from various models
supported decision-makers during both the introduction and the removal of non-phar-
maceutical interventions (NPIs), they informed healthcare providers about potential fu-
ture needs of hospital and ICU beds, and they helped evaluate different strategies for
vaccine rollout. They have also been used retrospectively for estimating the fraction of
asymptomatic cases, inferring the serial interval, and assessing vaccine efficacy.

The pandemic put modelling groups in public health institutions and agencies under se-
vere pressure because they were expected to deliver modelling results for a novel disease
at an unprecedented pace. New constellations of infectious disease modelers also ap-
peared when public health officials joined forces with academic research groups. How-
ever, some public health agencies were under too much pressure to be able to engage in
new collaborations during the pandemic. This led to a situation where some academics
directly joined the public debate by publishing their own modelling results. These factors,
fuelled by the general sense of urgency during the pandemic, contributed in some cases
to modelling processes that did not reach their full potential to support decision-making.
Models constructed in haste, sometimes with unclear purposes, that were poorly docu-
mented and poorly communicated occasionally led to confusion among the public and
sparked non-constructive debates between scientists.

We believe that the engagement of academic researchers with public health agencies
during future pandemics is important and will provide added value. However, this coop-
eration would be enhanced if academics were to apply a well-defined modelling process
and were to have a better understanding of how infectious disease modelling connects



to decision-making in contexts outside of academia. The aim of this handbook is to de-
scribe and discuss all of the relevant steps in the modelling process and how they are
connected to decision-making — from the preparatory phase of conceptualization to the
implementation, communication, and management of models.

The intended reader is someone who has a basic understanding of the technical aspects
of modelling, including fundamental mathematical and programming skills, but who
might have less experience in constructing models in the context of decision-making in
public health. This task requires, among other things, knowledge about how the purpose
of the model should guide its development, how uncertainty should be managed and vis-
ualized, and how the communication of the model’s results should be tailored to the in-
tended purpose of the model and to the intended recipients in the area of public health.
These are skills that are usually less developed among academics who move into infec-
tious disease modelling and among junior modelers at public health authorities. How-
ever, we also believe that the handbook could be a source of inspiration and discussion
among senior modelers and managers. Furthermore, we also hope that this overview
might have a harmonizing effect between different schools of modelers.

Mathematical modelling is a diverse field, and its practices are strongly influenced by the
specific research area within which it is applied. Each research area that uses mathe-
matical models has its own standards for how models are formulated, documented, and
communicated. These standards are often tacit and are passed down from one genera-
tion of modelling practitioners to the next. However, in some contexts where models are
linked to more formal decision-making processes there are clear guidelines. To give some
examples from the health sector, the Food and Drug Administration (FDA) in the US regu-
lates how computational models are to be documented if they are used in patent appli-
cations for medical technology (FDA 2016). Also, the International Society for Pharmaco-
economics and Outcomes Research is developing guidelines aimed at mathematical
modelling studies (Weinstein et al. 2003), and the World Health Organization (WHO) is
considering how evidence coming from mathematical models should be valued when it
comes to guideline development (Egger et al. 2018). Another relevant document is The
Aqua Book, which provides guidance on the development and use of mathematical mod-
els for the UK government (UK Government 2025). In relation to infectious disease mod-
elling, a recent effort was made to develop guidelines for reporting items for epidemic
forecasting and prediction research, called the EPIFORGE 2020 guidelines (Pollett et al.
2021). These guidelines provide a comprehensive checklist of items that should be re-
ported in manuscripts, but they focus solely on academic publishing as a means of com-
munication. In contrast, our scope is wider and we also consider the stages that precede
publication and those that follow. In addition, we also consider communication with re-
cipients other than fellow academics.

Itis important to highlight that our aim is not normative in the sense that we do not want
to prescribe a specific and definite recipe for modelling infectious diseases. On the con-
trary, we are aware that the modelling process often is adapted to local conditions and
thus can take many shapes and forms. Independent of the path the modelling process
takes, there will be a number of choices that have to be made, e.g. concerning choice of
variables, model type, solution methods, visualization, and mode of communication. In



many cases these choices are never articulated, but rather are made unconsciously by
the modeler or are based on traditions within institutions. The main aim of this handbook
is to uncover these choices, helping modelers become aware of the multitude of paths
that lead from the question posed to a modelling team to a finished project and helping
them to reflect on the process. In order to avoid the connotations implicit in the term
‘guidelines’, we have opted for the more neutral term ‘handbook’ to describe this text.

Model development can roughly be divided into four distinct phases: Preparatory work,
Implementation, Communication, and Management. These typically occurin chronolog-
ical order, although iterations between the phases are common. This handbook is struc-
tured according to these phases, and in order to avoid abstract descriptions and to make
the exposition more concrete we have included three different modelling cases that are
used for illustrative purposes throughout the handbook.

In the chapter on preparatory work, we start by discussing how a specific purpose or
question is central to successful model construction and how this question is formed in
dialogue with decision-makers. We then move on to how the purpose of the model guides
its conceptualization in terms of isolation and simplification. This process is also influ-
enced by data availability. Lastly, we consider the range of different model types that are
available, including their pros and cons, and how to connect the model and the data. This
is followed by the chapter on implementation, which concerns the choice of program-
ming language and the choice of solution algorithm for the model. We then move on to
discuss how to verify the code and the process of model calibration, which is followed by
a section on modelvalidation and lastly a section on how model output can be visualized
and how uncertainty can be communicated. Once the model results are in place, we
move to the act of communicating the output. Here, we consider how communication is
shaped by the purpose of the model, the intended recipients (e.g. experts or the public),
the nature of the content, and the mode of communication. In the last chapter on model
management, we take an organizational perspective and consider the factors the affect
the reuse of models, e.g. model documentation, and we discuss the advantages and
drawbacks of reusing models. The handbook ends with a concise checklist that summa-
rises the key steps in the model construction process. We recommend that modelers fill
in the checklist during the modelling process in order to articulate their modelling
choices and to make the process more transparent.

Lastly, a note about what this handbook does not contain. We do not provide detailed
instructions for constructing an infectious disease model. We also skirt around the tech-
nicalities of programming. Nor do we give a detailed account of model types or tech-
niques for model calibration and validation. However, where appropriate we provide key
references where details concerning different aspect of model development can be
found.



Chapter 2: Preparatory work

Ideally, a model should be devised to answer a specific question; in other words, the pur-
pose of the model ought to be known to the modeler. It is, of course, imperative to know
what type of disease is to be modelled and the time frame and spatial location that the
model should cover, but it is also important for the modeler to be aware of the model’s
intended use, such as what types of decisions the model will inform and who the in-
tended recipients are.

If the specific purpose of the model is unknown at the outset of model construction,
choices concerning elements such as the model input/output, the model structure, and
the selection of variables might not align with the model’s intended use and might in-
stead be determined by the preferences of the modeler or the organization, which might
not be suitable considering the ultimate use of the model.

When applicable, itis also important already from the start to have open and direct com-
munication between the decision-maker and the modeler. In a well-functioning initial di-
alogue, the decision-maker might explain their expectations regarding the output, as
wells as what decision-making mechanism the model output will be fed into. The mod-
eler might then ask what data and knowledge about disease transmission exist today and
what data might be obtained in the future. From there, a series of clarifications from both
decision-makers and modelers concerning what might be possible to obtain and what
one could wish for regarding both data and model outcomes will drive the modelling pro-
cess forward. It is also desirable that different sources of uncertainty are discussed from
both perspectives at this stage, as well as rough estimates of their magnitude.

There is a natural pull, both from decision-makers and modelers, to construct models
that can serve a multitude of purposes and can answer questions that are posed after
the model has been constructed. It is, of course, possible to construct such models, but
typically this would require a time frame of validation that is not available in a pandemic
or epidemic setting. Instead, during an ongoing pandemic there will usually be too little
time to discuss and develop new models, and it is more likely that the discussion will
focus on how to alter an existing model to obtain urgently needed results.



Below are examples of cases where the question the model is meant to answer is differ-
ent as well as its intended purpose:

Model case 1. What is the effect of imported cases on the disease incidence within a
country?
The model results will inform decisions regarding travel recommenda-
tions.

Model case 2. How severe will an outbreak be in terms of morbidity under different
interventions?
The model will be used to assess the effect of different vaccination
strategies.

Model case 3. What is the expected number of hospital admissions in the coming
weeks?
The results of the model will aid hospitals in allocating the appropriate
number of hospital beds.

A basic model of disease transmission at a national level could, at least in theory, answer
all of the above questions, but such a model will most likely not perform very well for any
particular question. Rather, the questions that are posed should guide the choices that
are made throughout the modelling process, and this will most likely lead to different
models that are each aligned to their corresponding purpose.

Another important factor besides the purpose of the modelling exercise is the time avail-
able for modelling. Given the typically exponential growth of cases early in an epidemic
there is an urgency with which decision-makers need to act. When this time pressure is
shifted onto modelers, this will by necessity shape the modelling process. If model re-
sults need to be communicated within a week, then this will lead to an accelerated pro-
cess, where some steps, such as model validation and documentation, will be less thor-
ough than desired. Even if the documentation can be completed afterwards, some vali-
dation would be highly preferable before using the model for any decision-making sup-
port. Although it is impossible to escape the time pressure in certain cases, it will im-
prove the quality of the modelling exercise if the modelers are aware of the necessary
steps because this will help them to prioritize activities under time constraints.

Before moving on, we would like to distinguish between two distinct purposes that pre-
dictive models can be used for. On the one hand, we might be interested in the most
probable outcome, or what is expected to happen. This type of prediction is known as a
forecast. On the other hand, we might be interested in knowing what would happen if
certain future conditions are met, or what could happen. The latter type of predictions
are projections based on given scenarios. Typically, forecasts are short-term (on the or-
der of days to weeks), whereas projections are usually made on the order of months.

In the remainder of this section, we will, with the help of the above Model cases, discuss
the steps of the modelling process that occur prior to implementation.



2.1 Isolation & Simplification

Prior to the formulation of a mathematical model, one must form a conceptual modelin
which all unnecessary details are stripped away so that only the relevant components
and processes remain. This step also involves isolating the system we are describing.
This essentially involves drawing boundaries in space and time in order to show what is
included in the model and what is left out. This does not imply that the system is com-
pletely isolated, but rather that we set up boundaries both in time and space and use
information about the external physical boundary conditions in order to decide what ini-
tial state to begin with.

A conceptual modelis a simplified description of the system at hand, and it is often ver-
bal (or even just mental) but is sometimes depicted using pictures and diagrams. Luckily,
we do not have to start from scratch when formulating a conceptual model, and prior
models and theories from mathematical epidemiology provide us with appropriate con-
cepts and frameworks (Diekmann et al. 2012). Although this accelerates the modelling
process, it is good to be aware of the framing that the theory provides. For example, the
concept of discrete disease states (e.g. Susceptible, Infected, and Recovered) is a sim-
plification of a much more complex reality where the disease state of an individual is
multi-faceted and has several characteristics.

Similarly, the processes that drive disease transmission are often highly idealized in
mathematical models (see section 2.3 below for a more detailed description of different
model types). Compartmental models make use of the law of mass action, stating that
the rate of reaction is proportional to the product of the concentration of the constituent
reactants, which in terms of disease transmission translates to the incidence being pro-
portional to the product of the fraction of infected individuals and the number of suscep-
tible individuals. Agent-based models represent disease transmission at a higher level of
realism, requiring that individuals inhabit the same location in order for transmission to
occur. But evenin this case certain assumptions have to be made. For example, assump-
tions have to be made about the probability of disease transmission in different locations
(e.g. homevs. school) and about who will interact with whom. Similar considerations also
lead to the use of network models (Keeling and Eames 2005).

It is of course also possible to consider model types that lie between compartmental
models and agent-based models (as discussed below). The possibilities are enormous
and, time permitting, it could be illuminating to consider a set of models in order to learn
from various types of models instead of looking for a single “optimal model”.

Lastly, we would like to mention the common assumption that the age structure and size
of the population remains constant. This assumption is closely tied to the time span that
the model is meant to accurately describe and is reasonable for most epidemics. How-
ever, in some cases such as recurring measles epidemics the inclusion of vital dynamics
(i.e. including births and deaths in the model) is required for an accurate description of
disease transmission (Bjornstad et al. 2002).

These are only a few of the most common simplifications made in epidemiological mod-
els, and each model tied to a specific purpose will contain simplifications associated
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with the problem at hand. In relation to the modelling cases presented above, we would
expect Model case 1 to account for imported cases, while the other two models might
disregard this aspect. Model case 2 needs to account for disease transmission and must
make additional assumptions concerning things like age-dependent risk, and this is
probably not relevant for Model case 1. Lastly, Model case 3 needs to capture the delay
from infection to hospitalization, which is less relevant for the other two Model cases.

The degree of simplification makes it possible to order models from the most simplified
and unrealistic, but understandable, models to more complex and, hopefully, more real-
istic models. At first, it might appear as if this ordering also reflects the accuracy of the
models, such that complex models, which reflect more of the actual processes related
to disease transmission, should be more accurate. However, this is far from the case, and
in many instances more complex models are actually less reliable. This stems from the
fact that including more components and processes requires more parameters to de-
scribe those processes, and if accurate knowledge about those parameter values is lack-
ing then estimating those (either from the literature, from the data, or based on expert
opinion) necessarily introduces uncertainty into the model output. This phenomenon has
been termed the ‘uncertainty cascade’ (REF, chapter 4).

2.2 Choice of data

The choice of conceptual model dictates the variables that are included, and often there
isaninterplay between the data that are available at the time and the model construction
process. In a sense, model construction can be seen as a dialogue between the purpose
of the model and the available data. More types of data and higher spatial and temporal
resolution implies that the model can be made more detailed. For example, if we obtain
data on hospital admission at a weekly resolution then it usually makes sense to define
the model and its parameters on the same time-scale rather than on a scale of days or
hours.

Furthermore, the modeler should have a dialogue, as described above in the Preparatory
work section, with the data provider in order to make suggestions about what data to col-
lect.

In order to connect the variables in the model to the data, additional assumptions are
required. Even if the variable and the data are similar at the surface level, a closer exam-
ination can reveal discrepancies. For example, from a given model we can calculate the
daily disease incidence, and we also have access to national daily incidence data. We
then have to ask how such data were collected. Is every infected person featured in the
data or is there a testing bias? How are the data reported and aggregated? Are there re-
gional differences thatinduce a bias? When possible, one should try to reduce bias. How-
ever, in cases where this is impossible, one should acknowledge any potential bias that
might affect the accuracy of the model. In other cases, we need to make assumptions
about the relation between the data and the variables in order to make a connection. For
instance, this occurs when our model outputs disease incidence but we have data for
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hospital admissions (as in Model case 3 above). We then need to make assumptions re-
garding the fraction of the cases that become hospitalized and the time delay from infec-
tion to hospitalization.

Data that are connected to epidemiological models fall into four broad categories:

e Datathat are input to the model and affect different parameters, such as vaccine
coverage and the rate of under-reporting. This also includes data that determine
the initial conditions such as the fraction of the population that initially is infected.

e Datathat affect parametersin atime-dependentfashion. In Model case 3itis pos-
sible to use data on mobility to model a time-dependent contact rate (see, for ex-
ample, REF). Other types of input data include syndromic data from, for example,
telenursing calls and weather data in terms of outdoor temperature and humidity.

e Data that correspond to the main model output. For our three Model cases pre-
sented above this corresponds to disease incidence, mortality, and hospitaliza-
tion, respectively. Such data are usually used for model calibration.

e Datathatare connected to the output from the model but are only used for model
calibration. In Model case 2 we might consider seroprevalence data in order to
estimate the actual number of infected people.

In addition to the quality and potential biases present in the data, the choice of data
should also be informed by the data’s stability over time. Testing strategies that are sub-
jectto changes during an epidemic imply that data onincidence will exhibit time-depend-
ent biases that might be difficult to account for. Hospital admission data are considered
more stable, but it is possible that criteria for hospital admission can change. This also
applies to mortality data, where procedures for how causes of death are recorded might
change abruptly. In general, real-time data need to be adjusted due to the time lag in the
reporting using now-casting methods (Bergstrom et al. 2022). The emergence and spread
of novel genetic variants of the pathogen might also impact the risk of hospitalization and
mortality. The ease of data collection should also be considered. For example, some data
might require extensive preprocessing by third parties, e.g. telecom data, thus making
the modelling process more vulnerable to external partners. In terms of the reproducibil-
ity of model results, it is preferable to choose data that are publicly available rather than
protected. However, that goal will stand in contrast to GDPR protections. Data availabil-
ity might also influence public trust in the model results (see the chapter on Communi-
cation).

2.3 Choice of model type

Mathematical models that describe disease transmission and other related variables
such as hospital admissions broadly fall into three categories: compartmental models,
statistical/time-series models, and individual-level models (Grimm et al. 2006). The lat-
ter category in turn contains three types of models that are similar: agent-based models
(ABMs), individual-based models (IBMs), and micro-simulations. The definitions of ABMs
and IBMs overlap to a large degree, and the latter term is more popular in ecology and in
biology in general, whereas the former is more common in epidemiology and the social
sciences. The key differences between ABMs/IBMs and micro-simulations are that

12



ABMs/IBMs are more theory-oriented, while micro-simulations are more policy-oriented;
ABMs often use hypothetical populations, while micro-simulations typically use repre-
sentative samples of real populations; and ABMs often use ad-hoc or roughly calibrated
parameters, while micro-simulations rely more on empirically estimated processes
(Richiardi 2014).

In compartmental models, the populationis divided into two or more compartments that
represent different disease states (e.g. Susceptible, Infected, and Removed, as in the
classic SIR-model). In these models, it is also specified how individuals move between
different states (compartments), which can occur either with a certain influence of ran-
domness or can occur deterministically. It is also common to stratify the disease states
into age groups and to represent geographically distinct populations using separate sub-
compartments.

Statistical (or time-series) models create forecasts by assuming that future data (for ex-
ample, the daily incidence or the ICU occupancy) will follow a certain pattern in time (and
possibly in space). For example, in the early stages of an epidemic we might assume that
the curve that describes the daily incidence is exponential, and by fitting the model to
historical data on incidence we can make predictions about the incidence in the near
future. Statistical models can also make use of syndromic data in order to make predic-
tions (e.g. tele-nursing calls as in REF). In this category we also include machine learning
and Al models, which despite their hype have so far featured to only a limited extent in
informing decision-making in public health. One can speculate about the reasons for
this, but two main candidates might be a lack of training data, especially during the early
stages of an epidemic, and the fact that forecasts, no matter how good they are, in them-
selves do not always help in decision-making without a good understanding of the pro-
cesses that drive disease transmission.

Individual-level models, including network models, are similar to compartmental mod-
els, but instead of aggregating all individuals with the same disease state into a homoge-
neous group, each individual is described separately. This makes it possible to capture
the demographics of the population in more detail and to incorporate heterogeneity to a
greater extent in terms of contact patterns, disease development, and disease severity.
However, itis important to note that a greater level of detail requires a greater number of
parameters, which typically far exceeds the capacity of a compartmental model and, as
discussed above, introduces additional uncertainty. However, this might not always be
the case, and if one does not assign individual parameter values, but let some parame-
ters take common values, one can in fact construct an ABM with few parameters. An ad-
ditional drawback with this model type is that the computation time increases.

Allthree model types have their pros and cons, and these depend on the context in which
the modelis used and the purpose of the modelling exercise. An important consideration
is the extent of disease-specific information required to produce reliable model predic-
tions. Typically, all parameters of statistical models are estimated from historical data,
whereas for compartmental and agent-based models itis common to estimate at least a
subset of the parameters from the literature and expert opinion (e.g. the incubation and
recovery times). This implies that statistical models, in comparison to other model types,

13



are straight-forward to deploy early during a pandemic/epidemic when disease-specific
data are scarce and often uncertain. However, statistical models impose strong limita-
tions on how the epidemic will evolve (e.g. an exponential increase or a single peak),
which makes them unsuitable for longer-term predictions or for scenario projections.
This also points to another important distinction between statistical models and com-
partmental/agent-based models. Statistical models rely on data, whereas the other
model types are mechanistic in the sense that they represent (albeit in simplified form)
the processes by which disease transmission occur. This makes the variables and pa-
rameters of such models interpretable, which is an advantage both during model devel-
opment and during coding and when communicating the model to decision-makers and
the public. In other words, statistical models tend to be black boxes, whereas mechanis-
tic models are more transparent.

The use of an ABM can serve as a starting point for a study in order to get a feeling for the
dynamics involved if one is not convinced that a standard compartment model is ade-
quate or to assist in finding more realistic initial data. In the best of worlds, this might
then lead to setting up other types of models in order to further increase both the under-
standing and the predictive power of the models and thus set the stage for better deci-
sion-making.

In terms of our three modelling cases presented above one might opt for a stochastic
compartmental model or an ABM for Model case 1 given the small number of imported
cases (compared to the total population). The impact of vaccination strategies on mor-
bidity in Model case 2 could be assessed with a compartmental model where projections
based on different scenarios could be contrasted. Lastly, the problem of forecasting hos-
pital admissions in Model case 3 could be tackled with a statistical model.

2.4 Model parameters

All mathematical models come with parameters whose numerical values influence the
model output. The number of parameters can range from one (e.g. the growth rate in an
exponential growth model) to hundreds in complex individual-level models that describe
everything from age-dependent risks to rates of movement between cities, or even to bil-
lions of parameters in machine-learning models. In statistical models, parameters rarely
have a physical meaning, but rather serve as a means to connect modelinput and output.
In compartmental models and individual-level models, the parameters typically corre-
spond to some specific process (e.g. the probability of disease transmission in a given
context), but parameters in simpler models usually aggregate many physical phenomena
into a single number. For example, age-dependent transmission rates account for both
varying rates of contact and heterogeneous probabilities of transmission upon contact.

There is also a temporal dimension to model parameters. Do we assume that parameter
values are constant in time, or do we allow for multiple values separated by break points,
or even parameters that depend continuously on time? The latter might make it easier to
fit the model to data, but this will introduce additional uncertainty in the parameters.
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2.5 Connecting the model and the data —the error model

The goal of a predictive model is to describe future data as accurately as possible given
some initial data or event, or in the case of a scenario model to accurately describe pos-
sible future outcomes. This is achieved by calibrating (or fitting/training) the model on
historical data, if available (see section 3.5). However, irrespective of how accurate our
model is there will always be a difference between model output and historical data. In
order to bridge this difference, it is often assumed that the actual outcome is given by the
model output plus some randomness,

D=0 te

where the actual outcome is denoted y;, the model output is denoted by 3/\[ ,and e;is the

assumed noise in the data, sometimes referred to as measurement noise. A common
assumptionis that e;is an independent normal random variable because this is compat-
ible with the theory of linear regression and maximum likelihood estimation. However, if
the erroris observed to depend on the magnitude of the model output, then other choices
for modelling the error are suitable, e.g. a negative binomial distribution for the error
(Alleman et al. 2023). In that case the error is not additive as in the example above and is
instead included in the likelihood function that is used for model calibration (see section
3.5 for more details).
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Chapter 3: Implementation

At this stage of the process a conceptual model has been decided upon and translated
into an appropriate framework, and a choice has been made concerning what variables
to consider and how they connect to the available data. The next step of the processis to
implement the model and generate results. This will be the topic of this chapter, but be-
fore delving into the details it is worth mentioning that it is common to step back to the
preparatory phase at some point during implementation, e.g. due to problems with
model calibration. After adjusting the model structure or the data used for model calibra-
tion one can then move forward to generating model results.

3.1 Choice of programming language

Although some highly simplified models can be solved by hand, e.g. exponential growth,
we still need to rely on computers for calibration and for visualization of model results,
tasks that are crucial for accurate modelling and effective communication. This implies
that programming will be an integral part of the modelling process.

We will not delve into the technical details of software development, butinstead mention
a couple of factors that are important when deciding upon a programming language. As
a modeler you probably master more than one language, and most likely have a favourite
language that you prefer over others. Using this language facilitates development of the
code, but there are other factors that are equally important to take in account:

e If generating model output requires averaging over many realisations of a stochas-
tic model, it is advisable to choose a language that is fast to execute. One such
language that has emerged in recent years is Julia.

e Agent-based models are often more efficient and easier to implement in object-
oriented languages. Although most languages support some form of object-ori-
ented programming (e.g. Matlab and R) it is advisable to use languages like C++ or
Python for those cases.

e The ability to share the code across members of the modelling team is important
because the code might be developed in parallel with others or might be inherited
by others (see chapter 5 on Management of models).

e Interactions with other software or databases might be simpler for certain lan-
guages compared to others.

Another aspect of code development, which is helpful to consider prior to coding, is the
use of development platforms such as GitHub. These facilitate development by provid-
ing, for example, version control, bug tracking, and task management. In addition, the
use of a development platform facilitates public access to the code and the reproduci-
bility of the results.
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3.2 Choice of solution method

At the core of the code that implements the model s the algorithm that solves the model
and generates a numerical solution. For a statistical model this is trivial because it only
amounts to plotting a curve with parameter values that have been calibrated from the
data, but for compartmental models this part of the code is a bit more involved and re-
quires a number of choices to be made.

Compartmental models, given in terms of a set of coupled ordinary differential equations
(ODEs), are integrated forward in time with small step-sizes in order to generate a numer-
ical solution. The future state of the model is given by the current state plus a small
change. The most straightforward way to do this is to use the simple method known as
Euler forward. However, this method usually needs very small time steps so as not to in-
troduce numerical errors that can grow exponentially. To overcome this, one can use a
more sophisticated numerical scheme like the Runge—Kutta method. An alternative to
the deterministic methods is to use tau-leaping' where the small change is chosen at
random depending on the current state of the model. It has been argued that the latter
method is advisable when the number of individuals in each compartment is so small
that random effects become important (Kratz et al. 2015). This occurs when compart-
mental models are stratified both with respect to age and space (with a high resolution,
e.g. into parishes). If a deterministic approach is chosen, it is advisable to use built-in
ODE solvers (e.g. odeintin Python or desolve in R) because these are faster toimplement,
reduce computational time, and lower the risk of coding errors.

For ABMs, which also contain an element of chance, it is common to use either discre-
tised time and advance the model-state, e.g. by one hour, where the action of each agent
is determined by probabilities that depend on model parameters, or to use the Gillespie
algorithm, which, based on the parameters of the model, calculates the time to the next
event and performs this event, e.g. moving an agent from home to workplace or advanc-
ing the disease state of an agent from exposed to infectious. The latter approach is more
accurate but can be considerably more computationally expensive.

It should be noted that the difference between a highly stratified compartmental model
solved using tau-leaping and an IBMis not crystal clear. Both models consider individuals
that are shuffled (with an element of chance) between different disease states, and
sometimes it is the structure of the code that makes a model individual-based (e.g. rep-
resenting individuals using objects and actions with methods) rather than compart-
mental.

3.3 Coding

We will not go into details concerning the coding of the model because this activity is not
specific to epidemiological models nor to models used for decision-making. Instead, we
refer the reader to existing guidelines for scientific computing, e.g. (Wilson et al. 2014).

T A similar division into deterministic and stochastic solution methods can be made for time-discrete
compartmental models.
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However, we would like to mention that optimising code for speed within a given language
is advisable.

3.4 Verification of the code

The verification step of the modelling process ensures that the model is correctly imple-
mented, which is crucial for models that are to be used for decision-making. In other
words, it is imperative that the code works as intended. Passing this step does not guar-
antee that the model is accurate or reasonable; it is only a formal check that the mathe-
matical model is accurately implemented and solved by the code. The underlying con-
ceptual model with its corresponding simplifications and limitations could still be
“wrong” even though the code is verified.

There are no generally accepted common standards for code verification within the field
of mathematical epidemiology. Although central for the later steps in the modelling pro-
cess, itis rarely acknowledged as an independent activity and is rather lumped together
with coding and is performed in parallel with the development of the code. This is, of
course, sensible, but we would still like to highlight the importance of this step and point
out that it should be carried out on the completed code.

There are no fool-proof methods for verifying epidemiological models, in contrast to fi-
nite-state models that can be formally verified (Weiss et al. 2001). Instead, we recom-
mend applying several methods in parallel:

e Havingthe code reviewed by experts who are notinvolved in the development pro-
cess.

e Investigating “expected” model behaviour using typical parameter values.

e If possible, comparing model output with existing models for the same system or
co-developing multiple models that can be tested against one another.

e Ensuring that the solution is insensitive to minor changes in the time step.

e Checking that the solution conserves quantities that should remain constant (for
example, in compartmental models without vital dynamics the sum of all com-
partments should always equal the population size).

e Investigating “extreme” model behaviour when one or more parameters are set to
zero or tend to infinity. For example, if the infectivity in Model case 2 (see Prepara-
tory work) is set to zero there should be no outbreak, whereas if it tends to infinity
everyone should become infected.

e Using interactive debugging that makes it possible to track how variables in the
code change during execution.

e Using pull requests on GitHub (when making incremental changes).

e Usingunittesting where appropriate, i.e. testing the smallest functional unit of the
code.
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3.5 Calibration of the model

The act of making the model fit the data has many names, including training, calibration,
fitting, parameter estimation, regression, and parameter inference. We will in the remain-
der of the handbook refer to this as (model) calibration, which refers to the act of adjust-
ing the parameter values of the model to make the model output fit the existing data. This
does not include adjusting or changing the structure of the model, in which case we are
temporarily back in the Preparatory phase of modelling. However, we would like to men-
tion that it is not uncommon to adjust the model structure in the light of data that the
model cannot describe. Model development is thus typically not linear but loops back
and forth between the different stages.

Typically, not all parameters of the model are adjusted, and the values of a subset are
often taken from the literature instead. For example, in Model case 2, which concerns
vaccination strategies, where we suggested a compartmental model, the serial interval
or rate of recovery might be taken from previous studies whereas the infectivity can be
estimated from existing data. In some cases there is no calibration carried out at all. For
example, in Model case 1, on the importance of importations, we might not have any ap-
propriate data to compare with and might have to rely solely on literature values and es-
timates from experts.

Model calibration can be carried out either using formal methods, informal methods, or
a combination thereof. By informal methods we mean adjusting parameter values by
hand in order to obtain a good visual resemblance between the data and the model out-
put. Formal methods, on the other hand, make use of a quantitative measure of model
fit, e.g. model error, which is then minimized (or in the case of a likelihood model is max-
imized, see below) using appropriate computational methods. In some cases, a subset
of parameters are adjusted by hand while the remaining parameters are subject to formal
calibration.

Two common methods for formal calibration are least squares estimation (LSE) and max-
imum likelihood estimation (MLE)2. In LSE the measure of model fit is the sum of the
squared deviations between the N data points and the model output:

N

E(0)=3(D, -1, (0))

i=1

where D;is the i'" data point, M;is the corresponding model output, and 6 is a vector con-
taining all parameters of the model. The goal is to minimize the error E£(O) by adjusting the
model parameters. This can be achieved using numerical optimisation (e.g. gradient-de-
scent) methods or by brute force grid search, which evaluates the error for all possible
combinations of parameter values. This can be very costly from a computational point of
view but has the advantage of finding the optimal set of parameter values (Ugray et al.
2007). Numerical optimisation can, on the other hand, get stuck in local optima. In addi-

2|f the error model is Gaussian (see below) the MLE and LSE of the parameters agree (Garcia-Portugués
2025).
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tion, a combination of the two approaches is also possible. Note that both methods suf-
fer from the ‘curse of dimensionality’ (Saltelli and Di Fiore 2023) and require more com-
putation as the number of parameters to calibrate grows.

In the MLE approach, the quantitative measure of model fit is the likelihood of observing
the data. In order to find the optimal set of parameters, we view the likelihood as a func-
tion of the parameters and try to maximize the likelihood. The likelihood is essentially the
probability of observing a certain sequence of data points given the model parameters
and is calculated by taking the product of the individual probabilities:

N

L(H):HP(DnG)

i=1

where again D; are the data points and @ is a vector containing all parameters of the
model. This time the model output defines the probability P(D;, 8), which is given by the
error model (see section 2.4 Model error). In a Gaussian error model, the model output
M would appear as the mean while the variance would be unknown and would be deter-
mined by the deviations between the model and the data.

MLE is tightly connected to Bayesian methods for model calibration. In a Bayesian frame-
work we do not associate a parameter with a single numerical value, but rather we think
of parameters as random variables with certain distributions. Here, we distinguish be-
tween prior distributions, which are our best guess before the model is confronted with
the data, and posterior distributions that are obtained by multiplying the prior distribution
with the likelihood function. In many cases there is no closed expression for the likeli-
hood, as is the case for most ODE models and ABMs, and one has to resort to approxi-
mation methods for obtaining posterior distributions, e.g. Markov chain Monte Carlo
methods (Qian et al. 2003) or Approximate Bayesian Computation (Sunnaker et al. 2013).

Note that both LSE and MLE can be adapted to include multiple data sources and model
outputs. This is achieved by adding additional terms in the sum of squared errors/likeli-
hood to create a single error/likelihood function. These can also be given different
weights depending on how we value model agreement with different data sources. When
in doubt as to which method to use, it is often good to run both methods and compare
the results. If the results differ significantly, further investigations will be needed, but as
a rule of thumb LSE will be more reliable for smaller sample sizes.

Other techniques for model calibration are also available, e.g. history matching using
emulators/surrogate models, which aims to discard implausible regions of the parame-
ter space (Andrianakis et al. 2015), and approximate Bayesian computation, which
makes use of numerical solutions and summary statistics in order to construct posterior
distributions of the parameters (Minter and Retkute 2019).

When the model has been calibrated to the data, the remaining deviation between model

and data, often termed the residual, is in theory attributed to the measurement error that
is introduced via the error model. However, in reality the error is mainly due to the fact
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that the model is a simplified representation of the system at hand, and therefore is usu-
ally biased in some manner.

3.6 Model validation

If the modelis to be used for making predictions about future events and possibly in other
locations, it is important to make sure that the model not only captures the current data
well, but also captures future unseen data sufficiently well. This property is often evalu-
ated by splitting the available data into one part that is used for calibration and a second,
usually smaller, part on which model accuracy is evaluated. It is also common to cali-
brate the model using increasing time frames for the data in order to determine whether
the error in the validation set changes and to see if the parameter estimates change as
more data are used for calibration. If the latter occurs this is an indication that the model
is unstable and might not perform well on unseen data.

Both the error used in LSE and the likelihood in MLE are unintuitive measures of model
error. In the interest of transparency, it is common to consider measures that are easier
to interpret for the validation step. Examples of this are the mean absolute percentage
error (MAPE), which is a relative measure of error, and the root mean square error (RMSE),
which is given by the square root of E(8) and is an absolute measure of error. If the model
output is probabilistic, accuracy can be evaluated using various scoring rules, e.g. the
weighted interval score (WIS), the coverage probability, or the continuous ranked proba-
bility score (CRPS).

Evaluating model performance on data that are adjacent in time to the calibration data
and on the same target population is sometimes called primary validation. This term is
also used when the evaluation is carried out retrospectively. If the model evaluation is
carried out prospectively, such that the model developers are blinded to the evaluation
data or the evaluation is carried out in a different geographical region/population, it car-
ries more weight and is often referred to as external or secondary validation (Ramspek et
al. 2021). The possibility to carry out detailed model validation naturally depends on the
available time frame for the modelling exercise and is also constrained by the available
data, which might be scarce during the initial stages of an epidemic. As such, secondary
validation should be viewed as an ideal rather than a standard.

In addition, we would also like to get an understanding on how sensitive our model is with
respect to both variation in the data and variation in the parameter values. Such
knowledge might provide better feedback to the data providers on what data need to be
harvested with extra care. There are several ways to perform a sensitivity analysis (see
e.g. (Wu et al. 2013)), and there are even ready-made packages in several languages,
such as Matlab. We would also like to underscore that a sensitivity analysis not only pro-
vides a measure of how sensitive the model is, but that this procedure also provides in-
formation on what parts of the model need to be scrutinised or even adjusted.
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3.7 Visualisation of model predictions

For the epidemiological models considered here, the model outputs are typically a time
series of one or more disease-related variables. For example, for Model case 1 the output
would be disease incidence in the absence or presence of one or more travel recommen-
dations, whereas for Model case 3 it would be the most likely number of hospital admis-
sions/day for a given hospital. When possible, itis common to plot the data on which the
model was trained together with the forecast/scenario because this makes it possible for
the recipient to gauge the accuracy of the model.

3.8 Handling uncertainty in model output

In order to communicate the uncertainty associated with model calibration itis common
to not only plot the prediction given by the optimal parameter values, but also to include
confidence intervals for the model output. In the case of simple statistical models (e.g.
regression models) these can be calculated explicitly using built-in functions, and for
non-linear regression the Delta-method can be utilized (Liu 2023). Compartmental mod-
els and ABMs require a bit more work, and usually confidence intervals are obtained by
using the fact that the Hessian of E(@) with respect to the parameters can be interpreted
as the inverse of the covariance matrix of the parameters (Dalitz 2018). Sampling param-
eter values with the obtained covariance and solving the model provides an envelope of
prediction from which a confidence interval can be calculated. A similar approach works
for MLE where the covariance of the parameters is given by the inverse of the Fisher infor-
mation matrix (Dalitz 2018). In a Bayesian setting, uncertainty can be visualized by sam-
pling parameter values from the posterior distribution and solving the model to produce
an envelope from which so-called credible intervals can be calculated. Please note that
these approaches can underestimate extremes in model output (e.g. epidemic peak
height), which are better accounted for using curve boxplots (Juul et al. 2021).

It should be noted that the uncertainty captured in confidence/credible intervals only re-
flects the difficulty of pinning down the correct parameter values and does not serve as
quantification of the actual uncertainty of the predictions (Briggs et al. 2012). In other
words, confidence intervals are conditioned on model choice and only reflect parametric
uncertainty. Uncertainty regarding the implications of conceptualization, simplification,
and model structure, often termed structural uncertainty, cannot be captured in visual
representations of model output unless the results from several models with the same
purpose are shown in tandem. Together with knowledge about the structure of the mod-
els it is possible for the recipient to understand how the model structure impacts the re-
sults. Even so, it is advisable to discuss structural uncertainty in the accompanying doc-
umentation, and this is even more important if a single model result is presented. Uncer-
tainty in model output induced by uncertainty in the data should also be mentioned in
the documentation.

To communicate uncertainty in scenario projections is a delicate task. If the modelis cal-
ibrated using standard methods, then the projections could be visualised using confi-
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dence intervals. However, this might signal that the uncertainty is bounded when in real-
ity the projections rest on assumptions for that particular scenario, which might be highly
uncertain or even speculative.

Another type of uncertainty, which is presentin stochastic models, arises due to random-
ness in model dynamics. This implies that every simulation will generate a unique reali-
zation that differs slightly from previous ones, and therefore the typical model behaviour
has to be assessed by compiling the distribution from a large number of simulations and
has to consider the average value the model output. The variation in model output distri-
bution is often referred to as stochastic uncertainty and is typically shown with error bars
that correspond to, e.g., the standard error of the mean or some other quantification of
the variability. This type of uncertainty should not be confused with parametric uncer-
tainty and must be clearly labelled as stochastic uncertainty. If both stochastic and par-
ametric uncertainty feature in the output, they should be summed to visualise the entire
range of uncertainty. For deterministic models this uncertainty is expressed by adding a
random error (see Section 2.4), which represents the underlying noise in the data. This is
achieved using an error model. The uncertainty that results from both parametric uncer-
tainty and noise in the data is described with a prediction interval, which equals the con-
fidence interval of the parametric uncertainty plus the uncertainty induced by the un-
known variance of the error model.

In summary, we have discussed five types of uncertainty related to model output that
might be present:

e Structuraluncertainty:  arises from the model construction

e Parametric uncertainty: arises during model calibration

e Error model uncertainty: arises from estimated noise in the data

e Stochastic uncertainty: arises due to model simulations

e Scenario uncertainty: arises from assumption about future developments

Note that biases and assumptions concerning the relationship between input data and

modelvariables propagate to the model output and thus should be included in the overall
discussion of uncertainty.
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Chapter 4. Communication

Mathematical models of infectious diseases can be used in many contexts and for a wide
range of purposes. Despite this diversity, a common factor is that the results of the
model, and to some extent the model itself, have to be communicated to recipients ex-
ternal to the group that has developed the model, e.g. the decision-makers.

As has been expressed above, communication with decision-makers is important to en-
sure a high quality of the entire modelling process, and in particular to create an under-
standing between the modelers and decision-makers concerning the quality and limita-
tions of the data. However, the communication of the concrete modelling results de-
serves extra care.

The shape and form of the communication will depend on the purpose of the model, who
the recipients are, the nature of the content, and lastly the numerical result itself. Com-
munication of modelresults is related to the concept of transparency in science, and the
present chapter is inspired by a taxonomy of transparency introduced by the philosopher
of science Kevin C. Elliot (Elliott 2022). We will first introduce the different dimensions of
communication and then illustrate these with three examples.

4.1 The purpose

In order to effectively communicate the results from a model one has to be clear as to
why they need to be communicated. This is tightly connected to the purpose of the model
or the question that the modelers have been tasked to answer. As suggested in the chap-
ter on Prepatory work, it is important for modelers to have a clear picture of the purpose
prior to model construction because this will guide the work going forwards. However,
the purpose should also guide communication.

4.2 The audience

The second dimension that should influence the communication are the recipients.
These can include other modelers, scientists, decision-makers, politicians, and the gen-
eral public, which all have different needs, expectations, and competencies. For exam-
ple, a presentation for the general public will be less efficient if the main focus is on tech-
nical details, whereas other modelers expect the model results to be communicated at
a level of detail such that they become reproducible. In some instances, the purpose
might be to educate the public about mathematical modelling, which requires yet an-
other mode of communication.

A detailed discussion concerning all of the model assumptions and associated uncer-
tainties might not be appropriate to communicate to the public due to the risk of causing
misunderstandings because people might not be aware that all models require assump-
tions and simplifications. However, this information is critical if decision-makers are the
intended audience.
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As described above there is often a primary audience and a secondary audience, and
both should be considered.

4.3 The content

With the purpose and intended audience fixed, the task of determining whatto communi-
cate becomes easier. As a bare minimum we consider that model results in terms of plots
or tables or some other visual representations should be communicated. Although rare,
there might be situations where visual aids are not necessary, e.g. if the question posed
is a simple yes/no question (e.g. Should we close national borders to reduce disease
transmission given some set of criteria?). But even in such cases itis probably of interest
to the recipient to understand how the conclusion was reached.

At the other end of the spectrum, we have a full-fledged technical report accompanied
by an online repository that contains fully documented code and all of the raw data re-
quired to reproduce the model results. Of course, it is also possible to communicate
model results in a multi-modal fashion where an oral presentation of the key results is
accompanied by a detailed report. In terms of the contents of technical reports, the EPI-
FORGE guidelines provide excellent guidance as to the necessary components (Pollett et
al. 2021). Another option is to present the primary results and conclusions in the main
body of the report and relegate the technical details to an appendix.

4.4 The mode of communication

The three dimensions discussed above should guide the mode of communication, but it
is likely thatthe communicationis also influenced by routines specific to the organization
carrying out the modelling. However, there are a couple of aspects that are important to
keep in mind:

e Communication of pandemic model results that contain forecasts in the short
term (e.g. 1-2 weeks) are likely to change rapidly as more data become available.
In such cases online dashboards that can easily be updated might be preferable.

e Making model code available to the public opens up for criticism, which might ap-
pear time-consuming and unpleasant to digest, but is important for transparency
and also has the potential to improve and facilitate model development.

e If scientists external to the organization have co-developed the model, it should
be clear from the outset who is responsible for communicating the results.

e Presenting model results in a forum where the recipients are comfortable to ask
question facilitates the uptake of the results. This is particularly important when
recipients lack technical skills and are expected to pass on the information to lo-
cal decision-makers.

4.5 Dangers of communication

Although a well-planned strategy for communicating model results is likely to increase
the uptake and usefulness of the modelling exercise, communication also comes with
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dangers. The most obvious one is that careful documentation and communication might
waste scarce resources and thus might slow down further model development. This
problem is particularly relevant in the early stages of an epidemic when there may be a
lack of time and the data could be especially unreliable and are being updated at a rapid
pace. Another important aspect is the art of finding the right level of detail to describe
the models for a general audience — not too over-simplified and thus underestimating the
reader, but on the other hand not using too much technical jargon and details so as to
make the modelvirtually inaccessible. Lastly, public access to data might violate privacy,
in particular if it is of high spatial and/or temporal resolution.

Anotherthingto consideris how one should actif modelresults clearly conflict with other
reported modelling results. This situation is of course not uncommon in academia, butin
the case of a public health crisis diverging results may be utterly confusing for both deci-
sion-makers and the public, and such situations have created significant tension be-
tween different research groups in the past. Here, it is important to be clear about the
discrepancies and to suggest possible reasons for them. However, in a crisis situation
the process is considerably sped up and is played out on a public stage for any interested
parties to observe.

4.6 Examples

We now present three different examples of communication that involve the Model cases
presented above. These were chosen to inhabit different positions in the space spanned
by the dimensions described above.

Model case 1, Travel importations: The purpose of this modelling exercise is to provide
national decision-makers (i.e. politicians) with advice concerning the effect of travel rec-
ommendations on disease incidence. Because the purpose and audience are fixed, we
now turn to the question of content. One possible way of illustrating the effect of travel
recommendations is to contrast curves of disease incidence in the presence and ab-
sence of recommendations for international travellers (see e.g. (Godin et al. 2021)). Such
a comparison will naturally rest on assumptions concerning the number of imported
cases and reproduction number in the future and the current local incidence that the
scenarios concern. These are therefore important to communicate alongside the results.

Model case 2, Vaccination strategies: Here the purpose is to assess the impact of dif-
ferent vaccination strategies in terms of the morbidity of an epidemic. We assume that
the model results will be communicated to the public prior to implementation, with the
intention of increasing vaccine uptake. This problem can of course be tackled in many
ways, and here we provide one possible course of action. As in the previous example itis
useful to contrast the effect of no vaccination with different strategies, preferably in some
visual form. Additionally, it is important to stress that the model output is a scenario that
corresponds to possible future outcomes and is not necessarily the single most likely
outcome. If the results are presented at a press conference, then they preferably should
be accompanied by a technical report, published prior to the event, that details both the
preparatory phase of model development and the implementation phase. The code
should also be made publicly available. In this case, the timing of communication could
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also be of importance. If the results are communicated too early, before the epidemic is
perceived as a threat, the public might not be interested, and if they are communicated
after the implementation of the vaccination programme the media and the public will
likely not understand the basis for the decision.

Model case 3, Forecasting hospital admissions: In this case the purpose is to inform
local decision-makers in healthcare regarding future hospital admissions. Here we as-
sume that the intended audience is the decision-makers and that the model results will
not be made public. Because decision-makers are often concerned with how much the
model results can be trusted, it is useful to communicate such forecasts by illustrating
the most likely outcome together with 95% confidence/credible intervals. This paramet-
ric uncertainty should be accompanied by a discussion of the uncertainty that stems
from model assumptions (including future changes of the underlying conditions), the
model structure, and the data used for model calibration. This more complete view will
aid decision-makers in their balancing of different facts and help them to reach well-in-
formed decisions. If the model is continuously updated, it is advisable to keep track of
model accuracy, e.g. in terms of the coverage probability (Cramer et al. 2022), which is a
relevant metric for the recipient.
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Chapter 5: Management of models

The modelling process is, as we have discussed, an interplay between policy questions
posed by decision-makers and a modelling group with knowledge in mathematics, data
science, and epidemiology. To be successful, this process requires skilled management,
butitis also relevant to discuss what happens with a model after it has fulfilled its imme-
diate need.

To set the stage, we have now reached a point where a model has been constructed with
a specific purpose in mind. It has been implemented and the result have been commu-
nicated to theintended recipient. This chapter will deal with the subsequent step, namely
how the model will be managed within the organization for potential further development
and reuse. Although effective management of models might not impact the quality of
models at the time, it has the potential to impact the efficiency of the modelling group in
the longer term thus leading to overall improved quality of the model.

5.1 Changes in needs

Certain modelling tasks stretch over long periods of time, whereas other have a short
lifespan. For example, the task of producing forecasts of hospital admissions during an
epidemic (Model case 3) is likely to be ongoing as long as the epidemic puts pressure on
the healthcare system. This contrasts with the purpose of estimating the effect of travel
importations (Model case 1), which is likely to be of interest to decision-makers only dur-
ing a short time window. A long-lasting task requires that more attention is paid to model
development, and if the rough time span of the task is known from the outset then this
should impact the entire modelling exercise. If we know that the model will be calibrated
multiple times on a growing time-series, and that many similar figures and reports will be
communicated, then it makes more sense to invest time and resources in automated
pipelines for data and model output. This will also make the reader feel at home and thus
be able to more easily compare the graphical outcome between the different consecutive
reports. On the other hand, if we know beforehand that the model will only be used once,
then less attention can be paid to automating the workflow.

5.2 Model documentation

We have already mentioned documentation in relation to communication, and that dis-
cussion focused on external recipients and their needs and desires. The potential for
model development and reuse also depends on communication, but this time commu-
nication is internal to the modelling group. For example, the structure of data pipelines
and other workflows connected to producing model results are not of interest to external
users, but this knowledge facilitates continuous use, or reuse, of the model, be it by the
same modeler or by someone who is hew to the project. We would also like to underline
the easily underestimated importance of the proper documentation of the code, espe-
cially when time is limited. Descriptive names for variables and functions, removal of un-
used code, and detailed comments within the code are aspects that accelerate reuse.
However, itis also worth considering the trade-off between the effort it takes for someone
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to understand inherited code and the time it takes to develop new code. If the life span of
the model is expected to be substantial, one must consider the durability of its storage,
e.g. backed-up hard-drives or other media that is insensitive to organizational changes.
Also worth considering is the risk that the code can become unusable due to dependen-
cies on methods and functions that become deprecated, although this problem can be
tackled by creating a reproducible computational environment (e.g. using renvin R).

5.3 Continuity among staff

Because models are commonly developed by single individuals, they will not persist
within an organization unless they are known and properly documented. Turnover of staff
poses a serious threat to organisational learning and is an important factor to consider
when managing a modelling group. In exceptional situations, such as during a pandemic,
when modelling groups are under pressure to deliver above normal capacity, the intro-
duction of new members of staff can be particularly challenging. A possible solution to
this problem is to engage academics in model development during non-pandemic time.
This can, forexample, be achieved through practical exercises where modelers from pub-
lic health agencies collaborate with academics in scenarios that describe future epidem-
ics. Such activities can foster a sense of community and personal relationships that
hopefully will aid collaborations during public health crises.

5.4 Privacy and security issues

In most cases, infectious disease models rely on data that are not subject to privacy or
security concerns. However, in some cases these matters need to be considered. For ex-
ample:

e When the model uses data that contain sensitive personal information.

e When the model makes use of classified data or spatial data of high spatial reso-
lution where single individuals might be identifiable.

e When model results are sensitive and are related to national security.
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Chapter 6: Conclusions

In this brief handbook we have tried to describe the central elements of modelling infec-
tious diseases, with an emphasis on the use of modelling for decision-making purposes.
The exposition has a chronological structure, moving from the preparatory phase, to im-
plementation, communication, and lastly the management of models. However, as most
people who have been involved in mathematical modelling of some form know, the path
from idea to finished project is seldom straight and is rather cyclical in nature. Neverthe-
less, we believe that we have captured all the relevant parts of the process.

In this short format it is impossible to cover all methods and techniques used in infec-
tious disease modelling, and this handbook is therefore far from comprehensive and
should only serve as an introduction to the topic. However, we hope that the references
provided in the text can serve as a means of learning more about the subject.

We hope that this handbook will stand the test of time and that it will turn out to be useful
during coming public health crises. At the time of writing, Al and machine learning tech-
niques are yet to be used at an appreciable scale in infectious disease modelling. One
obvious explanation for this is that at the beginning of a new pandemic there will always
be a lack of data for model calibration and validation. This is, of course, even more critical
for machine learning models because they require massive amounts of data for calibra-
tion. An additional possible explanation for the low usage of machine learning tech-
niques is the lack of transparency afforded by such methods. Given the current develop-
ments in Al, this might change soon with advances in so-called Explainable Al. However,
eveninthe case of new modelling types or numerical methods the strategic methodology
presented in this handbook will be applicable.

Mathematical modelling remains an important tool for understanding and providing a ba-
sis for decision-making during epidemiological crises. We believe that the knowledge
and advice collected in this handbook will serve as useful guidelines in all aspects of
such endeavours and, most importantly, will assist society in better managing the threat
of future epidemics.
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Chapter 7: Checklist

In order to condense the material presented in this handbook and to make the steps of
the modelling process described herein applicable and useful during actual modelling
for decision-making, we have formulated the following checklist. It is not a list of report-
ing items, such as the EPIFORGE guidelines (Pollett et al. 2021), ratheritis meantto serve
as a tool during model development in order to ensure that all the necessary steps and
modelling choices have been carried out and considered. Like the handbook, they are
presented in chronological order. Each item roughly corresponds to a subsection of the
handbook and contains a question and a textbox for the answer.

Item

Section in handbook

Answer

1.1 What data does the
model utilize and in what
way?

2.2

dience of the communica-
tion?

1.2What uncertaintyis asso- | 2.2
ciated with the data?

1.3 What type of modelisit? | 2.3
1.4 What parameters does | 2.4
the model contain?

1.5 Which error model is | 2.5
used?

2.1 In what programming | 3.1
language is the model
coded?

2.2 How is the model solved | 3.2
or simulated?

2.3 What methods have | 3.4
been usedto verify the code?

2.4 What method is used for | 3.5
model calibration?

2.5 How was the model out- | 3.6
put validated?

2.6 What types of uncer-| 3.8
tainty are present in the
model?

2.7 How is the model uncer- | 3.8
tainty communicated in the
documentation and visuali-
zation?

3.1 Is the purpose of the | 4.1
model stated in the commu-
nication?

3.2 What is the intended au- | 4.2
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3.3 Is the level of detail in the
communication appropriate
for the audience?

4.3

3.4 What are the potential
dangers of communicating
the model’s results?

4.5

3.5 If there are dangers, how
are they handled?

4.5

4.1 What is the expected
lifespan of the model?

5.1

4.2 Is the model documenta-
tion appropriate for the
lifespan?

5.2

4.3 Are there any issues with
privacy or (national) security
concerning the data or the
model?

5.4
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Handbook of mathematical modelling of
infectious diseases for decision-making

This handbook offers a clear and practical guide to how models can support
public-health decision-making before, during, and after an epidemic.
Developed through a national collaboration between the Public Health Agency
of Sweden, Chalmers University of Technology, the Swedish Defence
Research Agency, and the Swedish Armed Forces, the handbook distils les-
sons learned from the COVID-19 pandemic and highlights the importance of
transparent, well-communicated modelling.

The book provides a structured walk-through of the full modelling process:
from defining the purpose of a model and choosing data and model types, to
implementation, calibration, validation, communication, and long-term
model management. It emphasises the interplay between modellers and
decision-makers, showing how clear objectives, realistic assumptions, and
awareness of uncertainty are essential for models to be useful in real-world
settings.

Rather than prescribing a single modelling approach, the handbook
illuminates the choices, trade-offs, and practical considerations that shape
every modelling project. It is intended for early-career modellers, academics
entering applied infectious-disease modelling, and practitioners in public
health who rely on model-based evidence. Senior modellers will also find it a
valuable foundation for harmonising both practices and nomenclature, and
strengthening collaboration across institutions.



