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Preface 
This modelling handbook was developed as part of a project to strengthen the civil de-
fence capacity in Sweden, run jointly by the Public Health agency of Sweden (PHAS), 
Chalmers University of Technology, the Swedish defence forces, and the Swedish  
Defense Research Agency (FOI). The project was financed by the Swedish Contingency 
Agency (MSB). 
 
The COVID-19 pandemic highlighted the use of mathematical modelling as a tool for 
planning and for communication. It also demonstrated diUiculties concerning communi-
cation of model results to a wider audience, especially when diUerent groups present 
contradictory forecasts. A large number of models were rapidly developed and commu-
nicated in both academia and within public authorities in Sweden and internationally. In 
Sweden, the PHAS regularly developed national scenarios forecasting the potential de-
velopment of the pandemic for the upcoming three months, and these scenarios were 
widely communicated and used. During the same period, on the regional level a number 
of universities supported relevant actors with models focusing on the local situation us-
ing local data, especially the need for hospital beds. Due to the urgency of the pandemic, 
there was no time nor possibility to initiate collaborations between the PHAS and the 
other groups producing mathematical models. Such collaborations would have been 
beneficial from many perspectives, and such collaboration is the aim of this project. 
 
In the aftermath of the COVID-19 pandemic, the PHAS, Chalmers University, and FOI 
jointly wrote a proposal to the MSB to create a network of modelers in Sweden that would 
strengthen relations, trust, and communication in preparation for the next pandemic. The 
overall aim of this project is to increase the national capacity to model contagious dis-
eases during a crisis like a pandemic by supporting wider collaboration regarding math-
ematical modelling. The network now includes mathematical modelers from both uni-
versities and national authorities and is engaged in several ongoing activities. In addition 
to the establishment of the network itself, this handbook was developed to present and 
discuss important modelling concepts and tasks. We believe that this handbook, devel-
oped by modelers, will support future collaboration between modelers by providing a 
common platform for collaboration and communication around mathematical model-
ling. 
 
We would like to thank our external advisory board consisting of Lasse Engbo  
Christensen, Birgitte Freiesleben de Blasio, Helen Johnson, Bo Bernhardsson, and 
Mathew BiggerstaU for providing useful comments and suggestions on a preliminary ver-
sion of this handbook. 
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Chapter 1: Introduction 
 
The increased use of models is not unique to epidemiology, but is a general trend in both 
the natural and social sciences. However, the term ‘model’ has diUerent meanings in dif-
ferent disciplines, which can cause confusion in interdisciplinary projects where partici-
pants may have diverse viewpoints on what models are and how to best to utilize them.  
Two of the authors of this handbook have addressed this challenge previously (Gerlee 
and Lundh 2016), where the following definition of a scientific model was suggested: 
Models are descriptions, abstract or material, that reflect or represent, and hence provide 
access to, selected parts of reality. The scope of this handbook is narrower than that pre-
vious publication, and we will focus here on mathematical models of disease transmis-
sion and their connection to public decision-making. 
 
Mathematical modelling plays a central role in infectious disease epidemiology both in 
terms of prospective studies, where future events are described, and retrospective stud-
ies in which past events inform us about disease characteristics. Mathematical and sta-
tistical models play an important role when crucial data are missing or when there are 
large uncertainties regarding key parameters of disease transmission because such 
models can extrapolate from existing data and provide decision-makers with an overview 
of possible outcomes.  
 
The recent COVID-19 pandemic showcased both the benefits and shortcomings of math-
ematical modelling for decision-making in public health. The results from various models 
supported decision-makers during both the introduction and the removal of non-phar-
maceutical interventions (NPIs), they informed healthcare providers about potential fu-
ture needs of hospital and ICU beds, and they helped evaluate diUerent strategies for 
vaccine rollout. They have also been used retrospectively for estimating the fraction of 
asymptomatic cases, inferring the serial interval, and assessing vaccine eUicacy. 
 
The pandemic put modelling groups in public health institutions and agencies under se-
vere pressure because they were expected to deliver modelling results for a novel disease 
at an unprecedented pace. New constellations of infectious disease modelers also ap-
peared when public health oUicials joined forces with academic research groups. How-
ever, some public health agencies were under too much pressure to be able to engage in 
new collaborations during the pandemic. This led to a situation where some academics 
directly joined the public debate by publishing their own modelling results. These factors, 
fuelled by the general sense of urgency during the pandemic, contributed in some cases 
to modelling processes that did not reach their full potential to support decision-making. 
Models constructed in haste, sometimes with unclear purposes, that were poorly docu-
mented and poorly communicated occasionally led to confusion among the public and 
sparked non-constructive debates between scientists. 
 
We believe that the engagement of academic researchers with public health agencies 
during future pandemics is important and will provide added value. However, this coop-
eration would be enhanced if academics were to apply a well-defined modelling process 
and were to have a better understanding of how infectious disease modelling connects 
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to decision-making in contexts outside of academia. The aim of this handbook is to de-
scribe and discuss all of the relevant steps in the modelling process and how they are 
connected to decision-making – from the preparatory phase of conceptualization to the 
implementation, communication, and management of models.  
 
The intended reader is someone who has a basic understanding of the technical aspects 
of modelling, including fundamental mathematical and programming skills, but who 
might have less experience in constructing models in the context of decision-making in 
public health. This task requires, among other things, knowledge about how the purpose 
of the model should guide its development, how uncertainty should be managed and vis-
ualized, and how the communication of the model’s results should be tailored to the in-
tended purpose of the model and to the intended recipients in the area of public health. 
These are skills that are usually less developed among academics who move into infec-
tious disease modelling and among junior modelers at public health authorities. How-
ever, we also believe that the handbook could be a source of inspiration and discussion 
among senior modelers and managers. Furthermore, we also hope that this overview 
might have a harmonizing eUect between diUerent schools of modelers.  
 
Mathematical modelling is a diverse field, and its practices are strongly influenced by the 
specific research area within which it is applied. Each research area that uses mathe-
matical models has its own standards for how models are formulated, documented, and 
communicated. These standards are often tacit and are passed down from one genera-
tion of modelling practitioners to the next. However, in some contexts where models are 
linked to more formal decision-making processes there are clear guidelines. To give some 
examples from the health sector, the Food and Drug Administration (FDA) in the US regu-
lates how computational models are to be documented if they are used in patent appli-
cations for medical technology (FDA 2016). Also, the International Society for Pharmaco-
economics and Outcomes Research is developing guidelines aimed at mathematical 
modelling studies (Weinstein et al. 2003), and the World Health Organization (WHO) is 
considering how evidence coming from mathematical models should be valued when it 
comes to guideline development (Egger et al. 2018). Another relevant document is The 
Aqua Book, which provides guidance on the development and use of mathematical mod-
els for the UK government (UK Government 2025). In relation to infectious disease mod-
elling, a recent eUort was made to develop guidelines for reporting items for epidemic 
forecasting and prediction research, called the EPIFORGE 2020 guidelines (Pollett et al. 
2021). These guidelines provide a comprehensive checklist of items that should be re-
ported in manuscripts, but they focus solely on academic publishing as a means of com-
munication. In contrast, our scope is wider and we also consider the stages that precede 
publication and those that follow. In addition, we also consider communication with re-
cipients other than fellow academics.  
 
It is important to highlight that our aim is not normative in the sense that we do not want 
to prescribe a specific and definite recipe for modelling infectious diseases. On the con-
trary, we are aware that the modelling process often is adapted to local conditions and 
thus can take many shapes and forms. Independent of the path the modelling process 
takes, there will be a number of choices that have to be made, e.g. concerning choice of 
variables, model type, solution methods, visualization, and mode of communication. In 
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many cases these choices are never articulated, but rather are made unconsciously by 
the modeler or are based on traditions within institutions. The main aim of this handbook 
is to uncover these choices, helping modelers become aware of the multitude of paths 
that lead from the question posed to a modelling team to a finished project and helping 
them to reflect on the process. In order to avoid the connotations implicit in the term 
‘guidelines’, we have opted for the more neutral term ‘handbook’ to describe this text. 
 
Model development can roughly be divided into four distinct phases: Preparatory work, 
Implementation, Communication, and Management. These typically occur in chronolog-
ical order, although iterations between the phases are common. This handbook is struc-
tured according to these phases, and in order to avoid abstract descriptions and to make 
the exposition more concrete we have included three diUerent modelling cases that are 
used for illustrative purposes throughout the handbook.  
 
In the chapter on preparatory work, we start by discussing how a specific purpose or 
question is central to successful model construction and how this question is formed in 
dialogue with decision-makers. We then move on to how the purpose of the model guides 
its conceptualization in terms of isolation and simplification. This process is also influ-
enced by data availability. Lastly, we consider the range of diUerent model types that are 
available, including their pros and cons, and how to connect the model and the data. This 
is followed by the chapter on implementation, which concerns the choice of program-
ming language and the choice of solution algorithm for the model. We then move on to 
discuss how to verify the code and the process of model calibration, which is followed by 
a section on model validation and lastly a section on how model output can be visualized 
and how uncertainty can be communicated. Once the model results are in place, we 
move to the act of communicating the output. Here, we consider how communication is 
shaped by the purpose of the model, the intended recipients (e.g. experts or the public), 
the nature of the content, and the mode of communication. In the last chapter on model 
management, we take an organizational perspective and consider the factors the aUect 
the reuse of models, e.g. model documentation, and we discuss the advantages and 
drawbacks of reusing models. The handbook ends with a concise checklist that summa-
rises the key steps in the model construction process. We recommend that modelers fill 
in the checklist during the modelling process in order to articulate their modelling 
choices and to make the process more transparent.  
 
Lastly, a note about what this handbook does not contain. We do not provide detailed 
instructions for constructing an infectious disease model. We also skirt around the tech-
nicalities of programming. Nor do we give a detailed account of model types or tech-
niques for model calibration and validation. However, where appropriate we provide key 
references where details concerning diUerent aspect of model development can be 
found. 
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Chapter 2: Preparatory work 
 
Ideally, a model should be devised to answer a specific question; in other words, the pur-
pose of the model ought to be known to the modeler. It is, of course, imperative to know 
what type of disease is to be modelled and the time frame and spatial location that the 
model should cover, but it is also important for the modeler to be aware of the model’s 
intended use, such as what types of decisions the model will inform and who the in-
tended recipients are. 
 
If the specific purpose of the model is unknown at the outset of model construction, 
choices concerning elements  such as the model input/output, the model structure, and 
the selection of variables might not align with the model’s intended use and might in-
stead be determined by the preferences of the modeler or the organization, which might 
not be suitable considering the ultimate use of the model. 
 
When applicable, it is also important already from the start to have open and direct com-
munication between the decision-maker and the modeler. In a well-functioning initial di-
alogue, the decision-maker might explain their expectations regarding the output, as 
wells as what decision-making mechanism the model output will be fed into. The mod-
eler might then ask what data and knowledge about disease transmission exist today and 
what data might be obtained in the future. From there, a series of clarifications from both 
decision-makers and modelers concerning what might be possible to obtain and what 
one could wish for regarding both data and model outcomes will drive the modelling pro-
cess forward. It is also desirable that diUerent sources of uncertainty are discussed from 
both perspectives at this stage, as well as rough estimates of their magnitude. 
 
There is a natural pull, both from decision-makers and modelers, to construct models 
that can serve a multitude of purposes and can answer questions that are posed after 
the model has been constructed. It is, of course, possible to construct such models, but 
typically this would require a time frame of validation that is not available in a pandemic 
or epidemic setting. Instead, during an ongoing pandemic there will usually be too little 
time to discuss and develop new models, and it is more likely that the discussion will 
focus on how to alter an existing model to obtain urgently needed results.  
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Below are examples of cases where the question the model is meant to answer is diUer-
ent as well as its intended purpose: 
 
 

Model case 1. What is the e9ect of imported cases on the disease incidence within a 
country? 
The model results will inform decisions regarding travel recommenda-
tions. 

Model case 2. How severe will an outbreak be in terms of morbidity under di9erent 
interventions?  
The model will be used to assess the eUect of diUerent vaccination 
strategies. 

Model case 3. What is the expected number of hospital admissions in the coming 
weeks?  
The results of the model will aid hospitals in allocating the appropriate 
number of hospital beds. 

 
 
A basic model of disease transmission at a national level could, at least in theory, answer 
all of the above questions, but such a model will most likely not perform very well for any 
particular question. Rather, the questions that are posed should guide the choices that 
are made throughout the modelling process, and this will most likely lead to diUerent 
models that are each aligned to their corresponding purpose. 
 
Another important factor besides the purpose of the modelling exercise is the time avail-
able for modelling. Given the typically exponential growth of cases early in an epidemic 
there is an urgency with which decision-makers need to act. When this time pressure is 
shifted onto modelers, this will by necessity shape the modelling process. If model re-
sults need to be communicated within a week, then this will lead to an accelerated pro-
cess, where some steps, such as model validation and documentation, will be less thor-
ough than desired. Even if the documentation can be completed afterwards, some vali-
dation would be highly preferable before using the model for any decision-making sup-
port.  Although it is impossible to escape the time pressure in certain cases, it will im-
prove the quality of the modelling exercise if the modelers are aware of the necessary 
steps because this will help them to prioritize activities under time constraints.  
 
Before moving on, we would like to distinguish between two distinct purposes that pre-
dictive models can be used for. On the one hand, we might be interested in the most 
probable outcome, or what is expected to happen. This type of prediction is known as a 
forecast. On the other hand, we might be interested in knowing what would happen if 
certain future conditions are met, or what could happen. The latter type of predictions 
are projections based on given scenarios. Typically, forecasts are short-term (on the or-
der of days to weeks), whereas projections are usually made on the order of months. 
 
In the remainder of this section, we will, with the help of the above Model cases, discuss 
the steps of the modelling process that occur prior to implementation.  
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2.1 Isolation & Simplification 
Prior to the formulation of a mathematical model, one must form a conceptual model in 
which all unnecessary details are stripped away so that  only the relevant components 
and processes remain. This step also involves isolating the system we are describing. 
This essentially involves drawing boundaries in space and time in order to show what is 
included in the model and what is left out. This does not imply that the system is com-
pletely isolated, but rather that we set up boundaries both in time and space and use 
information about the external physical boundary conditions in order to decide what ini-
tial state to begin with. 
 
A conceptual model is a simplified description of the system at hand, and it is often ver-
bal (or even just mental) but is sometimes depicted using pictures and diagrams. Luckily, 
we do not have to start from scratch when formulating a conceptual model, and prior 
models and theories from mathematical epidemiology provide us with appropriate con-
cepts and frameworks (Diekmann et al. 2012). Although this accelerates the modelling 
process, it is good to be aware of the framing that the theory provides. For example, the 
concept of discrete disease states (e.g. Susceptible, Infected, and Recovered) is a sim-
plification of a much more complex reality where the disease state of an individual is 
multi-faceted and has several characteristics.  
 
Similarly, the processes that drive disease transmission are often highly idealized in 
mathematical models (see section 2.3 below for a more detailed description of diUerent 
model types). Compartmental models make use of the law of mass action, stating that 
the rate of reaction is proportional to the product of the concentration of the constituent 
reactants, which in terms of disease transmission translates to the incidence being pro-
portional to the product of the fraction of infected individuals and the number of suscep-
tible individuals. Agent-based models represent disease transmission at a higher level of 
realism, requiring that individuals inhabit the same location in order for transmission to 
occur. But even in this case certain assumptions have to be made. For example, assump-
tions have to be made about the probability of disease transmission in diUerent locations 
(e.g. home vs. school) and about who will interact with whom. Similar considerations also 
lead to the use of network models (Keeling and Eames 2005).  
 
It is of course also possible to consider model types that lie between compartmental 
models and agent-based models (as discussed below). The possibilities are enormous 
and, time permitting, it could be illuminating to consider a set of models in order to learn 
from various types of models instead of looking for a single “optimal model”. 
 
Lastly, we would like to mention the common assumption that the age structure and size 
of the population remains constant. This assumption is closely tied to the time span that 
the model is meant to accurately describe and is reasonable for most epidemics. How-
ever, in some cases such as recurring measles epidemics the inclusion of vital dynamics 
(i.e. including births and deaths in the model) is required for an accurate description of 
disease transmission (Bjornstad et al. 2002). 
 
These are only a few of the most common simplifications made in epidemiological mod-
els, and each model tied to a specific purpose will contain simplifications associated 
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with the problem at hand. In relation to the modelling cases presented above, we would 
expect Model case 1 to account for imported cases, while the other two models might 
disregard this aspect. Model case 2 needs to account for disease transmission and must 
make additional assumptions concerning things like age-dependent risk, and this is 
probably not relevant for Model case 1. Lastly, Model case 3 needs to capture the delay 
from infection to hospitalization, which is less relevant for the other two Model cases.  
 
The degree of simplification makes it possible to order models from the most simplified 
and unrealistic, but understandable, models to more complex and, hopefully, more real-
istic models. At first, it might appear as if this ordering also reflects the accuracy of the 
models, such that complex models, which reflect more of the actual processes related 
to disease transmission, should be more accurate. However, this is far from the case, and 
in many instances more complex models are actually less reliable. This stems from the 
fact that including more components and processes requires more parameters to de-
scribe those processes, and if accurate knowledge about those parameter values is lack-
ing then estimating those (either from the literature, from the data, or based on expert 
opinion) necessarily introduces uncertainty into the model output. This phenomenon has 
been termed the ‘uncertainty cascade’ (REF, chapter 4). 
 

2.2 Choice of data 
The choice of conceptual model dictates the variables that are included, and often there 
is an interplay between the data that are available at the time and the model construction 
process. In a sense, model construction can be seen as a dialogue between the purpose 
of the model and the available data. More types of data and higher spatial and temporal 
resolution implies that the model can be made more detailed. For example, if we obtain 
data on hospital admission at a weekly resolution then it usually makes sense to define 
the model and its parameters on the same time-scale rather than on a scale of days or 
hours. 
 
Furthermore, the modeler should have a dialogue, as described above in the Preparatory 
work section, with the data provider in order to make suggestions about what data to col-
lect.  
 
In order to connect the variables in the model to the data, additional assumptions are 
required. Even if the variable and the data are similar at the surface level, a closer exam-
ination can reveal discrepancies. For example, from a given model we can calculate the 
daily disease incidence, and we also have access to national daily incidence data. We 
then have to ask how such data were collected. Is every infected person featured in the 
data or is there a testing bias? How are the data reported and aggregated? Are there re-
gional diUerences that induce a bias? When possible, one should try to reduce bias. How-
ever, in cases where this is impossible, one should acknowledge any potential bias that 
might aUect the accuracy of the model. In other cases, we need to make assumptions 
about the relation between the data and the variables in order to make a connection. For 
instance, this occurs when our model outputs disease incidence but we have data for 
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hospital admissions (as in Model case 3 above). We then need to make assumptions re-
garding the fraction of the cases that become hospitalized and the time delay from infec-
tion to hospitalization.  
 
Data that are connected to epidemiological models fall into four broad categories:  
 

• Data that are input to the model and aUect diUerent parameters, such as vaccine 
coverage and the rate of under-reporting. This also includes data that determine 
the initial conditions such as the fraction of the population that initially is infected. 

• Data that aUect parameters in a time-dependent fashion. In Model case 3 it is pos-
sible to use data on mobility to model a time-dependent contact rate (see, for ex-
ample, REF). Other types of input data include syndromic data from, for example, 
telenursing calls and weather data in terms of outdoor temperature and humidity. 

• Data that correspond to the main model output. For our three Model cases pre-
sented above this corresponds to disease incidence, mortality, and hospitaliza-
tion, respectively. Such data are usually used for model calibration. 

• Data that are connected to the output from the model but are only used for model 
calibration. In Model case 2 we might consider seroprevalence data in order to 
estimate the actual number of infected people.  

 
In addition to the quality and potential biases present in the data, the choice of data 
should also be informed by the data’s stability over time. Testing strategies that are sub-
ject to changes during an epidemic imply that data on incidence will exhibit time-depend-
ent biases that might be diUicult to account for. Hospital admission data are considered 
more stable, but it is possible that criteria for hospital admission can change.  This also 
applies to mortality data, where procedures for how causes of death are recorded might 
change abruptly. In general, real-time data need to be adjusted due to the time lag in the 
reporting using now-casting methods (Bergström et al. 2022). The emergence and spread 
of novel genetic variants of the pathogen might also impact the risk of hospitalization and 
mortality. The ease of data collection should also be considered. For example, some data 
might require extensive preprocessing by third parties, e.g. telecom data, thus making 
the modelling process more vulnerable to external partners. In terms of the reproducibil-
ity of model results, it is preferable to choose data that are publicly available rather than 
protected. However, that goal will stand in contrast to GDPR protections.  Data availabil-
ity might also influence public trust in the model results (see the chapter on Communi-
cation). 
 

2.3 Choice of model type 
Mathematical models that describe disease transmission and other related variables 
such as hospital admissions broadly fall into three categories: compartmental models, 
statistical/time-series models, and individual-level models (Grimm et al. 2006). The lat-
ter category in turn contains three types of models that are similar: agent-based models 
(ABMs), individual-based models (IBMs), and micro-simulations. The definitions of ABMs 
and IBMs overlap to a large degree, and the latter term is more popular in ecology and in 
biology in general, whereas the former is more common in epidemiology and the social 
sciences. The key diUerences between ABMs/IBMs and micro-simulations are that 
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ABMs/IBMs are more theory-oriented, while micro-simulations are more policy-oriented; 
ABMs often use hypothetical populations, while micro-simulations typically use repre-
sentative samples of real populations; and ABMs often use ad-hoc or roughly calibrated 
parameters, while micro-simulations rely more on empirically estimated processes 
(Richiardi 2014). 
 
In compartmental models, the population is divided into two or more compartments that 
represent diUerent disease states (e.g. Susceptible, Infected, and Removed, as in the 
classic SIR-model). In these models, it is also specified how individuals move between 
diUerent states (compartments), which can occur either with a certain influence of ran-
domness or can occur deterministically. It is also common to stratify the disease states 
into age groups and to represent geographically distinct populations using separate sub-
compartments.  
 
Statistical (or time-series) models create forecasts by assuming that future data (for ex-
ample, the daily incidence or the ICU occupancy) will follow a certain pattern in time (and 
possibly in space). For example, in the early stages of an epidemic we might assume that 
the curve that describes the daily incidence is exponential, and by fitting the model to 
historical data on incidence we can make predictions about the incidence in the near 
future. Statistical models can also make use of syndromic data in order to make predic-
tions (e.g. tele-nursing calls as in REF). In this category we also include machine learning 
and AI models, which despite their hype have so far featured to only a limited extent in 
informing decision-making in public health. One can speculate about the reasons for 
this, but two main candidates might be a lack of training data, especially during the early 
stages of an epidemic, and the fact that forecasts, no matter how good they are, in them-
selves do not always help in decision-making without a good understanding of the pro-
cesses that drive disease transmission. 
 
Individual-level models, including network models, are similar to compartmental mod-
els, but instead of aggregating all individuals with the same disease state into a homoge-
neous group, each individual is described separately. This makes it possible to capture 
the demographics of the population in more detail and to incorporate heterogeneity to a 
greater extent in terms of contact patterns, disease development, and disease severity. 
However, it is important to note that a greater level of detail requires a greater number of 
parameters, which typically far exceeds the capacity of a compartmental model and, as 
discussed above, introduces additional uncertainty. However, this might not always be 
the case, and if one does not assign individual parameter values, but let some parame-
ters take common values, one can in fact construct an ABM with few parameters. An ad-
ditional drawback with this model type is that the computation time increases.  
 
All three model types have their pros and cons, and these depend on the context in which 
the model is used and the purpose of the modelling exercise. An important consideration 
is the extent of disease-specific information required to produce reliable model predic-
tions. Typically, all parameters of statistical models are estimated from historical data, 
whereas for compartmental and agent-based models it is common to estimate at least a 
subset of the parameters from the literature and expert opinion (e.g. the incubation and 
recovery times). This implies that statistical models, in comparison to other model types, 
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are straight-forward to deploy early during a pandemic/epidemic when disease-specific 
data are scarce and often uncertain. However, statistical models impose strong limita-
tions on how the epidemic will evolve (e.g. an exponential increase or a single peak), 
which makes them unsuitable for longer-term predictions or for scenario projections. 
This also points to another important distinction between statistical models and com-
partmental/agent-based models. Statistical models rely on data, whereas the other 
model types are mechanistic in the sense that they represent (albeit in simplified form) 
the processes by which disease transmission occur. This makes the variables and pa-
rameters of such models interpretable, which is an advantage both during model devel-
opment and during coding and when communicating the model to decision-makers and 
the public. In other words, statistical models tend to be black boxes, whereas mechanis-
tic models are more transparent. 
 
The use of an ABM can serve as a starting point for a study in order to get a feeling for the 
dynamics involved if one is not convinced that a standard compartment model is ade-
quate or to assist in finding more realistic initial data. In the best of worlds, this might 
then lead to setting up other types of models in order to further increase both the under-
standing and the predictive power of the models and thus set the stage for better deci-
sion-making.  
 
In terms of our three modelling cases presented above one might opt for a stochastic 
compartmental model or an ABM for Model case 1 given the small number of imported 
cases (compared to the total population). The impact of vaccination strategies on mor-
bidity in Model case 2 could be assessed with a compartmental model where projections 
based on diUerent scenarios could be contrasted. Lastly, the problem of forecasting hos-
pital admissions in Model case 3 could be tackled with a statistical model. 
 

2.4 Model parameters 
All mathematical models come with parameters whose numerical values influence the 
model output. The number of parameters can range from one (e.g. the growth rate in an 
exponential growth model) to hundreds in complex individual-level models that describe 
everything from age-dependent risks to rates of movement between cities, or even to bil-
lions of parameters in machine-learning models. In statistical models, parameters rarely 
have a physical meaning, but rather serve as a means to connect model input and output. 
In compartmental models and individual-level models, the parameters typically corre-
spond to some specific process (e.g. the probability of disease transmission in a given 
context), but parameters in simpler models usually aggregate many physical phenomena 
into a single number. For example, age-dependent transmission rates account for both 
varying rates of contact and heterogeneous probabilities of transmission upon contact.  
 
There is also a temporal dimension to model parameters. Do we assume that parameter 
values are constant in time, or do we allow for multiple values separated by break points, 
or even parameters that depend continuously on time? The latter might make it easier to 
fit the model to data, but this will introduce additional uncertainty in the parameters. 
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2.5 Connecting the model and the data – the error model 
The goal of a predictive model is to describe future data as accurately as possible given 
some initial data or event, or in the case of a scenario model to accurately describe pos-
sible future outcomes. This is achieved by calibrating (or fitting/training) the model on 
historical data, if available (see section 3.5). However, irrespective of how accurate our 
model is there will always be a diUerence between model output and historical data. In 
order to bridge this diUerence, it is often assumed that the actual outcome is given by the 
model output plus some randomness, 
 

 
 
where the actual outcome is denoted yi, the model output is denoted by , and ei is the 
assumed noise in the data, sometimes referred to as measurement noise. A common 
assumption is that ei is an independent normal random variable because this is compat-
ible with the theory of linear regression and maximum likelihood estimation. However, if 
the error is observed to depend on the magnitude of the model output, then other choices 
for modelling the error are suitable, e.g. a negative binomial distribution for the error 
(Alleman et al. 2023). In that case the error is not additive as in the example above and is 
instead included in the likelihood function that is used for model calibration (see section 
3.5 for more details). 
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Chapter 3: Implementation 
 
At this stage of the process a conceptual model has been decided upon and translated 
into an appropriate framework, and a choice has been made concerning what variables 
to consider and how they connect to the available data. The next step of the process is to 
implement the model and generate results. This will be the topic of this chapter, but be-
fore delving into the details it is worth mentioning that it is common to step back to the 
preparatory phase at some point during implementation, e.g. due to problems with 
model calibration. After adjusting the model structure or the data used for model calibra-
tion one can then move forward to generating model results. 
 

3.1 Choice of programming language 
Although some highly simplified models can be solved by hand, e.g. exponential growth, 
we still need to rely on computers for calibration and for visualization of model results, 
tasks that are crucial for accurate modelling and eUective communication. This implies 
that programming will be an integral part of the modelling process. 
 
We will not delve into the technical details of software development, but instead mention 
a couple of factors that are important when deciding upon a programming language. As 
a modeler you probably master more than one language, and most likely have a favourite 
language that you prefer over others. Using this language facilitates development of the 
code, but there are other factors that are equally important to take in account: 
 

• If generating model output requires averaging over many realisations of a stochas-
tic model, it is advisable to choose a language that is fast to execute. One such 
language that has emerged in recent years is Julia. 

• Agent-based models are often more eUicient and easier to implement in object-
oriented languages. Although most languages support some form of object-ori-
ented programming (e.g. Matlab and R) it is advisable to use languages like C++ or 
Python for those cases. 

• The ability to share the code across members of the modelling team is important 
because the code might be developed in parallel with others or might be inherited 
by others (see chapter 5 on Management of models).  

• Interactions with other software or databases might be simpler for certain lan-
guages compared to others. 

 
Another aspect of code development, which is helpful to consider prior to coding, is the 
use of development platforms such as GitHub. These facilitate development by provid-
ing, for example, version control, bug tracking, and task management. In addition, the 
use of a development platform facilitates public access to the code and the reproduci-
bility of the results. 
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3.2 Choice of solution method 
At the core of the code that implements the model is the algorithm that solves the model 
and generates a numerical solution. For a statistical model this is trivial because it only 
amounts to plotting a curve with parameter values that have been calibrated from the 
data, but for compartmental models this part of the code is a bit more involved and re-
quires a number of choices to be made.  
 
Compartmental models, given in terms of a set of coupled ordinary diUerential equations 
(ODEs), are integrated forward in time with small step-sizes in order to generate a numer-
ical solution. The future state of the model is given by the current state plus a small 
change. The most straightforward way to do this is to use the simple method known as 
Euler forward. However, this method usually needs very small time steps so as not to in-
troduce numerical errors that can grow exponentially. To overcome this, one can use a 
more sophisticated numerical scheme like the Runge–Kutta method. An alternative to 
the deterministic methods is to use tau-leaping1 where the small change is chosen at 
random depending on the current state of the model. It has been argued that the latter 
method is advisable when the number of individuals in each compartment is so small 
that random eUects become important (Kratz et al. 2015). This occurs when compart-
mental models are stratified both with respect to age and space (with a high resolution, 
e.g. into parishes). If a deterministic approach is chosen, it is advisable to use built-in 
ODE solvers (e.g. odeint in Python or desolve in R) because these are faster to implement, 
reduce computational time, and lower the risk of coding errors. 
 
For ABMs, which also contain an element of chance, it is common to use either discre-
tised time and advance the model-state, e.g. by one hour, where the action of each agent 
is determined by probabilities that depend on model parameters, or to use the Gillespie 
algorithm, which, based on the parameters of the model, calculates the time to the next 
event and performs this event, e.g. moving an agent from home to workplace or advanc-
ing the disease state of an agent from exposed to infectious. The latter approach is more 
accurate but can be considerably more computationally expensive.  
 
It should be noted that the diUerence between a highly stratified compartmental model 
solved using tau-leaping and an IBM is not crystal clear. Both models consider individuals 
that are shuUled (with an element of chance) between diUerent disease states, and 
sometimes it is the structure of the code that makes a model individual-based (e.g. rep-
resenting individuals using objects and actions with methods) rather than compart-
mental. 
 

3.3 Coding 
We will not go into details concerning the coding of the model because this activity is not 
specific to epidemiological models nor to models used for decision-making. Instead, we 
refer the reader to existing guidelines for scientific computing, e.g. (Wilson et al. 2014). 

 
1 A similar division into deterministic and stochastic solution methods can be made for time-discrete 
compartmental models. 
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However, we would like to mention that optimising code for speed within a given language 
is advisable.  
 

3.4 Verification of the code 
The verification step of the modelling process ensures that the model is correctly imple-
mented, which is crucial for models that are to be used for decision-making. In other 
words, it is imperative that the code works as intended. Passing this step does not guar-
antee that the model is accurate or reasonable; it is only a formal check that the mathe-
matical model is accurately implemented and solved by the code. The underlying con-
ceptual model with its corresponding simplifications and limitations could still be 
“wrong” even though the code is verified.  
 
There are no generally accepted common standards for code verification within the field 
of mathematical epidemiology. Although central for the later steps in the modelling pro-
cess, it is rarely acknowledged as an independent activity and is rather lumped together 
with coding and is performed in parallel with the development of the code. This is, of 
course, sensible, but we would still like to highlight the importance of this step and point 
out that it should be carried out on the completed code. 
 
There are no fool-proof methods for verifying epidemiological models, in contrast to fi-
nite-state models that can be formally verified (Weiss et al. 2001). Instead, we recom-
mend applying several methods in parallel: 

• Having the code reviewed by experts who are not involved in the development pro-
cess. 

• Investigating “expected” model behaviour using typical parameter values. 
• If possible, comparing model output with existing models for the same system or 

co-developing multiple models that can be tested against one another. 
• Ensuring that the solution is insensitive to minor changes in the time step. 
• Checking that the solution conserves quantities that should remain constant (for 

example, in compartmental models without vital dynamics the sum of all com-
partments should always equal the population size). 

• Investigating “extreme” model behaviour when one or more parameters are set to 
zero or tend to infinity. For example, if the infectivity in Model case 2 (see Prepara-
tory work) is set to zero there should be no outbreak, whereas if it tends to infinity 
everyone should become infected. 

• Using interactive debugging that makes it possible to track how variables in the 
code change during execution. 

• Using pull requests on GitHub (when making incremental changes). 
• Using unit testing where appropriate, i.e. testing the smallest functional unit of the 

code. 
 



 

 19 

3.5 Calibration of the model 
The act of making the model fit the data has many names, including training, calibration, 
fitting, parameter estimation, regression, and parameter inference. We will in the remain-
der of the handbook refer to this as (model) calibration, which refers to the act of adjust-
ing the parameter values of the model to make the model output fit the existing data. This 
does not include adjusting or changing the structure of the model, in which case we are 
temporarily back in the Preparatory phase of modelling. However, we would like to men-
tion that it is not uncommon to adjust the model structure in the light of data that the 
model cannot describe. Model development is thus typically not linear but loops back 
and forth between the diUerent stages. 
 
Typically, not all parameters of the model are adjusted, and the values of a subset are 
often taken from the literature instead. For example, in Model case 2, which concerns 
vaccination strategies, where we suggested a compartmental model, the serial interval 
or rate of recovery might be taken from previous studies whereas the infectivity can be 
estimated from existing data. In some cases there is no calibration carried out at all. For 
example, in Model case 1, on the importance of importations, we might not have any ap-
propriate data to compare with and might have to rely solely on literature values and es-
timates from experts.  
 
Model calibration can be carried out either using formal methods, informal methods, or 
a combination thereof. By informal methods we mean adjusting parameter values by 
hand in order to obtain a good visual resemblance between the data and the model out-
put. Formal methods, on the other hand, make use of a quantitative measure of model 
fit, e.g. model error, which is then minimized (or in the case of a likelihood model is max-
imized, see below) using appropriate computational methods. In some cases, a subset 
of parameters are adjusted by hand while the remaining parameters are subject to formal 
calibration. 
 
Two common methods for formal calibration are least squares estimation (LSE) and max-
imum likelihood estimation (MLE)2. In LSE the measure of model fit is the sum of the 
squared deviations between the 𝑁	data points and the model output: 
 

 

 
where Di is the ith data point, Mi is the corresponding model output, and 𝛳	is a vector con-
taining all parameters of the model. The goal is to minimize the error E(𝛳) by adjusting the 
model parameters. This can be achieved using numerical optimisation (e.g. gradient-de-
scent) methods or by brute force grid search, which evaluates the error for all possible 
combinations of parameter values. This can be very costly from a computational point of 
view but has the advantage of finding the optimal set of parameter values (Ugray et al. 
2007). Numerical optimisation can, on the other hand, get stuck in local optima. In addi-

 
2 If the error model is Gaussian (see below) the MLE and LSE of the parameters agree (García-Portugués 
2025). 
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tion, a combination of the two approaches is also possible. Note that both methods suf-
fer from the ‘curse of dimensionality’ (Saltelli and Di Fiore 2023) and require more com-
putation as the number of parameters to calibrate grows.  
 
In the MLE approach, the quantitative measure of model fit is the likelihood of observing 
the data. In order to find the optimal set of parameters, we view the likelihood as a func-
tion of the parameters and try to maximize the likelihood. The likelihood is essentially the 
probability of observing a certain sequence of data points given the model parameters 
and is calculated by taking the product of the individual probabilities: 
 

 

 
where again Di  are the data points and 𝛳	 is a vector containing all parameters of the 
model. This time the model output defines the probability P(Di,	𝛳), which is given by the 
error model (see section 2.4 Model error). In a Gaussian error model, the model output 
Mi would appear as the mean while the variance would be unknown and would be deter-
mined by the deviations between the model and the data.  
 
MLE is tightly connected to Bayesian methods for model calibration. In a Bayesian frame-
work we do not associate a parameter with a single numerical value, but rather we think 
of parameters as random variables with certain distributions. Here, we distinguish be-
tween prior distributions, which are our best guess before the model is confronted with 
the data, and posterior distributions that are obtained by multiplying the prior distribution 
with the likelihood function. In many cases there is no closed expression for the likeli-
hood, as is the case for most ODE models and ABMs, and one has to resort to approxi-
mation methods for obtaining posterior distributions, e.g. Markov chain Monte Carlo 
methods (Qian et al. 2003) or Approximate Bayesian Computation (Sunnåker et al. 2013). 
 
Note that both LSE and MLE can be adapted to include multiple data sources and model 
outputs. This is achieved by adding additional terms in the sum of squared errors/likeli-
hood to create a single error/likelihood function. These can also be given diUerent 
weights depending on how we value model agreement with diUerent data sources. When 
in doubt as to which method to use, it is often good to run both methods and compare 
the results. If the results diUer significantly, further investigations will be needed, but as 
a rule of thumb LSE will be more reliable for smaller sample sizes. 
 
Other techniques for model calibration are also available, e.g. history matching using 
emulators/surrogate models, which aims to discard implausible regions of the parame-
ter space (Andrianakis et al. 2015), and approximate Bayesian computation, which 
makes use of numerical solutions and summary statistics in order to construct posterior 
distributions of the parameters (Minter and Retkute 2019).   
 
When the model has been calibrated to the data, the remaining deviation between model 
and data, often termed the residual, is in theory attributed to the measurement error that 
is introduced via the error model. However, in reality the error is mainly due to the fact 
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that the model is a simplified representation of the system at hand, and therefore is usu-
ally biased in some manner.  
 

3.6 Model validation 
If the model is to be used for making predictions about future events and possibly in other 
locations, it is important to make sure that the model not only captures the current data 
well, but also captures future unseen data suUiciently well. This property is often evalu-
ated by splitting the available data into one part that is used for calibration and a second, 
usually smaller, part on which model accuracy is evaluated. It is also common to cali-
brate the model using increasing time frames for the data in order to determine whether 
the error in the validation set changes and to see if the parameter estimates change as 
more data are used for calibration. If the latter occurs this is an indication that the model 
is unstable and might not perform well on unseen data.  
 
Both the error used in LSE and the likelihood in MLE are unintuitive measures of model 
error. In the interest of transparency, it is common to consider measures that are easier 
to interpret for the validation step. Examples of this are the mean absolute percentage 
error (MAPE), which is a relative measure of error, and the root mean square error (RMSE), 
which is given by the square root of E(𝛳) and is an absolute measure of error. If the model 
output is probabilistic, accuracy can be evaluated using various scoring rules, e.g. the 
weighted interval score (WIS), the coverage probability, or the continuous ranked proba-
bility score (CRPS). 
 
Evaluating model performance on data that are adjacent in time to the calibration data 
and on the same target population is sometimes called primary validation. This term is 
also used when the evaluation is carried out retrospectively. If the model evaluation is 
carried out prospectively, such that the model developers are blinded to the evaluation 
data or the evaluation is carried out in a diUerent geographical region/population, it car-
ries more weight and is often referred to as external or secondary validation (Ramspek et 
al. 2021). The possibility to carry out detailed model validation naturally depends on the 
available time frame for the modelling exercise and is also constrained by the available 
data, which might be scarce during the initial stages of an epidemic. As such, secondary 
validation should be viewed as an ideal rather than a standard. 
 
In addition, we would also like to get an understanding on how sensitive our model is with 
respect to both variation in the data and variation in the parameter values. Such 
knowledge might provide better feedback to the data providers on what data need to be 
harvested with extra care. There are several ways to perform a sensitivity analysis (see 
e.g. (Wu et al. 2013)), and there are even ready-made packages in several languages, 
such as Matlab. We would also like to underscore that a sensitivity analysis not only pro-
vides a measure of how sensitive the model is, but that this procedure also provides in-
formation on what parts of the model need to be scrutinised or even adjusted.  
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3.7 Visualisation of model predictions 
For the epidemiological models considered here, the model outputs are typically a time 
series of one or more disease-related variables. For example, for Model case 1 the output 
would be disease incidence in the absence or presence of one or more travel recommen-
dations, whereas for Model case 3 it would be the most likely number of hospital admis-
sions/day for a given hospital. When possible, it is common to plot the data on which the 
model was trained together with the forecast/scenario because this makes it possible for 
the recipient to gauge the accuracy of the model. 
 

3.8 Handling uncertainty in model output 
In order to communicate the uncertainty associated with model calibration it is common 
to not only plot the prediction given by the optimal parameter values, but also to include 
confidence intervals for the model output. In the case of simple statistical models (e.g. 
regression models) these can be calculated explicitly using built-in functions, and for 
non-linear regression the Delta-method can be utilized (Liu 2023). Compartmental mod-
els and ABMs require a bit more work, and usually confidence intervals are obtained by 
using the fact that the Hessian of E(𝛳) with respect to the parameters can be interpreted 
as the inverse of the covariance matrix of the parameters (Dalitz 2018). Sampling param-
eter values with the obtained covariance and solving the model provides an envelope of 
prediction from which a confidence interval can be calculated. A similar approach works 
for MLE where the covariance of the parameters is given by the inverse of the Fisher infor-
mation matrix (Dalitz 2018). In a Bayesian setting, uncertainty can be visualized by sam-
pling parameter values from the posterior distribution and solving the model to produce 
an envelope from which so-called credible intervals can be calculated. Please note that 
these approaches can underestimate extremes in model output (e.g. epidemic peak 
height), which are better accounted for using curve boxplots (Juul et al. 2021). 
 
It should be noted that the uncertainty captured in confidence/credible intervals only re-
flects the diUiculty of pinning down the correct parameter values and does not serve as 
quantification of the actual uncertainty of the predictions (Briggs et al. 2012). In other 
words, confidence intervals are conditioned on model choice and only reflect parametric 
uncertainty. Uncertainty regarding the implications of conceptualization, simplification, 
and model structure, often termed structural uncertainty, cannot be captured in visual 
representations of model output unless the results from several models with the same 
purpose are shown in tandem. Together with knowledge about the structure of the mod-
els it is possible for the recipient to understand how the model structure impacts the re-
sults. Even so, it is advisable to discuss structural uncertainty in the accompanying doc-
umentation, and this is even more important if a single model result is presented. Uncer-
tainty in model output induced by uncertainty in the data should also be mentioned in 
the documentation.  
 
To communicate uncertainty in scenario projections is a delicate task. If the model is cal-
ibrated using standard methods, then the projections could be visualised using confi-



 

 23 

dence intervals. However, this might signal that the uncertainty is bounded when in real-
ity the projections rest on assumptions for that particular scenario, which might be highly 
uncertain or even speculative.  
 
Another type of uncertainty, which is present in stochastic models, arises due to random-
ness in model dynamics. This implies that every simulation will generate a unique reali-
zation that diUers slightly from previous ones, and therefore the typical model behaviour 
has to be assessed by compiling the distribution from a large number of simulations and 
has to consider the average value the model output. The variation in model output distri-
bution is often referred to as stochastic uncertainty and is typically shown with error bars 
that correspond to, e.g., the standard error of the mean or some other quantification of 
the variability. This type of uncertainty should not be confused with parametric uncer-
tainty and must be clearly labelled as stochastic uncertainty. If both stochastic and par-
ametric uncertainty feature in the output, they should be summed to visualise the entire 
range of uncertainty. For deterministic models this uncertainty is expressed by adding a 
random error (see Section 2.4), which represents the underlying noise in the data. This is 
achieved using an error model. The uncertainty that results from both parametric uncer-
tainty and noise in the data is described with a prediction interval, which equals the con-
fidence interval of the parametric uncertainty plus the uncertainty induced by the un-
known variance of the error model.  
 
In summary, we have discussed five types of uncertainty related to model output that 
might be present: 
 

• Structural uncertainty:  arises from the model construction 
• Parametric uncertainty:  arises during model calibration 
• Error model uncertainty:  arises from estimated noise in the data 
• Stochastic uncertainty:  arises due to model simulations 
• Scenario uncertainty:  arises from assumption about future developments 

 
Note that biases and assumptions concerning the relationship between input data and 
model variables propagate to the model output and thus should be included in the overall 
discussion of uncertainty. 
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Chapter 4: Communication 
 
Mathematical models of infectious diseases can be used in many contexts and for a wide 
range of purposes. Despite this diversity, a common factor is that the results of the 
model, and to some extent the model itself, have to be communicated to recipients ex-
ternal to the group that has developed the model, e.g. the decision-makers. 
 
As has been expressed above, communication with decision-makers is important to en-
sure a high quality of the entire modelling process, and in particular to create an under-
standing between the modelers and decision-makers concerning the quality and limita-
tions of the data. However, the communication of the concrete modelling results de-
serves extra care. 
 
The shape and form of the communication will depend on the purpose of the model, who 
the recipients are, the nature of the content, and lastly the numerical result itself. Com-
munication of model results is related to the concept of transparency in science, and the 
present chapter is inspired by a taxonomy of transparency introduced by the philosopher 
of science Kevin C. Elliot (Elliott 2022). We will first introduce the diUerent dimensions of 
communication and then illustrate these with three examples. 
 

4.1 The purpose 
In order to eUectively communicate the results from a model one has to be clear as to 
why they need to be communicated. This is tightly connected to the purpose of the model 
or the question that the modelers have been tasked to answer. As suggested in the chap-
ter on Prepatory work, it is important for modelers to have a clear picture of the purpose 
prior to model construction because this will guide the work going forwards. However, 
the purpose should also guide communication.  
 

4.2 The audience 
The second dimension that should influence the communication are the recipients. 
These can include other modelers, scientists, decision-makers, politicians, and the gen-
eral public, which all have diUerent needs, expectations, and competencies. For exam-
ple, a presentation for the general public will be less eUicient if the main focus is on tech-
nical details, whereas other modelers expect the model results to be communicated at 
a level of detail such that they become reproducible. In some instances, the purpose 
might be to educate the public about mathematical modelling, which requires yet an-
other mode of communication. 
 
A detailed discussion concerning all of the model assumptions and associated uncer-
tainties might not be appropriate to communicate to the public due to the risk of causing 
misunderstandings because people might not be aware that all models require assump-
tions and simplifications. However, this information is critical if decision-makers are the 
intended audience.  
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As described above there is often a primary audience and a secondary audience, and 
both should be considered. 
 

4.3 The content 
With the purpose and intended audience fixed, the task of determining what to communi-
cate becomes easier. As a bare minimum we consider that model results in terms of plots 
or tables or some other visual representations should be communicated. Although rare, 
there might be situations where visual aids are not necessary, e.g. if the question posed 
is a simple yes/no question (e.g. Should we close national borders to reduce disease 
transmission given some set of criteria?). But even in such cases it is probably of interest 
to the recipient to understand how the conclusion was reached. 
 
At the other end of the spectrum, we have a full-fledged technical report accompanied 
by an online repository that contains fully documented code and all of the raw data re-
quired to reproduce the model results. Of course, it is also possible to communicate 
model results in a multi-modal fashion where an oral presentation of the key results is 
accompanied by a detailed report. In terms of the contents of technical reports, the EPI-
FORGE guidelines provide excellent guidance as to the necessary components (Pollett et 
al. 2021). Another option is to present the primary results and conclusions in the main 
body of the report and relegate the technical details to an appendix. 
 

4.4 The mode of communication 
The three dimensions discussed above should guide the mode of communication, but it 
is likely that the communication is also influenced by routines specific to the organization 
carrying out the modelling. However, there are a couple of aspects that are important to 
keep in mind: 
 

• Communication of pandemic model results that contain forecasts in the short 
term (e.g. 1–2 weeks) are likely to change rapidly as more data become available. 
In such cases online dashboards that can easily be updated might be preferable. 

• Making model code available to the public opens up for criticism, which might ap-
pear time-consuming and unpleasant to digest, but is important for transparency 
and also has the potential to improve and facilitate model development. 

• If scientists external to the organization have co-developed the model, it should 
be clear from the outset who is responsible for communicating the results.  

• Presenting model results in a forum where the recipients are comfortable to ask 
question facilitates the uptake of the results. This is particularly important when 
recipients lack technical skills and are expected to pass on the information to lo-
cal decision-makers. 

 

4.5 Dangers of communication 
Although a well-planned strategy for communicating model results is likely to increase 
the uptake and usefulness of the modelling exercise, communication also comes with 
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dangers. The most obvious one is that careful documentation and communication might 
waste scarce resources and thus might slow down further model development. This 
problem is particularly relevant in the early stages of an epidemic when there may be a 
lack of time and the data could be especially unreliable and are being updated at a rapid 
pace.  Another important aspect is the art of finding the right level of detail to describe 
the models for a general audience – not too over-simplified and thus underestimating the 
reader, but on the other hand not using too much technical jargon and details so as to 
make the model virtually inaccessible. Lastly, public access to data might violate privacy, 
in particular if it is of high spatial and/or temporal resolution. 
 
Another thing to consider is how one should act if model results clearly conflict with other 
reported modelling results. This situation is of course not uncommon in academia, but in 
the case of a public health crisis diverging results may be utterly confusing for both deci-
sion-makers and the public, and such situations have created significant tension be-
tween diUerent research groups in the past. Here, it is important to be clear about the 
discrepancies and to suggest possible reasons for them. However, in a crisis situation 
the process is considerably sped up and is played out on a public stage for any interested 
parties to observe.  
 

4.6 Examples 
We now present three diUerent examples of communication that involve the Model cases 
presented above. These were chosen to inhabit diUerent positions in the space spanned 
by the dimensions described above. 
 
Model case 1, Travel importations: The purpose of this modelling exercise is to provide 
national decision-makers (i.e. politicians) with advice concerning the eUect of travel rec-
ommendations on disease incidence. Because the purpose and audience are fixed, we 
now turn to the question of content. One possible way of illustrating the eUect of travel 
recommendations is to contrast curves of disease incidence in the presence and ab-
sence of recommendations for international travellers (see e.g. (Godin et al. 2021)). Such 
a comparison will naturally rest on assumptions concerning the number of imported 
cases and reproduction number in the future and the current local incidence that the 
scenarios concern. These are therefore important to communicate alongside the results.  
 
Model case 2, Vaccination strategies: Here the purpose is to assess the impact of dif-
ferent vaccination strategies in terms of the morbidity of an epidemic. We assume that 
the model results will be communicated to the public prior to implementation, with the 
intention of increasing vaccine uptake. This problem can of course be tackled in many 
ways, and here we provide one possible course of action. As in the previous example it is 
useful to contrast the eUect of no vaccination with diUerent strategies, preferably in some 
visual form. Additionally, it is important to stress that the model output is a scenario that 
corresponds to possible future outcomes and is not necessarily the single most likely 
outcome. If the results are presented at a press conference, then they preferably should 
be accompanied by a technical report, published prior to the event, that details both the 
preparatory phase of model development and the implementation phase. The code 
should also be made publicly available. In this case, the timing of communication could 
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also be of importance. If the results are communicated too early, before the epidemic is 
perceived as a threat, the public might not be interested, and if they are communicated 
after the implementation of the vaccination programme the media and the public will 
likely not understand the basis for the decision. 
 
Model case 3, Forecasting hospital admissions: In this case the purpose is to inform 
local decision-makers in healthcare regarding future hospital admissions. Here we as-
sume that the intended audience is the decision-makers and that the model results will 
not be made public. Because decision-makers are often concerned with how much the 
model results can be trusted, it is useful to communicate such forecasts by illustrating 
the most likely outcome together with 95% confidence/credible intervals. This paramet-
ric uncertainty should be accompanied by a discussion of the uncertainty that stems 
from model assumptions (including future changes of the underlying conditions), the 
model structure, and the data used for model calibration. This more complete view will 
aid decision-makers in their balancing of diUerent facts and help them to reach well-in-
formed decisions. If the model is continuously updated, it is advisable to keep track of 
model accuracy, e.g. in terms of the coverage probability (Cramer et al. 2022), which is a 
relevant metric for the recipient.  
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Chapter 5: Management of models 
 
The modelling process is, as we have discussed, an interplay between policy questions 
posed by decision-makers and a modelling group with knowledge in mathematics, data 
science, and epidemiology. To be successful, this process requires skilled management, 
but it is also relevant to discuss what happens with a model after it has fulfilled its imme-
diate need.   
 
To set the stage, we have now reached a point where a model has been constructed with 
a specific purpose in mind. It has been implemented and the result have been commu-
nicated to the intended recipient. This chapter will deal with the subsequent step, namely 
how the model will be managed within the organization for potential further development 
and reuse. Although eUective management of models might not impact the quality of 
models at the time, it has the potential to impact the eUiciency of the modelling group in 
the longer term thus leading to overall improved quality of the model. 
 

5.1 Changes in needs 
Certain modelling tasks stretch over long periods of time, whereas other have a short 
lifespan. For example, the task of producing forecasts of hospital admissions during an 
epidemic (Model case 3) is likely to be ongoing as long as the epidemic puts pressure on 
the healthcare system. This contrasts with the purpose of estimating the eUect of travel 
importations (Model case 1), which is likely to be of interest to decision-makers only dur-
ing a short time window. A long-lasting task requires that more attention is paid to model 
development, and if the rough time span of the task is known from the outset then this 
should impact the entire modelling exercise. If we know that the model will be calibrated 
multiple times on a growing time-series, and that many similar figures and reports will be 
communicated, then it makes more sense to invest time and resources in automated 
pipelines for data and model output. This will also make the reader feel at home and thus 
be able to more easily compare the graphical outcome between the diUerent consecutive 
reports. On the other hand, if we know beforehand that the model will only be used once, 
then less attention can be paid to automating the workflow.  
 

5.2 Model documentation 
We have already mentioned documentation in relation to communication, and that dis-
cussion focused on external recipients and their needs and desires. The potential for 
model development and reuse also depends on communication, but this time commu-
nication is internal to the modelling group. For example, the structure of data pipelines 
and other workflows connected to producing model results are not of interest to external 
users, but this knowledge facilitates continuous use, or reuse, of the model, be it by the 
same modeler or by someone who is new to the project. We would also like to underline 
the easily underestimated importance of the proper documentation of the code, espe-
cially when time is limited. Descriptive names for variables and functions, removal of un-
used code, and detailed comments within the code are aspects that accelerate reuse. 
However, it is also worth considering the trade-oU between the eUort it takes for someone 
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to understand inherited code and the time it takes to develop new code. If the life span of 
the model is expected to be substantial, one must consider the durability of its storage, 
e.g. backed-up hard-drives or other media that is insensitive to organizational changes. 
Also worth considering is the risk that the code can become unusable due to dependen-
cies on methods and functions that become deprecated, although this problem can be 
tackled by creating a reproducible computational environment (e.g. using renv in R).  
 

5.3 Continuity among staL 
Because models are commonly developed by single individuals, they will not persist 
within an organization unless they are known and properly documented. Turnover of staU 
poses a serious threat to organisational learning and is an important factor to consider 
when managing a modelling group. In exceptional situations, such as during a pandemic, 
when modelling groups are under pressure to deliver above normal capacity, the intro-
duction of new members of staU can be particularly challenging. A possible solution to 
this problem is to engage academics in model development during non-pandemic time. 
This can, for example, be achieved through practical exercises where modelers from pub-
lic health agencies collaborate with academics in scenarios that describe future epidem-
ics. Such activities can foster a sense of community and personal relationships that 
hopefully will aid collaborations during public health crises.  
 

5.4 Privacy and security issues 
In most cases, infectious disease models rely on data that are not subject to privacy or 
security concerns. However, in some cases these matters need to be considered. For ex-
ample: 
 

• When the model uses data that contain sensitive personal information. 
• When the model makes use of classified data or spatial data of high spatial reso-

lution where single individuals might be identifiable. 
• When model results are sensitive and are related to national security. 
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Chapter 6: Conclusions 
In this brief handbook we have tried to describe the central elements of modelling infec-
tious diseases, with an emphasis on the use of modelling for decision-making purposes. 
The exposition has a chronological structure, moving from the preparatory phase, to im-
plementation, communication, and lastly the management of models. However, as most 
people who have been involved in mathematical modelling of some form know, the path 
from idea to finished project is seldom straight and is rather cyclical in nature. Neverthe-
less, we believe that we have captured all the relevant parts of the process.  
 
In this short format it is impossible to cover all methods and techniques used in infec-
tious disease modelling, and this handbook is therefore far from comprehensive and 
should only serve as an introduction to the topic. However, we hope that the references 
provided in the text can serve as a means of learning more about the subject. 
 
We hope that this handbook will stand the test of time and that it will turn out to be useful 
during coming public health crises. At the time of writing, AI and machine learning tech-
niques are yet to be used at an appreciable scale in infectious disease modelling. One 
obvious explanation for this is that at the beginning of a new pandemic there will always 
be a lack of data for model calibration and validation. This is, of course, even more critical 
for machine learning models because they require massive amounts of data for calibra-
tion. An additional possible explanation for the low usage of machine learning tech-
niques is the lack of transparency aUorded by such methods. Given the current develop-
ments in AI, this might change soon with advances in so-called Explainable AI. However, 
even in the case of new modelling types or numerical methods the strategic methodology 
presented in this handbook will be applicable. 
 
Mathematical modelling remains an important tool for understanding and providing a ba-
sis for decision-making during epidemiological crises. We believe that the knowledge 
and advice collected in this handbook will serve as useful guidelines in all aspects of 
such endeavours and, most importantly, will assist society in better managing the threat 
of future epidemics.   
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Chapter 7: Checklist 
In order to condense the material presented in this handbook and to make the steps of 
the modelling process described herein applicable and useful during actual modelling 
for decision-making, we have formulated the following checklist. It is not a list of report-
ing items, such as the EPIFORGE guidelines (Pollett et al. 2021), rather it is meant to serve 
as a tool during model development in order to ensure that all the necessary steps and 
modelling choices have been carried out and considered. Like the handbook, they are 
presented in chronological order. Each item roughly corresponds to a subsection of the 
handbook and contains a question and a textbox for the answer. 
 

Item Section in handbook Answer 
1.1 What data does the 
model utilize and in what 
way? 

2.2  

1.2 What uncertainty is asso-
ciated with the data? 

2.2  

1.3 What type of model is it? 2.3  
1.4 What parameters does 
the model contain?  

2.4  

1.5 Which error model is 
used? 

2.5  

2.1 In what programming 
language is the model 
coded? 

3.1  

2.2 How is the model solved 
or simulated? 

3.2  

2.3 What methods have 
been used to verify the code? 

3.4  

2.4 What method is used for 
model calibration? 

3.5  

2.5 How was the model out-
put validated? 

3.6  

2.6 What types of uncer-
tainty are present in the 
model? 

3.8  

2.7 How is the model uncer-
tainty communicated in the 
documentation and visuali-
zation? 

3.8  

3.1 Is the purpose of the 
model stated in the commu-
nication? 

4.1  

3.2 What is the intended au-
dience of the communica-
tion? 

4.2  
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3.3 Is the level of detail in the 
communication appropriate 
for the audience? 

4.3  

3.4 What are the potential 
dangers of communicating 
the model’s results? 

4.5  

3.5 If there are dangers, how 
are they handled? 

4.5  

4.1 What is the expected 
lifespan of the model? 

5.1  

4.2 Is the model documenta-
tion appropriate for the 
lifespan? 

5.2  

4.3 Are there any issues with 
privacy or (national) security 
concerning the data or the 
model? 

5.4  
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     Handbook of mathematical modelling of 
     infectious diseases for decision-making 
 
 
 

This handbook o,ers a clear and practical guide to how models can support 
public-health decision-making before, during, and after an epidemic.  
Developed through a national collaboration between the Public Health Agency 
of Sweden, Chalmers University of Technology, the Swedish Defence  
Research Agency, and the Swedish Armed Forces, the handbook distils les-
sons learned from the COVID-19 pandemic and highlights the importance of 
transparent, well-communicated modelling. 
 
The book provides a structured walk-through of the full modelling process: 
from defining the purpose of a model and choosing data and model types, to 
implementation, calibration, validation, communication, and long-term 
model management. It emphasises the interplay between modellers and  
decision-makers, showing how clear objectives, realistic assumptions, and 
awareness of uncertainty are essential for models to be useful in real-world 
settings. 
 
Rather than prescribing a single modelling approach, the handbook  
illuminates the choices, trade-o,s, and practical considerations that shape 
every modelling project. It is intended for early-career modellers, academics 
entering applied infectious-disease modelling, and practitioners in public 
health who rely on model-based evidence. Senior modellers will also find it a 
valuable foundation for harmonising both practices and nomenclature, and 
strengthening collaboration across institutions. 

 


