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Towards intuitive simultaneous control of a bionic limb
Jan Zbinden
Department of Electrical Engineering
Chalmers University of Technology

Abstract

Restoring arm function after limb loss with a prosthesis remains a major chal-
lenge. Recent advances in surgical techniques and engineering approaches are
now enabling substantial restoration of functionality after amputation. This
doctoral thesis investigates cutting-edge surgical and engineering strategies
and their integration, aiming to achieve intuitive, simultaneous control over
multiple bionic joints in myoelectric prostheses, thereby surpassing current
clinical solutions.

A key focus was to understand how residual biological pathways after am-
putation, which naturally encode volitional movement, can be harnessed. We
demonstrated that severed nerves can be redirected to innervate denervated
native muscles and free muscle grafts, creating new, long-term stable myo-
electric sources. These enabled simultaneous, proportional control of up to
three degrees of freedom using a conventional one-to-one mapping strategy,
improving functionality and reducing disability during extended home use.
To further enhance motion-intent decoding and increase the number of con-
trollable boinic joints, we explored deep learning methods and biologically
inspired data-collection techniques for training neural networks. Our results
show that deep learning architectures outperform shallow networks, facilitat-
ing intuitive simultaneous control. We further demonstrated that artificial
training data can greatly reduce the burden of lengthy fitting sessions. These
methods enabled intuitive, simultaneous, proportional control over 4.5 degrees
of freedom in tasks representative of daily life.

Integrating these elements, we demonstrated for the first time that an indi-
vidual with an above-elbow amputation could intuitively control all five fingers
of a bionic hand as if it were their own.

Keywords: Prosthetics, Bionics, Prosthetic control, Myoelectric control,
Neuro-musculoskeletal interface, Electro-neuromuscular constructs
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CHAPTER 1

Introduction

Individuals experiencing limb loss encounter numerous challenges that can
profoundly a!ect their quality of life. These challenges include post-amputation
and phantom limb pain, diminished independence, and the struggle to perform
basic daily activities. Additionally, societal biases toward disabilities further
compound the di"culties faced by people with amputations. Prosthetic limbs,
see Figure 1.1, play a crucial role in mitigating some of these adversities, aid-
ing individuals in navigating their daily lives more e!ectively.

Among the various needs that arise following limb loss, prosthesis users of-
ten prioritize the functionality of their artificial limbs. They seek prostheses
that are intuitive to control and capable of replacing as many functions of
the lost limb as possible [1]–[3]. Myoelectric prostheses, which are controlled
through electrical signals generated by muscle movements, are particularly
valued for their ability to meet these needs.

This thesis is dedicated to enhancing the functionality of myoelectric pros-
theses. By improving these devices, the aim is to restore a significant portion
of the lost functionality after amputation and thereby substantially improve
quality of life for a!ected individuals.
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Chapter 1 Introduction

Figure 1.1: Illustration of a limb replacement. Following limb loss, individ-

uals are confronted with the critical decision regarding a potential replacement of

their lost limb. The options range from purely cosmetic prostheses that restore the

appearance but not the function, to more traditional muscle-powered alternatives

that o!er reliability with limited functionality. Another choice is the advanced, yet

complex, myoelectric prosthesis. Myoelectric prostheses aim to restore as many at-

tributes of a biological limb as possible, with functionality being a primary goal.

Improved functionality enables individuals to interact e!ectively with their environ-

ment and perform everyday activities, which is essential for their autonomy and

quality of life. Despite ongoing advancements, identifying the optimal approach to

closely replicate the full capabilities of a biological limb remains a significant chal-

lenge in ongoing research.

1.1 Scope of the thesis

Current myoelectric prostheses in clinical settings typically allow control over
only a singular bionic joint, with hand articulation being the most prevalent
function [4]. This restriction is predominantly due to the number and quality
of the available myoelectric signals, which are largely contingent on the level
of amputation. Consequently, for many people with amputation, particularly
those with higher levels of limb loss, the control o!ered by these prosthetic
devices does not align with the natural movement of a biological limb.

4



1.2 Structure of the thesis

This misalignment creates a stark contrast between the functionality of clin-
ically available prosthetic devices and the user’s innate expectations. Prosthe-
sis users have articulated the need for a prosthesis that allows the reliable and
intuitive control of all joints that were lost due to amputation [5]. In an ideal
scenario, intuitive control would be characterized by the ability to command
multiple bionic joints simultaneously, with a coordination that mirrors the
ease and complexity of natural human movement. Volitional motion intent
should produce fluid, physiological responses from the prosthesis, allowing for
a range of movements that feel both instinctive and natural.

This thesis endeavors to bridge the gap between current limitations and
user demands by combining surgical and engineering strategies that facilitate
this level of intuitive prosthetic control. Specifically, the research focuses on:

• Harnessing the remnant biological pathways containing natural voli-
tional movement information by surgically creating new myoelectric
sources

• Interpreting these myoelectric signals in novel ways to expand control
over multiple simultaneously activated bionic joints

1.2 Structure of the thesis

This introduction is followed by Chapter 2, where the current clinical solu-
tions for myoelectric control are summarized and their limitations are high-
lighted. Chapter 3 and 4 present solutions to overcome these limitations:
Chapter 3 approaches the problem from a surgical perspective, and Chapter
4 approaches it from an engineering standpoint. Chapter 5 then provides
an overview where the symbiosis of surgical and engineering approaches sub-
stantially surpassed the current standard of care and provided patients with
advanced prosthetic systems. Chapter 6 provides a summary of the thesis
contributions and presents general conclusions and future work.
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CHAPTER 2

Current clinical solutions for myoelectric control

A typical myoelectric prosthesis comprises several integral components that
collectively translate the motion intent of its user into corresponding move-
ments of the prosthesis, see Figure 2.1. The first component is the attachment
mechanism, which secures the prosthesis to the human body. The second com-
ponent is the signal sources, which contain the information pertaining to the
intended movements. Sensors constitute the third component; these devices
record the information provided by the signal sources. The fourth component,
more conceptual in nature, is the control strategy. The control strategy is re-
sponsible for decoding the motion intent from the acquired signals. Finally,
the fifth component is the prosthesis itself, which mechanically executes the
intended movements.

2.1 Components of a myoelectric prosthesis

Attachment

The predominant clinical approach to attaching prosthetic limbs to the resid-
ual limb involves the use of custom-fitted sockets. These sockets maintain a
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Chapter 2 Current clinical solutions for myoelectric control
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Figure 2.1: The five main components of a myoelectric prosthesis. 1) a

way to attach a prosthesis to the body, 2) signal source providing information about

the intended motion, 3) electrodes capable of recording said signals, 4) a control

strategy that can decode the movement intent from the acquired signals, and 5) the

actual prosthesis. All five are required to provide a functional myoelectric system

for a person with limb loss.

mechanical connection to the residual limb by exerting compressive forces on
the soft tissue of the residual limb. Although this compression method ensures
a stable attachment, it is frequently associated with complications. Friction
and continuous pressure exerted by the socket on the skin and soft tissues of
the residual limb can cause a variety of adverse e!ects, from minor discomfort
to significant dermatological problems [6], [7].

Furthermore, individuals with shorter residual limbs often require additional
suspension mechanisms. For instance, individuals with proximal transhumeral
amputations typically employ shoulder straps (see Figure 2.2a) to secure the
prosthesis. This is necessary because a short residual limb does not provide
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2.1 Components of a myoelectric prosthesis

su"cient surface area for the socket to maintain a stable position. However,
these complementary suspension elements can induce discomfort and signifi-
cantly restrict the range of motion available for prosthesis operation [8].

An innovative alternative to socket use involves direct skeletal attachment
of the prosthesis (see Figure 2.2b). This method can be implemented through
osseointegration, a process in which bone tissue adheres directly to the sur-
face of a titanium implant, thus establishing a structural and functional link
between the bone and the implant [9]. Osseointegration not only enhances the
range of motion but also addresses the issue of skin irritation resulting from
socket friction. Nevertheless, the interface between the skin and the implant
has been reported as a potential site for both superficial and deep infections
[10].

Signal sources

As suggested by the prefix "myo" (derived from the Greek word for muscle),
a myoelectric prosthesis operates by decoding movement intent from muscle-
generated electrical signals. These signals originate from the depolarizing
membranes of outer muscle fibers during muscular contraction. By intention-
ally contracting specific muscles, users of myoelectric prostheses can generate
myoelectric signals that correlate with intended movements.

However, the range of controllable actions is heavily contingent on the pres-
ence of viable muscle tissue. With more proximal amputations, the availabil-
ity of native muscles, and consequently, the sources of myoelectric signals,
is greatly diminished. For instance, for individuals with above-elbow ampu-
tation, only the residual segments of the biceps and triceps muscles remain
accessible for signal generation.

Electrodes

Surface electrodes represent the conventional method for capturing myoelec-
tric signals. Positioned directly on the skin, these electrodes are inherently
separated from the neuromuscular activity they monitor by layers of biologi-
cal tissue. This configuration results in the electrodes functioning as volume
conductors, thereby providing an aggregate measure of muscle activity within

9



Chapter 2 Current clinical solutions for myoelectric control

a) b)

Figure 2.2: Current clinical solutions for myoelectric control. Shown are

two examples of currently clinically available prosthesis solutions. a) The prosthesis

is attached via a socket and additionally held in place by a shoulder strap. The

signal sources consist of the native biceps and triceps muscle. On top of these

two muscles, one surface electrode each is placed. A Direct Control strategy maps

biceps and triceps activation in a one-to-one manner to the opening and closing of a

simple monoarticulated gripper. b) The prosthesis is attached via an osseointegrated

implant. The signal sources, the electrodes, and the control strategy remain the same

- native biceps and triceps, surface electrodes, and Direct Control. In this example,

the Direct Control strategy supports switching triggers, allowing the user to switch

between di!erent grasps on the depicted polyarticulated hand.

their vicinity. The quality and specificity of the signals obtained through this
technique are influenced by several variables, including the targeted muscles’
depth, the tissue’s thickness, and the electrodes’ size, shape, and placement
[11], [12]. Furthermore, the potential for signal interference from adjacent
muscles complicates data interpretation [13]. Generally, surface electrodes of-
fer a straightforward and non-invasive means to record muscle activity. They
are, however, susceptible to movement or shifting during extended use, which
can cause progressively unstable and degraded signal quality, as well as re-
duced selectivity in isolating specific muscle activations [14], [15].

10



2.1 Components of a myoelectric prosthesis

Control strategies

The prevalent method for controlling myoelectric prostheses in a clinical set-
ting is Direct Control. This approach entails a straightforward one-to-one
mapping between the electrical activity of a specific muscle and the actuation
of a bionic joint. When the mean absolute value of a designated muscle’s my-
oelectric signal exceeds a predetermined threshold, the corresponding bionic
joint is activated. Given this one-to-one mapping, the number of bionic joints
that can be independently controlled is inherently limited by the number of
remaining muscles post-amputation. As noted above, individuals with above-
elbow amputation typically only have two muscle signals available - those from
the biceps and triceps. These signals are commonly assigned to control the
opening and closing of a prosthetic hand. Although this mapping is not fully
intuitive or biomimetic, it is highly e!ective for restoring function in daily
activities. In cases of below-elbow amputation, residual forearm muscles that
originally controlled hand movements may still be present. Mapping these
muscles to prosthetic hand operations (e.g., opening and closing) can provide
a more intuitive control experience.

For enhanced control robustness, clinical practices often limit the system
to a single degree of freedom. However, individuals desiring to regain con-
trol over additional degrees of freedom may employ specific triggers, such
as co-contraction of muscles, to switch control among di!erent bionic joints.
For example, a person with an above-elbow amputation might co-contract
the biceps and triceps to toggle control from hand control to wrist or elbow
movements. Subsequent activation of the selected bionic joint, however, re-
mains individually tied to the activation of either the biceps or triceps. While
switching can significantly expand the range of activities a user can perform
and potentially reduce compensatory bodily movements, it may also extend
the duration required to execute specific tasks and increase cognitive load.

For individuals retaining more than two residual muscles post-amputation,
additional signals may be directly mapped to further degrees of freedom.
However, the presence of multiple residual muscles does not guarantee the
availability of multiple, linearly independent signals needed for a one-to-one
mapping through the Direct Control scheme.

An alternative to the traditional Direct Control approach, which has gained

11



Chapter 2 Current clinical solutions for myoelectric control

commercial viability in recent years, is pattern recognition. This method uti-
lizes machine learning algorithms to decode intended movements from muscle
signals or patterns in higher-dimensional spaces that were previously not sep-
arable in the orthogonal representation used for Direct Control. The output
of these pattern recognition algorithms can be mapped to individual bionic
joints or, more commonly, to predefined grasps such as pinch. The e"cacy
of pattern recognition relies on the distinctiveness of the muscle patterns,
whether intuitive or non-intuitive, to ensure reliable motion intent decoding
by the algorithm.

Prosthesis

For each level of amputation, corresponding to the specific joints lost, a range
of bionic replacement alternatives is available commercially. Moving from
proximal to distal components, the current clinical toolkit includes bionic el-
bows, wrists (capable of rotation and/or flexion), and various models of bionic
hands. While the distinctions among elbow and wrist units are relatively mi-
nor, the market for bionic hands is markedly diverse.

The most commonly available prosthetic hands are monoarticulated de-
vices, featuring a single degree of freedom that allows opening and closing
hand actions. This prevalence is partly attributed to the constraints of exist-
ing control strategies, which typically manage only a single degree of freedom.
Nevertheless, the robustness and durability of these devices under daily usage
conditions make them a favored choice among users of myoelectric prostheses.

In recent years, the advent of anthropomorphic and polyarticulated pros-
thetic hands has introduced a new dynamic to the market. Many models of
these advanced prosthetic hands o!er numerous predefined grip patterns, such
as spherical, lateral, pinch, and tripod grasps, that enhance the user’s ability
and versatility to interact with objects in everyday environments. Many sys-
tems also permit the customization of grip patterns, allowing users to tailor
interactions according to their personal needs and preferences.

12



2.2 Limitations of current clinical solutions

2.2 Limitations of current clinical solutions

The five components of myoelectric prostheses vary significantly in their stages
of development; each is at a di!erent technology-readiness level [16]. Conse-
quently, each component contributes di!erently to the overall functionality of
a myoelectric prosthesis. Hence, advancements in specific components could
substantially improve the user experience when using a myoelectric prosthesis
in daily life.

Currently, the capabilities of the prosthetic components, particularly bionic
hands, exceed the functionality users can exploit. Some designs even permit
individual finger control, a feature that remains inaccessible with standard
clinical solutions. Moreover, while the management of infections presents on-
going challenges, the adoption of osseointegration as an alternative to tradi-
tional socket attachments has already significantly improved patient outcomes
[17]–[19].

Patients frequently highlight three aspects with the highest potential to en-
hance their experience: the overall functionality of the prosthesis, including
its reliability [5], the intuitiveness of control [20], and the number of control-
lable bionic joints [2], [21]. The primary obstacles in these areas stem from
the quality and availability of signal sources and the ability to decode motion
intention from these signals.

The quality and number of usable signals depend heavily on the two compo-
nents electrodes and signal sources. Implanting electrodes instead of attaching
them on the surface of the skin has been shown to greatly increase the signal
quality [22], with certain types of electrodes proving to reliably work over
several years [22]–[24]. The problem of the limited number of usable signals
can be approached by surgically rerouting the remnant biological pathways,
i.e., nerves, to create new myoelectric signal sources. As this is one of the two
foci of this thesis, a comprehensive summary of surgical methods to create
additional signals for myoelectric control is presented in Chapter 3.

Decoding motion intentions from myoelectric signals is intrinsically linked
to the quality and number of the available myoelectric signals. No algorithm
can compensate for poor or inadequate input data. The availability of addi-
tional, surgically established myoelectric sources has broadened the potential

13



Chapter 2 Current clinical solutions for myoelectric control

for controlling more bionic joints than previously possible. More sophisticated
control strategies now allow for simultaneous rather than sequential joint con-
trol, aiming to provide a more intuitive user experience. A detailed discussion
of the second focus of this thesis, the control strategies designed to leverage
increased signal input and address existing clinical constraints, is presented in
Chapter 4.

14



CHAPTER 3

The surgical approach – creating more and better control

sources

As discussed in the preceding chapter, the extent to which bionic joints can
be controlled (both in terms of quantity and e"cacy) depends heavily on the
quality and number of usable signal sources. This poses a particular challenge
in cases of proximal amputations, which necessitate the replacement of multi-
ple biological joints with bionic counterparts. Concurrently, such amputations
typically leave fewer residual muscles available, thereby reducing the number
of myoelectric signals for prosthesis control.

To address this shortfall in control signals, surgical reconstruction of the
residual limb can be employed as a strategic intervention, see Figure 3.1. This
method involves the transfer of nerves that previously innervated the muscles
lost to amputation, thereby creating additional myoelectric sources.

3.1 Established surgical techniques

The most established method for augmenting myoelectric sources is known
as targeted muscle reinnervation (TMR) [25], see Figure 3.2a. During TMR

15



Chapter 3 The surgical approach – creating more and better control sources

a) b)

Figure 3.1: Surgically created myoelectric sites for improved control.
Shown are two examples of currently clinically available prosthesis solutions, with

the addition of surgically created myoelectric sites as signal sources. a) Shows an

additional signal source created via targeted muscle reinnervation (TMR). Rerouting

nerves in this manner allows for an intuitive opening and closing of the monoartic-

ulated gripper. b) Shows regenerative peripheral nerve interfaces (RPNIs) as signal

sources which can provide enough information to intuitively control multiple bionic

joints using e.g. pattern recognition.

surgery, a selected native muscle is initially denervated, followed by the sur-
gical transfer of an alternative nerve to reinnervate that muscle. The choice
of native muscles for TMR is contingent upon the level of amputation; for
instance, various chest muscles are targeted in shoulder-level amputations,
whereas specific heads of the biceps or triceps are utilized for above-elbow
amputations. Given the finite number of native muscles available in the chest
and arm, the potential for creating new myoelectric sites using TMR is inher-
ently limited. Since TMR replaces the original muscle functionality, creating
new myoelectric sites is further limited. For example, it is beneficial for a pa-
tient with an above-elbow amputation to retain native control of at least one
head of both the biceps and triceps to facilitate intuitive control of a bionic
elbow. Typically, individuals who have undergone TMR surgery can manage
a prosthesis with 2 to 3 degrees of freedom.

A recent alternative to TMR that does not rely on the availability of native
muscles is the development of regenerative peripheral nerve interfaces (RPNIs)

16



3.2 Alternative surgical techniques

Figure 3.2: Established surgical techniques. Shown are examples of surgically

created additional myoelectric sources via targeted muscle reinnervation (TMR) and

regenerative peripheral nerve interfaces (RPNIs). a) Shows a TMR where the ulnar

nerve was transferred to the native short head of the biceps. b) Shows a RPNI that

was created by enveloping the ulnar nerve into a free muscle graft.

[26], [27], see Figure 3.2b. In this approach, a nerve is dissected into several
fascicles, each of which is then enveloped in a free muscle graft. This technique
enables the creation of multiple myoelectric sites per nerve.

3.2 Alternative surgical techniques

Both TMR and RPNI have been successfully employed in clinical settings to
provide patients with additional, intuitive control signals for prosthetic limbs
[22]–[24], [28]–[30]. Motivated by the successes of these surgical interventions,
researchers have proposed additional methodologies to address the inherent
limitations associated with TMR and RPNIs.

One significant challenge with RPNIs relates to the accessibility of the gener-
ated electrical signals. Unlike TMR, which utilizes larger, superficial muscles,
the small size and the deeper positioning relative to the skin of the muscle
grafts in traditional RPNIs result in electrical signals too weak to be detected
by surface electrodes, thereby necessitating the use of implanted electrodes.
One proposed solution to this issue is the development of superficial RPNIs,
which would be positioned closer to the skin’s surface, making the signals
accessible to surface electrodes [31].

Alternatively, increasing the size of the RPNI grafts could potentially am-
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Chapter 3 The surgical approach – creating more and better control sources

plify the signal strength. However, because RPNIs lack vascularization, in-
creasing the graft size could restrict passive oxygen di!usion, leading to tissue
necrosis. To circumvent this, researchers have suggested the use of vascu-
larized denervated muscle targets (VDMTs) [32], [33]. Vascularization would
support larger graft sizes without compromising tissue viability. Additionally,
the use of VDMTs might address the often problematic issue of donor-recipient
nerve size mismatch, further enhancing the feasibility and functionality of
prosthetic control systems.

18



CHAPTER 4

The engineering approach – fully utilize the new control

sources

The core element of a control strategy for operating a myoelectric prosthesis
is the algorithm that decodes the user’s motion intent, see Figure 4.1. This
central algorithm is supported by several additional components that are es-
sential to its operation and that significantly a!ect the overall performance
of the control system. Together, all these components and the motion intent
decoding algorithm constitute the myoelectric control chain.

4.1 The myoelectric control chain

Acquire signals

Users of myoelectric prostheses generate signals by voluntarily contracting
specific muscles. To program the prosthesis to execute the intended move-
ments based on these contractions, myoelectric signals must first be recorded
and correctly linked to those motions (see Step 1 in Figure 4.2). Conven-
tionally, this involves recording myoelectric signals while the user performs
muscle contractions associated with predefined movements, e.g., by moving
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Figure 4.1: Motion intent decoding. Shown is an illustration of the embedded

system within a prosthetic arm, responsible for decoding motion intent.

their phantom limb. The complexity of recording increases with the num-
ber of bionic joints to be controlled, especially if simultaneous control over
multiple joints is required, leading to a combinatorial increase in the data
collection phase [34]. During daily prosthesis use, the myoelectric signals are
recorded without labels. In both cases, during daily prosthesis use and after
a recording session to program the prosthesis, the acquired data are passed to
the preprocessing stage.

Preprocessing

Prior to analysis by the motion intent decoding algorithm, the captured my-
oelectric data typically undergo preprocessing to enhance signal quality and
relevance (see Step 2 in Figure 4.2). This generally includes filtering out irrel-
evant information or electrical noise - such as using low-pass filters at around
500 Hz, high-pass filters at 20 Hz, and notch filters at either 50 or 60 Hz,
depending on regional power line frequencies [35], [36]. Additionally, the raw
EMG signals may be transformed into a more manageable information space
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by extracting specific features that are relevant to the decoding process [37].

Motion intent decoding

The motion intent decoding algorithm then processes these preprocessed sig-
nals to predict the user’s intended movement (see Step 3 in Figure 4.2). A
variety of algorithms may be employed at this stage, each o!ering di!erent
advantages and limitations; a summary of these common algorithms will be
discussed in the subsequent section.

Postprocessing

To enhance control performance, the outputs from the motion intent decoding
algorithms can be further refined through post-processing techniques (see Step
4 in Figure 4.2). Incorporating temporal data, such as averaging past predic-
tions, or applying prior knowledge through techniques like Bayesian inference,
has been shown to improve the final movement intent decoding performance
[38], [39].

Proportionality

Prosthetic limbs can ideally mimic the variable velocities and forces charac-
teristic of biological limbs, allowing users to modulate joint actuation velocity
for more nuanced interaction with their environment. This capability, known
as proportional control (see Step 5 in Figure 4.2) [40], is typically achieved
by linearly mapping the amplitude of the myoelectric signal to the velocity of
joint actuation, based on the predicted movement [41]. This process may also
be combined with the motion intent prediction, where so-called regression al-
gorithms directly provide specific velocities or positions for bionic joints [42].
Such integration requires a recording routine that not only links myoelectric
signals to intended movements but also to the desired velocities or positions.

Actuation

The final step in the control chain involves commanding the prosthetic hard-
ware to perform the desired movement at the specified velocity (see Step 6 in
Figure 4.2).
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Acquire signals

1
Record signals

Preprocessing
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D

ecoding
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Postprocessing
4Proportionality

5

Actuation

6

Figure 4.2: The myoelectric control chain. 1) The myoelectric signals are ac-

quired (and labeled during a recording session). 2) The myoelectric data is filtered

and preprocessed. 3) An algorithm decodes the motion intent and predicts the move-

ment to be executed by the prosthesis. 4) The predicted movement is postprocessed

to e.g. suppress erratic movement changes. 5) Based on the predicted movement,

the actuation speed, i.e. proportionality, of the bionic joint is calculated. 6) The

prosthesis is actuated according to the predicted movement and its proportionality.

4.2 Motion intent decoding approaches

Direct Control

Direct Control, as previously introduced in the chapter on current clinical so-
lutions for myoelectric control, faces a principal limitation: it can only handle
linearly separable signals. Because the number of linearly separable signals is
limited by the few muscles’ remnant after amputation, the number of control-
lable bionic joints is likewise limited.

Surgical techniques that create additional myoelectric sources partially over-
come the limitation on controllable joints by providing extra signals that, as
long as they are linearly separable, can be mapped directly to bionic joints.
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4.2 Motion intent decoding approaches

Direct Control is arguably one of the more straightforward control ap-
proaches since it doesn’t require extensive data recording. It only requires
the adjustment of an activation threshold for each movement, unlike other
algorithms which often necessitate large amounts of recorded data to tune
thousands of parameters. Additionally, if a maximum voluntary contraction
threshold is established, Direct Control inherently o!ers proportional control.
It also supports simultaneous control of di!erent bionic joints since multiple
signals can surpass the activation threshold concurrently.

However, creating myoelectric sources via surgical nerve transfer does not
guarantee linearly separable signals. In practice, the maximum number of
linearly independent signals achievable is typically limited to four to six,
permitting control over only two to three degrees of freedom [25], [43]. To
manage more than three degrees of freedom, algorithms capable of handling
non-linearly separable data are necessary.

Machine learning approaches

Myoelectric pattern recognition algorithms, incorporating standard machine
learning techniques such as Linear Discriminant Analysis (LDA) and Support
Vector Machines (SVM), have long been used in research [25], [44]–[47] and
have already been implemented in commercial and clinical settings (e.g., Com-
plete Control, COAPT engineering or MyoPlus, Ottobock). These algorithms
are capable of handling non-linearly separable data. They can either directly
predict movements or can be used to eliminate the need for complex mode
switching where not enough signal sources for controlling each joint individu-
ally are available [48].

As the field progresses towards decoding more complex movements, e.g.,
decoding individual finger movements rather than grasps, traditional ma-
chine learning algorithms are increasingly replaced by deep neural networks
[49]–[51]. Compared to standard machine learning approaches, deep neural
networks often provide non-linear decision boundaries that more accurately
reflect the distribution of signal information. They can inherently support
the prediction of multiple classes, allowing for simultaneous control of pros-
thetic joints [44], [52]. The benefits of applying deep learning in motion in-
tent decoding are enhanced by the substantial and rapidly evolving resources
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available from other fields such as image and language processing. For in-
stance, Convolutional Neural Networks (CNNs), originally designed for image
processing [53], are adept at learning hierarchical representations of complex
data, thereby eliminating the need for manual feature engineering. Integrat-
ing CNNs with architectures like Temporal Convolutional Networks (TCN),
Recurrent Neural Networks (RNN), or Long Short-Term Memory Networks
(LSTM) introduces not only essential temporal dynamics that would other-
wise require post-processing to incorporate (see Step 4 in Figure 4.2), but can
also improve motor intent decoding performance [54]–[57].

Moreover, not only the network architectures but also techniques for en-
hancing performance, such as fine-tuning pre-trained networks, can be trans-
lated to the field of prosthetics. Techniques such as reinforcement learning
can be utilized to tailor motion intent decoding algorithms to user preferences
[58], [59].

One of the greatest drawbacks of deep neural networks is their demand
for significantly more labeled training data compared to standard machine
learning techniques. An option to reduce the time burden for both prosthesis
users and prosthetists during fitting a prosthesis with a deep neural network
is to artificially create labeled data. This can, for example, be achieved by
exploiting inherent anatomical relationships [34], [60]. Alternatively, large
datasets of unlabeled data (such as myoelectric signals recorded during daily
home use of a prosthesis) can be leveraged to enhance the robustness and
accuracy of decoding algorithms using e.g. Unsupervised Domain Adaptation
[61].
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CHAPTER 5

Summary of the thesis contributions

Prior to this thesis, the most advanced prosthetic system for daily use was a
self-contained neuromusculoskeletal arm prosthesis where patients with above-
elbow amputation received an osseointegrated implant, underwent TMR surgery
and had electrodes implanted [22], see Figure 5.1)a. Using a Direct Control
scheme, this system allowed for intuitive control over 1.5 degrees of freedom,
specifically for hand opening/closing and elbow locking/unlocking.

By the conclusion of this thesis, significant advancements had been made: a
patient received a combined TMR and RPNI surgery, along with an osseointe-
grated implant and implanted electrodes, see Figure 5.1)b. The introduction
of an enhanced motion intent decoding algorithm, which leveraged the addi-
tional myoelectric sources created surgically, markedly improved the system’s
capabilities. This advanced system now supports intuitive, simultaneous, and
proportional control over 4.5 degrees of freedom - encompassing the thumb,
index finger, a combined actuation for the middle, ring, and little fingers,
wrist movements, and elbow lock/unlock. Moreover, this system allowed con-
trol over all five fingers of the hand, representing a significant leap in the
functionality and intuitiveness of prosthetic systems.
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a) b)

Figure 5.1: Summary of thesis contributions. Shown are two versions of the

self-contained neuromusculoskeletal arm prosthesis - one prior and one after this

doctoral thesis. a) The self-contained neuromusculoskeletal arm prosthesis prior

to this thesis consisted of implanted electrodes on native and reinnervated native

muscles sites (TMR). A direct control scheme allowed for control over 1.5 degrees

of freedom. b) The improved self-contained neuromusculoskeletal arm prosthesis,

featuring electro-neuromuscular constructs consisting of both reinnervated native

muscles (TMR) and innervated free muscles grafts (RPNIs). Together with a deep

learning based motion intent decoding algorithm, this system allows for intuitive and

simultaneous control of multiple degrees of freedom, as well as sequential control over

all five fingers of the hand.

This chapter provides a brief summary of the papers that constitute the
basis for this thesis and led to the above-mentioned improvements. The full
versions of the papers are included in Part II.

5.1 Paper A

Jan Zbinden, Paolo Sassu, Enzo Mastinu, Eric J. Earley, Maria Munoz-
Novoa, Rickard Brånemark, Max Ortiz-Catalan
Improved control of a prosthetic limb by surgically creating electro-
neuromuscular constructs with implanted electrodes
Published in Science Translational Medicine, vol. 15, no. 704, 2023.
©AAAS DOI: 10.1126/scitranslmed.abq3665 .

A prosthetic limb can restore some functionality after an amputation, and
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5.2 Paper B

muscles remnant in the residual limb are often used to generate signals to
control it. However, in high amputation levels, such as above-elbow, there are
not enough muscles left to control all the many missing joints. In this study,
we demonstrated that splitting the nerves severed by the amputation and
rerouting them into remnant and free muscles grafts can increase the number
of potential control signals. This surgical approach, in combination with our
neuromusculoskeletal interface, allowed an individual with above-elbow am-
putation to control all five fingers of a prosthetic hand intuitively.

Student contributions: Conducted the experiments, developed software, ana-
lyzed the data, and drafted the manuscript.

5.2 Paper B

Jan Zbinden, Eric J. Earley, Max Ortiz-Catalan
Intuitive control of additional prosthetic joints via electro-neuromuscular
constructs improves functional and disability outcomes during home use
– a case study
Published in Journal of Neural Engineering, vol. 21, no. 3, 2024
©IOP DOI: 10.1088/1741-2552/ad349c .

Recent advances in surgical reconstruction allow the recreation of myoelec-
tric control sites that were previously lost due to amputation. Ideally, each
myoelectric control site would contain information about only one single in-
tended movement and could thus be mapped one-to-one with the correspond-
ing movement of a prosthesis. In this study, we demonstrated that surgically
created myoelectric control sites allow intuitive simultaneous and proportional
control of up to three degrees of freedom using a one-to-one mapping. Ex-
tended home use and the additional degrees of freedom further resulted in
improved prosthesis functionality and disability outcomes.

Student contributions: Designed the study, developed the firmware and soft-
ware, conducted the experiments, performed the data analysis, and drafted
the manuscript.
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5.3 Paper C

Jan Zbinden, Julia Molin, Max Ortiz-Catalan
Deep learning for enhanced prosthetic control: Real-time motor intent
decoding for simultaneous control of artificial limbs
Published in IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 32, pp. 1177–1186, 2024.
©IEEE DOI: 10.1109/TNSRE.2024.3371896 .

To intuitively control a prosthesis, a person’s movement intention needs to
be decoded and understood first before it can be turned into a command to
actuate a bionic limb. In this study, we explored di!erent machine learning
algorithms to decode human movement intent from electromyography signals
in real-time. We found that deeper neural networks were notably more e!ec-
tive than shallow networks in understanding and translating movement intent
into precise prosthetic control. However, we observed a diminishing return
e!ect for increasing numbers of parameters, indicating that simpler deep net-
works perform nearly as well as complex CNN and TCN architectures, while
being small enough to fit on an embedded system that can be housed inside
a prosthesis.

Student contributions: Designed the study, developed software and network
architectures, conducted the experiments, performed the data analysis, and
drafted the manuscript.

5.4 Paper D

Jan Zbinden, Steven Edwards
From sequential to simultaneous prosthetic control: Decoding simulta-
neous finger movements from individual ground truth EMG patterns
Published in International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), 2024.
©IEEE DOI: 10.1109/EMBC53108.2024.10782980 .

Training deep learning algorithms to decode motor intent typically requires
large sets of labeled data. This data requirement grows combinatorially with
each additional degree of freedom, complicating the training process for multi-
degree of freedom control. In this study, we evaluated a method to create
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5.4 Paper D

labeled simultaneous data by linearly combining individual movement data.
We found that a classifier trained on such artificial data performed equiva-
lently in decoding 3 degree of freedom real-time finger movement to a classifier
trained on ground truth data. However, its e!ectiveness diminishes with more
complex tasks, i.e., 5 degree of freedom finger control. In both cases, linearly
combining individual movements decreased the time to acquire labeled data
to train the classifier by up to 85%.

Student contributions: Designed the study, developed software, performed
the data analysis, and drafted the manuscript.
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CHAPTER 6

Concluding Remarks and Future Work

This doctoral thesis aimed to address the current clinical limitations in the
management of individuals with limb loss who utilize myoelectric upper limb
prostheses to regain some of their lost functionalities. Specifically, this work
sought to develop prostheses that are more intuitive to control and capable
of replicating as many functions of the lost limb as possible. To achieve these
goals, two synergistic strategies were explored:

• The creation of additional myoelectric sources through surgical nerve
transfers to provide intuitive signals for controlling prosthetic limbs.

• The development and validation of advanced motion intent decoding al-
gorithms that interpret these myoelectric signals, enabling simultaneous
and proportional control over multiple bionic joints.

Combining these surgical and engineering approaches yielded significant
advancements, which allowed us to demonstrate that:

• transferring severed nerves to native muscles and free muscle grafts re-
sulted in long-term stable electro-neuromuscular constructs.
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• the newly created myoelectric sources provided su"cient, linearly inde-
pendent signals for the direct and intuitive control of three bionic joints
simultaneously and proportionally.

• deep neural networks can be e!ectively utilized to decode simultaneous
motion intent, allowing e.g., for intuitive control over all five fingers of
a bionic hand.

• the linear combination of datasets from individual movements signifi-
cantly reduced the time required to acquire labeled data for training
deep neural networks capable of decoding simultaneous motion intent.

• collectively, these advancements improved functional and disability out-
comes in daily life for users of our neuromusculoskeletal prosthesis.

While substantial progress has been made in developing more functional
myoelectric prostheses, there remains a considerable gap in achieving the full
natural control provided by a biological limb. Ongoing research in both sur-
gical techniques and engineering could potentially yield further significant
enhancements. Future surgical innovations could provide even more indepen-
dent signals, and systems capable of recording and decoding motor unit action
potentials, which represent the actual activity of motor neurons, might allow
for more reliable and functional control over an increased number of bionic
joints [62].

The ultimate goal is to engineer a bionic limb that fully replicates all the
functions of a biological limb [63], [64]. This thesis focused on restoring the ef-
ferent pathway, which involves decoding the intent to voluntarily move an arm
and hand. However, a biological limb also features an a!erent pathway, which
provides comprehensive sensory and proprioceptive feedback that is crucial for
interacting with and understanding our environment. Addressing how to ef-
fectively relay sensory information from the environment to the brain remains
an open area of research and is essential for creating a truly functional bionic
limb. Successfully restoring both e!erent and a!erent pathways is critical for
developing a technological solution that can completely replace a lost limb.
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