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GRAPHICAL ABSTRACT

PUBLIC SUMMARY
■   Diurnal temperature range (DTR) rose across the extratropical Northern Hemisphere during 2002-2021.

■   In humid zones, DTR increases have promoted vegetation productivity.

■   Vegetation productivity responds negatively to DTR change in arid zones.

■   Broadleaf and needleleaf forest ecosystems show contrasting productivity responses to DTR changes.
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Biological and ecological processes regulating the ecosystem carbon cycle
exhibit varying sensitivities to temperature fluctuations during the day and
night.  Consequently,  the  diurnal  temperature  range  (DTR)—the  difference
between  daily  maximum  and  minimum  temperatures—plays  an  important
role  in  modulating  carbon  assimilation  and  consumption  in  plants.  Over
recent  decades,  daytime  warming  has  outpaced  nighttime  warming  over
land,  leading to  a  widening of  the  DTR,  which is  expected to  impact  plant
productivity. However, how the recent DTR changes have influenced vege-
tation  productivity  across  various  climate  zones  remains  unclear.  Using
remote sensing data and flux tower measurements from 2002 to 2021, we
found divergent impacts of increased DTR on vegetation productivity in the
extratropical Northern Hemisphere. In humid zones, summer DTR increases
have  promoted  net  primary  production  (NPP),  while  the  opposite  effect  is
found  in  arid  zones.  This  contrast  can  largely  be  explained  by  the  larger
impact of accelerated daytime warming on increased vapor pressure deficit
in arid zones, which consequently inhibits NPP. Our findings underscore the
non-negligible  impacts  of  recent  DTR changes  on  vegetation  productivity,
emphasizing the need to consider sub-diurnal variations in assessments of
climate change impacts.
 

INTRODUCTION
Over  the  last  three  decades,  global  surface  temperatures  have  risen  by

approximately 0.2°C per decade.1,2 Nevertheless, the rate of surface warming
exhibits variability across different seasons3,4 and day-night cycles.5,6 Particu-
larly  noteworthy  is  the  asymmetric  warming  of  sub-diurnal  temperatures,
given  its  influence  on  the  diurnal  temperature  range  (DTR)—the  difference
between near-surface daily maximum temperature (Tmax) and daily minimum
temperature  (Tmin).  Recent  findings  indicate  that  in  the  past  few  decades,
declining cloud cover and intensified downwelling solar radiation have driven
a  faster  warming  rate  in  Tmax compared  to  Tmin across the  Northern  Hemi-
sphere  (NH)  and  globally,  resulting  in  increased  DTR.7,8 This  signifies  the
cessation  of  the ”nighttime  warming” phenomenon  characterized  by  faster
increases in Tmin than Tmax during the latter half of the 20th century,5,9 and the
reversal of asymmetric warming over a considerable area of the Earth's land
surface. Considering the asymmetric effects of daytime and nighttime warm-
ing  on  vegetation  productivity  and  growth,10,11 this  reversed  asymmetric
warming has the potential to significantly impact ecosystem carbon absorp-
tion and emission processes.

The  intricate  relationship  between  Tmax and  Tmin is  crucial  for  carbon
assimilation  and  consumption  in  plants.  This  is  because  the  biological  and
ecological processes  that  regulate  the  ecosystem  carbon  cycle  are  influ-
enced by temperature to varying extents during the day and night. Photosyn-
thesis is primarily driven by daytime temperatures, while respiration responds
to  both  daytime  and  nighttime  temperatures.10,12 The  current  sub-diurnal
asymmetric  warming adds complexity  to  our  understanding of  how climate
warming affects  vegetation  productivity.11 On one hand,  environmental  vari-
ables  highly  correlated  with  DTR,  such  as  solar  radiation  and  soil  moisture
(SM),7,9 also exert influences on vegetation physiological processes, making it
difficult to identify the independent effects of DTR on vegetation productivity.
On the other  hand,  the presence of  carryover  effects between seasons may
impede  the  assessment  of  how  ecosystems  productivity  has  responded  to

seasonal variations in DTR.13,14 Consequently, determining the impacts of non-
uniform climate warming on terrestrial ecosystems poses a key challenge in
carbon cycle research.11

The response of terrestrial vegetation productivity to the recent reversal of
asymmetric warming of sub-diurnal  temperatures remains to be elucidated.
In previous  scientific  inquiries  aimed  at  understanding  the  effects  of  asym-
metrical  warming  on  vegetation  growth  or  productivity,  the  conventional
methodology  often  involved  separate  examinations  of  the  repercussions  of
Tmax and  Tmin on  vegetation.  This  analytical  framework  has  advanced  our
understanding of how variations in Tmax and Tmin have influenced vegetation
growth.10-12 However,  considering that Tmax and Tmin variations encompass a
substantial  component  of  the  variations  in  daily  mean  temperature,  this
multicollinearity  issue  could  lead  to  misinterpretations  when  identifying  the
impacts of asymmetric warming on vegetation.15 In contrast, directing atten-
tion towards DTR can effectively mitigate this interference and redirect focus
towards discerning the effects of differential daytime and nighttime warming
rates.

In this study, we investigate how the recent changes in DTR resulting from
the  reversal  of  asymmetric  warming  over  the  past  two  decades  have
impacted  the  vegetation  productivity  in  the  extratropical  NH  northward  of
23.5° N. Seasonal-scale environmental variables, including DTR, will function
as independent  variables  in  a  regression analysis  to  assess their  impact  on
annual  net  primary  production  (NPP).  Acknowledging  the  role  of  moisture
conditions in determining the impact of DTR changes on vegetation produc-
tivity,16 we  conducted  separate  analyses  for  dry  and  wet  climate  zones
(Figure S1A). 

MATERIALS AND METHODS 

Gridded data
The annual NPP data used in this study were obtained from the Moderate

Resolution  Imaging  Spectroradiometer  (MODIS),  with  a  spatial  resolution  of
500  m,  for  the  period  2002–2021.  The  MODIS  NPP  data  have  undergone
rigorous quality control during their generation, including the removal of poor-
quality  inputs  from  8-day Leaf  Area  Index  (LAI)  and  Fraction  of  Photosyn-
thetically  Active  Radiation  (FPAR),  based  on  pixel-level  Quality  Control  (QC)
flags.17 To  further  reduce  uncertainty,  we  calculated  the  averages  of  NPP
estimated  from  two  datasets,  MOD17A3HGF  and  MYD17A3HGF,  based  on
different  satellites.  Eight-day  solar-induced  fluorescence  (SIF)  data  at  0.05°
spatial resolution were obtained from the GOSIF product, derived from Orbit-
ing  Carbon Observatory-2  (OCO-2) measurements  and provided  by  a  previ-
ous  study.18 The  kNDVI  was  calculated  using  NDVI  from  the  MODIS
MOD13Q1 dataset following a previous study:19

kNDVI= tanh
(
NDVI2

)
The FLUXCOM NEE dataset20 in the RS+METEO setup is a monthly upscal-

ing  of  carbon  fluxes  based  on  machine  learning  methods  driven  by  eddy
covariance,  remote  sensing,  and  climate  data.  In  this  study,  we  used  the
FLUXCOM net ecosystem carbon exchange (NEE, with a negative value indi-
cating  net  carbon  uptake  by  the  land)  data  based  on  the  fifth  generation
European  Centre  for  Medium-Range  Weather  Forecasts  climate  reanalysis
(ERA5) spanning 1980–2018 with a horizontal resolution of 0.5° × 0.5°.

The  daily  average,  minimum,  and  maximum  temperature  data  were
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acquired  from  the  Berkeley  Earth  Surface  Temperatures  (BEST)  dataset,21

provided at  a  spatiotemporal  resolution  of  1°×1°  on  a  monthly  basis  span-
ning from 1850 to the present. This dataset employs sophisticated statistical
techniques to  quantify  and  correct  measurement  biases,  ensuring  an  accu-
rate  depiction  of  global  temperature  trends.  The  DTR  computed  using  the
BEST dataset demonstrates a robust correlation with the DTR based on the
Global  Surface  Summary  of  the  Day  dataset.7 The monthly  incident  short-
wave radiation (RS) data in all-sky conditions were obtained from the Modern-
Era  Retrospective  analysis  for  Research  and  Applications,  version  2
(MERRA-2) with a spatial resolution of 0.625° × 0.5° after 1980.22 The monthly
root-zone  SM at  a  spatial  resolution  of  0.25°  was  obtained  from the  Global
Land Evaporation Amsterdam Model (GLEAM) version 3.8 dataset.23

The aridity index (AI), defined as the ratio of annual precipitation to annual
potential evapotranspiration, was used to identify global climate zones. Under
this  quantitative  indicator,  the  extratropical  NH  was  classified  into  arid
(AI<0.2),  semi-arid  (0.2≤AI<0.5),  semi-humid  (0.5≤AI<0.65),  and  humid  (AI≥
0.65) zones. The aridity index was obtained from the Global Aridity Index and
Potential  Evapotranspiration  (ET0)  Climate  Database  v3.24 All  gridded
datasets were aggregated to a spatial resolution of 0.5° × 0.5°. 

Flux tower measurements
The flux tower observations of  temperature,  shortwave radiation and NEE

were obtained from FLUXNET201525 and the Integrated Carbon Observation
System  (ICOS)  network.26 These  datasets  underwent  meticulous  quality
control,  filtering,  gap-filling,  and  partitioning  procedures.  Only  time  series
encompassing  complete  observations  over  at  least  a  two-year  period  were
selected  for  analysis,  and  included  air  temperature,  shortwave  radiation,
atmospheric  vapor  pressure  deficit  (VPD)  and  NEE.  The  DTR  at  each  flux
tower site  was determined using half-hourly  temperature observations,  with
the  day's  DTR  being  defined  as  the  difference  between  the  daily  maximum
and minimum temperatures. Monthly values were subsequently computed by
averaging  the  daily  values.  The  variable “NIGHT” was  used  to  delineate
daytime  and  nighttime.  Considering  the  substantial  gaps  in  SM  data  from
measurements around flux towers,  we used the GLEAM version 3.8 dataset
as an alternative for SM at the tower sites.

The  spatial  distribution  of  the  flux  tower  sites  in  humid  zones  is  sparse,
with  limited  numbers  for  evergreen  broadleaf  forest  (1  site),  open  shrub
(4 sites),  and closed shrub (2 sites). Due to the limited number of flux tower
sites in arid zones, with only 3 grassland sites, we extended our study to the
entire arid and semi-arid zones, focusing on the grassland vegetation type in
these water-limited areas. 

HadISD observational data
HadISD27 is an in-situ sub-daily dataset based on the NOAA ISD dataset.28

Several  quality  control  procedures  have  been  implemented  in  the  dataset,
including  checks  for  duplicates,  distribution  gaps,  and  climatological
outliers.27,29 For station selection, we applied strict criteria to temperature and
relative humidity data: a day is considered valid if there are at least 5 obser-
vations of both temperature and relative humidity, otherwise, it is marked as
missing; a month is discarded if there are more than 11 missing days overall
or  if  5  or  more  consecutive  days  are  missing;8 for  the  period  from  2002  to
2021, only stations with no missing months during the summer (June-July-
August)  were  included.  After  selection,  910  stations  in  the  extratropical  NH
were retained for analysis. 

Seasonal analysis
To analyze DTR variations by season, we used meteorological seasons in

the  NH:  spring  (March,  April,  May),  summer  (June,  July,  August),  autumn
(September,  October,  November),  and winter (December,  January, February).
Correspondingly,  the annual average value of a monthly variable in one year
is defined as the average of 12 months from December in the preceding year
to November of that year. 

Ridge regression and attribution
Ridge regression  was  crucial  in  minimizing  the  impact  of  high  multi-

collinearity  among  the  independent  variables  on  the  regression  results,
particularly  reducing  interference from strong correlations  between different

variables such as DTR, solar radiation, and SM,7 as well as mitigating the high
seasonality-related  correlations  of  the  variables.  In  the  ridge  regressions,  a
total of 16 independent variables were considered, including mean tempera-
ture,  solar  radiation,  SM,  and  DTR  for  each  of  the  four  seasons.  Prior  to
performing the ridge regression analysis, all time series were standardized to
z-scores by subtracting their climatology means and dividing by their clima-
tological standard deviations from 2002 to 2021.

The ridge regression objective function can be expressed as follows:

β∧
=

n

∑
i=1

(
yi−β0−∑βixi

)2
+λ∑β2

i

where β ^ represents  the  estimated  regression  coefficients, yi is the  depen-
dent  variable, β0 is  the  intercept  term,  and βi signifies the  regression coeffi-
cient for the independent variable xi.  The last term serves as a penalty term
added to the least squares objective function during model fitting. It encour-
ages the regression coefficients to shrink towards zero while still  preserving
their  relationship  with  the  predictors.  Throughout  the  regression  analysis
process, the initial value of λ was set to 0 and incremented by a step size of
0.01.  As  λ  increased,  the  degree  of  multi-collinearity decreased.  The  incre-
ment of λ stopped when the Variance Inflation Factor value dropped below 3,
with this λ value being determined as the tuning parameter at this grid point.7

Based on the ridge regression coefficients,  the relative contribution rate ηi

of each predictor Fi was estimated as follows:

”ηi =
|βi|

∑n
i |βi|

×R2

where R2 is the R-squared value of the ridge regression model. 

Principal components regression
We employed principal components regression analysis to verify the influ-

ence of environmental variables on NPP.30 This method transforms the origi-
nal  dataset into a new set of orthogonal (i.e.,  uncorrelated) variables,  known
as principal components (PCs). Following this transformation, a least squares
regression was conducted on the reduced set of PCs. Principal components
regression  effectively  mitigates  collinearity  among  climatic  variables  since
the PCs are  uncorrelated with  one another.31 PCs that  account  for  low vari-
ance  in  the  original  predictors  indicate  potential  collinearity  and  should  be
excluded  from  the  regression  analysis.  Specifically,  we  excluded  PCs  that
explain less than 5% of the total variance in NPP.31,32 The significance of the
principal components regression analysis was evaluated using an F-test with
a significance level of 0.05. 

Random forest regression
We  also  employed  the  random  forest  algorithm  to  assess  the  impact  of

DTR changes on NPP. The input for the random forest was standardized in a
manner  consistent  with  the  ridge  regression  analysis.  During  the  modeling
process  at  individual  grid  cells,  the  random  forest  model  was  trained  using
100 decision trees based on the same data as for the ridge regression analy-
sis. Each decision tree independently predicted annual NPP values based on
the given predictor  variables.  Furthermore,  we applied  out-of-bag prediction
error  estimation,  an  intrinsic  capability  of  the  random  forest  algorithm,  and
evaluated  the  importance  of  the  predictors  using  the  out-of-bag  predictor
importance feature. Similar to the ridge regression coefficients, these feature
importances  of  predictors  were  subsequently  employed  to  quantify  the
contributions  of  seasonal  temperature,  solar  radiation,  SM,  and  DTR  to
annual NPP. 

Structural equation modeling
Structural equation modeling is a multivariate statistical technique used for

path  analysis,  leveraging  prior  knowledge  to  establish  relationships  among
variables. The theoretical foundation for the hypothetical relationships in this
study is as follows: (1) Solar radiation reaches the Earth's surface, where part
of  it  is  absorbed  and  converted  into  heat,  raising  the  surface  temperature.
This  heating  effect  primarily  occurs  during  the  day,  while  its  impact  on  Tmin

mainly results from the lagged effect of  daytime warming.  As a result,  solar
radiation  has  a  greater  influence  on  Tmax than  on  Tmin.33,34 Solar  radiation
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intensity also influences the rate of photosynthesis, which in turn affects NPP
and NEE. (2) SM serves as the primary water source for plants, dictating how
much water plant roots can extract.35 Low SM availability is commonly used
to  identify  drought  stress  in  vegetation,  and  has  been  shown  to  accurately
capture  the  effects  of  drought  on  vegetation  productivity.36 (3)  Temperature
directly affects key physiological processes in plants, including photosynthe-
sis, respiration, transpiration, and cell formation.37-39 Photosynthesis is mainly
influenced by Tmax as it occurs primarily during daylight hours, whereas respi-
ration  occurs  continuously,  making  it  sensitive  to  both  Tmax and  Tmin.11 (4)
Interactions  between  key  environmental  variables  are  also  present.  For
instance,  both  solar  radiation  and  temperature  influence  SM  through  their
effects  on evapotranspiration.40 In turn,  SM impacts solar  radiation by influ-
encing cloud formation,41 while the evaporative cooling effect of SM can also
lower temperature.42

All  variables  were  transformed into  z-scores  prior  to  conducting  the  path
analysis. We  employed  maximum  likelihood  estimation  for  parameter  esti-
mation  in  the  structural  equation  modeling.  Model  fit  was  assessed  using
multiple criteria, including the comparative fit index (CFI), adjusted goodness
of fit index (AGFI), and root mean square error of approximation (RMSEA). 

Vapor pressure deficit variation and its relationship with diurnal temper-
ature range

Based on the HadISD observational data, VPD (hPa) was calculated using
the following formula:43

VPD= es× (1−RH/100)

es = 6.112× fw×e
17.67Ta
Ta+243.5

fw = 1+7×10−4
+3.46×10−6Pmst

Pmst = Pmsl

(
Ta+273.16

Ta+273.16+0.0065×Z

)5.625

Here, es is the saturation vapor pressure calculated based on the tempera-
ture  (Ta)  in  degrees  Celsius  and  the  altitude  (Z)  in  meters  using  the

Clausius–Clapeyron  relationship. RH is  the
relative humidity in percent, Pmst is the air pres-
sure in hPa, and Pmsl is the air pressure at mean
sea level (1013.25 hPa).

/DTR

Using daily  averaged  temperature  and  rela-
tive  humidity,  we  calculated  the  daily  VPD
(VPDdaily)  following  the  equation  above.  In
contrast,  VPDsubdaily→daily was obtained  by  aver-
aging  multiple  sub-daily  VPD  values  derived
from  sub-daily  temperature  and  relative
humidity  values.  The  difference  between
VPDsubdaily→daily and VPDdaily is denoted as ΔVPD.
The  linear  response  of  ΔVPD  to  DTR
(ΔVPD ) was  quantified  using  the  follow-

ing equation:

ΔVPD
DTR

= R.c.×R2

where R.c. is the regression coefficient and R2 is the R-squared value of the
regression model, with DTR (°C) as the independent variable and ΔVPD (hPa)
as the dependent variable. 

RESULTS 

Recent  diurnal  temperature  range  change  in  the  extratropical  Northern
Hemisphere

First, we examined the spatiotemporal trends in DTR changes from 2002 to
2021.  Across  the  extratropical  NH,  the  annual  mean  DTR  over  land  areas
exhibited  a  significant  (p<0.01)  increase  at  a  rate  of  0.12°C  decade−1

(Figure 1). When scrutinized seasonally, the most pronounced rise was iden-
tified  during  boreal  summer,  reaching  0.17°C decade−1 (p<0.01),  followed by
spring  (0.14°C  decade−1, p<0.05),  and  winter  (0.12°C  decade−1, p<0.1),  with
autumn  displaying  a  non-significant  (p>0.1)  increasing  trend  (Figure  S2).
Regionally,  owing  to  the  faster  warming  rate  of  Tmax compared  to  Tmin

(Figures S1E & I), the increase in summer DTR was particularly conspicuous
in semi-humid zones, followed by humid and semi-arid zones. In spring and
winter,  the  strongest  increase  in  DTR occurred  in  arid  and semi-arid  zones.
Considering that summer represents the peak season for plant photosynthe-
sis in northern ecosystems,44 the asymmetrical warming phenomenon char-
acterized  by  a  predominant  increase  in  summer  DTR  over  the  past  two
decades is likely to have impacted vegetation productivity in the extratropical
NH,  especially  in  temperature-constrained  regions  such  as  the  humid  and
semi-humid zones. 

The  impact  of  recent  diurnal  temperature  range  change  on  vegetation
productivity

To  evaluate  the  influence  of  DTR  changes  on  NPP,  we  employed  ridge
regression using seasonally  mean DTR, air  temperature,  solar  radiation,  and
SM for  the  four  seasons  as  independent  variables,  and  annual  NPP  esti-
mates  from  the  Moderate  Resolution  Imaging  Spectroradiometer  (MODIS)45

as  the  dependent  variable  (Figure  S3).  Air  temperature,  solar  radiation,  and

 

Figure 1.  Trend in diurnal temperature range (DTR)
in  extratropical  Northern  Hemisphere (A)  and  (B)
Spatial  distribution  of  the  trend  in  annual  (A)  and
summer (B) DTR during 2002–2021. The black dots
mark  the  areas  where  the  trends  are  significant  at
the p<0.1  level.  The  insets  show  the  DTR  trends  in
humid, semi-humid, semi-arid, and arid zones with a
boxplot.  The  width  of  each  box  indicates  the
interquartile  range  of  the  trends  for  all  grid  points,
the red line within  each box represents the median,
and the  left  and  right  edges  of  the  box  indicate  the
first  and  third  quartiles,  respectively.  The  spatial
distribution of the four climate zones is illustrated in
Figure S1A. (C) Variations and changes in area-aver-
aged  annual  and  summer  DTR  over  land  in  the
extratropical  Northern  Hemisphere  from  2002  to
2021.  The  dashed  lines  show  the  linear  trends  in
DTR obtained from linear regressions.
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SM  are  key  environmental  factors  that  regulate  vegetation  growth.  Using
seasonal  environmental  variables  alongside  annual  NPP  enables  us  to
capture  carryover  effects,13,14 such as  the  influence  of  environmental  condi-
tions  in  one  season  (e.g.,  spring)  on  NPP  in  subsequent  seasons  (e.g.,
summer and autumn). Given the inherent correlations among these seasonal
variables, ridge  regression  was  essential  to  mitigate  the  effects  of  multi-
collinearity  among  the  predictors.  The  regression  results  show  that  in  the
summer  season,  which  experienced  the  most  pronounced  DTR  increase,
opposite NPP responses to DTR changes occurred in arid and humid zones
(Figure 2A).  Specifically,  there was an overall  positive NPP response to DTR
increases  in  humid  zones,  while  the  NPP  response  in  arid  zones  was
predominantly  negative.  We  delved  further  into  exploring  whether  DTR
increases or decreases led to differential impacts on NPP (Figure 2B). In arid
zones,  regardless  of  whether  summer  DTR  increased  or  decreased,  annual
NPP  showed  a  negative  response  to  summer  DTR  changes.  Conversely,  in
humid  zones,  encompassing  areas  with  increased  summer  DTR  such  as
southern China, the high latitudes of the Eurasian continent and North Amer-
ica, a widespread positive impact of summer DTR increases on annual NPP
is  observed.  However,  in  regions  such  as  the  eastern  United  States  where
summer  DTR has  decreased,  the  influence  of  summer  DTR on  annual  NPP
shows less distinct  positive  or  negative characteristics.  Across much of  the
eastern United States, there is no significant increase in either summer DTR
(Figure  1B),  Tmax (Figure  S1E),  or  Tmin (Figure  S1I),  indicating  a  lack  of
substantial  regional  warming46 and sub-diurnal  asymmetric  warming during
the study period. This could limit the influence of mean temperature and DTR
changes on vegetation productivity in the eastern United States.

The  above  findings  suggest  that  in  humid  zones,  the  increased  DTR  has
positively  influenced vegetation productivity.  Daytime warming can enhance
plant  carbon  uptake  by  aligning  the  temperature  closer  to  the  optimum  for
photosynthesis. Meanwhile, the relatively slower rate of nighttime warming is
conducive  to  mitigating  carbon  emissions  resulting  from  respiratory
processes.11 Therefore, an  increase  in  DTR  is  conducive  to  carbon  absorp-
tion in humid zones. In contrast,  in arid zones where vegetation faces water
limitations, the rise in DTR often coincides with higher daytime temperatures
and  increased  VPD,31 prompting  vegetation  to  close  their  stomata,  which
hinders photosynthesis and carbon uptake.47-49

In order to delineate the extent of the impact of summer DTR variations on
annual  NPP,  we  quantified  the  relative  contributions  of  DTR  to  NPP  in  both
humid and arid  zones (Figure  3).  Here,  the  relative  contribution  was derived
using the ridge regression coefficients,  normalized by  the  sum of  the  abso-
lute values of all coefficients and scaled by the model's R-squared value. The
results reveal that in humid zones, the average contribution of summer DTR
variations to annual NPP variations was 6.5 ± 4.1%. While this value is lower
than the contributions of summer solar radiation (10.1 ± 4.9%) and summer
temperature (9.9 ± 6.0%), it is around the contributions of spring temperature
(6.4 ± 4.2%) and spring solar radiation (5.2 ± 3.4%) to annual NPP, indicating a
non-negligible positive influence of DTR variations on NPP. Conversely, in arid
zones,  the  average  contribution  of  summer  DTR  variations  to  annual  NPP

was  5.2  ±  3.7%,  lower  than  the  contribution
from  summer  temperature  (6.7  ±  4.8%),  but

close to that of summer solar radiation (5.4 ± 3.6%). 

Responses of different ecosystems to diurnal temperature range change
We  employed  flux  tower  measurements  to  analyze  the  effect  of  summer

DTR on annual NEE (with a negative value indicating net carbon uptake by the
land) in various ecosystems within the different zones of the extratropical NH.
First,  we focus on the impact of  DTR on NEE within the two most common
forest  ecosystem types  in  the  humid  zones  of  the  extratropical  NH,  namely
deciduous broadleaf forests (DBF) and evergreen needleleaf forests (ENF).50 A
significant  negative  linear  correlation  was  observed  between  summer  DTR
and  annual  NEE  in  DBF  ecosystems  (r=−0.33, p<0.05; Figure  4A),  while  the
corresponding  correlation  in  ENF  ecosystems  was  significant  and  weakly
positive  (r=0.15, p<0.05; Figure  5A).  A  partial  correlation  analysis  using  the
site-level data indicates that the differing response of NEE to summer DTR in
the  two  forest  ecosystem  types  can  be  attributed  to  a  significant  negative
(positive) correlation between NEE and Tmax (Tmin) in DBF (Figure 4B), while in
ENF,  the  signs  of  the  correlations  are  reversed  (Figure  5B).  We  further
employed a covariance-based structural equation model (CB-SEM) to exam-
ine  the  relationships  among  summer  environmental  variables  and  annual
NEE  in  DBF  and  ENF  ecosystems  (Figures  4C  & 5C).  CB-SEM is  advanta-
geous  for  testing  complex  theoretical  models  as  it  allows  for  simultaneous
estimation of multiple relationships. In DBF, the increases in DTR have had a
dual  negative  impact  on NEE,  suggesting an enhancement  of  plant  daytime
photosynthesis driven by higher daytime temperatures, while the more grad-
ual  rises  in  Tmin have  likely  resulted  in  a  comparatively  slower  increase  in
nighttime respiration. In ENF ecosystems, the faster increase in Tmax relative
to Tmin has generally resulted in increased NEE (Figures 5B-C),  resulting in a
weak positive correlation between DTR and NEE (Figure 5A).

The negative impact of DTR on NEE in DBF can likely be explained by the
positive influence  of  rising  daytime  temperatures  on  gross  primary  produc-
tion, while the more gradual increase in Tmin may have resulted in a relatively
smaller increase in nighttime respiration. In contrast, daily growth in conifers
was more  closely  linked  to  daily  minimum  rather  than  maximum  tempera-
tures,  consistent  with  previous  findings.51-54 A  previous  study  suggests  that
the  cell  doubling  time  of  conifers  remains  relatively  stable  from 10  to  25°C,
but increases exponentially from 50 hours to almost 150 hours as tempera-
tures drop from 10 to 5°C, approaching infinity at 1–2°C.39 Unlike cell forma-
tion,  photosynthesis  continues  at  low  temperatures,  with  high  assimilation
rates maintained even below 5°C.55-57 This suggests that conifers do not typi-
cally depend on higher Tmax to sustain photosynthesis. In fact, under extreme
heat  or  drought,  high  Tmax-induced  VPD  can  increase  the  water  stress  on
conifers51 and  suppress  photosynthesis.  This  explains  the  mixed  effects  of
Tmin (negative)  and Tmax (positive)  on NEE in ENF ecosystems. Nevertheless,
the  positive  impact  of  DTR  on  NEE  in  ENF  ecosystems  remains  relatively
weak.  Thus,  despite  the  positive  correlation  between  DTR  and  NEE  in  ENF
ecosystems, the overall  impact of DTR on NEE (NPP) in the humid zones of
the extratropical NH is negative (positive), aligning with the positive effects of
DTR on NPP in DBF ecosystems.
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Figure 2.  Impact  of  summer  diurnal  temperature
range  (DTR)  on  vegetation  productivity (A)  Spatial
distribution  of  ridge  regression  coefficients  of
summer  DTR  to  annual  net  primary  production
(NPP)  from 2002 to  2021.  The  black  dots  mark  the
areas where the regression results are significant at
the p<0.05  level.  The  inset  shows  the  regression
coefficients  (R.c.)  across  different  climate  zones
with a boxplot.  The width of  each box indicates the
interquartile  range of  the regression coefficients for
all grid  points,  the  red  line  within  each  box  repre-
sents the median, and the left and right edges of the
box indicate the first and third quartiles, respectively.
(B)  Ridge  R.c.  of  NPP  with  summer  DTR  in  four
regions:  arid  zones  with  increasing  (inc.)  DTR,  arid
zones with decreasing (dec.) DTR, humid zones with
inc. DTR, and humid zones with dec. DTR. The inset
shows the spatial distribution of these four regions.
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Observations from flux tower sites in grassland and cropland ecosystems
within  the  humid  zones  indicate  no  significant  linear  relationship  between
DTR and NEE in these ecosystems (Figure S4). One contributing factor is the
stronger soil respiration relative to plant respiration in these two ecosystems,
leading to high uncertainty in detecting the response of vegetation productiv-
ity  to  changes  in  DTR.  Additionally,  intense  human  activities  may  interfere
with natural  factors influencing cropland.58 In arid zones,  the assessment of
the impact  of  summer  DTR on annual  NEE is  hindered by  the  limited  avail-
ability of flux tower sites. Focusing on the entire arid and semi-arid zones, we
found  a  significant  positive  linear  relationship  between  summer  DTR  and
annual  NEE  within  grassland  ecosystems  (Figure  S5).  Additionally,  after
accounting for the influence of summer mean Tmin, we detected a significant
negative partial correlation in grassland ecosystems between summer mean
Tmax and  annual  gross  primary  production  (rp=−0.22, p<0.1),  and  a  positive
partial correlation with NEE (rp=0.22, p<0.1). These results imply that daytime
warming may constrain productivity and carbon sequestration in local grass-
lands,  possibly  due  to  more  water-limited  conditions  associated  with
increased VPD and evapotranspiration. 

DISCUSSION 

Robustness of results
The  impact  of  average  temperature  increase  on  vegetation  productivity

appears  to  be  diminishing  in  the  backdrop  of  global  warming.44,59,60 Our
research,  however,  illuminates  another  facet  of  temperature  dynamics  over
the past two decades—namely, expanding DTR—which is playing a major role
in shaping the carbon sequestration capacity of vegetation in the extratropi-
cal NH. We conducted a further investigation into the potential responses of
vegetation productivity to changes in DTR based on flux tower observations
in forested areas. Vegetation productivity is closely linked to NEE, particularly
within forest ecosystems.61-63 We found that in regions where the annual NPP
responded  positively  to  summer  DTR  changes,  flux  observations  indicate  a
corresponding negative response in annual NEE to summer DTR (Figure S6).
Conversely, in areas where the annual NPP exhibited a negative response to
summer DTR, NEE similarly displayed a positive response. Utilizing NEE data
upscaled  using  machine  learning  methods,20 we  found  that  NEE  and  NPP
show similar responses (with opposite signs) to summer DTR, with a spatial
correlation  coefficient  of r=−0.45  (Figure  S7A).  This  finding  supports  the
contrasting vegetation productivity responses in arid and humid zones, as an
increase in NPP typically strengthens the ecosystem’s carbon sink capacity,
reflected as a decline in NEE.

Similar  contrasting  responses  were  detected  when  using  solar-induced
fluorescence  (SIF)18 or  the  kernel  normalized  difference  vegetation  index
(kNDVI)19 as indicators of vegetation productivity. The spatial correlation with
the  NPP  responses  was r=0.71  for  SIF  (Figure  S8A)  and r=0.66  for  kNDVI
(Figure S8D). To ensure the robustness of our analysis, we also applied prin-
cipal component regression (PCR)30 as an additional statistical method. PCR
generates  principal  components  that  are  orthogonal  (i.e.,  uncorrelated)  to

each  other,  allowing  for  optimal  performance
when  dealing  with  highly  correlated  predictor
variables.31,32 This method confirmed a consis-
tent  pattern  in  the  response  of  NPP  to  DTR,
showing a high spatial correlation (r=0.84) with
the  NPP  responses  identified  through  ridge

regression (Figure S8G). These findings are consistent with previous research
indicating  that  Tmax and  vegetation  indices  are  positively  correlated  in  most
wet  ecosystems  across  boreal  regions,  but  negatively  correlated  in  dry
temperate  regions.10 Additionally,  we  found  that  asymmetric  warming
between  day  and  night  has  been  most  pronounced  during  the  summer
season in the extratropical NH. The contributions of summer DTR changes in
both humid and arid zones to the annual NPP variation is comparable to the
effect  of  spring  temperature  variations.  Similar  contribution  magnitudes  of
DTR  to  vegetation  productivity  were  obtained  through  the  quantification  of
predictor  importance  from  both  PCR  (Figures  S8H–I)  and  random  forest
analyses  (Figures  S8J–K),  and  when  using  SIF  (Figures  S8B–C),  kNDVI
(Figures  S8E–F),  or  NEE  (Figures  S8B–C)  as  the  indicator  of  vegetation
productivity instead of NPP.

Here,  we  chose  annual  vegetation  productivity  as  the  response  variable
instead  of  monthly  or  seasonal  values  due  to  the  substantial  uncertainties
associated  with  estimating  NPP  at  shorter  time  scales.  The  NPP  product
from  MODIS  is  derived  from  gross  primary  production  by  subtracting
autotrophic respiration, which includes the growth and maintenance respira-
tion  of  leaves,  stems,  and  roots—processes  that  are  inherently  complex64,65

and vary significantly across seasons and longer timescales.66These factors
make  accurately  scaling  and  modeling  autotrophic  respiration  at  shorter
intervals  highly  challenging.67 Moreover,  using  annual  NPP  allows  for  the
capture of carryover effects of environmental variables.13,14 To further account
for the possibility of carryover effects, we performed additional analyses that
incorporated environmental  variables  from  both  the  current  year  and  previ-
ous  year’s  seasons  as  predictors.  These  analyses  produced  consistent
spatial  patterns  of  the  annual  NPP  response  to  summer  DTR� (Figure  S9A)
and  similar  magnitudes  of  DTR  contributions  to  vegetation  productivity
(Figures S9B–C), reinforcing the robustness of our conclusions. However, it is
important to note that using seasonal variables as independent variables and
annual variables as the dependent variable may introduce some uncertainty
due to the high correlation among independent variables. To further enhance
the reliability  of  our  findings,  we  conducted  additional  analyses  using  envi-
ronmental  variables  from  the  growing  season  (May–October) as  indepen-
dent  variables  and  growing  season  NEE  as  the  dependent  variable.  The
results further confirm the contrasting responses of vegetation productivity to
DTR  changes  in  arid  and  humid  zones  (Figure  S10)  and  reveal  distinct
responses  of  NEE  to  DTR  in  deciduous  broadleaf  forests  and  evergreen
needleleaf forests (Figure S11). 

Mechanisms underlying divergent NPP responses to DTR changes in arid
and humid zones

The  contrasting  effects  of  increased  DTR  on  vegetation  productivity
between arid and humid zones suggest that daytime warming limits produc-
tivity and carbon sequestration in water-limited environments, where elevated
Tmax drive higher VPD and evapotranspiration, intensifying moisture stress. To
reveal the potential effects of DTR changes on VPD, we analyzed half-hourly

 

Figure 3.  Assessment of the contributions of mean
air  temperature  (TM),  solar  radiation  (RS),  soil
moisture  (SM),  and  diurnal  temperature  range
(DTR)  variations  during  spring  and  summer  to  the
variations in annual NPP in humid (A) and arid (B)
zones The  height  of  each  box  represents  the
interquartile range of contributions for all grid points,
with  the  darker-colored  line  indicating  the  median,
and the edges denoting the first  and third quartiles.
Whiskers depict the minimum and maximum contri-
bution values, excluding outliers exceeding 1.5 times
the interquartile range. The insets display the spatial
distribution  of  the  contribution  of  summer  DTR  to
annual NPP.
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observations  of  air  temperature  and  VPD  from  flux  tower  sites  during  the
summer season (Figure 6A). VPD shows substantial  diurnal  variations,  typi-
cally  reaching  minimum  values  between  0500  and  0600  local  solar  time
(LST)  and  peaking  between 1400 and 1500 LST  in  both  arid/semi-arid  and
semi-humid/humid zones (Figures 6B–C). This diurnal cycle in VPD primarily
arises  from  diurnal  temperature  changes,  as  indicated  by  the  median  R²  of
linear regressions between mean diurnal variations in temperature and VPD,
which  reaches  98%  in  both  arid/semi-arid  and  semi-humid/humid  zones
(Figures 6B–C). The presence of this diurnal cycle suggests that changes in
VPD during daytime (VPDdaytime)  and nighttime (VPDnighttime) may have differ-
ent  effects  on  the  daily  average  VPD.  Ridge  regression  and  random  forest
regression  analyses  based  on  daily  observations  reveal  that  both  the  ridge

regression coefficients of VPDdaytime on daily average VPD, and the out-of-bag
prediction  error  estimation  of  the  random  forest  model,  are  significantly
higher than those of  VPDnighttime on daily  average VPD (p<0.001,  Student’s t-
test; Figure S12).  This suggests that VPDdaytime exerts a greater  influence on
daily average VPD changes than VPDnighttime. Therefore, DTR increases driven
by accelerated daytime temperatures or  Tmax tend to result  in  elevated daily
average VPD.

The  above  analysis  elucidates  a  potential  mechanism  by  which  DTR
changes impact VPD. Moreover, the larger diurnal cycle of VPD in arid zones
compared to humid zones (Figures 6B–C) indicates that there may be differ-
ences in the extent to which DTR changes have affected VPD between these
two zones. To quantify the potential impact of DTR changes on VPD, we used
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Figure 4.  Impact  of  summer  diurnal  temperature  range (DTR)  on annual  net  ecosystem exchange (NEE)  in  deciduous broadleaf  forest  (DBF)  ecosystems in  humid zones
during 2002–2021 (A) Relationship between summer DTR and annual NEE. Each dot represents the annual NEE (y-axis) corresponding to the summer mean DTR (x-axis) across
all sites and years within the ecosystem type. The Pearson correlation coefficient (r) is shown in the lower part of the figure. (B) Partial correlation coefficient of annual NEE with
summer mean daily maximum temperature (Tmax) or daily minimum temperature (Tmin), while controlling for the other temperature. The asterisk indicates the significance level
(*: p<0.05,  **: p<0.01).  (C)  The hypothesized effects  of  summer solar  radiation (RS),  soil  moisture  (SM),  Tmax and Tmin on  annual  NEE,  based on structural  equation modeling.
Double-headed gray arrows denote covariance between variables, while single-headed arrows indicate one-way causation, with positive and negative relationships in yellow and
blue, respectively. Arrow thicknesses correspond to the strength of the relationships, with numbers next to the arrows representing the magnitude of the direct coefficients. The
numbers below the graphs show the comparative fit index (CFI), adjusted goodness of fit index (AGFI) and root mean square error of approximation (RMSEA) of the structural
equation models.
 

Figure 5.  Impact  of  summer diurnal  temperature  range (DTR)  on annual  net  ecosystem exchange (NEE)  in  evergreen needleleaf  forest  (ENF)  ecosystems in  humid zones
during 2002–2021 (A) Relationship between summer DTR and annual NEE. Each dot represents the annual NEE (y-axis) corresponding to the summer mean DTR (x-axis) across
all sites and years within the ecosystem type. The Pearson correlation coefficient (r) is shown in the lower part of the figure. (B) Partial correlation coefficient of annual NEE with
summer mean daily maximum temperature (Tmax) or daily minimum temperature (Tmin), while controlling for the other temperature. The asterisk indicates the significance level
(*: p<0.05,  **: p<0.01).  (C)  The hypothesized effects  of  summer solar  radiation (RS),  soil  moisture  (SM),  Tmax and Tmin on  annual  NEE,  based on structural  equation modeling.
Double-headed gray arrows denote covariance between variables, while single-headed arrows indicate one-way causation, with positive and negative relationships in yellow and
blue, respectively. Arrow thicknesses correspond to the strength of the relationships, with numbers next to the arrows representing the magnitude of the direct coefficients. The
numbers below the graphs show the comparative fit index (CFI), adjusted goodness of fit index (AGFI) and root mean square error of approximation (RMSEA) of the structural
equation models.
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two methods to calculate daily VPD based on sub-daily (3-hourly or hourly)8

temperature and relative humidity data from the in-situ HadISD dataset.27 In
the first method, we calculated VPD at sub-daily intervals and averaged these
values to obtain the daily mean VPD (VPDsubdaily→daily). In the second method,
we  calculated  VPDdaily directly  using  daily  mean  temperature  and  relative
humidity values. The difference between VPDsubdaily→daily and VPDdaily,  referred
to  as  ΔVPD,  represents  the  effect  of  sub-diurnal  temperature  variations  on
the  daily  average  VPD.  This  difference  primarily  arises  from  the  nonlinear
relationship between VPD and temperature.

We  found  that  ΔVPD  was  generally  positive  (Figure  7A),  revealing  a
systematic  underestimation  of  VPD  when  using  daily  average  temperature
and relative humidity for  its  calculation.  As expected,  there is  a strong posi-
tive  correlation  between  DTR  and  ΔVPD(r=0.92, p<0.01, Figure  S13A).
Spatially,  ΔVPD  exhibits  higher  values  in  arid  zones  compared  to  humid

zones. Due to the negative correlation between the aridity index (AI) and DTR
(Figure  S13B)  and  the  positive  correlation  between  DTR  and  ΔVPD,  ΔVPD
significantly  decreases  with  increasing  AI  (r=−0.58, p<0.01, Figure  7B).
Beyond its negative relationship with AI, ΔVPD also exhibits a positive corre-
lation with mean temperature (r=0.36, p<0.01, Figure 7C). Based on the Clau-
sius–Clapeyron  relation,  higher  baseline  temperatures  in  arid  zones  can
amplify increases in saturation vapor pressure, resulting in larger increases in
VPD.  In  arid  zones,  the  linear  increase in  ΔVPD per  unit  DTR increase (0.15
hPa °C−1) is about 25% higher than in humid zones (0.12 hPa °C−1; Figure 7D).
Consequently,  VPDsubdaily→daily in  arid  zones  can  increase  more  rapidly  with
rising DTR (0.66 hPa °C−1) compared to humid zones (0.56 hPa °C−1, p<0.01;
Figure  S14).  These  findings  suggest  that  compared  to  humid  zones,  DTR
increases  in  arid  zones  lead  to  greater  increases  in  VPD.  Combined  with
recent findings that increased VPD negatively impacts vegetation productiv-

 

Figure 6.  Averaged summer diurnal variations in vapor pressure deficit (VPD) and temperature during 2002–2021 (A) Locations of flux tower sites in arid/semi-arid and semi-
humid/humid zones. (B) and (C) Averaged summer diurnal variations in VPD in arid/semi-arid zones (B) and semi-humid/humid zones (C). The y-axis represents the summer-
average half-hourly VPD deviations (VPDdeviation) from the daily mean. The thick lines represent the mean value and the shading the standard deviation around the mean for differ-
ent sites within each zone. The insets display the summer-average half-hourly temperature deviations (Tdeviation) from the daily mean. The R-squared value (R²) for the regression
of average diurnal variations in temperature on average diurnal variations in VPD is depicted in the upper left, with the mean value and 95% confidence interval displayed by red
dots and error bars, respectively.
 

Figure 7.  Vapor pressure deficit (VPD) variation and its relationship with changes in diurnal temperature range (DTR) during 2002–2021 (A) Spatial distribution of multi-year
(2002–2021) summer average ΔVPD, defined as the difference between daily average VPD calculated using sub-daily temperature and relative humidity, and daily VPD calcu-
lated using daily average temperature (T) and relative humidity. The variable ΔVPD is an indicator of the asymmetric effect of sub-diurnal temperature variations on daily aver-
age VPD. Observations of temperature and relative humidity were taken from the HadISD dataset. (B) and (C) The relationship between the multi-year summer average ΔVPD
and aridity index (AI, B) or multi-year summer average T (C), with the Pearson correlation coefficient (r) displayed. (D) Relationship between summer DTR and ΔVPD in arid and
humid zones. Each dot represents the summer average ΔVPD (y-axis) corresponding to the summer average DTR (x-axis) across all sites and years (2002–2021) within the arid
and humid zones. The inset displays the locations of the observations in arid (yellow point), humid (blue point), and semi-arid/semi-humid (gray point) zones.
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ity in arid zones while it may have neutral effects in humid zones,31,68 the inhi-
bition of vegetation productivity due to broadening DTR is stronger in the arid
zone than the humid zone due to asymmetric effects on VPD.

The  above  findings  shed  light  on  an  unresolved  question:  why  increasing
Tmin, which correlates with decreasing DTR, has positively impacted produc-
tivity  in  primarily  arid  zones.10,11 Previous research has shown that  in  humid
regions, the negative effect of rising air temperature on SIF—primarily through
increased  VPD,  which  inhibits  vegetation  productivity—has  reached  nearly
40% of the positive effect of air temperature on SIF. In contrast, in arid zones,
the  negative  effect  of  rising  air  temperature  through  increased  VPD  was
almost  125%  of  the  direct  positive  effect  of  rising  air  temperature  on  SIF.31

These findings suggest that  in most cases,  temperature increases in humid
zones  tend  to  enhance  vegetation  productivity,  whereas  in  arid  zones,  the
negative  impact  of  VPD  increase,  driven  by  rising  temperatures,  outweighs
the positive effect of temperature on vegetation productivity.  Here we found
that an increase in DTR leads to a rise in VPD in both arid and humid zones.
In humid zones, the negative effect of VPD increase on vegetation productiv-
ity  is  relatively  small  and  is  likely  far  outweighed  by  the  positive  effect  of
daytime  temperature  increases  on  photosynthesis.  However,  in  arid  zones,
the  nonlinear  response  of  VPD  to  temperature  increases  means  that  a  unit
increase  in  DTR  results  in  a  greater  rise  in  VPD  compared  to  humid  zones.
Additionally, since the negative impact of rising VPD on vegetation productiv-
ity outweighs the positive effects caused by rising temperature in arid zones,
increasing daytime temperature and DTR have had an overall negative influ-
ence on vegetation productivity in these areas. 

Limitations and implications
Changes  in  DTR  resulting  from  asymmetric  warming  between  day  and

night  may  affect  vegetation  productivity  not  only  by  directly  influencing
photosynthesis  and  respiration,  but  also  indirectly  by  impacting  events  that
suppress vegetation productivity, such as fires69,70 and droughts.71,72 Further-
more,  while  the  overall  increase  in  summer  DTR  is  most  notable,  there  are
also significant trends of increased DTR in spring or autumn in specific loca-
tions,  potentially  impacting  local  vegetation  phenology,58,73,74 and conse-
quently, vegetation productivity. In-depth investigation aimed at comprehen-
sively assessing and understanding the effects of recent non-uniform climate
warming on terrestrial ecosystems from various perspectives is still pending.
Considering the substantial impact of northern boreal and temperate forests
on the global carbon sink,63,75 particular attention should be directed towards
understanding  the  response  of  northern  ecosystems  to  recent  asymmetric
warming dynamics. Notably, our findings suggest that VPD calculated using
daily mean temperature and relative humidity tends to underestimate the true
daily  mean  VPD  across  most  land  regions.  Given  the  influence  of  diurnal
temperature  variation  on  VPD,  future  studies  should  incorporate  both  Tmax

and Tmin in VPD calculations to achieve more accurate assessments.
Due to the current limitations of Earth system models in accurately simu-

lating trends in DTR,8 a skillful prediction of future DTR variation and its influ-
ence on the spatial distribution patterns of vegetation productivity presents a
substantial  challenge  that  lies  ahead.  Here,  we  have  reported  opposing
collective influences of DTR, air temperature, and solar radiation variations on
NPP  in  humid  and  arid  zones  in  the  extratropical  NH  over  the  recent  two
decades.  If  these  relationships  persist,  future  increases  in  DTR—possibly  in
conjunction  with  global  warming  and  brightening—76,77 could  further  widen
the  vegetation  productivity  gap  between  extratropical  NH  humid  and  arid
zones, highlighting the need for careful consideration and attention.
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data/fluxnet2015-dataset/.  The  ICOS  dataset  is  from https://www.icos-cp.eu/data-
products.  The  HadISD  dataset  is  from https://www.metoffice.gov.uk/hadobs/hadisd/.
The  MERRA-2  downwards  shortwave  radiation  is  from https://disc.gsfc.nasa.gov/
datasets?project=MERRA-2.  Code  is  available  from  the  corresponding  author  upon

reasonable request.
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