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PUBLIC SUMMARY

= Diurnal temperature range (DTR) rose across the extratropical Northern Hemisphere during 2002-2021.

= |n humid zones, DTR increases have promoted vegetation productivity.

Vegetation productivity responds negatively to DTR change in arid zones.

Broadleaf and needleleaf forest ecosystems show contrasting productivity responses to DTR changes.
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Biological and ecological processes regulating the ecosystem carbon cycle
exhibit varying sensitivities to temperature fluctuations during the day and
night. Consequently, the diurnal temperature range (DTR)—the difference
between daily maximum and minimum temperatures—plays an important
role in modulating carbon assimilation and consumption in plants. Over
recent decades, daytime warming has outpaced nighttime warming over
land, leading to a widening of the DTR, which is expected to impact plant
productivity. However, how the recent DTR changes have influenced vege-
tation productivity across various climate zones remains unclear. Using
remote sensing data and flux tower measurements from 2002 to 2021, we
found divergent impacts of increased DTR on vegetation productivity in the
extratropical Northern Hemisphere. In humid zones, summer DTR increases
have promoted net primary production (NPP), while the opposite effect is
found in arid zones. This contrast can largely be explained by the larger
impact of accelerated daytime warming on increased vapor pressure deficit
in arid zones, which consequently inhibits NPP. Our findings underscore the
non-negligible impacts of recent DTR changes on vegetation productivity,
emphasizing the need to consider sub-diurnal variations in assessments of
climate change impacts.

INTRODUCTION

Over the last three decades, global surface temperatures have risen by
approximately 0.2°C per decade."” Nevertheless, the rate of surface warming
exhibits variability across different seasons™ and day-night cycles.** Particu-
larly noteworthy is the asymmetric warming of sub-diurnal temperatures,
given its influence on the diurnal temperature range (DTR)—the difference
between near-surface daily maximum temperature (T ) and daily minimum
temperature (T,,). Recent findings indicate that in the past few decades,
declining cloud cover and intensified downwelling solar radiation have driven
a faster warming rate in T, compared to T,,, across the Northern Hemi-
sphere (NH) and globally, resulting in increased DTR.”® This signifies the
cessation of the "nighttime warming”" phenomenon characterized by faster
increases in Ty, than T,y during the latter half of the 20th century,” and the
reversal of asymmetric warming over a considerable area of the Earth's land
surface. Considering the asymmetric effects of daytime and nighttime warm-
ing on vegetation productivity and growth,'®'" this reversed asymmetric
warming has the potential to significantly impact ecosystem carbon absorp-
tion and emission processes.

The intricate relationship between T,.., and T, is crucial for carbon
assimilation and consumption in plants. This is because the biological and
ecological processes that regulate the ecosystem carbon cycle are influ-
enced by temperature to varying extents during the day and night. Photosyn-
thesis is primarily driven by daytime temperatures, while respiration responds
to both daytime and nighttime temperatures.'”'” The current sub-diurnal
asymmetric warming adds complexity to our understanding of how climate
warming affects vegetation productivity.' On one hand, environmental vari-
ables highly correlated with DTR, such as solar radiation and soil moisture
(SM),” also exert influences on vegetation physiological processes, making it
difficult to identify the independent effects of DTR on vegetation productivity.
On the other hand, the presence of carryover effects between seasons may
impede the assessment of how ecosystems productivity has responded to

seasonal variations in DTR.'*"* Consequently, determining the impacts of non-
uniform climate warming on terrestrial ecosystems poses a key challenge in
carbon cycle research."

The response of terrestrial vegetation productivity to the recent reversal of
asymmetric warming of sub-diurnal temperatures remains to be elucidated.
In previous scientific inquiries aimed at understanding the effects of asym-
metrical warming on vegetation growth or productivity, the conventional
methodology often involved separate examinations of the repercussions of
Tmax @nd Toin ON vegetation. This analytical framework has advanced our
understanding of how variations in T, and T, have influenced vegetation
growth.'”"* However, considering that T, and T, variations encompass a
substantial component of the variations in daily mean temperature, this
multicollinearity issue could lead to misinterpretations when identifying the
impacts of asymmetric warming on vegetation.'” In contrast, directing atten-
tion towards DTR can effectively mitigate this interference and redirect focus
towards discerning the effects of differential daytime and nighttime warming
rates.

In this study, we investigate how the recent changes in DTR resulting from
the reversal of asymmetric warming over the past two decades have
impacted the vegetation productivity in the extratropical NH northward of
23.5° N. Seasonal-scale environmental variables, including DTR, will function
as independent variables in a regression analysis to assess their impact on
annual net primary production (NPP). Acknowledging the role of moisture
conditions in determining the impact of DTR changes on vegetation produc-
tivity,'® we conducted separate analyses for dry and wet climate zones
(Figure STA).

MATERIALS AND METHODS
Gridded data

The annual NPP data used in this study were obtained from the Moderate
Resolution Imaging Spectroradiometer (MODIS), with a spatial resolution of
500 m, for the period 2002-2021. The MODIS NPP data have undergone
rigorous quality control during their generation, including the removal of poor-
quality inputs from 8-day Leaf Area Index (LAI) and Fraction of Photosyn-
thetically Active Radiation (FPAR), based on pixel-level Quality Control (QC)
flags."” To further reduce uncertainty, we calculated the averages of NPP
estimated from two datasets, MOD17A3HGF and MYD17A3HGF, based on
different satellites. Eight-day solar-induced fluorescence (SIF) data at 0.05°
spatial resolution were obtained from the GOSIF product, derived from Orbit-
ing Carbon Observatory-2 (OCO-2) measurements and provided by a previ-
ous study.® The kNDVI was calculated using NDVI from the MODIS
MOD13Q1 dataset following a previous study: '

kNDVI = tanh (NDVI*)

The FLUXCOM NEE dataset™ in the RS+METEQ setup is a monthly upscal-
ing of carbon fluxes based on machine learning methods driven by eddy
covariance, remote sensing, and climate data. In this study, we used the
FLUXCOM net ecosystem carbon exchange (NEE, with a negative value indi-
cating net carbon uptake by the land) data based on the fifth generation
European Centre for Medium-Range Weather Forecasts climate reanalysis
(ERA5) spanning 1980-2018 with a horizontal resolution of 0.5° x 0.5°.

The daily average, minimum, and maximum temperature data were
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acquired from the Berkeley Earth Surface Temperatures (BEST) dataset,”’
provided at a spatiotemporal resolution of 1°x1° on a monthly basis span-
ning from 1850 to the present. This dataset employs sophisticated statistical
techniques to quantify and correct measurement biases, ensuring an accu-
rate depiction of global temperature trends. The DTR computed using the
BEST dataset demonstrates a robust correlation with the DTR based on the
Global Surface Summary of the Day dataset.” The monthly incident short-
wave radiation (RS) data in all-sky conditions were obtained from the Modern-
Era Retrospective analysis for Research and Applications, version 2
(MERRA-2) with a spatial resolution of 0.625° x 0.5° after 1980.” The monthly
root-zone SM at a spatial resolution of 0.25° was obtained from the Global
Land Evaporation Amsterdam Model (GLEAM) version 3.8 dataset.”

The aridity index (Al), defined as the ratio of annual precipitation to annual
potential evapotranspiration, was used to identify global climate zones. Under
this quantitative indicator, the extratropical NH was classified into arid
(Al<0.2), semi-arid (0.2<Al<0.5), semi-humid (0.5=Al<0.65), and humid (Al>
0.65) zones. The aridity index was obtained from the Global Aridity Index and
Potential Evapotranspiration (ETO) Climate Database v3.* All gridded
datasets were aggregated to a spatial resolution of 0.5° x 0.5°,

Flux tower measurements

The flux tower observations of temperature, shortwave radiation and NEE
were obtained from FLUXNET2015” and the Integrated Carbon Observation
System (ICOS) network.” These datasets underwent meticulous quality
control, filtering, gap-filling, and partitioning procedures. Only time series
encompassing complete observations over at least a two-year period were
selected for analysis, and included air temperature, shortwave radiation,
atmospheric vapor pressure deficit (VPD) and NEE. The DTR at each flux
tower site was determined using half-hourly temperature observations, with
the day's DTR being defined as the difference between the daily maximum
and minimum temperatures. Monthly values were subsequently computed by
averaging the daily values. The variable "NIGHT" was used to delineate
daytime and nighttime. Considering the substantial gaps in SM data from
measurements around flux towers, we used the GLEAM version 3.8 dataset
as an alternative for SM at the tower sites.

The spatial distribution of the flux tower sites in humid zones is sparse,
with limited numbers for evergreen broadleaf forest (1 site), open shrub
(4 sites), and closed shrub (2 sites). Due to the limited number of flux tower
sites in arid zones, with only 3 grassland sites, we extended our study to the
entire arid and semi-arid zones, focusing on the grassland vegetation type in
these water-limited areas.

HadISD observational data

HadISD”" is an in-situ sub-daily dataset based on the NOAA ISD dataset.”
Several quality control procedures have been implemented in the dataset,
including checks for duplicates, distribution gaps, and climatological
outliers.”"* For station selection, we applied strict criteria to temperature and
relative humidity data: a day is considered valid if there are at least 5 obser-
vations of both temperature and relative humidity, otherwise, it is marked as
missing; a month is discarded if there are more than 11 missing days overall
or if 5 or more consecutive days are missing;” for the period from 2002 to
2021, only stations with no missing months during the summer (June-July-
August) were included. After selection, 910 stations in the extratropical NH
were retained for analysis.

Seasonal analysis

To analyze DTR variations by season, we used meteorological seasons in
the NH: spring (March, April, May), summer (June, July, August), autumn
(September, October, November), and winter (December, January, February).
Correspondingly, the annual average value of a monthly variable in one year
is defined as the average of 12 months from December in the preceding year
to November of that year.

Ridge regression and attribution

Ridge regression was crucial in minimizing the impact of high multi-
collinearity among the independent variables on the regression results,
particularly reducing interference from strong correlations between different
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variables such as DTR, solar radiation, and SM," as well as mitigating the high
seasonality-related correlations of the variables. In the ridge regressions, a
total of 16 independent variables were considered, including mean tempera-
ture, solar radiation, SM, and DTR for each of the four seasons. Prior to
performing the ridge regression analysis, all time series were standardized to
z-scores by subtracting their climatology means and dividing by their clima-
tological standard deviations from 2002 to 2021.
The ridge regression objective function can be expressed as follows:

B =Y (- Bo-YBx) + AL B

where " represents the estimated regression coefficients, y; is the depen-
dent variable, B, is the intercept term, and S signifies the regression coeffi-
cient for the independent variable x. The last term serves as a penalty term
added to the least squares objective function during model fitting. It encour-
ages the regression coefficients to shrink towards zero while still preserving
their relationship with the predictors. Throughout the regression analysis
process, the initial value of A was set to 0 and incremented by a step size of
0.01. As A increased, the degree of multi-collinearity decreased. The incre-
ment of A stopped when the Variance Inflation Factor value dropped below 3,
with this A value being determined as the tuning parameter at this grid point.”
Based on the ridge regression coefficients, the relative contribution rate n;
of each predictor £; was estimated as follows:
’ B

=Bl

where R? is the R-squared value of the ridge regression model.

x R?

Principal components regression

We employed principal components regression analysis to verify the influ-
ence of environmental variables on NPP.* This method transforms the origi-
nal dataset into a new set of orthogonal (i.e., uncorrelated) variables, known
as principal components (PCs). Following this transformation, a least squares
regression was conducted on the reduced set of PCs. Principal components
regression effectively mitigates collinearity among climatic variables since
the PCs are uncorrelated with one another.”" PCs that account for low vari-
ance in the original predictors indicate potential collinearity and should be
excluded from the regression analysis. Specifically, we excluded PCs that
explain less than 5% of the total variance in NPP.”"*” The significance of the
principal components regression analysis was evaluated using an F-test with
a significance level of 0.05.

Random forest regression

We also employed the random forest algorithm to assess the impact of
DTR changes on NPP. The input for the random forest was standardized in a
manner consistent with the ridge regression analysis. During the modeling
process at individual grid cells, the random forest model was trained using
100 decision trees based on the same data as for the ridge regression analy-
sis. Each decision tree independently predicted annual NPP values based on
the given predictor variables. Furthermore, we applied out-of-bag prediction
error estimation, an intrinsic capability of the random forest algorithm, and
evaluated the importance of the predictors using the out-of-bag predictor
importance feature. Similar to the ridge regression coefficients, these feature
importances of predictors were subsequently employed to quantify the
contributions of seasonal temperature, solar radiation, SM, and DTR to
annual NPP.

Structural equation modeling

Structural equation modeling is a multivariate statistical technique used for
path analysis, leveraging prior knowledge to establish relationships among
variables. The theoretical foundation for the hypothetical relationships in this
study is as follows: (1) Solar radiation reaches the Earth's surface, where part
of it is absorbed and converted into heat, raising the surface temperature.
This heating effect primarily occurs during the day, while its impact on T,
mainly results from the lagged effect of daytime warming. As a result, solar
radiation has a greater influence on T, than on T,.*** Solar radiation
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Figure 1. Trend in diurnal temperature range (DTR)
in extratropical Northern Hemisphere (A) and (B)
Spatial distribution of the trend in annual (A) and
summer (B) DTR during 2002-2021. The black dots
mark the areas where the trends are significant at
the p<0.1 level. The insets show the DTR trends in
humid, semi-humid, semi-arid, and arid zones with a
boxplot. The width of each box indicates the
interquartile range of the trends for all grid points,
the red line within each box represents the median,
and the left and right edges of the box indicate the

first and third quartiles, respectively. The spatial
A distribution of the four climate zones is illustrated in
v ) ] _ Figure STA. (C) Variations and changes in area-aver-
v Al = A lumid = aged annual and summer DTR over land in the
Semi-arid - Semi-arid o S— extratropical Northern Hemisphere from 2002 to
180° Arid = 180° Arid = 2021. The dashed lines show the linear trends in
o —— ] NENIRRNENS INPNERNINS DTR obtained from linear regressions.
<1 -0.5 0 0.5 >1 Trend <1 -0.5 0 05 >1 Trend

Trend in DTR (°C decade™) (°C decade™)

Trend in DTR (°C decade)

(°C decade™)

Clausius—Clapeyron relationship. RH is the

19 relative humidity in percent, P, is the air pres-
sure in hPa, and P, is the air pressure at mean

17 i sea level (1013.25 hPa).
n Using daily averaged temperature and rela-
ot tive humidity, we calculated the daily VPD
% - i (VPDgy,) following the equation above. In
= contrast, VPDgypaaily—daiy Was Obtained by aver-
g aging multiple sub-daily VPD values derived
= 11.3 . from sub-daily temperature and relative
Slope, ., = 0.12 °C decade’, p < 0.01 humidity values. The difference between
Slope,, e = 0.17 °C decade”, p < 0.01 VPDygybdaitydally aNd VPDyyy is denoted as AVPD.
11.1 20'05 20'10 20'15 20'20 The linear response . pf AYPD to DTR
(AVPD/DTR) was quantified using the follow-

intensity also influences the rate of photosynthesis, which in turn affects NPP  ing equation:

and NEE. (2) SM serves as the primary water source for plants, dictating how
much water plant roots can extract.” Low SM availability is commonly used
to identify drought stress in vegetation, and has been shown to accurately
capture the effects of drought on vegetation productivity.” (3) Temperature
directly affects key physiological processes in plants, including photosynthe-
sis, respiration, transpiration, and cell formation.”** Photosynthesis is mainly
influenced by T.a @s it occurs primarily during daylight hours, whereas respi-
ration occurs continuously, making it sensitive to both Tre and T (4)
Interactions between key environmental variables are also present. For
instance, both solar radiation and temperature influence SM through their
effects on evapotranspiration.”” In turn, SM impacts solar radiation by influ-
encing cloud formation,”" while the evaporative cooling effect of SM can also
lower temperature.”

All variables were transformed into z-scores prior to conducting the path
analysis. We employed maximum likelihood estimation for parameter esti-
mation in the structural equation modeling. Model fit was assessed using
multiple criteria, including the comparative fit index (CFl), adjusted goodness
of fit index (AGFI), and root mean square error of approximation (RMSEA).

Vapor pressure deficit variation and its relationship with diurnal temper-
ature range

Based on the HadISD observational data, VPD (hPa) was calculated using
the following formula:*

VPD =e, x (1 —RH/100)

17.67T,
6. =6.112 x f, x eT2225

fu=1+7x10"+3.46x10°P,,

> 5.625

Here, e, is the saturation vapor pressure calculated based on the tempera-
ture (T,) in degrees Celsius and the altitude (2) in meters using the

T,+273.16
T,+273.1640.0065 x Z

'Dmst:Pmsl<

AVPD

DR e

x R?

where R.c. is the regression coefficient and R? is the R-squared value of the
regression model, with DTR (°C) as the independent variable and AVPD (hPa)
as the dependent variable.

RESULTS
Recent diurnal temperature range change in the extratropical Northern
Hemisphere

First, we examined the spatiotemporal trends in DTR changes from 2002 to
2021. Across the extratropical NH, the annual mean DTR over land areas
exhibited a significant (p<0.01) increase at a rate of 0.12°C decade™
(Figure T). When scrutinized seasonally, the most pronounced rise was iden-
tified during boreal summer, reaching 0.17°C decade™ (p<0.01), followed by
spring (0.14°C decade™, p<0.05), and winter (0.12°C decade™, p<0.1), with
autumn displaying a non-significant (p>0.1) increasing trend (Figure S2).
Regionally, owing to the faster warming rate of T, compared to T
(Figures ST1E & 1), the increase in summer DTR was particularly conspicuous
in semi-humid zones, followed by humid and semi-arid zones. In spring and
winter, the strongest increase in DTR occurred in arid and semi-arid zones.
Considering that summer represents the peak season for plant photosynthe-
sis in northern ecosystems,” the asymmetrical warming phenomenon char-
acterized by a predominant increase in summer DTR over the past two
decades is likely to have impacted vegetation productivity in the extratropical
NH, especially in temperature-constrained regions such as the humid and
semi-humid zones.

The impact of recent diurnal temperature range change on vegetation
productivity

To evaluate the influence of DTR changes on NPP, we employed ridge
regression using seasonally mean DTR, air temperature, solar radiation, and
SM for the four seasons as independent variables, and annual NPP esti-
mates from the Moderate Resolution Imaging Spectroradiometer (MODIS)*
as the dependent variable (Figure S3). Air temperature, solar radiation, and
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Figure 2. Impact of summer diurnal temperature
range (DTR) on vegetation productivity (A) Spatial
distribution of ridge regression coefficients of
summer DTR to annual net primary production

0.15

0.1

0.05

(NPP) from 2002 to 2021. The black dots mark the
areas where the regression results are significant at
the p<0.05 level. The inset shows the regression
coefficients (R.c.) across different climate zones
with a boxplot. The width of each box indicates the
interquartile range of the regression coefficients for
all grid points, the red line within each box repre-
sents the median, and the left and right edges of the
box indicate the first and third quartiles, respectively.
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(B) Ridge R.c. of NPP with summer DTR in four
regions: arid zones with increasing (inc.) DTR, arid
zones with decreasing (dec.) DTR, humid zones with
inc. DTR, and humid zones with dec. DTR. The inset

shows the spatial distribution of these four regions.
M Arid and inc. DTR
[T Arid and dec. DTR
[ Humid and inc. DTR
M Humid and dec. DTR

Regression coefficient

SM are key environmental factors that regulate vegetation growth. Using
seasonal environmental variables alongside annual NPP enables us to
capture carryover effects,”®'* such as the influence of environmental condi-
tions in one season (e.g., spring) on NPP in subsequent seasons (e.qg.,
summer and autumn). Given the inherent correlations among these seasonal
variables, ridge regression was essential to mitigate the effects of multi-
collinearity among the predictors. The regression results show that in the
summer season, which experienced the most pronounced DTR increase,
opposite NPP responses to DTR changes occurred in arid and humid zones
(Figure 2A). Specifically, there was an overall positive NPP response to DTR
increases in humid zones, while the NPP response in arid zones was
predominantly negative. We delved further into exploring whether DTR
increases or decreases led to differential impacts on NPP (Figure 2B). In arid
zones, regardless of whether summer DTR increased or decreased, annual
NPP showed a negative response to summer DTR changes. Conversely, in
humid zones, encompassing areas with increased summer DTR such as
southern China, the high latitudes of the Eurasian continent and North Amer-
ica, a widespread positive impact of summer DTR increases on annual NPP
is observed. However, in regions such as the eastern United States where
summer DTR has decreased, the influence of summer DTR on annual NPP
shows less distinct positive or negative characteristics. Across much of the
eastern United States, there is no significant increase in either summer DTR
(Figure 1B), Tmax (Figure S1E), or T (Figure ST1), indicating a lack of
substantial regional warming® and sub-diurnal asymmetric warming during
the study period. This could limit the influence of mean temperature and DTR
changes on vegetation productivity in the eastern United States.

The above findings suggest that in humid zones, the increased DTR has
positively influenced vegetation productivity. Daytime warming can enhance
plant carbon uptake by aligning the temperature closer to the optimum for
photosynthesis. Meanwhile, the relatively slower rate of nighttime warming is
conducive to mitigating carbon emissions resulting from respiratory
processes.'' Therefore, an increase in DTR is conducive to carbon absorp-
tion in humid zones. In contrast, in arid zones where vegetation faces water
limitations, the rise in DTR often coincides with higher daytime temperatures
and increased VPD,”" prompting vegetation to close their stomata, which
hinders photosynthesis and carbon uptake.**

In order to delineate the extent of the impact of summer DTR variations on
annual NPP, we quantified the relative contributions of DTR to NPP in both
humid and arid zones (Figure 3). Here, the relative contribution was derived
using the ridge regression coefficients, normalized by the sum of the abso-
lute values of all coefficients and scaled by the model's R-squared value. The
results reveal that in humid zones, the average contribution of summer DTR
variations to annual NPP variations was 6.5 = 4.1%. While this value is lower
than the contributions of summer solar radiation (10.1 + 4.9%) and summer
temperature (9.9 + 6.0%), it is around the contributions of spring temperature
(6.4 £ 4.2%) and spring solar radiation (5.2 + 3.4%) to annual NPP, indicating a
non-negligible positive influence of DTR variations on NPP. Conversely, in arid
zones, the average contribution of summer DTR variations to annual NPP

was 5.2 + 3.7%, lower than the contribution
from summer temperature (6.7 + 4.8%), but
close to that of summer solar radiation (5.4 + 3.6%).

Responses of different ecosystems to diurnal temperature range change

We employed flux tower measurements to analyze the effect of summer
DTR on annual NEE (with a negative value indicating net carbon uptake by the
land) in various ecosystems within the different zones of the extratropical NH.
First, we focus on the impact of DTR on NEE within the two most common
forest ecosystem types in the humid zones of the extratropical NH, namely
deciduous broadleaf forests (DBF) and evergreen needleleaf forests (ENF).”” A
significant negative linear correlation was observed between summer DTR
and annual NEE in DBF ecosystems (r=-0.33, p<0.05; Figure 4A), while the
corresponding correlation in ENF ecosystems was significant and weakly
positive (r=0.15, p<0.05; Figure 5A). A partial correlation analysis using the
site-level data indicates that the differing response of NEE to summer DTR in
the two forest ecosystem types can be attributed to a significant negative
(positive) correlation between NEE and T,a (Trmin) in DBF (Figure 4B), while in
ENF, the signs of the correlations are reversed (Figure 5B). We further
employed a covariance-based structural equation model (CB-SEM) to exam-
ine the relationships among summer environmental variables and annual
NEE in DBF and ENF ecosystems (Figures 4C & 5C). CB-SEM is advanta-
geous for testing complex theoretical models as it allows for simultaneous
estimation of multiple relationships. In DBF, the increases in DTR have had a
dual negative impact on NEE, suggesting an enhancement of plant daytime
photosynthesis driven by higher daytime temperatures, while the more grad-
ual rises in T, have likely resulted in a comparatively slower increase in
nighttime respiration. In ENF ecosystems, the faster increase in T, relative
to Trin has generally resulted in increased NEE (Figures 5B-C), resulting in a
weak positive correlation between DTR and NEE (Figure 5A).

The negative impact of DTR on NEE in DBF can likely be explained by the
positive influence of rising daytime temperatures on gross primary produc-
tion, while the more gradual increase in T, may have resulted in a relatively
smaller increase in nighttime respiration. In contrast, daily growth in conifers
was more closely linked to daily minimum rather than maximum tempera-
tures, consistent with previous findings.”'* A previous study suggests that
the cell doubling time of conifers remains relatively stable from 10 to 25°C,
but increases exponentially from 50 hours to almost 150 hours as tempera-
tures drop from 10 to 5°C, approaching infinity at 1-2°C.** Unlike cell forma-
tion, photosynthesis continues at low temperatures, with high assimilation
rates maintained even below 5°C.”"*" This suggests that conifers do not typi-
cally depend on higher T, to sustain photosynthesis. In fact, under extreme
heat or drought, high T..-induced VPD can increase the water stress on
conifers” and suppress photosynthesis. This explains the mixed effects of
Twin (Negative) and T, (positive) on NEE in ENF ecosystems. Nevertheless,
the positive impact of DTR on NEE in ENF ecosystems remains relatively
weak. Thus, despite the positive correlation between DTR and NEE in ENF
ecosystems, the overall impact of DTR on NEE (NPP) in the humid zones of
the extratropical NH is negative (positive), aligning with the positive effects of
DTR on NPP in DBF ecosystems.
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moisture (SM), and diurnal temperature range
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with the darker-colored line indicating the median,
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Whiskers depict the minimum and maximum contri-
bution values, excluding outliers exceeding 1.5 times
the interquartile range. The insets display the spatial
distribution of the contribution of summer DTR to
annual NPP.

5 10
Contribution (%)
0°

: 1 each other, allowing for optimal performance
: E - E : when dealing with highly correlated predictor

tent pattern in the response of NPP to DTR,

35 - - - - 35 -
- L — -
[ Spring 5 10 15 [ Spring
Summer Contribution (%) Summer
30} 0 30r
25} 25t
RS R
s |7 : E
2 : : 2
AL S £ 15)
o g o - 8 -
© : T F © . :
10 - N I ' 10F i
5 H : H B H - 5.@ - E
™ RS ™ RS

D"I'R

Observations from flux tower sites in grassland and cropland ecosystems
within the humid zones indicate no significant linear relationship between
DTR and NEE in these ecosystems (Figure S4). One contributing factor is the
stronger soil respiration relative to plant respiration in these two ecosystems,
leading to high uncertainty in detecting the response of vegetation productiv-
ity to changes in DTR. Additionally, intense human activities may interfere
with natural factors influencing cropland.*® In arid zones, the assessment of
the impact of summer DTR on annual NEE is hindered by the limited avail-
ability of flux tower sites. Focusing on the entire arid and semi-arid zones, we
found a significant positive linear relationship between summer DTR and
annual NEE within grassland ecosystems (Figure S5). Additionally, after
accounting for the influence of summer mean T, we detected a significant
negative partial correlation in grassland ecosystems between summer mean
Trax @and annual gross primary production (r,=-0.22, p<0.1), and a positive
partial correlation with NEE (r,=0.22, p<0.1). These results imply that daytime
warming may constrain productivity and carbon sequestration in local grass-
lands, possibly due to more water-limited conditions associated with
increased VPD and evapotranspiration.

DISCUSSION
Robustness of results

The impact of average temperature increase on vegetation productivity
appears to be diminishing in the backdrop of global warming.****" Our
research, however, illuminates another facet of temperature dynamics over
the past two decades—namely, expanding DTR—which is playing a major role
in shaping the carbon sequestration capacity of vegetation in the extratropi-
cal NH. We conducted a further investigation into the potential responses of
vegetation productivity to changes in DTR based on flux tower observations
in forested areas. Vegetation productivity is closely linked to NEE, particularly
within forest ecosystems.”' "™ We found that in regions where the annual NPP
responded positively to summer DTR changes, flux observations indicate a
corresponding negative response in annual NEE to summer DTR (Figure S6).
Conversely, in areas where the annual NPP exhibited a negative response to
summer DTR, NEE similarly displayed a positive response. Utilizing NEE data
upscaled using machine learning methods,”” we found that NEE and NPP
show similar responses (with opposite signs) to summer DTR, with a spatial
correlation coefficient of r=-0.45 (Figure S7A). This finding supports the
contrasting vegetation productivity responses in arid and humid zones, as an
increase in NPP typically strengthens the ecosystem's carbon sink capacity,
reflected as a decline in NEE.

Similar contrasting responses were detected when using solar-induced
fluorescence (SIF)'"® or the kernel normalized difference vegetation index
(kNDVI)"* as indicators of vegetation productivity. The spatial correlation with
the NPP responses was r=0.71 for SIF (Figure S8A) and r=0.66 for kNDVI
(Figure S8D). To ensure the robustness of our analysis, we also applied prin-
cipal component regression (PCR)™ as an additional statistical method. PCR
generates principal components that are orthogonal (i.e., uncorrelated) to

showing a high spatial correlation (r=0.84) with
the NPP responses identified through ridge
regression (Figure S8G). These findings are consistent with previous research
indicating that T, and vegetation indices are positively correlated in most
wet ecosystems across boreal regions, but negatively correlated in dry
temperate regions.'” Additionally, we found that asymmetric warming
between day and night has been most pronounced during the summer
season in the extratropical NH. The contributions of summer DTR changes in
both humid and arid zones to the annual NPP variation is comparable to the
effect of spring temperature variations. Similar contribution magnitudes of
DTR to vegetation productivity were obtained through the quantification of
predictor importance from both PCR (Figures S8H-I) and random forest
analyses (Figures S8J-K), and when using SIF (Figures S8B—C), kNDVI
(Figures S8E—F), or NEE (Figures S8B-C) as the indicator of vegetation
productivity instead of NPP.

Here, we chose annual vegetation productivity as the response variable
instead of monthly or seasonal values due to the substantial uncertainties
associated with estimating NPP at shorter time scales. The NPP product
from MODIS is derived from gross primary production by subtracting
autotrophic respiration, which includes the growth and maintenance respira-
tion of leaves, stems, and roots—processes that are inherently complex™*®
and vary significantly across seasons and longer timescales.”"These factors
make accurately scaling and modeling autotrophic respiration at shorter
intervals highly challenging.”” Moreover, using annual NPP allows for the
capture of carryover effects of environmental variables.'*'* To further account
for the possibility of carryover effects, we performed additional analyses that
incorporated environmental variables from both the current year and previ-
ous year's seasons as predictors. These analyses produced consistent
spatial patterns of the annual NPP response to summer DTR (Figure S9A)
and similar magnitudes of DTR contributions to vegetation productivity
(Figures S9B—C), reinforcing the robustness of our conclusions. However, it is
important to note that using seasonal variables as independent variables and
annual variables as the dependent variable may introduce some uncertainty
due to the high correlation among independent variables. To further enhance
the reliability of our findings, we conducted additional analyses using envi-
ronmental variables from the growing season (May—October) as indepen-
dent variables and growing season NEE as the dependent variable. The
results further confirm the contrasting responses of vegetation productivity to
DTR changes in arid and humid zones (Figure S10) and reveal distinct
responses of NEE to DTR in deciduous broadleaf forests and evergreen
needleleaf forests (Figure S11).

variables.”"** This method confirmed a consis-
SM

DTR

Mechanisms underlying divergent NPP responses to DTR changes in arid
and humid zones

The contrasting effects of increased DTR on vegetation productivity
between arid and humid zones suggest that daytime warming limits produc-
tivity and carbon sequestration in water-limited environments, where elevated
Tmax drive higher VPD and evapotranspiration, intensifying moisture stress. To
reveal the potential effects of DTR changes on VPD, we analyzed half-hourly
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Figure 4. Impact of summer diurnal temperature range (DTR) on annual net ecosystem exchange (NEE) in deciduous broadleaf forest (DBF) ecosystems in humid zones
during 2002-2021 (A) Relationship between summer DTR and annual NEE. Each dot represents the annual NEE (y-axis) corresponding to the summer mean DTR (x-axis) across
all sites and years within the ecosystem type. The Pearson correlation coefficient (r) is shown in the lower part of the figure. (B) Partial correlation coefficient of annual NEE with
summer mean daily maximum temperature (T,..,) or daily minimum temperature (T ), while controlling for the other temperature. The asterisk indicates the significance level
(* p<0.05, *+: p<0.01). (C) The hypothesized effects of summer solar radiation (RS), soil moisture (SM), T.x and Tnin on annual NEE, based on structural equation modeling.
Double-headed gray arrows denote covariance between variables, while single-headed arrows indicate one-way causation, with positive and negative relationships in yellow and
blue, respectively. Arrow thicknesses correspond to the strength of the relationships, with numbers next to the arrows representing the magnitude of the direct coefficients. The
numbers below the graphs show the comparative fit index (CFl), adjusted goodness of fit index (AGFI) and root mean square error of approximation (RMSEA) of the structural
equation models.
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Figure 5. Impact of summer diurnal temperature range (DTR) on annual net ecosystem exchange (NEE) in evergreen needleleaf forest (ENF) ecosystems in humid zones
during 2002-2021 (A) Relationship between summer DTR and annual NEE. Each dot represents the annual NEE (y-axis) corresponding to the summer mean DTR (x-axis) across
all sites and years within the ecosystem type. The Pearson correlation coefficient (r) is shown in the lower part of the figure. (B) Partial correlation coefficient of annual NEE with
summer mean daily maximum temperature (T,,,) or daily minimum temperature (T,,,), while controlling for the other temperature. The asterisk indicates the significance level
(*: p<0.05, **: p<0.01). (C) The hypothesized effects of summer solar radiation (RS), soil moisture (SM), T..x and Tni» on annual NEE, based on structural equation modeling.
Double-headed gray arrows denote covariance between variables, while single-headed arrows indicate one-way causation, with positive and negative relationships in yellow and
blue, respectively. Arrow thicknesses correspond to the strength of the relationships, with numbers next to the arrows representing the magnitude of the direct coefficients. The
numbers below the graphs show the comparative fit index (CFl), adjusted goodness of fit index (AGFI) and root mean square error of approximation (RMSEA) of the structural
equation models.

observations of air temperature and VPD from flux tower sites during the
summer season (Figure 6A). VPD shows substantial diurnal variations, typi-
cally reaching minimum values between 0500 and 0600 local solar time
(LST) and peaking between 1400 and 1500 LST in both arid/semi-arid and
semi-humid/humid zones (Figures 6B—C). This diurnal cycle in VPD primarily
arises from diurnal temperature changes, as indicated by the median R? of
linear regressions between mean diurnal variations in temperature and VPD,
which reaches 98% in both arid/semi-arid and semi-humid/humid zones
(Figures 6B—C). The presence of this diurnal cycle suggests that changes in
VPD during daytime (VPDgayime) @nd nighttime (VPDygnuime) May have differ-
ent effects on the daily average VPD. Ridge regression and random forest
regression analyses based on daily observations reveal that both the ridge

regression coefficients of VPDg,yime ON daily average VPD, and the out-of-bag
prediction error estimation of the random forest model, are significantly
higher than those of VPD,gyime ON daily average VPD (p<0.001, Student's t-
test; Figure S12). This suggests that VPDy,ime €Xerts a greater influence on
daily average VPD changes than VPD,jgime. Therefore, DTR increases driven
by accelerated daytime temperatures or T, tend to result in elevated daily
average VPD.

The above analysis elucidates a potential mechanism by which DTR
changes impact VPD. Moreover, the larger diurnal cycle of VPD in arid zones
compared to humid zones (Figures 6B—C) indicates that there may be differ-
ences in the extent to which DTR changes have affected VPD between these
two zones. To quantify the potential impact of DTR changes on VPD, we used
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Figure 6. Averaged summer diurnal variations in vapor pressure deficit (VPD) and temperature during 2002-2021 (A) Locations of flux tower sites in arid/semi-arid and semi-
humid/humid zones. (B) and (C) Averaged summer diurnal variations in VPD in arid/semi-arid zones (B) and semi-humid/humid zones (C). The y-axis represents the summer-
average half-hourly VPD deviations (VPDgeyiation) from the daily mean. The thick lines represent the mean value and the shading the standard deviation around the mean for differ-
ent sites within each zone. The insets display the summer-average half-hourly temperature deviations (T geviation) from the daily mean. The R-squared value (R?) for the regression
of average diurnal variations in temperature on average diurnal variations in VPD is depicted in the upper left, with the mean value and 95% confidence interval displayed by red
dots and error bars, respectively.
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Figure 7. Vapor pressure deficit (VPD) variation and its relationship with changes in diurnal temperature range (DTR) during 2002-2021 (A) Spatial distribution of multi-year
(2002-2021) summer average AVPD, defined as the difference between daily average VPD calculated using sub-daily temperature and relative humidity, and daily VPD calcu-
lated using daily average temperature (T) and relative humidity. The variable AVPD is an indicator of the asymmetric effect of sub-diurnal temperature variations on daily aver-
age VPD. Observations of temperature and relative humidity were taken from the HadISD dataset. (B) and (C) The relationship between the multi-year summer average AVPD
and aridity index (Al, B) or multi-year summer average T (C), with the Pearson correlation coefficient () displayed. (D) Relationship between summer DTR and AVPD in arid and
humid zones. Each dot represents the summer average AVPD (y-axis) corresponding to the summer average DTR (x-axis) across all sites and years (2002—-2021) within the arid

and humid zones. The inset displays the locations of the observations in arid (yellow point), humid (blue point), and semi-arid/semi-humid (gray point) zones.

two methods to calculate daily VPD based on sub-daily (3-hourly or hourly)®
temperature and relative humidity data from the in-situ HadISD dataset.”’ In
the first method, we calculated VPD at sub-daily intervals and averaged these
values to obtain the daily mean VPD (VPDgpaaiy—aaiy)- IN the second method,
we calculated VPDyyy, directly using daily mean temperature and relative
humidity values. The difference between VPDgpdaiy—daiy @Nd VPDyyy, referred
to as AVPD, represents the effect of sub-diurnal temperature variations on
the daily average VPD. This difference primarily arises from the nonlinear
relationship between VPD and temperature.

We found that AVPD was generally positive (Figure T7A), revealing a
systematic underestimation of VPD when using daily average temperature
and relative humidity for its calculation. As expected, there is a strong posi-
tive correlation between DTR and AVPD(r=0.92, p<0.01, Figure S13A).
Spatially, AVPD exhibits higher values in arid zones compared to humid

zones. Due to the negative correlation between the aridity index (Al) and DTR
(Figure S13B) and the positive correlation between DTR and AVPD, AVPD
significantly decreases with increasing Al (r=-0.58, p<0.01, Figure 7B).
Beyond its negative relationship with Al, AVPD also exhibits a positive corre-
lation with mean temperature (r=0.36, p<0.01, Figure 7C). Based on the Clau-
sius—Clapeyron relation, higher baseline temperatures in arid zones can
amplify increases in saturation vapor pressure, resulting in larger increases in
VPD. In arid zones, the linear increase in AVPD per unit DTR increase (0.15
hPa °C™") is about 25% higher than in humid zones (0.12 hPa °C™"; Figure 7D).
Consequently, VPDgypaaiy—daiy IN arid zones can increase more rapidly with
rising DTR (0.66 hPa °C™") compared to humid zones (0.56 hPa °C™, p<0.01;
Figure S14). These findings suggest that compared to humid zones, DTR
increases in arid zones lead to greater increases in VPD. Combined with
recent findings that increased VPD negatively impacts vegetation productiv-
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ity in arid zones while it may have neutral effects in humid zones,”"® the inhi-
bition of vegetation productivity due to broadening DTR is stronger in the arid
zone than the humid zone due to asymmetric effects on VPD.

The above findings shed light on an unresolved question: why increasing
Tmin Which correlates with decreasing DTR, has positively impacted produc-
tivity in primarily arid zones.'®'" Previous research has shown that in humid
regions, the negative effect of rising air temperature on SIF—primarily through
increased VPD, which inhibits vegetation productivity—has reached nearly
40% of the positive effect of air temperature on SIF. In contrast, in arid zones,
the negative effect of rising air temperature through increased VPD was
almost 125% of the direct positive effect of rising air temperature on SIF.*'
These findings suggest that in most cases, temperature increases in humid
zones tend to enhance vegetation productivity, whereas in arid zones, the
negative impact of VPD increase, driven by rising temperatures, outweighs
the positive effect of temperature on vegetation productivity. Here we found
that an increase in DTR leads to a rise in VPD in both arid and humid zones.
In humid zones, the negative effect of VPD increase on vegetation productiv-
ity is relatively small and is likely far outweighed by the positive effect of
daytime temperature increases on photosynthesis. However, in arid zones,
the nonlinear response of VPD to temperature increases means that a unit
increase in DTR results in a greater rise in VPD compared to humid zones.
Additionally, since the negative impact of rising VPD on vegetation productiv-
ity outweighs the positive effects caused by rising temperature in arid zones,
increasing daytime temperature and DTR have had an overall negative influ-
ence on vegetation productivity in these areas.

Limitations and implications

Changes in DTR resulting from asymmetric warming between day and
night may affect vegetation productivity not only by directly influencing
photosynthesis and respiration, but also indirectly by impacting events that
suppress vegetation productivity, such as fires**® and droughts.”"" Further-
more, while the overall increase in summer DTR is most notable, there are
also significant trends of increased DTR in spring or autumn in specific loca-
tions, potentially impacting local vegetation phenology,”®™* and conse-
quently, vegetation productivity. In-depth investigation aimed at comprehen-
sively assessing and understanding the effects of recent non-uniform climate
warming on terrestrial ecosystems from various perspectives is still pending.
Considering the substantial impact of northern boreal and temperate forests
on the global carbon sink,”*™® particular attention should be directed towards
understanding the response of northern ecosystems to recent asymmetric
warming dynamics. Notably, our findings suggest that VPD calculated using
daily mean temperature and relative humidity tends to underestimate the true
daily mean VPD across most land regions. Given the influence of diurnal
temperature variation on VPD, future studies should incorporate both T, .«
and T, In VPD calculations to achieve more accurate assessments.

Due to the current limitations of Earth system models in accurately simu-
lating trends in DTR,” a skillful prediction of future DTR variation and its influ-
ence on the spatial distribution patterns of vegetation productivity presents a
substantial challenge that lies ahead. Here, we have reported opposing
collective influences of DTR, air temperature, and solar radiation variations on
NPP in humid and arid zones in the extratropical NH over the recent two
decades. If these relationships persist, future increases in DTR—possibly in
conjunction with global warming and brightening—"""" could further widen
the vegetation productivity gap between extratropical NH humid and arid
zones, highlighting the need for careful consideration and attention.
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