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Consider an open quantum system with (discrete-time) Markovian dynamics. Our
task is to store information in the system in such a way that it can be retrieved perfectly,
even after the system is left to evolve for an arbitrarily long time. We show that this
is impossible for classical (resp. quantum) information precisely when the dynamics is
mixing (resp. asymptotically entanglement breaking). Furthermore, we provide tight
universal upper bounds on the minimum time after which any such dynamics ‘scrambles’
the encoded information beyond the point of perfect retrieval. On the other hand, for
dynamics that are not of this kind, we show that information must be encoded inside the
peripheral space associated with the dynamics in order for it to be perfectly recoverable
at any time in the future. This allows us to derive explicit formulas for the maximum
amount of information that can be protected from noise in terms of the structure of
the peripheral space of the dynamics.

1 Introduction

Systems of relevance in quantum information-processing tasks are typically open, i.e. they have
unavoidable interactions with their surroundings. The external system modelling the surrounding
of the original system is usually called its environment or a bath. An interesting scenario, which is
amenable to rigorous analysis, is one in which the interaction between the system and the bath is
assumed to be weak. In this so-called weak-coupling limit, the decay times of correlation functions
of the bath are much shorter than the typical time scale over which the state of the system changes
significantly. In other words, the bath ‘forgets’ about its interaction with the system and returns
to its steady state quickly relative to the speed at which the system evolves. Since in subsequent
interactions, the bath does not remember the details of the previous interaction, the dynamics
of the system becomes Markovian. Mathematically, the reduced dynamics of the system can be
modelled by a (discrete- or continuous-time) quantum Markov semigroup [16, 2, 3, 5, 57].

In this paper, we consider a finite-dimensional open quantum system comprised of a number of
qubits, say | € N, which undergoes a Markovian evolution. Our task is to store information in the
system in such a way that it can be recovered perfectly without any error, even after the system is
left to evolve for an arbitrarily long time. We can think of the system as a quantum memory in
which we wish to store information so that it can be perfectly retrieved in the future. We focus on
the discrete-time scenario, where the evolution of the system is given by a discrete-time quantum
Markov semigroup (dQMS). If H ~ (C2)®! is the Hilbert space of the system, then any dQMS is
of the form {®"},en, where @ : L(H) — L(H) is a quantum channel (i.e. a linear, completely
positive, and trace-preserving map between linear operators acting on H) and

" =PoPo...0od
—_——
n times

is the n-fold composition of the channel with itself. The nomenclature arises from the fact that
compositions of the channel clearly satisfy the semigroup property: ®"T™ = &" o &™, for all
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n,m € N. The task described above can be thought of as communicating information across time,
i.e. through channels ®", where n € N plays the role of the time parameter. In Shannon theory
[47, 46, 56], such communication problems are traditionally studied in the so-called asymptotic and
memoryless setting, where one analyzes the optimal rates of information transmission via many
independent and identical (IID) uses, say [, of a given channel in the limit of I — co. For the data
storage problem that we consider, this framework is unsuitable for two reasons. Firstly, the noise in
the memory might act in a correlated fashion across some of the qubits, so that the channel ® might
not act independently and identically on all [ qubits inside the memory. Secondly, since current
quantum technologies can only coherently manipulate a few hundred qubits at most [41], it is
pertinent to analyze storage capacities of memory devices with a small number of qubits (I ~ 100),
thus making the asymptotic | — oo limit rather unrealistic. These concerns are addressed by
the framework of one-shot information theory [29], where the focus is on determining how much
information can be transmitted via a single use of a given channel with some allowed transmission
error. We now introduce this framework in the zero-error setting.

In order to transmit M classical messages perfectly through a channel ® : £L(H) — L(H), one
must encode the M messages in quantum states {p,, }2_; C £L(#H) such that

Vm #m': ®(pm) L @(pm), (1)

where two states p, o are orthogonal (p L o) if their supports are orthogonal as subspaces. The
interpretation here is that for any choice of encoding of the M classical messages on the input side,
the set of output states have to be perfectly distinguishable in order for the receiver to decode
the intended message via a measurement without error, which is possible if and only if the output
states are pairwise orthogonal. The maximum number of bits that can be transmitted in this
fashion through @ is called the (one-shot) zero-error classical capacity of ®. Similarly, in order to
send an M —dimensional quantum system perfectly through ®, one must find an encoding subspace
C C H with dimC = M such that there exists a recovery channel R satisfying

Ro®(p)=p (2)

for all quantum states p supported inside C. The maximum number of qubits that can be trans-
mitted in this fashion through ® is called the (one-shot) zero-error quantum capacity of ®. We
denote these capacities in the classical and quantum case, respectively, by

cV(@) and Q" ().

1.1 Main results

We now summarize the primary contribution of our work. Consider a quantum system A whose
time evolution is governed by a dQMS {®"},,en, where ® : L(H) — L(H) is a quantum channel
and d = dim H. We address the following questions/problems in this paper:

e Does there exist a finite time n € N at which the one-shot zero-error classical (resp. quantum)
capacity of ®” vanishes? If yes, we say that the dQMS {®"},en is eventually c-scrambling
(resp. g-scrambling). In this case, the dynamics is so noisy that no matter how cleverly we
encode information in A, eventually, we will not be able to perfectly recover it.

e For an eventually scrambling dQMS {®"},,cn, we denote the minimum time n € N at which
O™ loses its ability to perfectly transmit classical (resp. quantum) information by ¢(®) (resp.
q(®)) and refer to it as the classical (resp. quantum) scrambling time (or the scrambling
index) of ®. This is the minimum time after which any encoded information in the system
will get ‘scrambled’ beyond the point of perfect recovery. Finding bounds on the scrambling
times ¢(®) and ¢(®P) of the dynamics is a natural problem to consider.

e Finally, if the dQMS is not eventually scrambling, what is the optimal way to encode infor-
mation in such a way that it is protected from noise for an arbitrarily long time?

Our main results provide full solutions to all of the above. Firstly, we completely characterize
the class of eventually scrambling dQMS.
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Theorem 1.1. A dQMS {®"},cn governing the dynamics of an open quantum system is

o eventually g-scrambling if and only if it is asymptotically entanglement breaking, i.e., if and
only if all the limit points of the semigroup {®"},en are entanglement breaking.

o eventually c-scrambling if and only if it is mixing, i.e., if and only if there exists a state
p € L(H) such that
VX € L(H): lim ®"(X) = Tr(X)p.
n—oo

Note that Theorem 1.1 provides an information theoretic interpretation to the entanglement-
breaking and mixing behaviours of dQMS, which have been extensively studied in the literature
[6, 35, 21].

Secondly, we provide a universal upper bound on the scrambling times of all eventually scram-
bling dQMS that scales quadratically with the dimension of the system. Moreover, we show that
this quadratic dependence is optimal in the classical case by exhibiting an explicit class of dQMS
whose classical scrambling time scales quadratically with the system dimension.

Theorem 1.2. For an eventually c-scrambling dQMS {®"},en governing the dynamics of a
d—dimensional system, the scrambling times satisfy q(®) < c¢(®) < d2. Moreover, there exists
a dQMS {®"},en acting on a d—dimensional system such that

(@) = {dg_;d*ﬂ .

Theorem 1.3. For an eventually gq-scrambling dQMS {®"},en governing the dynamics of a
d—dimensional system, the scrambling time satisfies q(®) < d?.

The above results are special cases of a more general phenomenon. It turns out that for a
d—dimensional quantum system, there exists a universal dimension-dependent time-scale after
which the zero-error capacities of any dQMS acting on the system stabilize.

Theorem 1.4. For any dQMS {®"},en governing the dynamics of a d—dimensional quantum
system, there exists N < d? such that

VneN: QP@Y)=qQ\@Ntm),
1 1 n
G (@) = G5 (@),
Finally, if the dynamics {®"},cn of the system is not eventually scrambling, we show that the

optimal way to encode information in order to protect it from noise is to do it inside the peripheral
space x(®) of the channel ®, which is defined as the span of all its peripheral eigenoperators:

X(®) :=span{X € L(H) : D(X) = AX, |\ = 1}.

The structure of this space is well understood: for any channel ® : £L(H) — L(H), there exists
an orthogonal decomposition H = Hg @@5:1 Hi,1 @Hy, 2 and positive definite states py € L(Hy 2)
such that [57, Theorem 6.16]:

P~

X(®) =0 (L Hr,1) ® pr)- (3)

k=1

Moreover, there exist unitaries Uy, € L(H,1) and a permutation m which permutes within subsets

of {1,2,..., K} for which the corresponding Hjy 1’s have the same dimension, such that for any
K K
XZO@@xk®pk, @(X)ZO@@UZxW(k)Uk(@pk.
k=1 k=1

From the above peripheral decomposition, it is not too hard to deduce that any information
encoded inside the £(#Hg,1) blocks is shielded from noise for an arbitrarily long time. Furthermore,
in the asymptotic limit, it turns out that this is the best one can do.
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Theorem 1.5. For any dQMS {®"},.en, we have

K
lim CY(@") =log }_ dim Hy. 1.

n—00
k=1

lim Qél)(fI)") = logmax dim Hy, ;.
n— 00 k

Note that because of Theorem 1.4, the limits above are actually attained at a finite time
n < d?. Two special cases of this result are worth highlighting. If ® is a classical channel given by
a stochastic matrix M:

d(X) = Z M5 X5 i)l

the Hy 1 blocks in Eq. (3) become one-dimensional (since otherwise the channel would have non-zero
quantum capacity, which is impossible). Hence, >, dim H; 1 = dim x(®) = number of peripheral
eigenvalues of M (counted with multiplicities). Similarly, if ® is a quantum channel with a unique
fixed state, the Hy 1 blocks become one-dimensional [57], and we get

lim C’(()l)(CI)") = log dim x(®).

n—oo
Remark 1.6. The long-time capacities of a continuous-time Quantum Markov Semigroup {¥; =
e'“}i>0 generated by a Lindbladian L [18, 37] can be calculated by choosing ® = ¥y = e*, for
instance, and applying the formulas from Theorem 1.5 for the dQMS {®"},en. It is easy to see
that the choice t =1 is irrelevant here, since the peripheral space x(¥;) is independent of t [17].

1.2 Proof ideas

Two key ingredients are used in the proofs of our results. The first is a reformulation of the zero-
error capacity of any channel ® in terms of its operator system. If {K;}; is a set of Kraus operators
of & : L(H) — L(H), the operator system Sg := spani7j{K;rKj} is a t—closed subspace of L(H)
containing the identity [39]. The error-correction condition in Eq. (1) can be restated as

Vm #m' || L Se [13].

A similar reformulation can be done for the quantum case in Eq. (2) by exploiting the Knill-
Laflamme error correction conditions [30]. Hence, the zero-error capacities of any channel ® are
purely a function of its operator system. Now, for any dQMS {®"},,en, we show that the corre-
sponding operator systems form an increasing chain of subspaces in £(#) which stabilizes at time
N < (dim#H)?:

S C Sp2 C...C Senv = Spn+1 = ... = Senin =....

This proves that the zero-error capacities must also stabilize after time N (Theorem 1.4). The
second key ingredient we use is the fact that for any dQMS {®"},en, there exists an increasing
subsequence (n;);en such that ® — P, as i — oo [57, Proposition 6.3], where P, is the channel
that projects onto the peripheral space x(®). This shows that the capacities of ®” must stabilize to
the corresponding capacities of P,, which can be explicitly computed in terms of the block structure
of x(®) (see Eq. (3)). The characterization of eventually scrambling dQMS follows easily from this.
Clearly, a dQMS {®"}, cN is eventually c-scrambling < Zszl dimHi 1 =1 <= dimx(®) =
1 < ® admits a unique fixed state and no other peripheral eigenoperators, which is equivalent
to the dQMS being mixing in the sense of Theorem 1.1. The quantum case follows similarly by
exploiting the results derived in [35] on asymptotically entanglement-breaking channels. We refer
the reader to Appendix B for complete proofs of all the main results.

1.3 Auxiliary Results

We derive several auxiliary results in the appendices, which might be of independent interest. We
list a few of them below.
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e We prove that if a dQMS {®"},,cn is eventually c-scrambling, then the one-shot zero error
entanglement assisted classical capacity of ®™ also vanishes for some n € N, see Theorem B.1.
Moreover, the entanglement assisted classical scrambling time cg(®), defined analogously to
c(®), also satisfies cg(®) < d?, see Theorem B.10 and Corollary B.11.

e We provide an equivalent characterization of mixing channels in terms of minimal invariant
subspaces', see Theorem C.3. This result is a generalization of [45, Proposition 3] where
such a characterization was obtained for the smaller class of primitive® channels.

e We exhibit a close link between the Wielandt index [45, 43, 38, 28] of a channel and its
scrambling time. It turns out that if ® is a primitive channel, there exists n € N such
that ®" is strictly positive (i.e., it sends any input state to a full rank output state), and
the minimum such n is called the Wielandt index of ® (denoted w(®)). For any primitive
channel, it is easy to check that ¢(®) < w(®). In case P is also unital, we obtain a reverse
inequality: w(®) < (d — 1)¢(®), see Corollary C.9.

e We show that for the so-called diagonal unitary covariant channels [53], the properties of strict
positivity, scrambling, primitivity, and mixing are equivalent to the corresponding properties
of a classical stochastic matrix, see Theorems C.20, C.21, C.22, and C.23.

2 Discussion and Outlook

In this work, we analyze how information can be transmitted across sequential concatenations of
a quantum channel ®. Physically speaking, we investigate how information stored in an open
quantum system propagates over time as the system evolves according to a discrete-time Quantum
Markov Semigroup {®"},cn. We show that any information stored inside the peripheral space
x(®) is protected from noise for all times n € N. Furthermore, we prove that this is the optimal
encoding strategy in the limit of n — oo. This allows us to derive explicit formulas for the
information transmission capacities of any dQMS in the limit of n — oo in terms of the block
structure of x(®). Here, it would be interesting to analyze whether the decomposition of x(®) in
Eq. (3) is efficiently computable, which in turn would make the capacity formulas of Theorem 1.5
efficiently computable. We also show that a system is asymptotically useless for storing classical
(resp. quantum) information if and only if the dQMS governing its dynamics is mixing (resp.
asymptotically entanglement breaking). Interestingly, we exhibit a universal time scale n < d?,
after which the information transmission capacity of any dQMS acting on a d—dimensional system
stabilizes. We prove that the quadratic dimension dependence is tight for classical capacity and
we expect the same to be true for quantum capacity.

The sequential view of information transmission that we consider opens a host of exciting
research directions. While we have considered a simple Markovian model for the dynamics of the
open system, it would be interesting to perform the same analysis for other kinds of dynamics,
such as repeated interaction systems [4, 19, 8] and other non-Markovian dynamics. Apart from the
standard classical and quantum capacities, other kinds of transmission rates can also be considered,
such as those where assistance from external resources like correlations and entanglement are
supplied to aid in communication [9, 10, 36, 14]. Finally, it would be interesting to drop the zero-
error constraint and analyse approximate capacities, where information is required to be recovered
only approximately with a certain error threshold.

Note. Many of the open questions posed in this discussion have been recently resolved, see
[17, 50, 51].

1A minimal invariant subspace is a subspace of the Hilbert space that is left invariant by the action of the channel
and does not contain any non-trivial, smaller subspace with the same property

2A mixing channel is called primitive if its unique fixed state has full rank.
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Appendix A Preliminaries

In this paper, we always work with finite-dimensional Hilbert spaces and denote them by H. L(H)
denotes the algebra of linear operators acting on H. The set of quantum states (density matrices)
on H is denoted by D(H) := {p € L(H) : p > 0, Tr(p) = 1}. The identity operator on H is
denoted by 1 € L(H). Note that if dimH = d, H ~ C% and L(H) ~ M4(C), where My(C) denotes
the matrix algebra of all d x d complex matrices. We denote the Hilbert space associated to a
quantum system A by H 4. Pure states of the system A are denoted either by normalized kets
|t)) € H 4 or by the corresponding rank one projections ¢ := |9 )| € L(H.4).

A quantum channel ® : L(H4) — L(Hp) is a linear, completely positive, and trace-preserving
map. ® is said to be unital if ®(14) = 1. The adjoint of the channel ®, with respect to the
Hilbert-Schmidt inner product, is the linear map ®* : L(Hp) — L(Ha) defined through the
relation Tr(®*(X)Y) = Tr(X®(Y)), for any X € L(Ha) and Y € L(Hp). It is completely positive
and unital. In this paper, all logarithms are taken to base 2.

A discrete quantum Markov semigroup (dQMS) associated with a quantum channel ® : L(H) —
L(H) is the sequence {®"},,en. Here, the ‘semigroup’ terminology simply refers to the fact that
the sequence {®"}, N is closed with respect to compositions: ®" o & = "*+™_ We can think of
a dQMS as governing the time evolution of an open quantum system A, with n € N acting as the
discrete time parameter.

Remark 1. As mentioned in the Introduction, we are interested in studying zero-error commu-
nication through discrete quantum Markov semigroups. Hence, we will mostly focus on quantum
channels ® : £L(H4) — L(Hp) whose input and output spaces are the same Hy = Hp = H ~
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C?. Using the isomorphism £(C%) ~ My(C), we will interchangeably denote such channels by
O L(H) = L(H) or D : My(C) — My(C) and use S4(C) to denote the set of quantum states D(H).

A.1 Spectral and ergodic properties

Every quantum channel ® : £L(H) — L(H) admits a quantum state p € D(H) as a fixed point:
®(p) = p [54, Theorem 4.24]. In other words, A = 1 is always an eigenvalue of ®. The spectrum
(denoted spec ®) of ® is contained within the unit disk {z € C: |z| < 1} in the complex plane and
is invariant under complex conjugation, i.e., A € spec® = X € spec ®. The peripheral spectrum
of @ consists of all peripheral eigenvalues A € TNspec ®, where T := {z € C: |z| = 1}. It is known
that the geometric and algebraic multiplicities of all peripheral eigenvalues of a quantum channel
are equal [57, Proposition 6.2]. A peripheral eigenvalue is called simple if it has unit multiplicity.
A quantum channel and its adjoint both share the same spectrum, spec ® = spec ®*.

We now introduce the notions of ergodic and mixing quantum channels. For a more detailed
study of the ergodic theory of quantum channels, the readers should refer to [6, 57, 52]

Theorem A.1. For a quantum channel ® : L(H) — L(H), the following are equivalent.
e A =1 1is a simple eigenvalue of ®.

o There exists a state p € D(H) such that for all X € L(H),

N-1
1 n B
Jim nz;o d"(X) = Tr(X)p.

A channel ® (or a dQMS {®"},en) satisfying these equivalent conditions is said to be ergodic.
The unique fized point p € D(H) of ® is called the invariant state of ®. If, in addition, the unique
invariant state has full rank, then the channel and the associated dQMS are said to be irreducible.

Theorem A.2. For a quantum channel ® : L(H) — L(H), the following are equivalent.
1. A =1 is a simple eigenvalue of ® and there are no other peripheral eigenvalues of ®.
2. There exists a state p € D(H) such that for all X € L(H),
lim " (X) = Tr(X)p.

n—oo
A channel ® (or a dQMS {®"},en) satisfying these equivalent conditions is said to be mixing.
If, in addition, the unique invariant state of ® has full rank, then the channel and the associated
dQMS are said to be primitive.

The peripheral space of a channel ® : £L(H) — L(#) is defined as the span of all its peripheral
eigenoperators:
X(®) :=span{X € L(H) : D(X) = AX, |\ =1}

For any channel ® : £L(H) — L(H), there exists a decomposition H = Hg P EBkK:1 Hi1 @ Hi 2
and positive definite states pr € L(Hy,2) such that [57, Theorem 6.16]:

K
x(®) = 08 DEH) @ pi). )
k=1
Moreover, there exist unitaries Uy, € L£(Hy,1) and a permutation 7 which permutes within subsets
of {1,2,..., K} for which the corresponding #j 1’s have the same dimension, such that for any
K K
X = O@@Ik ®pr, (X)=0 EDU;IIw(k)Uk ® pk-
k=1 k=1

A channel @ : L(H4) — L(Hp) is called entanglement-breaking if local action of ® on any
bipartite system breaks all entanglement in the system, i.e., for all states p € D(Ha ® Hg),
(® ®idR)(p) is separable, where R is an arbitrary reference system.

A channel @ : L(H) — L(H) (or a dQMS {®"},.en) is called
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e cventually entanglement-breaking if there exists an n € N such that ®" is entanglement-
breaking.

e asymptotically entanglement-breaking if all the limit points of the set {®"},,cN are entanglement-
breaking.

It is known that for any channel ® : £(H) — L(#), the limit points of the set {®"},en are
either all entanglement-breaking or none of them are [35]. Moreover, the following result was
derived in [35, Theorem 32].

Theorem A.3. Let ® : L(H) — L(H) be a quantum channel. The following are equivalent:
o D is asymptotically entanglement-breaking.
o All the L(Hy,1) blocks in the peripheral decomposition in eq. (4) are one-dimensional.

o All peripheral points of ® communte with one another, i.e. YX,Y € x(®), [X,Y] = XY —
YX =0.

For an elaborate discussion of eventually entanglement-breaking and asymptotically entanglement-
breaking quantum channels, the readers should refer to [35, 21].

A.2 Fixed points and multiplicative domains
Given a channel ® on My(C), the set of fixed points of ® is the set
Fixe = {A € My(C)| ®(A) = A}.

Note that it is a vector subspace of My(C) which is closed under taking adjoints. If the channel ®
is unital, then the set Fixg is also closed under multiplication and hence is a C*-subalgebra ([33]).
Recall that a (operator) norm-closed subset of £(#) that is closed under addition, multiplication,
and the x-operation is called a C*-algebra.

The multiplicative domain of ® is defined to be the following set

Mg = {A € Mg(C)] B(AX) = B(A)D(X), B(XA) = B(X)B(A),VX € Mg(C)}.

For unital channels, it holds that
Fin> = A/,
where A is the C*-algebra generated by the Kraus operators of ® and A’ is the algebra that
commutes with A. Also, it is known that for unital channels one has

Mo = Fixg+oo-

The multiplicative domain shrinks under the iterations of a unital channel. Indeed, let Mg~ denote
the multiplicative domain of ®™ for each n € N, then it holds that ([42])

Mg D Mgz D Man D--- .

The above chain stabilizes at a set which we denote as Mg~ = ﬂnGN Meon and call the stabilized
multiplicative domain of ® and it is invariant under repeated applications of the channel.

A.3 Contraction coefficient

The contraction coefficient of a quantum channel ® : L(H4) — L(Hp) with respect to the trace
norm is defined as follows [23]:

. P(p) — P(o
@)y 1202
p,0€ED(Ha) lp=oly
p#o
Lemma A.4. [}4, Theorem 2] For a quantum channel ® : L(Ha) — L(HB),
. 1
n"(@) = sup [ @(p) - 2(0)];.
p,ﬂeli(HA)
plo

Moreover, the states in the supremum above can be taken to be pure.
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A.4 Zero error communication

Let Alice and Bob be linked via a quantum channel ® : L(H4) — L(Hp). Suppose Alice wants
to communicate M > 2 classical messages to Bob perfectly without error. This is possible if and
only if she can encode the M messages in states

{pm}M_| C D(Ha) suchthat Vm#m': ®(pn) L ®(pmr),

where we say that two positive operators X,Y > 0 are orthogonal (X L Y) if their supports are
orthogonal as subspaces, which is equivalent to saying that Tr(XY) = 0. The interpretation here
is that for any choice of encoding of the M classical messages on the input side, the set of output
states would have to be perfectly distinguishable in order for Bob to decode the intended classical
message via a measurement without error, which is possible if and only if the output states are
pairwise orthogonal. Note that if p € D(H4) is a mixed state and |¢) € supp(p), there exists an
€ > 0 such that ¢ < ep. Therefore, ®(¢)) < e®(p) and supp(P(v))) C supp(®(p)). Thus, without
loss of generality, all the encoding states in the above scheme can be taken to be pure. With this
background, we can introduce the following definition.

Definition A.5. The one-shot zero-error classical capacity C(()l)(q)) of a channel ® : L(Ha) —
L(Hp) is defined as follows:

C(()l) (®) :=suplog |C]|,
c

IC]
m=1

where the supremum is over all collections C' of pure quantum states {¢,, } C D(Ha) such that

vm#ml : (P(/(/)m) J-q)(wm’)

Suppose now that Alice and Bob share some entanglement beforehand, say in the form of a pure
bipartite state ¢ € D(Ha, @ Hp,). Alice can now come up with a more general encoding scheme
by pre-processing her share of 1) with arbitrary quantum channels {&,, : £L(Ha,) — L(Ha)}M_,.
She then sends her share of the resulting states through ® : £(H4) — L(Hp). As before, the
condition for perfect distinguishability on Bob’s end is equivalent to the following orthogonality
relations:

Ym#m': (®o&,®idp,)(¥) L (o0& ®idp,) ().

Definition A.6. The one-shot zero-error entanglement assissted classical capacity Cég(@) of a
quantum channel ® : L(Ha) — L(Hp) is defined as follows:

Ci)(®) == suplog|C],
Y,C

where the supremum is over all pure bipartite states ¢ € D(Ha, ® Hp,) and collections C of
quantum channels {Ey, : L(Ha,) — E("HA)}lflzl such that

Vm#m': (Po&, ®idp,)(¥) L (P o0&, @idg,)(®).

If Alice wants to send quantum information to Bob through ® : £L(H4) — L(Hp) perfectly
without error, she must find an encoding subspace C C H 4 such that Bob can reverse the action of
® on C, i.e., there exists a recovery channel R : L(Hp) — L£(H 4) such that for all states p € D(Ha)
with supp(p) C C3,

Ro®(p) =p.

If {K;}; are the Kraus operators of ®, the Knill-Laflamme error correction conditions [30] show
that a subspace C C H 4 as above exists if and only if Pc K K;FPc = \;jF¢ for all 4,5, where Fe
denotes the orthogonal projection onto C and A;; € C are complex numbers.

3Note that the support of a positive semi-definite operator is precisely the orthogonal complement of its kernel.
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Definition A.7. The one shot zero-error quantum capacity Qél)(q)) of a channel ® : L(Ha) —
L(Hp) is defined as follows:

le) (®) := suplog dim(C),
c

where the supremum is over all subspaces C C Ha for which there exists a recovery quantum
channel R : L(Hp) — L(H ) satisfying R o ®(p) = p for all states p € D(H 4) with supp(p) C C.

It is possible to recast the above channel capacity definitions in terms of an operator system
that one can associate with the channel.

Definition A.8. Let ® : L(Ha) — L(Hp) have a Kraus representation ®(X) = > 7 | K; XK},
The operator system (also called the non-commutative (confusability) graph) of ® is defined as [13]

So :=span{K;K;, 1 <i,j <p} C L(Ha).

One can check that the above definition is independent of the chosen Kraus representation of
®. Moreover, » 0 | KiK; = 14 € Sg, since ® is trace-preserving. Furthermore, X € Sp =
X* € Sg. Such x—closed subspaces S C L(H) containing the identity are called operator systems
[39]. For an operator system S C L(H),

e the maximum size M of a set of mutually orthogonal vectors {|/,,)}¥_, C H such that

m=1
Vm#m' s ) (Yu| LS,
is called the independence number of S (denoted «(S)).

e the maximum number M such that there exist Hilbert spaces Ha,, Hr, a state p € D(Ha, ),
and isometries {V, : Ha, — H ® Hp}M_, such that

Vm#m':  VyppVe L S® L(HR),
is called the entanglement-assisted independence number of S (denoted &(95)).

e the maximum number M such that there exists a subspace C C H with dim C = M satisfying
PeSP; = CP¢, (where Pz denotes the orthogonal projection onto C) is called the quantum
independence number of S (denoted ay(S)).

Theorem A.9. [15] For any channel ® : L(Ha) — L(HE), the following relations hold:

CsV (@) = log a(Ss)
C8Y(@) = log a(Se)
(@) = log ay(Ss)

Moreover, 0 < Qél)(q)) < Cél)(fb) < Cég(q)), where the inequalities can be strict.

Remark A.10. The terminology in Definition A.8 is motivated by the notion of confusability
graphs of classical channels [46]. A discrete classical channel N : X — Y, where X and ) denote
two finite alphabets, is defined by a transition probability matriz, A, with elements N (y|x) that
express the probability of observing the symbol y given that the symbol x was sent. In order to send
different messages through the channel N with zero error, they should be encoded in the symbols of
X in a manner such that the corresponding outputs of the channel have disjoint support. One can
associate a confusability graph G with the channel; it has vertex set X and edges between any pair
z, 2z’ € X which can be confused, i.e. for which there is a y € Y such that N'(y|z)N (y|z') > 0. The
one-shot zero error capacity of N is the mazimum number of bits of classical information that can
be transmitted without error through a single use of N'. This is given by log a(Gyr), where a(Gyr)
is the independence number of the confusability graph, and is equal to the maximum number of
vertices in G s which do not have any edges between them.
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We now collect some results from the literature which describe equivalent conditions for the
various zero-error one-shot capacities of a channel to be zero. Let us first introduce the following
terminology. A channel ® : £L(H ) — L(Hp) is called

e c-scrambling if Cél)(fb) =0.
o g-scrambling if Q(()l)(@) = 0.
Theorem A.11. The following are equivalent for a quantum channel ® : L(Ha) — L(HB):
1. ® is c-scrambling.
2. (@) < 1.
3. Te(®(¢)®(p)) > 0 for any pair of orthogonal pure states v, € D(H4).
4. Tr(®(A)P(B)) > 0 for all non-zero positive operators A, B € L(Ha).
5. There are no rank one elements in Sz .

The equivalence of (1),(2),(3) and (4) above was obtained in [23, Proposition 4.2] and the
equivalence of (1) and (5) was obtained in [12].

Proposition A.12. [13] For a quantum channel ® : L(H4) — L(HB), C’ég(@) =0 if and only if
S is the zero subspace.

Proposition A.13. [48] Let ® : L(Ha) — L(HE) be a quantum channel. Then, Qél)(CI)) >0 (i.e.
® is not g-scrambling) if and only if there are unit vectors |€) ,|n) € Ha such that

VX €5s: (|X[n) =0 and (£]X[) = (n|X]n).
Moreover, the following implications hold:
e [Se|" is non-abelian = Qél)(@) > 0.
o [Sa] is non-trivial = C(gl)(q)) > 0.
If S¢ is an algebra, the reverse implications also hold:
e [Se|" is non-abelian <— Q(()l)(@) > 0.
o [So|" is non-trivial < C’él)(q)) > 0.
In the above statements we used the notation [Se]" to denote the commutant of [Ss], i.e.,

[S@]/ = {X S ﬁ(’HA) : XY =YX, VY € S@}.

Appendix B Main results

B.1 Characterization of all eventually c-scrambling dQMS

Consider an open quantum system A with associated Hilbert space H4 ~ H ~ C% whose time
evolution is governed by a dQMS {®"},cn, where ® : L(H) — L(H) is a quantum channel.
We call {®"},,en eventually c-scrambling if there exists an n € N such that ®™ is c-scrambling.
These are precisely the kind of evolutions which eventually become useless for zero-error classical
communication. Since any non-trivial ® models some inherent noise in the system, one might
naively reason that any (non-trivial) dQMS is eventually scrambling, i.e., if one waits for a long
enough time n € N, " will become too noisy to communicate any classical message perfectly.
However, the following theorem shows that this is the case only for the class of mixing evolutions.
Moreover, we prove that if a dQMS is eventually scrambling, then it will eventually become useless
for classical communication even if entanglement is present to aid the process.
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Theorem B.1. Let ® : L(H) — L(H) be a channel and {®"},en be the associated dQMS. Then,
the following are equivalent.

1. 3k € N such that C{3)(®*) = 0.

2. 3k € N such that C(()l)(q)k) =0, i.e., {P"},eN is eventually c-scrambling.
3. {®"}pen is mixing.

Proof. (1) = (2) This implication is trivial, since Cél)(q)) < CS}E)(@) for any channel ®.
(2) = (3) Assume that 3k € N such that ®* is scrambling, i.e., nT*(®*) = ¢ < 1. Let p € D(H)
be a fixed state of ®. Then, for any (non-zero) positive semi-definite operator X € L(H), we have

@™ (X/ Tr X) — pl|, = ||@"*(X/ Tr X) — @"*(p)||, < || X/ Tr X — p||; — 0 as n — oo.

Hence, for all positive semi-definite X € L(H), we get lim, o ®*(X) = Tr(X)p. Since any
X € L(H) can be written as a linear combination of positive semi-definite operators, it is clear
that & is mixing.

(3) = (1) Assume that dp € D(H) such that VX € L(H), lim, 0o P"(X) = Tr(X)p. Since
pointwise and uniform convergence are equivalent in finite dimensions, for every ¢ > 0, 3N € N
such that VX € L(H), [|2™(X) — Tr(X)p|; < € for n > N. In other words, lim,,_,. ®" = P,
where @, is the completely depolarizing channel defined as &, (X) = Tr(X)p, and the convergence
is with respect to the induced trace norm defined as

@[l == sup ) 12X

X1, <

(In fact, since any two norms on a finite-dimensional space are equivalent, we can also think of
this convergence in terms any other norm, say the diamond norm for instance.) It is then easy
to see that lim, ,o " ® idp, = P ® idp, for any auxiliary system By. Put differently, for
every € > 0, 3N € N such that VX € L(H ® Hp,), |[(P" ®idp,)(X) — (P ®idp, )(X)]|; < € for
n > N. Hence, for any pure state ¢ € D(Ha, ® Hp,), channels &; : L(Ha,) = L(H) fori=1,2,
and n > N, we have that

L@ 0 £ @ idp, )W) — (" 0 & @ ids, ) ()],
= L@ @idp,) () — (2" @ idp, ) ()],
< 1@ ©ids) 1) ~ (B @i, )W)l + 3 I(@" @i, )(2) — (o @ il (), < e

where ¢; = (£ ®idp,)(¥) for i = 1,2 and (P ® idp,)(¢1) = (P ® idp,)(1h2) were added and
subtracted to obtain the second inequality. By letting ¢ be sufficiently small, this implies that
C{})(®%) = 0 for some k € N. O

B.2 Zero-error classical encodings for non-mixing dQMS

Let us now discuss the conclusion of Theorem B.1 in more detail. The theorem shows that the
semigroups {®"},cn that are able to send classical messages perfectly for arbitrarily long times
are precisely of the non-mixing type:

Vn e N: Cél)(CD") >0 < {®"},en is non-mixing.

It is then natural to ask what kind of encoding states pi,pa € My(C) can be used to perfectly
transmit a 1-bit classical message through ®" (¥n € N) for a given non-mixing dQMS {®"},en.
Since {®"},en is non-mixing, the following two cases can arise:

Case I. A =1 is not a simple eigenvalue of @, i.e., ® is not ergodic. To tackle this case, let us first
note a lemma.
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Lemma B.2. [6, Section 3.1] [57, Proposition 6.8] The fixed-point vector space Fixe = {A €
Mq(C) : ®(A) = A} of a quantum channel ® : Mg(C) — M4(C) is spanned by quantum states.

Proof. Let A € Fixg and consider its canonical decomposition into Hermitian parts:

A+ At A Af
= “+1 - .
2 21

A

Since ® is Hermiticity preserving, (A + A")/2 and (A — AT)/2i are also fixed by ®. Thus, it
suffices to show that a Hermitian fixed point A = AT € Fixg lies in the span of quantum states.
Since A is Hermitian, we can write its Jordan decomposition: A = AT — A~ where A* > 0 and
Tr(ATA™) = 0. Let IIT be the projector onto support of A*. Then, we have AT = IITA =
IT®(A) =TTP(A") —IITP(A™), so that

Tr(AT) = Tr(IITQ(AT)) — Tr(IIT (A7) < Tr(ITTR(AT)) < Tr(®(AT)) = Tr(AY).

Hence, the inequalities above must be equalities, implying that IIT®(A~) = 0 and IIT®(AT) =
®(AT). This shows that AT = IITA = IIT®(A+) = ®(A™), which clearly also implies A~ =
®(A™). Hence, A lies in the span of quantum states A*/Tr AT and A~/ Tr A~. O

Let us now consider a channel ® : My(C) — My(C) for which A = 1 is not a simple eigenvalue.
This means that there are two distinct states p, o € S4(C) that are fixed by ®. Let A = p—o.Then,
the proof of Lemma B.2 shows that the orthogonal positive and negative parts A* of A are also
fixed by ®. Thus, we can transmit a 1-bit classical message through ®" for all n € N by encoding
it in the states vy = AT/ Tr AT and v = A=/ Tr A™.

Case II. A = 1 is a simple eigenvalue of ® but there are other peripheral eigenvalues as well. In
other words, @ is an ergodic quantum channel with |T N spec®| > 2.

In order to tackle this case, we need to study the peripheral spectrum of ergodic quantum
channels. The structure of the peripheral spectrum of such channels is well-understood.

Lemma B.3. The following is true for an ergodic quantum channel ® : Mg(C) — My(C):

e The peripheral spectrum of ® is a cyclic subgroup of T, i.e., 3¢ € N such that T Nspec® =
{w™:m=0,1,...,q— 1}, where w = e>7/4,

o All the peripheral eigenvalues of ® are simple.
e There ezists a unitary U € Mg(C) such that *(U™) =w™U™ form=0,1,...,q— 1.
e U admits a spectral decomposition U = an_:lo w™P,, such that ®*(Pp,+1) = Pp,.

Proof. We recall that a quantum channel and its adjoint have the same spectrum, and also that if
® is ergodic, then ®* is also ergodic. Also recall that the adjoint of any quantum channel is unital
and completely positive. This means that for an ergodic channel ® : M;(C) — M;(C), the adjoint
map ®* : My(C) — Mgy(C) has a unique positive definite fixed point: ®*(1) = 1. The peripheral
spectrum of such maps has been studied in detail in the literature, and the statement of the lemma
follows directly from the results in [15], see also [57, Theorem 6.6]. O

The next proposition provides a lower bound on the number of classical messages that can be
sent without error through any iteration of an ergodic channel.

Theorem B.4. Let & : My(C) — My(C) be an ergodic quantum channel. Then,
Vn € N: Cél)((P") > log |T Nspec P|.
Proof. For an ergodic channel ® : My(C) — My(C), Lemma B.3 provides orthogonal spectral

projectors P, € My(C) satisfying ®*(Pyt+1) = Py, where k € Z, := {0,1,...,¢g — 1} and ¢ =
|T N spec®|. Note that addition of indices here is to be understood mod g. We claim that ¢
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classical messages can be transmitted perfectly through ®™ for all n € N with encoding states
pm = P/ Tr P, for m € Z,. This is because

VmeZy: Te(®"(Pps1)Pm) = Tr(Pr) = Tr(Prny1®(Pr)),
Tr(®*(Pry1)Po) = Tr(P Prr) = 0 = Tr(Pyp1®(Py)) for m #m'.

In other words,

Te(P,) ifm' = 1
VmeZy: Te(@(Py)P) — ) HEm=m

0 ifm' #£m+ 1.
This shows that sequential action of ® on the encoding states p,, just cyclically permutes the
output supports: supp ®(pp,) C supp P41 for m € Z,. Clearly, the output states {®"(pm)}mez,
are thus mutually orthogonal for all n € N, which proves our claim. O

More generally, we can prove that for any dQMS {®"}, the peripheral space x(®) of the channel
® serves as the right space to encode information in order for it to be recoverable for an arbitrarily
long time. Recall that the peripheral space of a channel ® : £L(H) — L£(H) is defined as the span

of all its peripheral eigenoperators and there exists a decomposition H = Hy & EBszl Hi1 @ Hio
and positive definite states py € L(Hy,2) such that [57, Theorem 6.16]:

K
X(®) =0 @ (L(Hr1) @ p). (5)

k=1

Moreover, there exist unitaries Uy € L(H,1) and a permutation m which permutes within subsets

of {1,2,..., K} for which the corresponding Hj 1’s have the same dimension, such that for any
K K
X=0@u@pr, OX)=08U[wm0)Us @ pr. (6)
k=1 k=1

Using this decomposition, we can prove the following result.

Theorem B.5. Let ® : L(H) — L(H) be a quantum channel and {®"},en be the associated
dQMS. Then, AN < (dimH)? such that

K
VgeN: lim cs (@) = ogP (@) = 5P (@VF) = log > dim Hy. 1.
k=1

Proof. Note that the first two equalities follow from Theorem B.10, which shows that there exists
N < (dim H)? such that the operator systems of the semigroup stabilize after time N :

S C Sp2 C ... C Sen = Seni1 = ... = SeNtq = ...

To show the final equality, first note that the stated action of a channel on its peripheral
space (Eq. (6)) clearly implies that the set of states {|ix)(ix| ® pr} for k = 1,2,..., K and i} =
1,2,...,dim Hy,; forms a zero-error classical code for @™ for all n € N in the sense of Definition A.5.
Here, for each k, the state |ig)ix| ® pi is supported on the Hy 1 ® Hy,2 block in Eq. (5). Hence,

K
vneN: C{P(@") >log > dimHy,:.
k=1

To show the reverse inequality, suppose that {1, }_, is a zero-error classical code for ®V. Since
the operator systems of the semigroup stabilize after time N, {1,,}M_; is also a zero-error classical
code for ®N+4 for all ¢ € N:

VgeN, Ym#m' . (®NF(y,,), 8V H(y,,)) = 0.
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From [57, Proposition 6.3], there exists an increasing subsequence (n;);en such that lim;_, ., ®™ =
Py, where P, is the channel that projects onto the peripheral space x(®). Thus, {¢, M_| is also
a zero-error classical code for Py :

vm # m zli%lo@m (Vm), @™ (Y )) = 0 = (Py(¥m), Px(¥m)),
where we have used the continuity of the Hilbert-Schmidt inner product on My(C). Thus, {Py (¢m) }M_,

is an orthogonal set of states in x(®). Clearly, the block structure of x(®) ensures that M <
Zszl dim Hy, 1. Since {1, }M_| was an arbitrary zero-error classical code for @V, we obtain

K
C§Y(@N) <log > dim Hy. 1.
k=1

O

Remark B.6. We urge the readers to check that for an ergodic channel ®, dimHy 1 =1 for all k
in Eq. (4) [15, 57], so that ), dim H,; = dim x(®) = |T Nspec ®| and we get

lim Cél)(@) = log |T Nspec P|.

n—oo

B.3  Zero-error quantum communication through dQMS

In this subsection, we consider the task of storing quantum information in a system whose time
evolution is governed by a dQMS {®"},,en, where @ : L(H) — L(H) is a quantum channel. We take
a slightly different route here than what was taken in the classical case in previous subsections. We
first prove the analogue of Theorem B.5 for the quantum capacity, from which the characterization
of dQMS that eventually become useless for perfect quantum communication will follow naturally.
The peripheral space x(®) will again play a crucial role in our discussion.

Theorem B.7. Let ® : L(H) — L(H) be a quantum channel and {®"},en be the associated
dQMS. Then, AN < (dimH)? such that

VgeN:  lim QM (@) = QP (@) = QY (@NF1) = log max dim Hy. 1.

Proof. As in the proof of Theorem B.5, we initially note that the first two equalities follow from
Theorem B.10, which shows that there exists N < (dim #)? such that the operator systems stabilize
after time N :

S C Sp2 C ... C Sen = Seni1 = ... = SeNtq = ...

To show the final equality, first note that the action of a channel ® on its peripheral space is
reversible [57, Theorem 6.16], i.e., there exists a channel R : L(H) — L(H) such that Ro ® = P,,
where P, is the channel that projects onto the peripheral space x(®). Thus, in the language of
[34], all the Hj 1 sectors in the decomposition in Eq. (5) are correctable for ®™ for all n € N.
Corresponding subspaces C, € H with dimCj, = dim Hy 1 can then be constructed using [34,
Theorem 3.7] that are correctable for ®" for all n € N in the sense of Defintion A.7. This shows

Vn € N: Q(()l)(CI)”) > log m}{;mxdim Hi,1-

Conversely, suppose that a subspace C C H is correctable for ®VV in the sense of Definition A.7.
Since the operator systems of the semigroup stabilize after time IV, the subspace C is also correctable
for ®N+a for all ¢ € N. A reformulation of the Knill Laflamme error-correction conditions in
terms of the quantum relative entropy D(-||-) [40, 26, 27, 22] shows that for all states p,o €
D(H) with supp(p) C C and supp(c) C C, the following is true:

VgeN:  D(pllo) = D@V +9(p)|| 8N *(c)).
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Since there exists an increasing subsequence (n;);en such that ®™ — P, as i — oo, the following
holds true for all states p,o € D(H) with supp(p) C C and supp(co) C C [49]:

Jim D(@" ()||#" (9)) = D(pllo) = D(Px(p)][Px(0)),

which is equivalent to saying that the subspace C is correctable for P, as well. This means that
P, acts like a *—homomorphism on the algebra £(C) [7, Theorem 3], upto smearing by a fixed
operator. The structure of *—homomorphisms between matrix algebras is well-understood [11]. In
particular, this means that the image x(®) of P, must be able to accommodate atleast one copy of
the full matrix algebra £(C), which is only possible if there exists a k such that dimC < dim Hy, ;.
Since C is an arbitrary correctable subspace of ®V, we get

Q(()l) ((PN) < log m];cix dim Hy, ;.

O

Using the above theorem, we can easily characterize the class of eventually gq-scrambling dQMS
{®"}eN; 1-e., the ones for which there exists n € N such that le)(én) =0.

Theorem B.8. Let ® : L(H) — L(H) be a quantum channel and {®"},en be the associated
dQMS. Then, the following are equivalent:

o ® is eventually q-scrambling
o D is asymptotically entanglement-breaking.
o All the L(H 1) blocks in the peripheral decomposition in eq. (5) are one-dimensional.

o All peripheral points of ® communte with one another:

VXY € x(®): [X,Y]=XY -YX=0.

Proof. From the last theorem, it is clear that ® is eventually g-scrambling if and only if dim H; =
lforall k=1,2,...,K in Eq. (5). The rest of the equivalences follow from [35, Theorem 32]. [

B.4 Bounds on scrambling times

We have completely classified channels ® : Mg(C) — M4(C) (or dQMS {®"},,en) that eventually
lose their ability to send classical or quantum information perfectly. We now consider upper bounds
on the minimum time after which such dQMS lose their information transmission capacity. We
refer to this as the scrambling time (or the scrambling index) of the dQMS.

Definition B.9. For a channel ® (or a dQMS {®"},en), we define

e (quantum scrambling time) ¢(®) := min{n € N : Qél)(é”) = 0}.

e (classical scrambling time) ¢(®) := min{n € N : Cél)(q)”) = 0}.

e (entanglement-assisted classical scrambling time) cg(®) := min{n € N : C(()B(q)") = 0}.
Here, we adopt the convention that the minimum of an empty set is +oo.

Since for any channel @, Qél)(@) < C(gl)(cb) < C(()B(CI)), it follows that ¢(®) < ¢(®) < cp(P).
Moreover, the inequalities here can all be strict. The separation between ¢(®) and ¢(®) can be
illustrated by considering a non-mixing channel ® that is entanglement-breaking, so that ¢(®) =1
and ¢(®) = ¢g(P) = +oo. Examples of this kind can be easily constructed: any classical channel
Dy Md(C) — Md(C) of the form

VX €eMg(C): ®a(X) =) AyX,;liXil, (7)
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where A is an entrywise non-negative column stochastic matrix, works. Intuitively, since this
channel completely decoheres its input, no quantum information can be sent through it. However,
since spec®4 = spec A U {0}, we can easily choose A so that ®4 is non-mixing. To show the
separation between ¢(®) and cg(®), we note that there exist channels ® such that [12]

c{M(®) =0 and C{} (@) > 0.
We now prove the central result of this subsection.

Theorem B.10. For any channel ® : Mg(C) — My(C), 3N < d? — dim S such that
vneN: Q(@Y)=ql’@Nt"),
Co (@) = o5V (@N*m),
Cop(@Y) = Cog (@),

Proof. Let {K;}Y_; C Mg(C) be a set of Kraus operators for ®. Recall that S¢ = span{K;rKj ;1<
i,j < p}. It can be easily checked that for any n € N, we have

Sen+1 = span{KjXKj : X € Son, 1 <i,j <p}.

We thus obtain an increasing chain of operator systems Sg C Sg2 C .... Furthermore, if Sgn =
Sgn+1 for some n, then Sgn = Sgn+r for all k € N. In other words, the increasing chain of operator
systems stabilizes at some point. Let N denote the minimum n € N such that Sgn = Sgn+1. We
then obtain the following chain

S@CS{:&C...CS@N:S@NJrl:...:S(I)N-Hc:...

Note that the inclusions above are all strict. This is because if Sgn = Sen+1 for some n < N,
the above stabilization argument would contradict the minimality of N. Moreover, since all the
operator systems are inside My(C) which is of dimension d?, the maximum length of the above chain
is d?> — dim Se. Hence, N < d?> — dim Sg. Recall that all the one-shot zero-error capacities can be
characterized in terms of the operator system (Theorem A.9). Since the operator system stabilizes
after IV iterations, all the one-shot zero-error capacities also stabilize after N iterations. O

The above result immediately yields upper bounds on the scrambling times of all eventually
scrambling evolutions.

Corollary B.11. For any mizing channel ® : Mg(C) — My(C), the following bound holds:
q(®) < ¢(®) < cp(P) < d* — dim Ss.

Furthermore, for any asymptotically entanglement-breaking channel ® : My(C) — M4(C), we have
q(®) < d?.

Proof. We know that for a mixing channel ®, 3k € N such that Cég (@) = 0. Hence, Cc()}z) (@F+m) =
0 for any n € N. By the above proposition, we must have & < d? — dim S, which implies that
cp(®) < d? — dim Sg. Since ¢(P) < ¢(®) < cp(P) for any channel ®, we have the required chain
of inequalities. The result for asymptotically entanglement-breaking channels follow similarly. [

Let us take a moment to note that the dimension factor of d? in Proposition B.10 and Corol-
lary B.11 is optimal for the classical scrambling times. To show this, consider the d x d stochastic
matrix

0 1/2 00 0 0
0 0 10 0 0
00 01 0 0

Ag =
o 0 0 0 0 1
1 1/2 0 0 0 O

Firstly, observe that for a classical channel ® 4 of the form defined in Eq. (7), the two scrambling
times ¢(®4) and cg(P4) are equal.
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Lemma B.12. For a classical channel ® 4 : Mg(C) — My(C), ¢(P4) = cp(Pa)

Proof. 1t suffices to show that C(()l)(@A) =0 = C’ég(@A) = 0. Hence, assume that Cél)(fI)A) =
0. This means that the operator system Sg, is such that there are no rank one matrices in S(J};A.
However, since the operator system is ‘graphical’ [13], i.e.,

Sa, = span{[i)(j| : i = j or i ~a j},

where the notation ¢ ~4 j is used to denote that ¢ and j are confusable under the transition
probabilities defined by A, the absence of a rank one element in S$A implies that S;;A = {0},

which shows that C’ég(@A) =0. O

The results in [1] then show that

() = cxl@a,) = | 52

2

Remark B.13. The optimal upper bound on the scrambling times of classical stochastic matrices
A € My(C) is already known in the literature [1, 20]. It is of the form noted above:

(4) < [d‘zdﬂ

where [-] denotes the ceiling function and equality is attained for A = Ay. However, this result is
derived in a purely combinatorial framework, with no reference made to any zero-error information
transmission task. Moreover, the proof is long and uses a variety of intricate graph-theoretic
techniques. In contrast, the proof of Proposition B.10 proceeds via a simple operator theoretic
chain argument, yields an upper bound with the same optimal d> dimension factor, and works not
only for classical channels but also for quantum channels.

Appendix C Auxilliary results

C.1 Ergodicity and invariant subspaces

In this section, we study equivalent descriptions of ergodic and mixing quantum channels in terms
of their invariant subspaces.

Definition C.1. A subspace S C C¢ is said to be invariant under ® : Mg(C) — My(C) if for all
states p with supp (p) C S, supp ®(p) C S. A subspace S C C? is a minimal invariant subspace of
® if for any subspace S' C C? which is invariant under ®, S C 5.

The following characterization of ergodicity was obtained in [6, Theorem 1].

Theorem C.2. A channel ® : My(C) — My(C) is ergodic if and only if ® admits a non-zero

mianimal invariant subspace Sy. Moreover, Sy is precisely the support of the unique invariant state
of ®.

In what follows, we provide a similar characterization for the class of mixing quantum channels.
Theorem C.3. For a quantum channel ® : Mg(C) — My(C), the following are equivalent.
1. ® is mizing.

2. ® admits a non-zero minimal invariant subspace S, C C? and 3N € N such that Vp € S4(C)
and n > N, supp P,®"(p)P, = Sy, where P, denotes the orthogonal projector onto Si.

8. ® admits a non-zero minimal invariant subspace S, C C? and 3N € N such that forn> N,
P, (®) = P.Mg(C), where K,,(®) := span{K;, ... K; }. Here, {K;}; denotes a set of
Kraus operators of ® and Py is the orthogonal projector onto Si.
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Remark C.4. Note that if P.KC,(®) = P.My(C), then P (@) = PMy(C) ¥Ym > n, since

VX € My(C): P.X = Z Ciyoin P Ky, . K

tn?

and for each term in the sum, P, K;, ... K;

In—1

PK; .. K, = > dj ;,PKj ... K;.

J1---Jn

€ P,My(C), and so can also be written as

Proof. (1) = (3): Assume & is mixing. Then ® is ergodic and hence admits a non-zero
minimal invariant subspace S, = supp(ps), where p, € S4(C) is the unique invariant state of ®
(Theorem C.2). On the contrary, assume that Vn € N, P,KC,,(®) C P,My(C) with the containment
being strict. Let us choose an operator X,, € My(C) such that
0# P.X, € (PKa (D))"
where the orthogonal complement is taken inside P,My(C), so that VP, K™ € P,IC,(®),
(P, X, P.K™) = Tr (X,*LP*P*K(”)) =0.

Note that P, X, X, P, is a non-zero positive operator supported in S,. Hence,

1
VneN: Tr(p,PX,X\P,)> WTr(P*XnX;P*). (8)
Px " ||oo
However, we can also write
Tr(p P Xn X5 P)| = | Y | Te(X;PPK;, ... K, ) = Tr(p P Xn X P, (9)

i15eeeyln

Let us consider the two terms on the RHS of (9) separately. Using cyclicity of the trace and the
following elementary relations for A € M4(C):

TrA= Tr[(A@I)Q], (10)
TrATr A* =Tr[QAR DQA* @ 1)], (11)
(A1)|Q) =T AT)|Q), (12)

where |Q) = 2?21 |i7) is the unnormalized maximally entangled state and Q = |Q)Q], we can write

Z | Te(X; P PK;, ... K; )

11,eeyln

= Y Te(PKi ... K, X;P) Tr(P. Xy (K, ... K;,)" P)

T1yeenyin

= Y T[QPK;, ... K, X;P. @ DUPX,(Ki, ... K;, ) P, ®1)],
Z‘l,..‘,in

=Tr [, ®id)(X; P ® 1)Q(P. X, ®1)].

Here, ®,, : My(C) — My(C) is the CP map defined as follows:
On(X)=P2y(X)P. =P | Y (Ki ... K
To deal with the second term in (9) we further define a completely depolarizing map @, : Mg(C) —

M4(C) through the relation ®.,(X) = Tr(X)p,, so that ®,(X) — ®.(X) as n — oo, since

VX € Mg(C):  @,(X) = P,d"(X)P, — P (Tr X)p, P, = (Tr X)p, asn — oo.
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Then, once again using the relations (10),(11),(12), it can be shown that
Tr(px P Xn X Py) = Tr (Q(Poo @ id) (X P @ NQUPX, @ 1)) .

Thus, we can express Eq. (9) as follows:

Tr(p« P X, X P,)

- ‘ Tr [Q((B), — o) @ 1d)(XEP, @ QP X, @ 1))
< 9lloo [[(Pr = Poo) @ id|y Tr(P. X, X Py).

Note that, ||(®, — @) ®id||; — 0 as n — oo since ®,, — P, in this limit, which contradicts
Eq. (8). This concludes the proof of (1) = (3).

(3) = (2): Assume that P,KC,(®) = P,My(C) for some n € N. Hence, V |¢),

PO" (WX Pe = ) PuKi ... Ki, [0)X¢| (K, ... Ki,)" P,

This implies that

supp P, ®" (|¢)Xv|) Py = span{ P, K;, ... K;, |[¢)}
= Pspan{ K, ... K; }|¢)
= PG, (®) ) = P.Ma(C) 1) = ..

(2) = (1): Assume that ® admits a minimal invariant subspace S, # {0} and IN € N such
that for any p € S4(C) and n > N, supp P,®"(p)P, = S. Since ® admits a minimal invariant
subspace, it must be ergodic. Assume on the contrary that ® is not mixing. Then, there must
exist a peripheral eigenvalue different from 1. Hence,

2mwim

TNspecd = {eT : m:O,l,...,q—l}
for some ¢ € N, ¢ > 2 (see Lemma B.3). This implies that ®? has ¢ distinct fixed points. Let us
consider two of them, say py,oc > 0, where supppyx = Si. If suppP,o P, # Sy, we can choose k large
enough such that kg > N and suppP,®"(c)P, = suppP,cP, # S,, leading to a contradiction.

So, we can assume that suppP,oP, = S,. Now, consider w = p, — €0, which is again a fixed point
of ®4. Clearly,

PiwP, >0 < p, >eP.oP,

= P.>epi Popt?

1
Hp:1/20p:1/2 H
o0

< <

Let us choose € = 1/“/):1/20;):1/2" and 0 # |v) € S, such that o Popt? |v) = |v) /e. Then,

ePoop, P o) = pi? |0) = pupi P o) = (pa —ePuoP)pi P u) = 0.

This means that P.wP, = p, — eP,oP, has a kernel in S, so suppP,wP, # Sx. Since w is fixed
by ®9, its positive and negative parts wy > 0 are also fixed by ®¢. Finally, by choosing k large
enough such that kg > N, we get suppP,®*%(w. )P, = suppPiw+ P, C suppP,wP, # S,, which
contradicts our original assumption. Hence, ® must be mixing, and the proof is complete. O

It is easy to see that if the quantum channel is primitive, the equivalences obtained in Theo-
rem C.3 reduce to those given in [45, Proposition 3], which we restate below.

Corollary C.5. For a quantum channel ® : Mg(C) — My(C), the following are equivalent.
1. ® is primitive.
2. AN € N such that Vp € S4(C) and n > N, ®"(p) is of full rank.

3. AN € N such that for n > N, K,(®) = Mg(C), where K,,(®) := span{K;, ... K, }. Here,
{K;}; denotes a set of Kraus operators of ®.
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C.2 Connection with the quantum Wielandt index

Consider a primitive channel ® : My(C) — Mg(C). Then, Corollary C.5 informs us that IN € N
such that ®™ is strictly positive for n > N. This leads naturally to the definition of the Wielandt
index [45, 43, 38, 28] of ®:

w(®P) := min{n € N : ®" is strictly positive}.

Note that if a channel ® : My(C) — Mg(C) is strictly positive, then Tr[®(p)®(c)] > 0 for all
p,0 € S4(C). Thus, ® is also scrambling. Hence for a primitive channel ®, it holds that
q(P) < (D) < w(P).

In this section, we obtain a converse bound ¢(®) < w(®) < (d — 1)¢(P) for primitive channels
® : Mg(C) — My(C) that are also unital, thus establishing a close link between the scrambling
times and Wielandt indices for such channels. We do this by relating the notions of scrambling
and strictly positivity. We show that for unital channels that are scrambling, there is a linear
universal bound (depending only on the system dimension) for the channel iterations to become
strictly positive. In order to prove this result, we first need some new definitions.

Two projections P,Q € My(C) are said to be (Murray-von Neumann) equivalent (denoted
P ~ @) if there is an operator V € My(C) such that P = VV* and @Q = V*V. Hence, P ~ Q if
and only if Tr P = Tr Q). Further, we say that a projection P € My(C) is non-trivial if P ¢ {0,1}.
Let P+ := 1 — P. The following definition is from [43] (see also [24]).

Definition C.6. A quantum channel ® : My(C) — My(C) is said to be fully irreducible® if there
does not exist any pair of non-trivial, equivalent projections, P ~ Q, such that ®(P) < \Q, for
some A > 0.

Proposition C.7. If a unital channel ® : My(C) — My(C) is scrambling, then it is fully irreducible.

Proof. We prove that if ® is not fully irreducible, then it cannot be scrambling. To do this, let us
assume that there exists a pair of non-trivial, equivalent projections P ~ @ such that ®(P) < A\Q
for some A > 0. This implies that Q- ®(P)Q* = 0. Let {K;}; denote a set of Kraus operators of
®. Then, since P is a projection (i.e. P = P* and P? = P), we get

Q* (Z KZ-PK;> Q=0

ie. Y (Q'KP)(QTK;P) =0

— Q'K,P=0 Vi
= K,P=QK,P Vi (13)

Hence,
O(P) =Y K;PK; =Y KP(K;P)"=Q (Z KZ-PKi*> Q=QdP)Q<Q,
where the third equality follows from (13), and the last inequality follows from the fact that P <1
and since ® is unital, ®(P) < ®(1) = 1. Thus we have established the following:
O(P)<ANQ = P(P)<Q. (14)

From (14) we have Tr ®(P) = Tr P < Tr Q, since ® is trace-preserving. However, by assumption,
Tr P = Tr@ (since P ~ Q). Hence, by faithfulness of the trace we get ®(P) = (. However, this
equality implies that ® violates the property of scrambling, as is shown explicitly below.

4Such channels are also called fully indecomposable [24].
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Set p= P/TrP and 0 = 1/d = E£P~ Then,

lo—olh =l - 2= £
proi=lnp =g~ gt
1
= al|Pll + 511,
1
:aTrP+ETrPL, (15)
where o 1= ﬁ — %\ On the other hand, since ® is unital and ®(P) = Q, we get
o(P) 1
B(p) — @ ==t =
() - a(o)ll = |22 L,
Q  Q Qf

=g -g - h

1
:ozTrQJrgTrQJ‘

1
:aTrPJraTrPl, (16)
where we used the fact that Tr P+ = Tr Q-+ since Tr P = Tr Q. Hence, from (15) and (16) we have
12(p) = @(0)[[x = llp = a1,
and hence the quantum channel ® is not scrambling. This concludes the proof. O

One might wonder whether the converse of the above proposition is true. The following example
shows that this is not the case.

Example C.8. Let @ : My(C) — My(C) be a unital quantum channel defined as follows:

X11 + X22 0 0 0

. B 0 Xoo + X33 0 0

VX eMy(C): P(X)=1/2 0 0 X3+ Xug 0
0 0 0 X44 + Xll

It is easy to see that ® is fully irreducible, since it sends any projection to a positive semi-definite
matrix of rank strictly larger than the rank of the input projection. However,

<I>(|1><1\):%(\1><1|+|4><4\) and <I>(|3><3|):%(\2><2|+|3><3I)-

Hence, Tr(®(]1)(1])®(|3)3])) = 0 and it follows that & is not scrambling (see Theorem A.11).
The following corollary provides the main result of the subsection.

Corollary C.9. Let ® : My(C) — My(C) be a unital quantum channel and suppose that ® is
scrambling. Then ®4~1 is strictly positive. Consequently, for any primitive unital channel ®, we
get c(P) < w(P) < (d—1)e(D).

Proof. Tt is known that a fully irreducible unital channel is strictly rank increasing, i.e., for any
singular positive semi-definite A € My(C) : Rank(®(A4)) > Rank(A) (see [43, Theorem 3.7]).

Now, since @ is scrambling, the previous result shows that ® is fully irreducible, and hence also
strictly rank increasing. Thus, starting from any rank one projection P, it requires at most d — 1
iterations of ® to send P to an invertible matrix. This concludes the proof. O

Remark: The above corollary provides an upper bound on the number of iterations for a scram-
bling channel that are needed to guarantee that it becomes strictly positive. This upper bound
depends solely on the dimension d of the underlying space. It is natural to ask whether this bound
can be improved. Note that from the definition of scrambling it follows that if ® is scrambling,
then ®* o ® is strictly positive. So for self-adjoint scrambling channels, it holds that ®2 is strictly
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positive. This raises the following question: Could it be true that for any scrambling channel ®, ®2
is strictly positive? However, this is not true, as shown below by an explicit example of a classical
channel, defined by the column stochastic matrix, A:

1/3 1/3 0 0 1/3
0 1/3 1/3 0 1/3
A=|1/3 0 1/3 1/3 0
0 1/3 0 1/3 1/3
1/3 0 1/3 0 1/3

A is clearly scrambling but A? is not strictly positive.

C.3 Linear bounds on indices for channels with extra structure

If the mixing channel ® is unital and its operator system Sg is such that S~ is an algebra for all
n € N, we can provide better bounds on its scrambling indices.
In order to state and prove our main result, we need the following lemma.

Lemma C.10. Let ® : My(C) — My(C) be a unital channel, and let Mg denote the multiplicative
domain of ®F for each k € N, and let Mg = Ni>1 Mar be the stabilized multiplicative domain
as introduced in Section A.2. -

1. The stabilized multiplicative domain can be described as follows
Mg = alg{A € My(C) : D(A) = AA; || = 1}.

2. It holds that for all k > 1, Mgr = [Ser]’.

3. If ® is primitive, then Mg = C1, i.e., the trivial algebra with only scalars. Furthermore,
the containments in the following chain of subalgebras are proper:

Mo D2 Mg2 2 -+ Mgn 2 --- 2 CL.

Proof. The proofs of the first statement above can be found in [42]. To prove the second assertion,
recall from Section A.2 that for a unital channel ®,

Mg = Fix(g+op) = Sp,

and this relation holds for every ®*, k € N.

Here we prove the last statement. If ® is unital and primitive, then 1 is its only peripheral
eigenoperator, and hence (1) shows that Mg~ = Cl. In fact, having Mg~ = C1 can be an
alternative characterization of primitivity for unital channels (see Corollary 3.5 in [42]).

To prove the containment of the subalgebras is proper we analyze the behaviour of multiplicative
domain under composition of two channels. From [42, Lemma 2.3], it holds that

Mgk = {a S M¢(k71)|q)(k_1)(a) S M@} = {a S M¢,|<I>(a) S Mq;,(k-—l)}'.

Hence, Mg+ € Mgk, for all k € N and if © € Mg, then ®(z) € Mgm-1).

Now suppose Mgr = Mgw-1), for some k > 2. From the above observation, we know that
r € Mgr = P(z) € Mgur-1 = Mgr. Since Mgr C Mg, it follows that z € Mg — z €
Mg and ®(z) € Mgor = x € Mgm+. So Mgr = Mgu+n . Since by primitivity we know
Megn = C1, for large n, it must be the case that Mgw+1) C Mgr, unless the latter set is just the
trivial algebra. O

Let us also note another lemma, which is obtained by combining Propositions A.12 and A.13

Lemma C.11. Let ® : Mg(C) — M4(C) be a channel such that Sg is an algebra. Then,

C(@®) =0 « CV(@) =0 < [Sy] =CL.
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Proof. The second equivalence is contained in Proposition A.13. The ( = ) implication in the

first equivalence is trivial to show. Thus, it suffices to prove that [Se) = C1 = CS}E)(@) =0.
So, assume that [Sg]’ = C1 and note that since S is an algebra, the double commutant theorem
shows that S¢ = [Ss])” = My(C). The result then follows from Proposition A.12. O

We can now state and prove our main result.

Proposition C.12. Let ® : My(C) — My(C) be a primitive unital quantum channel such that the
associated operator systems Sgn are C*-algebras for all n € N. Then,

q(®)<d—2 and c(P)=cp(P)<2(d-1).

Proof. Note that for any channel ® : M;(C) — My(C), we have an increasing chain of subspaces
S C Spz C-+- C Sgn C -+ -, which yields a decreasing chain of commutants [Sp]’ 2 [Sp2]’ 2 -+ D
[Sen]’ D .... Note that the commutants [Sen]" are unital C*-subalgebras of My(C) for all n € N
and by Lemma C.10, we have [Sgn]' = Mgn. Since ® is primitive, In € N such that [Sen]|’ = CL.
So the above chain of C*-algebras stabilzes at some n:

[Sp) 2 [Sp2] D -+ D [Sen]) = C1. (17)

Since Sgn are algebras for all n € N, we can use the necessary and sufficient conditions given
in Proposition A.13 and Lemma C.11 for the zero-error capacities to vanish. Firstly, note that
Lemma C.11 immediately tells us that ¢(®) = cg(®). Also note that if [Se]’ = My(C), then by the
double-commutant theorem, S¢ = [S¢]” = C1. It follows that the Choi rank of ® is 1, which means
that the channel is just a unitary conjugation. Such a channel can not be primitive, contradicting
our hypothesis. Thus, we can assume that [Sg]’ is a proper subalgebra of Ms(C).

Now, if [S¢] is trivial to begin with, then Lemma C.11 shows that C’(()l)(@) = 0. In this case,
¢(®) =1 <2(d—1). Hence, we can assume that [Ss]’ is a proper non-trivial subalgebra of My (C).
From Lemma C.10, we know that each containment in Eq. (17) is proper. It is known that such
a chain of decreasing unital C*-subalgebras can have length at most 2(d — 1) [25, Lemma 5 and
Theorem 3.6]. Thus ¢(®) < 2(d —1).

For the other bound, note that if [Se]’ is abelian to begin with, then le)(fb) =0 and ¢(P) =
1< (d—2) (for d > 2), see Proposition A.13. So, we can assume that [Se]" is non-abelian. Now,
in order to descend down the chain of commutants in Eq. (17) all the way to C1, in the worst case,
there are d-many steps required from the full diagonal algebra to stabilize to the trivial algebra.
Hence, it requires at most 2(d — 1) — d = (d — 2) steps to go from a non-abelian to an abelian
algebra, proving that ¢(®) < d — 2. O

We now provide an example of a channel for which the operator system fulfils the requirements
of the above proposition.

Example C.13. We construct a primitive unital channel ® : M3(C) — M3(C) for which Sg, Se2,
and Sgs are all algebras, ¢(®) = 1, and ¢(®) = cg(®) = 3. This is the example given after
Theorem 3.9 in [25], giving the maximum length of the chain in Eq. (17) when the starting algebra
is a mazimal abelian subalgebra (MASA).

The channel is defined by its Kraus operators {K;}?_,; C M3(C), which are given below:

0 0 1 1 1 00 0 0 0
Ki=— 1|0 0 1|,Kb=—|-1 0 0|,K3=1]0 0 O
0 0 0 V2 0 0 0 0 1 0

\V)

a 0 0
One can check that S¢ = { 0 b 0|]abce C}. This is the full diagonal algebra. It is not
0 0 ¢
a 0
hard to see that Sp2 = { 0 ¢
d 0

b
0| |a,b,c,dec C} ~ My(C) @ M;(C), where M;(C) is just the
e
scalar algebra. Hence Sg2 is also an algebra. And finally, Sgs = M3(C). Thus, we obtain the chain

Se C Sp2 C Se3 = M3(C).
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Since Sgs = M3(C), it follows that [Sgs]’ = Mgs = C1 and hence @ is primitive (see [42, Corollary
3.5]). Furthermore, since [Sp2]’ =~ Cly ¢ M;(C) is not trivial, it is clear from Lemma C.11 that
¢(®) = ¢g(P) = 3. Finally, since Sg is the full diagonal algebra, [Se|’ = So is also abelian and
Proposition A.13 shows that ¢(®) = 1.

The example given above is a special case (d = 3) for a more general construction given in [25,
Theorem 3.9], where the decreasing chain of multiplicative domains have been created to provide
the multiplicative index of the channel to be d. We think in the general case, the operator systems
are also algebras and one can get ¢(®) = d, but we leave it as a future avenue to explore.

C.4 Diagonal unitary covariant channels

In this section, we study the scrambling times and Wielandt indices of a special class of quantum
channels that are covariant under the action of the diagonal unitary group. These channels were
introduced and extensively studied in [53]. Here, we only recall some basic results. Note that
we call A € My(C) column stochastic if it is entrywise non-negative and for all ¢, Zj Aj = 1.
Furthermore, DU, denotes the set of all diagonal unitary matrices in My(C).

Theorem C.14. For a channel ® : Mg(C) — My(C), the following are equivalent:
e VX € My(C),YU € DUy : ®UXU*) = UB(X)U*.
e JA, B € My(C) with A column stochastic and B positive semi-definite such that
VX €Ma(C): O(X) =D Aiy X5 li)il + > By X [i)j] =t ®ap(X).
i i
A channel ® = ®4 p as above is called conjugate diagonal unitary covariant (CDUC).
Theorem C.15. For a channel ® : Mg(C) — My(C), the following are equivalent:
e VX € My(C),VU € DUy : Q(UXU*) =U*®(X)U.
e JA,C € My(C) with A column stochastic, C = C*, and A;jAj; > |C’ij\2 Vi, j, such that
VX €M(C): ®(X) =D Ay Xy, |iYil + D Ciy Xyi i) = Pao(X).
i i
A channel ® = @4 ¢ as above is called diagonal unitary covariant (DUC).

For the class of (C)DUC channels, we will show that the properties of strict positivity, scram-
bling, mixing, and primitivity are all equivalent to the corresponding properties of the classical
stochastic matrix A. Let us first introduce the definitions of these properties for a stochastic
matrix.

Definition C.16. A column stochastic matriz A € My(C) is said to be
e strictly positive if A;; > 0 Vi, 5.
e scrambling if Vi, j, Ik such that Ap;Ay; > 0.
e mixing if A =1 is a simple eigenvalue of A and A has no other peripheral eigenvalues.
e primitive if it is mizing and its unique invariant vector has full support.

Remark C.17. For a stochastic matriz, the spectral properties of mixing/primitivity can be verified
by analyzing the connectivity of the directed graph associated with the matrixz [52, Section 2.5].

Note that if one uses classical channels of the form ® 4 := ® 4 giaga, the quantum definitions of
strict positivity, scrambling, mixing, and primitivity that were introduced in the previous sections
all reduce to the classical definitions introduced above. Let us also observe that in the classical
case, Theorem B.1 and Corollary C.5 reduce to the following results.
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Theorem C.18. For a column stochastic A € My(C), the following are equivalent
o A is mizing.
e Jk € N such that A* is scrambling.
Theorem C.19. For a column stochastic A € My(C), the following are equivalent
o A is primitive.
e Jk € N such that A* is strictly positive.
We are now ready to prove some of our main results in this section.
Theorem C.20. The following equivalences hold for DUC and CDUC channels.
e A CDUC channel ® 4,5 : My(C) — My(C) is strictly positive <= A is strictly positive.
e ADUC channel ® 4 ¢ : Mg(C) — My(C) is strictly positive <= A is strictly positive.

Proof. Clearly, if ®4 p or ®4 ¢ is stricly positive, we can restrict to diagonal input states to
conclude that A is also stricly positive. Conversely, let A be strictly positive. Let us first deal
with the CDUC case. It suffices to show that ® 4 () is invertible for all pure states ¢ € S4(C).
If o = [¢)ep| = |i)i| for some ¢ = 0,1,...,d — 1, invertibility of ®4 p(1)) follows easily from strict
positivity of A. Otherwise, there exist distinct k& # [ such that ¢, # 0,%; # 0. Note that 1);
denotes the it" entry of the column vector |¢) € C?. In this case, for an arbitrary |p) € C? we can
write

Tr [@a,8(1) ()] = Z ( Am|¢n|2> lpal® + Z Bijviipip;
i n i#£]
=> Agn|thn*|0s]” + > Agile*|wl” + > Bijbitpip;
i#n i i#j
= Anltnlleil* + (Y0 ¢| Blg o g).
i#n
Here, ® denotes the entrywise product of vectors and since B is positive semi-definite, the second
term above is always non-negative. Moreover, the first term is positive for all |¢) & span{|k)}. For
l¢) = |k), the first term is again positive since ¢; # 0 and [ # k. Thus, Tr [®4 5(¢)(¢)] > 0 for
all 1), |p) € C¢, which proves that ® 4 p(¢) is invertible for all pure ¢ € S4(C).

In the DUC case, we proceed similarly. It suffices to show that ® 4 ¢ (v) is invertible for all pure
states 1) € S4(C), when A is strictly positive. If [¢)) = |é) for some i € {0,...,d — 1}, invertibility
of &4 c(v) follows easily from strict positivity of A. Otherwise, there exist distinct k # [ such
that 1y # 0, # 0. In this case, for an arbitrary |p) € C? we can write

Tr [(I)A,C("/))SO] = Z < Ain7/1n2> \901'|2 + ZC@‘@%@%

- i#i
= ZAii|wi|2“Pi|2 + Z (Aij|80i|2\¢j|2 + Cij%wj@%)
i i#j
= Aii i2 i ot (w]@ wZ@) (Aij Cij) <szpz)
Zi: 3]s ; Cji Ay Yip;

Note that all the terms inside the sum above are non-negative. Moreover, the first sum is positive
for all |p) with either @5 # 0 or ¢; # 0. If both ¢ = 0 and ¢; = 0 (i.e. |p) L span{|k),|l)}, we
can choose p # k,l such that ¢, # 0. Then, the k,p block in the second sum above is positive,

since
0 op) (A C 0
( ‘/’Mﬁp) (C:;: AZ:) <wk@p> — Apk|wk|2‘§0p|2 > 0.
Thus, Tr [®4,c(¢)(¢)] > 0 for all |1}, |p) € C¢, which proves the desired result. O
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Theorem C.21. The following equivalences hold for DUC and CDUC channels.
e A CDUC channel ® 4,5 : My(C) — My(C) is scrambling if and only if A is scrambling.
e ADUC channel ® 4,c : Mg(C) — My(C) is scrambling if and only if A is scrambling.

Proof. In both the CDUC and the DUC case, our aim would be to appropriately decompose the
function f (v, @) = Tr [®(1))®(p)] (for pure states ¥, € S4(C)) into non-negative parts so as to
obtain the desired result. Let us tackle the CDUC case first. Here, we have

faB(,0) =Tr [®4,5(1)Pa5(0)]

d
— Z @A,B(il))ijm

ij=1
=> (Z Aikwk2> (Z Aiz|901|2> +) B Peitipip;
i \& 1 i
= Z ZAikAil|¢k|2|<pz|2 + ZA?I@|"/JIC|2|SDI€|2 + Z | Bij|*¢ithi i,
i kAl ik ]
= (AT Dwalon Pl + > A lonPlol* + > ALlbiPleil> + > 1B Pt ;s
] izk : vy
= (AT A)plwllol® + > A% |velPlenl* + (b © o] BO Bl @ )
s itk

Notice that since A is entrywise non-negative and B is positive semi-definite, all three terms above
are non-negative. Now, assume that ®4 p is scrambling, so that f4 g(v,¢) > 0 for all pure states
¥, . Then, we can choose |¢) = |k) and |¢) = |I) for k # [, so that

fap(,p)=(ATA)y >0 = A is scrambling.

Conversely, if A is scrambling, i.e., (AT A)y; > 0 for all k # [, then for any two orthogonal pure
states ¥ L ¢, by identifying indices k # [ such that v, # 0 and ¢; # 0, we get

fap(,) > (ATA)kl|1/Jk|2|SOl|2 >0 = &4 p is scrambling.
Now, for a DUC channel ® 4 ¢, we can follow the same steps as above to obtain

fac@, o) =Tr [®ac()Pac(p)]

d
- Z (I)Ap(?/))ijm

ij=1
= Z (Z Aik|¢k|2> (Z Ail|§0l2> + Z |Cyj 120k 0i 5

i \ & ] i
= > AwAalrPlal + > ARl Plerl® + D 10y PPt 0i%;

i k#l ik i#j
= D> (AT AulwlPle® + Y ALl leil® + > AL Ples P + ) 1 PP eis

kil i i#j i#j
_ T 2] 12 20 12] . 12 (¢‘<7 %’@) A3 |GG (Ve
SR e B (2 ) (2
7 i<j

As before, since ®4 ¢ is a channel, the constraints on A,C force all three sums above to be
non-negative. The remaining argument is an exact replica of the one used in the CDUC case. [

Theorem C.22. The following equivalences hold for DUC and CDUC channels.
e A CDUC channel ® 4,5 : My(C) — My(C) is primitive if and only if A is primitive.
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e ADUC channel ® 4 ¢ : Mg(C) = Mg(C) is primitive if and only if A is primitive.

Proof. We only tackle the CDUC case here. Using Corollary C.5 and Theorems C.19, C.20, we

obtain

® 4 p is primitive <= 3k € N such that CD'XB = @ gx y(p) is strictly positive
<= 3k € N such that A" is strictly positive <= A is primitive.

Note that above, f(B) = B + diag(A* — A®*). This follows from the composition rule:

Pay,By ©Pay,B, = Pay 4y, B10Bs+diag(Ar Ar— A0 A)-
Note that ® here denotes the entrywise (or Hadamard) product of matrices.
Theorem C.23. The following equivalences hold for DUC and CDUC channels.
e A CDUC channel ® 4, : Mg(C) — My(C) is mizing if and only if A is mizing.
e A DUC channel ® 4 ¢ : My(C) — My(C) is mizing if and only if A is mizing.
Proof. We only tackle the CDUC case here. Using Theorems B.1, C.18 and C.21, we obtain

® 4 p is mixing <= Jk € N such that <I>f‘jLB = ® 4k ¢(p) is scrambling
<= 3k € N such that A is scrambling <= A is mixing.

O

We now shift our focus to the scrambling times and Wielandt indices of (C)DUC channels. We
will borrow results from the classical literature to provide optimal upper bounds on these indices

for (C)DUC channels. Let us first define these indices for stochastic matrices.

Definition C.24. For a mizing (resp. primitive) stochastic matriz A € Mq(C), we define

¢(A) := min{n : A" is scrambling}

resp. w(A) :=min{n : A" is strictly positive}.

We call ¢(A) the time of A and w(A) the Wielandt index® of A. Optimal bounds are known for
these indices, which are stated below. The following stochastic matrix (in appropriate dimension

d) serves to prove the optimality of these bounds:

0 1/2 0 0 0 O
0O 0 1 0 0 O
0O 0 01 0 O
Ag = . (18)
0 0 00 0 1
1 1/2 0 0 0 O
Theorem C.25. [55] For any primitive stochastic matriz A € Myq(C):
w(A) < d? —2d + 2.
Moreover, w(Aq) = d? — 2d + 2.
Theorem C.26. [1, 20] For any mizing stochastic matriz A € Mg(C):
d* —2d+2
(4) < [*} |
Moreover, ¢(Aq) = {‘ng““.
5The number w(A) is also sometimes called the primitivity index of A (see e.g. [45]).
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Using Theorems C.20-C.23, C.25, and C.26, the corollaries given below follow immediately.

Corollary C.27. Let A € My(C) be a mizing stochastic matriz. Then, for any CDUC channel
D4 5 : My(C) = My(C) and any DUC channel ® 4 ¢ : Mg(C) — Mg(C),

c(®ap)=c(Pac)=c(A) <d*—2d+2.
Equality is achieved above for A = A, (see Eq. (18)).

Corollary C.28. Let A € My(C) be a primitive stochastic matriz. Then, for any CDUC channel
D4 g Mg(C) = Mg(C) and any DUC channel ® 4,c : Mg(C) — My(C),

w(an) = wl@ac) = wia) < [ L3

2

Equality is achieved above for A = Aq (see Eq. (18)).

C.5 Trade-off relation

In this short section, we connect the one-shot zero-error capacities of a channel with that of its
complementary channel. Recall that for any channel ® : My(C) — My(C) with linearly independent
Kraus representation

P
(X)) =Y KXK],
=1

there is a complementary channel ® : My(C) — M, (C) defined by

Y(X) =) Tr(K;K;X)E; ;,
,J
where {E; ;} are the matrix units of M,(C).
Note that if ¢~ denotes the adjoint of the channel ®€, then

Te(K; K, X) = Tr(E; ,0° (X)) = Tr(cbc* (E;jj)X),

for all X € Myg(C) and 1 < i,5 < p. Thus, it follows that CIDC*(EM) = K; K; and hence we get the
operator system of ® as the image of ®¢", that is,

Sp = span{K}K; : 1 <i,j < p} = range(®“").

In the following proposition we provide a relation between the one-shot zero-error quantum capacity
of ® to the one-shot zero-error classical capacity of its complementary channel ®¢.

Proposition C.29. Let ® : My(C) — My(C) be a quantum channel and let ®° : My(C) — M,(C)
be its complementary channel. Then, it holds that

QCéD(‘I’C) + 2Q(01)(‘I>) < d+ 1.

Proof. The basic idea of the proof is the complementary relation between the error correcting
subspaces of a channel and the private subspaces of its complementary channel (see [31, 32]).

Let C C C? be the largest subspace in which ® can be recovered, i.e., (gl)(q)) = logdimC.
More precisely, C is the largest subspace where ® admits a channel R such that R o ®(p) = p for
all states p € D(C?) with supp(p) C C. From the Knill-Laflamme condition for error-correction
[30], it holds that

Vlhj : PCK;KJ'PC :)\i’ch,

where P¢ is the projection onto C, {K;}; are the Kraus operator of ®, and )\; ; € C. Note that any
p supported on C satisfies p = PepPc. Thus, for any such p, we obtain
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i ZTrKKPCpPC » ZTrPCKKPCp ”_Z)\”TrPcp)E”_Tr( X,

4,J 4,J 4,J

where X = Z i ;B ; is a positive semi-definite matrix. Therefore, in any zero-error encoding

{[vi) M, of classmal messages {1,2,..., M} to be sent through ®“, there can only be at most one
code state from C, which means that M < (d — dimC) + 1. Optimizing over all zero-error classical
encodings gives us the required bound:

2031)@)0) + 2@81)(4’) < d+ 1.
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