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Abstract
We present an overview of transport phenomena in quantum systems induced by time-
dependent driving. The emphasis is on steady-state transport (as opposed to transient
effects).We introduce themain theoretical frameworks to study open quantum systems
out of equilibrium that are useful to study quantum transport under time-dependent
driving. Based on this, we discuss the fundamentals of key mechanisms leading to
steady-state quantum transport inducedby time-dependent driving, such as the periodic
charging and discharging of a mesoscopic capacitor, dissipation, quantum pumping,
noise, and energy conversion in quantum transport. Our primary focus is on electronic
systems, where decades of research have established a rich theoretical foundation
and a wealth of experimental realizations. Topics of interest include quantum optics
with electrons, quantum transport spectroscopy, quantum electrical metrology, and the
critical role of quantum fluctuations in transport and thermodynamics. We also extend
the discussion to atomic, molecular, and optical systems, as well as to nanomechanical
platforms, which offer complementary perspectives and are currently experiencing
rapid experimental development. Finally, we briefly examine the intersection of time-
dependent transport and topological matter. This review aims to bring together the
diverse approaches and emerging trends that define the current landscape of quantum
transport research under time-dependent conditions, bridging theoretical insights with
experimental advances across multiple physical platforms.
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1 Introduction

1.1 Historical perspective

Quantum transport, the study of charge, spin, and energy dynamics at the nanoscale,
is a fundamental topic in condensed matter physics, in mesoscopic physics, and in the
study of quantum technologies. Introductions to this broad field, technical details, and
historical and topical overviews can for example be found in the books of Refs. [1–5].
The understanding of how quantum systems respond to time-dependent external fields
is essential for applications ranging from ultrafast electronics and quantum computing
to molecular electronics and topological materials.

The field of quantum transport emerged as a response to the need for a microscopic,
quantum mechanical understanding of charge and energy transport in nanoscale sys-
tems, where classical approaches like the Drude model or semiclassical Boltzmann
transport theory fail. The behavior of electrons in confined geometries, involving
phase coherence, interference, and quantization, gave rise to a new transport regime—
mesoscopic physics. The initial theoretical backbone of quantum transport theory was
developed after the combined work of Landauer, Büttiker, and Imry.

Rolf Landauer formulated the first theoretical proposal to calculate electronic cur-
rents in the coherent regime. This put forward the idea of identifying the electrical
conductance with a transmission probability, as in the case of wave propagation [6–8].
Building upon this foundation, Markus Büttiker and Yoseph Imry extended the treat-
ment to several terminals and formulated the scattering-matrix theory for quantum
transport [9–14].

These theoretical advances created a powerful synergy with the surge in fabrication
precision of small conductors that emerged in the 1980s, driven by the development
of techniques such as molecular beam epitaxy and nanolithography in semiconduc-
tors. One of the most prominent examples is the quantum Hall effect [15], where
the edge states are the perfect example of quantum coherence in electron systems
and the first example of topological modes. Other remarkable systems are quantum
dots [16–18] and mesoscopic rings [19–22]. A description of these devices has been
thoroughly reviewed in Refs. [2, 23, 24]. Later achievements took place after the
integration of superconducting parts in these mesoscopic devices [25–27], nanotubes
and graphene [28–30], and molecular structures [31–34]. The first key questions that
were addressed in the theory of quantum transport were the origin of resistance [11],
conductance fluctuations [35], and the role of disorder [36]. This was followed by the
investigation of many-body interactions leading to Coulomb blockade [37] and Kondo
effect [38]. In the last years, the discovery of new topological materials hosting the
quantum spin Hall effect offer new playgrounds and additional possibilities [39–42].
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1.2 Time-dependent quantum transport in electronic systems

One of the earliest time-dependent quantum transport problems to be investigated was
the effective photon-assisted tunneling in superconductors generated by an oscillating
barrier in superconducting structures [43]. The photonic-like structure of the quantum
mechanical description of periodically driven systems is at the heart of Floquet repre-
sentation of the wave functions [44]. The impact of Floquet theory in the theoretical
description of periodic ac driving in tunneling processes has been thoroughly reviewed
in Refs. [45, 46].

Another fundamental problem that was initially addressed was the effect of a
time-dependent magnetic flux threading a mesoscopic ring structure [9, 47–49]. A
particularly interesting case arises when the magnetic flux varies linearly with time,
which corresponds to a constant electromotive force around the ring. This effectively
generates a uniform electric field along the circumference, leading to the acceleration
of charge carriers. Due to the periodic boundary conditions inherent to the ring geom-
etry, this results in Bloch-like oscillations of the current. Unlike traditional conductors
connected to macroscopic leads, where an applied voltage yields a steady-state (dc)
current, the isolated ring configuration hosts intrinsically time-dependent (ac) currents.

A major conceptual advancement was the theoretical and experimental study of
the quantum capacitor, a mesoscopic system composed of a small quantum dot or
cavity weakly coupled to a single electron reservoir through a quantum point contact.
Only when subjected to a time-periodic gate voltage, transport can occur in such a
system. Under specific conditions and with a proper driving protocol, this device can
emit and absorb single electrons in a controlled and coherent manner, operating as a
source of quantized charge pulses. The mesoscopic capacitor was first proposed and
analyzed by Büttiker and collaborators [50, 51], and later experimentally realized in
the gigahertz regime [52], where it served as a prototype for on-demand single-electron
emitters [53]. The quantum capacitor became a fundamental building block in time-
resolved quantum transport and enabled the exploration of quantum noise, dynamical
Coulomb blockade, and ac admittance in the quantum regime.

The next significant milestone was the introduction of the concept of quantum
pumping. In a quantum pump, net current is generated in the absence of any bias
voltage, solely due to the cyclic, time-periodic modulation of system parameters such
as gate voltages or coupling barriers. First experimental implementations were shown
in Refs. [54–56], providing a significant boost for the theoretical investigation of this
phenomenon.

More recently, attention has shifted toward electronic quantum optics, an emerging
field where single-electron wave packets are manipulated and interfere in solid-state
devices with a level of control analogous to that of single photons in optical setups.
A key milestone was the generation of “Levitons”—minimal excitation states of the
Fermi sea—first proposed by Levitov [57–59] and later realized experimentally [60,
61]. These excitations are generated by applying Lorentzian-shaped voltage pulses to
a contact, creating single, coherent, and noiseless electrons that propagate ballistically
through quantum conductors.
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These developments have enabled the design of electronic analogs of optical
interferometers, such as the electronic Mach–Zehnder and Hong–Ou–Mandel inter-
ferometers, where quantum interference of electrons from independent sources can
be observed. The coherence, entanglement, and statistics of single electrons can now
be studied with unprecedented precision, paving the way for quantum information
processing and quantum metrology in mesoscopic systems [62].

1.3 Time-dependent quantum transport meets thermodynamics and quantum
information processing

In parallel with his seminal contributions to the foundation of the theory of quantum
transport, Landauer also played a key role in identifying the thermodynamic limitation
of information processing [7, 63, 64]. He predicted that the process of erasing a bit of
information is associated with a change of entropy and a minimal heat exchange of
kBT log 2.

In recent years, the field of thermodynamics has irrupted in the scenario of quantum
systems. Starting from the fundamental problem of thermalization in cold atoms, the
study of heat, work, energy conversion, and dissipation is an active avenue of research
and a point of convergence for the community of condensed matter, statistical physics,
quantum information, and atomic, molecular, and optical (AMO) physics. The activity
devoted to address fundamental questions related to the validity of laws that have been
originally formulated formacroscopic systems, the possibility of generalizing classical
machines to generate power or refrigerate in the quantum realm, and understanding
the fluctuations in this context has become an active field of research; see recent
reviews [65, 65–74]. Thermalization and equilibration of driven closed systems is
another fundamental process, studied for example in the context of cold atoms in
optical lattices and trapped ions [75]. The interest in these problems is further fueled
by the emergence of quantum technologies, which brings about an active discussion
on the energetic aspects of these developments [76], typically also requiring time-
dependent operation.

1.4 Time-dependent quantum transport meets geometry and topology

A fundamental step in the topological characterization of quantum systems was done
byMichael Berry, who identified a geometrical phase accumulated in the slow dynam-
ics of a (quantum) system when the evolution occurs along a closed loop in parameter
space [77].

Topological concepts are profoundly connected to quantum transport. In static sys-
tems, topological invariants such as the Chern number classify insulating phases, and
are directly related to the Berry curvature and the Hall resistance. In time-dependent
settings, the paradigmatic example is topological pumping. In particular, the model
introduced by Thouless [78], which consists of a pump defined by a cyclic adiabatic
modulation of parameters in a one-dimensional system, leads to the quantized transfer
of an integer number of charges per cycle.
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More recently, time-dependent protocols have enabled access to Floquet topologi-
cal phases, where systems driven by periodic time-dependent fields acquire effective
Hamiltonians with nontrivial topological properties that are not present in the static
counterpart. Moreover, these ideas were recently introduced to even more exotic
regimes, such as higher-order Floquet topological phases and time-dependent topolog-
ical insulators and superconductors. In these systems, time plays the role of a synthetic
dimension, which enables the stabilization of topological modes [79, 80].

In open time-dependent quantum systems, geometric concepts like the Berry cur-
vature are also useful to describe non-topological pumping mechanisms, where the
transported quantities are not quantized. This opens promising directions to further
understand themechanisms and protocols for realizing quantized charge or heat pumps
in non-equilibrium quantum devices that leverage the robustness of topological pro-
tection. This is a very active research direction, not only in condensed matter systems
but also in cold atoms [81, 82].

1.5 Organization of the present review

This review is organized as follows. Basic concepts to describe transport induced
by time-dependent driving of particles, charge, and energy in the quantum realm are
presented in Sect. 2. There, we also introduce notation and symbols used along the rest
of the review. It is important to mention that we mostly focus on steady-state transport
observables rather than on the transient dynamics, except for the case of themesoscopic
capacitor. Section 3 is devoted to an overview of themain formalmethods used to solve
problems of time-dependent quantum transport. The basic mechanisms and regimes
taking place in the problem of quantum transport due to time-dependent driving are
described in Sect. 4. This includes the paradigmatic problem of the quantum capacitor,
where only pure time-dependent transport of charge and energy with a net dissipation
of energy takes place, or of a driven qubit coupled to a single thermal bath, and the
dissipation of energy in this system. Other mechanisms discussed here are pumping
and energy conversion when the driving operates in combination with electrical and
thermal biases. Section 5 is devoted to review concrete problems recently studied in
the field of time-dependent quantum transport and advances in the understanding of
related phenomena. In Sect. 6 we present concluding remarks.

2 Basic concepts

In this review, we discuss transport phenomena due to externally applied time-
dependent driving. The systems we deal with are generic multi-terminal systems, as
those indicated in Fig. 1, with a central conductor coupled to a series of α = 1, 2, 3, ...
contacts.

Time-dependent driving canbe applied either via the contacts, for example by apply-
ing time-dependent bias voltages, or via the central region, for example by applying
time-dependent gate voltages. As a result, currents are flowing into the contacts due

123



658 M. Acciai et al.

Table 1 Overview of the mathematical symbols that are most commonly used in this review

Mathematical symbol Description

•̂ Operators indicated by hats

•̃ Operators in the interaction picture indicated by tilde

•̄ Time-averages indicated by bar

q Quasiparticle charge (electrons or other)

t, t ′ Time variables

τ Time difference

τindex Characteristic traversal times

� Driving frequency

T = 2π/� Driving period

V , V (t) = Vdc + Vac(t) Bias voltage (shape typically indicated as subscript, e.g., VLor)

q Dimensionless charge per period injected by bias q = qVdc/(��)

σ Typical time width of an excitation generated by pulses

Vg Gate voltage

i(E) Spectral current

I N (t), I Q(t), I E (t), I c(t) Particle-, heat-, energy-, charge currents

d, r Transmission/reflection amplitudes

D, R Transmission/reflection probabilities

S, Sαγ Scattering matrix and its components

SF , SF,αγ Floquet scattering matrix and its components

Sαγ Noise (indices sometimes omitted, see text)

α = 1, ...,M Labeling of contacts

β = 1/(kBT ) Inverse temperature

fα(E) Fermi (or Bose) function of contact α

	Nα Pumped charges

Ĥ , Ĥsys, Ĥcoup, Ĥα Hamiltonian, system Hamiltonian, coupling Hamiltonian

Hamiltonian of contact α

Ĥt Hamiltonian Ĥ(t) with time frozen at t

w Tunneling amplitude

N = 〈N̂ 〉, Nα = 〈N̂α〉 Particle number (average/operator) of central system and contacts

â, â† Annihilation/creation operators of the environment (e.g., contacts)

d̂, d̂† Annihilation/creation operators of the central system (e.g., a dot)

to particle and energy exchange. In this section, some of the main concepts that are
relevant for these setups will be introduced.

2.1 Model Hamiltonian and driving parameters

Two perspectives will be chosen to describe the system sketched in Fig. 1. On one
hand, there is the perspective of the conductor behaving as an open quantum system,
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Fig. 1 Examples of driven systems. aA two-terminal setup where a few-level quantum system is connected
to macroscopic reservoirs with well-defined temperatures and/or chemical potentials, while locally driven
by time-dependent gate voltages. bA generic multi-terminal setup described in terms of a continuummodel
and with locally applied time-dependent potentials. c Homogeneous system described by a lattice with an
applied time-dependent electric field

in contact with an environment. In this picture, the Hamiltonian of the central region
provides the starting point of the analysis. The full Hamiltonian is then generically
split into

Ĥ(t) =
M∑

α=1

[
Ĥα + Ĥcoup,α

]
+ Ĥsys(t), (1)

where the first two terms represent, respectively, the Hamiltonian of the reservoirs and
the couplings between the reservoirs and the central system. It is natural to represent
the reservoirs as a non-interacting gas of fermionic or bosonic excitations of the form

Ĥα =
∑

k,α

εαk â
†
αk âαk, (2)

where driving of the contact degrees of freedom can be added. Furthermore, for central
systems where the (typically time-dependent) Hamiltonian Ĥsys(t) is expressed in
terms of creation and annihilation operators of particles acting on single-particle states
labeled by �, it is usual to model the coupling by tunneling Hamiltonians of the form

Ĥcoup,α =
∑

α,k,�

(
wαk�â

†
αk d̂� + H.c.

)
. (3)

Here, â†αk, âαk are creation and annihilation operators acting on the degrees of freedom

of the reservoirs and d̂†� , d̂� in the central system.1 These operators satisfy fermionic or
bosonic commutation relations, depending on the nature of the particles. The parameter

1 We use this notation throughout the review, see also Table 1. When the division between system and
reservoirs/environment is not applicable, creation and annihilation operators are generically indicated by
ĉ† and ĉ.
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wαk� describes the tunneling amplitude and can possibly also be modulated in a time-
dependent way.

Another perspective that can be taken to describe the system models quasiparticles
incoming from the contacts by field operators

�̂α(t, r). (4)

These injected states are occupied following the boundary conditions imposed by the
contacts α. Transport of quasiparticles through the central region is then characterized
by, e.g., scattering matrices or Green’s functions depending on two time variables see
Sects. 3.4 and 3.5.

There is also a third scenario, which we will briefly address in this review. This cor-
responds to quantummacroscopic systems under the effect of time-dependent driving,
without separately considering external reservoirs. In such a case, the focus is mainly
on local density of currents.

In this review, we focus on time-dependent driving due to classical driving fields.
This is of relevance when quantum fluctuations in the driving field can be neglected.
For transport due to coupling to quantized fields, such as driven cavities or coupling
to quantized phonon baths, see for example introductions and overviews provided
in [83–85].

We typically deal with two different situations: either the time-dependent driving
is applied to the conductor, or it is applied via the contacts. In the first case, which can
for example be realized by applying time-dependent gates or even (time-dependent)
magnetic fields, the system Hamiltonian depends on a set of time-dependent parame-
ters

X(t) = (X1(t), . . . , XM (t)) . (5)

In the second case, time-dependent driving is applied via bias voltages or even via
modulated temperatures or spin polarizations. Rotating spin polarizations are of inter-
est in the context of spin batteries, but will not be treated in this review; see instead for
example Ref. [86] for a review. Via gauge transformations, the time-dependent driving
of the bias voltage can in certain situations conveniently be treated on the same footing
as the modulation of the local conductor. To implement time-dependent temperatures,
which hence go along with a modulation of the macroscopic bath parameters and not
of parameters naturally entering the contact Hamiltonians, different strategies can be
pursued, see Sect. 3.2.3.

2.2 Time-dependent transport observables

We now introduce observables of interest, related to currents detected in the contacts.
Enabled by the coupling between contacts and conductor, particle currents can flow
into each contact α,

I Nα (t) = ∂

∂t
〈N̂α〉 ,

∑

α

I Nα (t) = −dN

dt
. (6)
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As indicated by the second equation, this current fulfills particle number conservation,
namely the sum over the time-dependent particle currents into all contacts equals the
time-dependent decrease and increase of the number of particles N on the central
conductor. In addition to or together with particle currents, also energy is exchanged
between contacts and conductor leading to energy currents

I Eα (t) = ∂

∂t
〈Ĥα〉,

∑

α

I Eα (t) = dE

dt
+ dEcoup

dt
. (7)

Here, the energy conservation law contains the fact that energy can also be stored in
and released from the coupling. Furthermore, the change in energy due to an external
driving is included in E(t), in particular the power provided or received by time-
dependent driving

P(t) =
〈
∂ Ĥ

∂t

〉
. (8)

These currents, Eqs. (6) and (7), are the constituents to obtain the charge current

I cα(t) = q I Nα (t), (9)

with the charge q of the transported quasiparticles, and the heat current

I Qα (t) = I Eα (t) − μα(t)I
N
α (t). (10)

The heat current corresponds to the excess energy current with respect to particles
transported at the electrochemical potential, which in a macroscopic bath needs to be
dissipated as heat. Note that the heat current does not fulfill its own conservation law
since heat can be generated. We note that also other types of currents could in general
be of interest, such as spin currents, or even entropy currents. Those will however not
be in the focus of this review. In Eqs. (6)–(10), we have shown time-resolved currents,
which could even be transient currents or pure ac currents. In this review, we will
often, but not always, focus on time-dependently generated directed currents, where
also the time-averaged currents are of interest. This is particularly relevant in the case
of periodic driving, with frequency � and driving period T = 2π/�, where the time
average reads

Īα =
∫ T

0

dt

T Iα(t). (11)

The currents flowing into the contacts typically fluctuate and an additional observable
of interest is hence the noise. It is obtained from the correlators between the fluctuations
of these currents,	 Îα(t) = Îα(t)−〈 Îα(t)〉, where the current operator Îα is in general
obtained from the commutator of the total Hamiltonian with the particle number N̂α

[see Eqs. (103) and (72) for an explicit expression in scattering theory]. In the case of
time-dependent driving the correlators depend on two times,

SI I ′
αβ (t, t

′) =
〈
Îα(t) Î

′
β(t

′)
〉
−
〈
Îα(t)

〉 〈
Î ′
β(t

′)
〉
. (12)
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Here, both cross-correlators—between different currents or between currents into dif-
ferent contacts—and auto-correlators—between same types of currents into the same
contact at different times—can be of interest. For stationary problems, the current–
current correlation functions depend only on the time difference τ = t − t ′, and one
can Fourier transform with respect to this variable obtaining the (unsymmetrized)
finite-frequency noise

SI I ′
αβ (ω) =

∫ +∞

−∞
dτ eiωτSI I ′

αβ (τ ). (13)

In the presence of time-dependent drivings of interest in this review, time-translation
invariance is absent, and the correlation function (12) thus depends both on τ and on
the average time t̄ = (t + t ′)/2. To deal with this complication, it is standard practice
to introduce a time average over the variable t̄ , namely, [87]

SI I ′
αβ (ω) =

∫ +∞

−∞
dτ eiωτSI I ′

αβ (t̄ + τ/2, t̄ − τ/2)
t̄
. (14)

This quantity is experimentally accessible in electronic transport measurements. In
the case of periodic drives, the time-averaging is done over one period, as shown for
the current in Eq. (11). In all other cases, the same definition can be adopted, but T
can then be taken as a long measurement time. In this review, we will mainly focus on
the time-averaged, zero-frequency noise of a single current, which is often relevant in
experiments, and can be written in the symmetric form

SI
αβ = 1

2

∫ T

0

dt̄

T

∫ +∞

−∞
dτ [SI I

αβ(t̄ + τ/2, t̄ − τ/2) + SI I
αβ(t̄ − τ/2, t̄ + τ/2)] . (15)

While we will not describe in detail how to explicitly calculate the noise exploiting
the introduced methods, noise as a spectroscopy tool in time-dependent transport will
be highlighted in Sects. 5.2 and 5.3.3.

2.3 Screening effects

The time-dependent modulation of external fields leads to charge accumulation and
depletion in various sections of the driven conductor. This becomes obvious already
in Eq. (9), where charge conservation involves time-dependent charge accumulation
on the conductor region. This charge accumulation in turn results in screening effects
going along with charge redistribution in the overall system.

From a perspective of microscopic modeling, taking care of such charge accumula-
tion and screening effects, is a requirement in order to capture the effect of drivingfields
on the actual system parameters. This can be done from first principles, using density
functional methods, or via capacitive models; see for instance Refs. [12, 88–90].

Accounting for charge accumulation, interaction effects, and charge redistribution
due to induced currents is crucial to satisfy charge conservation and gauge invariance.
However, to which extent these mechanisms are incorporated from the start, depends
strongly on the choice of theoretical method. In particular, when interaction effects
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are neglected in the overall description or in parts of the model, it might be required
to subsequently include screening effects, e.g., via self-consistent approaches [12, 50,
88, 91–95], or to take into account displacement currents in the spirit of the Ramo–
Shockley theorem [96].

2.4 Definition of adiabatic-response regime

In several parts of this review,we focus on the adiabatic-response regime. It is therefore
convenient to introduce this concept already at this stage.

In open quantum systems, adiabatic response is associated with a slow dynamics,
where the typical timescale T for the changes of a time-dependent Hamiltonian Ĥ(t)
is much larger than the typical timescale of the dynamics of the open quantum system.

Transport observables like the currents introduced above can be obtained following
two different “philosophies”. On the one hand, it is possible to start from the adiabatic
evolution of a closed system, which means that the system stays in its eigenstate
under the slow driving of parameters, while the eigenenergies can change in time.
This approach has been extended to open quantum systems [97, 98], where the time
evolution of the density operator is considered andwhere—importantly—the adiabatic
time evolution of the non-stationary modes yields the (geometric) contribution to the
system’s response and hence to quantum transport, see, e.g., Refs. [99, 100].

On the other hand, one can start from the dynamics of an open quantum system,
frozen at time t . We use Ĥt to represent the time-frozen Hamiltonian. This defines a
sequence of quasi-static equilibrium states ρ̂t . On top of this instantaneous dynamics,
one takes into account a first-order correction in the adiabatic expansion, accounting
for the response of the system to the slow modulation. This adiabatic-response regime
is characterized by response functions described by ρ̂t and its derivatives, which leads
to a dynamics ∝ T−1. These two approaches lead to equivalent results. In the present
review, we mostly follow the idea of obtaining adiabatic-response transport as a cor-
rection to the instantaneous dynamics; references to methods and their applications
are hence provided in the following sections.

Also in classical Carnot engines, the term “adiabatic” is used. It defines the state
evolution happening in the absence of heat exchange, which can often relate to a fast
change of state where the system changes pressure and volume without exchanging
heat with the environment. The connection between the adiabaticity of classical heat
engines and the adiabatic response in quantum transport lies exactly in this absence of
heat exchange with the environment. In the limit of slow driving of a quantum system,
heat is possibly exchanged between contacts, but no heat is generated.

3 Methods

3.1 Summary of scope and relations between the different methods

The study of time-dependent quantum transport relies on a variety of theoretical frame-
works that provide different levels of approximation and applicability. The aim of this
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subsection is to provide a brief overview over the different methods that will be intro-
duced in this review, with a focus on those that are not purely numerical. In what
follows, we hence provide a summary of the main assumptions beyond them, as well
as the typical physical scenarios where they are used, their limitations, and challenges.
Details about each of these methods are then given in the subsequent sections.

3.1.1 Kubo linear response and adiabatic linear response

Linear-response theory, based on the Kubo formalism and adiabatic expansions, are
generally powerful tools in the case of weak perturbations around equilibrium. The
usual linear-response theory applies to situations where the amplitude of the driving
defines a small energy scale compared to the dynamics of the non-driven system.
The adiabatic version of this theory implies a long timescale for the driving, in com-
parison to the characteristic time for the dynamics of the “frozen” problem. In both
cases, this description introduces response functions, or susceptibilities, defined with
respect to the equilibrium Hamiltonian. Hence, the concrete evaluation of the time-
dependent observables like the charge and/or energy fluxes must be complemented
with a many-body method to calculate these susceptibilities. Since such evaluation
is done in equilibrium, there are many well-established methods, starting from those
based on Matsubara summations, equations of motion, as well as numerical ones
like—for example—numerical renormalization group, density matrix renormaliza-
tion group, or quantum Monte Carlo. In cases where the transport takes place in the
presence of a temperature bias, this formalism has to be complemented by Luttinger’s
Hamiltonian representation of the temperature bias.

3.1.2 Schrödinger equation in the Floquet representation

Beyond the linear-response regime, fully time-dependent methods are required. The
Floquet representation of the Schrödinger equation provides a natural framework for
systems under periodic driving, characterized by a frequency �. Like Bloch’s theory
for electrons in periodic lattices, Floquet theory introduces a natural basis to expand
the quantum states, containing explicitly the time periodicity. This construction is very
useful to define effective Hamiltonians, where energy quanta ��� (with � integer) are
exchanged in the driving process.

This approach is particularly adequate for systems described by lattice models iso-
lated from reservoirs. The full description relies on the solution of the time-dependent
Schrödinger equation. The expansion in terms of Floquet states, and the dynamics
determined by the exchange of Floquet quanta, also emerges naturally in the scatter-
ing matrix and Green’s function description of open quantum systems under periodic
driving.

3.1.3 Scattering-matrix theory

Scattering-matrix theory, widely used in mesoscopic physics, offers an intuitive
approach to transport in regimes characterized by electronic phase coherence. It is
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particularly useful in problems described by models in the continuum and it is valid
for weakly interacting particles (mean-field interaction, Hamiltonians that are bilinear
in the creation/annihilation operators).

Rather than focusing on local properties like current density or electric fields inside
the conductor, the scattering approach relates incoming and outgoing quantum states
at the boundaries of a device, emphasizing the role of reservoirs and interfaces. In this
picture, transport properties such as conductance, noise, and full counting statistics
are determined by the probabilities for electrons to scatter among different channels,
encoded in the elements of the scattering matrix. Originally formulated for energy-
conserving processes, the theory has been extended to time-dependent periodic drives
by introducing scattering processes involving the exchange of Floquet quanta.

3.1.4 Non-equilibrium Green’s functions

Thenon-equilibriumGreen’s function formalismoffers a powerful andversatile frame-
work for analyzing quantum transport, especially in situations where many-body
interactions play essential roles. In contrast to scattering-matrix approaches that focus
on asymptotic states, this formalism provides a real-time description by defining the
evolution on the Schwinger–Keldysh contour (forward evolution from the initial state
in the past and backwards). This enables a systematic treatment of themany-body inter-
actions in combination with the non-equilibrium properties, for example by means of
perturbative expansions or the solution of equations of motion.

It is particularly adequate to analyze few-level quantum systems in contact with
reservoirs represented by a continuum of non-interacting particles or quasiparticles. In
problems with periodic drivings, the exchange of Floquet quanta naturally emerges in
the dynamics. In the limit of weak interactions, it is possible to define a clear relation
between this formalism and scattering-matrix theory.

3.1.5 Master and rate equations

Quantum master equations provide a useful theoretical framework to describe the
dynamics of open quantum systems coupled to external reservoirs. The focus is on
the reduced density matrix of the system, which results from tracing out the degrees
of freedom of the baths/reservoirs. Indeed, the master equation is actually an equa-
tion of motion for this reduced density matrix. The procedure followed to derive it
can be justified for weak coupling between the quantum system and the bath and for
Markovian (short-memory) dynamics.Additional assumptions like the secular approx-
imation are usually introduced to obtain a Lindbladian structure, which guarantees a
trace-preserving and positive-defined evolution. When the focus is on the diagonal
elements of the density matrix, these equations are reduced to classical rate equations.
Extensions of this formalism to generalized master equations can be derived from the
dynamics on the Keldysh contour.
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3.1.6 Other methods not covered in this review

Alongside analytical techniques, a wide range of numerical techniques have been
developed to study time-dependent quantum transport in complex or interacting sys-
tems where exact solutions are not feasible. In this direction, the time evolution in
low-dimensional problems is efficiently described bymeans of time-dependent density
matrix renormalization group [101, 102]. Time-dependent density functional theory
is another widely employed technique to model transport in atomic and molecular
systems [103]. In this technique, many-body interactions are approximated by amean-
field density. The development of the exchange potential underlying the dynamics is
a complex challenge in the presence of time-dependent driving.

The development of numerical methods to describe time evolution is an active field
of research, and includes tight binding-based models [104], recent proposals on time-
dependent variational Monte Carlo methods [105], and more efficient bases in the
density matrix renormalization group [106].

3.2 Linear-response theory

We start by reviewing the regime of time-dependent driving applied to the system,
where this driving is weak, namely the amplitude is small or the driving is slow, in the
sense illustrated in Sect. 3.1.1.

3.2.1 Kubo linear response

A general way to tackle observables of interest in situations with time-dependent
perturbations of small amplitude is the Kubo linear-response formalism. Here, we
follow the book by Bruus and Flensberg [107] to summarize the main steps required
to evaluate observables of interest. We consider a time-dependent Hamiltonian like
the one presented in Eq. (1) and here decomposed as follows:

Ĥ(t) = Ĥ0 + Ĥ ′(t), (16)

where Ĥ0 does not depend on time. The time-dependent component is assumed to
have the form

Ĥ ′(t) = −F̂ · X(t), (17)

where the vector F̂ = (F̂1, . . . , F̂ M ) contains a set of operators, and X(t) is a vector
collecting a set of time-dependent parameters like the ones defined in Eq. (5). This
formalism focuses on small amplitudes of the time-dependent parameters, so that
Ĥ ′(t) can be regarded as a perturbation.

Considering a perturbation that is switched on at time t0, for a generic operator Ô ,
the expectation values can be written as follows,

〈Ô〉0 = Tr
[
ρ̂0 Ô

]
, t < t0
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ρ̂0 = e−β Ĥ0

Z0
= 1

Z0

∑

n

|n〉〈n|e−βEn (18)

and

〈Ô〉(t) = Tr
[
ρ̂(t)Ô

]
, t > t0

ρ̂(t) = 1

Z0

∑

n

|n(t)〉〈n(t)|e−βEn , (19)

where it is assumed that the eigenstates |n(t)〉 evolve preserving the Boltzmann dis-
tribution, such that the partition function Z0 remains the same. In the Schrödinger
picture, the evolution of the states is

i�∂t |n(t)〉 = Ĥ(t)|n(t)〉. (20)

It can be related to the time evolution in the interaction picture as

|n(t)〉 = e− i
�
Ĥ0t |ñ(t)〉 = e− i

�
Ĥ0t Ũ (t, t0)|ñ(t0)〉, (21)

where

Ũ (t, t0) = T̂ exp

{
− i

�

∫ t

t0
dt ′ Ĥ ′

H0
(t ′)
}

(22)

and T̂ is the time-ordering operator, while the tilde on states denotes the interaction
picture representation. In this picture, operators evolve according to the unperturbed

Hamiltonian, namely, •̂H0(t) ≡ ei Ĥ0t/� •̂ e−i Ĥ0t/�, while the evolution of states is
dictated by the evolution operator in (22). The crucial step in this formalism is to
approximate the evolution operator at linear order in the perturbation part of theHamil-
tonian, namely,

Ũ (t, t0) � 1 − i

�

∫ t

t0
dt ′ Ĥ ′

H0
(t ′). (23)

With this approximation, the evaluation of mean values in Eq. (19) leads to

〈Ô〉(t) � 〈Ô〉0 − i

�

∫ t

t0
dt ′
〈[
ÔH0(t), Ĥ

′
H0
(t ′)
]〉

0
, (24)

where 〈•〉0 ≡ Tr
[
ρ̂(t0) •

]
is the expectation value with respect to the unperturbed

state. Thismethod can be used, for instance, to calculate currents and other expectation
values in systems under weak time-dependent driving.

It is usual to focus on the response long after the switching-on process, in which
case we can consider t0 → −∞. For a Hamiltonian of the form of Eqs. (16) and (17),
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Eq. (24) reads

〈Ô〉(t) � 〈Ô〉0 −
∑

j

∫ +∞

−∞
dt ′χO,F j (t − t ′)X j (t

′), (25)

where

χO,F j (t − t ′) = − i

�
θ(t − t ′)

〈[
ÔH0(t), F̂

j
H0
(t ′)
]〉

0
(26)

is the Kubo susceptibility or response function, and θ(•) is Heaviside’s step function.
These response functions are obtained by evaluating average values with respect to an
equilibrium, unperturbedHamiltonian Ĥ0, which also governs the time evolution in the
interaction picture. As a consequence, they are functions of τ = t− t ′. Hence, they can
be Fourier transformed with respect to this variable and have a cutoff in time governed
by energy scales of the internal dynamics. In addition, they obey micro-reversibility
and Onsager relations.

An alternative derivation makes contact with work fluctuation theorems [108–112]
and was proposed by Andrieux and Gaspard [113]. The starting point is the following
equilibrium identity

〈ÔH (t)e
−β ĤH (t)eβ Ĥ0〉0 = 〈Ô〉0, (27)

where the subscript H denotes Heisenberg picture operators, evolving according to
•̂H (t) = Û †(t, t0) •̂ Û (t, t0), with Û (t, t0) the time-evolution operator generated by
the full time-dependent Hamiltonian. Equation (27) can be proven as follows:

〈Ô〉0 = 1

Z0
Tr
[
e−β Ĥ0 Ô

]
= 1

Z0
Tr
[
e−β Ĥ0Û (t, t0)Û

†(t, t0)ÔÛ (t, t0)Û
†(t, t0)

]

= 1

Z0
Tr
[
ÔH (t)e

−β ĤH (t)eβ Ĥ0e−β Ĥ0
]

= 〈ÔH (t)e
−β ĤH (t)eβ Ĥ0〉0. (28)

Next, one introduces the following quantity

Ŵ = ĤH (t) − ĤH0 = −
∫ t

t0
dt ′ F̂H (t

′) · Ẋ(t ′) =
∫ t

t0
dt ′ ˙̂FH (t

′) · X(t′). (29)

Here, the first equality can be proved by using the fact that in the Heisenberg picture
the partial derivative of the Hamiltonian is equal to the total derivative. Hence,

Ŵ =
∫ t

t0
dt ′ dĤ

dt ′
=
∫ t

t0
dt ′ ∂ Ĥ

∂t ′
= −

∫ t

t0
dt ′ F̂H (t

′) · Ẋ(t ′). (30)

Substituting Eq. (29) in Eq. (27), one thus finds

〈Ô〉0 =
〈
ÔH (t)e

−β(Ĥ0+Ŵ )eβ Ĥ0
〉

0
. (31)
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The right-hand side of this equation can be simplified by relying on the following
identity:

e−β(Ĥ0+Ŵ )eβ Ĥ0 = 1−
∫ β

0
du e−u(Ĥ0+Ŵ )ŴeuĤ0 � 1−

∫ β

0
du e−uĤ0 ŴeuĤ0 , (32)

where the last expression is obtained as a first-order approximation in Ŵ , which
contains the driving parameters X . Using this result, we have

e−β(Ĥ0+Ŵ )eβ Ĥ0 � 1 −
∫ t

t0
dt ′X(t ′) ·

∫ β

0
due−uĤ0 ˙̂F(t′)euĤ0

= 1 −
∫ t

t0
dt ′X(t ′) ·

∫ β

0
du ˙̂FH0(t

′ + iu�), (33)

where we have used that at first order in the driving parameters the time evolution
is governed by the free Hamiltonian, thus equivalent to the time evolution in the

interaction picture F̂(t) = ei Ĥ0t/� F̂e−i Ĥ0t/� = F̂H0(t). Substituting in Eq. (31)
leads to

〈Ô〉(t) = 〈Ô〉0 +
∫ β

0
du
∫ t

t0
dt ′X(t ′) ·

〈
ÔH0(−iu�)

˙̂FH0(t
′ − t)

〉

0
. (34)

While Eqs. (25) and (34) are not manifestly equivalent, it can be proved that the two
expressions coincide, as detailed in Appendix A.1.

3.2.2 From Kubo linear response to adiabatic linear response

Kubo’s linear-response formalism is particularly useful for describing the situation of
slowly varying external driving forces. Following Ref. [114], we consider Eqs. (16)
and (17), assuming a slow evolution. This means that the characteristic time for the
changes in X(t) is much larger than any internal timescale for the quantum system
coupled to the reservoirs. This type of evolution is identified as adiabatic response.
Thus, we expand the time-dependent part of the Hamiltonian at linear order with
respect to a reference time t , namely,

Ĥ(t ′) � Ĥt − F̂ · Ẋ(t)(t ′ − t), (35)

where Ĥt ≡ Ĥ0 − F̂ · X(t) is the Hamiltonian with the parameters frozen at time t .
Adiabatic response is hence the first-order correction to this frozen evolution. Then,
we employ the usual Kubo formalism with Ĥ0 = Ĥt and Ĥ ′(t ′) = −F̂ · Ẋ(t)(t ′ − t).
Substituting in Eq. (24), the result is

〈Ô〉(t) � 〈Ô〉t + i

�

∑

j

∫ t

t0
dt ′(t ′ − t)

〈[
ÔHt (t), F̂

j
Ht
(t ′)
]〉

t
Ẋ j (t), (36)
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where 〈•〉t is the average with respect to the frozen Hamiltonian Ĥt . The assumption
underlying the above result is a short internal characteristic damping time compared
to the characteristic time for change of the parameters X(t).

An alternative formulation, closer to the linear-response theory of Ref. [113], was
proposed in Ref. [115]. The steps are similar to those followed in the derivation of
Eq. (34). First, one startswith an identity similar toEq. (27), connecting the expectation
value at the frozen time t to the equilibrium one as follows:

〈ÔH (t)e
−β ĤH (t)eβ Ĥt0 〉t0 = e−β	F〈Ô〉t , (37)

where	F = − ln(Zt/Zt0)/β is the free-energy difference. The proof of this identity
is analogous to that of Eq. (27):

〈Ô〉t = 1

Zt
Tr
[
e−β Ĥt Ô

]
= 1

Zt
Tr
[
Û†(t, t0)ÔÛ (t, t0)Û

†(t, t0)e
−β Ĥt Û (t, t0)e

β Ĥt0 e−β Ĥt0

]

= 1

Zt
Tr
[
ÔH (t)e

−β ĤH (t)eβ Ĥt0 e−β Ĥt0

]
= Zt0

Zt

〈
ÔH (t)e

−β ĤH (t)eβ Ĥt0

〉

t0
. (38)

It is then useful to introduce the operator

Ŵdis = Ŵ − 	F = −
∫ t

t0
dt ′
[
F̂H (t

′) − 〈F̂〉t0
]

· Ẋ(t ′). (39)

As emphasized in Refs. [110, 115], it does not correspond to any quantum observable,2

but it approaches the dissipated work in the classical limit [112]. In terms of this
quantity, Eq. (37) becomes

〈Ô〉t =
〈
ÔH (t)e

−β ĤH (t)e
β
[
ĤH (t)−Ŵdis

]〉

t0

, (40)

and can be simplified by using a slight modification of the identity (32). The result is

〈Ô〉t =
〈
ÔH (t)

[
1 −

∫ β

0
du e−uĤH (t)Ŵdise

uĤH (t)
]〉

t0

. (41)

Hence,

〈ÔH (t)〉t0 − 〈Ô〉t =
∫ β

0
du
〈
ÔH (t)e

−uĤH (t)Ŵdise
uĤH (t)

〉

t0

= −
∫ t

t0
dt ′
∫ β

0
du
〈
ÔH (t)e

−uĤH (t)	F̂(t ′)euĤH (t)
〉

t0
· Ẋ(t ′),

(42)

2 Note that there is no observable for work, which is rather the result of a process and, as such, depends on
the initial and final states. Therefore, there is no operator that would yield the work as outcome of a single
projective measurement.
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where 	F̂(t ′) = F̂H (t ′) − 〈F̂〉t0 . In the above expression, the integrand is rewritten
as follows by using the cyclicity of the trace and the unitarity of the evolution operator:

Tr
[
Û †(t, t0)ρ(t)ÔÛ (t, t0)e

−uĤt Û (t, t ′)	F̂ Û †(t, t ′)euĤt
]

· Ẋ(t ′). (43)

Within the adiabatic-response regime of interest, the following approximations are
introduced to simplify thefinal expression. (i) The exact densitymatrix is approximated
by the frozen equilibriumdensitymatrix:ρ(t) � ρt . This is because the full expression
of Eq. (43) is already first order in Ẋ(t ′). (ii) A quick decay of the correlation function
within the characteristic time for the variation of X(t) is assumed, so that the following

evolution is considered Û (t, t ′) � e−i Ĥt (t ′−t)/�. (iii) The following approximation
Ẋ(t ′) � Ẋ(t) is also justified, under the same hypothesis. Using these replacements
in the previous expression, one finds

〈Ô〉(t) � 〈Ô〉t −
∫ β

0
du
∫ t

t0
dt ′
〈
Ô(−iu�)	F̂(t ′ − t)

〉

t
· Ẋ(t). (44)

Similarly to Eq. (34), in this expression, the time evolution of Ô and 	F̂ should be
calculated with respect to the frozen Hamiltonian Ĥt . We show in Appendix A.1 that
Eqs. (44) and (36) are fully equivalent, even though it is not immediately evident.

3.2.3 Luttinger’s formalism for the Hamiltonian representation of a temperature bias

Both the usual Kubo approach and the adiabatic version of linear-response theory rely
on the Hamiltonian representation of the non-equilibrium perturbation. In the case of a
system coupled to reservoirs at different temperatures or under the effect of a thermal
gradient, it is necessary to introduce a Hamiltonian representation for the temperature
bias, even if it is stationary. This problem was originally addressed by Luttinger [116].
Here, we provide a summary of the main ideas; we also refer to a recent review in the
context of stationary thermal and thermoelectric transport [117].

Luttinger adapted early ideas proposed by Tolman and Ehrenfest in the context of
general relativity [118]. There, temperature gradients were considered to compensate
the energy flux generated by spatial changes of the gravitational field, hence restoring
the equilibrium. Luttinger considered a perturbation of the form,

Ĥ ′
φth
(t) =

∫
dr ĥ(r, t)φth(r, t), (45)

where ĥ(r, t) is the Hamiltonian density and ∇φth(r, t) = −∇T /T is an inhomoge-
neous fictitious field representing the temperature bias.

More recently, these ideas were revisited in Refs. [119], where a closer analogy was
formulated between Luttinger’s proposal and electromagnetism. Basically, the energy
current density is defined from the conservation law: ∇ · ĵ E (r, t)+ ∂t ĥ(r, t) = 0 and
a thermal vector potential Ath(r, t) is introduced. In this way, in addition to Eq. (45)
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the temperature bias can be introduced by the following perturbation,

Ĥ ′
Ath
(t) =

∫
dr ĵ E (r, t) · Ath(r, t), (46)

with

∂t Ath(r, t) + ∇φth(r, t) = −∇T

T
. (47)

Notice that the perturbation in a system with charge q in an electrical field E(r, t),
with the associated scalar φ(r, t) and vector potential A(r, t), is expressed in the form

Ĥ ′(t) = q
∫

drφ(r, t)n̂(r, t) + q
∫

dr A(r, t) · ĵ N (r, t), (48)

with ∇ · ĵ N (r, t) + ∂t n(r, t) = 0 and

∂t A(r, t) + ∇φ(r, t) = −E(r, t). (49)

This is precisely the same structure of the thermal bias under the gauge-invariant
representation of Luttinger’s formulation.

It is also important to notice that this Hamiltonian approach to describe temperature
biases can be extended to address the case of time-dependent temperature biases. For
instance, Ref. [120] considered heat and charge transport through a multi-level quan-
tumdot coupled to reservoirswhose temperatures aremodulated in time.This approach
was also followed in the study of spin torques generated by heat currents [121] and
in the analysis of transients [122, 123]. The representation of the temperature bias as
a time-dependent vector potential was also used in the geometric description of adi-
abatic thermal machines [124]. Another interesting recent development was reported
in Ref. [125], where a periodic temperature modulation was addressed by combining
an approach similar to Luttinger’s representation of the temperature bias and Floquet
theory (see Sect. 3.3).

3.2.4 Particle and energy fluxes

Linear response and adiabatic linear response can be used to calculate the time-
dependent expectation values of different operators. In Sects. 3.2.1 and 3.2.2, this
has been shown for generic operators Ô . Here, we are in particular interested in the
particle and energy currents entering the reservoir α. For the Hamiltonian expressed
as in Eq. (17), they read in linear response

I Nα (t) =
∑

j

∫ +∞

−∞
dt ′χI Nα ,F j (t − t ′)X j (t

′),

I Eα (t) =
∑

j

∫ +∞

−∞
dt ′χI Eα ,F j (t − t ′)X j (t

′), (50)
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with the response function χ defined in Eq. (26). In the adiabatic linear-response
approach, one finds

I Nα (t) = I Nα [X(t)] +
∑

j

�I Nα ,F j [X(t)] Ẋ j (t),

I Eα (t) = I Eα [X(t)] +
∑

j

�I Eα ,F j [X(t)] Ẋ j (t), (51)

with

�
I N/Eα ,F j [X(t)] =

∫ +∞

−∞
dt ′ (t − t ′) χ

I N/Eα ,F j (t − t ′). (52)

This notation stresses that the mean values are calculated with respect to the equilib-
rium Hamiltonian corresponding to the parameters X(t) frozen at the time t .

Note that the electromagnetic perturbations and the effect of the temperature dif-
ferences represented in terms of Luttinger’s description, as given in Eqs. (45), (46),
(48), have the structure of the Hamiltonian (17). Hence, the electrical and thermal
potentials can be simply identified as time-dependent parameters X j (t).

3.2.5 Power generated by the driving

Another quantity of interest is the power developed by the driving forces. This is
defined in Eq. (8). For a Hamiltonian of the form of Eq. (17) it can be expressed as
P(t) = ∑

j Pj (t), where we have considered separately the power associated with

each driving parameter Pj (t) = 〈F̂ j 〉(t)Ẋ j (t). Hence, the main goal is to calculate
the time-dependent mean values 〈F̂ j 〉(t), which is usually named “reaction force”.
This concept was originally introduced by Berry [126] in the context of slow driving
and was adopted in several other places in the literature [124, 127–132].

Within linear response, the result leads to the following expression:

Pj (t) =
∑

j ′

∫ +∞

−∞
dt ′ Ẋ j (t)χF j ,F j ′ (t − t ′)X j ′(t

′), (53)

while for the adiabatic linear response the result is

Pj (t) = Pcons
j (t) +

∑

j ′
Ẋ j (t)�F j ,F j ′ [X(t)] Ẋ j ′(t). (54)

Here, Pcons
j (t) = 〈∂X j Ĥ〉t Ẋ j is identified as the conservative or quasi-static com-

ponent of the power, since it is evaluated with respect to a sequence of equilibrium
states defined by the frozen Hamiltonian. Over a cycle, this conservative component
has zero average.
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3.3 Floquet theory

A second regime of main interest for the applied driving, complementing the one of
linear response, is periodic driving. In the following section, we assume that all time-
dependent parameters are driven at some frequency�with driving period T = 2π/�.
This periodic-driving regime can conveniently be approached using Floquet theory.

3.3.1 General formalism

The aim of Floquet theory is to solve the time-dependent Schrödinger equation of a
time-dependent Hamiltonian with period T , Ĥ(t + T ) = Ĥ(t),

i�
d

dT
|ψ(t)〉 = Ĥ(t)|ψ(t)〉. (55)

In what follows, we present a summary of the main ideas following Refs. [45, 133–
136], without giving proofs.

Mathematically, there are similarities with the Bloch theory of spatially periodic
systems. In such a case, and focusing on one dimension, it is natural to rely on a
quasimomentum �k, with k = 2π/a, with a the lattice constant. In Floquet theory, the
counterpart is the quasienergy �� = 2π�/T . An important aspect is the following
property of the evolution operator in the Schrödinger picture

Û (t + nT , t0) = Û (t, t0)
[
Û (t0 + nT , t0)

]n
, (56)

which implies that the knowledge of Û (t, t0) for t ∈ [t0, t0 + T ] is enough to write
the evolution operator at an arbitrary time t + nT .

A concrete procedure to make this property explicit is to represent the one-period

evolution operator as Û (t0 + T , t0) = e−(i/�)ĤF0T , with ĤF0 a Hermitian operator. In
this way, the evolution operator between two arbitrary times t1 and t2 is expressed as

Û (t2, t1) = Û (t2, t0 + nT )e− i
�
ĤF0nT Û (t0, t1)

≡ e−i KF [t0](t2)e− i
�
ĤF0 (t2−t1)eiKF [t0](t1), (57)

where we have introduced the definition of the stroboscopic kick operator KF [t0]. It is
also useful to introduce a change of representation by defining kick operators K and
an effective Hamiltonian H̃ as follows:

e−i KF [t0](t) = e−i K (t)eiK (t0), H̃ = eiK t0 ĤF0e
−i K t0 . (58)

In this way, Eq. (57) can be written as

Û (t2, t1) = e−i K t2e− i
�
H̃(t2−t1)eiK t1 . (59)
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These definitions lead to the following expressions of the time-dependent mean values
of generic observables

〈Ô(t2)〉 = Tr
[
ρ̃(t1) ÛF (t2, t1)Õ(t2)

]
, (60)

where ρ̃(t1) = eiK t1 ρ̂e−i K t1 , Õ(t2) = eiK t2 Ôe−i K t2 and ÛF (t2, t1) = e−(i/�)H̃(t2−t1).
In addition, it is interesting to mention that a complete basis for the Hilbert space

can be defined as follows:

ĤF0 |u j (t0)〉 = ε j |u j (t0)〉, (61)

where the eigenenergies ε j are determined modulo �� since e−(i/�)ε j T

= e−(i/�)(ε j+n��)T . The complete set of solutions of the time-dependent Schrödinger
equation has the form:

|ψ j (t)〉 = e− i
�
ε j (t−t0)|u j (t)〉, (62)

with |u j (t + nT )〉 = |u j (t)〉.
Analternative approachwhich relies on theFourier expansionof the periodicHamil-

tonian is the so-called Shirley–Floquet approach. The starting point is the eigenvalue
problem defined by the Schrödinger equation expressed in the basis |u j (t)〉. It reads

[
Ĥ(t) − i�

d

dt

]
|u j (t)〉 = ε j |u j (t)〉. (63)

The Hamiltonian and the eigenstates are expanded in Fourier components as follows,

Ĥ(t) =
∑

n

Ĥ
(n)
e−in�t ,

|u j (t)〉 =
∑

n

e−in�t |u(n)j 〉, (64)

which leads to the following linear eigenvalue problem

∑

n′
Ĥ (n′)|u(n−n′)

j 〉 − n��|u(n)j 〉 = ε j |u(n)j 〉. (65)

This representation has a structure akin to the Schrödinger equation of a tight-binding
Hamiltonian in real space. It defines a practical way to solve the original time-
dependent problem with numerical methods. To this end, a cutoff in the number of
Fourier components n − n′ coupled to the mode n must be introduced.
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3.3.2 Particle flux

The Floquet formalism is frequently used in lattice models, which typically have the
structure [137, 138]

Ĥ(t) =
∑

�,�′
h�,�′(t) ĉ†� ĉ�′ + Ĥint, (66)

where the creation and annihilation operators ĉ†�, ĉ�′ obey fermionic or bosonic com-

mutation relations, and Ĥint is a many-body interaction. The particle flux is defined
by analyzing the change in time of the local occupation at the site �,

〈
dN̂�

dt

〉
= − i

�

〈[
N̂�, Ĥ

]〉
. (67)

Usually,
[
N̂�, Ĥint

]
= 0 commutes with the local particle density and the current

between the sites � and �′ are defined as

J�′→�(t) = 2Im
[
h�,�′(t) 〈ĉ†� ĉ�′ 〉

]
. (68)

Floquet states can be used to calculate this mean value. Reference [136] presents a
detailed discussion on using Eq. (60) to calculate the mean values and averages over
time.

3.4 Scattering-matrix theory

The scattering-matrix theory of coherent quantum transport was developed by Lan-
dauer, Büttiker, and Imry [6–14]. We summarize the main ideas following [139–141],
focusing in particular on scattering theory for time-dependently driven conductors.
This theory applies to conductors connected to Nr reservoirs with well-defined tem-
peratures and chemical potentials. It relies on the description of the wave functions
of the particles injected from one reservoir and scattered into the same or a different
reservoir as a consequence of the applied biases and the scattering properties of the
conductor.

3.4.1 Stationary case

We start by introducing the concepts of scattering theory in the time-independent,
stationary case. The key object is the scattering matrix S, characterizing the conductor
and relating the outgoing and the incoming fluxes to each other. Orthonormal bases of

single-particle wave functions
{
ψ
(in/out)
α

}
in the reservoir α for the incoming and out-

going particles, respectively, are considered. Assuming that they are plane waves with
velocities vα(E) = �kα(E)/m along the longitudinal direction x , the field operators
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for these particles are expressed as:

�̂α(t, r) = 1√
2π

∫ ∞

0

dE√
�vα(E)

e−i E
�
t
∑

α

{
âαψ

(in)
α (E, r) + b̂αψ

(out)
α (E, r)

}
,

�̂†
α(t, r) = 1√

2π

∫ ∞

0

dE√
�vα(E)

e−i E
�
t
∑

α

{
â†αψ

(in)∗
α (E, r) + b̂†αψ

(out)∗
α (E, r)

}
,

(69)

with r = (x, r⊥), while â†α, b̂
†
α create and âα, b̂α annihilate particles in the incom-

ing/outgoing states, respectively. They obey fermionic/bosonic commutation relations,
depending on the nature of the particles. The scattering matrix S is defined by the ele-
ments Sγα relating the annihilation operators for the outgoing and incoming particles,

b̂γ =
∑

α

Sγα âα. (70)

Here, we have suppressed possible additional indices for the channels in each lead that
would occur in a multi-channel setup. An extension to this case is straightforward,
where one would have to replace âα → âαn and Sγα → Sγm αn . The scattering matrix
is unitary,

S†S = S S† = 1, (71)

with 1 being the unit matrix with the same dimension as S. In addition, it obeys micro-
reversibility. This implies that, in the presence of a magnetic field B, the scattering
matrix satisfies S(B) = S†(−B).

Starting from the field operators, the particle current operator flowing in reservoir
α reads

Î Nα (t, x) = i�

2m

∫
dr⊥

{
∂�̂†

α(t, r)
∂x

�̂α(t, r) − �̂†
α(t, r)

∂�̂α(t, r)
∂x

}
. (72)

Using the definition of Eq. (70), the mean value of the particle current defined in Eq.
(72) can be expressed as follows:

I Nα = 1

h

∫ ∞

0
dE

Nr∑

γ=1

|Sαγ (E)|2
[
fγ (E) − fα(E)

]
, (73)

where fα(E) are Fermi–Dirac or Bose–Einstein distribution functions, depending on
the nature of the particles.

3.4.2 Periodic time-dependent scatterer

When the conductor is under the effect of a time-periodic potential with a frequency�,
the scattering process at the conductor takes place with a gain or loss of energy quanta
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��. Hence, the outgoing state at energy E can be expressed as a superposition of
states incoming at energies En = E + n��, with n an integer number. Consequently,
the scattering matrix introduced in Eq. (70) is generalized and expressed in the Flo-
quet representation by introducing a Floquet scattering matrix SF , whose components
SF,γ α(E, En) relate the incoming and outgoing states as follows:

b̂γ (E) =
∑

α

∑

En>0

SF,γ α(E, En)âα(En). (74)

This can be interpreted as the quantum mechanical amplitude for an electron coming
from reservoir α with energy En to be scattered into reservoir γ with an exchange of
−n quanta of the oscillating conductor. In the Floquet space, this matrix (now with
an increased dimension due to the exchange of energy quanta) obeys an analogous
unitary property as expressed for the static counterpart in Eq. (71)

∑

En>0

∑

ζ

S∗
F,ζα(En, Em)SF,ζγ (En, E) = δm0δαγ . (75)

With this property, the mean value of Eq. (72) can be calculated, and the result is

I Nα (t) = 1

h

∫ ∞

0
dE
∑

γ

∑

En ,E�>0

e−i��t S∗
F,αγ (E, En)SF,αγ (E�, En)[ fγ (En)− fα(E)] .

(76)
A simpler expression is found for the directed particle current Ī Nα = ∫ T

0 dt I Nα /T ,
which reads

Ī Nα = 1

h

∫ ∞

0
dE
∑

γ

∑

En>0

|SF,αγ (E, En)|2
[
fγ (En) − fα(E)

]
. (77)

Following a similar procedure, the time-resolved and directed heat currents into reser-
voir α can be calculated. Assuming the same chemical potential μ for all reservoirs,
the result is

I Qα (t) = 1

h

∫ ∞

0
dE
∑

γ

∑

En ,E�>0

(
E − μ + ���

2

)
e−i��t S∗

F,αγ (E, En)SF,αγ (E�, En)

× [ fγ (En) − fα(E)] , (78)

Ī Qα = 1

h

∫ ∞

0
dE
∑

γ

∑

En>0

(E − μ) |SF,αγ (E, En)|2
[
fγ (En) − fα(E)

]
. (79)

In addition to the energy representation SF (E, En) of the Floquet scattering matrix,
it is often convenient to adopt a mixed time–energy representation, which is obtained
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from the following relation:

S(t, E) =
∞∑

n=−∞
SF (En, E)e

−in�t ⇐⇒ SF (En, E) =
∫ T

0

dt

T S(t, E)ein�t . (80)

In terms of this alternative representation, the time-dependent particle current is given
by

I Nα (t) = 1

h

∫ ∞

0
dE
∑

γ

∑

En>0

[ fγ (E)− fα(En)]
∫ T

0

dt ′

T ein�(t−t ′)S∗
αγ (t

′, E)Sαγ (t, E) .

(81)

3.4.3 Reservoirs with ac voltages

In addition (or alternatively) to the time-dependent driving of the central conductor
region, a paradigmatic situation corresponds to electron systemswhere time-dependent
voltages are applied to one or more reservoirs. Importantly, a way to model such a
time-dependent bias voltage is by including the ac part of the potential bias into the
scattering matrix. Again, the approach relies on the Floquet representation of the
scattering matrix and Eq. (74), see, e.g., Refs. [88, 142], with

âα(E) =
∞∑

�=−∞
cα,�â

′
α(E − ���), (82)

where cα,� are Floquet coefficients defined as

cα,� =
∫ T

0

dt

T e−iφα(t)ei��t , (83)

φα(t) = q

�

∫ t

0
dt ′V ac

α (t ′). (84)

If the time-dependent bias voltage is of the form Vα(t) = V 0
α cos(�t + ϕα), the

Floquet coefficients equal cα,� = J�
(
qV 0

α

��

)
e−i�ϕα , where J�(x) are Bessel functions

of the first kind. Substituting in Eq. (72) and taking the average over one period of
the current expectation value lead to the following expression of the charge current,
assuming spinless electrons and a single transport channel,

I
N
α = 1

h

∫ ∞

0
dE
∑

γ

∞∑

n=−∞
f0,γ (E − n��)

{∑

m,�

S∗
F,αγ (E, E�)SF,αγ (E, Em)

×c∗
γ,n+�cγ,n+m − δαγ |cα,n|2

}
, (85)
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with f0,γ (E) the Fermi function, depending on the temperature and the chemical
potential of the reservoir γ without the effect of the ac voltage (indicated by the
additional subscript 0). Note that since the driven bias is here modeled in terms of
a scattering coefficient, it is possible to rewrite the expression (85) in terms of a
combined effective scattering matrix

I
N
α = 1

h

∫ ∞

0
dE
∑

γ

∑

En>0

|S̃F,αγ (E, En)|2
[
fγ (En) − fα(E)

]
, (86)

with

S̃F,αγ (E, En) =
∑

�

SF,αγ (E, E�)cα,�−n . (87)

Equation (86) can be used to define a spectral current, which is nothing but the energy-
resolved contribution to the particle current

iα(E) =
∑

γ

∑

En>0

|S̃F,αγ (E, En)|2
[
fγ (En) − fα(E)

]
. (88)

This quantity is especially useful in two-terminal transport geometries, for example
when the scattering matrix defines the action of a single-electron source, as discussed
in Sect. 5.1.1.

3.4.4 Adiabatic approximation

As previously discussed, for time-periodic transport, the adiabatic-response approxi-
mation applies to the situationwhere the period,which formoderate driving amplitudes
defines the typical timescale for the changes of the driving, is much larger than the
typical timescale for the internal dynamics of the conductors. In terms of energy, this
means that �� ismuch smaller than the typical energywindows defined by the changes
in S and the changes in the distribution functions of the reservoirs. As before, we focus
on problems where the time dependence enters through parameters X(t). In the frame-
work of the scattering-matrix theory, the adiabatic approximation is implemented as
an expansion of the Floquet scattering matrix up to first order in the driving frequency.
The first crucial ingredient is the notion of frozen scattering matrix S0(t, E). It is
defined as the stationary scattering matrix with the parameters X frozen at time t ,
namely, S0(t, E) = S0(E, X(t)). With this, the first-order expansion of the Floquet
scattering matrix SF reads [143]

SF (E, En) � S0,n(E) + ��

[
n

2

∂S0,n(E)

∂E
+ An(E)

]
, (89)
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where

S0,n(E) =
∫ T

0

dt

T
ein�t S0(E, X(t)) ⇐⇒ S0(E, X(t)) =

∞∑

n=−∞
S0,n(E)e

−in�t

(90)
is the n-th Fourier component of the frozen scattering matrix. The quantities An are
the Fourier components of a matrix A(t, E) satisfying

S†0(t, E)A(t, E)+ A†(t, E)S0(t, E) = i

2�

[
∂S†0(t, E)

∂t

∂S0(t, E)

∂E
− ∂S†0(t, E)

∂E

∂S0(t, E)

∂t

]
.

(91)
Introducing these expansions into Eq. (85), assuming reservoirs at the same tempera-
ture and preserving terms up to linear order in �� and Vα,0, the following expression
for the directed electron current is found

I Nα =
∫ ∞

0
dE

(
−∂ f (E)

∂E

)[
I (pump)
α (E) + I (rect)α (E)

]
. (92)

The first term is identified as pumping and describes the transport induced by the
time-dependent variation of the parameters acting in the conductor connected to the
reservoirs and is ∝ ��. The second component is identified as rectification and
describes the transport induced by the voltage bias applied at the reservoirs. These
components read

I (pump)
α (E) = i

2π

(
∂S0(t, E)

∂t
S†0(t, E)

)

αα

I (rect)α (E) = q

h

∑

γ

(
Vγ (t) − Vα(t)

) |S0,αγ (t, E)|2. (93)

3.5 Green’s function formalism

3.5.1 General considerations

The non-equilibrium Schwinger–Keldysh Green’s function formalism is a powerful
method to treat many-body problems under the effect of time-dependent driving.
Formally, it enables the combined treatment of many-body interactions and non-
equilibrium effects. In the theory of quantum transport, it was first introduced in
problems without time-dependent drives, where transport is induced by means of dc
voltage biases [144–148] and then extended to time-dependent problems in the sta-
tionary regime [149–152] as well as in transients [153–155]. Here, we very briefly
present the main ideas and focus on the implementation in time-periodic problems
following [156], as well as its relation to the scattering-matrix theory [157]. Details
of this theory can be studied in [158–162].
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The starting point is a Hamiltonian of the form

Ĥ(t) = Ĥ + Ĥ ′(t), Ĥ = Ĥ0 + Ĥint, (94)

where the static component Ĥ contains a single-particle term Ĥ0 and a many-body
interaction term Ĥint. The time-dependent part Ĥ ′(t) is considered to be switched on
at time t0.

The key concept in this theory is the time evolution along the Keldysh contour,
which is defined by a forward path from t0 to ∞ and closed by a backward piece from
∞ to t0. The time-ordered single-particle Green’s function over this contour reads

G(r, t; r ′, t) = −i
〈
TC

[
ψ̂H (r, t)ψ̂

†
H (r

′, t ′)
]〉
, (95)

whereTC denotes time ordering along theKeldysh contour of the fermionic or bosonic
field operators expressed in the Heisenberg representation with respect to the full
Hamiltonian H(t). The mean value 〈•〉 ≡ Tr

[
ρ̂H•] is calculated with respect to the

density matrix of the equilibrium Hamiltonian Ĥ . The combination with the many-
body perturbation theory to treat Ĥint is implemented by assuming that the interactions
are adiabatically switched on at t ′0 = −∞. For problemswhere the transient introduced
by switching on Ĥ ′(t) are neglected, it is convenient to also extend theKeldysh contour
to t0 → −∞. This defines the so-calledSchwinger–Keldysh contourC,which consists
of a path where time evolves forward from −∞ to +∞, followed by a path with a
backward evolution from+∞ to−∞. Introducing the interaction picture for Ĥint, the
Green’s function can be written as follows:

G(r, t; r ′, t) = −i

〈
TC

[
e
−i
∫
C dτ

(
Ĥ int
H0
(τ )+Ĥ ′

H0
(τ )
)

ψ̂H0(r, t)ψ̂
†
H0
(r ′, t ′)

]〉

0
, (96)

where the operators are expressed in the Heisenberg representation with respect to the
non-interacting Hamiltonian Ĥ0 and the mean value 〈•〉0 is calculated with respect
to the equilibrium density of this Hamiltonian. As in usual perturbation theory, the
expansion of the exponential in combination with Wick’s theorem leads to terms
at different orders in the interactions Ĥint and Ĥ ′(t), which can be represented by
Feynman diagrams. Defining the non-interacting Green’s function

G0(r, t; r ′, t ′) = −i
〈
TC

[
ψ̂H0(r, t)ψ̂

†
H0
(r ′, t ′)

]〉

0
(97)

and suitably collecting the higher-order terms of this expansion, the Dyson equation
is obtained as in usual perturbation theory. Introducing the shorthand notation j ≡
(r j , t j ), it has the following structure:

G(1, 1′) = G0(1, 1
′) +

∫

C
dt2dt3

∫
dr3dr2G0(1, 3)�(3, 2)G(2, 1

′), (98)
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where �(3, 2) is the self-energy in the Schwinger–Keldysh contour. In general, the
self-energy is a complicated function of the interactions and G.

As a consequence of the fact that C contains a forward + and a backward − path,
each of the time arguments of these functions has an implicit index +,−. Therefore,
G,G0, � have the structure of a 2× 2 matrix in these indices. The following notation
is introduced:

G(1+, 2−) ≡ G>(1, 2) = −i〈ψ̂H (r1, t1)ψ̂
†
H (r2, t2)〉

G(1−, 2+) ≡ G<(1, 2) = ∓i〈ψ̂†
H (r2, t2)ψ̂H (r1, t1)〉, (99)

where the prefactor in the last line ∓ applies to bosons and fermions. The functions
indicated with the symbols >,< are, respectively, named greater and lesser Green’s
functions. It is also useful to define retarded and advanced Green’s functions

Gr (1, 2) = −iθ(t1 − t2)
[
G>(1, 2) − G<(1, 2)

] = [Ga(2, 1)
]†
. (100)

Using the properties of the contour-ordered Green’s functions known as Langreth
theorem, it can be shown that the convolution of two contour-ordered functions of
the form G(1, 1′) = ∫

C G1(1, 2)G2(2, 1′) can be decomposed into the following
identities for the real-time Green’s functions:

Gr/a(1, 1′) =
∫

dt2G
r/a
1 (1, 2)Gr/a

2 (2, 1′),

G</>(1, 1′) =
∫

dt2
[
G</>

1 (1, 2)Ga
2(2, 1

′) + Gr
1(1, 2)G

</>
2 (2, 1′)

]
. (101)

Using these relations, the Dyson equation (98) is reduced to the following set of
equations:

Gr/a = Gr/a
0 + Gr/a

0 �r/aGr/a = Gr/a
0 + Gr/a�r/aGr/a

0 ,

G</> = (1 + Gr�r )G</>
0

(
1 + �aGa)+ Gr�</>Ga, (102)

where, for simplicity, we have omitted the indices of the Green’s functions and the
integrals in the products. In many problems, the first term of the second equation
vanishes in the long-time limit, where the transient is damped.

This approach is particularly useful to evaluate the particle and energy fluxes in
systems modeled by Hamiltonians with spatial discretization. In particular, notice that
the mean values of the operators defined as

Î Nα (t) = − i

�

[
N̂α, Ĥ(t)

]
= −1

�

∑

�,k

[
iwαk�â

†
αk d̂� + H.c.

]
, (103)

Î Eα (t) = − i

�

[
Ĥα, Ĥ(t)

]
= −1

�

∑

�,k

εαk

[
iwαk�â

†
αk d̂� + H.c.

]
, (104)
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can be directly expressed in terms of lesser Green’s functions as follows:

I Nα (t) = −2

�

∑

�,k

Re
[
G<
�,αk(t, t)wαk�

]
,

I Eα (t) = −2

�

∑

�,k

Re
[
G<
�,αk(t, t)εαkwαk�

]
. (105)

The explicit calculation of the Green’s functions depends on the details of the Hamil-
tonian and, crucially, on the presence or absence of many-body interactions.

3.5.2 Systems without many-body interactions

In systems where the Hamiltonian of the driven part can be expressed as a bilinear
form of creation and annihilation operators,

Ĥsys(t) =
∑

�,�′
V�,�′ [X(t)] d̂†� d̂�′ , (106)

with

V�,�′ [X(t)] =
+∞∑

m=−∞
V (m)
�,�′ e−im�t , (107)

the Green’s functions can be exactly calculated. Following [156, 157], it is convenient
to introduce the Fourier–Floquet representation for the retarded Green’s function as
follows:

Gr (t, t ′) =
∫

dε

2π
G(t, ε)e−i ε

�
(t−t ′),

G(t, ε) =
+∞∑

m=−∞
eim�tG (m, ε), (108)

whereG denotes amatrix structure in the indices � of the driven system. Consequently,
a matrix V (m) is defined and the Dyson equation can be expressed as

Gr (t, ε) = G0(ε) +
∑

m �=0

e−im�tGr (t, ε + m��)V (m)G0(ε), (109)

where G0(ε) is the Green’s function of the static system described by V (0) and in
contact to the reservoirs.

Describing the coupling to the reservoirs in terms of the spectral matrix with ele-
ments

�α,�,�′(ε) = 2π
∑

kα

wαk�δ(ε − εkα )w
∗
αk�′, (110)
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and using properties of the Green’s functions, the directed particle and energy currents
(averaged over one period) can be expressed as

I Nα =
∑

α′

∑

m

∫
dε

2π
Tα,α′(m, ε) [ fα′(ε) − fα(ε + m��)] ,

I Eα =
∑

α′

∑

m

∫
dε

2π
(ε + m��) Tα,α′(m, ε) [ fα′(ε) − fα(ε + m��)] , (111)

with
Tα,α′(m, ε) = Tr

[
�α(ε + m��)G (m, ε)�α′(ε)G †(m, ε)

]
. (112)

For reservoirs with constant density of states and smoothly connected to the driven
device, the functions of Eq. (110) are constant and one can define a translation between
the Green’s functions and the scattering matrix [157]

SF,α,α′(Em, En) = δα,α′δm,n − i
√
�α�αG (m − n, ε + n�)�α′

√
�α′ , (113)

where the operators �α and �α′ project the indices of the central device on those
entering the tunneling matrix elements wαk� and wα′k�, respectively. In this way, the
expression for I Nα in Eq. (111) can be shown to be equivalent to the expression in
terms of the Floquet scattering matrix given by Eq. (77). A similar procedure can be
followed to derive an expression like Eq. (85) in terms of Green’s functions for an
electron system under the effect of an ac bias voltage.

Similar and equivalent expressions have been derived for the currents by calculating
the equation of motion and introducing the representation of the retarded Green’s
function given in Eq. (109) [46, 163]. The expression for the energy current given in
Eq. (111) is also valid for phononic/photonic systems under periodic driving described
by bilinear Hamiltonians [164].

3.5.3 Adiabatic approximation

As in the case of the scattering matrix, the Floquet retarded Green’s function can be
expanded for small �. This is accomplished starting from Eq. (109).

Keeping terms up to linear order in � (equivalent to O(Ẋ)), one finds

Gr (t, ε) � G0(ε) + Gr (t, ε)V (t)G0(ε) + i�∂εG
r (t, ε)

dV (t)

dt
G0(ε). (114)

Introducing the definition of the frozen Green’s function,3 corresponding to the static
problem defined by the parameters fixed at time t ,

G f (t, ε) =
[
G0(ε)−1 − V (t)

]−1
, (115)

3 Note that we use the superscript 0 for the frozen time evolution in other parts of this review instead
of using f . But we refrain from doing this here to avoid confusion with the unperturbed evolution, here
indicated by a zero.
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the exact solution of Eq. (114) up to linear order in � or Ẋ reads

Gr (t, ε) � G f (t, ε) + i�

2

[
∂2G f (t, ε)

∂t∂ε
+ A(t, ε)

]
,

A(t, ε) = ∂εG
f (t, ε)V (t)G f (t, ε) − G f (t, ε)V (t)∂εG

f (t, ε), (116)

which can be related to the adiabatic approximation of the scattering matrix discussed
in Sect. 3.4.4.

3.5.4 Problems with many-body interactions

Up to here, we have focused onGreen’s functionmethods for a quadratic Hamiltonian,
meaning that many-body interactions are at most taken into account at the mean-field
level. However, many-body interactions not only affect the shape of the instantaneous
Green’s function through the self-energy, but also have a strong impact on how approx-
imations for specific driving regimes are done. In this case, Eq. (109) must hence be
generalized to include the effect of many-body terms.

In certain cases, even strongly interacting systems can bemapped to non-interacting
ones, such as in the Kondo regime [165, 166], allowing for a description of time-
dependent transport exploiting tools from the non-interacting theory. Furthermore,
corrections represented by a self-energy�(t, t ′) can be solved at some level of approxi-
mation, for specific regimes, such asHartree–Fock orHubbard approximations starting
from an equation of motion approach for the two-time Green’s function [167]. Alter-
natively, renormalization group approaches have been used, such as the functional
renormalization group approach, to study periodic driving in interacting systems with
moderately strong coupling [168–170].

Formulas for adiabatic pumping through non-interacting systems, generally
expressed in terms of quasi-stationary Green’s functions and their derivatives, have
been set up inRefs. [171–174]. There, approximations have been carried out on how the
time dependence of the self-energy is treated. These approaches involve an “average-
time” approximation [171, 173], which basically neglects vertex corrections [172].
It nonetheless remains applicable not only for non-interacting, but also for large
classes of interacting systems, in particular when temperature is zero and mapping
to a Fermi liquid is possible or when the coupling to the environment is treated per-
turbatively [174]. Extensions to nonadiabatic transport have also been achieved based
on these approaches [175]. This formalism can be also used to solve driven qubits in
strong coupling to reservoirs by introducing the representation of spins to Majorana
fermions [176].

3.5.5 Theory of electronic coherence

The Green’s function formalism is very useful to describe the properties of non-
equilibrium states that are generated by single- or few-electron sources. This is of
special interest in the context of electronic quantum optics, which we will discuss in
detail in Sect. 5.3. Here, we present the basic concepts of the formalism. Typically, it
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is applied to one-dimensional systems, such as the edge modes of the quantum Hall
effect, that play the role of waveguides for electron propagation.

One of the key concepts in electronic quantum optics is the notion of electron coher-
ence. It is defined in close analogy toGlauber’s optical coherence [177]. An immediate
difference compared to optical coherence is that we can have here a coherence function
for both electrons and holes. Explicitly, the single-electron and single-hole coherences
(or first-order electron and hole coherences) associated with a state characterized by
a many-body density matrix ρ̂ are defined as

G<(x, t; x ′t ′) = Tr[ρ ψ̂†(x ′, t ′)ψ̂(x, t)] ≡
〈
ψ̂†(x ′, t ′)ψ̂(x, t)

〉

ρ
,

G>(x, t; x ′t ′) = Tr[ρ ψ̂(x, t)ψ̂†(x ′, t ′)] ≡
〈
ψ̂(x, t)ψ̂†(x ′, t ′)

〉

ρ
, (117)

where ψ̂(x, t) is the electronic field operator in the Heisenberg representation.While a
standard notation in the literature isGe/h for electron and hole coherences, respectively,
our choice emphasizes that these functions are basically the non-equilibrium lesser
and greater Keldysh Green’s functions, cf. Eq. (99). From the definitions above, the
following symmetry property immediately follows:

G≷(x, t; x ′, t ′) = [G≷(x ′, t ′; x, t)]∗ , (118)

while the anti-commutation of fermionic operators implies

G<(x, t; x ′, t) + G>(x, t; x ′, t) = δ(x − x ′) . (119)

Inmany relevant situations, especiallywhen dealingwith local observables, the single-
electron coherence is evaluated at a given position, so it is sufficient to use a local
version of the more general definition above, where x = x ′ and the spatial variable is
dropped for notational convenience. Such simplification is even not necessary in the
case of chiral conductors with linear dispersion, where the space and time variables
only appear in the combination x − vF t , where vF is the Fermi velocity or the charac-
teristic propagation velocity. In the following, we will assume such a situation unless
otherwise specified.

The single-electron coherence can be represented in three different ways: we have a
time representation, an energy representation, and amixed time–energy representation.
The time representation directly stems from the definition (117). The energy (or,
more properly, frequency) representation is obtained by performing a double Fourier
transform

G̃≷
(ω, ω′) =

∫ +∞

−∞
dt
∫ +∞

−∞
dt ′ G≷(t, t ′)ei(ωt−ω′t ′). (120)

Using the operator decomposition

ψ̂(t) = 1√
2πvF

∫ +∞

−∞
dω ĉ(ω)e−iωt , (121)
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where vF is the Fermi velocity, one finds

G̃<(ω, ω′) = 2π

vF

〈
ĉ†(ω)ĉ(ω′)

〉

ρ
, (122)

showing that the energy representation is best suited to obtain the energy distribution
function, which can be accessed by taking the diagonal limit ω = ω′.

The mixed representation relies on the notion of Wigner function, which (adapting
it to our context) can be defined as [87]

W≷(t, ω) = vF

∫ ∞

−∞
dτ G≷

(
t + τ

2
, t − τ

2

)
eiωτ (123a)

= vF

∫ +∞

−∞
dξ

2π
G̃≷
(
ω + ξ

2
, ω − ξ

2

)
e−i tξ . (123b)

By using Eq. (118), one can show that this quantity is real. Moreover, in a chiral
conductor, there is the additional property

W<(t, ω) + W>(t,−ω) = 1 . (124)

The Wigner function representation is particularly useful because it allows one to see
in a transparent way both the temporal profile of a given few-electron state, as well as
its energy content. Moreover, the marginal distributions of the Wigner function yield
the time-dependent charge current and the electronic energy distribution:

I c(t) = q
∫ +∞

−∞
dω

2π
W<(t, ω), (125)

fe(ω) = W<(t, ω)
t
. (126)

The time average in the second equation can be a simple integration
∫

R
dt for states

with a finite number of extra particles (or holes) on top of the Fermi sea, or rather
an average over a single period

∫ T/2
−T/2

dt
T when dealing with periodic sources (see the

next paragraph). Moreover, strictly speaking, the true energy distribution is obtained
by replacing ω → �ω. In Sect. 5.3, we find it simpler to keep the frequency variable
instead of the energy ε = �ω.

Electron coherence for periodic states In the presence of periodic sources, which is
the most common situation in experiments, the first-order coherence functions inherit
the periodicity property

G≷(t + T, t ′ + T) = G≷(t, t ′) . (127)

As a result, it is possible to perform a decomposition into a Fourier series with respect
to the average time t̄ = (t + t ′)/2 and a Fourier transform in the time difference
τ = t − t ′:
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G≷(t, t ′) =
∑

�∈Z

e−i��t̄
∫ +∞

−∞
dω

2π
g

≷
� (ω)e

−iωτ . (128)

Moreover, the T-periodicity in t̄ means that the Wigner function is periodic and can
be represented as

W≷(t, ω) = vF
∑

�∈Z

g
≷
� (ω)e

−i��t , (129)

showing that g≷
� (ω) are nothing but the harmonics of the Wigner function. Finally,

the energy representation reads

G̃≷
(ω, ω′) =

∑

�∈Z

δ(ω − ω′ − ��)g
≷
�

(
ω + ω′

2

)
. (130)

The abovedecompositionsmake clear that, for periodic sources, the problem is reduced

to the calculation of the harmonics g≷
� (ω). For non-interacting electrons, this task can

be tackled by relying on the Floquet approach presented in Sect. 3.4.2. Explicitly,
the field operators ψ̂(t) that enter the Wigner function calculation, are given in this
framework by the decomposition in Eq. (121), where the operators ĉ(ω) play the role
of the b̂(E) operators in Eq. (74) (suppressing the indices α, γ that are not needed in
this case). This leads to the result [87]

g<� (ω) =
∑

m∈Z

SF (ω�, ωm)S
∗
F (ω�+m, ω−�) f

[
ω + �

(
m + �

2

)]
. (131)

The details of the final expression thus depend on the Floquet scattering matrix char-
acterizing the source.

In the simple case of a periodic classical drive, i.e., a voltage V (t) applied to an
ohmic contact, the previous equation can be expressed in a simpler form by using the
coefficients in Eq. (83). One gets

g<� (ω) =
∑

m∈Z

c∗
�c�+m f

[
ω − qVdc

�
− �

(
m + �

2

)]
, (132)

where Vdc = ∫ T0 dt V (t)/T is the dc component of the voltage.

3.6 Master and rate equations

The methods of the previous sections do not rely on the type of coupling between the
system and the baths. We now turn to present master and rate equation approaches.
These are useful in problems where the system is typically weakly coupled to baths
and are valid even when its Hamiltonian cannot be expressed in terms of bilinear
products of creation and annihilation operators.

There are several routes to derive quantum master equations. These are used in
atomic, optical, as well as in condensed matter physics in problems identified as
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“open quantum systems”. This concept applies to few-level or discrete-level quantum
systems coupled to one or more baths containing many degrees of freedom. The goal
is to describe the dynamics of the reduced density matrix for the central system as
follows:

dρ̂(t)

dt
= L(t)ρ̂(t), (133)

with L(t) being the Liouvillian operator (strictly speaking it is a superoperator acting
on operators in Liouville space), which depends on the Hamiltonian of the system as
well as its coupling to the reservoirs. Concrete examples for this general operator are
given below in Eqs. (141) and (145).

3.6.1 Stationary case

Here,we startwith presenting the derivation for the standard case of stationary systems,
namely in the absence of time-dependent driving, following textbooks [178, 179]. It
is based on a structure of the coupling between the system and bath of the form:

Ĥcoup = g
∑

ν

Âν B̂ν, (134)

where Âν, B̂ν are different operators, labeled by ν and associated with the system
and bath, respectively, and g is a characteristic coupling between them. For simplicity,
we summarize here the procedure by considering a single bath and omit the contact
index α (which could otherwise be included in the list labeled by ν). The extension to
several baths will be recovered in the end.

The evolution of the density matrix for the system coupled to the bath starts from
the initial condition (at t = 0) where these systems are assumed to be decoupled,
that is, ρ̂SB(0) = ρ̂B(0) ⊗ ρ̂(0). It is convenient to express the time evolution in the
interaction picture,

Ãν(t) = e
i
�
ĤS t Âνe

− i
�
ĤS t , B̃ν(t) = e

i
�
ĤB t B̂νe

− i
�
ĤB t . (135)

Integrating the Liouville equation of motion for the density matrix in the interaction
picture i�dρ̃(t)/dt = [Hcoup, ρ̃(t)], plugging it back into (133), and tracing over the
bath degrees of freedom, ρ̃(t) = TrB[ρ̃SB(t)], one finds for the density operator in
the interaction picture

d

dt
ρ̃(t) = −TrB

{[
H̃coup(t),

∫ t

0
dτ
[
H̃coup(t − τ), ρ̃SB(t − τ)

]]}
. (136)

The next step is to take the Born approximation, ρ̃SB(t) � ρ̃(t) ⊗ ρB(0), valid for
weak system–bath coupling. This leads to

d

dt
ρ̃(t) = −g2

∑

ν,ν′

∫ t

0
dτ
{
Bν,ν′(τ )

[
Ãν(t), Ãν′(t − τ)ρ̃(t − τ)

]
+ h.c.

}
, (137)
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where we define the correlation function of the bath

Bν,ν′(τ ) = Tr
[
B̃ν(τ )Bν′ρB

]
. (138)

As a next step, a Markov approximation is performed, assuming that the correlation
time characterizing the bath is very short. Introducing this “short-memory” approxi-
mation into Eq. (137) leads to the Redfield master equation, which is local in time and
has the form of Eq. (133) with

L(t)ρ̃(t) = −g2
∑

ν,ν′

∫ t

0
dτ
{
Bν,ν′(τ )

[
Ãν(t), Ãν′(t − τ)

]
ρ̃(t) + h.c.

}
. (139)

This first-order differential equation can be solved given an initial condition, and
the stationary value can be found in the long-time limit. However, Eq. (139) has the
shortcoming that it is not possible to guarantee the positivity of the solution. Instead,
the positivity property can be proved for master equations that have Lindblad form.
This form can be obtained from Eq. (139) after the rotating wave approximations (also
named secular approximation). This approximation consists in representing

Ãν(t) =
∑

m,n

e−i(εn−εm )
t
� |m〉〈m| Âν |n〉〈n| ≡

∑

�ω=εn−εm

Âν(ω)e
−iωt =

∑

�ω=εn−εm

Â†
ν(ω)e

iωt ,

(140)
where ĤS|n〉 = εn|n〉, and in substituting these expressions in Eq. (139). This gen-

erates oscillatory terms ∝ ei(ω−ω′)t
[
Â†
ν(ω), Âν(ω

′)
]
. The rotating wave or secular

approximation consists in neglecting the fast oscillatory terms while preserving only
those where ω = ω′. The result, after transforming back to the Schrödinger picture, is
the Lindblad–Daviesmaster equation, which has the same structure as Eq. (133) with
the following action of the Liouvillian:

L(t)ρ̂(t) = −i
[
ĤS + ĤLamb, ρ̂

]

+
∑

ω

∑

νν′

(
L̂ν′(ω)ρ̂ L̂†

ν(ω) − 1

2

{
L̂†
ν(ω)L̂ν′(ω), ρ̂

})
. (141)

Here, we have introduced the definitions for the so-called Lindblad jump operators

L̂ν′(ω) = g
√
γ (ω) Âν′(ω), (142)

which introduce transitions between the states of the central system due to the cou-
pling to the environment. They hence represent the non-unitary and dissipative effects
introduced by the coupling. The definition of the jump operators contains the spectral
function for the bath

γνν′(ω) =
∫ ∞

−∞
dτ Bν,ν′(τ )eiωτ . (143)
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In the jump operators (142), we have assumed γν,ν′(ω) � γ (ω). Furthermore, we
have introduced the Lamb-shift Hamiltonian

ĤLamb = g2
∑

ν,ν′
Sν,ν′(ω) Â†

ν(ω) Âν′(ω)

Sν,ν′(ω) =
∫ ∞

−∞
dω

2π
γν,ν′(ω′)P

(
1

ω − ω′

)
, (144)

where P(•) denotes the principal value. The Lamb shift introduces a correction of
the original Hamiltonian for the system due to the coupling to the environment, in the
unitary part of the dynamics of Eq. (141).

In the case of several reservoirs, each has an associated dissipator Dα defined from
jump operators L̂ν,α, which describe transitions between the levels of ĤS due to the
coupling to the reservoir α. The full evolution is described by

dρ̂(t)

dt
= −i

[
ĤS + ĤLamb, ρ̂(t)

]
+
∑

α

Dα ρ̂(t). (145)

Importantly, the structure of Eq. (145), and hence of Eq. (141), can be proved to
guarantee a time evolution which preserves the trace and the positivity of ρ̂.

The Lindblad equation (141) gets the form of a standard rate equation, when the
dynamics of the off-diagonal elements of the density matrix (coherences) decouples
from the dynamics of the diagonal elements (populations). The populations are hence
given by

pa = ρ̂aa = Tr[ρ̂�a], (146)

where �a = |a〉〈a|, and ĤS|a〉 = εa |a〉. The corresponding equation of motion is a
rate equation. Explicitly, after performing the trace in Eqs. (133) and (141), we get
after some algebra,

ṗa =
∑

a′

[
W (a|a′)pa′ − W (a′|a)pa

]
, (147)

with W (a|a′) = ∑
νν′,ε γνν′(εa′ − εa)〈a′| Âν(ε)|a〉〈a| Âν′(ε)|a′〉. In the case of a

thermal bath, the correlation function satisfies the Kubo–Martin–Schwinger condition

〈B̂ν(τ )B̂ν′(0)〉 = 〈B̂ν′(0)B̂ν(τ + iβ�)〉 = 〈B̂ν′(−τ − iβ�)B̂ν(0)〉, (148)

which implies
γνν′(−ε) = e−βεγν′ν(ε). (149)

For a thermal reservoir, the property of Eq. (149) implies for the transition rates the
detailed balance relation W (a|a′) = e−β(εa−εa′ )W (a′|a). This guarantees a Gibbs
state as the stationary solution of Eq. (147): pa = e−βεa/Z , Z =∑a e

−βεa . A similar
reasoning can be followed to show that the full Lindblad master equation also has a
Gibbs state as a stationary solution.
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Recently, in Refs. [180, 181], improvements in the derivation of Eq. (141) have
been presented with the goal of avoiding the secular approximation, which is less well
founded that the Born approximation justified by a weak system–bath coupling and
the Markov approximation justified by fast correlation time for the bath. The crucial
step [180, 181] is to substitute the representation of Eq. (142) by a coarse-grained
version,

L̂ν(ε) =
√
γ (ε)

2π ta

∫ ta/2

−ta/2
dt eiε

t
� Âν(t) =

∑

ω

h(ε, ω) Âν(ω),

h(ε, ω) =
√
γ (ε)ta
2π

sinc

[
ta(ε − �ω)

2

]
, (150)

with sinc(x) = sin(x)/x and ta a phenomenological parameter that can be adjusted
according to the characteristics of the bath. An alternative proposal was formulated
in Ref. [182], which is based on a particular decomposition of the bath correlation
function.

Although the previous arguments assume that the jump operators act on the eigen-
states of ĤS , namely we here treat globalmaster equations, there are also proposals for
local master equations, where these operators act on states of the basis of a subsystem
of ĤS . In recent years, intensive discussions have been held about the validity of these
approaches [183–185] and in particular its consistency with thermodynamics.

3.6.2 Time-dependent driving

In the case of time-dependent driving, where we assume that it is the local quantum
system that is driven in time, theHamiltonian becomes timedependent: ĤS → Ĥsys(t).
The Lindblad master equation discussed for the stationary case in the previous section
is then generalized (see Ref. [181]) by substituting the definition of Eq. (150) for the
jump operators by

L̂ν(t, ε) =
√
γ (ε)

2π ta

∫ ta/2

−ta/2
dt1 e

iε
t1
� Âν(t + t1, t), (151)

with Âν(t ′, t) = Û †(t ′, t) ÂνÛ (t ′, t) and U (t ′, t) = T exp[− i
�

∫ t ′
t Ĥsys(s)ds]. The

resulting master equation reads

dρ̂(t)

dt
= −i

[
Ĥsys(t) + ĤLamb(t), ρ̂(t)

]
+
∫

dε
∑

νν′
(
L̂ν′(t, ε)ρ̂ L̂†

ν(t, ε) − 1

2

{
L̂†
ν(t, ε)L̂ν′(t, ε), ρ̂(t)

})
. (152)

This master equation is the starting point for evaluating the dynamics of the driven
system. For periodic driving, a Floquet approach has been used [45, 186]. Recently,
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other nonadiabatic quantum master equations [187] have been proposed under the
assumption that there is a timescale separation between bath times and driving.

In the following, we provide details on the slow-driving regime, where an adiabatic
approximation can be carried out [97, 188–192].

3.6.3 Adiabatic approximation

As in previous sections, we focus on a set of parameters X(t) slowly changing in time
controlling the dynamics of the driven system Ĥsys[X(t)], which is here chosen to be
the local open quantum system. In a quasistatic description, the parameters are frozen
at their values at a time t , X t and it is possible to find the solution of

dρ̂t
dt

= Lt ρ̂t , (153)

with Lt = L[X t ]. The stationary state corresponds to Lt ρ̂t = 0 and the basis used to
express ρ̂t is the set of eigenstates Ĥsys[X t ]|a(X t )〉 = εa(X t )|a(X t )〉. The adiabatic
approximation is the first-order correction at O(Ẋ) of this solution,

ρ̂(t) = ρ̂t + δX ρ̂t · Ẋ(t). (154)

Importantly, δX ρ̂t depends on two effects.

(i) The first effect is the change in time of the basis states. The modified
state can be expressed in the instantaneous basis as follows: |∂Xa(X t )〉 =∑

a′ �=a Aa,a′ |a′(X t )〉, with Aa,a′ = 〈a′(X t )|∂Xa(X t )〉. Using the properties
〈a′(X t )|∂Xa(X t )〉 = −〈∂Xa′(X t )|a(X t )〉,
εa〈∂Xa′(X t )|a(X t )〉 + εa′ 〈a′(X t )|∂Xa(X t )〉 + 〈a′(X t )|∂X Ĥsys[X(t)]|a(X t )〉 = 0,

we find

Aa,a′ =
〈
a′(X t )

∣∣∣∣∣
∂X Ĥsys[X(t)]

εa − εa′

∣∣∣∣∣ a(X t )

〉
. (155)

(ii) The second effect is due to the change in time of the Liouvillian, ∂X L[X t ].
The combination of the two effects can be expressed as

δX ρ̂t = Âρ̂t + ρ̂t Â
† − L−1

t [X t ]∂X Lt [X t ]. (156)

It is interesting to notice that the first terms are related to the unitary dynamics. These
are the ones taken into account in the adiabatic perturbation theory for closed sys-
tems [193]. Instead, the second term is related to the non-unitary dynamics.

123



Quantum transport phenomena induced by time-dependent fields 695

3.6.4 Calculation of particle and energy fluxes

In the case of the energy flux, we can notice that the rate of change of the internal
energy stored in the driven system contains two terms:

dTr[ρ̂(t)Ĥsys(t)]
dt

= Tr

[
dρ̂(t)

dt
Ĥsys(t)

]
+ Tr

[
ρ̂(t)

dĤsys(t)

dt

]
. (157)

The first term can be related to the energy or heat flux

Tr

[
dρ̂(t)

dt
Ĥsys(t)

]
=

Nr∑

α=1

Tr
[
Dα(t)ρ̂(t)Ĥsys(t)

]
. (158)

Assuming that the coupling between the system and baths is weak, we can neglect the
energy temporarily stored in the coupling, and the right-hand side of this equation is
identified as the sum of the energy fluxes entering the reservoirs

I Eα (t) = Tr[Dα(t)ρ̂(t)Ĥsys(t)]. (159)

The second term of Eq. (157) describes the power developed by the driving,

P(t) = Tr

[
ρ̂(t)

dĤsys(t)

dt

]
. (160)

We can follow a similar reasoning to define the particle current in setups where there is
exchange of particles between the driven system and the reservoirs. Details for the case
of a driven quantum dot using Lindblad master equation can be found in Ref. [194].
From the master equation, we can analyze the change in the number of particles stored
in the central system,

Tr

[
dρ̂(t)

dt
N̂

]
=
∑

α

Tr[Dα(t)ρ̂(t)N̂ ]. (161)

From this equation, we can identify the particle flux from each reservoir as

I Nα (t) = Tr[Dα(t)ρ̂(t)N̂ ]. (162)

It is important to notice that these fluxes are second order in the system–bath cou-
pling. ”First-principles” calculation of the current up to second order in perturbation
theory with respect to this parameter verify these definitions [124, 192, 195–201]. In
these calculations, it is important to properly account for the fermionic sign in the
different terms of Dα(t).
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3.6.5 Generalized master equation approach from perturbation theory

An alternative approach for the analysis of the dynamics starting from the density
matrix of the central system is a real-time diagrammatic approach, perturbative in
the tunnel coupling, but without making any further approximations concerning the
many-body interactions in the central system [195, 196]. The goal of procedure is the
calculation of the mean values of the matrix elements of the reduced density matrix
with respect to the full many-body state as functions of time. This leads to a master
equation for the full density matrix elements in the lowest order in the tunnel coupling,
but allows to systematically include higher orders in the tunnel coupling which are
not treated by a standard master equation approach:

Ṗ = −i L P +
∫ t

−∞
dt ′W (t, t ′)P(t ′). (163)

Here, the vector P includes also off-diagonal elements of the densitymatrix. Thekernel
W (t, t ′) is the transition matrix due to tunneling processes which can in principle
contain tunneling events in arbitrarily high order, while the Liouvillian L is local in
time and contains the matrix elements of the commutator of the density matrix with
the system Hamiltonian.

In the stationary limit, the kernel W depends on a time difference and the integral
yields its zero-frequency Laplace transform. It can be calculated using a diagrammatic
approach. For weak coupling, meaning that the timescale on which the density matrix
changes due to tunneling is much smaller than the bath timescale, which typically
means that the tunnel coupling is much smaller than temperature, �/(kBT ) � 1,
a perturbation expansion can be performed [195, 196, 202]. In lowest order in the
tunneling coupling transition matrix, elements connecting diagonal elements of the
density matrix simply coincide with results from Fermi’s golden rule.

In the presence of slow time-dependent driving, namely in adiabatic response,
Eq. (163) can be further expanded order by order in a small driving parameter, account-
ing for higher orders in the tunneling coupling and for coherences [197–200]. For
this, the timescale imposed by the driving needs to be small with respect to the
timescale on which the density matrix changes and small compared to the support
of the kernel [203]. In lowest order in the tunnel coupling, this concretely means
�δX/(kBT�) � 1, where δX stands for the amplitude of a time-dependent parame-
ter [204]. With this, the expansion of Eq. (163) involves an expansion justified when
the support of the kernel is short compared to the driving time

Ṗ = −i L P +
∫ t

−∞
dt ′W (t, t ′)

(
P(t) + (t ′ − t) Ṗ(t)

)
, (164)

together with an expansion of the density matrix itself P(t) = P (0)(t)+ P (1)(t)+· · ·
andwith an expansion of the kernel elementsW (t, t ′) = W (0)(t, t ′)+W (1)(t, t ′)+· · · .
The latter means that the time dependence of the parameters X(t ′) = X(t) + (t ′ −
t)dX/dt is considered in the time evolution of the irreducible kernel elements in
contributions starting from order (1) [197]. It turns out that these corrections to the
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irreducible kernels only start to contribute to the generalized master equation (163),
when going beyond the sequential-tunneling regime, as analyzed in detail inRef. [197].

Instead, in lowest order in the tunnel coupling, only the instantaneous contribution
to the kernel enters the master equation: both the expansion of the kernel itself and
the expansion around the support time of the kernel given in the last expression in
Eq. (163) contribute only in higher orders in the tunnel coupling [197]. Therefore, a
re-summation scheme [205, 206] allows to set up a master equation

Ṗ(t) = −i L P + W0,1
t P (165)

as long as the driving remains slow with respect to the bath timescales [203],
�δX/(kBT )2 � 1. Here,W0,1

t is the zero-frequency Laplace transform of the instan-
taneous (denoted by the first superscript) kernel with parameters taken at time t (as
indicated by the subscript) and evaluated in first order in the tunnel coupling� (denoted
by the second superscript). Importantly, the internal dynamics of the system itself
can still be fast, such as Landau–Zener–Stückelberg transitions in a few-level sys-
tem. Carefully accounting for the timescale separation of these dynamics [206], this
phenomenon can still be treated within the framework provided by Eq. (165). Imple-
menting in this framework Born and Markov approximations, as well as the secular
approximation, leads to the same Liouvillian of the Lindblad equation [207].

The non-zero eigenvalues of the kernel W provide the timescales of the response
of the system to external perturbations. Understanding them is therefore key to under-
standing the dynamics of a time-dependently driven system, see also Sect. 3.6.6.

3.6.6 Density matrix approaches beyond perturbation theory

The time evolution of a (possibly driven) system can more generally be calculated
from the time evolution of the density matrix. For a closed system, the time evolution
of the density matrix is given by

dρ̂(t)

dt
= − i

�

[
Ĥ , ρ̂

]
. (166)

Splitting the Hamiltonian into system, bath, and coupling terms allows to write down
the time evolution of the reduced system density matrix in the interaction picture.
Considering the interaction order by order perturbatively on the Keldysh contour,
allows for the treatment described in Sect. 3.6.5. However,more involved resummation
schemes have been developed, where even strong tunnel coupling can be treated in
the dynamics of the system, see for example [208–210]. These approaches can for
example treat short-time dynamics after quenches for strongly coupled systems.

This more general treatment of the time-evolution operator of the reduced density
matrix, reveals a dissipative symmetry, coined fermionic duality, which relates dif-
ferent decay modes and their decay rates to each other [210–212]. While valid for
the time-evolution operator at arbitrary orders in the tunnel coupling, in lowest order
perturbation theory, this symmetry takes the simple form, now for the superoperator
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W acting on the density operator in Liouville space

W † = −� − PW dualP, (167)

where� is the lumped sumover all coupling constants andP is the parity superoperator,
while the superscript “dual” means that we are considering an operator for a fictitious
dual system in which all energies—including the Coulomb interaction energy— are
inverted. This mapping to a dual system is insightful to understand the effects in the
dynamics of interacting systems that seemingly stem from attractive interaction [211].

4 Mechanisms

4.1 The quantum capacitor: pure time-dependent charge transport and energy
dissipation

A quantum or mesoscopic capacitor is the most basic system, in which ac currents can
be observed while steady-state charge or particle currents do not exist. It consists of
an electron cavity coupled to a single electron reservoir and driven by a single ac gate
voltage. The basic idea has been introduced by Büttiker and coworkers in Refs. [50,
51]. This device has been later the subject of many other theoretical and experimental
works, see details in this section; for applications of themesoscopic capacitor in single-
particle control and quantum optics with electrons, see Sects. 5.1 and 5.3. The nice
feature of this device is the fact that it can be regarded as a realization of an RC circuit
in the quantum realm. Its dynamics combines the fundamental aspects of storage
of charge and energy and of energy dissipation. It is also a beautiful playground to
implement and benchmark different approaches. In fact, this is one of the few problems
that can be solved by recourse to many different methods.

Here, we introduce the quantum capacitor following Refs. [213–215] in the limit
of a tunnel-coupled cavity. It is described by a Hamiltonian with three components
that represent the reservoir, the driven cavity, and the coupling between both systems.
It reads

Ĥ(t) = Ĥres + Ĥsys(t) + Ĥcoup, (168)

with

Ĥres =
∑

k

εk â
†
k âk, (169a)

Ĥsys(t) =
∑

n

εnd̂
†
n d̂n +U

(
N̂ − Vg(t)C

q

)2
, (169b)

Ĥcoup = w
∑

k,n

(
â†k d̂n + d̂†n âk

)
, (169c)

where k labels the degrees of freedom of the non-interacting reservoir and and n
labels the electron states of the quantum cavity, which could include the spin degree
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of freedom or multiple orbital levels. While the first set defines a continuum of states,
the states of the cavity are discrete and finite with a mean energy level spacing 	.
The operator N̂ = ∑

n d̂
†
n d̂n describes the total number of electrons in the cavity,

the effect of the gate voltage Vg(t) is accounted for by a single driving parameter
X(t) ≡ 2UVg(t)C/q, with C being the geometrical capacitance of the cavity, q the
electron charge, and U = q2/(2C) the charging energy in the constant interaction
model [24]. The tunneling amplitude is w, which we here assume to be real and
independent of k and n.

4.1.1 Charge dynamics in linear response

The driving induces tunneling processes between the cavity and the reservoir. We
start by analyzing the charge response of the mesoscopic capacitor in the linear-
response regime. This provides insightful expressions for the charge dynamics, since
it is straightforward to draw analogies with the case of classical circuits. We denote
the occupation of the cavity for Vg = 0 by 〈N̂ 〉0. Assuming a small amplitude of the
ac gate voltage, the dynamics of the charge in the cavity, namely of the net charge

qN (t) = q
(
〈N̂ 〉(t) − 〈N̂ 〉0

)
, is described by the following Kubo linear-response

equation for the Fourier-transformed quantity

qN (ω) = q2χc(ω)Vg(ω). (170)

Here, χc(ω) is the Fourier transform of the response function χc(t − t ′) =
−i/�θ(t − t ′)

〈[
N̂ (t), N̂ (t ′)

]〉
, which describes the charge fluctuations in the cavity,

with N̂ (t) = e
i
�
Ĥ0t N̂ e− i

�
Ĥ0t and Ĥ0 = Ĥ(Vg = 0). This leads to the defini-

tion of the admittance G(ω) = −iqωN (ω)/Vg(ω) = −iωq2χc(ω). In a classical
linear RC circuit, this quantity is related to the resistance and the capacitance as
G(ω) = −iωC/ (1 − iωRC). Focusing on low frequency, the admittance can be
expanded up to second order in ω, such that one gets G(ω) � −iωCμ

(
1 + iωRCμ

)
,

where Cμ is in general different from the geometrical capacitance C appearing in Eq.
(169b). This leads to the following identification:

Cμ = q2χc(0) = q
∂〈N̂ 〉

∂Vg(ω = 0)
, R = 1

q2χc(0)2
Im [χc(ω)]

ω

∣∣∣∣
ω→0

. (171)

As pointed out in Refs. [214, 216, 217], at zero temperature, an interesting relation
can be shown between the real and the imaginary part of the susceptibility. This is
referred to as “Korringa–Shiba” relation and has been proved in the framework of
perturbation theory [218, 219] and in a Fermi-liquid description for the case of a
single impurity [220],

Im [χc(ω)] = �πω {Re [χc(0)]}2 . (172)

Remarkably, substituting this relation in Eq. (171), we get the expression for the
celebrated quantum resistance originally introduced by Büttiker and coworkers in the
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framework of scattering-matrix theory for non-interacting electrons,

Rqu = h

2q2
. (173)

The above reasoning implies that this result is valid also for systems with many-body
interactions under linear response and low frequencies provided that the relation of
Eq. (172) is satisfied. The validity of this relation is easily verified in non-interacting
systems. It has been generalized and verified in quantum dots modeled by the interact-
ing Anderson impurity model with and without magnetic field, by means of analytical
and numerical methods [200, 216, 217, 221–224]. The quantized resistance Rqu of the
mesoscopic RC circuit has been experimentally demonstrated in Ref. [52]. Progress
in the study of this fundamental quantum circuit will be discussed in Sect. 5.1.2.

4.1.2 Energy dynamics

In this section, we analyze the complementary aspect of the energy dynamics.
Already in the linear response of this simple time-dependently driven system—the
mesocopic capacitor—one can observe how the energy dynamics are influenced by
time-dependent driving. Concretely, the Onsager coefficents, namely the charge and
energy response of the mesoscopic capacitor due to a driving of potential and temper-
ature are modified and Onsager reciprocity is broken as expected from the fact that
time-reversal symmetry is broken [225, 226].

More generally, while the charge dynamics are governed by RC-times in linear
response or by a charge relaxation timewhen subject to an arbitrary driving, the energy
decay only has the same decay dynamics in special cases, namely where many-body
interactions can be neglected and where energy-exchange takes place via a discrete
energy level. This special case is also referred to as the “tight-coupling regime”, see,
e.g., [68]. However, in general the energy dynamics are independent of the charge
dynamics and can for example be governed by multiple decay modes, among which
the dynamics related to interaction energies [211, 213, 227]. This competition between
different decay modes, which can generally be observed in the energy or in other
thermodynamically relevant quantities like the non-equilibrium free energy or the
relative entropy, have recently been in the focus in the context of the so-calledMpemba
effect [228–230], also in driven quantum dot systems [231, 232].

Further distinctive aspects of the energy dynamics compared to the charge dynamics
are (i) that for the case of a single reservoir, the only dcmechanism is the dissipation of
energy and (ii) that temporary energy storage is possible in the lead-system coupling.
To highlight this, we here focus on the slow-driving, adiabatic-response regime, where
the period of the ac driving is much longer than the typical timescale for the electron
relaxation. We follow closely Refs. [128, 233].

Of special interest in this context are conservation laws, where the energy dynamics
differ fundamentally from the charge dynamics. In fact, the total number of particles
Nres + N is conserved, where N̂res and N̂ are the number operators in the reservoir
and the few-level system, while Nres(t) = 〈N̂res〉(t) and N (t) = 〈N̂ 〉(t) are the
corresponding the mean values. Taking into account that Ṅres(t) = − i

�
〈[N̂res, Ĥ ]〉
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and Ṅ (t) = − i
�
〈[N̂ , Ĥ ]〉, the charge conservation law reads

− i

�

〈[
N̂res, Ĥ

]〉
− i

�

〈[
N̂ , Ĥ

]〉
= 0. (174)

It is natural to identify the particle current into each subsystem as I Nres(t) = Ṅres(t) =
− i

�
〈[N̂res, Ĥ ]〉 and I Nsys(t) = Ṅ (t) = − i

�
〈[N̂ , Ĥ ]〉 andwe see that Eq. (174) is a time-

dependent continuity equation, which is a consequence of the particle conservation.
The total energy stored in the system is, instead, not conserved. In fact, the change in
time of the mean value 〈Ĥ(t)〉 is equal to the power delivered by the external driving
sources P(t). Hence,

P(t) = d〈Ĥ〉
dt

= − i

�

〈[
Ĥres, Ĥ

]〉
− i

�

〈[
Ĥcoup, Ĥ

]〉
− i

�

〈[
Ĥsys, Ĥ

]〉
+
〈
∂ Ĥ

∂t

〉
, (175)

where we can easily verify

− i

�

〈[
Ĥres, Ĥ

]〉
− i

�

〈[
Ĥcoup, Ĥ

]〉
− i

�

〈[
Ĥsys, Ĥ

]〉
= 0. (176)

Only in special cases, like in the weak-coupling regime, the energy storage in the
coupling is negligible, see e.g., Ref. [212]. It is interesting to compare Eq. (174) with
Eq. (176), where we see that in the second equation there is an extra term which takes
into account the rate of change of the energy stored in the contact. The role of this
term in the heat production and dissipation has been pointed out in Ref. [234] and
was a subject of further discussion and debate addressed in Refs. [128, 233, 235–
243]. In the adiabatic-response regime, it was argued that to satisfy the second law of
thermodynamics, a meaningful definition for the time-dependent heat current in the
reservoir is

I Qres(t) = I Eres(t) + 1

2

d〈Ĥcoup〉
dt

− μI Nres(t), slow driving, (177)

where we have introduced the definitions of the energy flux in the reservoir I Eres(t) =
−i/�〈[Ĥres, Ĥ ]〉 and the rate of change of the energy temporarily stored in the con-
tact, d〈Ĥcoup〉/dt = −i/�〈[Ĥcoup, Ĥ ]〉. This term has been identified as “energy
reactance” [239], where the factor 1/2 in front of it has been a matter of debate. Even
if it is important in the instantaneous dynamics, it does however not provide a net
contribution to the average over time. Hence, upon time average, we get the usual
definition of the heat flux,

I
Q
res = I

E
res − μI

N
res. (178)

To address the issue of the prefactor of the energy reactance, it is instructive to solve the
problem of a slowly driven non-interacting single-level quantum dot where the system
Hamiltonian is linear, Ĥsys = ∑

n εnd̂
†
n d̂n . For this model, Schwinger–Keldysh and

scattering-matrix theory [234] lead to the same result under slow driving by adopting
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the definition of Eq. (177) for the time-dependent heat current. Furthermore, in this
limit, it was shown that

I Qres(t) = Rqu
[
I cres(t)

]2 (179)

is satisfied, where I cres(t) = q I Nres(t) is the charge current and Rqu is the resistance
quantum introduced by Büttiker and coworkers [50, 51], as defined in Eq. (173).
Interestingly, Eq. (179) has the form of an instantaneous Joule law for the energy
that is dissipated as heat in the reservoir. This result, along with the perfect matching
between Green’s function and scattering-matrix approach, provides support for the
definition given in Eq. (177).

A complementary point of view is to analyze the energy dissipation. This can be
done explicitly in themodel of the interacting quantumcapacitor presented inEq. (169)
by solving it within the linear-response formalism [216, 217]. The power developed
by the driving is

P(t) =
〈
∂ Ĥ

∂t

〉
= −eV̇g(t)〈N̂ 〉(t). (180)

Considering periodic driving, Vg(t) = V0 cos(ωt), and substituting the expressions
for the charge fluctuation and the current given by Eqs. (170), the net power over a
period can be calculated. For the Anderson impurity model, using the Korringa–Siba
relation given in Eq. (172), one finds

P = V 2
0

2
ωIm [χc(ω)] = Rqu

[
I cres
]2
. (181)

This indicates that the Joule law of Eq. (179) provides also the description of the
net energy dissipation in systems with many-body interactions where the relation
of Eq. (172) is satisfied. The above result strictly applies to spinless fermions. It
can be generalized to electrons with spin, to systems with magnetic field, and to
large amplitudes of the driving potential [200, 217, 221, 223, 224] or to Luttinger
liquids as shown by bosonization technique [244–246]. The main conclusion of these
generalizations is related to the fact that each channel behaves as in Eq. (181), while the
spin and other degrees of freedomdefinemultiple channels that respond in parallel. The
extension to systems with a superconducting lead has been also studied in Refs. [247–
249].

4.1.3 Driven qubit and dissipation

A similarly simple driven system coupled to baths can also be analyzed in the context
of bosonic reservoirs. The simplest device is here a driven qubit represented as a spin-
boson model. The structure of the Hamiltonian is the same as in Eq. (168). The driven
system is a two-level system represented as

Ĥsys(t) = −B(t) · σ̂ , (182)

where σ̂ = (
σ̂x , σ̂y, σ̂z

)
is a vector of Pauli matrices σ̂ j and B(t) contains time-

dependent parameters, leading to a time-dependent level splitting. The reservoir has
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the same structure as Ĥres in Eq. (169a), but it consists of a set of bosonic modes.
Typical examples for this type of driven bosonic Hamiltonian occur in cavity or circuit
QED where the qubit is embedded in the bosonic environment of a photonic cavity
or the normal modes of a quantum LC circuit. The contact between the driven system
and the reservoir has the form

Ĥcoup =
∑

k

(
â†k + âk

)
V k · σ̂ , (183)

and it describes a process of absorption or emission of a bosonic excitation upon a
flip between the ground state and the single excited state of the qubit. Unlike the
problem of the quantum capacitor, this problem cannot be exactly solved for arbitrary
coupling between the reservoir and the qubit, because of the nonlinear nature of the
coupling. For weak coupling, it can be solved by perturbation theory and quantum
master equations. As in the case of the quantum capacitor, the power introduced by
the driving protocol produces dissipation into the reservoir. However, in the present
case, there is no conserved particle transport and there is no associated Joule law as
in Eq. (179).

This problem has been investigated in detail for cyclic protocols, in the limit of slow
driving and considering weak coupling between the qubit and the bath, see Refs. [191,
250–254] and a review in Ref. [73]. Here, we highlight the main points. Starting
from the expression for the power in the adiabatic linear-response formalism (see
Sect. 3.2.5), the net dissipated energy by the driving after a cycle of period T reads

Qdiss =
∫ T

0
dt Ḃ(t) · �[B(t)] · Ḃ(t), (184)

where�[B(t)] is thematrix definedby the adiabatic coefficients� j, j ′ [B(t)]. Themost
remarkable feature of this expression is the fact that only the symmetric part of this
matrix contributes to the dissipated energy. Furthermore, since this is proportional to
the entropy production, the second law of thermodynamics implies that this quantity is
positive definite. These aremathematical properties compatible with the definition of a
metric in the parameter space and this hasmotivated the concept of the thermodynamic
length [255–259],

L =
∫ t2

t1
dt
√
Ḃ(t) · �[B(t)] · Ḃ(t), (185)

which is the length of the curve parametrized by t in the space of parameters B connect-

ing t1 and t2. Using the Cauchy–Schwarz inequality
∫ t2
t1
dt f 2

∫ t2
t1
dtg2 ≥

[∫ t2
t1

f gdt
]2
,

with g = 1 and f being the argument of Eq. (185), one finds

Qdiss ≥ L2

T
, (186)

which means that the dissipated energy is lower bounded by a geometric quantity that
depends on the path. Interestingly, the lower bound is obtained when the integrand is
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constant along the path, which is equivalent to a protocol where the velocity is adjusted
to satisfy a constant dissipation rate at each point of the trajectory [256, 257]. These
ideas have been the basis for many studies devoted to finding optimal protocols to
minimize the dissipated energy [191, 250–254, 260–262].

4.2 Pumping

In the previous section, we discussed pure ac transport processes that may take place
in a driven system in contact with a single reservoir. We now turn to analyze processes
where the driven system is in contact with two or more reservoirs and/or sources and
where the time-dependent driving can result in a directed (dc) current. Studying dc
currents means that on average no charge accumulation occurs on the central system,
such that charge conservation always leads to q

∑
α Ṅα = 0, where the sum runs over

all the reservoirs.
A rather trivial example for dc transport induced by time-dependent driving is

rectification: an ac bias leads to an ac current of which a conductor “cuts off” one
of the current directions. In other words, (a part of) the current induced by the bias
during one-half of the driving period is selected by for example a conductor acting as
an energy filter, thereby producing a dc transport current. However, dc transport can
also truly be induced by the time-dependent driving and take place in the absence or
even against external stationary biases. This is the case in so-called quantum pumps: a
quantum pump is a quantum system under the action of periodically time-dependent
parameters which induce a net flux per cycle. Examples are:

(i) Particle pumps, where an open quantum system that is capable of temporarily
storing particles is in contact with two or more reservoirs and subject to an
asymmetric cyclic operation. As a consequence of the time-dependent driving,
a net amount of particles is transported between reservoirs. This results in dc
particle currents in the absence of a chemical potential bias or even against the
chemical potential bias.

(ii) Heat pumps, where heat is transported between two or more thermal baths as
a response to time-dependent driving, in the absence of a temperature bias or
against a temperature bias. Here, the open driven quantum system needs to be
able to temporarily store energy.

(iii) Power pumps, where power is exchanged between two or more driving sources.
These last two examples provide connections between time-dependent quantum
transport and the implementation of small-scale (heat) engines and motors, see
Sect. 4.4.

Most of these mechanisms have a classical counterpart and the term “quantum”
applies because of the nature of the driven system and because the outcome usually
reflects properties like quantum coherence and the quantum statistics of particles.
Often, the mechanism of pumping is illustrated with an Archimedes pump, namely
a pipe with a rotating screw, which pumps water against gravity, or with a peristaltic
pump, similar to biological systems, where subsequent modulations of system parts
lead to motion (like, e.g., movement of worms). These classical devices properly
capture the ideaof an asymmetric cyclic operation leading to transport. In fact, breaking
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the symmetry between the source and drain reservoirs in the cyclic driving protocol is
a necessary condition to have a directed flux. This ingredient is the same pointed out
in examples of “quantum ratchets” [163, 263, 264], where the paradigmatic example,
presented in the famous Feynman lectures [265], is a wheel with a sawtooth border
contacted by a pawl and connected to a paddle wheel through a gear. The operation of
the pawl leading to directed motion of the wheel involves work injected from outside,
fundamental for the energy balance. This illustrates the possibility of generating a
directed particle current in the quantum realm induced by time-periodic driving with a
suitable breaking of both spatial and time-reversal symmetries. Hence, many systems
identified as “quantum ratchets” can be also regarded as quantum pumps.

A quantum pump is hence described by a time-dependent periodic Hamiltonian
like the one introduced in Eq. (1) while satisfying Ĥ(t) = Ĥ(t + T ) with the driving
period T .

4.2.1 Adiabatic charge and energy pumping

A relevant scenario to understand the pumping mechanism is the adiabatic-response
regime, corresponding to a low driving frequency or in other words a long driving
period T compared to the typical timescale associated with the equilibrium system, as
introduced in Sects. 3.2.2, 3.4.4, 3.5.3 and 3.6.3. As a consequence, adiabatic pumping
reveals equilibrium properties of the driven system, instead of for example photon-
assisted tunneling, where transport takes place due to absorption of energy quanta
from the driving. We briefly discuss the mechanism here on the basis of the adiabatic
linear-response treatment introduced in Sect. 3.2.2.

The most remarkable property of adiabatic pumping is its relation to geometric
properties similar to the Berry phase [77]. From the expression for the particle current
given in Eq. (51), the net charge transported in a cycle can be written as follows:

q	Nα = q
∮

CX

�α(X) · dX, (187)

where we have introduced the notation �α(X) = (
�α,1(X), . . . , �α,N (X)

)
and we

have used the fact that the response function depends parametrically on time; hence,
�α, j (X) ≡ �I Nα ,F j [X(t)]. The structure of Eq. (187) reflects the fact that the pumped
charge can be calculated as a line integral over the protocol CX defined by the param-
eters under their temporal evolution. The vector defined from the response functions
has the structure of a Berry connection. This representation is useful to highlight the
mathematically necessary conditions to have a non-vanishing value of the pumped
charge. These are: (i) a finite area in the parameter space enclosed by CX , which
requires a minimum of two driving parameters with a phase difference in their time
dependence; (ii) adiabatic-response functions �α, j (X) that define a non-vanishing
rotation over the protocolCX . The second condition is difficult to predict and depends
on the microscopic details of the driven device, its coupling to the reservoirs, as well
as on the driving protocol. Spatial asymmetries in these quantities are necessary, but
not sufficient conditions.
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A widely studied example is a mesoscopic quantum dot or two serially coupled
quantum dots in a two-terminal configuration [54–56, 266–269], where the driving
parameters are two gate potentials that change periodically but asynchronously in time.
The key of the pumping mechanism is a net transport of charge between the two reser-
voirs as a consequence of the local driving, without applying any extra voltage at the
two terminals. This problem has been addressed in many configurations and realiza-
tions, including models of non-interacting electrons and also considering many-body
interactions. Consequently, many theoretical methods have been used to solve it. The
scattering-matrix formalism for non-interacting electrons has been particularly illu-
minating in providing explicit expressions with the structure of Eq. (187) in particular
devices [270–272]. However, the geometic structure of adiabatic pumping has been
worked out in detail also relying on other methods, for example using generalized
quantum master equations [273, 274], where also the role of the Landsberg phase was
highlighted [99, 100]. This has been a crucial step in unveiling the geometrical nature
of pumping in the adiabatic-response regime. Further progress was done after the
proposal of the Floquet version of this formalism [140], of relevance in understand-
ing this mechanism beyond the adiabatic regime. Electron quantum pumps have been
studied in a significant number of devices using the scattering matrix theory [143,
270, 275, 276], non-equilibrium Green’s functions[156, 165, 171, 172, 174, 277–
280], renormalization-group techniques [168–170], master equations [99, 171, 197,
273, 274, 281], and reaction-coordinate mapping for the treatment of non-Markovian
effects [282], among others.

Of interest is not only pumping of charge. Also the topic of spin pumping in elec-
tronic systems has been addressed extensively [198, 199, 283–291]. In this review, we
will however for conciseness not focus on the topic of spin pumping and refer instead
to the review presented in Ref. [292].

Since electrons do not only carry charge but also energy, akin to charge pumping,
also energy pumping in driven quantum systems is in general expected. Indeed, in the
adiabatic-response regime, the adiabatic linear-response procedure explained before
leads to the following relation between the energy flux into the reservoir α and the
driving parameters,

I Eα (t) =
∑

j

�E
α, j (X)Ẋ j (t). (188)

The response functions are the ones defined in Eq. (51), �E
α, j (X) = �I Eα ,F j [X(t)].

In driven systems where charge transport takes place, we define the heat flux as
I Qα (t) = I Eα (t) − μα I Nα (t), with μα being the chemical potential of the reservoir α.
The geometric nature of the heat pumping, in analogy to charge pumping, was pointed
out in Refs. [293–295]. In systems where the reservoirs are represented by bosonic
excitations, corresponding to normal modes of harmonic oscillators, like phonons,
photons, etc, the energy current coincides with the heat current. In both regimes, the
net heat transported per cycle between the two reservoirs can be expressed in terms of
geometric quantities as in Eq. (187),

Qα =
∮

CX

�Q
α (X) · dX, (189)
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with �Q
α (X) = �E

α (X) − μα�α(X) for electron reservoirs or �Q
α (X) = �E

α (X) for
reservoirs of bosonic modes.

4.3 Power pumping in adiabatic response

Extending the discussion of Sect. 4.1.3 to a more general context where the system
is driven by several time-dependent parameters X(t), we introduce �(X) for the
matrix with elements � j, j ′(X) (see Sect. 3.2.5). These coefficients satisfy Onsager
reciprocal relations:� j, j ′(t) = ±� j ′, j (t), where the ± sign depends on the parity of
the operators F̂ j under time reversal and on other symmetries of the device. Examples
are particle density operators in the case of driven electron systems or the probability
density in the Bloch sphere, like in the case of the two-level system. These operators
are even under time-reversal symmetry. However, in other situations, it is possible to
have force operators with different parities, in which case�(X) = �s(X)+�a−s(X)
has symmetric (�s(X)) and antisymmetric (�a−s(X)) components.

Wehighlight here again that the heat production generated by the driving is related to
the symmetric component this matrix. Eq. (184) is in the more general case expressed
as

Qdiss =
∫ T

0
dt Ẋ(t) · �s(X) · Ẋ(t). (190)

This component defines the metric and the thermodynamic length as discussed in
Sect. 4.1.3, and it is related to the net entropy production as T� = Qdiss.

Instead, the power pumping mechanism is related to the antisymmetric component
as follows:

P(pump) = 1

2T

∑

�,�′

∫ T

0
dt Ẋ(t) ·

[
�a−s
�,�′ (X) − �a−s

�′,� (X)
]

· Ẋ(t). (191)

Antisymmetric components of the �(X) tensor have been analyzed in Refs. [127,
296, 297] in the framework of electron systems and in [115] for charged harmonic
oscillators coupled to a time-dependent electric field.

This mechanism is intimately related to the problem of topological frequency
conversion [182, 298–300] and work–work conversion [301, 302], which have been
recently explored in the context of driven qubits beyond the adiabatic regime.

4.4 Adiabatic-response energy conversion and quantummachines

Interestingly, as pointed out in Sect. 4.2.1, the combination of time-dependent driv-
ing and dc bias by chemical potential and/or temperature differences imposed at the
reservoirs results in processes involving energy conversion, such as that realized in
engines or motors.

One of such mechanisms is identified as a motor or a generator and it is realized
when pumping takes place under the presence of a dc voltage bias [130, 303–305]. In
a motor, power due to the applied bias is converted into power injected into the driving
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fields; in a generator, power spent due to the time-dependent driving is converted
into electrical power with a charge current flowing against a potential bias. Here, we
discuss the mechanism with focus on a two-terminal device with a small voltage bias
δμ so that it can be treated in linear response, which is combined with the adiabatic
linear response in the driving velocities Ẋ .

We consider the reservoir with the lowest μ as a reference and omit the reservoir
label in what follows. The particle current entering this reservoir and the mean value
of the induced forces in this framework read

I N (t) = �N ,N (X)δμ +
M∑

j=1

�N , j (X)Ẋ j (t),

Fj (t) = � j,N (X)δμ +
M∑

j ′=1

� j, j ′(X)Ẋ j ′(t), j = 1, . . . , N . (192)

Here, the different coefficients �μ,ν are again susceptibilities evaluated with the
equilibrium Hamiltonian defined by the parameters frozen at time t . The coefficient
�N ,N (X) is related to the electrical conductance. Using the notation of Sect. 3.2.4,
it reads �N ,N (X) = ∫

dt ′(t − t ′)χI N ,I N (t − t ′), while � j,N (X) is the response of
the j-th force to the chemical potential bias. In the notation of Sect. 3.2.4, it reads
� j,N (X) = ∫ dt ′(t − t ′)χF j ,I N (t − t ′). These coefficients satisfy Onsager reciprocal
relations: � j,N (t) = ±�N , j (t), where ± depends on the parity of the operators F̂ j

under time reversal and on other symmetries of the device. In what follows, we assume
a situation where� j,N (t) = −�N , j (t). This choice is consistent with the fact that the
current is odd under time reversal, while F̂ j are usually densities, which are even [114,
224] (see Sect. 4.3).

The relevant quantities that determine the performance of themotor are the electrical
power produced (or dissipated) by the transported charge and the power invested (or
received) by the external driving sources. Averaged over a cycle, they read

Wel = q2
∫ T

0
dt I N (t)δμ = q2

∫ T

0
dt�N ,N (t) (δμ)

2 + q
∮

CX

�(X) · dXδμ,

(193)

WX =
∑

j

∫ T

0
dt Fj (t)Ẋ j = −q

∮

CX

�(X) · dXδμ +
∫ T

0
dt Ẋ · �(X) · Ẋ,

(194)

where we have defined �(X) for the matrix with elements � j, j ′(X) and the vector
�(X)with components�N , j (X). The diagonal terms in Eqs. (193) and (194), namely
the ones proportional to δμ2 and Ẋ2, are positive in the present sign convention and
are associated with energy dissipation. In fact, the net dissipated energy associated
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with the net entropy production is given by

Qdiss = Wel + WX = q2
∫ T

0
dt�N ,N (t) (δμ)

2 +
∫ T

0
dt Ẋ · �(X) · Ẋ . (195)

We can identify Eq. (184) in the second term, which accounts for the dissipation due
to the driving. The off-diagonal terms, namely the ones proportional to both the bias
and the driving parameter derivatives, describe the energy conversion processes and
are the fundamental ones for the motor operation. Notice that the terms obtained by
the closed integral over the driving protocol,

∮
CX

, provide the pumped charge between
the two reservoirs induced by the driving. We can identify two different operations:
(i) when the charge is pumped downstream with respect to the bias δμ, the electrical
work has an extra component, while the same amount of work is received by the
driving sources. This operation is identified as a motor and its efficiency is defined as
ηmot = −WX/Wel. (ii)When the charge is pumped against the δμ, we have a generator.
In this case, the driving sources must invest work to transport charge against the dc
bias. The efficiency is defined as ηgen = −Wel/WX .

When, instead of a chemical potential bias, a temperature bias δT is imposed,
while the coldest reservoir has temperature T , the driven system behaves as a heat
engine or as a refrigerator. As before, for a small δT /T this problem can be treated
in linear response by relying on the Luttinger Hamiltonian representation discussed
in Sect. 3.2.3, in combination with the adiabatic linear response in the velocities Ẋ .
This leads to a set of equations, similar to Eqs. (192). For simplicity, we focus on the
case of exchange of energy without particles with the reservoirs, so that the energy
flux is directly interpreted as the heat flux. Considering the coldest reservoir as a
reference and omitting the reservoir label for simplicity, we can proceed in analogy
to the lines resulting in Eqs. (192) by introducing the response functions�E,E (X) =∫
dt ′(t − t ′)χI E ,I E (t − t ′), and� j,E (X) = ∫ dt ′(t − t ′)χFj ,I N (t − t ′), satisfying the

Onsager relations. As before, we assume � j,E (X) = −�E, j (X). In terms of these
quantities, the net heat Q entering the coldest reservoir per cycle, as well as the power
invested by the driving sources are written as follows:

Q =
∫ T

0
dt I E (t)

δT

T
=
∫ T

0
dt�E,E (X)

(
δT

T

)2
+
∮

CX

�E (X) · dX δT

T
,

(196)

WX =
∑

j

∫ T

0
dt Fj (t)Ẋ j = −

∮

CX

�E (X) · dX δT

T
+
∫ T

0
dtẊ · �(X) · Ẋ .

(197)

Here, we have introduced the notation �E (X) as a vector with components�E, j (X).
As in the case ofmotors and generators, the diagonal terms contribute to the dissipation
and entropy production. Instead, the off-diagonal components are related to heat–work
conversion mechanisms, and depend on the geometrically pumped heat. The two
operational modes are: (iii) heat engine, corresponding to the pumped heat entering
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the cold reservoir coming from the hot reservoir. In such a case, the first term of
Eq. (197) describes the work released by the driven system into the driving sources.
The efficiency of this machine is defined as ηhe = −WX/Q. (iv) The refrigerator
corresponds to heat extracted from the coldest reservoir, in which case, the second
term of Eq. (196) has a larger absolute value than the first one with an opposite
sign. This implies that the first term of Eq. (197) contributes in the same direction
as the one provided by the pure driving sources, namely the power provided by the
driving is dissipated and used to extract heat from the cold reservoir. The efficiency
of the refrigerator, typically called the coefficient of performance in this case, reads
COP = −Q/WX . As usual, the second law imposes bounds for the efficiency or
coefficient of performance of the machine: it can be shown that

ηhe ≤ ηCarnot, COP ≤ COPCarnot, ηmot, ηgen,≤ 1 (198)

where ηCarnot = δT /T and COPCarnot = T /δT are, respectively, the efficiency of the
Carnot heat engine and the coefficient of performance of the Carnot refrigerator.4 For
the case of the motor and the generator mechanisms, the bound does not depend on the
temperature and the mechanism may exist even at zero temperature [130, 303, 304,
306, 307].

There are many examples of heat engines and refrigerators operating without par-
ticle fluxes. These are basically continuous finite-time versions of the four-stroke
Carnot, Otto, and Stirling cycles. Pioneering works in this direction are [308–310],
more recent contributions are Refs. [190, 250, 251, 254, 311], and recent reviews are
Refs. [73, 312, 313].

4.5 Adiabatic-response quantum transport induced by classical mechanical and
magnetic dynamics

Up to here, we have considered quantum transport induced by slow external control
of system parameters modifying the potential landscape of electrons. The applied
driving fields—typically realized by gates—have therefore been treated as classical.
There are however other scenarios where the quantum particles that intervene in the
transport process are coupled to different degrees of freedom obeying a slow classical
dynamics, which follows its own equation of motion. Two examples are nanomechan-
ical electronics as well as quantum transport due to spin exchange with a magnetic
moment.

In nanomechanical electronics, electronquantum transport takes placewith the elec-
trons coupled to vibrational degrees of freedomof a structure that is described by one or
more classical displacements X j (t). These effects are relevant in experimental scenar-
ios taking place in transport in nanoelectromechanical systems [314–317], suspended
quantum dots in carbon nanotubes [318–321], graphene sheets [322], and molecular
systems [323]. This problem has been studied in many theoretical works [324–334].

Here, we present the treatment of Refs. [127, 296, 335] formulated in terms of the
adiabatic linear response. The emerging picture in nanoelectromechanical systems is

4 The expression for ηCarnot is valid in linear response.
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that of vibrational modes represented by classical coordinates X j , whose dynamics is
affected by the non-equilibrium environment generated by the electron currents. On
general grounds, we expect those modes to be described by a Langevin equation of
the form

Mj Ẍ j + ∂U

∂X j
= Fcl

j −
∑

j ′
γ j, j ′ Ẋ j ′ + ξ j , (199)

where the left-hand side is the equation of motion for the free vibrational modes, while
the effect of the environment provided by the electrons is taken into account on the
right-hand side. The term Fcl

j is the classical force acting on the mode j . The matrix
γ j, j ′ accounts for the effect of friction generated by the environment and ξ j represents
the noise, characterized by a correlation

〈ξ j (t)ξ j ′(t ′)〉 = Dj, j ′(t, t
′), (200)

which is usually local in the mode coordinate and time, Dj, j ′(t, t ′) = D0δ j, j ′δ(t− t ′).
The interesting interplay comes from the joint treatment of the quantum-mechanical
description for the electron dynamics, which leads to microscopic expressions for the
forces and the matrices γ j, j ′ and Dj, j ′ .

The starting point is a Hamiltonian for the full system of the form

Ĥ = ĤX + Ĥel + Ĥel−X . (201)

The first term describes the free vibrational modes,

ĤX =
∑

j

P̂j
2

2Mj
+U (X̂), (202)

where X̂ is a vector with components X̂ j . These are operators describing quantum-
mechanical vibrational modes. The term Ĥel describes the free electrons, including
their coupling to the reservoirs, which may have a voltage or temperature bias. The
last term describes the coupling between the electrons and the vibrational modes. For
sake of concreteness, we assume here the following coupling,

Ĥel−X =
∑

n,n′
ĉ†n
[
V
(
X̂
)]

n,n′ ĉn′ , (203)

where ĉ†n and ĉn are creation and annihilation electron operators in state n. We focus
on situations where the timescale for the electronic dynamics is much shorter than the
time scale of the vibrational dynamics. Having in mind this assumption, we proceed
with the derivation of Eq. (199) as follows. The equation of motion for the components
X j (t) = 〈X̂ j 〉(t) of the vector X(t) is

Mj Ẍ j (t) +
〈
∂U

∂ X̂ j

〉
(t) = −

∑

n,n′

〈
ĉ†n
[
∂X̂ j

V
(
X̂
)]

n,n′ ĉn′
〉
(t), (204)
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with Ẍ j (t) = 〈 ¨̂X j (t)〉, and X̂ j (t) is expressed in the Heisenberg representation with
respect to the full Hamiltonian. This equation is approximated by decoupling the
dynamics of X̂ from that of ĉ†n and ĉn making use of the assumption of separated
timescale. Consequently, we express the term in the right-hand side as

〈
ĉ†n
[
∂X̂ j

V
(
X̂
)]

n,n′ ĉn′
〉
(t) �

〈[
∂X̂ j

V
(
X̂
)]

n,n′

〉

X
(t) Nn,n′(X(t)), (205)

where thefirstmeanvalue is takenwith respect to ĤX . Themeanvalues of the fermionic
operators are instead calculated with respect to the effective Hamiltonian Ĥ eff (X(t)),
which is obtained from Eq. (201) by replacing the operator X̂(t) with the mean value
X(t) = 〈X̂(t)〉X . We introduce the definition of fermionic densities N̂n,n′ = ĉ†nĉn′
and Nn,n′(X(t)) = 〈N̂n,n′(t)〉eff for these mean values. With these approximations,
one finds

Mj Ẍ j (t) +
〈
∂U

∂ X̂ j

〉
(t) � −

∑

n,n′

〈[
∂X̂ j

V
(
X̂
)]

n,n′

〉
(t) Nn,n′(X(t)). (206)

As a next step, and taking into account the slow dynamics of the vibrational modes,
it is possible to implement the adiabatic linear response treatment for the fermionic
densities

Nn,n′ (X(t)) � 〈ĉ†nĉn′ 〉t (X) +
∑

j ′
�n,n′, j ′(X) Ẋ j ′(t), (207)

where the coefficients are

�n,n′, j (t) =
∫ t

−∞
dt ′(t − t ′)χn,n′, j (t − t ′) (208)

χn,n′, j (t − t ′) = −iθ(t − t ′)
〈[
N̂n,n′(t), N̂n,n′(t ′)

]〉

t

[
∂X j V (X)

]
n,n′ . (209)

Here, the mean values 〈•〉t are calculated with respect to the effective frozen Hamilto-
nian Ĥt

eff , which corresponds to the parameters X(t) frozen at time t in the effective
Hamiltonian Ĥ eff (X(t)).

Comparing with Eq. (199), we can identify the forces and the friction coefficients,

Fcl
j (X) = −

∑

n,n′

[
∂X j V (X)

]
n,n′ 〈ĉ†nĉn′ 〉t (X),

γ j, j ′(X) =
∑

n,n′

[
∂X j V (X)

]
n,n′ �n,n′, j ′(X). (210)

Interestingly, this description enables amicroscopic calculation for the damping coeffi-
cient, representing the environment of electrons coupled to the nanomechanical degree
of freedom. The corresponding noise ξ j and noise correlation defined in Eq. (200) can
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also be derived in a similar way from microscopic calculations. The environment in
this type of problems is out-of equilibrium and is generated by coherent transport of
electrons through the nanostructure. Simultaneously, the effect of the nanomechan-
ical motion on the electron transport can also be taken into account by means of
the adiabatic response induced to the parameters X(t), as explained in Sect. 3.2.2.
In Refs. [127, 296], the response functions are calculated with scattering matrix and
non-equilibrium Green’s functions formalism, respectively. Further interesting ways
in which pumping is induced by mechanical motion have for example been identi-
fied in twisted bilayer graphene, where mechanically induced sliding motion induces
electrical currents [336] or via the movement of a kink in buckled graphene [337].

The other interesting example of combined classical and quantum dynamics cor-
responds to electron systems coupled via spin exchange interaction with a magnetic
moment M(t) that can be described classically. The dynamics of the precessional
motion of a magnetic moment with damping can be described by the Landau-Lifshitz-
Gilbert equation. This equation has been the basis for describing the dynamics of
spintronics in thin films [338] and molecular magnetic systems [339]. It is akin to the
Langevin equation and reads

Ṁ = M ×
[
−∂MU − J s0 − γ Ṁ + δB

]
, (211)

where the first term represents the effect of the conservative forces, and the other
terms represent, respectively, the spin torque, the friction, and the noise generated by
the electrons.As in the case of the nanomechanical system, it is possible to calculate the
explicit expressions for s0, γ, δB in terms of a microscopic model under the assump-
tion of a different timescale for the dynamics of the electrons and M. The derivation
of Eq. (211) from a microscopic Hamiltonian for a driven molecular magnet was pre-
sented in Ref. [297] following the adiabatic expansion of time-dependent Green’s
functions and scattering matrix. Similar approaches were followed in Ref. [340].
Landau–Lifshitz–Gilbert-like equations have also been derived for generalized master
equations for pumping of electronic spins through metallic islands and quantum dots
induced by rotating magnetizations [199, 292]. Other models, including effects like
spin–orbit coupling [341–343] and bosonic baths [344], were also considered. The
case of the strong driving regime was addressed in Ref. [345], while related geometric
properties were analyzed in Ref. [346].

5 Focus areas and concrete challenges

5.1 Single-particle control and transport spectroscopy

Single-electron control in quantum conductors is motivated by questions ranging from
fundamental aspects to applications. Having control over single electrons in a conduc-
tor is the basis for observing tunable single- and few-particle quantum and interaction
effects, but it is also a crucial ingredient for metrology or the realization of flying
qubits. With single-particle control, we mean the ability to investigate and manipulate
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Fig. 2 Principles of single-electron injection a via a specifically designed bias voltage, b time-dependent
gate voltage applied to chiral conductors, c transport of a captured electron in a moving potential minimum,
d injection from a driven discrete spectrum (from a confined conductor region) exploiting energy gaps. In
setups a, b, and d, the presence of a quantum point contact (with transmission probability D) allows one to
perform spectroscopy on the emitted state, e.g., by looking at the noise

physical observables, such as electrical currents, down to the single-electron level.
For instance, in pumps and turnstiles, the transfer of one electron per cycle allows
quantized currents to be obtained at a high level of precision, finding applications in
metrology. Another aspect is the ability to generate on-demand single-electron exci-
tations in quantum conductors, realizing the electronic equivalent of single-photon
sources. Finally, transport quantities induced by time-dependent drives can also be
used as spectroscopic tools to acquire information on some properties of the conduc-
tor itself, such as screening properties and decay rates. Often, such properties are not
accessible by steady-state techniques, making time-dependent transport a valuable
tool.

In this section, we highlight some of the efforts to realize and investigate this
basic step for further implementations of time-dependently controlled devices. In
Sects. 5.1.1 and 5.1.2, we review two types of strategies to achieve controlled,
on-demand, single-electron injection, via engineered voltage pulses and exploiting
discrete energy levels from confined regions, respectively, as summarized in Fig. 2. In
Sect. 5.1.3, we discuss how time-dependent transport can be used as a spectroscopic
tool.

5.1.1 Single-particle injection via targeted driving signals

We review here two strategies that allow one to excite single electrons via voltage
pulses. In the first case, Fig. 2a, one applies a voltage bias V (t) to one of the contacts
connected to the conductor. In general, this induces a phase shift on the propagating
electrons, in a similar way to what we have discussed in the context of Floquet theory.
The seminal result of Ivanov et al. [58] is that there is a specific shape of V (t), so
that the phase shift corresponds to processes by which electrons only gain energy, in
a way that no holes are generated. In the second case, Fig. 2b, one considers coupling
the conductor to a gate electrode, where a gate potential Vg(t) is applied. Following
the same logic, to excite single electrons the voltage should be engineered to produce
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a phase shift with the desired property. The additional complication, in this case, is
that one must first find the true potential felt by the propagating electrons, which is in
general different from Vg(t). We start with the first approach, which is conceptually
simpler, and discuss in some details how the shape of V (t) can be used to the desired
task of generating a single-electron state.

Injection by time-dependent voltage biases and Levitons When a time-dependent
driving of the bias voltage, V (t), is applied to a coherent conductor, the system is
brought out of equilibrium and a time-dependent charge current I c(t) is induced. For
the setup in Fig. 2a, the current flowing toward the quantum point contact is simply
I c(t) = q2V (t)/h, assuming that the conductor supports a single channel. The idea of
using voltage pulses to generate single- or few-electron states is rather simple: if the
drive is such that

∫
dt I c(t) = q, then a single charge q is transferred. However, for

a generic shape of the pulse V (t), this ac driving results in the creation of electron–
hole pairs or photo-assisted shot noise [89, 142, 347, 348] accompanying the desired
single-electron excitation. This creation of electron–hole pairs therefore counteracts
the aim to create controlled and precise single-particle excitations. However, when
driving with a Lorentzian-shaped bias voltage

VLor(t) = �

q

2σ

(t − t0)2 + σ 2
(212)

the creation of electron–hole pairs is fully suppressed. Here, t0 is the injection time
and σ the half width at half maximum of the voltage pulse. The state generated by this
voltage has later been called aLeviton [61], after the seminalworks of Levitov [57–59].
The reason for the full suppression of electron–hole pair creation can be understood in
the following way. Particles being exposed to a generic time-dependent voltage drive
V (t) pick up the phase e−iφ(t), where

φ(t) = q

�

∫ t

−∞
dt ′V (t ′) (213)

is given by the Faraday flux. This phase determines the probability amplitude

cε =
∫ ∞

−∞
dte−iφ(t)eiεt/� (214)

that electrons are scattered from one energy state to another, with ε being the energy
picked up [140]. The probability for this process to occur is p(ε) = |cε|2. Requiring
that no holes are excited amounts to the condition cε = 0 for all ε < 0, i.e., no states
below the Fermi energy (here taken at ε = 0) are created. This requirement translates
into a constraint on the function e−iφ(t) and, thus, on the voltage V (t). In particular,
e−iφ(t) has to be analytic in the lower complex plane (and have at least one pole in the
upper plane in order not to vanish everywhere). Considering that |e−iφ(t)| = 1, the
simplest possible choice is

e−iφ(t) = t − t0 + iσ

t − t0 − iσ
, (215)

123



716 M. Acciai et al.

which leads to the Lorentzian profile V (t) = VLor(t) of Eq. (212).
The experimental evidence for Levitons was achieved by exploiting a periodic train

of Lorentzian pulses of generic amplitude, namely

V (t) = a
∑

m∈Z

VLor(t − mT), (216)

and sending the resulting state to a quantumpoint contact. The parameter a is a tunable,
continuous dimensionless quantity, and has a strong impact on the shot noise observed
after partitioning the excitations at a quantum point contact. In fact, the theory predicts
that the noise should be minimal whenever a is a positive integer. To understand this,
let us first take a step back and consider a generic periodic voltage

V (t) = Vdc + Vac(t) = V (t + T) ,
∫ T

0
Vac(t)dt = 0 . (217)

Then, we can use the tools of Floquet theory, slightly adapting the definitions of
Sect. 3.4.3. Specifically, the phase factor e−iφ(t) introduced in Eq. (213) can be
expanded in a Fourier series of the form

e−iφ(t) = exp
(
−i

q

�
Vdct

)∑

�∈Z

c�(a)e
−i��t ≡ exp (−iq�t)

∑

�∈Z

c�(a)e
−i��t . (218)

Here, the dimensionless parameter q = qVdc/(��) represents the number of charges
(i.e., the charge in units of q) per period carried by the drive.Moreover, the coefficients
c�(a) are the same as those defined in Eq. (83), and depend on the ac component
Vac(t) only. The functional form depends on the shape of the voltage, while a =
qV (0)

ac /(��) is a dimensionless parameter encoding the characteristic amplitude V (0)
ac

of Vac(t), see for instance below Eq. (83). The coefficients c� replace the amplitudes cε
introduced in Eq. (214) for non-periodic sources. Similarly, p�(a) = |c�(a)|2 replace
the probabilities p(ε). If V (0)

ac = Vdc, such as in Eq. (216), then a = q also represents
the number of charges (i.e., the charge in units of q) per period carried by the drive
V (t).

It is possible to show that c�(a) = 0 for all � < −a, whenever a ∈ N. This property
is once again a consequence of the analytic structure of e−iφ(t) and is the key ingredient
determining the anticipated minimal noise feature of Lorentizan pulses. Indeed, the
zero-temperature current fluctuations across the quantum point contact of the setup in
Fig. 2a can be evaluated as [349]

	S ≡ S − Sdc = 2q2

h
D(1 − D)��

∑

�<−q

p�(q)|� + q| ∝ Ne/h
ex VLor= 0, (219)

showing that Lorentzian pulses with integer q do not produce any excess noise above
the dc component Sdc, and no extra particle–hole pairs Ne/h

ex are created. It is also
important to notice that the excess noise	S has local minima at integer q for any kind
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Fig. 3 Temperature dependence of the spectral current iLev(E) for a Leviton with unit charge, q = a = 1.
The temperature dependence is encoded in the parameter ξ = 2kBTσ/�. Figure adapted from Ref. [354]

of driving signal. This is related to the so-called dynamical orthogonality catastro-
phe [58], which implies that current fluctuations are enhanced whenever the Faraday
flux (213) is not a multiple of 2π . As a result, the excess noise is minimized for all
pulses at integer q, when the flux is instead a multiple of 2π . The Lorentzian drive is
the optimal drive, i.e., the only one leading to 	S = 0 at integer q.

Another curious property of the Lorentzian drive, is that even the Faraday flux φ =
π is special. In this case, it was shown that strictly zero-energy quasiparticle excitations
with fractional charge can be generated [350]. They are always accompanied by the
emission of particle–hole pairs (as the drive is non-optimal), but produce a minimal
noise in junctions between a normal metal and a superconductor [351].

From a practical point of view, Lorentzian pulses are generated in the laboratory by
Fourier synthesis, namely, by properly combining monochromatic signals of different
frequencies. The minimal noise property, hints of which are already visible for signals
approaching the shape of a Lorentzian, but composed of few harmonics only [352,
353], was first demonstrated in Ref. [349].

Another way to confirm that only excitations above the Fermi energy are created
by the drive (212) is by looking at the spectral current i(E) of the emitted signal. This
quantity has been introduced in Eq. (88), which in the two-terminal configuration of
Fig. 2a reduces to

i(E) = D
∞∑

�=−∞
|c�(a)|2

[
fL(E�) − fR(E)

] = D
∞∑

�=−∞
|c�(a)|2

[
f0(E� − q��) − f0(E)

]
,

(220)
where f0(E) = [1+ exp(βE)]−1 is the equilibrium Fermi function. As demonstrated
in [349] for Levitons and a harmonic drive, shot noise spectroscopy can be used to
access information on the spectral distribution by varying a and q independently.

For a Leviton with unit charge, Eq. (220) reduces to

iLev(E) = 2�σD e−2Eσ/�θ(E) , (221)
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Fig. 4 Injection scheme where
electronic excitations are locally
created in a conductor in the
quantum Hall regime by
time-dependently driving a
capacitively coupled gate.
Figure taken from Ref. [90]

where this expression holds at zero temperature and when the period T is the largest
timescale in the problem. The finite-temperature expression has been obtained in [354]
and the result is illustrated in Fig. 3, showing a thermal smearing, with a decay even-
tually dominated by temperature rather than the pulse width σ .

Before moving to the description of a different injection strategy, we mention some
additional features of minimal excitations generated by voltage pulses. Ivanov et al.
showed that overlapping pulses appear to behave independently (as solitons), and
their overlap does not affect the total charge noise [58]. However, this feature does not
survive when energy transport is considered. In that case, N overlapping Lorentzian
pulses produce energy currents and energy fluctuations that scale as N 2 and N 3 times
the single-particle quantities, respectively [89], showing that the excited pulses do not
strictly behave independently (unless of course their overlap vanishes). Despite this
difficulty, it is possible to define a proper excess energy noise, inspired by the Schottky
relation, that vanishes even for overlapping pulses [355]. Second, reference [356]
has extended the study of multiple-pulse excitations by considering a pseudorandom
binary injection protocol, characterized by a binary pattern {πk} with entries 0 or 1,
such that at each time kT a particle is injected if πk = 1 and no particle is injected
if πk = 0. It was shown that (i) Levitons maintain the minimal noise property and
(ii) the number of extra electron/hole pairs generated by other drives is not only a
property of the driving function shape, but also of the injection protocol specified by
the probabilities πk .

Injection by gate driving An alternative to applying a time-dependent drive to the
voltage bias is by driving a time-dependent gate voltage, as shown in Fig. 2b and
in Fig. 4 in greater detail. This is particularly relevant for chiral systems, such as
conductors in the quantum Hall regime, where the propagation direction of electron
excitations is given by the chirality of the edge channels. In this injection scheme,
the voltage signal applied to the gate is transmitted to the conductor via capacitive
coupling. The externally controlled drive is the gate voltage Vg(t), but what matters for
the excitations in the conductor is the local potential Vloc(t). The relation between the
two is nontrivial andmainly depends on screening effects and the interplay between the
driving frequency and the response timescales of the system. There are three relevant
timescales:
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(i) The charge relaxation time τc set by the capacitive coupling between the gate
and the conductor, which is given by τc = hC/q2, with C the geometrical
capacitance.

(ii) The traversal time τf that a particle in the conductor takes to go across the gated
region.

(iii) The dwell time τg on the gate plate that forms the external part of the capacitor.

All these quantities combine in the admittance G(ω) of the conductor which gives the
current response in the frequency domain

I c(ω) = G(ω)Vg(ω) . (222)

Assuming a perfect transmission between the right and left reservoirs, as well as chiral
propagation, the result is [90]

G(ω) = −iωCg(ω) ,
1

g(ω)
= 1− iωτc

1 − exp(iωτf)
− 1

Mg

iωτc
1 − exp(iωτg)

, (223)

where Mg is the number of transport channels in the gate electrode. For a metallic
conductor, with Mg → ∞, the above result was also found in Ref. [357]. Performing
a low-frequency expansion, one has

G(ω) = −iωCμ(1 + iωRCμ) + O(ω3) , (224)

where

R = h

2q2

(
1 + 1

Mg

)
, (225)

Cμ =
(
1

C
+ h

q2τf
+ 1

Mg

h

q2τg

)−1

(226)

are the equivalent charge relaxation resistance, and the electrochemical capacitance,
respectively. Together, they combine in an effective RC time for the system, τRC =
RCμ. When Mg → ∞, R becomes the Büttiker resistance Rqu = h/(2q2) [51, 52,
358], see also Eq. (173).

Taking the Fourier transform of (222), we find the time-resolved current

I c(t) = C
d

dt

∫ +∞

−∞
dt ′g(t − t ′)Vg(t ′) . (227)

It is challenging to obtain analytical expressions, due to the complicated form of the
function g(ω). However, it is possible to make progress by using an expansion of
the gate drive in harmonics to efficiently obtain numerical results at arbitrary driving
frequency �. Referring to [90] for details, we here discuss two limiting cases.
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In the adiabatic driving regime, defined by�τRC � 1, the relation between injected
current and gate voltage signal is

I c(t) = Cμ

dVg
dt

, (228)

resulting in a purely capacitive response. Therefore, one must engineer Vg so that
its derivative produces the desired signal. This means that clean, minimal excitations
corresponding to those generated by a Lorentzian voltage bias are obtained by a gate
voltage of the form

V box
g (t) = q

2πCμ

Re

(
i ln

{
sin[�(t − t0 + iσ)/2]

sin[�(t − t0 − T/2 + iσ)/2]
})

− q

2Cμ

, (229)

where σ corresponds to the half width at half maximum of the Lorentzian pulses
arising from V box

g via (228). Note that (229) approaches a square-wave drive in the
limit σ → 0.

In the fast driving regime �τRC � 1, the equivalent circuit is essentially a short
circuit, so the current profile directly follows the gate voltage

I c(t) ≈ 2
q2

h

τf

T Vg
odd(t) , (230)

where only the odd harmonics of V (t) enter in the response. As a result, the response
features an alternating pattern of pulse/anti-pulse in each consecutive period of the
drive. The gate driving technique discussed in this section has recently been exploited
in experiments [359].

5.1.2 Single-particle injection from confined regions

A complementary approach to the one described above is to release electrons into a
conductor from a confined region, like a quantum dot. In this case, the strategy is to
exploit the discrete spectrum of the confined region to extract electrons one by one,
or to engineer clever loading and unloading protocols to achieve the same goal. The
development of single-electron pumps was strongly motivated by metrological appli-
cations aimed at a redefinition of the current standard. In this section, we present an
overview of such approaches, discussing the mesoscopic capacitor, electron pumping
and turnstiles in more detail.

Injection from amesoscopic capacitor To describe single-electron injection relying
on the driving of a confined region, we start from the most simple realization, namely
the mesoscopic capacitor [50, 51, 358], see Fig. 2d. The main idea is that charging and
discharging of a small capacitor plate can result in the controlled emission of single
electrons into a conductor, when the addition energy of electrons is large with respect
to temperature. The emission process also relies on a discrete spectrum of the confined
region [360] or Coulomb blockade, possibly in combination with a superconducting
energy gap.
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One important application of the mesoscopic capacitor as single-electron source
is in quantum Hall systems. In fact, the realization of an on-demand and coherent
single-electron source in this regime [53] has been a major experimental achievement
initiating the development of electronic quantum optics, discussed in further detail in
Sect. 5.3. Therefore, we describe here a model of a capacitor-based single-electron
source in the quantum Hall regime, following [360]. The confined region consists
of an edge mode in a closed loop of circumference L , coupled via a quantum point
contact to an open edge channel constituting the target conductor where excitations
will be injected from the dot. The quantum point contact tunes the reflection (r) and
transmission (d) probability amplitudes, connecting the confined region to the open
edge channel, see Fig. 2d. Finally, the confined region is coupled to a top gate towhich a
potential Vg(t) can be applied. Starting from the stationary case, and assumingwithout
loss of generality Vg = 0, we can write a scattering matrix that has a Fabry–Pérot form

S0(E) = r + d2
∞∑

�=1

r�−1 exp

[
i�

Eτd
�

]
, (231)

where τd = L/vF is the time it takes to go travel a full circumference, and we have
assumed a linear energy–momentum relation, which can always be done close enough
to the Fermi level. Note that the scattering matrix S0 of this simple system is a scalar. If
we next compute the density of states ν0(E) = (2π i)−1S∗

0 dS0/dE , we find a structure
with peaks separated by 	 = h/τd , with broadening γ = D	/2π , and D = |d|2.
Therefore, at D � 1, we have discrete, well-defined energy levels in the confined
region.

Let us turn now to the driven regime. Also in this case, the local Coulomb inter-
action in the confined region does often not play a crucial role, due to screening by
the gate(s) and a very small geometrical capacitance of the gate–dot system [53] (see,
however, Refs. [200, 214, 217, 357, 361] and Sect. 4.1 for the treatment of inter-
actions). Therefore, a description based on a scattering matrix, which still allows to
include interaction effects self-consistently, is justified. Using the mixed time–energy
representation introduced in Sect. 3.4.2, we have

S(t, E) = r + d2
∞∑

�=1

r�−1 exp

[
i�

Eτd
�

− i��(t)

]
. (232)

The structure is the same as in the stationary case: each term for a given � in the
above sum represents the scattering amplitude of a particle entering the dot at time
t − �τd , executing � round trips and exiting the dot at time t . In this time interval, the
particle accumulates the dynamical phase and the one induced by the action of the
gate potential, encoded in the function

��(t) = q

�

∫ t

t−�τd

dt ′Vg(t ′) . (233)
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Using (232), the time-resolved charge current emitted from the quantum dot, can be
evaluated via Eq. (81), considering a two-terminal geometry without any additional
voltage bias between the contacts. The result is [360]

I c(t) = I clin(t) + I cnonlin(t) (234)

I clin(t) = q2

h
D2

∞∑

�=1

R�−1[Vg(t) − Vg(t − �τd)] (235)

I cnonlin(t) = qD2

πτd
Im

⎧
⎨

⎩
∑

�,m

2π2kBT /	

sinh(2π2mkBT /	)
rm R�−1

[
e−i�m (t−�τd ) − e−i�m (t)

]
⎫
⎬

⎭ ,

(236)

where the nonlinear termmainly contributes in the low-temperature regime kBT � 	,
and the linear term is independent of temperature. This rather complicated expression
gives the current response at arbitrary gate voltage amplitude and frequency.

An insightful analytic result can be found in the limit where the driving frequency is
small,�τd � 1, also referred to as the adiabatic-response regime. By expanding (234)
at first order in the driving frequency, the time-resolved current reduces to a purely
capacitive response

I c(t) = q2
∂Vg(t)

∂t

∫
dE

(
−∂ f (E)

∂E

)
ν(t, E) . (237)

This expression represents basically the response of the occupation number on the
quantum dot/mesoscopic capacitor to a time-dependent change of the gate voltage.
Here, an important quantity is the instantaneous density of states of the quantum dot

ν(t, E) = 1

2π i
S∗
0 (t, E)

∂S0(t, E)

∂E
, (238)

obtained from the frozen scattering matrix, see also Sect. 3.4.4. One easily finds
ν(t, E) = ν0(E − qVg(t)). Equation (237) tells us that, in the adiabatic-response
regime, the frozen density of states defines a capacitance just like a stationary density of
states gives rise to a quantumcapacitance. The capacitive response (237) is very similar
to the adiabatic response of (228). Indeed, the protocol of injection by local gating
can be recovered by considering a fully open mesoscopic capacitor, with D → 1.
Consider now a monochromatic drive Vg(t) = V 0

g cos(�t), with |qV 0
g | � 	 so that

we can consider a single level of the dot only. In the first half of the period T Eq. (237)
gives [354]

I c(t) = qD
∫

dE

(
− ∂ f

∂E

)
σ/π

t2 + σ 2 , σ = γ

qV 0
g �

= D	

2πqV 0
g �

. (239)

At low temperature kBT � 	, we thus have the emission of a Lorentzian pulse that
reminds us of the Leviton source. Indeed, in this regime, the latter and the mesoscopic
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capacitor produce the same type of excitation. However, the presence of the density
of states in Eq. (237) is such that the two sources do have different spectral properties
and temperature dependence of the transport quantities [354]. Finally, it can be shown
directly from Eq. (237) that the excited charge (per half-period) is quantized to Mq
whenever max(Vg) − min(Vg) = M	/q, independently of temperature [360].

The other relevant situation is the fast emission regime�τd � 1, and particularly a
square-wave driving protocol, first implemented in [53]. Consider then a gate potential
Vg(t) = 0 for t ∈ (mT,mT/2) and Vg(t) = V 0

g for t ∈ (mT/2,mT), with m ∈ Z.
Let us also suppose that the transitions happen on a timescale δt � τd , making the
protocol nonadiabatic. Focusing on the interval t ∈ (0, T/2), yet t � τd , Eq. (235)
predicts an exponential current profile

I clin(t) ∝ e−t/τ , τ = − τd

ln(1 − D)
= τd

(
1

D
− 1

2

)
+ O(D) . (240)

For kBT � 	, this is the only contribution to the current, which is however associ-
ated with a non-quantized transferred charge. Quantization is recovered in the regime
kBT � 	, thanks to the nonlinear term (236). Once again, the result is that quantiza-
tion requires an excitation amplitude equal to an integer multiple of the level spacing
	. Overall, the current retains an exponential profile, as observed in experiments and
shown in Fig. 5. Notice that the injected charge is quantized as long as the escape
time τ is not comparable to a half-period of the driving signal, i.e., for not too small
transmissions D.

Until here, charge quantization refers to the average injected charge per half-period.
Clearly, this “quantization” does not exclude spurious emission events, where more
than one charge is emitted in a cycle and no charges are emitted in other cycles, still
keeping the average quantized. Therefore, a further characterization of the system
is required to convincingly show that the mesoscopic capacitor is a reliable single-
electron emitter. Such a study requires considering the current fluctuations in the
device, see also Sect. 5.2.2. This was carried out experimentally in Ref. [363]. It turns
out that having a driving amplitude equal to one level spacing is not enough to guar-
antee a robust charge quantization. In particular, a resonant emission, corresponding
to having the emission energy in resonance with the Fermi level, generates extra fluc-
tuations that do not make the source a reliable single-electron emitter. The optimal
regime to achieve this goal is instead achieved when the Fermi level is exactly halfway
between two dot levels, so the emission energy is	/2 above the Fermi level. A detailed
discussion, comparing theory and experimental data, can be found in [362]. A typical
emission energy for the driven mesoscopic capacitor is around 0.1 meV, making this
source the least energetic among those presented in this section. This also means that
the effect of the Fermi sea is relevant, and relaxation processes can be important [364,
365].

Single-electron pumping The concept of quantum pumping has been introduced in
Sect. 4.2.1.Under specific conditions, it is possible to use pumping to realize controlled
single- or multi-particle emission. One strategy, as first demonstrated in Ref. [55] is
adiabatic pumping around the triple point in the stability diagram of a double dot
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Fig. 5 Current emission from a mesoscopic capacitor in the nonadiabatic regime. A square pulse with
amplitude equal to one level spacing 	 is applied to the top gate of a mesoscopic capacitor, resulting in a
current exhibiting an exponential decay. Reprinted figure with permission from [362]. Copyright 2012 by
the American Physical Society

V(t)
1

V(t)
2

(1,1)

(1,0)

(1,0)

(0,0)

V

V

1

2

(a) (b)

Fig. 6 a Sketch of the energy landscape of a driven double quantum dot. The three snapshots show different
level configurations. As response to the changes between these configurations a quantized charge current
is induced. b Cycle in parameter space encircling one triple point in the stability diagram

or of two metallic islands coupled in series, see Fig. 6. Such a double-dot system is
described by the Hamiltonian

Ĥddot =
∑

j=1,2

ε j (t)N̂ j − v

2

∑

σ=↑,↓

(
d̂†1σ d̂2σ + d̂†2σ d̂1σ

)
+U N̂1 N̂2 (241)
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with the interdot coupling v and the single-dot occupations N̂ j = ∑
σ N̂ jσ =∑

σ d̂
†
jσ d̂ jσ . Here, we set the onsite interaction to be the largest energy scale such

that double occupation on a single dot is excluded. For a double-island system, the
Hamiltonian is equivalent but with continuous energy states. The stability diagram of
this type of systems has a honeycomb structure, where a section including one triple
point between neighboring stable regions is shown in Fig. 6b, as function of the gate
voltages applied to the dots. By slowly modulating the gates, electrons can be trans-
ferred in adiabatic response between dot 1 and the left contact, between dot 2 and the
right contact, or between the dots. These dynamics can be described by a classical rate
equation in the sequential-tunneling regime

d

dt

⎛

⎝
P0
Pb
Pa

⎞

⎠ =
⎛

⎝
−2�a f (εa) − 2�b f (εb) �b (1 − f (εb)) �a (1 − f (εa))

2�a f (εa) −�b (1 − f (εb)) 0
2�b f (εb) 0 −�a (1 − f (εa))

⎞

⎠

⎛

⎝
P0
Pb
Pa

⎞

⎠ .

(242)
Here, the eigenstates η = b,a of the double dot are the bonding and anti-bonding states,
which—sufficiently far away from the triple points—equal the local occupation states
of dots 1 and 2. Their energies are given by εb/a = (ε1 + ε2)/2±√v2 + (ε1 − ε2)2/4
and their effective couplings to the left and right reservoirs, α = L,R, which are time
dependent via the level energies, are given by

�ηα = �α

2

(
1 − αη

ε1 − ε2√
4v2 + (ε1 − ε2)2

)
, (243)

where α = L/R and η = b,a take the values ±1 when used as variables, and the
rates �α are obtained from Eq. (110) in the wide-band limit. We also introduce the
abbreviation �η =∑α=L,R �ηα . The induced charge current is given by

I cα = −q
∑

η=b,a

�αη

�η

(
d

dt
P(0)
η (t)

)
. (244)

When driving the gates around a triple point as indicated by the example cycle in
Fig. 6b, exactly one charge is transferred peristaltically through the system per cycle
from left to right. A quantized current is found when the amplitudes and phases of
the driving parameters are chosen such that the distance between the parameter cycle
and the triple point is much larger than the temperature and if the time between the
crossing of two lines is long enough to allow the system to reach the stable occupation
state.

Such peristaltic single-electron pumps have for example been experimentally real-
ized in double metallic islands [55], single dopants in silicon [269], graphene [366],
and carbon nanotubes [268]. The accuracy of such devices is typically limited by
cotunneling effects [367].

Injection via nonadiabatic single-parameter pumps With the goal to meet the high
requirements for using single-electron sources for the implementation of a current
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Fig. 7 Working principle of a
single-electron source based on
a dynamical quantum dot. This
is also referred to as a
single-parameter nonadiabatic
pump. Figure reproduced with
permission from Springer
Nature Ref. [368]

standard, a different strategy has therefore recently becomemore promising, exploiting
nonadiabatic pumping going along with so-called hot-electron emission [369, 370].
These nonadiabatic single-electron pumps are typically realized in a gated wire, where
the modulation of a potential barrier leads to the asymmetric creation and depletion of
a quantum dotwhich is charged and discharged by electron transmission from opposite
sides of the conductor. The working principle is shown in Fig. 7.

The left side of Fig. 7 illustrates an example of a single-electron pump implemented
in a nanostructure based on GaAs, and exploiting a dynamical quantum dot. The latter
is defined by two parallel gates with a small space between them, where electrons can
be trapped. By periodically modulating the two gate potentials, the emission of one
electron per repetition cycle can be achieved, as originally demonstrated in [370]. A
schematic of the working principle is shown on the right side of Fig. 7: first, electrons
are loaded by lowering the barrier on the left gate below the Fermi level (1). Then, the
barrier is gradually increased (2), allowing for back tunneling until the dot is isolated
and one electron remains trapped (3). Next, the left barrier is elevated until it exceeds
the right one (4), resulting in the emission of the loaded electron. Using such devices a
quantized current with a precision of one part permillion has been demonstrated [368].
Furthermore, by placing an additional barrier downstream with respect to the source
(see Fig. 11 in Sect. 5.2.1), it is also possible to measure the energy distribution and
the wavepacket width of the emitted electrons [371, 372], perform tomography [373],
as well as time-resolved interference [374–376]. For more details, we refer the reader
to the review [377, 378]. Here, it is sufficient to highlight that single-electron pumps
of this kind result in large emission energies (order of 100 meV, that is much larger
than the Fermi level in the system, of order 10 meV) and for this reason the emitted
particles are often called hot electrons.
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Injection and transport via surface acoustic waves Another approach to emit and
transport single-electrons relies on a combination of quantum dots as discussed in the
previous paragraph and the action of a surface acoustic wave (SAW). This principle is
similar to that of the Thouless pump, discussed in Sect. 5.5.1. The key idea is to exploit
the piezoelectric properties of GaAs to generate an electrically induced perturbation
of the potential landscape that propagates along certain crystal directions at a speed
of about 3000m/s, which is much slower than the Fermi velocity. Details on how
the SAW is generated can be found for instance in [379], with recent developments
and optimization reported in [380]. The important point is that the SAW creates a
moving quantum dot that is able to transport single electrons over micrometer-scale
distances. The protocol is illustrated in Fig. 8. The setup (a) features two quantum
dots, the left one being the source and the right one the receiver. Each of them is
equipped with a quantum point contact acting as a charge sensor, allowing one to
detect the presence of electrons in the dot, with sub-electron sensitivity. At first, an
electron is captured (b) in the left dot and isolated from the Fermi sea (c) by acting
on the gate voltages VR and VC. Then a SAW is sent through the device and creates a
train of moving quantum dots. The electron is thus loaded in a minimum of the SAW
and transported over the depleted channel (d). This approach was pioneered in [381,
382], where electrons were transported over micrometer distances with more than
90% efficiency. Recent developments [383, 384] have greatly improved the accuracy,
also allowing for controlled interference experiments [385]. We will come back to this
point in Sect. 5.3.3. The technique is nowadays very advanced, to the point where there
is complete control over the number of emitted electrons, as well as which minimum
of the SAW electrons are loaded in. One key advantage of the SAW single-electron
source compared to other approaches is the possibility of performing a single-shot
detection of the emitted electrons, enabling counting statistics experiments [385, 386].
This is achieved by using a receiver quantum dot, equipped with a nearby quantum
point contact, as a very sensitive charge detector. Similarly to the nonadiabatic single-
electron pumps, and differently from themesoscopic capacitor and the Leviton source,
the SAW source injects electrons that are well separated from the Fermi sea.

Superconducting turnstiles The single-electron pumps introduced above exploit
Coulomb interaction and tunable (effective) confinement for the realization of precise
single-electron emission. An alternative strategy is the implementation of so-called
turnstiles in hybrid superconducting devices. A major difference with respect to quan-
tum pumps is that these turnstiles are operated at finite bias, which sets the direction
of single-electron transport. Furthermore, in these hybrid turnstile systems, in addi-
tion to Coulomb interaction, the superconducting gap is used to selectively charge
and discharge a central Coulomb-blockaded island. An example for such a device,
here a normal-metal island with superconducting contacts, is shown in Fig. 9. Also
realizations with superconducting islands have been proposed and realized, see for
example [388].
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Fig. 8 Schematics of the SAW single-electron source. Gray areas in a indicate fully depleted regions. b, c
Loading of an electron in the source quantum dot. d Capture of the loaded electron in a SAW minimum
and transfer over the depleted channel. Figure adapted with permission from Ref. [379]
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Fig. 9 Working principle of a superconducting turnstile, here shown at the example of an SINIS system. a
Sketch of the normal conducting island contacted to two superconducting reservoirs via insulator barriers
(SINIS). b Stability diagram of a normal-conducting island for comparison. c Stability diagram of the island
in contact with superconducting reservoirs. A possible operation cycle of the turnstile is indicated by a black
line. Figure adapted with permission from Ref. [387]

The superconducting turnstile shown in Fig. 9 is described by the Hamiltonian

Ĥturnstile =
∑

k,σ

εk d̂
†
kσ d̂kσ +U

(
N̂ − Ng(t)

)2

+
∑

α,k,σ

εαk â
†
αkσ âαkσ +

∑

αk

(
	âαk↑âα−k↓ + 	∗â†αk↑â

†
α−k↓

)

+
∑

αkσ

(
wαk â

†
αkσ d̂ασ + H.c.

)
. (245)

The first line describes the island, containing the gate-induced island occupation in
the charging energy, which is time dependent through gate driving, Ng(t) = CgVg(t).
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The contacts are BCS superconductors, which hence have a spectral density ν(E) =
ν0|Re

[
(E + iγD)/

√
(E + iγD)2 − |	|2

]
|. Here, the Dynes parameter γD models

smoothening of the sharp peaks in the spectral density, 	 is the superconducting
gap, and ν0 the density of states of the contacts in the normal conducting state. Finally,
weak tunneling between contacts and central island is described by the last line of
Eq. (245). Across the turnstile, a symmetric bias ±V /2 is applied.

The working principle of the turnstile is the following. Assume that the island is
initialized with a particle number N . Then the energy required to add or to remove a
particle from the island via tunneling from/to the left or right contact is

δEL/R,N
+ = U

[(
N + 1 − Ng

)2 − (N − Ng
)2]∓ V

2
(246)

δEL/R,N
− = U

[(
N − 1 − Ng

)2 − (N − Ng
)2]± V

2
. (247)

In the normal-conducting case, this would lead to a stability diagram (Coulomb dia-
monds) as shown for positiveV in Fig. 9b.However, in the presence of superconducting
leads, the Coulomb diamonds are enlarged by the white regions where two different
charge states are stable simultaneously. In the sequential-tunneling regime transfer of
single particles is strongly suppressed by the superconducting gap in these regions,
where transport would require the breaking of a Cooper pair. This results in highly
asymmetric loading and unloading rates when the driving of the gate voltages makes
the driving cycle (an example is indicated by the black line in Fig. 9c) cross the lines
confining different charge states. Concretely, when crossing the green line, the island
can go from charge state N = 0 to N = 1 via coupling to the left lead (but not the
other way around), while it can go from charge state N = 1 to N = 0 via coupling to
the right lead when crossing the orange line (but not the other way around).

A similar working principle underlies the functioning of turnstiles with supercon-
ducting islands, both with normal-conducting and with superconducting leads. As
described above, for the operation of these turnstiles, in particular the gap of the
superconductor was exploited for realizing single-particle control. However, also the
superconducting phase can play play an important role in pumping, as for example
discussed in Sect. 5.1.3.

Furthermore, the oscillating phase of a biased superconductor was used to imple-
ment time-dependent driving of amesoscopic conductor, thereby realizing an adiabatic
quantum pump [389] following the theoretical proposal of Ref. [390].

5.1.3 Time-dependent transport as spectroscopy “knob”

In the previous section, we have mostly focused on the control over single parti-
cles in quantum conductors that can be achieved with time-dependent driving. In
this context we have highlighted also research on the dynamical properties resulting
from this time-dependent control, such as the decay dynamics in response to a gate
switch. However, quantum transport induced by time-dependent driving provides fur-
ther intriguing opportunities, since it can be used as an additional “knob” to perform
transport spectroscopy that goes beyond the possibilities that arise from steady-state
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1

1
1

2 2

2

Fig. 10 Left panel: sketch of a driven double dot. Stability diagram of the double dot. The central white
region around the triple point of three coexisting double-dot states is the region where quantized charge
can be pumped. In the surrounding triangles charge is transferred in the nonadiabatic pumping regime and
allows for readout of the indicated rates. Figure adapted from Ref. [206]

transport spectroscopy. In this section, we will show some examples: we start by
demonstrating how the inherent properties of the dynamics can be accessed, in partic-
ular the decay rates of the central system, as well as the geometric nature of adiabatic
pumping. In a second step, we show how time-dependent transport spectroscopy can
be used to reveal fundamental many-body properties of the central system, which
are not accessible from steady-state measurements. For this purpose, pumping in the
adiabatic-response regime is particularly appropriate, since the slow driving mini-
mally excites the system, and at the same time it leads to a dc signal that is more
straightforward to detect than purely time-dependent currents.

Readout of relaxation times A main ingredient to understand transport in the pres-
ence of time-dependent driving are clearly the decay dynamics of a system in response
to an excitation. Here, we show how the different relaxation times of a double quan-
tum dot—of high relevance in the context of single-particle control or in the context
of charge qubits to name two examples—can be read out by analyzing the transition
between adiabatic and nonadiabatic charge pumping [206]. We consider two quantum
dots that are weakly coupled to each other and to one electronic reservoir each. The
double dot is described by the Hamiltonian given in Eq. (241), where we now choose
ε j (t) = ε̄ j + δε j cos

(
�t + φ j

)
as the time-dependently driven local dot levels. The

coupling 	 between the dots, as well as the tunnel coupling �α between the dots
and the neighboring contacts are weak, β	, β�α � 1. Double occupations of the
double dot is forbidden by strong Coulomb interaction. This setting is ideal for adi-
abatic pumping of quantized charges, since driving of the separate dots via gates is
experimentally straightforwardly realized and in the limit of large driving amplitudes
δε j � 	 the working principle of a peristaltic pump allows to “squeeze” one electron
after the other through the device. This happenswhen the gates drive the system around
the triple point indicated in the stability diagram in Fig. 10, see also Sect. 5.1.2. In
the adiabatic-response regime, the pumped charge has geometric properties, leading
to the fact that the current pumped per cycle I c is related to the current pumped in the
reversed cycle I c ′ by I = −I c ′. This is different when the driving is fast, such that
the response is delayed due to the response times of the system. Relevant timescales
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are here the charge relaxation rate of the double dot due to coupling to the left and
right contact, namely γL ≡ �L(1 + fL(E)) and γR = �R(1 + fR(E)), as well as
the inelastic relaxation rate enabling transitions between the dot levels at different
energies. It turns however out that in the nonadiabatic regime the ratio of the pumped
currents due to reversed driving protocols always has the shape

I c

I c ′
= eγx δtx (248)

with some relaxation rate γx and a specific timescale δtx , which depend on the region
of the stabilty diagram, we are considering, see Fig. 10. For example, in the upper
violet regions, the ratio between currents reads

I c

I c ′
= eγR(	t−	t ′), (249)

where	t is the time between the crossing between left and right dot level and between
the right dot level and the Fermi energy of the right contact (and vice versa for 	t ′).
Interestingly, the relaxation rate γR detected in this way, will be found to take two
different values in the two violet regions, namely, γR � �R and γR � 2�R depend-
ing on whether the discharging or the charging is regarded. This factor 2, stemming
from the value of the Fermi function in the considered regions is a result of spin
degeneracy of the single dot levels. This strategy to read out relaxation rates from
nonadiabatic pumping suggests an alternative to time-resolved measurements [53],
counting experiments [391], measurement of finite-frequency noise [362] or radio-
frequency reflectometry [392]. Relaxation rates due to inelastic scattering have also
been detected from spontaneous emission spectra [393].

Geometric phase of pumping Furthermore, the geometric nature of pumping is
particularly evident in superconducting systems, where transport takes place via
non-dissipative Cooper-pair transfer [394]. This was for example analyzed both the-
oretically [395, 396] and experimentally [397] in so-called superconducting sluices,
which are flux-assisted Cooper-pair pumps. The transferred charge in a two-terminal
device is then directly related to the quantum state �(t) describing the system via

2q 	Nα = 2q

h

∫ T

0
〈�(t ′)|

(
∂ϕ Ĥ(t)|�(t ′)〉

)
, (250)

with the phase difference ϕ across the central system. The Hamiltonian Ĥ(t) =
Ĥ(X(t), ϕ) depends on time through the driving parameters X(t) and will have
additional dependencies on local charges and their conjugated phases of elements
of the specific central circuit realization. This transferred charge is directly related
to the Berry curvature. Interestingly, it has been shown that this concept can even be
extended to revealing non-abelian holonomies in superconducting sluices [398]. This
is possible when the periodic adiabatic driving takes place in a degenerate sub-space
Hn of the Hilbert space. A quantum state ψnα ∈ Hn then follows the time evolution
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|ψnα(T)〉 = [Un(T)]αγ |ψnγ (T)〉 (plus higher-order nonadiabatic corrections) with the
time-evolution matrix of the dimension of Hn given by

Un(T) = e− i
�

∫ T
0 En(t)dtT e− ∫ T0 �n(t)dt , (251)

where En(t) is the energy eigenvalue of the degenerate subspace and �n(t) =
〈ψnα(t)|ψ̇nγ (t)〉 is the geometric connection. We recall thatT denotes time ordering.
If the system now starts the evolution in a superposition of these degenerate eigenstates
cnγ |ψnγ 〉, then the transferred charge after one cycle is given by

2q	N = 2q

�

∑

γ γ ′
c∗nγ cnγ ′

∫ T

0
dt
{
∂ϕEnδγ γ ′

−i�
∑

αα′

(
[U†

n ]γα
(
∂ϕ[�n]αα′

) [Un]α′γ ′ − ∂t

(
[U†

n ]γα〈ψnα |∂ϕ |ψnα′ 〉[Un]α′γ ′
) )}

.

(252)

It consists of the usual contribution from the supercurrent (first term) as well as
geometrical contributions due to pumping which reveal qualitatively new effects for
non-Abelian dynamics. They occur as a modified periodicity in the pumped charge as
well as a dependence on the starting point of the driving cycle. In order to even show
the non-commutativity arising from the non-Abelian dynamics, a three-island system
has been proposed in Ref. [398].

A number of different opportunities for transport spectroscopy with adiabatic
pumping have been theoretically proposed in hybrid systems with normal- and
superconducting contacts containing for example quantum dots as central driven
region [173, 399]. Concretely, it was shown that the adiabatically pumped charge
reveals distinct features of Andreev interference [400] or of crossed Andreev reflec-
tion [401]. Also features of a Higgs-like pair amplitude have been elucidated [402].
Hybrid superconducting devices have furthermore recently come to the focus since
they can host Majorana fermions. Even here, adiabatic pumping has been suggested as
a tool to reveal features of Majorana states that are distinct from the ones potentially
observable in steady-state transport measurement [403], and are expected in the noise
of a quantum pump [404].

Revealing level renormalization These latter examples show that measurement of
pumped charge can serve as a tool to access the otherwise hidden intrinsic properties
of the central many-body quantum system. Further examples, in which the advantages
of using adiabatic pumping as “enhanced transport spectroscopy” become visible,
show the possibility to read out Coulomb interaction effects. This is for example the
case when pumping charge through a single-level quantum dot with strong onsite
Coulomb interactionU and weakly coupled to two electronic contacts, α = L,R. The
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Hamiltonian for this setup reads

Ĥ =
∑

σ

ε(t)d̂†σ d̂σ +U N̂↑ N̂↓ +
∑

αkσ

εαkσ ĉ
†
αkσ ĉαkσ +

∑

αkσ

(
wαk(t)d̂

†
σ ĉαkσ + h.c.

)

(253)
with the dot number operators for spin σ given by N̂σ = d̂†σ d̂σ and

∑
σ N̂σ = N̂ .

Here, the single-level energy ε(t) and the couplings to the contacts wαk(t) can be
time-dependently driven. In the sequential-tunneling regime the current pumped into
the left contact takes the particularly simple form

I cL(t) = q
�L(t)

�(t)

d

dt
〈N̂ 〉(0)(t), (254)

where 〈N̂ 〉(0)(t) is the expectation value of the dot occupation in zeroth order in the
tunnel coupling. This expression shows in a clear way the working principle of the
single-dot adiabatic pump: a current arises due to the time-dependent variation of
the dot occupation. If this results in a dc current after time-averaging and in which
direction this current flows, depends on the (relative) time-dependence of the coupling
parameters �L(t) and �R(t), where here �(t) = �L(t)+�R(t). The rates �R/L(t) are
obtained from Eq. (110) and the time-dependent Hamiltonian (253) in the wideband
limit. In the weak-coupling regime, this pumping mechanism, in addition to the usual
requirements of a minimum of two out-of-phase time-dependently driven parameters,
needs a time-dependent variation of the level energy ε(t) (or of the interaction strength)
since the time-dependent couplings do not impact the dot occupation, which in lowest
order is given by

〈N̂ 〉(0)(t) = f (ε(t))(1 − f (ε(t) +U ))

1 + f (ε(t)) − f (ε(t) +U )
. (255)

Higher-order effects in the tunnel coupling lead to a finite life-time broadening as well
as to a renormalization of the level position, also referred to as Lamb-shift. These
renormalization effects directly impact the expectation value of the dot occupation

〈N̂ 〉(1) = 〈N̂ 〉broad + 〈N̂ 〉ren (256)

〈N̂ 〉broad =
(
2 − 〈N̂ 〉(0)

)
φ′(ε) + 〈N̂ 〉(0)φ′(ε +U ) (257)

〈N̂ 〉ren = d〈N̂ 〉(0)
dε

σ (ε,U ), (258)

but they are typically hard to access experimentally, since they appear as small cor-
rections to the lowest-order result. Here, φ(ε) = �

2πRe�( 12 + iβε
2π ) with the digamma

function � and σ(ε,U ) = φ(ε)− φ(ε +U ) is the level renormalization. A rigorous
calculation in second order in the tunnel coupling, based on the gerneralized master
equation approach of Sect. 3.6.5 shows that the pumping current is directly related to
these corrections of the dot occupation

I cL(t) = q
�L(t)

�(t)

d

dt

(
〈N̂ 〉(0)(t) + 〈N̂ 〉ren(t)

)
+ q

d

dt
〈N̂ 〉broad,L. (259)
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Interestingly, the effect of line-width broadening (entering here only due to coupling
to the left contact) contributes in terms of a total time derivative. In the time-integrated
charge pumped per period it hence cancels out. When choosing the coupling contacts
�L(t) and �R(t) as pumping parameters, the lowest order contribution of Eq. (254)
is zero, as explained above. This means that the pumped charge as a result of driving
�L(t) and �R(t) is uniquely due to level renormalization. In fact in the regime of weak
driving (small driving amplitudes), the pumped charge is even directly proportional to
the level renormalization, 	NL = qAσ(ε,U )d〈N̂ 〉(0)/dε, with the area A enclosed
by the pumping parameters. This pumped charge induced by level renormalization
provides hence a tool for its direct readout.

Readout of screening effects Time-dependent driving of a conductor has also been
proposed as a tool to read out screening effects, see Sect. 2.3, resulting from the pile-up
of charges in a biased conductor [95]. In the absence of Coulomb interaction, transport
through a conductor can be described within scattering theory, characterizing the
conductor by the energy-dependent transmission probability D(E). Pile-up of charges
and resulting screening effects modify this transmission probability as function of the
applied potential or even temperature biases

D(E, {qV ,	T }) = D0(E) − 1

2

dD0(E)

dE
(ξqV − χkB	T ) , (260)

with the screening coefficients ξ, χ , which contribute linearly in the regime of weak
screening. These screening effects (such as quantified via the coefficients ξ and χ ) are
again difficult to read out and typically occur as corrections in nonlinear response [88,
92–94, 405, 406], while linear-response coefficients are not affected by these screening
effects. However, the injection of a pure ac signal onto such a conductor results in
modifications of the (thermoelectric) linear-response coefficients,

(
I c

I Q

)
=
(

I dirac

I E,dirac

)
+
(
G + Gac L + Lac
M + Mac K + Kac

)(
V
	T

)
, (261)

where the correctionsGac, Lac,Mac, Kac are induced by screening effects. Concretely,
the corrections read

Gac = ξ
q2

2h
J0, Lac = −χ

kBq

2h
J0,

Mac = ξ
kBq

2h
T0J1, Kac = −χ

k2BT0
2h

J1, (262)

where J� = ∑n

∫
dE |SF (E, En)|2 dD0(E)

dE (E/kBT0)� [ f (E) − f (E + ��n)] , with
the Floquet scattering matrix (here a scalar) characterizing the ac source, see
Sect. 3.4.2. The modifications of this set of thermoelectric response coefficients given
in Eq. (262) can be switched on and off by the driving and their combined readout
hence gives direct access to the screening coefficients [95].
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5.2 Dissipation and noise

The charge current, as discussed in the previous sections, is the most frequently ana-
lyzed observable in quantum transport. However, also energy currents are of high
interest in the context of transport due to time-dependent driving, not only because the
time-dependent drive acts as a source of energy for the system, but also because energy
currents give complementary access to the spectral properties of transported particles.
In addition, fluctuations of charge and energy currents can limit the performance, but
they also elucidate the properties of quantum transport due to time-dependent driving
for example due to particle-particle correlations. These aspects are the focus of the
present subsection.

5.2.1 Energetic and thermodynamic properties of time-dependent transport

In Sect. 4.1.2, using the mesoscopic capacitor as the simplest example, we have
discussed how the energy response of a time-dependently driven system contains
complementary features compared to the charge response.

As a result, energy currents and other thermodynamic properties [407, 408] are
an additional means to study the properties of time-dependently driven single- or
few electron sources, as introduced in Sects. 5.1.1 and 5.1.2. Indeed, when single-
electron sources are realized with the goal of providing single-particle excitations
as input for quantum experiments, such as flying qubits [378] or for fundamental
experiments in quantum optics with electrons as introduced in the following Sect. 5.3,
the spectral properties of the signal are often relevant. Information about these spec-
tral properties [194, 354, 409] can for example be accessed via the measurement
of energy currents or energy-resolved currents. For the analysis of single-electron
sources, such energy-resolved measurements have been carried out using (driven)
detector barriers, placed behind the single-electron source [371, 372] or via tomo-
graphic techniques [410–413]. A sketch of the driven-detector barrier setup, exploiting
the influence of the barrier gate driving on the charge response is shown in Fig. 11. It
demonstrates how the signal—emitted here from a hot-carrier single-electron pump
(blue, see also Sect. 5.1.2)—is injected onto a driven barrier (red), where the con-
ductance in response to the barrier drive yields the spectral properties of the source
current.

The complementary behavior of charge and energy currents of time-dependently
driven systems can go that far to lead to counterintuitive effects of charge-energy
separation. For example, it has been shown that—depending on delay times between
different single-electron signals in electron interferometers, interference effects can be
fully suppressed in charge currents, while the energy current carried by these particles
displays coherent oscillations and vice versa [237, 414]. Another related phenomenon
is the generation of charge pulses by means of heat pulses in interferometers [125].

It has furthermore been shown in Sect. 4.4 that time-dependently driven quan-
tum systems, such as quantum pumps constitute a possibility to implement heat
engines in electronic conductors. Here, the time-dependent driving is used to real-
ize the engine cycle, connecting and disconnecting the quantum systems to different
heat or work baths. In addition to this conventional heat-engine implementation, time-

123



736 M. Acciai et al.

Fig. 11 Hot-carrier single-electron pump (blue) injecting particles onto a driven barrier, which filters the
injected signal in energy space. The conductance in response to the barrier gate provides the spectral
properties of the injected signal. Reprinted figure with permission from [371]. Copyright 2013 by the
American Physical Society

dependent driving has also been proposed to improve the efficiency of thermoelectric
devices [415], where the different time-dependent response of charge and energy
currents is exploited. Time-dependent driving can furthermore be used to prepare
unconventional resources for thermoelectrics, which due to their non-thermal proper-
ties lead to counter-intuitive results when standard efficiencies are investigated [416,
417].

5.2.2 Fluctuations in time-dependent transport

Up to here, the focus has been on average transport observables resulting from or
influenced by the time-dependent driving of system parameters. However, the fluc-
tuations of these observables, or in other words their noise, can play an important
role in small-scale devices [96, 418, 419]. The noise of a transport current is related
to the two-time correlator of the current operator Sαγ (t, t ′) = 〈δ Îα(t ′)δ Îγ (t)〉 with
δ Îα(t) := Îα(t)−Iα .Note that the noise is often definedvia the symmetrized correlator,
seeEq. (12). Furthermore,whilewehere present an expression for particle–current cor-
relations, the same procedure can be employed for other types of transport currents. An
important conceptual difference of the current–current correlator in time-dependently
driven systems is that it does depend on two times t, t ′, compared to the current–
current correlator in stationary systems which only depends on a time difference
τ ≡ t − t ′. Therefore the noise power in general also depends on two frequencies,
and a time average, as shown in Eq. (14), needs to be employed to obtain a standard,
frequency-dependent noise power. The most often studied zero-frequency noise, Sαγ ,
is hence obtained from a double time integration. Zero- and finite-frequency noise
of time-dependently driven systems have been analyzed in detail employing different
methods. A detailed introduction to the calculation of noise in time-dependently driven
systems using scattering theory [139, 362, 420, 421] can be found in this book [141].
In such a setting, weak interactions effects have been included using a renormaliza-
tion procedure [422]. Zero- and finite-frequency noise of time-dependently driven
quantum dots and metallic islands with a possibly strong onsite interaction has fur-
thermore been analyzed based on a generalized master equation approach [423, 424].
Also, bosonization techniques have been employed to calculate the noise of adiabatic
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pumps in the presence of strong correlations [404] and Green’s function techniques
for photon-assisted tunneling [425].

Beyond the finite- and zero-frequency noise of time-dependently driven conduc-
tors, also the full counting statistics have been analyzed giving access not only to the
variance but to all cumulants of a transport current [352, 426, 427], possibly at very
high driving frequencies [428, 429] or—in the opposite regime—for adiabatic pump-
ing [430–432]. In the latter case, full counting statistics reveals nicely the geometric
nature of quantum pumping [99]. Let us here highlight three aspects that make the
noise in time-dependently driven systems a crucial observable.

(1) Time-dependently driven conductors are of high interest as single-electron
sources for the realization of the current standard [388, 433]. Here, precision is of
utmost importance which means that fine-tuning of the device parameters or even
feedback mechanisms [434–436] are employed to reduce the noise [437], for example
in the charging and discharging process of driven quantum dots [438]. Excitations
with suppressed noise have recently also been created by shaping an ac driving sig-
nal [60]. The ideal case of a so-called Leviton, a Lorentzian-shaped pulse [59, 439],
is characterized by the absence of electron–hole pair creation leading to a noise that
is suppressed to the one of a stationary system [61, 348, 349, 353, 356, 440]; see
Sect. 5.1.1 for more details.

(2) Noise of time-dependently driven conductors is furthermore employed as an
important spectroscopy tool, to reveal quantum statistics and multiparticle quantum
effects. One particularly prominent example is the field of quantum optics with elec-
trons, as discussed in detail in Sect. 5.3 of this review. Importantly, time-dependent
driving of a conductor creates multiparticle correlations that appear in noise [441];
in particular, interference in electron–hole pairs created by driving has been dis-
cussed [89, 142, 347], including dephasing and interaction effects [442], as well as
the possibility of entanglement generation by driving [443]. All these phenomena can
be straightforwardly revealed by noise, while they are typically hidden in average cur-
rents. Moreover, photoassisted shot noise has also been used to provide an alternative
determination of the fractional charge in the fractional quantum Hall effect [444–446]

(3) In equilibrium, fluctuation-dissipation theorems (FDTs) relate the noise of a
system to linear-response coefficients, see also Sect. 3.2.1. Extensions of FDTs beyond
equilibrium have been the focus of extensive research, see for example Ref. [447]
for a review. Non-equilibrium due to time-dependent driving has been one of the
fields of interest, which we want to focus on here. Note that non-equilibrium FDTs
can also serve as guideline for noise reduction in driven systems. In the following,
we focus on some instances of fluctuation-dissipation theorems of time-dependently
driven systems.

Fluctuation-dissipation theorem for adiabatic quantum dot pump The fluctuation-
dissipation theorem is generally violated in the presence of a time-dependent driving,
which can directly be brought in connection with the heat pumped into the sys-
tem [448]. Still, one can find modified fluctuation-dissipation theorems for adiabatic
quantum pumping, which we present here focusing on the regime of weak tunnel cou-
pling [431]. A convenient starting point for the derivation of fluctuation-dissipation
theorems is to exploit fluctuation relations of the cumulant generating function of the
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transport full counting statistics, here for the driven system [449]. The generating func-
tion F can be found from the time evolution of the system in the presence of counting
fields, where in the long-time limit F({χα, ξα}) depends on the charge counting field
for exchange with contact α, χα , and on the energy counting field ξα , but not on initial
or final measurement times. From the generating function, the charge current and its
noise as well as the energy current can be found

I cα = −i∂χαF|{χα,ξα}→0, (263)

I Eα = −i∂ξαF|{χα,ξα}→0, (264)

Sαγ = −∂χα∂χγF|{χα,ξα}→0. (265)

For a slowly driven system, the generating function can be expanded in orders of the
driving frequencywith an instantaneous and an adiabatic-response contribution. Those
can be written in terms of the smallest eigenvalue of the time-evolution operator in the
presence of the counting fields λ0({χα, ξα}) and the related eigenvectors, |0({χα, ξα}))
and (0({χα, ξα})|, which are operators in Liouville space,

F(0)({χα, ξα}) =
∫ T

0

dt

T λ0({χα, ξα}) (266)

F(1)({χα, ξα}) = −
∫ T

0

dt

T (0({χα, ξα})|∂t |0({χα, ξα})). (267)

The adiabatic-response contribution clearly shows the discussed geometric properties.
One of the consequences are fluctuation relations which differ by a sign for the instan-
taneous, F(0)({χα, ξα}) = F(0)({iβαμα − χα, iβα − ξα}), and adiabatic response,
F(1)({χα, ξα}) = −F(1)({iβαμα − χα, iβα − ξα}), since micro-reversibility for the
adiabatic response also requires a change in the current direction. Based on these mod-
ified fluctuation relations and on gauge invariance and the fact that the energy current
is not conserved in the presence of driving, one furthermore finds for the generating
functions

F(0)({χα}) = F(0)({iβμα − χα}) (268)

F(1)({χα}) = F(1)({iβμα − χα}) + βQ(1)({χα}), (269)

wherewe here focus on charge transport. These relations are valid for all contacts being
taken at the same inverse temperature β. The important function Q(1)({χα, ξα}) =
− ∫ dT

dt (0({χα, ξα})|ė|0({χα, ξα})) is related to energy transport, where e is the
energy superoperator. These relations are the starting point for deriving a fluctuation-
dissipation theorem for weakly coupled and slowly driven quantum systems, which
reads

S(1)αγ |{μα→μ} = kBT

(
∂ I c(1)α

∂μγ

+ ∂ I c(1)γ

∂μα

− ∂ I E(1)pump

∂μγ ∂μα

)
. (270)
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Here, I E(1)pump is the total energy current pumped into the system by the driving fields.
This is a first instance of the important role that energy currents play for dissipation
relations of driven systems.

Fluctuation relations from perturbation theory Also for more general driving
schemes, including the time-dependent driving of a bias voltage, fluctuation rela-
tions can be found, which relate the noise to the current [450, 451]. Starting from a
general Hamiltonian

Ĥ(t) = Ĥ0 +
(
ei

qVdc
�

t A(t)V̂ + h.c.
)

(271)

with a tunneling term composed of a tunneling operator V̂, a time-dependent driving
A(t), and a dc voltage Vdc, a perturbative approach in the tunneling with respect to the
unperturbed Hamiltonian Ĥ0 has been applied [450–452]. This approach shows that
the noise of the charge current in a two-terminal setup5 can be expressed as

S = q
∫

dω

2π
|A(qVdc − �ω)|2 coth

(
�ω

2kBT

)
I c(ω), (272)

where the driving term A explicitly appears in the relation (here written in fre-
quency space). For a non-driven system, this expression reduces to the stationary
non-equilibrium fluctuation relations [453, 454]. It involves the statement that charge
fluctuations are super-poissonian, while specific driving schemes, such as the previ-
ously introduced Lorentzian voltage pulses have poissonian noise.

Mesoscopic capacitor: fluctuation theorem for higher harmonics In general, the
noise power of a driven conductor depends on two frequencies. For conductors subject
to periodic driving with frequency �, this noise power can be expressed as the sum
over noise-frequency-dependent Fourier components, S(ω, ω′) = ∑∞

�=0 δ(ω + ω′ −
��)S�(ω). For (a set of) mesoscopic capacitors described by scattering theory, the �th
Fourier component is given by [455, 456]

S�(ω) = q2

2h

∞∑

n=−∞

∫
dE [ f (E)(1 − f (En − ��)) + f (En − ��)(1 − f (E))]

×
∫ T

0

dt

T ein�t [S∗(t, En − �ω)S(t, E) − 1
] ∫ T

0

dt ′
T ei(�−n)�t ′ [S∗(t ′, En − �ω)S∗(t ′, En − �ω) − 1

]
,

(273)

with the scatteringmatrix of the capacitor S(t, E). Also here, a relationwith the energy
current can be established, which for the driven capacitor is written as

I E = − i

2π

∫
dE f (E)

∫ T

0

dt

T S(t, E)
∂S∗(t, E)

∂t
. (274)

5 Here, we simply write S, without specifying the indices Sαγ because in a two-terminal setups all corre-
lation functions are the same (up to a sign) due to charge–current conservation I cR = −I cL.
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In the adiabatic-response limit and for small amplitudes of the gate potential U (t)
driving the mesoscopic capacitor, both the Fourier components of the finite-frequency
noise and of the energy current can be expressed in terms of the density of states

ν(t, E) = i

2π
S(t, E)

∂S∗(t, E)
∂E

. (275)

Concretely, one finds

S�(ω) = πq2�2ω(ω − ��) coth

(
�ω

2kBT

)∫
dE

(
−∂ f (E)

∂E

){
ν2
}

�
(276)

I E = hq2U 2�2

8

∫
dE

(
−∂ f (E)

∂E

)[{
ν2
}

0
−
{
ν2
}

−2
−
{
ν2
}

2

]
, (277)

with
{
ν2
}
�
being the �th Fourier component of ν2(t, E). Starting from these expres-

sions, a fluctuation-dissipation theorem can be found for the driven mesoscopic
capacitor, relating Fourier components of the finite-frequency noise to the energy
current due to the driving

S0(ω) − S2(ω) + S−2(ω)

2
= 2I E

U 2

�ω3

�2 coth

(
�ω

2kBT

)
. (278)

The study of Fourier components of the finite-frequency noise has also been promoted
as a tool to study transfer processes in weakly coupled capacitors and to identify
features ofCoulomb interaction impacting the capacitor’s finite-frequency noise [424].

Trade-off relations These examples show the relation between noise in driven sys-
tems and the energy (or heat) currents provided by the driving fields. However, also
these energy currents fluctuate and it is hence of interest to study the fluctuations of
energy or heat currents [457], which are directly related to power fluctuations [89,
458–460] or even the correlations between charge and energy currents [461].

One of the scopes of studying power fluctuations comes from the interest in real-
izing heat engines at the nanoscale, producing power due to coupling to different
heat baths and to external driving. In these nanoscale engines, not only the output
power, but also the precision of the output power is relevant. The attainable pre-
cision of an engine is limited by a trade-off, known as thermodynamic uncertainty
relation [462–464], with the efficiency and the average output power. Recently, these
thermodynamic uncertainty relations valid for arbitrary transport currents have been
extended to time-dependent driving [465] also in the context of quantum transport [466,
467]. In particular, for adiabatic pumping, the role of the geometric contribution to
currents or produced work have been highlighted [467]

〈〈J 2〉〉
〈J 〉 〈�〉 ≥ 2

⎡

⎣ 1

1 + 〈J 〉geo
〈J 〉dyn

⎤

⎦
2

. (279)
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In the steady-state limit, the bracket on the right-hand side of the inequality equals 1
and the standard thermodynamic uncertainty relation is found, bounding the average
of a current 〈J 〉 and its variance 〈〈J 2〉〉 together with the entropy production 〈�〉 by 2.
In the case of an additional time-dependent driving, the current does not only contain
the dynamical contribution, given by the time-average over instantaneous currents,
but also the geometric contribution, which lowers the imposed bound. Also beyond
adiabatic-response driving and beyond linear response, bounds on the precision of a
driven conductor can be found, which if subject to a large temperature bias is directly
related to the power provided by (or transferred to) the external driving [468].

5.3 Electronic quantum optics

5.3.1 General context

The experimental progress in controlling single-electron excitations, from their
emission to coherent propagation in quantum conductors, and possibly single-shot
detection, has triggered the development of the subfield known as electronic quantum
optics (EQO) [469]. In this section, we describe the main achievements within this
field over the past 20 years and we highlight some of the challenges that are still being
faced.

Electron quantum optics exploits the coherent manipulation of few-electron states
in electronic quantum conductors to achieve a sort of signal processing with electric
currents at the quantum level [470, 471]. To this aim, a theoretical description of the
coherence of quantum electric signals, as well as the circuit elements that allow one
to manipulate them in various ways is needed. The key elements in electron quantum
optics are (i) reliable single-electron sources, (ii) waveguides for electron propagation,
and (iii) beamsplitters with which interferometers can be built. By combining these
elements, it is possible to performcontrolled (and in principle time-resolved) electronic
interferometry and achieve signal processing with quantum electrical currents [471].

(i) We have described in Sect. 5.1 some of the different strategies that have been
proposed to implement reliable, on-demand single-electron sources. The success in
implementing these sources has been a major step forward toward the development
of electron quantum optics. The available single-electron sources are complementary
to each other, insofar as they work in distinct energy ranges and operate in different
platforms that play the role of waveguides for electronic propagation.

(ii)Most of EQO experiments have been performed in 2-dimensional electron gases
(2DEGs) in the integer quantumHall regime (see Ref. [472] for an early review). Here,
currents are carried by chiral edge states, along which propagation occurs according
to a direction fixed by the applied magnetic field. Edge states in the integer quantum
Hall effect are protected against backscattering, behaving as ideal waveguides for
electron propagation. This is why integer quantum Hall edge states have been chosen
as a platform to be combined with low-energy single-electron sources, such as the
Leviton voltage source [61] and the mesoscopic capacitor [53]. Another strategy is
to use 2DEGs in combination with surface acoustic waves. Here, the surface acoustic
wave acts both as a source and as a carrier, by loading a single electron from a properly
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initialized quantum dot in one of its minima and transporting it along a channel that
is defined in the 2DEG by electrostatic gating [62, 378].

In addition to these well-established platforms, theoretical proposals have been put
forward, suggesting other systems where additional effects can play a crucial role
and enrich the physics of EQO. Very early, the strongly correlated fractional quantum
Hall edge modes have been proposed [473], suggesting that the generation of clean,
on-demand electronic excitations can also be achieved there, and spurring several
studies where the impact of strong correlation on the charge and energy dynamics,
and interference of few-electron states were addressed [355, 459, 474–481]. One of
the exciting features of this platform is the presence of exotic anyonic excitations
with both fractional charge and statistics. Recent developments in this regime have
been reported, and we will come back to this point at the end of this section. In
addition, the interplay between single-electron sources (Levitons in particular) and
superconductivity has been explored in several studies [351, 482–489], highlighting
the opportunities for the on-demand generation of entangled states. Finally, the gen-
eration and propagation of few-electron states has also been studied in the helical
edge states of two-dimensional topological insulators [490–495], where the presence
of spin-momentum locking offers additional opportunities for interferometry [496].
The fate of Levitons in the presence of interacting systems of different kind has been
a major focus, leading to the conclusion that their minimal noise property (recall
Sect. 5.1.1) is very robust [348, 473, 483, 484, 494, 497].

(iii) Beam splitters in EQO are typically implemented by relying on quantum point
contacts. They are usually defined by electrostatic gates deposited on the heterostruc-
ture hosting the 2DEG where the propagation of the few-electron states of interest
occurs. In a typical configuration, quantum point contacts allow electrons to tunnel
from an edge state to another, such that an incoming excitation is partitioned in two out-
going channels. In this way, interferometers can be realized. Notable examples in EQO
are the Mach–Zehnder and Hong–Ou–Mandel interferometers. They are described in
more detail in Sect. 5.3.3.

5.3.2 Description of single-electron sources using the theory of electronic coherence

A powerful method to describe generic states in EQO is the theory of electronic
coherence, which is introduced in Sect. 3.5.5. The definitions given therein are very
general and can be employed to characterize an arbitrary non-equilibrium state, which
is in general a highly nontrivial task. Let us therefore begin by discussing the properties
of the electron coherence function for some idealized cases that help our intuition.

Ideal single- and multi-electron states We consider a situation where the non-
equilibrium state is generated by an ideal single-electron source that emits a
single-electron state on top of a (effectively non-interacting) Fermi sea. We there-
fore assume the many-body state ρ = |�〉〈�|, where

|�〉 =
∫

dt ϕ(t)ψ̂†(t)|F〉, (280)
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and ϕ(t) is a normalized wave function,6 with Fourier transform

ϕ̃(ω) =
∫ +∞

−∞
dt eiωtϕ(t) . (281)

In Eq. (280), |F〉 is the unperturbed Fermi sea, whose correlation function is given by

G<F (t ′ − t) ≡
〈
ψ̂†(t ′)ψ̂(t)

〉

F
= iπkBT

2πvF� sinh
(
t ′−t
�
πkBT + i0+

) , (282)

where T is the electronic temperature, and we have considered the electrochemical
potential μ as a reference energy, namely we have set μ = 0. Given this choice,
the wavefunction ϕ(t) represents an electron above the Fermi sea if all its frequency
components ϕ̃(ω) lie at ω > 0, when T = 0, or well above the thermal excitation
scale in the finite-temperature case. In the following, we will assume that this is the
case, unless otherwise specified.

Then, one finds

G<(t, t ′) = G<F (t ′ − t) + 1

vF
ϕ∗(t ′)ϕ(t) . (283)

Equation (283) shows that the injection of a single-electron state on top of the Fermi
sea by an ideal source leads to an excess coherence function that is factorized in a part
that depends on t and one that depends on t ′. This crucial property extends to the case
of an M-electron state formed with orthonormal wavefunctions

〈
ϕk |ϕ j

〉 =
∫ +∞

−∞
dt ϕ∗

k (t)ϕ j (t) = δ j,k ( j, k = 1, . . . ,M) (284)

in a Slater determinant, for which one finds

G<(t, t ′) = G<F (t ′ − t) + 1

vF

M∑

k=1

ϕ∗
k (t

′)ϕk(t) , (285)

showing the same factorization with respect to t and t ′ as in the single-electron case.
Similarly, the energy representation reads

G̃<(ω, ω′) = G̃<F (ω)δ(ω − ω′) + 1

vF

M∑

k=1

ϕ̃∗
k (ω

′)ϕ̃k(ω) , (286)

where ϕ̃k(ω) are the Fourier-transformedwavefunctions. The presence of the Fermi sea
contribution G<F (t ′ − t) constitutes one of the major differences compared to standard

6 Wave functions are expressed in the time domain; the assumption of chiral evolution allows us to always
trade the position x with vF t .
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photonic quantum optics, as the electronic excitations of interest are not in the vacuum,
but in a condensed-matter system with many electrons. For this reason, it is customary
to define excess coherence functions

	G≷(t, t ′) = G≷(t, t ′) − G≷
F (t

′ − t) (287)

that encode the variations in the system due to the presence of the injected, time-
dependent few-electron state. From this excess coherence function, all relevant
quantities characterizing the state of interest can be obtained. For example, the excess
charge current is easily obtained as the diagonal part of the excess electron coherence.
Taking the pure M-electron state introduced above, we have the excess current

	I c(t) = q
M∑

k=1

|ϕk(t)|2 , (288)

and the excess electron distribution function

	 fe(ω) = 1

2π

M∑

k=1

|ϕ̃k(ω)|2 . (289)

Finally, the case of a pure M-hole state is described by

	G<(t, t ′) = − 1

vF

M∑

k=1

ϕ∗
k (t

′)ϕk(t) , (290)

and an identical discussion follows along the lines of the pure-electron case illustrated
above.

In the following, we apply the formalism of this section to three relevant injec-
tion schemes, that are closely connected to the single-electron sources described in
Sects. 5.1.1 and 5.1.2.

Levitons Let us start withM-Leviton states, that can be obtained by applying voltage
pulses of the form V (t) = MVLor(t), with VLor(t) in Eq. (212). For these states, we
have

ϕk(t) =
√
σ

π

(t − t0 + iσ)k−1

(t − t0 − iσ)k
, (291)

where t0 is the emission time and σ is the characteristic width of the pulse. This gives
rise to the characteristic Lorentzian current profile

	I cLor(t) = Mq
σ/π

(t − t0)2 + σ 2 . (292)
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Fig. 12 a Time representation and b energy representation of the Leviton wavefunctions, see Eqs. (291)
and (293), with t0 = 0

- 10 - 5 0 5

0

2

4

6

- 10 - 5 0 5 - 10 - 5 0 5 10
-0.25
0.
0.25
0.50
0.75
1.00
1.25

Fig. 13 Wigner function representation (294) of M-Leviton states for the first few values of M

Notice that injectingM Levitons per pulse affects the current by amultiplicative factor
only,7 and we gain no information about how the different states are filled. This can
be seen by considering the energy representation of the wavefunctions, given by

ϕ̃k(ω) = 2ieiωt0
√
πσ θ(ω)Lk−1(2ωσ)e

−ωσ , (293)

where Lk are the Laguerre polynomials. This shows that the energy distribution has
an overall exponential decay governed by the time width σ . The vanishing of ϕ̃k(ω)
at negative energies is a consequence of Lorentzian pulses being pure-electron states
that do not excite any hole contribution (ω = 0 is the reference energy determined by
the Fermi level). Moreover, the structure of the wavefunctions (293) shows that energy
states are occupied starting at very low energy above the Fermi level, with wavefunc-
tions with larger k (k numbering the electrons contained in the pulse) contributing at
higher energies, see Fig. 12.

Finally, the Wigner function of an M-Leviton state can be obtained explicitly [87]
(see Appendix A.3 for the derivation)

	W<(t, ω) = 2
√
πθ(ω)e−2ωσ

M−1∑

k=0

k∑

p=0

1

p!
(
2ωσ√
ωt

)2p+1

L(2p)k−p(4ωσ)Jp+1/2(2ωt) .

(294)

7 This is because these excitations are generated by voltage pulses, and the current can then simply be
obtained as I c(t) = q2V (t)/h, instead of using Eq. (288).
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Fig. 14 Wigner function representation of a single-electron excitation with a well-defined energy, whose
wavefunction is given in Eq. (295). We have chosen ω0 = 10γ

Once again, the presence of θ(ω) stems from the purely electronic character of Levi-
ton states. Furthermore, theWigner function combines the time and energy information
previously observed separately in the excess current 	I c(t) and in the distribution
function 	 fe(ω), as depicted in Fig. 13.

Single-electron excitations with a well-defined energy As discussed above, Levi-
ton states have a well-defined time width, while their energy is rather spread, with
the largest contributions arising from just above the Fermi level. Another relevant
example of single-electronic excitation is the one generated by the driven mesoscopic
capacitor [53], consisting of a quantum dot capacitively coupled to a top gate and
tunnel coupled to a chiral conductor, cf. Fig. 2d. In this case, the emitted state can
be rather complicated and requires a full description of the scattering matrix of the
driven dot, cf Sect. 5.1.2. However, in the so-called optimal operation regime [362,
363], the emitted state is a single-electron excitation (thus M = 1) well described by
the following wavefunction

ϕ̃(ω) =
√
γ

N
θ(ω)

ω − ω0 + iγ /2
, N = 1

2
+ 1

π
arctan

(
2ω0

γ

)
. (295)

Here, γ is the level broadening as introduced in Sect. 5.1.2. This wavepacket rep-
resents an excitation with a well-defined energy ε0 = �ω0 above the Fermi level. In a
sense, it is a “conjugate” of the Leviton with M = 1, as it has a Lorentzian shape in
energy rather than in time. Therefore, the current profile ∝ |ϕ(t)|2 has an exponential
decay with a characteristic time σ = 1/γ . This is confirmed by the explicit calculation
of the wavefunction in the time domain, which reads [87]

ϕ(t) = −i

√
γ

Ne−ω0|t |−iω0t
{
θ(t) − i

2π
Ei
[
t
(γ
2

+ iω0

)]}
, (296)
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Fig. 15 Single-electron emission from a localized level driven at constant speed across the Fermi level of
a continuum. a Sketch of the setup. b Illustration of the working principle: the dot level follows a linear
evolution E(t) = ct due to the application of a gate voltage V (t) to the dot. For appropriate voltages (see
main text), the state obtained via the linear behavior of E(t) is a good approximation in each half-period of
the drive. Reprinted figure with permission from [438]. Copyright 2008 by the American Physical Society

with Ei[•] the exponential integral function. The wavefunction (295) is valid in the
regime γ � ω0, as γ represents the escape rate from the driven dot. So, the mentioned
condition is required to have a well-defined energy in the dot. The Wigner function
computed by using Eqs. (123) and (286) is shown in Fig. 14. The cutoff at ω � ω0/2
is a consequence of the θ function in the wavefunction (295). This feature shows that
the Wigner function of the single-electron excitation of (295) is not exactly obtained
by rotating the corresponding one of the 1-Leviton state.

Single level driven at constant speed across the Fermi sea Another interesting case
is that of a single energy level coupled to a continuum of states, and subject to a driving
such that the crossing of the level with the Fermi energy off the continuum happens
with constant speed. This situation has been studied in Ref. [439, 498], and is linked,
for instance, to the response of a harmonically driven mesoscopic capacitor, where a
single level of a quantum dot is periodically driven above and below the Fermi level of
a conductor coupled to the dot. In this way, when the dot level crosses the Fermi level,
it evolves linearly in time as E(t) = ct (assuming without loss of generality that the
Fermi level is set at zero energy and the crossing occurs at t = 0). This linear behavior
describes the evolution of the dot level in the first half-period of the drive and is a good
approximation when the period of the drive is long compared to max(�γ−1, γ c−1)

and when the extremal value of E(t) is larger than γ , the linewidth of the localized
level, as depicted in Fig. 15. With this particular protocol, Ref. [439] has shown that
a single-electron state is emitted, whose wavefunction is given by

ϕ(t) =
√

γ

2πc

∫ +∞

0
dωe−iωt− γω

2c +i �ω2
2c ⇐⇒ ϕ̃(ω) =

√
2πγ

c
θ(ω)e− γω

2c +i �ω2
2c .

(297)
From the energy representation, it is easy to check that this state is properly normalized.
Reference [498] has obtained the same result with a different approach, starting from
the scattering matrix of a driven mesoscopic capacitor.
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Fig. 16 Current profile obtained from the wavefunctions (297) for different values of the adiabaticity
parameter ζ = �c/γ . For illustration purposes, different curves are vertically shifted by an amount of
0.25/γ

Let us now analyze the main features of the single-electron state (297). It is useful
to introduce the timescale τγ = 2γ /c and the adiabaticity parameter ζ = �c/γ 2, with
which we can rewrite

ϕ(t) = 1√
πτγ

∫ +∞

0
ds e

−is t
τγ

−s+2is2ζ
. (298)

This form makes the analysis of the adiabatic regime rather simple. Indeed, when
ζ → 0, the above integral can be easily solved and one finds (up to a phase) the
same wavefunction as the one of a Leviton, namely Eq. (291), with k = 1, and
σ = τγ . As a result, the current profile 	I c(t) ∝ |ϕ(t)|2 is a Lorentzian of width
τγ , and the energy distribution decays exponentially as expected. This shows that
the driven mesoscopic capacitor in the adiabatic-response regime generates the same
state as the Leviton voltage source. Note that this exponential decay follows from
the frequency representation ϕ̃(ω) in (297) for any value of ζ . The current profile,
however, strongly depends on the emission regime, as shown in Fig. 16, illustrating
the evolution of the current with increasing values of ζ . Starting from the Lorentzian
profile of the adiabatic-response regime, there is a crossoverwhere the current develops
interference fringeswith oscillations that aremore andmore rapid as ζ increases, while
the asymptotic shape for ζ → ∞ is exponential with a decay rate γ . The origin of the
oscillations can be attributed to interference among the (energy-resolved) scattering
amplitudes describing the escape process from the dot to the continuum [498]. Indeed,
when the time it takes for the dot level to cross the Fermi level is much larger than
the dwell time, all energy components of the dot’s initial wavefunction escape the dot
independently, so that the current profile simply reflects the Breit–Wigner resonance
(with the energy width γ rescaled by c to obtain a time width τγ ). When the speed of
the driving increases, the evolution E(t) is fast enough so that several energy-resolved
components escape the dot in time windows that overlap, causing interference.

While the nonadiabatic emission regime has an exponentially decaying current
profile that reminds of the state emitted by the mesoscopic capacitor with square
voltage drive [53], there is a crucial difference. Indeed, the state (297) has always an
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Fig. 17 Wigner function of the single-electron excitation described by the wavefunction (297). Here, we
show three different values of the adiabaticity parameter ζ , and the frequency axis has been rescaled to
ωζ = ζγ /� = ωγ/c. So, for larger ζ , larger values of the frequency ω are involved. Moreover, increasing
ζ leads to a Wigner function that is more and more concentrated along the line ω = ct/�, reflecting the
evolution E(t) = ct of the dot level

exponential profile in energy, meaning that it is not an energy-resolved excitation. To
show this more clearly, we compute the Wigner function, which is shown in Fig. 17.
Comparing this with the Wigner function in Fig. 14 we observe a clear difference.

Indeed, increasing the speed ζ does not lead to the appearance of a well-defined
energy like in Fig. 14. Instead, we observe a structure that is more similar to theWigner
function of a Leviton, except for a tilt along the line ω = ct/�. The effect of this tilt
is negligible in the adiabatic regime c → 0, and thus one recovers exactly the Leviton
Wigner function in this limit, consistently with the above analysis at the wavefunction
level. We also observe that increasing ζ makes the Wigner function more and more
concentrated on the line ω = ct/�, reflecting the evolution E(t) = ct of the dot level.
Moreover, higher-energy components become relevant in this regime (notice that the
frequency axis in Fig. 17 is rescaled with respect to ωζ = ζγ /�). Finally, the Wigner
function being less spread is also connected to the sharper rise of the current profile
after t = 0 that we observed in Fig. 16 at large ζ .
Finite-temperature effects Until now, we have discussed the case of thermal exci-
tations with energies below the characteristic frequency components of the electronic
wavefunctions ϕ(t). When this condition is not fulfilled, the simple representa-
tion (283) of the coherence function no longer holds.However, for ideal single-electron
emitters, it is possible to show that introducing a finite temperature does not completely
destroy the structure of the electron coherence and simply turns pure states into mixed
states [498]:

	G<(t, t ′) =
∫ +∞

−∞
dε

(
−∂ f

∂ε

)
ϕ∗
ε (t

′)ϕε(t) , (299)

where f (ε) is the Fermi function at temperature T . Technically, this expression is
valid if the scattering matrix of the source has the symmetry property S(t, ε + δε) =
S(t − δε/c, ε), for some constant c. Examples in which this condition is met are
the mesoscopic capacitor source, the level moving at constant speed (see the earlier
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discussion in this section), and the Leviton source. In this last case, S(t, ε) is energy
independent, so the symmetry property is formally recovered as c → ∞. The compo-
nentsϕε characterizing themixed state in (299) are given byϕε(t) = e−iεt/�ϕ(t−ε/c).

Ideal periodic sources andgeneral decomposition Because of the lack of single-shot
detection capabilities in many situations, the most common experimental conditions
involve periodic single-electron sources. For the description of this scenario, the peri-
odicity properties discussed in Eqs. (127) and the following are very useful.

In the case of an ideal source that emits purely electronic states above the Fermi sea,
we expect to recover a representation of the form (285) even in the periodic case. This
can be done by introducing an infinite family of wavefunctions {ϕk,�}, called atoms
of signal [470] or electronic wavelets, such that

	G<(t, t ′) = 1

vF

M∑

k=1

∑

�∈Z

ϕ∗
k,�(t

′)ϕk,l(t) ≡ 1

vF

M∑

k=1

∑

�∈Z

ϕ∗
k (t

′−�T)ϕk(t−�T) , (300)

with ϕk(t) ≡ ϕk,0(t) . This expression can also be thought of as a definition of an
ideal periodic source. The orthogonality relation (284) is generalized to 〈ϕk,�|ϕ j,�′ 〉 =
δ j,kδ�,�′ . The choice of wavefunctions enabling the above representation is not unique,
but it is possible to choose them in such a way that ϕk,� represents a localized state on
the �-th period, for each k.

Even though this representation only applies to ideal sources, the concept of elec-
tronic wavelets (or atoms of signal) is extremely useful to characterize the properties
of an arbitrary state generated by a periodic source, making a direct connection with
experimental data possible. The question is whether it is possible to think of a generic
periodic coherence function as being built by simple blocks of the form (300). The
remarkable result, proven in Ref. [471] is that this is indeed the case. Of course, a
non-ideal source that injects M electrons per cycle also generates a cloud of particle–
hole excitations. As a result, the decomposition of Ref. [471] relies on a set {ϕ(e)k,�}
of electron-like single-particle wavefunctions (corresponding to states with energy
above the Fermi level) and a set {ϕ(h)j,�′ } of hole-like wavefunctions (corresponding
to states with energy below the Fermi level). Here, the index � labels the period, and
k = 1, . . .M ′

e, j = 1, . . .M ′
h , with the constraint M = M ′

e−M ′
h . For an ideal electron

source, M ′
h = 0 and one recovers Eq. (300). The functions {ϕ(e/h)k,� } are maximally

localized states on the period � and provide complete information on the electron/hole
content in a generic state. They are analogous of the Wannier functions in solid state
theory. For a stationary source, they reduce to theMartin–Landauer wavepackets [499]

ϕk(t) = 1√
T
sin(�t/2)

�t/2
e
−i�

(
k+ 1

2

)
t
, (301)

with energy bandwidth ��, originally introduced to study the stationary transport of a
continuous stream of electrons due to a constant voltage bias. Roughly speaking, the
wavefunctions (301) are suitable to decompose states with large inter-period overlap.
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The general framework presented in Ref. [471] is also of practical use because
it allows one to numerically extract the wavefunctions {ϕ(e/h)k,� } from experimental
signals, thereby determining how close a given source in experimental conditions is
to an ideal one [412].

Periodic injection of Levitons For trains of Levitons thewave functions in the decom-
position (300) are explicitly known. They can be obtained analytically for a train of
Levitons with a unit charge q, namely M = 1. In this case, it was first shown in
Ref. [500] that the representation (300) is satisfied with

ϕ1,�(t) =
√
σ

π

1

t − �T + iσ

�[(t − �T − iσ)/T]
�[(t − �T + iσ)/T] , (302)

where� denotes Euler’s gamma function. For each �, these wave functions have width
σ and are localized in the �-th period. So, when the source injects well-separated
Levitons (i.e., σ� � 1), each ϕ1,� tends to the single-Leviton wavefunction ∼ (t +
iσ)−1, properly shifted in time.

For M > 1, we know from the general theory of Ref. [471] that the represen-
tation (300) holds, but the wave functions are not known analytically. Instead, it is
possible to show that the following expression is valid [474]

	G<(t, t ′) = −2iG<F (t ′ − t) sin

(
π
t ′ − t

T

) M∑

k=1

φ∗
k (t

′)φk(t) , (303)

where {φk}k is a set of 2T-periodic functions satisfying the orthogonality relation∫ T
0 φk(t)φ∗

j (t)dt/T = δ j,k . Notice the difference between this condition and Eq. (284).
They read [474, 501]

φk(u) =
√
sinh(2πη)

2

sink−1[π(u + iη)]
sink[π(u − iη)] , (304)

with u = t/T the dimensionless time and η = σ/T the width-to-period ratio. Equa-
tion (303) can be proved by direct calculation in the case of a Leviton with unit charge
M = 1 and extended to every M > 1 by induction. Notice that this expression does
not have the form of Eq. (285) for a multi-electron state. Nonetheless, the functions
in Eq. (304) are useful to express the noise in a Hong–Ou–Mandel geometry, see
Sect. 5.3.3. To the best of our knowledge, a closed formula for the Wigner function
stemming from (303) has not been reported.

5.3.3 Interferometry of few-electron states

One of the distinctive features of mesoscopic physics is the possibility of observing
phenomena that are intrinsically linked to the phase coherence of electrons, thereby
demonstrating quantum interference effects in transport observables for systems as
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Fig. 18 Sketch of a Mach–Zehnder interferometer. A single-electron source S emits a state that gets split in
a superposition at the beam splitter A, after which propagation can occur on channels 1 and 2, with different
propagation times τ1 and τ2, before reaching a second beam splitter B. The interferometer encloses a
magnetic flux �B . Reprinted figure with permission from [87]. Copyright 2013 by the Americal Physical
Society

large as tens ofmicrometers. Prominent examples are the observation of theAharonov–
Bohm effect (see, e.g., the textbooks [1–5]), and the implementation of electronic
Mach–Zehnder interferometers, pioneered in Ref. [502]. Early experiments in this
context focused on time-independent transport configurations. Here, we are interested
in discussing electron interferometers as spectroscopy tools to probe the dynamical
properties of few-electron states. We mainly address two kinds of interferometers,
namely the Mach–Zehnder and the Hong–Ou–Mandel ones, and we discuss how they
can be used to access important information on the coherence properties of few-
electrons states.

Mach–Zehnder interferometer A Mach–Zehnder (MZ) interferometer is depicted
in Fig. 18, and consists of two channels that are initially mixed at a beam splitter
(A), then propagate for different lengths, enclosing a magnetic flux �B , and finally
recombine at a second beam splitter (B) before the current they carry is detected. In
the simplest configuration, which we will focus on, there is a single source S, located
before the first beam splitter at one of the input channels. In addition to the magnetic
flux�B , the interferometer is characterized by different propagation times in the upper
and lower arms. They can stem either from an asymmetric interferometer, or from the
presence of additional mechanisms inducing a relative phase shift between the two
arms. The first study that considered the problem of a MZ interferometer driven by a
single-electron source was Ref. [503], that mainly focused on the adiabatic emission
regime. Further studied provided extensions to the nonadiabatic regime [504],multiple
sources [237, 505], and the effect of noise [237, 414]. Finally, a study with numerical
techniques aimed at describing more realistic devices was presented in Ref. [506].
Recently, a Mach–Zehnder interferometer fed by ultra-short pulses has been realized
experimentally [507].

Evaluating the current at the output of the interferometer, one finds [503, 504]

Iout(t) = RARB IS(t − τ1) + DADB IS(t − τ2)

− 2qvF
√
RARBDADB Re

[
e−i2π�B/�0+kF vF	τG<(t − τ1, t − τ2)

]
, (305)
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with the flux quantum �0 = h/q, and 	τ = τ1 − τ2. In this expression, IS(t) is
the time-dependent current generated by the single-electron source, so the first line
corresponds to classical terms associated with a simple current partitioning due to the
beamsplitter. Conversely, the second line is associated with quantum interference, and
indeed it contains the single-electron coherence function. Since this term is sensitive
to the magnetic flux, a measurement of the time-resolved current Iout(t) for different
magnetic fluxes and/or time of flight differences would allow to reconstruct the single-
electron coherence and thus completely characterize the emitting source. This clearly
illustrates that interference can be used as a spectroscopic tool. Moreover, as noted
in the original proposal [503], it is possible to extract the single-particle coherence
length of the injected electrons by looking at the (less demanding) time-averaged
current Iout(t) and the visibility of the associated Aharonov–Bohm oscillations. In
essence, the result is that the visibility decays as a function of the interferometer
imbalance 	τ , on a scale that is precisely the coherence length � set by the source.
This is because for	τ > � the current pulses propagating in the different arms do not
overlap at the second beamsplitter, determining a decay of G and therefore suppressing
the interference.

As emphasized in Refs. [87, 470], an ideal MZ interferometer produces a linear
filter on the incoming single-electron coherence function (or the Wigner function)
of the source. However, this linearity holds as long as interactions can be neglected,
which in practice is often not justified, due to decoherence and dephasing effects,
that could be attributed to neighboring channels [508–511]. These difficulties make
the use of MZ interferometers to reconstruct the electronic coherence function rather
challenging. For this task, it has turned out that two-particle interference is more
suitable, as we discuss in the following. Before moving on to this topic, we would
like to close this part by mentioning that a recent proposal has suggested to invert
the logic and use a known single-electron state propagating in a MZ interferometer to
probe electromagnetic fields, enabling an on-chip detection of nonclassical radiation
states [512]. A first step in this direction has been recently achieved [513], relying on
a Fabry–Pérot interferometer.

Another promising avenue employing theMZ interferometer as a key building block
is the use of ultrafast electronic excitations to implement flying qubits. In this concept,
information is stored in the states of propagating electrons, rather than in localized
objects. Explicitly, the state |0〉 or |1〉 of a flying qubit can be defined by the presence
or absence of the electron in a given propagation channel. The key observation is that
a MZ interferometer, combining the effect of the magnetic field and that of a relative
phase shift can implement an arbitrary rotation of the qubit state on the Bloch sphere,
rendering it a general 1-qubit gate. The vision formore challenging two-qubit gate is to
exploit the Coulomb interaction to couple two qubits, in order to achieve a combined
operation onboth.Of course, the idea of a flying qubit architecture is viable only if there
is enough time to perform a sufficient number of gates before decoherence intervenes.
This results in the necessity of implementing picosecond-scale single-electron pulses,
which is at the forefront of current technological capabilities. For details on the flying
quibit vision, we refer to the review [378].
Hong–Ou–Mandel interferometer Wenowdiscuss two-particle interference schemes
and how they can be used to reconstruct the state of a single-electron source. The pro-
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2

1 4

3

Fig. 19 Sketch of a HOM interferometer. Two sources, 1 and 2, emit time-dependent excitations that are
combined at a beam splitter with a tunable delay. The two output ports, 3 and 4, collect the signal, that could
be photon counts in the case of photon sources, or current fluctuations in the case of electron sources

cesses we are going to present are related to intensity interferometry in optics. The
main character of this overview is the Hong–Ou–Mandel (HOM) experiment, owing
its name to the authors of the seminal paper [514]. It was originally performed with
photons, using the setup sketched in Fig. 19. It consists of a beam splitter to which
two different single-particle states are sent with a tunable time delay, and the number
of particles at the output contacts 3 and 4 are monitored, in particular the coinci-
dence counts. When the time delay is much larger than the wave packet extension,
the incoming particles are partitioned independently and so coincidence counts occur
with probability 1/2. At time delays that are comparable to the wave packet extension
the behavior is different based on the statistics of the particles. Classical particles are
still partitioned independently. Bosons exhibit a bunching effect, such that it is much
more probable that the two particles exit the interferometer in the same channel than in
separate ones. As a result, the coincidence counts drop, and vanish completely when
the time delay between the incoming particles is zero. This observation was used in the
original experiment to determine the extension of single-photon wave packets [514].
Fermions, instead, behave in the opposite way and exhibit an antibunching effect,
which is due to the Pauli principle, leading to an increase in the coincidence counts.

From this description, it is clear that the HOM experiment requires single-particle
detectors to monitor the coincidence counts. Unfortunately, in EQO experiments, a
single-shot detection with single-electron sensitivity has not yet been achieved (with
the exception of SAW-based schemes). However, it is possible to extract equiva-
lent information by looking at the current fluctuations at output 3 and 4, which are
experimentally accessible via low-frequency noise measurements, exploiting peri-
odic sources and averaging over a long measurement time. Now, the expectations are
reversed: an increase of fluctuations should happen for bosons and a suppression for
fermions, indicating that the output state of the latter is always the same (one fermion
in channel 3 and one in channel 4). Both autocorrelations and crosscorrelations can
be considered. Here, we focus on the latter. They are obtained from Eq. (12), setting
I = I ′ = I c. Following the notation of Ref. [87], one has

S34(t, t
′) = q2v2F RD[S11(t, t

′) + S22(t, t
′) − Q(t, t ′)] , (306)
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where, as usual, R and D are the reflection and transmission probabilities of the beam
splitter. The terms S11 and S22 are the fluctuations of the incoming states that get
transmitted to the output fluctuations by the beam splitter. It is clear that Sαα only
depends on source α = 1, 2. In some cases, the sources are noiseless and such terms
thus vanish. The interesting information on the interference of the incoming states is
contained in the correlator Q, which can be expressed as

Q(t, t ′) = q2v2F
[
G<1 (t ′, t)G>2 (t ′, t) + G<2 (t ′, t)G>1 (t ′, t)

]
. (307)

The task is to isolate this quantity and also make it experimentally accessible. This
can be done in two steps. First, we specify which of the two sources is switched on:
for example, Son/off

34 means that the first source is on and the second is off. We then

define 	S•/!
34 = S•/!

34 − Soff/off
34 , for any given configuration. Finally, we define the

HOM noise as
SHOM ≡ 	Son/on

34 − 	Son/off
34 − 	Soff/on

34 . (308)

By construction, this quantity eliminates unwanted contributions and only contains
the interesting two-particle interference terms. Now, we consider the zero-frequency,
time-averaged correlators, meaning that we implement the prescription of Eq. (11).
One finds

SHOM = 2q2v2F RD

⎡

⎣
2∑

α=1

∫
dω

2π
	W<

α (t, ω)[1 − 2 f (ω)] −
∫

dω

π
	W<

1 (t, ω)	W<
2 (t, ω)

⎤

⎦ , (309)

with the excess Wigner functions we described earlier in this section. The first two
terms are called the Hanbury–Brown Twiss (HBT) contribution as they represent the
independent partition noise of the two sources, taken separately. In the description
given at the beginning of this paragraph, the HBT term corresponds to the situation of
large time delay. The electronic version of the HBT experiment was implemented in
Ref. [515]. The second term encodes the two-particle interference contribution of the
two sources. It clearly shows that the HOM experiment probes the overlap between
theWigner functions of the incoming states. This overlap is typically suppressed when
the time delay between the injections is much larger than the typical time width of the
Wigner functions themselves. It is a common procedure to express the final result in
terms of the HOM ratio

R = SHOM
SHBT

= 1 −
∫ dω

π
	W<

1 (t, ω)	W<
2 (t, ω)∑2

α=1

∫ dω
2π 	W<

α (t, ω)[1 − 2 f (ω)] . (310)

Note that the minus sign is related to the fermionic statistics.
An even more transparent interpretation is possible when the sources are ideal

single-electron emitters, so that the incoming states are characterized by electron
wavefunctions ϕ(1,2). In this case, in the zero-temperature limit, one can show that

R =
[
1 −

∣∣∣
〈
ϕ(1)|ϕ(2)

〉∣∣∣
2
]
, (311)
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which demonstrates that the HOM noise is directly related to the (temporal) overlap
between the two incomingwave packetsϕ(1)(t) andϕ(2)(t). For identical wave packets
emitted with some time delay δt , namely ϕ(1)(t) = ϕ(t) and ϕ(2)(t) = ϕ(t + δt), the
HOM noise vanishes exactly at δt = 0, due to maximal wave-packet overlap. This
is consistent with the expected perfect antibunching for the simultaneous arrival of
identical particles. The proposal to performHOM interferometry with single electrons
was put forward in Ref. [516, 517], where the HOMnoise for two ideal single-electron
states based on the adiabatically driven mesoscopic capacitor (cf. Sect. 5.1.2) was
calculated. A following work [518] extended the result to generic but ideal single-
electron emitters and investigated the HOM noise due to electron–hole interferences,
showing that this scenario leads to an increase of thefluctuations, rather than adecrease.

If the sources emit an M-electron state, a generalization is known in the case of
periodic Levitons, and reads

R =
⎡

⎣1 − 1

M

M∑

j,k=1

∣∣∣∣∣

∫ T

0

dt

T φ
(1)
j (t)φ(2)∗k (t)

∣∣∣∣∣

2
⎤

⎦ , (312)

with the functions {φk} defined in Eq. (304). This relation was first conjectured in
Ref. [501] and then rigorously proven in [474], where a generalization to the fractional
quantum Hall regime was also given.

For generic, non-ideal sources, there is no simpler expression than Eq. (310) and
the interpretation of the HOM noise as single-particle wavefunction overlap is not
justified. However, the result (310) shows that an HOM experiment can be used to
perform a tomography protocol and reconstruct the Wigner function of an unknown
source, provided the properties of the other source are known. Indeed, as elaborated
in [519], it is possible to devise a protocol in which a series of measurements, using
as reference signal properly chosen voltage drives, achieves the desired tomography.
Experimental implementations have been demonstrated in [410, 412, 520].

Role of interactions Until now, we have completely disregarded the effect of
Coulomb interactions during the propagation of the injected states along the conduc-
tor. However, typically the propagation channels (integer quantum Hall edge modes
mainly) do interact with other neighboring channels, having an impact on trans-
port properties. In the context we are discussing, an indication came from the first
implementation of the HOM experiment with single-electron sources based on the
mesoscopic capacitor [521]. In the experiment, the source is operated in the optimal
regime, so that the emission of a pure electron state is expected, thereby producing a
HOM noise of the form (311), which predicts a full dip at zero time delay. However,
the experiment showed a non-zero noise even for identical emission at δt = 0. It was
soon after shown via a Luttinger liquid description [364], that Coulomb interactions
between co-propagating edgemodes can partially reduce the indistinguishability of the
emitted states due to decoherence. This model is able to account for a non-zero HOM
noise, and further extensive comparison between theory and experiments have been
reported in [522]. One of the most striking features of interacting one-dimensional
systems is charge fractionalization, by which an incoming electron is split into col-
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lective excitations that propagate at different velocities. This phenomenon produces
side dips in the HOM noise as a function of the time delay, where the additional dips
correspond to the partial overlap between excitations propagating at different veloci-
ties. This feature has been indeed observed, and Ref. [523] has exploited it to estimate
the interaction parameters of the theory. In the context of EQO in integer quantum
Hall edge channels, interactions have also been addressed in Refs. [365, 509, 510,
524–531].

The analysis of Coulomb interaction reveals that Levitons should be more robust
to decoherence, compared to the states generated by the mesoscopic capacitor. This
is because of their many-body structure: indeed, a feature shared by all the states
generated by a voltage pulse is that they are bosonic coherent states when expressed in
terms of the particle–hole bosonic operators that are used in the bosonized description
of the edge mode Hamiltonian. Then, interactions leave this structure unchanged,
because their effect is equivalent to an energy-dependent beam splitter for the bosonic
modes [526]. As a result, for this class of states, the HOM dip should always be
maximal even in the presence of interactions [529, 530]. In a recent experiment [532],
however, a non-vanishing noise at zero time delay has been observed andwas attributed
to channel mixing. Unlike Coulomb interactions, mixing induces tunneling processes
connecting neighboring channels. The full HOM noise then splits in a sum of several
ideal HOM noises (i.e., with no mixing), each governed by a different time delay (in
addition to the bare δt), related to the typical mixing length and the velocity mismatch
between the propagating channels. The competition among the different delays is such
that the full noise never vanishes as a function of δt . A simplemodel of channel mixing
with these ingredients [533, 534] was able to explain the experimental data [532].

Finally, we would like to briefly mention recent activity about extending HOM
interferometry to anyons in the fractional quantum Hall (FQH) regime. The interest in
time-resolved interferometry in this context stems from the success in using this tool
as a probe of quantum statistics in non-interacting systems. As discussed above, HOM
interference provides clear signatures that distinguish bosons from fermions and it is
therefore natural to ask whether some unique features of exotic anyonic excitations
hosted in the FQH can be discovered by noise. The analysis of current fluctuations
in the FQH regime has a long history, but renewed interest in the field originated
from the observation of anyonic statistics in Fabry–Pérot [535] and HOM-like inter-
ferometers [536], with the latter generating a lot of theoretical follow-up works. Most
of these consider a stationary regime, with no time-dependent transport observables,
which is not the focus of this review. However, a few recent works have addressed
time-resolved transport of anyons [537], proposing some observables from which the
fractional statistics can be extracted [538], and inspiring experimental implementa-
tions [359]. Nevertheless, HOM-like setups where the incoming states have anyonic
properties are dominated by a different mechanism compared to fermionic or bosonic
HOM interference. Indeed, the most relevant processes are not “collisions” between
the incoming states, but rather time-domain braiding with anyons that are locally
excited at the beam splitter, as originally introduced in [539]. So, a naive general-
ization of fermionic HOM exclusion probability (linked to the magnitude of the dip)
is not possible for these setups. Even more, the standard HOM ratio contains no
information on the anyonic statistics [540]. The recent theoretical and experimental
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activity demonstrates interest in extending concepts fromEQO to the FQH regime (and
other strongly correlated systems). However, in these systems, the ability to identify a
decomposition of generic time-dependent currents into elementary constituents with
a well-defined meaning, as discussed in [471] is currently lacking. Answering this
challenging question would represent a major progress.

5.4 Time-dependent quantum transport in atomic systems, Bose Einstein
condensates and phononic systems

In this section, we aim to briefly address time-dependent transport in systems that
are not based on electrons. The most important difference between quantum electron
transport and quantum transport in cold atoms is the fact that, while electronic systems
are connected to the external environment, ultracold gases are well isolated from it due
to the confinement and extremely low temperature and density. Small perturbations on
ultracold atomic systems can easily drive them out of equilibrium and a steady state
is not always achieved.

The confinement of the atoms is engineered artificially using optical or magnetic
means. Usually, these systems are not in contact to macroscopic reservoirs and there-
fore theoretical microcanonical descriptions of transport have been proposed [541].
Experimentally, it has been recently possible to simulate “reservoirs” and ensure that
the dynamics in the small region of interest is in a quasi-steady state for a finite period
of time [542–545]. The interaction between atoms can also be tuned by usingmagnetic
fields. This enabled the realization of lattice models with many-body interactions in
many geometries [546–549] and motivated the study of the non-equilibrium dynamics
of strongly-interacting closed systems [550, 551]. It is also possible to induce com-
plex tunneling coefficients either by using artificial gauge fields or by modulating the
lattice, which realizes the Peierls substitution for lattice systems in the presence of
magnetic flux [552, 553]. This is important in order to realize topological phases and
ring-shaped systems.

Other non-electronic systems are nanomechanical or phononic devices. They
are characterized by absence of particle conservation and transport consists in the
exchange of excitations and energy between the driven system and the baths. In sys-
tems with stationary driving by temperature differences there exists a large body of
literature, which has been reviewed in Refs. [554, 555]. The experimental study of
cooling in nanomechanical systems [556] motivated the study of this mechanism in
the framework of driven oscillators and we briefly discuss this effect below.

Nonlinear transport in bosonic condensates An important achievement has been the
formation andmanipulation of a bosonic condensate using amicroscopicmagnetic trap
on a chip [557, 558]. In these platforms,waveguide geometries are implemented,which
enables the investigation of interference and transport phenomena of the condensate.
This motivated to explore analogous phenomena to those observed in mesoscopic
electron systems [559, 560]. The appropriate framework to analyze these systems
is the time-dependent Gross–Pitaevskii equation. Since this equation has a nonlinear
term, it prevents the description of the transport process bymeans of scattering states as
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in the theory of particles described by a linear Schrödinger equation. The nonlinearity
usually generates instabilities to the steady-state solutions and the problem must be
solved numerically.

Another very active and interesting direction is the investigation of quantum fluids
realized in optical systems. A review article presenting the basics is Ref. [561], while
recent advances are covered in Ref. [562]. These quantum fluids are Bose–Einstein
condensates realized in lasers, nonlinear optical devices, excitons and polaritons. They
are characterized by the macroscopic quantum coherence of usual Bose–Einstein con-
densates. However they exist in non-equilibrium conditions under the effect of driving
and dissipation. The full quantum mechanical models for these systems are based on
the coupling between the quantumfield describing the photons in a cavity and quantum
well excitons. Many problems in this context are studied by means of a mean-field
approximation where instead of describing in parallel the dynamics of photons and
excitons, a classical polariton field �(r, t) is introduced, which obeys the following
modified Gross–Pitaevskii equation,

i�∂t� =
[
ω0 − �

2

2m
∇2
]
� + Vext(r)� + g|�|2� − iγ� + iηE inc(r, t). (313)

Here,ω0 is the frequency of the lower polariton band,m is the effectivemass describing
the kinetic term, Vext(r) is the external potential felt by the polaritons and g is the
effective polariton–polariton interaction. These terms are the usual ones in the Gross–
Pitaevskii equation for bosonic condensation of particles. The additional terms take
into account the driven dissipative nature of the polariton gas and represent the loss rate
(γ ) and the driving with the incident field E inc(r, t). Many problems in this context
are studied under coherent driving, where E inc(r, t) = E0eik·re−iωt . The stability
and the nature of the steady-state solutions depend on the parameters. Many scenarios
are possible, which we are not able to review here, but they have been discussed in
detail in Ref. [561].

In cold atoms as well as in photonic systems, there is a large body of work on
lattice models implemented by optical confinement of the atoms or in arrays of optical
cavities. The Hubbard model is a paradigmatic example. Interestingly, synthetic gauge
fields canbe also realized in these systems.This enables the investigation of topological
states of matter like the quantum Hall and quantum spin Hall state. Examples are [81,
82, 563] along with several other contributions that will be mentioned below.

Rings threaded by time-dependent fluxes One of the fundamental concepts in the
field of electron quantum transport in mesoscopic structures in contact with reservoirs
is the nature of the resistance. The concept of “contact resistance” [11] has been coined
to stress the fact that in these structures inelastic scattering processes take place in the
reservoirs while the propagation is ballistic along the quantum system. This is at the
heart of scattering-matrix theory of quantum transport proposed by Landauer and
Büttiker. An important step in this theoretical construction has been the analysis of the
ballistic quantum system bent and closed to form a ring. In linear structures the charge
transport is induced by recourse to a bias voltage applied at the reservoirs. Instead,
here the transport mechanism is implemented through a time-dependent magnetic
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flux �(t), inducing an electric field E ∝ dA/dt , with
∫ L
0 A(t)dl = �(t). The first

observation is the fact that without any inelastic scattering, for a constant electric field
this system undergoes periodic oscillations in time named Bloch oscillations [47].
This can be easily understood in 1D cases by noticing that the ring defines a periodic
potential for the particles in space and the states are characterized by wave vectors
k = 2nπ/L , with L being the length of the ring. The electric field introduces a time-
dependent shift−qEt/� in the instantaneous k-values, with the subsequent generation
of a time-dependent current J (t). The occupied states under a given value of the Fermi
energy is repeated with a period T B = (2π�)/(|q|LE). This is precisely the period of
the Bloch oscillations and the periodicity of the current. This mechanism was already
known in the context of superconductors and is the basis of the ac Josephson effect.
Themain differences are, on one hand, themacroscopic coherence of the condensate in
the superconductors vs the requirements of mesoscopic ballistic transport of normal
conductors. On the other hand, the carriers of the superconductor are Cooper pairs
with effective charge 2q, such that the corresponding period is half of the one in Bloch
oscillations.

In the absence of any inelastic scattering process Bloch oscillations take place with
a pure ac current J (t). The simplest device to introduce inelastic scattering, resistive
behavior and the resulting energy dissipation was proposed by Büttiker in Ref. [9]. It
consists in coupling the ring to a single lead, a fermionic reservoir, where the electrons
can exit from the ring or be injected, loosing the phase coherence and exchanging
energy. This generates a dc component of the current in addition to Bloch oscillations.
The fact that purely elastic processes introducedbydisorder are not enough to introduce
such a resistive behavior was discussed in Refs. [48, 49, 564–569]. The behavior of
the dc current in the dissipative ring was later investigated with different techniques
in clean and disordered systems in Refs. [570–577].

Generalizations to rings with harmonic time-dependent fluxes coupled to two or
more leads have been studied in Refs. [578, 579]. In those cases, the focus was the
generation of currents between the leads generated by the time-dependent fluxes at
the rings. This problem is basically a pumping mechanism. Similar studies focus on
pumping generated by locally driving a quantum dot embedded in an annular system
connected to two leads [156, 280, 580].

The study of persistent currents in cold atoms systems confined to ring-shaped
potentials and pierced by a synthetic static magnetic field was motivated in Ref. [581].
These and related advances have been reviewed in Ref. [81]. Recently, results on
quantum transport induced by time-dependent fluxes in cold atoms were reported in

Ref. [582]. The considered Hamiltonian is Ĥ = Ĥring(t) + ∑α

(
Ĥα + Ĥcoup,α

)
,

with

Ĥring(t) =
M∑

j=1

[
U

2
N̂ j

(
N̂ j − 1

)
− w

(
eiφ(t)d̂†j+1d̂ j + h.c.

)]
,

Ĥα =
Mα∑

j=1

[
Uα

2
N̂α

j

(
N̂α

j − 1
)

− wα

(
â†α, j+1âα, j + h.c.

)]
,
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Fig. 20 Sketch of the cooling cycle proposed [584] (left) and microscopic representation in a one-
dimensional phononic system (right). A nanomechanical system contains hot and cold parts. A perturbation
is introduced at the boundary of the cold part (A) and it travels slowly until it reaches the hot one (B), a
second perturbation is inserted at the hot boundary (C), the first barrier is removed and the cycle is repeated.
Figure adapted from Refs. [73, 584]

Ĥcoup,α = −w
coup
α

(
d̂†mα

âα,1 + h.c.
)
, (314)

where d̂ j , d̂
†
j are, respectively, bosonic annihilation and creation operators acting at the

site j of the ring, satisfying d̂M+1 = d̂1, while N̂ j = d̂†j d̂ j is the number operator.U is
the local interaction strength andw is the hopping amplitude between nearest-neighbor
sites. The leads are represented by linear chains of the same type of Hamiltonian Ĥα,

while Ĥcoup,α is the Hamiltonian describing the coupling between the first site of the
lead chain and one site of the ring, here named j ≡ mα .

This problem bears relation to the mechanism of electron pumping discussed in
previous sections. In fact, it focuses on the currents induced at the leads because they
are coupled to a driven ring.

Also in close relation to pumping a cooling cycle was proposed to be realized in a
Bose–Einstein condensate, including details on how to realize the different stages in
one-dimensional cold atomic systems [583]. The protocol is very similar to the one
proposed in Ref. [584] for a nanomechanical system (see below).

Quantum oscillators and phononic systems Cooling nanomechanical modes down
to the ground state has attracted the attention of both experimental [556] and theoret-
ical [585, 586] communities. The basics of this mechanisms can be analyzed in the
context of driven coupled quantum mechanical oscillators.

Figure 20 presents the sketch of a cooling cycle proposed for a nanomechanical
system in Ref. [584]. The nanomechanical system targeted for cooling is depicted on
the left (cold) side. In this setup, a localized modulation of the phonon velocity or of
the pinning potential acts similarly to a semi-reflective, moving barrier for phonons.
During stage A → B, this barrier travels from the cold side to the hot side across
a cavity-like area. Upon reaching the far end, a second barrier-like perturbation is
initiated at the opposite side (stage B → C). In the step, C → A′, the initial barrier is
turned off, allowing phonons from the hot reservoir to freely expand into the cavity.
This sequence is then cyclically repeated.
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Amicroscopic model for this protocol in the framework of coupled harmonic oscil-
lators has been proposed in Ref. [164]. The Hamiltonian for the full system has the
structure of the Hamiltonian Eq. (1), with the hot and cold reservoirs modeled by 1D
coupled harmonic oscillators. The driven region is described by the same 1D model
of harmonic oscillators with a time-dependent perturbation representing the traveling
periodic barrier (see Fig. 20). This term of the Hamiltonian reads

Ĥsys(t) =
M∑

l=1

p̂2l
2m

+
M−1∑

l=1

k0
2
(x̂l − x̂l+1)

2 +
M∑

l=1

k′
l(t)

2
x̂2l . (315)

This problem was solved by means of non-equilibrium Green’s functions. Further
discussions on the cooling properties and limits of time-dependent driving in systems
of harmonic oscillators were presented in Ref. [587]. More recently, these type of
models was regarded as a paradigm to engineering dynamical couplings for quantum
thermodynamics tasks beyond weak coupling [588]. A related idea has been explored
recently in Ref. [589], where a target oscillator is coupled to a collection of driven
oscillators that simulates an environment with a time-dependent temperature. The
problem is analyzed at weak coupling with quantum master equations and driving
protocols that cool the target oscillator are identified.

5.5 Topological effects

For some years now, the relevance of topology emerged inmany properties of quantum
systems. We already highlighted the crucial properties of the quantum Hall effect - a
paradigmatic topological system - to realize quantum optics and other phenomena of
quantum transport. In this final section, we would like to briefly survey other activity
connecting time-dependent quantum transport and topological effects.

5.5.1 Topological pumping

As introduced in Sect. 4.2, the concept of pumping involves the transport of some
entity, such as charge, spin, quasiparticle and/or energy as a consequence of time-
periodic changes of the underlying Hamiltonian. This mechanism takes place in both
the classical and quantum realms. In the case of slow driving, this mechanism is
typically described by geometric quantities. In certain quantum scenarios, it can also
possess topological properties, meaning that the pumping is characterized in terms
of a topological invariant. This invariant is directly related to a quantization of the
pumped quantity.

The most paradigmatic examples of topological pumping are the mechanisms pro-
posed by Laughlin [590] and Thouless [78]. In both cases, a single electron is pumped
through a fully gapped—insulating—system by a slow time-periodic change in the
Hamiltonian. This is an important feature of topological pumping, which makes it
fundamentally different from other quantum transport mechanism: here the particle
is not transported through a window defined by two Fermi functions. Instead, a filled
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band experiences a peculiar slow change according to which a particle is spatially
moved between two positions.

Laughlin pump In Laughlin’s “gedanken experiment” two boundaries of a two-
dimensional electron gas (2DEG) in the quantum Hall state are connected to form
a cylinder [590]. The interior of the cylinder is threaded by a magnetic flux that
changes linearly in time. The corresponding electromotive force induces a current
and every time the flux is increased by a flux quantum, a single electron is effectively
transported between the free edges of the 2DEG through the gapped bulk. The relation
between this current and the effective electric field is the Hall conductance, which is
proportional to the Chern number. Hence the pumped charge per cycle is related to
the Chern number. The Laughlin pump has been observed in quantum Hall systems
in the Corbino geometry [591, 592], more recently in an anomalous quantum Hall
insulator [593] and it has been also realized with cold atoms [594].

Thouless pump The Thouless pump is a sort of quantum version of Archimedes
screw. In the original proposal it is formulated in terms of a Hamiltonian of non-
interacting electrons with a slowly varying potential which is periodic in space and
time [78]. Focusing, for simplicity on 1D, the Hamiltonian has a potential of the form
V (x, t) = V0(x) + V1(x − vt), where V0(x + L) = V0(x) and V1 (x − v(t + T )) =
V1(x − vt), with v small enough so that the system remains in the ground state. It is
also requested that both components of the potential have the same spatial periodicity,
hence, L/v = nT, with n being an integer. The particle current integrated over a
period gives the number of particles transported in a cycle. Implementing an adiabatic
expansion in the wave function, we have

|ψ(t)〉 � exp

[
− i

�

∫ t

dt ′ε0(t ′)
]⎡

⎣|ψ0(t)〉 + i�
∑

j �=0

|ψ j (t)〉 1

ε j − ε0
〈ψ j (t)|ψ̇0(t)〉

⎤

⎦ ,

(316)
where Ĥ(t)|ψ j (t)〉 = ε j |ψ j (t)〉 defines the instantaneous eigenenergies and eigen-
states for the Hamiltonian with the time frozen at t and the phase is chosen so that
〈ψ0(t)|ψ̇0(t)〉 = 0. In terms of this, introducing periodic boundary conditions, and
calculating the instantaneous current within the adiabatic description we get

J (t) = �
2

m

∑

μ,ν

∫
dk

2π

fν(1 − fμ)

εμ(k) − εν(k)
[〈∂xψν,k |ψμ,k〉〈ψμ,k |ψ̇ν,k〉 + 〈ψ̇ν,k |ψμ,k〉〈ψμ,k |∂xψν,k〉

]
, (317)

where μ, ν label the bands of the periodic lattice while fμ = 0, 1 for empty and
filled bands, respectively. Using properties of the periodic boundary conditions, it is
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possible to express the particle transferred per period as follows:

C =
∫ T

0
dt J (t) = i

∑

ν

fν

∫ T

0
dt
∫

dk

2π

[〈∂tψν,k |∂kψν,k〉 − 〈∂kψν,k |∂tψν,k〉
]
,

(318)
which is the 1D version of the definition of the Chern number while the pumped charge
per cycle is 	N = qC.

There are many studies of models realizing Thouless pumps, which have been
reviewed in Refs. [82, 595], including experimental realizations in cold atoms and
optical systems. Another interesting direction is the study of the role of many-body
interactions and a prominent example in this context is the Rice–Mele–Hubbard
model in both the fermionic [596] and bosonic versions [327, 597]. Some of these
studies focus on the proper calculation of the invariant C in terms of many-body
functions [598]. This can be accomplished in the framework of the theory of polariza-
tion [599–601]. In 1D, the polarization in a lattice model with lattice constant a with
periodic boundary conditions is defined as

P(t) = qa

2π
Im ln 〈�(t)|ei 2π

Ma X̂ |�(t)〉, (319)

where X̂ = ∑M
j x j N̂ j is the position operator, being N̂ j the occupation of the site j

and x j = ja, for a systemwith a single site per unit cell, while |�(t)〉 is themany-body
wave function. The transported charge per adiabatic cycle is expressed as

	N = 1

a

∫ T

0
dt∂t P(t). (320)

It can be verified that this definition recovers the one for non-interacting fermions
given by Eq. (318) by expressing the many-body wave function |�(t)〉 as a direct
product of single-particle states |ψν,k〉. The combined effect of driving and disorder
in topological pumping was analyzed in [602].

Pumping in the quantum spinHall effect Another topological charge pump has been
proposed to take place in a helical Kramers pair of edge states of a 2D topological
insulator in the quantum spinHall state contacted by amagnetic island [603, 604]. This
type of topological pumping motivated several studies [605–613]. Here, we explain
the basic ideas followingRef. [603], where the topological pumping can be understood
in simple terms as follows. The free edge states are modeled by a Dirac Hamiltonian

H0 = iv
∫

dx�†(x)∂xσ
z�(x), (321)

where the spinor �(x) = (
ψ↑(x), ψ↓(x)

)T represents the pair of edge states with
opposite polarization along a given direction z and moving in opposite directions
along the edge. The coupled nanomagnet has a magnetization with a perpendicular
component M, with M × z �= 0. Such a coupling effectively introduces a mass
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term and opens a gap in the Dirac spectrum which, in the static problem, prevents
the charge transport along the Kramers pairs. The topological pump is introduced by
the precession of the magnet, which is represented by a time-periodic mass in the
Hamiltonian

ĤM =
∫

dx�†(x) [M(x, t) · σ ]�(x). (322)

This problem has been previously studied in Refs. [614, 615]. Introducing the
parametrization of the transverse magnetic moment as Mx = M cos θ and My =
M sin θ , the ground-state density and current induced by the time-dependent mass
read

ρ(x, t) = 1

2π
∂xθ(x, t), j(x, t) = − 1

2π
∂tθ(x, t). (323)

Hence, the total number of carriers enclosed in a segment confined in x1 ≤ x ≤ x2 is
given by	N = [θ(x2, t)−θ(x1, t)]/(2π). In particular, a half-charge±q/2 is carried
by a domain wall where θ changes between π/2 and −π/2. Similarly, the pumped
charge crossing a point x as the angle changes in time in an interval t1 ≤ t ≤ t2 is
	N pump(t1 → t2) = [θ(x, t2)−θ(x, t1)]/(2π). Hence, under a change of 0 ≤ θ ≤ 2π
in a cycle, a charge of ±q is pumped. As in previous cases, the quantized transport
takes place through an insulating system that exhibits a gap in the static limit.

5.5.2 Floquet engineering of topological phases

The previous sections focused on time-dependent quantum transport phenomena that
arise due to the intrinsic topological nature of certain systems. In this section, we
briefly address a complementary and actively developing research direction: the engi-
neering of driving-induced topological phases in systems that are topologically trivial
in equilibrium. This area, commonly referred to as Floquet engineering, explores how
periodic driving can endow otherwise conventional systems with topologically non-
trivial properties.

A wide range of experimental platforms are being investigated in this context,
including not only solid-state electronic systems, but also optical lattices and ultra-
cold atomic gases [616–618]. Reviews covering recent advances are Refs. [79, 80].
In condensed matter settings, results have been reported in superconductors [619,
620] as well as in Moiré systems [621–623]. As in other topological systems, features
emerging in the time-dependent transport properties, in particular the generated pho-
tocurrents, play a central role in characterizing and probing the topological nature of
these phases [624, 625].

A paradigmatic example is graphene irradiated by a circularly polarized laser of
frequency � [626–633]. This is described by the following time-dependent tight-
binding Hamiltonian

Ĥ(t) = −w
∑

〈l j〉
exp

[
−i
∫ R j

Rl
Aac(t) · dr

]
ĉ†l ĉ j , (324)
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where 〈i j〉 are nearest-neighbor sites of the graphene lattice, while ĉ†i creates an elec-
tron with any spin orientation in the site l and ĉl is the corresponding annihilation
operator acting on a lattice site l. The effect of the laser field Eac(t) = ∂t Aac(t)
is accounted for by the Peierl’s substitution in the time-dependent hopping, with
Aac(t) = A (cos�t, sin�t). As a result of the time-dependent term in the Hamil-
tonian, an effective next-nearest-neighbor dynamical hopping is generated and the
model effectively becomes a topological Chern insulator, similar to that predicted by
Haldane [634]. The invariant characterizing this phase is the Chern number, which
is directly related to the Hall conductivity. In the present problem, such a transport
coefficient is defined as the response to an extra transverse dc electric field E repre-
sented by an extra vector potential Aex(t) = Et . In Refs. [138, 626, 628, 635] a Kubo
formula has been derived by treating Aex(t) in linear response for the system in the
background of the intense ac field. An overview of later developments in this direction,
including the generation of topological quantum pumping by Floquet engineering has
been presented in Ref. [618]. Signatures of Floquet states have been recently observed
in graphene [636, 637].

In addition to models related to real materials, there are a wide variety of proposals
in the framework of pure theoretical models. An interesting example is presented in
Ref. [638], where a topological phase is generated by Floquet engineering and it is
shown to enable a Thouless pump effect as a response to an extra adiabatic driving.
Another related interesting idea is the generation of a two-dimensional topological
phase by driving a single two-level system with two different frequencies [298, 299].
In this case, the topological phase is associated with the mechanism of power pumping
and the possibility of controlling dissipation by topological driving protocols [300].

6 Conclusions

In this review, we have provided a comprehensive overview of various aspects related
to time-dependent transport in quantum systems. Our primary emphasis has been
on time-dependent steady-state regimes, as opposed to transient dynamics, which,
although important, fall outside the main scope of this review. We have surveyed the
range of theoretical frameworks available to study non-equilibrium quantum systems,
deliberately excluding numerics-focused approaches in order to offer analytical insight
and physical intuition.

Throughout the discussion, we have identified and analyzed several fundamental
mechanisms that are recurrent in quantum-driven systems and are essential to the
understanding of quantum transport phenomena. These include the periodic charging
and discharging of a mesoscopic capacitor, dissipation, quantum pumping, noise, and
energy conversion, all of which play key roles in the characterization of transport
properties and the design of quantum devices.

A significant portion of our review has been devoted to electronic systems, which
continue to be a central area of investigation due to their rich phenomenology and
relevance to both fundamental physics and practical applications. In particular, we
have highlighted recent advances in electron quantum optics, quantum transport spec-
troscopy, and quantum electrical metrology. Additionally, we have addressed the role
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of quantum fluctuations, a crucial ingredient in understanding transport and thermo-
dynamic behavior at the quantum scale.

Beyond electronic systems, we have also considered developments in atomic,
molecular, and optical systems, as well as in nanomechanical platforms, which are
witnessing rapid progress due to advances in experimental control and measurement
techniques. These systems also provide versatile testbeds for exploring quantum trans-
port in regimes.

Furthermore, we have briefly reviewed emerging research that connects time-
dependent quantum transport with the topological properties of matter. The interplay
between topology and dynamical driving has opened up novel avenues for robust
transport control, quantized responses, and the engineering of synthetic dimensions
that are at the forefront of contemporary condensed matter and quantum information
science.

Taken together, the topics covered in this overview reflect a vibrant and evolv-
ing research landscape, where theoretical insights and experimental innovations are
continually reshaping our understanding of quantum transport under time-dependent
conditions.

Appendix: Technical details

A.1 Equivalence between Eqs. (25) and (34)

We show here that the response functions obtained in the two different derivations of
the linear-response mean value of the operator Ô at the time t are the same. To this
end, we introduce the Lehmann representation in the response functions of Eqs. (25)
and (34).

In Eq. (25), we get

〈[
ÔH0(t), F̂

j
H0
(t ′)
]〉

0
= 1

Z0

∑

n,m

e−βEn
{
〈n|ÔH0(t)|m〉〈m|F̂ j

H0
(t ′)|n〉

−〈n|F̂ j
H0
(t ′)|m〉〈m|ÔH0(t)|n〉

}

= 1

Z0

∑

n,m

e−βEn
{
e

i
�
(En−Em )(t−t ′)〈n|Ô|m〉〈m|F̂ j |n〉

−e
i
�
(En−Em )(t ′−t)〈n|F̂ j |m〉〈m|Ô|n〉

}

= 1

Z0

∑

n,m

e
i
�
(En−Em )(t−t ′)〈n|Ô|m〉〈m|F̂ j |n〉

(
e−βEn − e−βEm

)
.

(325)

In Eq. (34), we get

∫ β

0
du〈ÔH0(−iu�)

˙̂F j
H0
(t ′ − t)〉

0
= − i

�

∫ β

0
du
〈
ÔH0(−iu�)

[
F̂ j
H0
(t ′ − t), Ĥ0

]〉

0
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= − i

�Z0

∫ β

0
du
∑

n,m

eu(En−Em )〈n|Ô|m〉
〈
m|
[
F̂ j , Ĥ0

]
|n
〉
e

i
�
(Em−En)(t ′−t)

= − i

�Z0

∑

n,m

e−βEn

[
eβ(En−Em ) − 1

]

(En − Em)
〈n|Ô|m〉〈m|F̂ j |n〉 (En − Em) e

i(Em−En)(t ′−t)

= − i

�Z0

∑

n,m

(
e−βEm − e−βEn

)
〈n|Ô|m〉〈m|F̂ j |n〉e i

�
(Em−En)(t ′−t), (326)

which proves that the response functions in the two formulations coincide.

A.2 Equivalence between Eqs. (36) and (44)

We introduce in these two equations the Lehmann representation. The second term of
Eq. (36) can be written as

i

�

∫ t

t0
dt ′(t ′ − t)

〈[
ÔH0(t), F̂

j
H0
(t ′)
]〉

t

= i

�

∫ t

t0
dt ′(t ′ − t)

1

Zt

∑

n,m

e
i
�
(En−Em )(t−t ′)〈n|Ô|m〉〈m|F̂ j |n〉

(
e−βEn − e−βEm

)

=
∫ t

t0
dt ′ 1

Zt

∑

n,m

e
i
�
(En−Em )(t−t ′)〈n|Ô|m〉〈m|F̂ j |n〉

(
e−βEn − e−βEm

)

En − Em
, (327)

where we performed a partial integration and assumed that the exponential vanishes
for t0. Similarly, Eq. (44) can be written as follows

−
∫ t

t0
dt ′
∫ β

0
du〈Ô(−iu�)F̂ j (t ′ − t)〉t

= − 1

Zt

∑

n,m

∫ t

t0
dt ′e−βEn

[
eβ(En−Em ) − 1

]

(En − Em)
〈n|Ô|m〉〈m|F̂ j |n〉e i

�
(Em−En)(t ′−t),

(328)

which is the same as Eq. (327).

A.3 Wigner function of n-Leviton states

Combining the definition (123b), the property (286), and the explicit expression (293),
we have

	W<(t, ω) =
n∑

k=1

∫ +∞

−∞
dξ

2π
ϕ̃∗
k

(
ω − ξ

2

)
ϕ̃k

(
ω + ξ

2

)
e−i tξ
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= 2σe−2ωσ θ(ω)

n−1∑

k=0

∫ ω

−ω

du Lk[2σ(ω − u)]Lk[2σ(ω + u)]e−2iut

︸ ︷︷ ︸
Ik

.

Next, one exploits the identity

Lk(x)Lk(y) =
k∑

p=0

(xy)p

(p!)2 L(2p)k−p(x + y) ,

where L(p)k are the generalized Laguerre polynomials, to simplify Ik to

Ik =
k∑

p=0

(2σ)2p

(p!)2 L(2p)k−p(4ωσ)
∫ ω

−ω

du(ω2 − u2)
p
e−2iut

= 2ω
k∑

p=0

(2ωσ)2p

(p!)2 L(2p)k−p(4ωσ)
∫ 1

0
dy(1 − y2)

p
cos(2ωyt)

= ω
√
π

p!
k∑

p=0

(2ωσ)2p

(ωt)p+1/2 L
(2p)
k−p(4ωσ)Jp+1/2(2ωσ) ,

where in the last step we recognized an integral representation of the Bessel functions
of the first kind Jk . Combining the above results, we obtain the final expression (294)
reported in the main text.
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