
Development and evolution of Xtext-based DSLs on GitHub: an empirical
investigation

Downloaded from: https://research.chalmers.se, 2026-01-15 08:17 UTC

Citation for the original published paper (version of record):
Zhang, W., Strüber, D., Hebig, R. (2026). Development and evolution of Xtext-based DSLs on
GitHub: an empirical investigation. Empirical Software Engineering, 31(3).
http://dx.doi.org/10.1007/s10664-025-10775-2

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Received: 28 January 2025 / Accepted: 11 November 2025
© The Author(s) 2025

Communicated by: Alexander Serebrenik.

Extended author information available on the last page of the article

Development and evolution of Xtext-based DSLs on GitHub:
an empirical investigation

Weixing Zhang1 · Daniel Strüber1,2 · Regina Hebig3

Empirical Software Engineering (2026) 31:48
https://doi.org/10.1007/s10664-025-10775-2

Abstract
Domain-specific languages (DSLs) play a crucial role in facilitating a wide range of soft-
ware development activities in the context of model-driven engineering (MDE). However,
there exists a significant gap in the systematic understanding of how DSLs evolve over
time, which could hamper the development of effective methodologies and tools. To ad-
dress this gap, this paper presents a large-scale study of the development and evolution
of textual DSLs created with the Xtext framework and hosted on GitHub. The study
focuses on how these languages evolve at the grammar and front-end level, as captured
in open-source repositories. We systematically identified and analyzed 1002 GitHub re-
positories containing Xtext-related projects. A manual classification of the repositories
brought forward 226 ones that contain a fully developed language. We further categorized
the latter into 18 separate categories of application domains, studied their contained DSL
definition artifacts and analyzed the extent to which example instances using the grammar
are available. In addition, we explored DSL development practices, focusing on the de-
velopment scenarios involved, evolution activities, and the modification and co-evolution
of related artifacts. We observed that analyzed DSLs evolved faster and were maintained
longer when they belonged to specific domains, such as data management and databases.
We found grammar definitions of DSLs in 722 repositories in total. While only about a
third of them provided corresponding textual instances, community engagement metrics
indicate potential usage of the DSLs in downstream repositories. Considering different
language development approaches, we found that the majority of analyzed languages were
developed following a grammar-driven approach, although a notable number adopted a
metamodel-driven approach. Additionally, we identify a trend of retrofitting existing lan-
guages in Xtext, illustrating the framework’s flexibility beyond the creation of new DSLs.
By investigating software evolution aspects, we found that the development lifecycle of
analyzed DSLs varies, but in many cases, updates to grammar definitions and example
instances were frequent, and most of the evolution activities can be classified as “perfec-
tive” changes. Addressing a need for large and systematically documented datasets in the
model-driven engineerifng community, we contribute a dataset of repositories together
with our collected meta-information, which can be used to inform our understanding of

1 3

http://orcid.org/0000-0003-2890-6034
https://doi.org/10.1007/s10664-025-10775-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-025-10775-2&domain=pdf&date_stamp=2025-12-16

Empirical Software Engineering (2026) 31:48

open-source DSL development practices and the development of improved tools for sup-
porting the development and evolution of DSLs.

Keywords  Xtext · Software evolution · DSLs

1  Introduction

Domain-specific languages (DSLs, Kosar et al. 2016) are custom-tailored software lan-
guages addressing a particular domain of expertise. By providing a tool to create models
on a suitable abstraction level, DSLs play an important role in model-driven engineering
(MDE, Stahl and Völter 2006), where models created using a DSL can be used for a large
variety of activities such as design, analysis, code generation, and testing.

Developing a DSL is a high-stakes activity. Previous design decisions often cannot be
changed without significant effort on the part of the language developers and users. Still,
a need to change the language may arise especially in the context of language evolution,
where the developers add new features or respond to experience with the language (Lämmel
2018). In consequence, there is a need for sound methods, practices, and techniques for sup-
porting the evolution of DSLs. However, to date, the development of support for DSL evo-
lution is typically driven by the opinion of experts and individual cases encountered in their
own practice or experience reports—Thanhofer-Pilisch et al. (2017) provide a survey with
14 individual cases. Developers of future evolution methods would benefit from systematic
knowledge about DSL evolution obtained from a larger number of cases.

To understand how MDE artifacts are developed and evolved, there is a trend towards
large-scale studies that systematically collect evidence from open-source software (OSS)
projects (Hebig et al. 2016b; Shrestha et al. 2023; Babur et al. 2024). However, for develop-
ment of DSLs in the context of MDE, such a study is not available yet. In the context of DSL
evolution, as we will explore in this paper, such a study can identify patterns and frequencies
that cannot be observed in small-scale qualitative studies.

In this paper, addressing this gap, we contribute the first large-scale multiple-case study
of DSL development and evolution, focused on textual DSLs developed with the Xtext
framework (Bettini 2016) hosted on GitHub. Xtext is widely used in the MDE community
due to its strong integration with Eclipse and its ability to automatically generate substantial
parts of the parser and front-end tooling (e.g., syntax highlighting, editor support, valida-
tion). This approach has also inspired more recent DSL workbenches such as textX ​(​​​h​t​t​p​s​
:​/​/​p​y​p​i​.​o​r​g​/​p​r​o​j​e​c​t​/​t​e​x​t​X​/​​​​​) and langium (https://langium.org/). Consequently, our analysis
concentrates on the development and evolution of DSL definitions (grammars and related
artifacts, such as meta-models) as they are maintained in repositories, rather than on the
evolution of generated tooling or additional back-end components that may be developed
alongside.

Based on a repository mining methodology (Kalliamvakou et al. 2014), we collected
and analysed data from 1002 GitHub repositories, spanning a large variety of application
domains, from widespread ones such as database query languages to niche areas such as mod
development for a particular computer game. We observed that GitHub-hosted Xtext DSLs
span a spectrum from small experimental prototypes to long-lived, established languages

1 3

 48   Page 2 of 43

https://pypi.org/project/textX/
https://pypi.org/project/textX/
https://langium.org/

Empirical Software Engineering (2026) 31:48

maintained by multi-person teams, e.g., Applause, GraphQL-Xtext, and Epsilon
being examples for the latter. Therefore, our analysis focuses on different subsets of reposi-
tories depending on the research question: For artifact analysis, we consider 722 reposito-
ries containing Xtext files; for development scenario and evolution studies, we consider 226
repositories with a fully-developed language meeting a set of defined quality criteria.

As part of our contribution, we provide a dataset (Zhang et al. 2025) of 1002 reposito-
ries (via their URLs), including 226 repositories with fully developed languages, together
with our extracted meta-data, e.g., the repository’s type, employed development scenario,
availability of various artifacts, and change statistics. This dataset addresses the need for
large and consistently documented artifacts expressed in the MDE community (Robles et al.
2023; Damasceno and Strüber 2021) and can be particularly useful for follow-up research,
both to develop advanced (e.g., AI-based) techniques, as well as supporting the identifica-
tion of cases that can be used to inform design and evaluation activities.

To clarify our research scope, we distinguish between DSL development and DSL evo-
lution following established software engineering definitions. Development refers to the
initial creation and implementation of a language, including grammar design, tooling setup,
and example creation (Völter et al. 2013). Evolution, in contrast, refers to the ongoing
modification and enhancement of existing languages that typically evolve quite radically
throughout their lifetime as they grow from small, declarative languages to acquire new
features in response to users finding them useful and desiring more power (Tratt 2008).

With these definitions in mind, we focus on the following research questions:

RQ1  Are there GitHub projects that use Xtext? Which are these projects? We set out to
investigate basic information on Xtext-related activities in GitHub repositories, including
the type and application domains of these repositories and their contained languages. While
our study focuses on Xtext-based DSLs, the repository classification and domain analysis
approaches are designed to be framework-agnostic. This research question is broken down
into two further research questions.

RQ1.1  How can these repositories be categorized? This classification will allow us to know
which repositories contain well-documented languages, which repositories have developed
infrastructure for Xtext-based DSLs, etc. This will be particularly useful for follow-up
research (e.g., our RQ2 to 4).

RQ1.2  Which trends define the application domains of these DSLs in recent years? Answer-
ing this question can reveal in which domains Xtext-based DSLs are mainly developed,
and in which domains DSL development is increasing, and whether it is increasing all the
time. For example, data management and databases are increasingly important domains for
Xtext-based DSLs. The frequency of language development is related to the evolution of
the language. Answering this question can prepare us for studying the evolution of Xtext-
based DSLs.

RQ2  What language artifacts for Xtext-based DSLs do these repositories contain? Our file
extension-based artifact identification approach can be adapted to analyze DSL repositories
in other frameworks, though the specific extensions would differ.

1 3

Page 3 of 43  48

Empirical Software Engineering (2026) 31:48

RQ2.1  What main language definition artifacts do these repositories contain? In answer-
ing this question, we investigate three key language artifacts of Xtext-based DSLs, namely,
grammars, metamodels, and workflow definitions. This allows us to overview of the con-
tained language artifacts in these repositories that are related to Xtext activities, and the
answer to this question is particularly useful for follow-up research (e.g., our RQ3 and 4).

RQ2.2  Do these repositories contain both grammars and instances that adhere to it? The
answer to this question can reveal which repositories contain both grammar and example
instances and whether they contain both. Providing example instances is beneficial for
using the DSL, so it is interesting to know whether the repositories already provide example
instances that adhere to the grammar.

RQ2.3  To what extent is Xtext grammar used by example instances? When answering this
question, we will know how many grammar rules in the grammar are used by the instance
files in the same repository, i.e., the coverage of the instance to the grammar. High cover-
age of the grammar by example instances can indicate comprehensive illustration of the
language’s features within the repository, addressing a literature recommendation to provide
documentation in the form of examples (Völter 2009) and empirical findings according to
which novice DSL adopters use available examples as a starting point for developing their
own programs (Rennels and Chasins 2023). Co-location in the same repository makes docu-
mentation easier to find (Paik and Wallin 2020), and helps mitigate the well-known problem
of outdated examples reported in related contexts such as API usage (Radevski et al. 2016)
by enabling practices where examples are treated as executable tests (e.g., Rust documenta-
tion tests Rust Project Developers 2024).

RQ3  Which development scenarios for Xtext-based languages are applied in these projects?
Xtext supports multiple development scenarios that differ in their complexity (discussed
later). There is a question on whether complex development scenarios such as metamodel-
driven development are used in practice and thus, need to be supported with dedicated
approaches. Moreover, in the course of answering this question, we discovered a trend of
what we call retrofitting—creating an Xtext grammar that fits an existing language. The
retrofitting phenomenon appears across different DSL frameworks where developers imple-
ment existing languages in new tooling environments.

RQ4  How do Xtext-based languages on GitHub evolve over time? Since DSLs are often
envisioned as "small" languages (Deursen and Klint 1998), it is tempting to view their
evolution as a non-issue. In this RQ, we study longitudinal aspects of language projects,
including their longevity and amount of changes performed. We highlight the existence of
long-living language projects and shed light on their proneness to significant changes, lead-
ing to challenges that we discuss later, in Section 6 of the paper.

RQ4.1  How can grammar evolution in these projects be characterized quantitatively? The
answer to this question depicts the active time span of the grammar in these repositories,
i.e., the time of first creation and the end time of the last evolution (with the commit time
as reference). In addition, the answer to this question also reveals the quantity of grammar

1 3

 48   Page 4 of 43

Empirical Software Engineering (2026) 31:48

evolution in these repositories, i.e., the number of changes in grammar rules and the number
of changed lines of grammar definitions.

RQ4.2  How common are different types of changes during the evolution of grammars? An
important aspect of evolution is the reason for changes. Software systems change because of
changing requirements and user needs. However, they also change for maintenance reasons,
e.g. when adaptations are necessary due to changes in used libraries or operating systems
or when failures occur that need to be corrected. We ask the question whether evolution of
DSLs is mostly due to maintenance reasons or whether changes to extend the languages are
common as well.

RQ4.3  How do textual instances co-evolve with grammar in real projects? Xtext-based
DSLs are developed in repositories and, like general-purpose languages, inevitably evolve
over time. By focusing on repositories that contain DSLs, this question examines how their
instances co-evolve with the grammar. We deliberately limit our scope to co-evolution
within the same repository, excluding downstream projects, to provide a clear and con-
trolled analysis. This focus reflects the central role of instances accompanying the language,
as established in RQ2.3. Our goal is to establish whether these instances remain consistently
aligned with the evolving grammar.

This paper is a significantly extended version of our previous conference paper (Zhang
and Strüber 2024), in which we first presented our dataset and addressed a subset the
research questions stated above. For the present manuscript, we considerably extended our
analysis to provide a more in-depth look into the included projects, their included artifacts,
and evolution activities. This entailed extensive work on classifying domains and analyzing
their trends (leading to the new RQ1.2), retrieving language instances and analyzing their
coverage of DSL concepts (RQ2.2 and RQ2.3, both new), analyzing community engage-
ment patterns for repositories without co-located instances, and manual labeling of commits
and studying files contained in them (RQ4.2 and RQ4.3, both new). Based on the new find-
ings, we also significantly extended our discussion, to discuss the requirements for better
supporting artifact co-evolution (significantly extended Section 6.1) and the need for a bet-
ter understanding open-source of DSL development practices and ecosystem dynamics in
practice (new Section 6.2) that inform tool development and research directions.

The rest of this paper is structured as follows. In Section 2, we introduce necessary back-
ground. In Section 3, we discuss related work. In Sections 4 and 5, we present the methodol-
ogy and results for our study. In Section 6, we discuss implications of our results as well as
threats to validity. In Section 7, we conclude.

2  Background

2.1  Xtext

Having established our rationale for focusing on Xtext, we now provide the necessary
technical background. Xtext (Bettini 2016) is a framework for developing textual domain-
specific languages. Xtext allows the specification of a textual DSL in terms of an extended

1 3

Page 5 of 43  48

Empirical Software Engineering (2026) 31:48

EBNF grammar, where the extensions are mappings of language elements to an underlying
metamodel (in EMF Steinberg et al. 2008). The metamodel specifies the language’s abstract
syntax (language concepts and their relations), whereas the grammar specifies the concrete
syntax (keywords, parentheses, nesting of elements) with the mapping to the abstract syn-
tax. From the provided specification, Xtext can automatically generate comprehensive tool
support, including a textual editor with automated checks, syntax highlighting, and auto-
formatting. While Xtext is rooted in the Eclipse ecosystem, adapters for other IDEs (e.g.,
IntelliJ) are available.

In our repository mining context, we identify grammars and metamodels, as well as two
additional artifact types, as distinct file type, illustrated in Fig. 1. In Xtext-based DSL devel-
opment, there are the following four main MDE artifacts: 1) Xtext files, 2) Ecore metamodel
files, 3) modeling workflow engine (MWE) files, and 4) textual instance files. MWE files
support the orchestration of automated activities, in particular, the generation of model-
ing components. Among others, they define the file extension for textual instances (a.k.a.
models created using the language), which render them interesting for our study of artifacts.
Xtext files (i.e., grammar file) can be generated from Ecore files, and conversely, Ecore files
can also be generated from Xtext files (Bettini 2016). An MWE file is used to generate Xtext
artifacts from Xtext grammar (Bettini 2016), and these Xtext artifacts are used to generate a
textual editor for the DSL. Textual instance files are edited in this textual editor.

2.2  Development Workflows and Scenarios

To specify a DSL’s concrete and abstract syntax, Xtext uses two separate artifacts–a gram-
mar and metamodels—, which leads to the challenge of keeping them synchronized with
each other as the language evolves. To this end, Xtext supports two main development
workflows (Bettini 2016): In a grammar-driven scenario, the user primarily edits the gram-
mar, and has changes propagated to the metamodel by completely re-generating it. In a
metamodel-driven scenario, the user primarily edits the metamodel. After the changes to
the metamodel, the grammar has to be updated, which in the default process has to be done
manually–re-generating the grammar is not feasible due to potential information loss about
the concrete syntax.

Choosing an appropriate workflow requires to consider the context in which the language
is developed. The metamodel driven workflow is useful in scenarios where the metamodel
has to be manually managed, e.g., when it is the center of an already-existing ecosystem of
tools, when it comes from a third party vendor or standardization committee, or in a blended

Fig. 1  Main MDE artifact types in Xtext-based
projects

1 3

 48   Page 6 of 43

Empirical Software Engineering (2026) 31:48

modeling scenario with several concrete syntaxes. The grammar-driven workflow is simpler
to support and, therefore, generally preferable in other scenarios.

2.3  Software Maintenance Intentions

Following a categorization of Lientz and Swanson (1980) the intentions behind software
maintenance and evolution can be classified into 4 groups:

Adaptive  changes or maintenance describes changes that happened in reaction to a change
in the software environment, such as a change in a used API. An example is from the
“jkind-xtext”1 repository, a Lustre plug-in for Eclipse. On March 19, 2016, a commit
titled “Updates for JKind v3.0” specifically exemplifies an adaptive change. Developers
updated the Bundle-Version in MANIFEST.MF from 2.3 to 3.0 and adjusted grammar files
to accommodate the new JKind v3.0, ensuring the plug-in’s continued compatibility and
functionality.

Perfective  changes or maintenance describes enhancements of a software system or reac-
tions to changing requirements. An example comes from the “JSFLibraryGenerator”2
repository, which hosts the JSFLibraryGenerator, an Xtext project designed to simplify
JSF3 component library creation. On March 5, 2016, a commit titled “added new types” to
its grammar illustrates a perfective change. This modification involved adding a new data
type to the DSL’s grammar, extending its capabilities to generate more comprehensive JSF
component artifacts.

Corrective  changes or maintenance describes corrections of failures and errors of the sys-
tem. For instance, in the “megal-xtext”4 repository, a commit on January 24, 2017, spe-
cifically addressed a “megal import bug” within its megal.xtext grammar file. This change
replaced an unreliable HTTP-based model import with a stable platform-specific resource
path, resolving issues related to unstable external dependencies and ensuring consistent
parsing and validation of the DSL.

Preventive  changes or maintenance describes changes to the software that are meant to
ease future changes or prevent problems. An example is from the “eclipse-typescript-xtext”5
repository, an Xtext-based TypeScript parser. On January 4, 2014, a commit titled “just
added TODO and link to JS possible grammar inspiration” to Typescript.xtext illustrates
this. The developer added comments with a to-do note and a link to an external resource.
This act, though not a code change, proactively guides future development and reduces
potential design challenges in completing the TypeScript grammar.

1 https://github.com/loonwerks/jkind-xtext
2 ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​s​t​​e​p​h​a​n​​r​a​u​h​/​​J​S​F​L​i​b​​r​a​r​y​​G​e​n​e​r​a​t​o​r
3 ​h​t​t​p​s​:​​/​/​w​w​w​​.​o​r​a​c​l​​e​.​c​o​​m​/​j​a​v​​a​/​t​e​c​​h​n​o​l​o​g​​i​e​s​/​​j​a​v​a​s​e​r​v​e​r​f​a​c​e​s​.​h​t​m​l
4 https://github.com/avaranovich/megal-xtext
5 ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​v​o​​r​b​u​r​g​​e​r​/​e​c​​l​i​p​s​e​-​​t​y​p​e​​s​c​r​i​p​t​-​x​t​e​x​t

1 3

Page 7 of 43  48

https://github.com/loonwerks/jkind-xtext
https://github.com/stephanrauh/JSFLibraryGenerator
https://www.oracle.com/java/technologies/javaserverfaces.html
https://github.com/avaranovich/megal-xtext
https://github.com/vorburger/eclipse-typescript-xtext

Empirical Software Engineering (2026) 31:48

3  Related Work

3.1  DSL Evolution

The evolution of DSLs has been studied so far with a focus on providing improved evo-
lution support, and on reporting individual cases of evolving DSLs. Both are studied in
a systematic mapping study of Thanhofer-Pilisch et al. (2017), the results of which can
help researchers and practitioners working on DSL-based approaches obtain an overview of
existing research on and open challenges of DSL evolution. We now discuss selected cases
with a particular focus on industrial experiences. Mengerink et al. investigated the evolution
of DSLs in a large industrial MDSE ecosystem (Mengerink et al. 2018), through which they
summarized common evolution types and evaluated the automation capabilities of evolu-
tion in real-life scenarios. Schuts et al. reported in Schuts et al. (2021) their experience in
evolving a Philips-owned DSL, with the goal of enabling the DSL to support a range of Phil-
ips systems. This is concrete experience from the industry regarding the evolution of DSL.

More recent industrial work has continued to underscore the evolution challenges that
arise when deploying DSLs in practice. Denkers (2024) conducted extensive case studies
developing and evolving DSLs with language workbenches in an industrial printing systems
context, identifying that successful DSL evolution requires improvements in non-functional
aspects such as portability, usability, and documentation to sustain long-term industrial
adoption. Ratiu et al. (2021) reported on their five-year experience with DSL instantiation
and maintenance across three different business domains at Siemens, revealing how the
need to adapt DSLs to changing domain requirements and evolving business needs presents
ongoing evolution challenges for industrial practitioners. Akesson et al. (2020) specifically
addressed the challenge of managing an evolving DSL ecosystem in the defense domain,
identifying key research questions including how to achieve modularity and reuse in DSL
ecosystems and how to manage consistency between models and realizations during evolu-
tion, further highlighting the critical importance of systematic approaches to DSL evolution
in industrial contexts.

DSL evolution generally leads to issues with keeping multiple involved artifacts synchro-
nized with each other (Lämmel 2018). In the MDE community, a plethora of work on co-
evolution problems has evolved, in particular metamodel-model co-evolution (Wachsmuth
2007; Herrmannsdoerfer et al. 2009; Hebig et al. 2016a), where changes to the metamodel
make evolution of the associated models and transformations necessary. As we discuss later,
our dataset and results could inform the development of new approaches in this area.

While existing DSL evolution studies provide valuable insights from individual cases
and controlled environments, they are limited in scope. Most studies focus on a single DSL
or a small set of languages in a specific industrial setting (Denkers 2024; Mengerink et al.
2018; Ratiu et al. 2021; Schuts et al. 2021). In contrast, our large-scale approach is able to
systematically identify patterns across different domains and development environments,
such as the most common commit types for a language, that cannot be observed through
case-by-case analysis. This scale enables us, within our GitHub-hosted Xtext project cor-
pus, to distinguish common practices from exceptions, laying the foundation for evidence-
based tool development and method design for the broader DSL engineering community.

1 3

 48   Page 8 of 43

Empirical Software Engineering (2026) 31:48

3.2  Mining

Due to data availability and volume, GitHub has become a primary data source for repository
mining research (Gousios and Spinellis 2017), including those in model-driven engineering.
In Shrestha et al. (2023), Shrestha et al. mined MATLAB/Simulink-related repositories and
assembled a large corpus of Simulink projects, which includes model and project changes
and allows redistribution. Mengerink et al. used software repository mining to create a large
corpus of OCL constraints (Mengerink et al. 2019). Previous studies of EMF metamodels
focused on collecting EMF models from Eclipse projects (Kögel and Tichy 2018), studying
the use of metamodeling concepts in GitHub projects (Babur et al. 2024), and on deriv-
ing a high-quality dataset for machine learning (López et al. 2022). Hebig et al. (2016b)
investigated the use of UML in OSS projects by systematically mining GitHub projects. No
previous study focused on Xtext-based DSLs in GitHub repositories.

The only previous work that explicitly applied repository mining to Xtext grammars
(among other MDE artifacts) is MAR, a search engine for models (López and Cuadrado
2022). MAR offers a by-example query mechanism for searching a database of 600K mod-
els retrieved from existing repositories. While their underlying dataset includes Xtext mod-
els from GitHub, it is not annotated with the metadata offered in our dataset (e.g., number of
instances, development scenario, evolution statistics). Moreover, our research contribution
and questions have a different scope, focused on characterizing Xtext-specific projects, with
their development and evolution scenarios.

4  Methodology

We now describe our used repository mining methodology (Gousios and Spinellis 2017).
We chose GitHub as our data source because it has become the dominant platform for open-
source development and is widely used in repository mining research (Hebig et al. 2016b;
Shrestha et al. 2023; Babur et al. 2024). For DSLs in particular, GitHub offers (i) a unique
concentration of Xtext-based projects across a wide variety of domains and (ii) long-lived
projects with sustained maintenance activity. This combination makes GitHub a meaningful
and practical source for studying DSL development and evolution.

Our analysis is designed to address different research questions using appropriate reposi-
tory subsets identified through our methodology. We use the complete set of initially col-
lected repositories for classification analysis (RQ1.1), repositories containing Xtext files for
artifact analysis (RQ2), and repositories classified as containing fully developed languages
for domain trend analysis (RQ1.2), development scenarios (RQ3), and evolution studies
(RQ4). Our overall process, shown in Fig. 2, is divided into 7 steps. First, we obtained a
list of non-fork open-source repositories containing Xtext files from GitHub. Second, we
cloned all the retrieved open-source repositories to a local hard drive to facilitate access
and information acquisition. Third, we manually classified all obtained repositories, before
analyzing the collected data with respect to our research questions. Fourth, we searched for
relevant file types in these repositories by file extensions and collected information about
them. Fifth, using the repository-specific file extensions of the instances that we identified
from MWE files, we collected the instances of these extensions and calculated information

1 3

Page 9 of 43  48

Empirical Software Engineering (2026) 31:48

about them. Sixth, we analyze the development scenario of each repository. Seventh, we
analyze the evolution of the languages.

4.1  Step 1: Data Collection

As an initial data collection effort, we used the GitHub API to obtain repositories that are
related to Xtext. The obtained list formed the basis for answering all of our research ques-
tions in detail in the subsequent steps.

Since the most fundamental MDE artifact of an Xtext project is its grammar, which is
stored as a file with the extension .xtext, our search string was based on the main clause
q?=.xtext – that is, we searched repositories that contain a file with that extension. We
later observed that this search string partially led to the identification of repositories that
did not actually contain an Xtext file, but were still related to Xtext in a different way, as
described below. Furthermore, to exclude repositories that are forks of other repositories, as
these might mostly replicate the information from the original repositories and thus bias our
results, we set the parameter “fork" to “false".

One complication was that the GitHub API only allows access up to 1,000 results, even
when using the pagination feature. However, from a trial search on the GitHub website, we
observed that the number of relevant repositories may exceed 1,000. Hence, added a third
parameter to the request, which is the creation time of the repository. We use January 1,
2018, as the boundary to divide the request into two, i.e., requesting results before that date
and from that date. We retrieved six pages with 576 repositories created before January 1,
2018, and five pages with 426 repositories created from this date, leading to a total of 1002
repositories.

We developed a Python script to complete the above work. Its functions included set-
ting request parameters, sending requests, and dumping request results into local text files.
Execution of this script only took a few seconds to complete. The rationale for developing
a new script, instead of starting from an existing dataset (e.g., López and Cuadrado 2022)
was that it allowed us to retrieve the most up-to-date information from GitHub and that it
naturally integrated with our remaining analysis activities. The overall query used for the
requests had the following form:

Fig. 2  Overall process

1 3

 48   Page 10 of 43

Empirical Software Engineering (2026) 31:48

https://api.github.com/search/repositories? ​q​=​.​x​t​e​x​t​+​c​r​
e​a​t​e​d​:​{​s​i​n​c​e​_​d​a​t​e​}​.​.​{​s​t​o​p​_​d​a​t​e​} +fork:false&page={page}
&per_page=100

The repository information we obtained contains various information about the repository,
such as the repository’s ID, name, whether it is private, owner, and html_url. We developed
another script to extract the name, owner’s login, and html_url of these repositories from
the text files and store them in a table to facilitate subsequent data mining and analysis. The
result was a table containing 1002 rows.

4.2  Step 2: Repository Cloning

To facilitate comprehensive analysis for our four research questions, we cloned all reposi-
tories. While GitHub allows to obtain information about GitHub repositories through the
GitHub API, it has restrictions on the rate and frequency of access. Since we in subsequent
analysis needed to frequently access different and large numbers of files, we decided to
clone all repositories to a local hard drive for more efficient analysis. We only cloned the
master branch (except for a few cases where master was empty, where we manually
identified a different main branch instead), leaving an analysis of use of branching and pull
request as future work. This decision was made because: (1) master branch represents the
main development line with successfully integrated changes, (2) pull request commits are
typically merged into master upon acceptance, and (3) focusing on master branch allows us
to study completed evolution activities rather than experimental or abandoned development
efforts.

4.3  Step 3: Classification

In step 3, we classified the repositories and domains of the DSLs. The results of this step
were directly reflected in our obtained overview of repositories in RQ1.1 and RQ1.2, and
furthermore supported our filtering efforts in RQ3 and RQ4, where we focused on reposito-
ries that contain a fully developed language.

4.3.1  Classification of Repositories

To give deeper insights into the different kinds of Xtext-related repositories on GitHub, in
Step 3, we manually classified repositories into different types and analyzed the frequency
of different types. Our process for this was as follows: First, one author manually labeled
a sample of 200 repositories with improvised labels. The labels emerged from the observa-
tions that a few specialized categories were recurring between the repositories, with proper
language projects (described below) being of most interest for our study. Second, in a dis-
cussion between the authors, the obtained labels were harmonized, by defining descriptions
and explicit criteria for them. Third, we labeled the complete set of all repositories with the
final set of labels. The final labeling was done by one author and checked by another author.
Disagreements were resolved together.

The obtained list of types together with their descriptions and criteria was as follows:

1 3

Page 11 of 43  48

https://api.github.com/search/repositories

Empirical Software Engineering (2026) 31:48

Language: A repository with proper, documented Xtext-based language.

	– Criterion: The README.md or “About” section describes it as (implementation
of) a language or a software system that incorporates a clearly identifiable language,
and the repository is not of clearly experimental or personal nature.

	– Notes: More detailed criteria for experimental or personal nature are documented
below, under the label Experimental/Personal. We also collected the language’s
domain. After noticing that several repositories provided a re-implementation of an
existing language (a phenomenon we call retrofitting), we also noted whether this is
a case for each repository. We did not include a criterion of whether the repository
includes an Xtext grammar, which allowed us to identify edge cases that we report
on later, in Section 5.2.1.

Training/Examples: A repository serving the training of Xtext users, usually in the
form of an example, tutorial or both.

	– Criterion: The project’s README.md or “About” section describes it as an exam-
ple, a tutorial, or a demonstration.

	– Note: Using the word "example" as part of the name was not deemed as a useful
criterion, as examples might be created for experimental purposes—see below.

Infrastructure: A repository with tooling for supporting development with Xtext.

	– Criterion: The README.md or “About” section suggests that the project is about
supporting tooling.

Experimental/Personal: A repository that does not fall in any of the above categories,
but is still directly related to the language workbench Xtext.

	– Criteria: Any of the following applies:

1.	 The contained grammar is extremely small and basic.
2.	 The contained grammar is taken from a standard example provided with Xtext.
3.	 The README.md and “About” section are empty or give no context informa-

tion on what the repository is about.
4.	 The README.md and “About” section describes it as an assignment submis-

sion for a course, or as an example for debugging purposes.

Unrelated: A repository unrelated to the language workbench Xtext, except for naming.

	– Criterion: The only connection to the language workbench is sharing (parts of) the
name.

1 3

 48   Page 12 of 43

Empirical Software Engineering (2026) 31:48

4.3.2  Domain Identification and Categories

In RQ1.2, we focused on 226 repositories classified as “Language”. We manually reviewed
these 226 repositories to identify their domains. To reduce the bias caused by manual iden-
tification, one of us performed the initial identification for each repository, while one of the
other authors reviewed each identified domain. During the review process, when there was
a disagreement, we discussed and voted on the final domain determination within the author
team.

The resulting list of domains was at a fine-grained level, with entries such as Security
protocol analysis, SAT solving and verification, and Telemedicine System. To overview the
variety of domains and to analyze the trends in application domains over time, we needed
to categorize these fine-grained domains into coarse-grained categories, such as Security
and Networking and Artificial Intelligence and Machine Learning. To automatically derive
suggestions for such categories, we adopted an LLM-based method proposed by Chen et al.
(2023). This is a task where using an LLM is suitable because (i.) multiple valid solutions are
permissible; (ii.) it is not an ad hoc solution, but supported by Chen et al.’s research that we
built on; (iii.) manually reviewing multiple LLM-generated solutions and selecting a most
feasible one among them is feasible, and has been performed by us in this study. The map-
ping of domains to the identified categories has been done manually as well, leading to an
additional manual plausibility check. Specifically, the used LLM was ChatGPT-4.0. We fed
our list of 226 fine-grained domains into a prompt of the form “I have 226 domains, which
are placed in the attached TXT file. Could you categorize these 226 domains into larger cat-
egories?” We repeated this approach five times, manually reviewed the resulting lists and
voted on them to determine the best suggestion. This resulted in the following categories:
“Programming Languages”, “Software Development and Engineering”, “Games”, “Web
and Mobile Development”, “Modeling, Simulation, and Design”, “Data Management and
Databases”, “Security and Networking”, “Artificial Intelligence and Machine Learning”,
“Business and Enterprise Applications”, “Healthcare and Life Sciences”, “IoT, Embedded
Systems, and Hardware”, “Mathematics, Logic, and Scientific Computing”, “Testing and
Verification”, “Content, Information and Document Management”, “Cloud, APIs, and Web
Services”, “Graphical User Interfaces (GUI)”, “Questionnaire”, and “Miscellaneous”.

We then manually mapped the 226 domains to these 18 categories. This was again done
first by one of us and followed up by a review of the mapping performed by another author.
Again, if there was a disagreement, we decided on the final mapping by discussing and vot-
ing within the author team.

4.4  Step 4: File Search

To address RQ2.1 and RQ2.2, which focus on artifacts contained in Xtext-related projects,
we systematically searched the cloned repositories for different types of files: main language
definition artifacts (grammars, metamodels, and workflow files) and textual instances.

1 3

Page 13 of 43  48

Empirical Software Engineering (2026) 31:48

4.4.1  Xtext/Ecore/MWE2 File Search

Given the local clones of the 1002 identified repositories, in Step 4, we identified their con-
tained grammars, metamodels, and workflow files, by searching for files with the extensions
“.xtext”, “.ecore”, “.mwe2”, respectively.

Moreover, we did additional analysis, specifically, whenever we found an Ecore
metamodel file, in addition to recording the number of commits, we also recorded the name
of the folder containing the file for subsequent analysis of the language development sce-
nario; whenever we found an MWE2 file, in addition to recording the number of commits,
and we also looked for the instance extension it defined.

4.4.2  Instance Search

One Xtext artifact type we set out to study was instances (models); yet, identifying instances
is non-trivial, as their file extension differs per language. We identified instances by read-
ing the file extension from the previously identified MWE files and then searching relevant
files. To check whether the found instances adhere to the grammar in the same repository,
we performed a sampling analysis: we randomly selected ten repositories that contained
both grammar and instances and manually checked conformance. For all ten repositories
we found that the contained instances fully conformed to the contained grammars. Thus we
will make the assumption that instances files found in a repository with an Xtext grammar
are most likely written in the language specified by that grammar.

Our instance identification approach is limited to artifacts co-located within the same
repository as the DSL definition, in line with our motivating scenario, in which novice users
inspect example instances made available with the DSL. This methodological constraint
implies that our analysis cannot account for instances that may be maintained in separate
downstream repositories, private enterprise projects, or distributed across different hosting
platforms. Systematic mining of GitHub for such distributed instances could not guarantee
completeness due to private repositories (including private forks of our considered public
ones) and non-GitHub hosting. Therefore, we focus our analysis on co-located artifacts,
which provides a reliable foundation for understanding DSL development patterns within
individual repositories.

4.5  Step 5: Analyze the Usage of Grammar Rules

To answer RQ2.3, we need to obtain the total number of grammar rules in each grammar
(i.e., the xtext file) and the number of types of objects in the instance (i.e., the grammar
rules used). To this end, for those repositories categorized as “Languages”, we first filter out
those that contain both grammars and instances. We developed a script that counts the total
number of grammar rules in all Xtext files in a single repository. When counting grammar
rules in xtext files, we skipped the xtext files in the paths src-gen and bin because they
are backups of the xtext files in src.

At the same time, for each grammar, we need to obtain each element in the instance that
complies with it and the type of these elements. The types in the instance correspond one-
to-one to the grammar rules in the grammar. Obtaining the total count of all types used in
the instances and the total count of grammar rules in the grammar can be used to calculate

1 3

 48   Page 14 of 43

Empirical Software Engineering (2026) 31:48

the coverage of the instance to the grammar. Our script can traverse all child elements in the
found instance and obtain their types. Then place the types in a list by removing the dupli-
cate ones. Ensuring that the project where the Xtext grammar is located has no errors and
can be resolved normally is a prerequisite for obtaining the element types in the instance.
A technical problem encountered was that the Xtext projects in the repository could not be
resolved on the experimental machine (i.e., the author’s computer) due to Xtext version
issues. The Xtext version on the experimental machine is 2.36, while many repositories con-
tain the Xtext projects that were created with an older version of Xtext. Given the practical
difficulties of downloading and installing old versions of Xtext, we re-created these Xtext
projects with Xtext 2.36 by fully reusing their grammars. Then we used our script to call
the re-created Xtext projects to parse the instances in the original repository to calculate the
number of used grammar rules.

Finally, for each repository, we calculate the coverage of grammar rules by textual
instances. Specifically, for a repository containing grammars and instances, we first count
the total number of grammar rules R across all grammars in that repository. Next, for each
grammar, we identify all unique types used across all textual instances in the repository,
obtaining the total count T of unique types. Since each type in the instances corresponds to
a grammar rule, we calculate the percentage of grammar rules used as:

	
Grammar Rule Coverage =

|
∪m

j=1 Tj |
∑k

i=1 Ri

× 100%

where Ri represents the number of grammar rules in the i-th grammar file, k is the total
number of grammar files in the repository, Tj represents the set of unique types used in the
j-th textual instance, m is the total number of textual instances, and |

∪m
j=1 Tj | represents the

total count of unique types across all instances (removing duplicates). This metric indicates
how comprehensively the provided instances exercise the defined grammar rules in each
repository.

4.6  Step 6: Scenario Judgement

To answer RQ3, which addresses different development scenarios, we determined the
used language development scenarios in each repository in Step 6. Xtext supports two lan-
guage development scenarios, described in Section 2.2. In the grammar-driven scenario,
the text definition of the Xtext grammar has a statement starting with the keyword “gen-
erate", which results in generating a metamodel from the grammar. When generating the
metamodel, Xtext automatically places the metamodel in a folder named “generated”. In the
metamodel-driven scenario, language developers create a metamodel in a folder they create.
We assumed that the developers do not name their created folders “generated”, which would
be counterintuitive. Considering that there may be multiple Ecore files in a repository, we
distinguished three cases in which Ecore files existed in a repository: 1) All Ecore files in
the repository are in a folder named “generated", 2) all the folders containing Ecore files in
the repository are not named “generated", and 3) some of the folders containing Ecore files
in the repository are named “generated" and some are not. We classify the first situation as
a grammar-driven scenario, the second situation as a metamodel-driven scenario, and the
third situation refers to both scenarios.

1 3

Page 15 of 43  48

Empirical Software Engineering (2026) 31:48

4.7  Step 7: Analyze Evolution

To address RQ4, on language evolution, we analyze the evolution and co-evolution in the
226 repositories classified as “Language” by examining the commits of all Xtext/Ecore files
and instance files in these repositories. First, we obtained the commits of these files in the
226 repositories using a Python script, including the commit time and message. The commit
information was stored in an xlsx table (both the script and the table can be found in our
supplemental materials Zhang et al. 2025). Not every commit includes an evolution step in
and of itself. For example, changes to a language (as with all software systems) will often
be complex enough to warrant effort over multiple days or even weeks, resulting in multiple
commits. To study evolution in this paper we therefore introduce a heuristic allowing us to
approximate the occurrence of new evolution steps. For that, we calculated the time differ-
ence between each commit and the previous commit of the same file. If a commit of a file
happens more than 30 days after the previous commit of the same file, then we consider this
commit to be the first commit of a new evolution step for that file. This choice is grounded
in typical iteration lengths in modern software development processes, particularly Scrum,
one of the most widely used methodologies. Scrum iterations (sprints) commonly span 1 to
4 weeks (Paulk 2013; Budacu and Pocatilu 2018; Diebold et al. 2015), with 2 weeks repeat-
edly mentioned as the most typical duration (Paulk 2013; Budacu and Pocatilu 2018). We
argue that if two changes are separated by at least one full iteration, it is natural to treat them
as part of distinct development efforts - that is, to consider the later one as part of software
evolution rather than the same development surge.

For changes less than 30 days apart, we considered two subgroups of changes: a) Mul-
tiple changes committed to the same xtext file within a short time: This would hint at rapid
iterations when developing the grammar of the DSL, i.e., the second commit could be the
result of lessons learned from the changes made in the first commit. b) Changes in dif-
ferent files committed within a few days: This could indicate that the change is a case of
co-evolution, i.e., one of the changes is a reaction to the other change. In both scenarios,
we opted for 5 days as a threshold and heuristic to judge whether commits are reactions to
each other. Conversely to the justification for the 30-day threshold, the 5-day threshold was
chosen to reflect a timeframe within which two changes are highly likely to belong to the
same development iteration.

Commits that are the start of a new evolution step were further analyzed with regard
to the purpose of the commit. We divided these commits into adaptive, perfective, correc-
tive, and preventive types based on the intentions of software maintenance and evolution
described in Section 2.3. To do so we manually analyzed the commit comments of these
commits as well as commit comments from iterations, i.e., commits following shortly after
the analyzed commit. We marked commits that do not have sufficient information for us to
determine their type as “unclear”.

As an example, Fig. 3 illustrates the timeline of the creation and changes of three files
from the repository JSFLibraryGenerator6: an ecore file, a xtext file and an instance file con-
forming to the grammar. All three files were initially committed in the June of 2015 directly
followed by several iterative commits changing the files. In August 2015 an evolution step
happened that included a corrective change to the documentation and caused changes in the
ecore and instance files. Further evolution changes happened in 2016, January 2017, and

6 ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​s​t​​e​p​h​a​n​​r​a​u​h​/​​J​S​F​L​i​b​​r​a​r​y​​G​e​n​e​r​a​t​o​r

1 3

 48   Page 16 of 43

https://github.com/stephanrauh/JSFLibraryGenerator

Empirical Software Engineering (2026) 31:48

June 2018. In the last two cases only the instance file changed. The evolution step in March
2016 starts with a simultaneous change of the grammar and instance file. The instance file
is then changed over a series of several commits (iterations). The xtext file is iterated on as
well, then a break of more than 30 days occurs and the xtext file is changed again, which is
counted as a new evolution step in our heuristic. Interestingly, the iterations of the instance
file continued during this 30 day period. This example shows that it can be difficult to be
sure that a change after more than 30 days really presents an independent evolution step.
There are multiple types of changes occurring during that period as well, including perfec-
tive, adaptive, and preventive changes. Nonetheless, in most of the cases the heuristic of
30 days allows us to approximate developmental phases, which we consider here to be
evolution.

As can be seen in Fig. 3 some evolution steps of a pair of grammar and instance files
(and ecore file) occur within days or even within the same commit. To better understand the
prevalence of co-evolution of grammars and instances, we conducted a separate investiga-
tion on commits starting an evolution step (i.e., commits that changed a grammar or instance
file that has last been changed at least 30 days earlier). For each commit, we analyzed
whether a file of the other type (instance file or xtext file) in the same repository has been
changed within the same commit or within five days (as described above). If so we checked
whether the change of that other file presents the start of an evolution step as well (i.e., is
not an iteration following other changes). In our example, there is a co-evolution of gram-
mar and instance file in March of 2016. However, the second evolution step of the xtext file
in April of 2016 is here not considered a co-evolution with the instance file, even though
it changed in close time proximity, since the instance file underwent a continuous iteration
starting March of 2016.

5  Results

This section presents the results of our investigation across different repository subsets.
In this research, an ample amount of data is collected and analyzed, in both manual and
automated ways, with our analysis focusing on different subsets depending on the research
question. The automated way used scripts developed by the authors. The resulting dataset
(spreadsheet) and our analysis scripts are available from the associated artifact (Zhang et al.
2025). In this section, we will introduce the counts of repositories we obtained by filtering
under different conditions in different steps. There are multiple such counts, and we depict
the relationship between different counts in Fig. 4 for easy understanding.

Fig. 3  Example of Evolution History

1 3

Page 17 of 43  48

Empirical Software Engineering (2026) 31:48

5.1  RQ1: Are There GitHub Projects That Use Xtext? Which are These Projects?

5.1.1  RQ1.1: How Can These Repositories be Categorized?

To overview the 1002 repositories identified via our search methodology, we show the out-
come of our manual classification, according to the methodology explained in Section 4.3.
As indicated in Fig. 5, we found 226 repositories in which languages have been developed
and contain descriptions of them. There are 215 repositories with documented training and

Fig. 5  Classification of repositories

Fig. 4  Count of repositories in different subsets across analysis steps

1 3

 48   Page 18 of 43

Empirical Software Engineering (2026) 31:48

example materials. 110 repositories provide infrastructure to support development with
Xtext. Repositories classified as experimental/personal are the most numerous, with 343
cases. Additionally, 106 repositories have no relationship to Xtext except for naming.

We illustrate the different categories with examples. In our corpus, Languages developed
with Xtext span a large variety of cases, from DSLs for specific application domains such
as games (Casino), telemedicine (telemed), document management (Xarchive), to
technical domains such as JSON schema (xtext-json), Quantum computing (Quingo/
compiler_xtext) and Eclipse launch configurations (lcdsl). A noteworthy sub-cat-
egory, are cases of retrofitting existing languages, such as Oberon (Oberon-XText) or
GraphQL (graphQL-xtext-grammar). Training/Example projects comprise tutori-
als such as 15-minute Xtext tutorial in Chinese (xtext_tutorial_15_min_zh).
Infrastructure projects include technology for integrating Xtext and particular languages
in specific contexts, e.g., editors (vim-xtext) and build processes (gradle-xtext-
generator). Experimental/personal code often involves a dump of the user’s personal
workspace (e.g. Xtext Workspace). Unrelated repositories generally result from a
name clash, such as using the name ‘xtext’ for some unrelated tool (e.g., resolved’s text
displaying tool xtext), or within some longer name, such as TopXTextUI.

As useful meta-information for users of our dataset, we collected the number of forks and
stars for all repositories and included them in our dataset (Zhang et al. 2025). On GitHub,
stars are intended to indicate user interest or endorsement of a repository (GitHub Docs
2025b), while forks represent an explicit act of reuse or experimentation with its contents
(GitHub Docs 2025a). As such, both can act as a partial indicator for practical usage. We
found that 218 repositories had forks and 321 repositories had stars. The top repositories in
either category are main projects for xtext (746 stars; 314 forks) and the associated JVM
language xtend (101 stars; 53 forks), as well as popular training examples. As a notable
mention, applause is a DSL for the cross-platform development of mobile application
(98 stars, 24 forks). Note that stars and forks should not be interpreted as a comprehensive
usage measures, but as indicative signals of community engagement. In particular, absence
of stars should not be taken as a negative indicator, while presence of stars or forks is a
positive one.

5.1.2  RQ1.2: Which Trends Define The Application Domains of These DSLs in Recent
Years?

As mentioned in Section 4.3.2, we mapped the domains of the 226 repositories classified
under “Language” to the 18 categories, and counted the number of mapped repositories
under each category. The obtained results are shown in Table 1. The distribution of the cat-
egories is shown proportionally in Fig. 6.

Figure 6 shows that half of the Xtext-based DSLs are used in the domains of “Modeling,
Simulation, and Design” (e.g. language Yaktor in the repository yaktor-dsl-xtext
which is for Data and behaviour modeling), “Programming Languages” (e.g. language
Quingo in the repository compiler_xtext which is a language for Quantum program-
ming), “Data Management and Databases” (e.g. language xtext-orm in the repository
xtext-orm which is for defining general ORM models), and “IoT, Embedded Systems,
and Hardware” (e.g. language JKind which is for Embedded Systems Modeling and Veri-
fication). To further demonstrate the vitality of these DSL projects, we analyzed commit

1 3

Page 19 of 43  48

Empirical Software Engineering (2026) 31:48

activity across the 217 repositories classified as “Language” that contain at least one Xtext
file. This analysis reveals 4,793 total commits to language-related artifacts (Xtext, Ecore ,
and instance files) over the entire duration covered in the dataset, September 2008 through
January 2025. Out of these 4,793 commits, 1,722 occurred after January 1, 2020, demon-
strating continued development activity in recent years. Additionally, despite its currently
increasing relevance, the domain of AI/ML is so far rarely addressed with DSLs built with
Xtext.

We obtained the creation time of these 226 repositories, and the results showed that the
earliest repository was created in 2010, and the last repository was created in 2023. We
observed the change trends of these repositories over a span of 14 years from 2010 to 2023,
which are shown in Fig. 7. We found that starting in 2014, Xtext-based language develop-

Fig. 6  Proportion of repositories in different categories

No. Category Count
1 Programming Languages 36
2 Software Development and Engineering 17
3 Games 12
4 Web and Mobile Development 10
5 Modeling, Simulation, and Design 37
6 Data Management and Databases 27
7 Security and Networking 6
8 Artificial Intelligence and Machine Learning 4
9 Business and Enterprise Applications 4
10 Healthcare and Life Sciences 3
11 IoT, Embedded Systems, and Hardware 19
12 Mathematics, Logic, and Scientific Computing 11
13 Testing and Verification 6
14 Content, Information and Document Management 12
15 Cloud, APIs, and Web Services 8
16 Graphical User Interfaces (GUI) 6
17 Questionnaire 2
18 Miscellaneous 6

Table 1  Count of mapped reposi-
tories under different categories

1 3

 48   Page 20 of 43

Empirical Software Engineering (2026) 31:48

ment entered a period of rapid development, and a large number of repositories were created
for developing Xtext-based languages. However, after about 2020, Xtext-based language
development entered a period of decline, and the number of repositories under most cat-
egories stopped increasing. However, the three categories with the largest proportion, i.e.,
“Modeling, Simulation, and Design”, “Programming Languages”, and “Data Management
and Databases”, still maintained an increase in the number of repositories they contained.
Interestingly, after about 2019, the development of Xtext-based languages related to “IoT,
Embedded Systems, and Hardware” became more frequent, while at about the same time,
the development of Xtext-based languages related to “Software Development and Engineer-
ing” suddenly stagnated.

We also investigated the last commit time of the repositories under these categories. We
found that the repositories in nearly half of the categories stopped updating before 2022.
The earliest to stop updating were the repositories under the “AI and ML” category, whose
last commit occurred in 2017. The categories shown in Fig. 7, where new repositories were
still created in recent years, include repositories that are still updated recently. That is, cat-
egories such as “Modeling, Simulation, and Design”, “IoT, Embedded Systems, and Hard-
ware”, “Software Development and Engineering”, and “Data Management and Databases”
contain repositories that still have commits in 2024.

Results of RQ1: We find five categories of repositories—language, train-
ing/examples, infrastructure, experimental/personal and unrelated, and there are
226 repositories classified as “Language”. Fromtheperspective of domain, these 226
repositories can be categorized into 18 domain classifications. Among them, nearly
half of these 226 repositories are categorized into the “Programming languages”,
“Modeling, simulation, and design”, and “Data management and databases”
domains, and they are also the three domains with the fastest development and
longest active life span of Xtext-based DSLs.

Fig. 7  Cumulative repository created per category (varies with year)

1 3

Page 21 of 43  48

Empirical Software Engineering (2026) 31:48

5.2  RQ2: What Language Artifacts for Xtext-Based DSLs do These Repositories
Contain?

5.2.1  RQ2.1: What Main Language Definition Artifacts do These Repositories Contain?

With Xtext grammars being one of the core artifacts of Xtext projects, we checked how
many are contained in each repository. The results, shown in Table 2, show that of these
1002 repositories, only 722 really contain at least one xtext file. Nearly all repositories clas-
sified as language contained an Xtext grammar—217 out of 226 cases. The nine exceptions
involved repositories that contained Xtext-based editors for a particular language without
providing the underlying grammar, such as Palladio-Editors-VSCode, and ports
of originally Xtext-based DSLs to other workbenches, such as eJSL-MPS (Priefer et al.
2021).

For the 722 repositories that contain at least one Xtext file, Table 2 reports the numbers
of other included MDE artifacts. Of these repositories, 248 contain no Ecore metamodel file,
while 352 repositories contain one Ecore metamodel file. A total of 6 repositories contain at
least 100 Ecore files each. All of these are infrastructure projects that use a larger number of
examples for testing and/or demonstration purposes; three of them associated with the offi-
cial Xtext project. We also counted the number of MWE2 files in the repositories, as shown
in the sixth and seventh columns of Table 2. We found that among the 722 repositories
that contained at least one Xtext file, all but 28 contained at least one MWE2 file. The vast
majority of repositories contained only one MWE2 file, and only one repository contained
more than 100 MWE2 files. We also found 222 repositories that contained MWE2 files but
no Ecore files. Such a big number of projects that contain an MWE file but no Ecore file can
be explained by the fact that in a grammar-driven scenario, Ecore files can be fully automati-
cally generated from the underlying grammar, and it is a common practice to not commit
automatically generated artifacts to repositories.

5.2.2  RQ2.2: Do These Repositories Contain Both Grammars and Instances That
Adhere to it?

Table 3 shows the results of identifying textual instances in the 722 repositories that contain
at least one Xtext file, 447 contain no textual instances at all, 103 contain only one textual
instance, and 173 repositories contain at least two textual instances. Interestingly, we found
two repositories containing more than 1000 textual instances, namely, xtext/xtext-
monorepo and eclipse/xtext, owned by the Xtext team and the Eclipse Foundation,
respectively.

Table 2  File type frequency in projects containing Xtext files
Xtext Ecore MWE

 #Files #Repo Perc. #Repo Perc. #Repo Perc.
>= 100 6 0.83% 6 0.83% 1 0.14%
10 - 99 19 2.63% 8 1.11% 19 2.63%
2 - 9 261 36.15% 108 14.96% 264 36.57%
1 436 60.39% 352 48.75% 410 56.79%
0 / / 248 34.35% 28 3.88%

1 3

 48   Page 22 of 43

Empirical Software Engineering (2026) 31:48

As shown in Table 3, there are 275 repositories that contain at least one Xtext file and
at least one instance file. In Section 4.4, we mentioned that in order to check whether the
found instances comply with the grammar in the same repository, we performed a sampling
analysis, that is, we randomly selected ten repositories that contain both grammars and
instances and checked the compliance. The results of this sampling analysis show that the
text instances in these ten repositories all comply with the grammar in the same repository.
Thus, we work with the assumption that the found instances conform to the grammars.

The absence of textual instances in a repository does not necessarily indicate that the
DSL is unused in practice. To validate this, we examined community engagement metrics
for the 138 repositories that are categorized as “Language” and contain Xtext grammars but
lack textual instances. We found that 38 (27.53%) of these repositories have been forked
by other developers, with 3 repositories having more than 10 forks (maximum: 26 forks).
Additionally, 54 (39.13%) have received stars from the community, with 6 repositories hav-
ing more than 10 stars (maximum: 98 stars). This community engagement is consistent with
some DSLs without co-located instances being used in practice, with instances potentially
maintained in separate downstream repositories or application-specific projects. This pat-
tern reflects the separation between DSL development repositories and DSL usage contexts
commonly observed in software development ecosystems.

5.2.3  RQ2.3: To What Extent are Xtext Grammars Covered by Example Instances
Contained in These Repositories?

Among the repositories categorized as “languages”, there are 88 repositories that contain
both at least one xtext file and at least one instance file. In Step 5, we recreated the Xtext
projects contained in some repositories using Xtext 2.36. This resulted in 71 of those 88
repositories where the Xtext projects could be fully resolved and parse instances from
the same repository. In the other 17 repositories, we could not recreate the Xtext projects
they contained due to technical barriers or missing files, such as other Ecore files that they
depended on were not provided. In the 71 repositories where we could parse the instances,
we used the Xtext projects to parse instances from the same repository to obtain the count of
used grammar rules and calculated the percentage, resulting in the results shown in Fig. 8.

We found that among these 71 repositories, most of them provided textual instances that
used more than 60% of the grammar rules. Four repositories provided textual instances, but
the textual instances were empty or had nothing to do with the grammar at all. For example,
in the repository “Bicycle-Shop”, the extension for instance files is defined as “nbs”. The
repository does provide a “nbs” file, however, the content of the instance does not comply
with the grammar.

Count of Instances #Repos Percentage
>= 1000 2 0.28%
100 - 999 10 1.39%
10 - 99 30 4.29%
2 - 9 130 18.00%
1 103 14.27%
0 447 61.77%

Table 3  Instances in repositories
that contain Xtext grammars

1 3

Page 23 of 43  48

Empirical Software Engineering (2026) 31:48

Results of RQ2: We found that 722 repositories contain at least one Xtext file. With
the exception of a few, almost all of them contain at least one MWE2 file, and the
majority of them contain at least one Ecore file. About a third of them contain at
least one instance file. We found that most of the repositories that provide instance
files use more than 60% of the grammar rules in the instances.

5.3  RQ3: Development Scenarios

To answer RQ3, regarding development scenarios for language development, we specifi-
cally focused on the 226 repositories classified as language in RQ1, as these represent fully
developed DSL projects, and evaluated their development scenarios as described in Sec-
tion 4, leading to the results shown in Table 4.

There are a total of 226 repositories classified as language , the majority (169) follow a
grammar-driven scenario, and 66 of them have developed an Xtext version of an existing
language. 41 of the 226 repositories are in a metamodel-driven scenario, and 6 of them have

Scenario #Repos #Retrofitting
grammar-driven 167 66
metamodel-driven 41 6
both 9 0
not applicable 9 2

Table 4  Frequency of language
development scenarios

Fig. 8  Number of Repositories by Grammar Rules Usage

1 3

 48   Page 24 of 43

Empirical Software Engineering (2026) 31:48

developed an Xtext version of an existing language. Nine of these 226 repositories contain
both grammar-driven and metamodel-driven scenarios, and none of them have developed
an Xtext grammar for any existing language. Additionally, the nine repositories that were
classified language but did not contain Xtext files (described in the results for RQ1), were
not suitable for our analysis and hence excluded from it.

We give selected examples for the identified metamodel-driven cases since it is arguably
the more complex scenario, involving manual overhead for keeping metamodels and gram-
mars synchronized. megal-xtext provides a textual syntax for the MegaL mega-mod-
eling language, a language that by design provides several concrete syntaxes (Favre et al.
2012), a typical motivation for the metamodel-driven scenario. Kotlin-metamodel is a
repository with the main claim of providing a metamodel for the Kotlin JVM language; the
provided Xtext grammar is mentioned as an additional artifact. Other repositories such as
QuestionnaireDSL do not include a definite explanation for following the metamodel-
driven scenario, but at least contain a visualization for the metamodel (aird file), which
indicates an intention to explicitly design the metamodel. Repositories classified as both
generally comprise several languages with different workflows, e.g., telemed with sepa-
rate languages for information storage and querying of telemedicine information.

A noteworthy activity that our manual classification of repositories brought forward is
retrofitting: the implementation of some existing language in Xtext. We found 74 cases of
repositories that can be classified as such. In several cases, repositories included imple-
mentations of popular practical languages, e.g., GraphQL for graph database querying
(graphQL-xtext-grammar), JSON Schema for schema definition (JSON-Schema-
to-internal-DSL), and PlantUML, a notation for lightweight UML diagram creation
(plantuml-eclipse-xtext). The added value of an Xtext implementation for these
languages is to benefit from the editing support offered by Xtext, e.g., automated code com-
pletion, syntax highlighting, and formatting. A few cases were concerned with historical
programming languages and could be seen as an enthusiastic effort (e.g., Oberon-IDE).

The majority of retrofitting cases was developed in a grammar-driven way, which is
consequential: The concrete syntax in these cases is fixed and hence, it is natural to specify
a grammar matching the existing syntax, thus retrofitting it.

Studying the motivations for retrofitting further is an intriguing topic. For example, ret-
rofitting could be performed as part of a technology stack migration, which would render
it a language evolution activity. For the vast majority of repositories, the available descrip-
tions did not include an explicit motivation. In cases involving widely used languages such
as UML, Oberon, JavaFX, or bash, describing the changes as language evolution does not
seem appropriate. In contrast, for more niche languages—such as ScytherTool/dsl
for the Scyther security protocol analysis tool—this interpretation might be more plausible.
One of the few cases where a motivation was explicitly stated is RPG-lexer, where the
description reads: “So this project can be used as an academic project for better under-
standing of the RPG language but also for better tooling like plug in for 100% free-RPG
editors running in i.e. Eclipse with code completion etc.” Overall, we consider retrofitting
and evolution to be orthogonal concerns.

We also note that no single language emerged as particularly dominant in terms of retro-
fitting activity. The most frequently retrofitted languages in our dataset were GraphQL and
VHDL, each appearing in three cases.

1 3

Page 25 of 43  48

Empirical Software Engineering (2026) 31:48

Results of RQ3: Among the 226 repositories with fully developed languages, while
the majority of Xtext-based language development projects involve the grammar-
driven scenario, a nonnegligible number relies on the metamodel-driven one. We
identify retro�tting—creating an Xtext implementation of an existing language—as
a noteworthy development activity.

5.4  RQ4: How do Xtext-Based Languages on GitHub Evolve Over Time?

5.4.1  RQ4.1: How Can Grammar Evolution in These Projects be Characterized
Quantitatively?

To investigate how languages and their artifacts evolve, we focused again on the 226 reposi-
tories classified as ‘language’.

We were interested in the longevity of language projects and the activity around their
included grammars. To study this aspect, we focused on those language -classified reposi-
tories that contained a grammar, leading to 217 repositories. We observed a time span for
updates of the repository and the contained grammar. The time span is calculated as the
difference in days between the first and the last commit. We obtained the results shown in
Table 5. The results show that 36 repositories were never updated after they were created,
while 39 repositories had updates spanning more than 1,000 days, meaning that they were
still maintained after a substantial amount of time. Considering the time span of updates to
the grammar included in the projects, there are many (i.e. 84) repositories where Xtext files
are never updated after they are initially created. There is also a nonnegligible number (i.e.
18) of repositories that still have records of updating Xtext files after a long time (no less
than 1000 days).

Furthermore, we considered project lifespan and prevalence of evolution steps. Among
the 217 repositories classified as “Language” that contain at least one Xtext file, 76 reposito-
ries (35.0%) exhibit evolution steps. Across these 76 repositories, we observe a total of 297
evolution steps, i.e., an average of 3.96 steps per repository, with substantial variation and a
maximum of 34 steps in the epsilon repository. Focusing on repositories with evolution
steps, the average project lifespan is 449.21 days, again with notable dispersion (cf. Table 5
for the broader timespan context).

Next we report on the temporal distribution (volatility) across the lifespan. Evolution
activity is not concentrated solely at the beginning of projects: 28% of evolution steps occur
in the early phase (≤25% of the project lifespan), 40% in the middle phase (25–75%), and
31.7% in the late phase (>75%). This pattern indicates evolution throughout the lifecycle
rather than predominantly front-loaded volatility.

Repo Xtext
 Timespan (Days) #Repo Perc. #Repo Perc.
>= 1000 39 17.97% 18 8.29%
100 - 999 54 24.88% 43 19.82%
10 - 99 58 26.73% 44 20.28%
1 - 9 30 13.82% 28 12.90%
0 36 16.59% 84 38.71%

Table 5  Timespans of commits
in repositories and Xtext files

1 3

 48   Page 26 of 43

Empirical Software Engineering (2026) 31:48

We were further interested in how much Xtext grammars change over time. To this end,
we considered both the changes to the overall number of lines and the number of rules.
Starting with the number of lines, for those 217 repositories that contain at least one Xtext
file and are classified as language , we compared the first and the last committed version of
the Xtext files in terms of their line counts, reporting the averages per repository in Table 6.
We can see that the number of lines of text for Xtext grammar has not changed in 35.62% of
the repositories. For those repositories that have changed, the vast majority of them contain
Xtext files that have basically added the number of lines of text. Among them, the average
increased line number of Xtext files in 35 repositories by more than 100.

We also analysed the changes in the number of grammar rules in the Xtext file, leading
to the results shown in Table 7. We can see that in more than 40% of the repositories, the
number of grammar rules in the Xtext grammar has not changed. Part of the reason is that 66
repositories have not updated their Xtext files since they were initially committed. For those
repositories where the number of rules of the Xtext grammar changed, in most of them the
number of rules increased over time. In particular, the average number of added grammar
rules in the Xtext grammar contained in 47 repositories exceeds ten.

Our dataset (Zhang et al. 2025) contains additional metadata quantifying evolution activ-
ities, specifically, the change frequency of grammars, metamodels, and instances per proj-
ect. While a detailed analysis is outside the scope of this paper, we observe the following
trends: As one would expect, grammars are updated more often than metamodels. However,
the difference in update frequency is more pronounced in the grammar-driven workflow
than in the metamodel-driven one, which might suggest that users in this workflow spend
more time polishing concrete syntax aspects. Instances are more likely to be updated in
repositories with more Xtext grammar updates.

5.4.2  RQ4.2: How Common are Different Types of Changes During The Evolution of
Grammars?

As mentioned in Section 5.2.1, 217 repositories classified as “Language” contain at least
one xtext file. Using the same commit dataset described above (4,793 commits from these

Avg. Change to #Rules #Repos Percentage
> 100 3 1.37%
<= 100 and > 10 46 21%
<= 10 and > 0 65 29.68%
= 0 91 41.55%
< 0 14 6.39%

Table 7  Average change to
number of rules when comparing
first and last commited version
of Xtext grammar

Avg. Change to #Lines #Repos Percentage
< 0 4 5.02%
0 78 35.62%
> 0 and <= 10 27 12.33%
> 10 and <= 100 68 31.05%
> 100 and <= 1000 33 15.07%
> 1000 2 0.91%

Table 6  Average change to
number of lines when comparing
first and last commited version
of Xtext grammar

1 3

Page 27 of 43  48

Empirical Software Engineering (2026) 31:48

217 repositories), we counted the number of days between each commit and the previous
commit of the same file. We found that in 192 repositories, the commits to the instance files
were never more than 5 days away from the previous commit to the same file. In 115 reposi-
tories, the commits to the xtext files were never more than 5 days away from the previous
commit to the same file. There is an overlap of 111 repositories in which both, grammars and
instances, only show incremental changes with 5 or fewer days between commits. In addi-
tion, we found that there were 3809 commits of files that had previously been committed
within five days. This hints that DSLs, just like other software, are not carefully designed on
paper and then implemented once, but are built in iterations.

We also found that there are 438 commits of xtext, Ecore, or instance files that are more
than 30 days away from the previous commit of the same file.7 These commits come from
78 repositories.

We classified these 438 commits into the four change types described in Section 5.4.2,
where we also illustrate each type with examples from our considered projects. We found
that about two-thirds of these commits (304 in total) are “perfective commits”. The number
of “adaptive” and “corrective" commits is also not small, with 68 and 50 respectively. In
addition, there are five commits, only, that belong to the “preventive” type. The propor-
tion of these different types of commits to the total number is shown in Fig. 9. The high
number of perfective changes indicates that there is an inherent (functional) need for these
languages to evolve. Thus, the changes seen are not just for maintenance, which would be
rather associated with corrective and adaptive changes. This indicates that changing require-
ments on the language are the main driver of DSL evolution.

5.4.3  RQ4.3: How do Textual Instances co-Evolve with Grammar in Real Projects?

Continuing with the 217 repositories analyzed above, we followed step 7 of our method-
ology, i.e., for those commits files that were more than 30 days away from the previous
commit of the same file, we determined whether there was another commit in the same
repository that was no more than 5 days away from it but committed a different type of file.
For example, in the repository named “gen-angular-grammar” with login “jhonatan89”, the
metamodel file “Generator.ecore” was committed on February 2, 2018, we checked if there
was another file that was of a different type than the file “Generator.ecore” and it was com-
mitted within five days around February 2, 2018. We filled in “YES/NO” in a new column.
We found that there were 188 such commits, and they came from 39 repositories.

We checked these 188 commits and the 39 repositories where they were located, and
found that 36 of them had a scenario of co-change, i.e., two language artifacts of different
file types were changed at the same time or changed one after another within five days,
and more than 30 days later, the two files were changed again at the same time or changed
one after another within five days. For example, still in the repository “gen-angular-gram-
mar”, the metamodel file “Generator.ecore” and the xtext file “Generator.xtext” evolved
simultaneously on November 30, 2017, and they evolved simultaneously again on Febru-
ary 2, 2018. Among these 36 repositories, 33 of them had metamodels and Xtext files that
changed simultaneously or within five days of each other, eleven of them had Xtext files and

7 Commits including two or more xtext, Ecore, or instance files that have previously been committed more
than 30 days ago are counted two or more times accordingly.

1 3

 48   Page 28 of 43

Empirical Software Engineering (2026) 31:48

instances that changed simultaneously or within five days of each other, and eight of them
involved both cases.

By combining these observations with the analysis of commit types, we found that
among these 188 commits, there are 151 “perfective” commits, 22 “adaptive” commits, ten
“corrective” commits, two “preventive” commits, and another three commits are “unclear”.
Therefore, compared with the proportion of each commit type in the previous section, the
proportion of “perfective” commits here has increased, while the proportion of almost all
other commits has decreased.

Fig. 9  Statistics of the number of different commit types, i.e., adaptive, perfective, corrective, and preven-
tive commit

1 3

Page 29 of 43  48

Empirical Software Engineering (2026) 31:48

Results of RQ4: We found a spectrum of project and language development lifespans
of Xtext projects on GitHub, with a non-negligible part (8%) of grammars still being
updated 1000 days after the initial commit. The amount of change performed in individual
languages can be signi�cant, with more than 10 rules being added in 22% of all languages.
We also extracted 4,793 commits from 217 repositories and found that in about half of
the repositories, no commit of Xtext �les and instance �les was more than �ve days
away from the previous commit. Moreover, most cases of evolution were classi�ed as
“perfective” changes, indicating changing requirements on the DSLs. We also found
co-evolution of �les of different �le types (instance, grammars, and metamodels) in 36
repositories. In addition, we also found that the evolution steps were relatively evenly
distributed in different phases of the project, rather than concentrated in a speci�c phase.

6  Discussion

We will discuss our results from three perspectives: the need for approaches to support
co-evolution in textual DSLs, the need for a better understanding of DSL development in
practice, and threats to the validity of our research.

6.1  Need for Approaches for co-Evolution in Textual DSL Evolution Contexts

Our analysis in RQ3 reveals the existence of DSL evolution projects that are maintained
over several years and involve significant changes to the language over time. In such proj-
ects, challenges arise from the synchronized evolution of all involved artifacts, including
grammars, metamodels, instances, and workflow files. In a general MDE context, synchro-
nized evolution is a well-studied area, termed co-evolution or coupled evolution. A plethora
of existing work (García et al. 2012; Khelladi et al. 2017; Kusel et al. 2015; Vaupel et al.
2015; Kessentini and Alizadeh 2020; Di Ruscio et al. 2023, 2013) provides foundational
approaches for managing co-evolution between metamodels and other artifacts, typically
models and transformations. However, there remains a significant gap in tool support and
methodologies specifically tailored to the co-evolution of artifacts involved in textual DSLs
developed with frameworks like Xtext, with their focus on both metamodels and grammars.

Our observations hint on a number of requirements that need to be taken into account
when approaching the co-evolution problem for textual DSLs:

	– Change and specifically evolution of DSLs is not just about maintenance activities, as
witnessed by the majority share of “perfective” changes in cases where grammars and
instances change after more than 30 days (see Fig. 9). In our corpus, treating DSLs as
evolving software systems appears warranted; tool support should therefore consider
functionality-changing evolution alongside maintenance.

	– Rapid iterations of the DSL happen. We observe for 106 of all repositories that are clas-
sified as languages changes in instances, metamodels, and grammars within less than 5
days. Frameworks supporting textual DSLs (e.g., Xtext) would benefit from first-class
support for such rapid iterations.

1 3

 48   Page 30 of 43

Empirical Software Engineering (2026) 31:48

	– Both grammar-driven and metamodel driven development happens and is subject to
evolution. Frameworks need to support both evolution cases.

	– Co-evolution between instances and grammar happens and our numbers likely under-
estimate the frequency. In 39 out of 275 repositories with grammars and instances we
observed that both grammars and instances change together after a break of more than
30 days, hinting on co-evolution. However, since instances in the DSLs repository are
likely just example and serve testing and documentation purposes, this number does not
include all cases of co-evolution needed for productive instances of the DSLs, which are
not seen in these repositories.

To address some of the complexity in the metamodel-driven scenario (RQ3), one could
rely on principles from the grammarware sphere and support an operator-based approach to
grammar evolution (Zaytsev 2014). In our recent work, we follow up on this idea to auto-
mate parts of the synchronization of the grammar after metamodel changes (Zhang et al.
2023a, 2024, 2023b; Zhang 2023). Another open challenge is grammar-instance co-evolu-
tion, which could benefit from the available foundational approaches for metamodel-model
co-evolution, but needs to deal with concrete syntax aspects of grammars. This problem has
not been addressed yet in the technical space of Xtext. Lämmel’s LAL approach (Lämmel
2016) could be useful for validating a solution that addresses it.

Future research should focus on integrated approaches and tools that facilitate the simul-
taneous evolution of all related DSL artifacts. The comprehensive dataset compiled from
our study, particularly the 196 cases where all crucial artifacts such as grammar, metamodel,
and instances are available, presents a valuable resource for developing new co-evolution
approaches, by supporting their design, testing and evaluation.

6.2  Need for A Better Understanding of DSL Development in Practice

Several observations show that we need a better understanding of how DSL development
looks like in practice in order to better support it. This concerns practices such as testing and
documentation, versioning support, and the accessibility to domain experts outside com-
puter science.

6.2.1  What Testing and Documentation Practices are Used for The DSLs’ Development?

While some of the studied repositories that are classified as languages include instances, it is
only a minority. Even among those repositories with instances, the majority does not include
a sufficient variety of instances to cover all grammar rules. Thus, in only 18 cases, we found
instance examples covering the complete grammar of the DSL. This leads to the question
how these DSLs are tested and documented. Instances are important for testing a language.
They also play a key role in supporting learnability, which is widely considered an impor-
tant aspect of usability (International Organization for Standardization 2018). In the context
of DSLs, examples are recommended both in expert guidelines (Völter 2009) and in empiri-
cal studies, which show that novice users frequently start by modifying existing examples
when learning a language (Rennels and Chasins 2023). Similarly, language documentation,
e.g., tutorials, rely on example instances, the most famous being variations of “Hello World”
that are used to introduce language users to basic language concepts and allow them to

1 3

Page 31 of 43  48

Empirical Software Engineering (2026) 31:48

get started learning a language. Thus, it is unclear how testing and documentation through
example instances is done for most of the languages in the found repositories. On the other
hand, it is possible that the instances are stored outside of the DSL’s main repository. This
would be explainable with the architectural setup of Xtext, in which language developers
use separate Eclipse instances and associated workspaces to edit and to test the language
definition. Hence, language definition artifacts (grammars and metamodels) are stored in
different workspaces than example cases, and language engineers need to invest dedicated
effort in order to make available example cases together with the language definitions. Still,
this hints that there is a difference to the practices in other open source software systems,
where tests are often stored in the same repository as the code and documentation is at least
linked from the repository.

Beyond the documentation and instance coverage issues identified above, our analysis
reveals a methodological limitation: we did not systematically examine formal testing prac-
tices for DSL development. Modern software engineering emphasizes comprehensive test-
ing strategies, including unit tests, integration tests, and validation rules, yet our repository
analysis focused primarily on core DSL artifacts (grammars, metamodels, and instances).
This means we cannot determine the extent to which Xtext-based DSL projects employ
formal testing methodologies or maintain comprehensive test suites. Given the critical role
of testing in maintaining software quality and facilitating evolution—particularly relevant
given our findings on frequent DSL changes—investigating DSL testing practices repre-
sents an important area for future research. Understanding how DSL developers ensure code
quality and reliability could inform the development of better tooling and methodologies
specifically tailored for DSL testing and validation.

6.2.2  Is There Missing Support to Version Xtext Projects?

In RQ1, we found that out of the 280 repositories that did not contain Xtext files, a num-
ber of them contained other MDE artifacts. Specifically, 9 repositories contain at least one
Ecore metamodel but no Xtext files. Possible explanations for these cases are: First, the
repository owners were aiming at a metamodel-driven scenario, but did not complete the
definition of the grammar. Second, the repository owners created the Xtext files from an
Ecore metamodel, and generated them into a different directory that was not included in the
repository. Similarly, three of these repositories contain MWE files and two contain instance
files, however, these repositories are often incomplete, as can be discovered by importing
them into Eclipse, which leads to error messages. This observation goes hand-in-hand with
the observation above that test instances require other Eclipse instances and, thus, other
workspaces, which are likely to not be versioned together with the DSL itself. Future work
needs to investigate whether the architecture of eclipse/Xtext makes it more difficult to
access proper version management and establish the requirements for more suitable version
management systems to support DSL development.

6.2.3  Is Xtext Only Used for DSLs Built for Software Developers?

The distribution of DSL domains reveals a strong focus on domains where the expected
user are computer scientists or software developers themselves. Only surprisingly few of
the DSLs are from other domains, e.g., Healthcare and Life Sciences, or DSLs for develop-

1 3

 48   Page 32 of 43

Empirical Software Engineering (2026) 31:48

ment of questionnaires. This is remarkable, as one purpose of DSLs is to make program-
ming accessible to domain experts that are not classical programmers. The results could be
explained in two ways: It is, of course, possible that these results are representative of how
DSLs are distributed. In this case, it would be worthwhile investigating why DSLs are not
used or worth using in other domains. However, more likely, the results are due to our scope,
that is, our focus on open-source DSLs built with Xtext. First, our focus on GitHub might
be a factor of bias, as for non-PL domains, there might be a stronger impact of business
considerations that prevent an open source publication of DSLs. Second, DSLs for domains
outside computer science could be inherently less likely to be built with Xtext. The question
is whether the same might hold for other DSL frameworks, like Langium (GmbH 2024), or
whether those DSLs are mostly built without the use of language frameworks. This would
imply that these DSLs are potentially even more vulnerable to issues like language evolu-
tion, a topic addressed in research for DSLs build on concepts such as MOF-like metamod-
els (Hebig et al. 2016a). These observations raise an important question for the language
engineering community – particularly those developing DSL tooling such as Xtext and, to
the extent our findings apply to them, other workbenches – regarding the accessibility and
applicability of our frameworks to engineers and researchers in domains beyond software
development. Future work is needed to answer the question how DSLs for non-computer-
science domains are built and investigate the consequences of that.

A related pattern emerges when considering the longevity of DSL projects. Among the
repositories that remain active in recent years, a noticeable concentration of programming-
language-like DSLs can be observed. This aligns with the technical orientation of the
domains discussed above, but also raises further questions. Specifically, we see two plau-
sible explanations for this pattern. First, it may reflect the nature of Xtext as a language
workbench that is particularly well-suited for DSLs with rich, structurally complex syntax,
which are commonly found in programming-language-like DSLs. Such DSLs benefit more
directly from Xtext’s advanced editor support and validation infrastructure, increasing the
incentive to maintain them over time. Additionally, these DSLs are often central infrastruc-
tural components in larger software ecosystems, which further contributes to their sustained
development. Second, this pattern may signal a broader limitation in tooling sustainability.
DSLs with simpler or less programming-like syntax - typical for application-specific or non-
technical domains - may receive less long-term support not due to lack of utility, but due
to a mismatch between their needs and the capabilities or complexity of available language
workbenches. This observation suggests a need for tool developers to more explicitly con-
sider sustainability and usability concerns across a broader range of DSL types. We reflect
this in our conclusion as a key direction for future research.

6.2.4  What is The Compliance Relationship Between Artifacts in Practice?

Our comprehensive dataset paves the way for future research on language development
and evolution, especially for detailed studies of language evolution extended on RQ4. In
this paper, we have conducted preliminary research on the co-changes of different language
artifacts in the same repository, but have not yet analyzed the actual compliance relation-
ship between these language artifacts. For example, we found many cases where Ecore files
and Xtext files co-evolve in the same repository, but it is not clear whether the Xtext file
complies with the Ecore file and vice versa. Finding repositories with such scenarios of co-

1 3

Page 33 of 43  48

Empirical Software Engineering (2026) 31:48

changes of different artifacts allows us to focus future work on a smaller set of repositories.
In addition, this repository collection can help us find suitable case languages more quickly
for developing and studying tools for grammar and instance co-evolution, ultimately foster-
ing more robust and adaptable languages.

6.2.5  Broader Relevance to Textual DSL Development

The grammar-instance co-evolution patterns we documented in Xtext-based projects appear
to represent broader challenges in textual DSL development. Examination of selected repos-
itories using other language development technologies reveals comparable coordination
challenges between language definitions and their instances. For example, the repository
“DescribeML”8 develops a DSL based on Langium, whose grammar evolves on Feb 16,
2023, and its corresponding instances also evolve at the same time. This demonstrates that
the fundamental challenge of maintaining consistency between evolving language specifi-
cations and existing instance files transcends specific technological implementations. This
suggests that the co-evolution patterns and maintenance challenges we identified in the
Xtext context reflect more general phenomena in textual DSL development.

Similarly, the retrofitting phenomenon we observed — where existing languages are
implemented in new language workbenches — represents a broader trend in language eco-
system evolution. Evidence of comparable retrofitting activities can be found across differ-
ent language development technologies, as seen in repositories such as “vscode-sysml-v2”9,
its authors implemented the language SysML in Langium, which is a typical retrofitting
activity. There is a similar situation in textX, such as in the repository “usysml-textx”10, its
authors implemented a subset of the language SysML in textX.

These observations, combined with our systematic repository mining methodology, sug-
gest that our analytical approaches and findings about DSL development challenges have
relevance beyond the Xtext context, providing directions for future comparative studies
across different language workbench ecosystems.

Beyond the transferability of our findings, we also see potential for adapting our method-
ology to other language frameworks. While our study focused on Xtext-based projects, the
underlying approach—mining repositories, classifying artifacts, identifying instance usage,
and analyzing co-evolution via commit history—relies on patterns that are not tied to a
specific framework. Adapting the method to other technologies, such as Langium, textX,
or classical tooling like ANTLR, would primarily require adjusting the file identification
logic (e.g., targeting .g4 files for ANTLR), instance detection strategies, and possibly
workflow inference mechanisms. The core structure of our analysis remains applicable,
supporting future comparative studies across diverse DSL ecosystems. Some research ques-
tions, such as artifact availability (RQ2) and co-evolution dynamics (RQ4), are broadly
transferable. Others, such as the development scenarios in RQ3, are more specific to Xtext,
which involves managing both a grammar and a metamodel that may co-evolve and require
synchronization. In frameworks without this dual-artifact structure, this aspect of RQ3 may
need to be reformulated or dropped.

8 https://github.com/SOM-Research/DescribeML
9 ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​E​D​​K​a​r​l​s​​s​o​n​/​v​​s​c​o​d​e​-​​s​y​s​m​​l​-​v​2

10 ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​i​​g​o​r​d​e​​j​a​n​o​v​​​i​c​/​u​s​​y​s​​m​l​​-​t​e​x​t​x

1 3

 48   Page 34 of 43

https://github.com/SOM-Research/DescribeML
https://github.com/EDKarlsson/vscode-sysml-v2
https://github.com/igordejanovic/usysml-textx

Empirical Software Engineering (2026) 31:48

6.2.6  What is The Impact of Tool Evolution on DSL Development?

Our study focuses on DSL language evolution without considering the evolution of under-
lying language workbench tools themselves. Tool evolution, such as major version transi-
tions in DSL frameworks, represents an important dimension of complexity that can force
developers to migrate or recreate their DSLs (Brambilla and Fraternali 2014). Industrial
experiences have shown that maintaining DSL projects across tool versions requires care-
ful planning for extensibility and automated migration support from the beginning of DSL
design (Brambilla and Fraternali 2014). Understanding how tool evolution affects DSL
development practices and what support mechanisms are needed for smooth DSL migration
across tool versions represents an important area for future investigation.

6.3  Threats to Validity

Threats to internal validity  arise from us relying on the GitHub API. Since we cannot access
the implementation of the GitHub API, we cannot verify completeness: the implementation
could be inexact, which could lead to repositories not being captured by our query. As a
safeguard, we checked whether a total of three expected repositories personally known to
us appeared in our results, which was the case. Nevertheless, anecdotally, a colleague to
whom we made available our dataset informed us about a project that was not part of it.
Still, our findings that arise from a substantial number of cases and highlight the existence
of understudied phenomena—metamodel-based evolution, retrofitting, long-living Xtext
projects–do not require completeness to be valid.

Furthermore, repositories can be duplicates of each other, which might bias the results.
For our language -classified repositories, which we investigate in RQ2 and RQ3, we checked
that this is not the case and can exclude duplicates. To this end, we relied on the assump-
tion that duplicate repositories will generally share the same name, as they are named after
the contained language. For those cases where repositories indeed had the same name, we
manually validated that they are indeed not duplicates. For the experimental/personal cat-
egory, which generally does not make any statements about the quality about the included
repositories, anecdotally, some repositories have the same contents as others, potentially
arising from having followed the same tutorial with the basic Xtext examples.

In addition, in Step 5, we manually judged the domain of the repositories and the cat-
egories they belonged to. Potential bias posed an internal threat, so for each data, we used
another person’s review to reduce the bias of manual judgment. Similarly, we manually
judged the type of commits in Step 7, which may also be biased. We had a second person to
take a sample review to reduce bias.

Threats to external validity  Considering external validity, a limitation of our study is that
patterns extracted from GitHub cannot be assumed to generalize to all language engineering
contexts. In particular, organizational or proprietary DSLs may follow different evolution
dynamics that are not visible in our dataset. Our findings therefore reflect how DSLs are cre-
ated and evolved in open-source repositories on GitHub, and their relevance for other envi-
ronments must be interpreted with caution. At the same time, GitHub provides a uniquely
systematic and reproducible basis for large-scale analysis, making it an appropriate and valu-
able source for identifying recurring practices and challenges in an area of DSL evolution.

1 3

Page 35 of 43  48

Empirical Software Engineering (2026) 31:48

Furthermore, our scope is restricted to Xtext, a widely used technology in the MDE com-
munity. There is a larger variety of existing language workbenches (Erdweg et al. 2015),
not all of which might equally benefit from our findings. The results from our study could
be transferable to other workbenches that use a similar strategy for separating abstract and
concrete syntax specification like Xtext, such as textX and langium. Yet, transferring our
results to language workbenches that employ an entirely different paradigm (e.g., in the case
of MPS, projectional editing) might be infeasible. We further explore questions of transfer-
rability of our results elsewhere in this section, e.g., in Sections 6.2.3 and 6.2.5.

Additionally, our analysis is restricted to artifacts co-located within the same repository,
leaving an assessment of instance availability (RQ2.2) and co-evolution patterns (RQ4.3)
in separate downstream repositories outside our scope. Our finding that two-thirds of lan-
guage repositories lack textual instances may reflect our analysis scope, as instances could
be maintained separately in private repositories or enterprise applications not captured by
our approach. However, in that case, they would be harder to discover by novice users in the
motivating scenarios for our scoping decision.

Threats to construct validity  Considering construct validity, to mitigate the impact of sub-
jectivity on our classification, we extensively discussed the criteria and problematic cases
and eventually found consensus for all of them. Our classification further relies on docu-
mentation provided by the repository owners, which might not always be accurate or com-
plete, leading to two consequences: First, we did not investigate whether repositories were
from industry or academia, which generally was infeasible to tell from the documentation.
Second, some of our language-classified repositories, in particular, among those classified
as retrofitting, might be exclusively intended for self-teaching or demonstration purposes,
but this context is unavailable to us. Users of our dataset are advised to use it in a way that
makes sure that their assumptions are met, for example, taking into account our collected
change history meta-information to identify cases with a rich evolution history. Another
threat that could explain the dominance of software development-related DSLs is our search
focus on GitHub. It is possible that we systematically miss out on other types of DSLs, as
these might not be hosted there, e.g., due to business considerations.

In addition, a threat to construct validity exists in our approach to identifying DSL evo-
lution through commit time intervals. We use time intervals between commits (more than
30 days for evolution, fewer than five days for co-evolution changes and rapid iterations
on Xtext files) as a proxy for identifying evolutionary changes. However, this measure-
ment approach may not fully capture the actual nature of DSL evolution. Depending on
the process stage (e.g., during maintenance) evolutionary changes could occur within short
time intervals (< 30 days), leading to false negatives. Conversely, long intervals between
commits (>30 days) might not necessarily represent true evolutionary changes, potentially
resulting in false positives. This threatens the construct validity of our study as the temporal
proximity of commits may not always accurately reflect the nature of the changes made to
the DSL. To address this threat in our future work, we plan to combine multiple evolution
indicators beyond commit intervals, including qualitative analysis of change types, expert
reviews of the modifications, and in-depth case studies to establish more robust evolution
identification criteria. In particular, distinguishing between semantically minor changes

1 3

 48   Page 36 of 43

Empirical Software Engineering (2026) 31:48

(e.g., metadata edits) and more substantial ones (e.g., grammar refactorings) would pro-
vide valuable nuance. This could be supported by fine-grained, possibly AST-level, change
analysis to better capture the scope and impact of individual evolution steps.

Furthermore, our analysis focused solely on commits in the master branch, without exam-
ining branching strategies and pull request workflows. This represents a threat to construct
validity, as some evolution activities may occur in feature branches, client-specific branches,
or collaborative workflows, and evolutions merged via squashed commits may not be vis-
ible. Conversely, master-branch histories may also include commit sequences shaped by
prior branch-level development, meaning that some activities are reflected in a less granular
form. An additional analysis of the 226 repositories considered in the evolution study (RQ4)
indicates that branching activity was generally low (mean: 2.11 branches, median: 1.0, with
only 4.9% of repositories having more than five branches), though notable exceptions such
as yaktor-dsl-xtext (37 branches, mostly release branches) and MetaCrySL (17
branches, mostly feature branches) demonstrate that more extensive branching is possible.
Taken together, these observations imply that our findings characterize DSL evolution as
captured on the master branch of GitHub-hosted Xtext projects, which we consider the
canonical evolution history. Future work could complement this perspective by analyzing
collaborative development patterns in branches and pull requests.

Additionally, our file search methodology identifies artifacts by current location rather
than tracking file path changes over time, which could lead to some evolution steps being
missed by our analysis. However, we argue the impact of this limitation is likely minimal for
two reasons: First, large-scale refactoring involving file relocations appears to be relatively
rare in the DSL repositories we examined, as most follow standard Xtext project structures.
Second, our analysis focuses on identifying patterns and trends across a large dataset rather
than achieving complete coverage of every evolution step. Missing some evolution activi-
ties due to file relocations would not fundamentally alter our key findings about develop-
ment scenarios, artifact co-evolution patterns, or the prevalence of different change types.

Two threats arise in the context of our classification efforts. First, our use of LLMs for
a specific step in our characterization of domains for RQ1.2 – namely, the identification of
categories to group our manually identified domains – leads to a threat of potential accuracy
issues. We describe the mitigation of this threat in Section 4.3.2. Second, during our manual
labeling of evolution steps for RQ4.2, we might have mislabeled some of the observed
perfective changes, as the improvement (which we observed from commit message and
code differences) could actually be the consequence of a previous misunderstanding of the
domain, which then would make a characterization as corrective more appropriate. Such
cases would be infeasible for us to detect, as we cannot access that context.

7  Conclusion

This study provides the first large-scale empirical investigation into the development and
evolution of Xtext-based DSLs on GitHub, analyzing 1002 repositories and manually clas-
sifying 226 of them as containing fully developed languages. We addressed four research
questions, covering repository characteristics, artifact availability, development scenarios,
and patterns of evolution and co-evolution. We formulate the following key insights:

1 3

Page 37 of 43  48

Empirical Software Engineering (2026) 31:48

	– In our corpus, Xtext-based DSLs are predominantly developed by and for software
engineers, with only limited adoption in non-programming domains. This challenges
the long-held goal of DSLs as tools for empowering domain experts beyond computer
science.

	– In our data, grammar-driven development remains the dominant workflow, but a signifi-
cant minority of projects still rely on metamodel-driven approaches, underscoring the
need for improved co-synchronization support.

	– Within our corpus, retrofitting of existing languages into Xtext is a frequent practice,
indicating that DSL frameworks are not only used to create new languages but also to
re-implement and maintain legacy or external ones.

	– Across the analyzed repositories, evolution is frequent and ongoing, with many DSLs
undergoing multiple substantial changes over time. Most evolution activities are per-
fective, rather than corrective or adaptive, suggesting that DSLs are actively extended
rather than merely patched.

From our insights, we derive the following recommendations to tool builders and
practitioners:

	– Tooling should prioritize evolution support, particularly for synchronizing grammar,
metamodel, and instance files. Co-evolution remains largely manual, especially for tex-
tual DSLs such as Xtext.

	– Frameworks should improve accessibility and onboarding, particularly for users out-
side the programming domain. This may include reducing technical barriers, improving
documentation, and providing templates aligned with domain expert needs.

	– Given the frequency of retrofitting observed in our data, frameworks could offer more
streamlined workflows, templates, or migration paths tailored to the reimplementation
of existing languages.

We foresee the following directions for future work. First, understanding DSLs in com-
plimentary contexts, in particular, non-open-source and non-software-engineering ones,
is crucial. Our study is limited to public GitHub repositories using Xtext; how DSLs are
developed in other domains or using other frameworks (e.g., Langium, ANTLR, textX)
remains an open question. Second, automated support for identifying and classifying evolu-
tion activities, beyond heuristics based on time or file changes, could enable more accurate
tracking of language growth and maintenance needs. Third, investigating retrofitting as a
broader phenomenon across language workbenches may shed light on how tool ecosystems
can better support incremental adoption and legacy integration. Fourth, analyzing usage pat-
terns in downstream repositories that rely on these DSLs could provide a richer understand-
ing of the practical impact and stability of language artifacts, particularly considering how
these repositories evolve in response to changes in the language.

By releasing our dataset and analysis scripts, we aim to support further empirical stud-
ies and tool development for Xtext-based and similar textual DSL ecosystems. We hope
this work contributes to a more evidence-based foundation for designing, maintaining, and
evolving DSLs in practice.

Author Contributions  Author One participated in the methodological design, data collection, results analysis,
and writing, and developed various scripts required to implement the data collection process. Author Two

1 3

 48   Page 38 of 43

Empirical Software Engineering (2026) 31:48

proposed the topic of this article and participated in the methodological design, data collection, results analy-
sis, and writing. Author Three participated in data collection and writing.

Funding  Open access funding provided by University of Gothenburg. This research received no external
funding.

Data Availability  The data is fully open in Zhang et al. (2025).

Declarations

Conflicts of Interest  The authors declare that they have no conflict of interest.

Ethical Approval  This study does not involve any human participants or animals.

Informed Consent  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akesson B, Hooman J, Sleuters J, Yankov A (2020) Reducing design time and promoting evolvability using
domain-specific languages in an industrial context. In: Model Management and Analytics for Large
Scale Systems, Elsevier, pp 245–272

Babur Ö, Constantinou E, Serebrenik A (2024) Language usage analysis for EMF metamodels on GitHub.
Empir Softw Eng 29(1):23

Bettini L (2016) Implementing domain-specific languages with Xtext and Xtend, second edition edn. Packt
Publishing Ltd., Birmingham, UK, first published: August 2013, Second Edition: August 2016

Brambilla M, Fraternali P (2014) Large-scale model-driven engineering of web user interaction: The webml
and webratio experience. Sci Comput Program 89:71–87

Budacu E, Pocatilu P (2018) Real-time agile metrics for measuring team performance. Inf Econ 22(4):71–79
Chen B, Yi F, Varró D (2023) Prompting or fine-tuning? a comparative study of large language models for

taxonomy construction. In: 2023 ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), IEEE, pp 588–596

Damasceno CDN, Strüber D (2021) Quality guidelines for research artifacts in model-driven engineering.
In: MODELS, pp 285–296

Denkers J (2024) Domain-specific languages for digital printing systems. Phd thesis, Delft University of
Technology

Deursen AV, Klint P (1998) Little languages: little maintenance? J Softw Maint Res Pract 10(2):75–92
Di Ruscio D, Iovino L, Pierantonio A (2013) A methodological approach for the coupled evolution of

metamodels and ATL transformations. In: ICMT, pp 60–75
Di Ruscio D, Di Salle A, Iovino L, Pierantonio A (2023) A modeling assistant to manage technical debt in

coupled evolution. IST 156:107146
Diebold P, Ostberg JP, Wagner S, Zendler U (2015) What do practitioners vary in using scrum? In: Proceed-

ings of the 16th International Conference on Agile Processes in Software Engineering and Extreme
Programming (XP 2015), Springer, Helsinki, Finland, pp 40–51

Erdweg S, Van Der Storm T, Völter M, Tratt L, Bosman R, Cook WR, Gerritsen A, Hulshout A, Kelly S, Loh
A et al (2015) Evaluating and comparing language workbenches: Existing results and benchmarks for
the future. COMLAN 44:24–47

1 3

Page 39 of 43  48

http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2026) 31:48

Favre JM, Lämmel R, Varanovich A (2012) Modeling the linguistic architecture of software products. In:
MODELS, pp 151–167

García J, Diaz O, Azanza M (2012) Model transformation co-evolution: A semi-automatic approach. In: SLE,
pp 144–163

GitHub Docs (2025a) About forks. ​h​t​t​p​s​:​​/​/​d​o​c​​s​.​g​i​t​h​​u​b​.​c​​o​m​/​e​n​​/​p​u​l​l​​-​r​e​q​u​e​​s​t​s​/​​c​o​l​l​a​​b​o​r​a​t​​i​n​g​-​w​i​​t​h​-​p​​u​l​l​-​r​​e​q​u​e​s​​t​s​
/​w​o​r​​k​i​n​g​​-​w​i​t​h​-​f​o​r​k​s​/​a​b​o​u​t​-​f​o​r​k​s, accessed: 2025-10-02

GitHub Docs (2025b) About stars. ​h​t​t​p​s​:​​/​/​d​o​c​​s​.​g​i​t​h​​u​b​.​c​​o​m​/​e​n​​/​r​e​s​t​​/​a​c​t​i​v​​i​t​y​/​​s​t​a​r​r​i​n​g, accessed: 2025-10-02
GmbH T (2024) Langium. https://langium.org
Gousios G, Spinellis D (2017) Mining software engineering data from GitHub. In: ICSE Companion, pp

501–502
Hebig R, Khelladi DE, Bendraou R (2016) Approaches to co-evolution of metamodels and models: A survey.

IEEE TSE 43(5):396–414
Hebig R, Quang TH, Chaudron MRV, Robles G, Fernandez MA (2016b) The quest for open source projects

that use UML: mining GitHub. In: MODELS, p 173–183
Herrmannsdoerfer M, Benz S, Juergens E (2009) COPE-automating coupled evolution of metamodels and

models. In: ECOOP, pp 52–76
International Organization for Standardization (2018) ISO 9241-11:2018 – Ergonomics of human-system

interaction – Part 11: Usability – Definitions and concepts. https://www.iso.org/standard/63500.html,
accessed: 2025-07-06

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils
of mining GitHub. In: MSR, pp 92–101

Kessentini W, Alizadeh V (2020) Interactive metamodel/model co-evolution using unsupervised learning and
multi-objective search. In: MODELS, pp 68–78

Khelladi DE, Rodriguez HH, Kretschmer R, Egyed A (2017) An exploratory experiment on metamodel-
transformation co-evolution. In: APSEC, pp 576–581

Kögel S, Tichy M (2018) A dataset of EMF models from Eclipse projects. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​8​7​2​5​/​O​P​A​R​
U​-​9​8​5​0​​​​​​​

Kosar T, Bohra S, Mernik M (2016) Domain-specific languages: A systematic mapping study. IST 71:77–91
Kusel A, Etzlstorfer J, Kapsammer E, Retschitzegger W, Schwinger W, Schönböck J (2015) Consistent co-

evolution of models and transformations. In: MODELS, pp 116–125
Lämmel R (2016) Coupled software transformations—revisited. In: Software Language Engineering (SLE),

pp 239–252
Lämmel R (2018) Software Languages: Syntax, Semantics, and Metaprogramming, 1st edn. Springer Cham,

Cham, https://doi.org/10.1007/978-3-319-90800-7
Lientz BP, Swanson EB (1980) Software maintenance management. Addison-Wesley Longman Publishing

Co., Inc
López JAH, Cuadrado JS (2022) An efficient and scalable search engine for models. Softw Syst Model

21(5):1715–1737
López JAH, Cánovas Izquierdo JL, Cuadrado JS (2022) ModelSet: a dataset for machine learning in model-

driven engineering. Softw Syst Model pp 1–20
Mengerink JG, van der Sanden B, Cappers BC, Serebrenik A, Schiffelers RR, van den Brand MG (2018)

Exploring DSL evolutionary patterns in practice: a study of DSL evolution in a large-scale industrial
DSL repository. In: MODELSWARD, pp 446–453

Mengerink JG, Noten J, Serebrenik A (2019) Empowering OCL research: a large-scale corpus of open-source
data from github. Empir Softw Eng 24:1574–1609

Paik J, Wallin T (2020) How to write better documentation for your open source project. ​h​t​t​p​s​:​​/​/​o​p​e​​n​s​o​u​r​c​​e​.​
c​o​​m​/​a​r​t​​i​c​l​e​/​​2​0​/​8​/​d​​o​c​u​m​​e​n​t​a​t​​i​o​n​-​o​​p​e​n​-​s​o​​u​r​c​e​​-​p​r​o​j​e​c​t​s, accessed: 2025-10-04

Paulk MC (2013) A scrum adoption survey. Softw Qual Profession 15(2):27–34
Priefer D, Rost W, Strüber D, Taentzer G, Kneisel P (2021) Applying MDD in the content management sys-

tem domain. Softw Syst Model 20(6):1919–1943
Radevski S, Hata H, Matsumoto K (2016) Towards building api usage example metrics. In: 2016 IEEE

23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), IEEE,
pp 46–56. https://doi.org/10.1109/SANER.2016.79

Ratiu D, Nehls H, Joanni A, Rothbauer S (2021) Use mps to unleash the creativity of domain experts: Lan-
guage engineering is a key enabler for bringing innovation in industry. In: Domain-Specific Languages
in Practice: with JetBrains MPS, Springer, pp 25–52

Rennels L, Chasins SE (2023) How domain experts use an embedded dsl. Proceed ACM Program Languages
7(OOPSLA2):1499–1530

Robles G, Chaudron MR, Jolak R, Hebig R (2023) A reflection on the impact of model mining from GitHub.
Inf Softw Technol 164:107317

1 3

 48   Page 40 of 43

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/about-forks
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/about-forks
https://docs.github.com/en/rest/activity/starring
https://langium.org
https://www.iso.org/standard/63500.html
https://doi.org/10.18725/OPARU-9850
https://doi.org/10.18725/OPARU-9850
https://doi.org/10.1007/978-3-319-90800-7
https://opensource.com/article/20/8/documentation-open-source-projects
https://opensource.com/article/20/8/documentation-open-source-projects
https://doi.org/10.1109/SANER.2016.79

Empirical Software Engineering (2026) 31:48

Rust Project Developers (2024) Rustdoc: Documentation tests. ​h​t​t​p​s​:​​/​/​d​o​c​​.​r​u​s​t​-​​l​a​n​g​​.​o​r​g​/​​r​u​s​t​d​​o​c​/​w​r​i​​t​e​-​d​​o​c​u​
m​e​​n​t​a​t​i​​o​n​/​d​o​c​​u​m​e​n​​t​a​t​i​o​n​-​t​e​s​t​s​.​h​t​m​l, accessed: 2025-10-04

Schuts M, Alonso M, Hooman J (2021) Industrial experiences with the evolution of a dsl. In: Proceedings of
the 18th ACM SIGPLAN International Workshop on Domain-Specific Modeling, pp 21–30

Shrestha SL, Boll A, Chowdhury SA, Kehrer T, Csallner C (2023) Evosl: a large open-source corpus of
changes in simulink models & projects. In: MODELS, pp 273–284

Stahl T, Völter M (2006) Model-driven software development: technology, engineering, management. John
Wiley & Sons

Steinberg D, Budinsky F, Merks E, Paternostro M (2008) EMF: Eclipse Modeling Framework. Pearson
Education

Thanhofer-Pilisch J, Lang A, Vierhauser M, Rabiser R (2017) A systematic mapping study on DSL evolution.
In: SEAA, pp 149–156

Tratt L (2008) Evolving a DSL Implementation, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 425–441.
https://doi.org/10.1007/978-3-540-88643-3_11

Vaupel S, Strüber D, Rieger F, Taentzer G (2015) Agile bottom-up development of domain-specific IDEs for
model-driven development. In: FlexMDE, pp 12–21

Völter M (2009) Best practices for dsls and model-driven development. J Object Technol 8(6):79–102
Völter M, Benz S, Dietrich C, Engelmann B, Helander M, Kats L, Visser E, Wachsmuth G (2013) DSL

Engineering - Designing, implementing and using domain-specific languages. M Volter / DSLBook.
org, nEO

Wachsmuth G (2007) Metamodel adaptation and model co-adaptation. In: European conference on object-
oriented programming, Springer, pp 600–624

Zaytsev V (2014) Negotiated grammar evolution. J Object Technol 13(3):1–1
Zhang W (2023) Towards automated support for the co-evolution of meta-models and grammars. Licentiate

thesis, University of Gothenburg, Sweden
Zhang W, Strüber D (2024) Tales from 1002 repositories: Development and evolution of xtext-based

dsls on github. In: SEAA’24: Euromicro Conference Series on Software Engineering and Advanced
Applications

Zhang W, Hebig R, Strüber D, Steghöfer JP (2023a) Automated extraction of grammar optimization rule
configurations for metamodel-grammar co-evolution. In: SLE, pp 84–96

Zhang W, Steghöfer JP, Hebig R, Strüber D (2023b) A rapid prototyping language workbench for textual
DSLs based on Xtext: Vision and progress. arXiv:2309.04347

Zhang W, Holtmann J, Strüber D, Hebig R, Steghöfer JP (2024) Supporting meta-model-based language
evolution and rapid prototyping with automated grammar transformation. JSS 214

Zhang W, Strüber D, Hebig R (2025) Dataset for ’Development and evolution of Xtext-based DSLs on
GitHub: An empirical investigation’. https://osf.io/n5kfr/

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

1 3

Page 41 of 43  48

https://doc.rust-lang.org/rustdoc/write-documentation/documentation-tests.html
https://doc.rust-lang.org/rustdoc/write-documentation/documentation-tests.html
https://doi.org/10.1007/978-3-540-88643-3_11
http://arxiv.org/abs/2309.04347
https://osf.io/n5kfr/

Empirical Software Engineering (2026) 31:48

Weixing Zhang  became a postdoctoral researcher in the SDQ group at
the Karlsruhe Institute of Technology in October 2025. He received his
master's degree from Beijing Jiaotong University in 2013 and received
his Ph.D. degree from the University of Gothenburg in October 2025.
His research fields inlude Model-Driven Development and Domain-
Specific Languages, empirical software engineering, and AI4SE. He
once worked as a software engineer in the industry for seven years and
has extensive software development skills.

Daniel Strüber  is an associate professor at Chalmers and University at
Gothenburg, Sweden, and an assistant professor at Radboud University in
Nijmegen, the Netherlands. His research interests are in model-driven engi-
neering, AI engineering, and variant-rich systems. He was awarded his doc-
toral degree from Philipps University Marburg, Germany, and worked as a
post-doctoral researcher at University of Koblenz and Landau, Germany,
and Gothenburg University, Sweden. He is a co-author of over 100 papers
with six Best Paper Awards. He has been a Program Committee member of
several leading conferences, including ICSE, ASE, MODELS, and a Pro-
gram Chair of premier community venues, such as SPLC and ICGT.

Regina Hebig  is Professor for Software Engineering at the University
of Rostock, Germany. Her research interests include software evolu-
tion, AI4SE, software modelling, and software processes. She did her
PhD at the University of Potsdam, Germany, in 2014 and her docent
degree at the University of Gothenburg in 2019, where she worked as
an Associate Professor until her change to Rostock in 2023.

1 3

 48   Page 42 of 43

Empirical Software Engineering (2026) 31:48

Authors and Affiliations

Weixing Zhang1 · Daniel Strüber1,2 · Regina Hebig3

	
 Weixing Zhang
weixing.zhang@gu.se

Daniel Strüber
danstru@chalmers.se

Regina Hebig
regina.hebig@uni-rostock.de

1	 Chalmers | University of Gothenburg, Gothenburg, Sweden
2	 Radboud University, Nijmegen, Netherlands
3	 University of Rostock, Rostock, Germany

1 3

Page 43 of 43  48

http://orcid.org/0000-0003-2890-6034

	﻿Development and evolution of Xtext-based DSLs on GitHub: an empirical investigation
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Background
	﻿2.1﻿ ﻿Xtext
	﻿﻿2.2﻿ ﻿Development Workflows and Scenarios
	﻿﻿2.3﻿ ﻿Software Maintenance Intentions

	﻿﻿3﻿ ﻿Related Work
	﻿3.1﻿ ﻿DSL Evolution
	﻿3.2﻿ ﻿Mining

	﻿﻿4﻿ ﻿Methodology
	﻿4.1﻿ ﻿Step 1: Data Collection
	﻿4.2﻿ ﻿Step 2: Repository Cloning
	﻿﻿4.3﻿ ﻿Step 3: Classification
	﻿4.3.1﻿ ﻿Classification of Repositories
	﻿﻿4.3.2﻿ ﻿Domain Identification and Categories

	﻿﻿4.4﻿ ﻿Step 4: File Search
	﻿4.4.1﻿ ﻿Xtext/Ecore/MWE2 File Search
	﻿4.4.2﻿ ﻿Instance Search

	﻿4.5﻿ ﻿Step 5: Analyze the Usage of Grammar Rules
	﻿4.6﻿ ﻿Step 6: Scenario Judgement
	﻿4.7﻿ ﻿Step 7: Analyze Evolution
	﻿﻿5﻿ ﻿Results
	﻿5.1﻿ ﻿RQ1: Are There GitHub Projects That Use Xtext? Which are These Projects?
	﻿5.1.1﻿ ﻿RQ1.1: How Can These Repositories be Categorized?
	﻿5.1.2﻿ ﻿RQ1.2: Which Trends Define The Application Domains of These DSLs in Recent Years?

	﻿5.2﻿ ﻿RQ2: What Language Artifacts for Xtext-Based DSLs do These Repositories Contain?
	﻿﻿5.2.1﻿ ﻿RQ2.1: What Main Language Definition Artifacts do These Repositories Contain?
	﻿5.2.2﻿ ﻿RQ2.2: Do These Repositories Contain Both Grammars and Instances That Adhere to it?
	﻿5.2.3﻿ ﻿RQ2.3: To What Extent are Xtext Grammars Covered by Example Instances Contained in These Repositories?

	﻿5.3﻿ ﻿RQ3: Development Scenarios
	﻿5.4﻿ ﻿RQ4: How do Xtext-Based Languages on GitHub Evolve Over Time?
	﻿5.4.1﻿ ﻿RQ4.1: How Can Grammar Evolution in These Projects be Characterized Quantitatively?
	﻿﻿5.4.2﻿ ﻿RQ4.2: How Common are Different Types of Changes During The Evolution of Grammars?
	﻿5.4.3﻿ ﻿RQ4.3: How do Textual Instances co-Evolve with Grammar in Real Projects?

	﻿﻿6﻿ ﻿Discussion
	﻿﻿6.1﻿ ﻿Need for Approaches for co-Evolution in Textual DSL Evolution Contexts
	﻿﻿6.2﻿ ﻿Need for A Better Understanding of DSL Development in Practice
	﻿6.2.1﻿ ﻿What Testing and Documentation Practices are Used for The DSLs’ Development?
	﻿6.2.2﻿ ﻿Is There Missing Support to Version Xtext Projects?
	﻿﻿6.2.3﻿ ﻿Is Xtext Only Used for DSLs Built for Software Developers?
	﻿6.2.4﻿ ﻿What is The Compliance Relationship Between Artifacts in Practice?
	﻿﻿6.2.5﻿ ﻿Broader Relevance to Textual DSL Development
	﻿6.2.6﻿ ﻿What is The Impact of Tool Evolution on DSL Development?

	﻿6.3﻿ ﻿Threats to Validity
	﻿﻿7﻿ ﻿Conclusion
	﻿References

