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Manganese Cobalt oxide (MCO) coatings have been extensively studied for interconnect applications in solid
oxide fuel cells (SOFC). Nevertheless, Co is a critical raw material and efforts are taken to replace it. Ce/FeNi
coatings are proposed as an alternative and compared to Ce/Co on AISI 441. Chromium evaporation behaviour,
oxidation kinetics, interfacial fracture energy, and area-specific resistance (ASR) of the coating and steels were
investigated for up to 3,850 h at 850 °C. Ce/FeNi coatings were not found to be as effective as Ce/Co coatings in
preventing chromium evaporation. Nevertheless, Ce/FeNi coated steels showed 50 % lower parabolic rate

constant and ASR than Ce/Co coated steel. Additionally, the fracture energy of the adherence of the Ce/FeNi
coating to the steel was measured at 750 and 850 °C. The Ce/FeNi coating adherence to the steel greatly out-
performed the Ce/Co coating adherence. Furthermore, while the fracture energy of the Ce/Co coating decreases
with exposure time, it increases over time for the Ce/FeNi coating.

1. Introduction

Solid oxide cells (SOC) are high-temperature electrochemical de-
vices, which can be operated in either fuel cell mode as solid oxide fuel
cell (SOFC) or electrolyser mode as solid oxide electrolyser cell (SOEC).
SOFC are highly efficient in converting chemical energy stored in the
fuel to electricity [1]. Similarly, high-temperature electrolysis (HTE)
with solid oxide electrolysis cells is very effective in producing hydrogen
from steam, with efficiencies reported over 93 % HHV [2] (when sup-
plied with waste heat). SOFC and SOEC are being demonstrated globally
in numerous projects as part of a push for decentralised energy [3] and
hydrogen economy for a low-carbon society [4].

The interconnect is a vital component within the SOC stack, elec-
trically connecting individual cells while separating the fuel and air. The
reduction in the working temperature of SOC to the range of 600-850 °C
enables the use of metallic interconnects. Among all CryO3-forming al-
loys, ferritic stainless steels (FSS) are the most promising candidates
owing to their thermal expansion coefficient (TEC) compatibility with
other SOC components, electronic conductivity, formability and low
manufacturing cost. However, chromia scale growth and chromium
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evaporation are significant issues when using FSS interconnects. The
chromia scale growth increases resistance across the interconnect.
Additionally, Cry03 also reacts with Oy and Hy0O to form volatile
CrO2(OH),. CrO2(OH), is deposited at the triple-phase boundaries of the
air electrode in SOFC, blocking the oxygen reduction reaction, this
process being known as chromium poisoning [5]. The overall SOFC re-
action is exothermic and large amounts of air with ambient humidity are
needed to cool the system. In contrast, this is not needed in SOEC, only a
sweep gas might be introduced for safety. Hence, the oxygen side can be
very dry, provided no leakage occurs. Consequently, chromium evapo-
ration is not a foremost concern in SOEC. Despite low chromium evap-
oration in the SOEC atmosphere, it was reported that the chromium
contamination of the oxygen electrodes is a significant degradation in
the SOEC stacks [6]. The chromium contamination of the oxygen elec-
trodes may be due to solid-state diffusion [7] rather than chromium
evaporation. Nevertheless, the chromia scale growth and chromium
evaporation lead to Cr depletion in the steel, which may result in the
breakdown of the protective oxide over time. Hence, surface modifica-
tion, achieved through protective coatings is commonly suggested for
SOEC interconnects [8,9].
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The most studied coating material is MCO (Manganese Cobalt Oxide
(Mn,Co0)304). MCO-based coatings have been applied using various
techniques such as physical vapour deposition [10-12], sol-gel dip--
coating [13,14], electrophoretic deposition [15-18], electroplating [19,
20], screen printing [21,22], spray pyrolysis [23,24], inkjet printing
[25,26], thermal co-evaporation [27,28] and atmospheric plasma
spraying [29-31]. The (Mn,Co)304 spinel is very effective in reducing
chromium evaporation [8,32-35]. Reactive element (RE) coatings
combined with MCO coatings can improve the oxidation resistance of
the steel. Several authors [36,37] have shown that adding reactive el-
ements to MCO coatings has a beneficial effect, significantly reducing
chromia scale growth. Reactive elements such as Y, La, Ce, Zr, and Hf are
known to greatly reduce oxidation rate and improve scale adhesion of
Cry03 and Al;O3 forming alloys. The exact mechanism(s) behind this
effect are still debated but it is commonly suggested that these additions
impede cation transport through the oxide scale. For a more detailed
discussion the reader is referred to Refs. [38-40]. MCO coatings can be
produced by depositing metallic Co using the physical vapour deposition
(PVD) technique in a large-scale roll-to-roll coating process. Metallic Co
is converted into MCO. First, Co is oxidized to Co304 which during stack
operation is enriched by Mn from the steel substrate to form (Mn,
C0)304. MCO-based coatings have been shown to be highly effective and
stable for over 35,000 h [41,42]. Despite the advantages, cobalt com-
pounds can be toxic and harmful to the environment [43]. Moreover,
cobalt is defined by the EU as a critical raw material [44] and avoiding
Co would provide a significant advantage in terms of cost and material
handling.

Ni-based coatings applied using electrodeposition have been re-
ported in the literature [45-48]. The main issue with Ni-based coatings
is the transformation of the surface beneath the coating into austenite
[45,45,46,48]. Austenite possesses a face-centred cubic (FCC) structure,
and its TEC differs from FSS and SOC components [49]. The differences
in the TEC can lead to loss of contact with the oxygen electrode. Addi-
tionally, the diffusion rate of Cr in the FCC structure is considerably
lower than that in the body-centred cubic (BCC) structure [50,51],
which can lead to premature breakaway corrosion [47,48]. Due to the
potential impact of austenite formation on the durability and longevity
of the FSS, Ni-based coatings are not commonly used as protective
coatings for interconnects.

Nevertheless, Ni foam/mesh is commonly used on the fuel side as
contact between electrode and interconnect. Piccardo et al. [52] have
studied a metallic interconnect extracted from an SOFC stack after 40,
000 h of operation and found Ni diffusion into the interconnect from the
fuel side. Ni diffusion was not observed throughout the interconnect but
at the contact zones between the Ni foam and the interconnect. This
likely happened at the points where the Ni mesh is spot-welded to the
interconnect. Although no failure was detected, the authors noted that
the presence of an austenitic matrix that could potentially lead to failure
after operating for more extended periods, over 40,000 h [52].

Previous studies [53] have demonstrated that austenitic materials,
such as alloy 800H, form FeNi-rich oxides on the chromia scale upon
oxidation, leading to minimal Cr evaporation. A similar effect can be
achieved by applying a (Fe,Ni)304 spinel coating onto a ferritic stainless
steel. The TEC of NiFe;O4 spinel (10.8 x 10°° K1) is close to that of the
ferritic stainless steels (11 x 10°° K_l) [54]. The conductivity of
NiFe;04 spinel (0.26 S cm™?) is significantly lower than the MnCo,04
(60 S cm’l) at 800 °C [54]. Nevertheless, the conductivity of the
NiFe304 spinel is much higher than the Cr,O3 scale (0.001-0.05 S em™)
[55,56]. Goebel et al. [10] and Reddy et al. [34] have shown that the
conductivity and thickness of the coating do not influence the
area-specific resistance (ASR) as the CryOg3 scale dominates the ASR of
interconnects. The above attributes make FeNi oxide (FNO) coatings
potentially suitable as protective coatings for interconnects. Thus, FNO
based coatings [12,57-61] have been studied for the interconnect
application.

None of the studies mentioned above has quantitatively determined
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the effectiveness of these coatings in mitigating chromium evaporation.
The chromium evaporation behaviour of most FNO-based coatings was
discussed by examining the diffusion of Cr into the spinel. Additionally,
very few studies [62] have investigated Ni-Fe based coatings under
controlled humidified air flow. Furthermore, none of the above studies
have compared FNO-based coatings and MCO coatings. Since the
FNO-based coatings appear interesting as a coating for the interconnect
in SOFC/SOEC, it is meaningful to study the chromium evaporation
behaviour and compare the coating to the state-of-the-art MCO coating.
Moreover, also the fracture toughness at the interface of glass sealing,
coating and the interconnect is essential to have a robust stack that can
withstand thermal cycles. Thus, it is important to understand the
interfacial fracture energy at these interfaces for both coating options.

In the present study, the state-of-the-art Ce/Co coating that upon
oxidation and Mn diffusion of the steel forms MCO and an Ce/FeNi
coating that similarly forms FNO are evaluated and compared with
respect to their corrosion behaviour. For this the metallic coating is
deposited on AISI 441 using physical vapour deposition; oxidation of the
coating in air and at high temperatures then leads to the formation of the
desired spinels. Following properties of the coatings were analysed:
chromium evaporation behaviour, oxidation kinetics, area-specific
resistance and fracture energy for up to 3850 h at 850 °C in air. For
completeness, fracture energy measurements were also carried out at
750 °C, facilitating comparison with literature data.

2. Experimental
2.1. Materials

FSS AISI 441, with a composition presented in Table 1, was used as a
substrate for the various coatings in the present study. The coatings were
applied by Alleima (Sandviken, Sweden) using a proprietary PVD
technique. The coatings comprised of a double layer coating of 10 nm Ce
(closest to substrate) and 600 nm Co (Ce/Co) and a 10 nm Ce layer and
600 nm FeNi (co,-deposited, 1:1) (Ce/FeNi), respectively. Ce/Co in the
as-coated state has been characterised previously [36]. The thickness of
the FSS was 0.3 mm for most of the conducted experiments with the
exception of the fracture energy measurements, where 0.5 mm thick FSS
was used. For chromium evaporation and oxidation experiments, the
coatings were deposited on pre-cut steel sheets with a coupon size of 17
x 15 mm?2. On the pre-cut steels, the coupons were attached to the steel
frame with two 1-mm joints, resulting in a coating coverage of 99.8 %
[33]. For ASR and fracture energy measurements, samples measuring
30 mm x 20 mm were used. The coupons were ultrasonically cleaned in
acetone and ethanol for 20 min each to remove any contaminants on the
surface.

2.2. Exposures and characterisation

Ce/FeNi-coatings were compared to Ce/Co coatings and uncoated
samples. Different exposure conditions were chosen for different mea-
surement techniques. An overview of these is given in Table 2. Details on
how these exposures were conducted are given below.

For the oxidation kinetics and Cr evaporation measurements the
atmosphere was either dry or humidified air. Pre-dried pressurized air
used in the present study has a dew point of —19 °C, (0.1 % H5O in the
air). Humidified air is defined as Air +3 % H3O in the present study and
was achieved by flowing the dry air through a heated water bath (set to
~28 °C) that was further connected to a condenser maintained at a
temperature of 24.4 °C to achieve 3 % absolute humidity. The exposures

Table 1
Chemical composition of the selected alloy in weight %.

Alloy Fe Cr C Mn Si Ti Nb

AISI 441 (1.4509) Bal 17.56 0.014 0.35 0.59 0.17 0.39
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Table 2
Experimental matrix of the present work. Exposure temperature was 850 °C for all experiments.
Material Furnace Exposure length Atmosphere Analysis
Uncoated 441 Tube furnace 500 h Dry air Cr evaporation
Humidified air
Ce/Co coated 441 Tube furnace 1,000 h Humidified air Cr evaporation
Dry air Oxidation kinetics + SEM
Box furnace 3,850 h Stagnant laboratory air ASR + SEM
Ce/FeNi coated 441 Tube furnace 1,000 h Humidified air Cr evaporation
Dry air Oxidation kinetics + SEM
Box furnace 3,850 h Stagnant laboratory air ASR + SEM
Box furnace <3,000 h Fracture energy” + SEM"

# These experiments were also carried out at 750 °C.

in dry air and air +3 %H,0 were performed with a continuous flow set at
6,000 sml min~!. A porous SiC flow restrictor was positioned in front of
the samples to ensure a uniform flow and to minimise convection. The
coupons in the tube furnace were placed in an alumina holder along the
direction of the airflow.

Oxidation kinetics: Oxidation kinetics of the coated and the uncoated
steels were gravimetrically analysed before and after exposure at 850 °C
for 1000 h. The cleaned coupons were weighed using a Mettler Toledo
XP7 scale before the exposure. The coupons were removed periodically
from the furnace, cooled to room temperature, and the mass gain was
recorded before the samples were placed back in the furnace. At least six
coupons were used for each oxidation experiment.

Chromium evaporation: Three coupons of each material were used for
the chromium evaporation experiments. In-situ chromium evaporation
was measured using the denuder technique devised by Froitzheim et al.
[63]. The reactor’s gas stream containing the vapourised chromium
species was passed through a denuder tube coated with NayCOs. The
vapourised chromium species reacted with the Na,CO3 according to
Equation (1).

Na2C03 (S) + CTOz(OH)Z(g) - Na2CT04(S) + COz(g) (1)

The denuder tubes were replaced periodically without interrupting
the exposure. The removed denuder tubes were leached with water, and
the solutions were analysed in a Thermo Scientific Evolution 60S spec-
trometer to determine the time-resolved chromium evaporation of the
exposed coupons. The chromium evaporation of the uncoated coupons
was measured for 500 h at 850 °C, while the coated coupons were
measured for 1,000 h at 850 °C.

Microstructural analysis: The cross-sections of the uncoated, Ce/Co
coated and Ce/NiFe coated steels exposed for up to 1,000 h were pre-
pared using a Leica TIC3X™ by broad ion beam (BIB) milling. The
microstructure and chemical composition were characterised using the
JEOL JSM-7800F Prime SEM equipped with an Oxford Instruments
energy-dispersive x-ray spectrometer (EDX). After ASR measurements

Gold

Ce/Co 441 —

Pt-wires

Fig. 1. Schematic drawing of the ASR stack. The Pt wires attached to the steel
samples were welded on top of the coated AISI 441.

and fracture energy experiments further microstructural characterisa-
tion was carried out by SEM/EDX using a Zeiss EVO microscope MA 10
equipped with an Oxford Instruments X-MAX EDX detector.

Area-specific resistance: The area-specific resistance (ASR) of Ce/Co
coated and Ce/FeNi coated AISI 441 was measured in-situ by using an
experimental setup that has been previously described in detail in Refs.
[64,65]. Semi-sintered La; 4xSryMnOs (LSM) plates (2 x 2 cm) were used
as current collectors and allowed for simultaneous measurements of
multiple samples. The final result of the assembled stack is shown in
Fig. 1. Rectangular coupons with a size of 2 x 4 cm were used for the
ASR tests.

The ASR measurements were carried out at 850 °C, in stagnant
laboratory air, and under a load of 7 kg. A conditioning profile was run
during the heat-up period to improve the contact between the separate
layers. First, the ASR stack was heated to 600 °C with 15°Ch™L. After 1h
at 600 °C, the temperature was increased further to 800 °C with 60 °C
h™L. This temperature was again held for 1 h, after which the temper-
ature was increased to the final exposure temperature of 850 °C. Once
the temperature reached 600 °C, a current of 2 A was applied, which
resulted in a current density of 0.5 A cm?. After 3,190 h of isothermal
exposure at 850 °C, 50 thermal cycles were conducted. For these, the
stack was cycled between 850 °C and 200 °C with a 120 °C h™! heating
and cooling ramp and a 2 h dwell time at 850 °C. After the thermal
cycles, the stack was cooled to room temperature, embedded in epoxy,
and polished to 1 pm diamond suspension. Subsequently SEM/EDX
analysis was performed.

2.2.1. Fracture energy

The fracture energy of Ce/FeNi coated AISI 441 was investigated
after 300 and 3000 h of exposure at 750 °C and 850 °C.

For this 0.5 mm thick Ce/FeNi 441 sheets were laser cut into 3 mm x
29 mm short bars and 3 mm x 60 mm long bars. Subsequently, the bars
were ultrasonically cleaned in ethanol and acetone and then exposed at
750 °C or 850 °C in a box furnace for 300 h or 3,000 h in stagnant
laboratory air. After exposure a Ba-free glass-ceramic (46.4 % SiO2, 13 %
MgO, 14.3 % CaO, 9.3 % Naz0, 8.3 % Aly03, 2.9 % ZrO,, and 5.8 %
B,03) was screen-printed onto the exposed short-bars. For further in-
formation on the synthesis and specifications of this glass and the screen
printing process, the reader is referred to Refs. [66,67]. The short bars
and long bars were assembled in a sandwich-like structure, as shown in
Fig. 2a. Subsequently, conditioning of the glass deposited via screen-
printing was performed. For this, a load of 16.7 N cm™2 was applied to
the samples and the following heating profile was applied. First the
samples were heated up to 600 °C using a 15 °C h™! heating ramp and
held at that temperature for 1 h to allow for the evaporation of binders
and solvents. Afterwards, the samples were heated further to 800 °C at
60 °C h™! and another 1 h hold was applied. Finally cooling to room
temperature was carried out at 60 °C h™".

Subsequently, the fracture energy of Ce/FeNi coated AISI 441 was
investigated using a four-point bending setup based on previous work by
Charalambides et al. [68] and Hofinger et al. [69] and described in detail
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" Fe.Ni,Mn oxide
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1
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Fig. 2. Schematic drawing of the sample configuration (a) and the 4-point bending test setup (b) based on [69].

in Refs. [70,71]. A schematic of the testing setup is shown in Fig. 2.
Using this setup, five samples were tested at room temperature for each
test condition to measure the fracture energy along the interface be-
tween two layers. Bending of the sandwiched sample was achieved by
moving the top-pins towards the bottom-pins with a displacement rate
of 0.01 mm s, while both displacement and load were recorded. From
this data the bending moment M, was calculated according to Equation
(2) using the maximum load P at crack propagation, the distance be-
tween outer and inner pins, [, and the width of the sample, b (see Fig. 2).

P
" 2b

The fracture energy, G., was then determined according to the
method established by Charalambides et al. [68] and refined by Hofinger
et al. [69] (see Equation (3)).

CME(1-v3) (1 1
6~ (1) ©

M, (2

With the poisson ratio, v, the Young’s modulus, E, and the second
moment of area, I, and where the index 2 refers to the long metal bar,
also called substrate (see Fig. 2), and the index c refers to a combined
value. The second moment of area are defined according to Equations
(4) and (5).

h3

L=-2
1712

G

S 3
I :§2+K§l+ﬂ (;Jrhﬁhl +hfhd) -

[h2 — ch? — (K2 + 2hyhy)]”

4(h2 + Khl + Mhd) (5)

Where h describes the layer thickness and index d refers to the short
metal bars, also called stiffener. The index 1 refers to the layer between
the two metal bars, which in the present case comprises the different
oxide scales and the glass (see Fig. 2) and « and u are defined according
to Equations (6) and (7), respectively.

7E1 (1 — V%)

RO ©
_E(1-%)

) @

For the present work v, and v4 were assumed to be 0.3, which is a
typical poisson’s ratio for stainless steels [72] and the Young modulus
for AISI 441 was taken from the respective datasheet (E; = Eq = 220 GPa
[731). No precise values were available for the poisson’s ratio or for the
Young modulus of the glass, however as the calculation of G, is very
robust to variations of both values, v; was set to 0.2 and E; was set to 76
GPa [70,74].

To understand the fracture mechanisms top-view and cross-sectional
SEM was carried out on the tested specimens (the top-view images were
mirrored for easier comparison). For the top-view SEM, the tested
sandwiched sample was pulled fully apart by hand after mechanical
testing. For the cross-sectional SEM, the samples were embedded in
Epoxy and polished to 1 pm diamond suspension. The subsequent
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Fig. 3. (a) Cumulative chromium evaporation of the uncoated 441 in dry air
and humidified air (3 % H,0) at 850 °C for 500 h. Open and closed symbols
represent individual experiments.

analysis focused on the area nearest to the notch, corresponding to the
region fractured during the four-point bend test.

3. Results and discussion

Fig. 3 shows the chromium evaporation of the uncoated AISI 441
exposed to air +3 %H20 and dry air for 500 h at 850 °C. The cumulative
chromium evaporation of AISI 441 in humidified air is one order of
magnitude higher than in dry air.

CrO3(OH); and CrOs are reported to be the most abundant vapour
species in high oxygen partial pressure environments with and without
humidity, respectively [75,76]. The involved chemical reactions are
presented in Equations (8) and (9).

1 3

5Cr205 +Hy0+0,-Cr05 (OH), (g) (8)
1 3

Ecrz 03 + ZOZ —>Cr03 (9)

Based on thermodynamic data for CrOs(g) [77] and CrO5(OH)2(g)
[77] at 850 °C, it is found that CrO2(OH)3 is the most dominant species
when the water vapour content is over 0.1 % (absolute humidity). Thus,
when exposed to air +3 %H20, CrO2(OH), is the dominant Cr species
with a partial pressure of 1.35 x10~7 bar at equilibrium. However, the
equilibrium partial pressure of CrO2(OH), decreases significantly when
the water vapour content is reduced. Hence, in ‘dry air’ (with an abso-
lute humidity of 0.1 %), both CrO2(OH), and CrOs have similar equi-
librium partial pressure of 1 x 10~ bar. However, it should be noted
that the experimental conditions are not in equilibrium, and the un-
coated AISI 441 surface is covered with (Cr,Mn)304 spinel.

The chromium evaporation of uncoated AISI 441 in a dry atmosphere
after 168 h is 5.8 x 10~> mg cm™2. Alnegren et al. [78] have reported that
the chromium evaporation of a similar material, Crofer 22H, in Ar-25 %
0y is 1 x 1072 mg cm ™2 after 168 h. The difference in chromium evap-
oration between both studies is attributed to the higher flow rate
(6L/min compared to 1L/min) in the present study and possibly a dif-
ference in humidity. The chromium evaporation is expected to increase
when the partial pressure of O is increased (« p08'75) according to
Equation (3). However, Alnegren et al. [78] reported a linear dependence
of oxygen partial pressure to chromium evaporation in oxygen at 850 °C.
Apart from humidity, chromium evaporation in SOEC depends on fac-
tors such as the partial pressure of O, and flow rate.
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After 500 h, the oxide scale on uncoated 441 exposed to humidified
air remained mostly intact and continuous, while the oxide scale of
uncoated 441 exposed to dry air had spallen off. Other researchers have
reported similar results with extensive chromia scale spallation in the
absence of water vapour but much less in the presence of water vapour
[79,80]. It has been suggested that the oxide scale grown in the presence
of water vapour is more plastic due to the smaller oxide grain size
compared to the oxide scale grown in the absence of water vapour [81].
Moreover, coating AISI 441 with 10 nm Ce and further exposing it to a
dry atmosphere showed no signs of spallation until 1000 h. This might
be due to the increased oxide scale plasticity in the presence of reactive
elements [38].

As the rate of chromium evaporation in dry air is much lower than in
humidified air, further chromium evaporation measurements of coated
AISI 441 were performed in humidified air. Fig. 4 shows the cumulative
chromium evaporation and rate of chromium evaporation of Ce/Co-
coated and Ce/FeNi-coated 441 in humidified air (3 % H,0) at 850 °C
for 1000 h. The chromium evaporation of both coated steels is lower
than the uncoated 441 after 500 h shown in Fig. 3. This indicates that the
present coatings act as a barrier to chromium evaporation. Nevertheless,
the effectiveness of the coatings varied significantly. Ce/FeNi-coated
441 exhibited a factor of 4, while the Ce/Co-coated 441 exhibited a
factor of 100 times lower chromium evaporation than uncoated 441.
Based on the chromium evaporation data, it appears that the Ce/FeNi
coating is not ideal for SOFC atmospheres as the chromium evaporation
is substantially higher than the state-of-the-art Ce/Co coatings. How-
ever, as explained previously, Cr evaporation appears to be less of a
problem in SOEC. Therefore, despite its inferior Cr blocking capability,
Ce/FeNi coating can still be suitable for SOEC.

Fig. 5 shows the oxidation kinetics represented by the mass gains of
the Ce/Co and Ce/FeNi coated steels exposed to dry air at 850 °C for
1000 h. Fig. 5a shows the mass gain of the coated steels measured at
regular intervals until 1000 h. The mass gain of uncoated 441 is not
presented because spallation is observed during the thermal cycles.
During the first 30 min, both coated steels show a rapid increase in mass
gain. This is due to the oxidation of the metallic coatings from Co to
Co304 [10,82,83] and FeNi to (Fe,Ni)304 [12,58,59]. The subsequent
slower mass gain observed is mainly due to the oxidation of Cr to Cry03
[82]. During this period, both steels showed a continuous increase in
mass gain, representing parabolic oxidation kinetics. After 1000 h, a
significant difference is observed in the mass gain between
Ce/Co-coated 441 and Ce/FeNi-coated 441. The mass gain of Ce/Co
coated 441 is 0.89 + 0.02 mg cm~2 while Ce/FeNi is 0.62 + 0.01 mg
cm 2, excluding the oxidation of the metallic coating.

Fig. 5b shows the oxidation kinetics, represented by Am? vs time.
The oxidation rate constant (k,) was calculated from the mass gain data
in Fig. 5a for the Ce/Co- and Ce/FeNi-coated 441. For plotting Am? over
time, the mass gain due to coating oxidation (the mass gain data after 30
min) is subtracted from subsequent data points. The straight lines
indicate Ce/Co- and Ce/FeNi-coated 441 follow parabolic oxidation
kinetics. The k;, of the Ce/Co coated 441 is 0.76 mgZem~*h~! while Ce/
FeNi coated 441 is 0.39 mgZem ™~ *h L. The oxidation rate of the Ce/FeNi-
coated 441 is a factor of two lower than the Ce/Co-coated 441. This
indicates that the growth of the chromia scale is much lower on Ce/FeNi-
coated 441 than on Ce/Co-coated 441. It should be noted that the dif-
ference in mass gain can not be attributed to the different mass losses
due to Cr evaporation as these are negligible due to the dry environment
used for oxidation tests.

Fig. 6 shows the BIB milled cross-sectional micrographs and EDX
maps of the Ce/Co- and Ce/FeNi-coated steels exposed to dry air at 850
°C for 1000 h. The oxide scale on both coated steels is continuous, with
no signs of spallation. Moreover, the oxide scale on the coated steels
comprises of a cap layer and a chromia scale beneath it. The chromia
scale on the Ce/FeNi-coated 441 is thinner than the chromia scale
observed on Ce/Co-coated 441, consistent with the mass gains observed
in Fig. 4. Due to its thinner chromia scale, Ce/FeNi-coated 441 is
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Fig. 4. (a) Cumulative chromium evaporation (b) rate of chromium evaporation of the Ce/Co- and Ce/FeNi-coated 441 in humidified air (3 % H,0) at 850 °C for
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Fig. 6. SEM micrographs and corresponding EDX maps in the cross-section of the (a) Ce/Co- (b) Ce/FeNi-coated AISI 441 exposed to 850 °C for 1000 h in dry air.
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expected to have a lower ASR than Ce/Co-coated 441. Despite the
presence of Ni in the coating, no austenitisation of the substrate is
observed. This is attributed to the fast oxidation of the coatings and
intermediate Ce layer between the steel and Ni-containing coating,
which acts as a diffusion barrier in the initial stage [83].

The cap layer of Ce/Co-coated 441 is (Co,Mn)304 spinel, which has
been thoroughly characterised in previous studies at 850 °C in air + 3 %
Ho0 [42,82]. It was found that the oxide layer is comprised of inner
chromia scale and outer (Co,Mn)304 spinel almost free of Cr [82]. In the
present case (dry air), the morphology is the same with an inner chromia
scale and outer (Co,Mn)304 spinel. However, up to 10 at% Cr is found in
the (Co,Mn)304 spinel after 1000 h. Magdefrau et al. [84] have reported
the formation of (Co,Mn)304 spinel + Cr reaction layers in MCO coatings
exposed to 800 °C in air for 1000 h. Furthermore, Reddy et al. [34] re-
ported that such (Co,Mn)304 spinel + Cr reaction layers are observed in
MCO-coated steels exposed to high temperatures above 900 °C. Further
studies on MCO coatings with varying water vapour content are required
to understand this behaviour.

International Journal of Hydrogen Energy 203 (2026) 152996

The cap layer on the Ce/FeNi-coated 441 is (Fe,Ni,Mn)304 spinel.
The (Fe,Ni)304 spinel formed during the initial 30 min of exposure
transformed to (Fe,Ni,Mn)304 spinel owing to the diffusion of Mn from
the steel to the coating. Up to 5 at% of Cr is observed in the spinel,
mainly at the chromia coating interface. Geng et al. [60] reported the
formation of (Ni,Fe,Cr)304 spinel due to the Cr diffusion.

The recorded ASR values are shown in Fig. 7. During the isothermal
exposure three unplanned thermal cycles occurred after 1,200 h, 1,350
h, and 2,065 h of exposure. The average ASR values after 3,190 h of
isothermal exposure, and after thermal cycling and the degradation
rates for all examined materials are shown in Table 3. The degradation
rates were calculated using a linear regression based on the last 500 h of
exposure for the isothermal case and on all 50 thermal cycles for the
thermal cycling case.

During the first 1,200 h of isothermal exposure Ce/Co- and Ce/FeNi-
coated 441 showed similar ASR values. However, after the first thermal
cycle Ce/Co-coated 441 showed an increase in its degradation rate,
which was not observed for Ce/NiFe-coated 441. A similar behaviour is
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Fig. 7. In-situ ASR measurements conducted on Ce/Co- and Ce/FeNi-coated AISI 441 at 850 °C in laboratory air with (a) isothermal exposure including three
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recorded during isothermal exposure, shown in (a).
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Table 3
ASR measured at 850 °C during 3,190 h of isothermal aging and 50 subsequent thermal cycles down to 200 °C. Degradation rates were determined using linear
regression.

Material Isothermal aging Thermal cycling

ASR after 3190 h [mQcm?] Degr. Rate” [mQcm?/1,000 h] ASR after 50 thermal cycles [mQcm?] Degr. Rate” [mQcm?/1,000 h]

LSM 2.0 -0.2 2.7 0

Ce/Co-coated 441 28.4+4.1 10.7 + 4.9 83.0 + 23.6° 37.4 £ 12.3

Ce/FeNi-coated 441 153+ 1.6 45+ 2.5 20.2 £ 5.6 51+64

# Degradation rates were determined over the last 500 h of ASR measurements.

" Degradation rates calculated based on the 50 thermal cycles.

¢ These values experienced a relaxation phase, and the ASR value had not yet reached a steady state at the end of each cycle; therefore, the results might be higher

than the true values.

seen for each subsequent thermal cycle. After isothermal exposure the
average ASR value as well as the degradation rates were approximately
double for Ce/Co-coated 441 than for Ce/FeNi-coated 441. Both the
average values and the degradation rate for Ce/Co-coated 441 were
similar to values reported by Talic et al. [85] after isothermal exposure.

The degradation rates and the average values for Ce/FeNi-coated
441 after thermal cycling (see Table 3) are similar to the values after
isothermal exposure, considering their margin of error. The Ce/Co-
coated 441 showed an interesting behaviour during the thermal
cycling. After each thermal cycle, the ASR values spiked and then
relaxed over time. It could be hypothesized that the relaxation process is
nearly complete after 2 h as the gap between the separate measurement
values seems to decrease drastically the end of the 2 h (see Fig. 7).
Nevertheless, the relaxation was not yet fully completed after the 2-h
hold time at 850 °C, hence the spread in the data in Fig. 7. Addition-
ally, this implies that neither the average values nor the degradation
rates for Ce/Co-coated 441 presented in Table 3 are completely reliable.
Ce/FeNi-coated 441 did not show this relaxation behaviour and instead
the ASR values recorded after each cycle showed minimal difference to
the value recorded in the preceding cycle. This observation suggests that
the contact between Ce/FeNi-coated 441 and the LSM layer is more
robust towards thermal cycling than the contact between the Ce/Co-
coated 441 and the LSM. This could in turn also explain, why Ce/Co-
coated 441 seemed to degrade after each unplanned thermal cycle
during the isothermal exposure, especially, because unplanned thermal
cycles often see a drastic temperature drop instead of a well-controlled
temperature decrease. Talic et al. [85] did not see this relaxation

behaviour during the thermal cycling of Ce/Co-coated 441, however,
they did observe this behaviour during thermal cycles that occurred
during the isothermal exposure, further strengthening the hypothesis
that the relaxation process might be nearly complete after the 2 h hold.
In general, Ce/FeNi-coated 441 shows lower ASR values compared to
Ce/Co-coated 441. Additionally, Ce/FeNi-coated 441 seems more robust
towards thermal cycling than Ce/Co-coated 441.

Figs. 8 and 9 show the SEM micrographs and EDX maps, respectively,
that were recorded after the ASR measurements. For both materials, Ce/
Co- and Ce/FeNi-coated 441, the SEM micrographs showed a detach-
ment of the LSM layer from the coated steel. The detachment occurred
during sample preparation, i.e. during dismounting, epoxy embedding
and subsequent grinding and polishing of the samples, because other-
wise, much higher ASR values would have been measured. The SEM
analysis also showed that a two-layered oxide scale had formed for both
Ce/Co- (Fig. 8al) and Ce/FeNi-coated 441 (Fig. 8b1). In combination
with the EDX maps and additional EDX point analysis, it was determined
that the inner oxide layer consisted of a Cr-rich oxide, and the outer
oxide layer was either a Cr,Mn,Co-oxide for Ce/Co-coated 441, or a Cr,
Fe,Mn,Ni-oxide for Ce/FeNi-coated 441. In both cases, similar amounts
of Cr were detected in the outer oxide scale. At the interface between the
Cr-rich oxide and the spinel, both materials showed Cr concentrations of
up to 15 at%. This concentration decreased to 7 at% at the oxide/LSM
interface. Lower Cr content values were found for the 1,000 h exposed
samples described above and shown in Fig. 6. This could be explained
not only by the difference in exposure lengths but also due to the stag-
nant laboratory air that was used for the ~3,800 h exposed samples. It

Fig. 8. SEM micrographs of Ce/Co coated 441 (a and al) and Ce/FeNi coated 441 (b and b1), which were exposed for 3,850 h at 850 °C under current. The phases
were identified as follows using EDX: i) 441, ii) a Cr-rich oxide scale, (iii) a Co-rich oxide scale iv) LSM, and v) a Ni,Fe-rich oxide scale (vii).
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Fig. 9. EDX maps of (a) Ce/Co- (b) Ce/FeNi-coated 441 samples, which were exposed for approx. 3,800 h at 850 °C under current.
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Fig. 10. Fracture energies of coated AISI 441 exposed to stagnant laboratory
air at 750 or 850 °C and measured using a 4-point bending test setup. Values for
Ce/Co coated AISI 441 were taken from Farzin et al. [67]. Multiple samples
were measured for each *For the shorter exposure length the Ce/Co coated AISI
441 samples were exposed for 250 h, whereas the Ce/FeNi coated samples were
exposed for 300 h.

has been previously shown that samples exposed to stagnant laboratory
air retain higher levels of Cr in the outer oxide scale [42].

The Cr-rich oxide scale for Ce/Co-coated 441 was thicker (4.6 & 1.0
pm) than for Ce/FeNi-coated 441 (3.5 & 0.9 pm). This aligns with the
slower oxidation kinetics observed in the latter case (see Fig. 5) and
explains the lower ASR results for Ce/FeNi-coated 441 compared to Ce/
Co-coated 441. As previously mentioned, the primary contributor to
ASR is assumed to be the Cr-rich scale due to its significantly lower
conductivity compared to the spinels used as coatings [10,34]. Conse-
quently, a thinner Cr-rich oxide scale would result in lower ASR values.
The lower ASR values cannot be attributed to chromium evaporation as
the measurements were recorded in stagnant laboratory air, therefore,
Cr evaporation is considered negligible.

A direct comparison of the fracture energies measured by the specific
4-point bending of Ce/FeNi coated 441 and Ce/Co coated 441 can be
seen in Fig. 10. The latter values were taken from Farzin et al. [67]. For
the shorter exposure times, the literature values were recorded after 250
h of exposure in laboratory air, compared to 300 h of exposure in the
present study. This time difference is not expected to significantly affect
the results. For the short exposure times the fracture energies for
Ce/FeNi and Ce/Co coated 441 were similar, approximately 18 J/m? at
750 °C and approximately 22 J/m? at 850 °C. However, after 3,000 h a
clear difference could be seen. For Ce/Co-coated 441 a decrease in
fracture toughness was found and the fracture toughness was around 8
J/m? after 3,000 h of exposure regardless of the temperature. In
contrast, the fracture energy for Ce/FeNi-coated 441 increased with

exposure time, reaching an average value of 25 J/m? after 3,000 h at
750 °C and 42 J/m? after 3,000 h at 850 °C. It should be noted that the
data for the Ce/FeNi coated 441 exposed for 3,000 h showed a high
fracture energy with a large standard deviation. However, the consistent
trend of higher fracture energies after longer exposure times at both 750
and 850 °C indicates that the overall results remain reliable, and that the
variation more likely stems from that some areas were not strengthened
to the same extent as others over the 3,000 h. Each of the processing
steps (screen printing, oxidation, forming of new oxides) will introduce
variations across the samples. We speculate that these variations are
more noticeable for the stronger oxides, which consequently results in
moderately higher standard deviation, nevertheless, a clear strength-
ening is observed.

To identify the fracture location, SEM micrographs of Ce/FeNi-
coated 441 exposed to 750 °C or 850 °C are shown in Fig. 12 or
Fig. 11, respectively. The corresponding EDX data for the identified
phases are presented in Table S1 and Table S2. For results on Ce/Co-
coated 441 the reader is referred to Farzin et al. [67]. Those authors
concluded, that for Ce/Co-coated 441, the fracture occurs primarily at
the steel/oxide interface, regardless of exposure temperature or expo-
sure length.

After 300 h of exposure at 850 °C the SEM top view micrographs
show a high surface coverage of the top bar in phase I, which was
identified as the glass (see Fig. 11a and Table S1). In some areas a (Cr,Fe,
Ni,Mn)-oxide (phase II) was identified and in very few and small areas
the underlying steel (phase iii) was detected. The respective bottom bar,
shown in Fig. 11b, showed a similar pattern as the top bar (see Fig. 11a),
with the glass phase (phase I) covering the majority of the surface.
However, the area covered by glass in the top bar is slightly smaller than
the area covered by glass in the bottom bar. The two other phases
identified in the bottom bar correspond to a Cr-rich oxide (phase IV) and
a (Cr,Fe,Ni,Mn)-oxide (phase V). The former is probably situated at the
same location where steel (phase III) was detected on the top bar, and
the latter is instead located where a (Cr,Fe,Ni,Mn)-oxide (phase II) was
also found on the top bar. This suggests that the fracture for these
samples occurred primarily in the glass and in some areas in the oxide
scale. In very few areas the fracture also occurred along the steel/oxide
or the oxide/glass interface. The latter would correspond to the areas
where the glass-covered area is larger on the bottom bar than on the top
bar. This interpretation suggests that the fracture energy for these
samples, 21.3 & 1.9 J//m?, corresponds primarily to the fracture energy
of the glass.

The SEM micrographs recorded after 3,000 h of exposure at 850 °C
show that the surface of the top bar is approximately equally covered by
glass (phase I) and a (Cr,Fe,Ni,Mn)-oxide (phase VI) (see Fig. 11c and
Table S1). In some small areas a steel signal was also detected (phase
VII). The respective bottom bar (see Fig. 11d) showed a similar pattern
than the top bar with only two identifiable phases roughly present, the
glass (phase I) and a (Cr,Fe,Ni,Mn)-oxide (phase VIII). For this sample no
third phase could be identified. The glass covered area for this sample is
also smaller in the top bar than the bottom bar. The results suggest that
the fracture for this sample occurred to a similar extent in the glass phase
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Fig. 11. SEM micrographs of the fracture interface of Ce/FeNi coated AISI 441, which was exposed at 850 °C to stagnant laboratory air for 300 h (a, b) or 3,000 h (c,
d). The long top bars are shown in (a) and (c) and the short bottom bars in (b) and (d). The marked ’x’ in (a) and (b) indicates a corresponding feature to assist in
location correlation. Different phases were identified as follows using EDX: glass (i), oxide-scales (ii, iv, v, vi, viii), and steel (iii, vii). The exact EDX compositions can

be found in Table S1.

or in the oxide scale and to a much lesser extent at the steel/oxide
interface or the oxide/glass interface. Therefore, the measured fracture
energy of 42.0 & 10.3 J/m? corresponds to the average fracture energy
of the glass and the oxide scale.

At 750 °C, after 300 h of exposure, the SEM micrographs show a high
surface coverage of the top bar in phase I and phase II, which were
identified as glass and (Cr,Fe,Ni,Mn)-oxide, respectively (see Fig. 12a
and Table S2). In a few small areas steel (phase III) was detected. The
bottom bar shown in Fig. 12b showed a similar pattern as Fig. 12a, with
the glass (phase I) and the (Cr,Fe,Ni,Mn)-oxide (phase II) covering the
majority of the sample surface. However, it can be seen that the area
covered by glass in the top bar was slightly smaller than the area covered
by glass in the bottom bar. Additionally, in the areas where the steel
signal (phase III) was detected on the top bar, the bottom bar was
covered by a Cr-rich-oxide (phase IV) with a very low Mn, Fe, and Ni
content. These SEM observations suggest that the fracture occurred
primarily inside the glass, or inside the oxide scale. Directly next to the

10

areas where the fracture occurred in the glass, there seems to be a small
area where the fracture occurred at the glass/oxide interface, this is why
the glass area is larger in the bottom bar than the top bar. Only in few
places the fracture occurred at the oxide/steel interface. This indicates
that the steel/oxide interface is the strongest in this case and that the
measured fracture energy for these samples, 17.7 + 1.6 J/m? corre-
sponds to the average fracture energy for the glass and the oxide scale.

The SEM micrographs taken after 3,000 h of exposure reveal that the
top bar was covered primarily in phase I and phase VII, which corre-
spond to the glass phase and steel, respectively (see Fig. 12c¢ and
Table S2). Only in small areas directly next to the glass phase a mixed
(Cr,Fe,Ni,Mn)-oxide (phase VI) was found. The corresponding bottom
bar (see Fig. 12d) showed a similar pattern than the top bar with a large
surface coverage of glass (phase I) and Cr oxide (phase VIII) and only a
small surface coverage of a mixed (Cr,Fe,Ni,Mn)-oxide (phase IX). The
latter phase (phase IX) was again found directly next to the areas
covered with glass. Unlike for the shorter exposure length the area of the
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Fig. 12. SEM micrographs of the fracture interface of Ce/FeNi coated AISI 441, which was exposed at 750 °C to stagnant laboratory air for 300 h (a, b) or 3,000 h (c,
d). The long top bars are shown in (a) and (c) and the short bottom bars in (b) and (d). Different phases were identified as follows using EDX: glass (I), oxide-scales (II,
1V, V, VI, VIIL, IX), and steel (III, VII). The exact EDX compositions can be found in Table S2.

glass phase seemed to be exactly the same size for the top and the bottom
bar. This indicates that for the longer exposure length the fracture
occurred primarily in the glass or along the oxide/steel interface. For
this sample also the other side of the gap (see Fig. 2) was analysed using
SEM and the micrographs are shown in the supplementary section (see
Fig 13). In contrast to the SEM micrographs shown in Fig. 12c and d,
both the top and the bottom bar in Fig. 13 are nearly exclusively covered
in glass. These results indicate that the measured fracture energy of 25.3
+ 1.4 J/m?, probably corresponds to the average fracture energy of the
glass and the oxide/steel interface. Additionally, the difference between
the two sides next to the gaps could indicate that the fracture energy of
the glass and the oxide/steel interface are very similar and the fracture
occurs sometimes in one and sometimes in the other location. This also
shows that the interpretation of these results is challenging, and the
measurement technique might be reaching its limit. Nevertheless, the
measured high fracture energies and the trends seen for these are still
reliable. The uncertainty lies primarily in the question, of where the
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fracture occurs and if the measured fracture energy belongs to the glass,
the oxide scale, the oxide/glass interface or the oxide/steel interface.
This would, however, mean that the actual fracture energy of oxide/
steel interface and the oxide might be even higher than what is reported
here.

Overall, the fracture analysis undertaken here shows some discrep-
ancies, such as the aforementioned issue that the fracture pattern varies
already within one sample due to the inhomogeneity of the samples.
Additionally, the high fracture energy of Ce/FeNi-coated 441 that was
exposed for 3,000 h at 850 °C poses the question, of how the fracture
energy of the entire sample can become higher than that of the glass, as
this would thus be the weakest link. One possible explanation is that
diffusion of elements from the coating into the glass phase are increasing
the fracture toughness of the glass. This further suggests that the chosen
method to analyse the fracture energy of the Ce/FeNi-coated 441 seems
to reach its limitation in the present case. Nevertheless, the present re-
sults show that the Fe/Ni coated 441 shows excellent adhesion to the
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Fig. 13. Additional SEM micrographs of the fracture interface of Ce/FeNi
coated AISI 441, which was exposed at 750° C to stagnant laboratory air for
3,000 h. The long top bar is shown in (a) and the short bottom bar in (b).

steel that improves even further during high temperature exposure.
4. Conclusion

To mitigate the use of Co in coatings for solid oxide cell in-
terconnects, a Ce/FeNi coating was developed, manufactured by PVD
and characterized in this work. The Cr evaporation, the ASR of the as-
sembly, and fracture energy were measured to gauge the performance of
this new coating.

Ce/FeNi- and Ce/Co-coated AISI 441 were investigated and
compared to uncoated steel in both humidified (3 % H20) and dry air for
up to 3,850 h at 850 °C. The uncoated steel showed an order of
magnitude lower chromium evaporation in dry air than in humidified
air. In humidified air, the Ce/FeNi-coated steel exhibited 10 times
higher chromium evaporation than the Ce/Co-coated steel which is 4-5
times lower than the uncoated steel. Further exposures in dry air showed
that the oxidation kinetics of Ce/FeNi-coated AISI 441 were significantly
lower (50 % lower k) than those of Ce/Co-coated AISI 441. After the
exposure, a thinner chromia scale was observed on the Ce/FeNi-coated
steel.

Furthermore, the ASR was nearly 50 % lower for Ce/FeNi than for
Ce/Co-coated 441 after 3,190 h of isothermal exposure at 850 °C,
indicating a performance improvement. Ce/FeNi-coated steels also
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showed lower interfacial resistance and improved robustness against
contact loss during thermal cycling. In contrast to Ce/Co-coated 441,
Ce/FeNi-coated 441 also showed improved fracture toughness after
3,000 h of exposure at 750 and at 850 °C compared to 300 h of exposure.
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