CHAL

UNIVERSITY OF TECHNOLOGY

Smart contract denial-of-service analysis using non-blocking verification

Downloaded from: https://research.chalmers.se, 2026-01-12 03:39 UTC

Citation for the original published paper (version of record):

Parekh, N., Ahrendt, W., Fabian, M. (2025). Smart contract denial-of-service analysis using
non-blocking verification. Discrete Event Dynamic Systems: Theory and Applications, 35(4):
355-387. http://dx.doi.org/10.1007/s10626-025-00418-5

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Discrete Event Dynamic Systems (2025) 35:355-387
https://doi.org/10.1007/510626-025-00418-5

®)

Check for
updates

Smart contract denial-of-service analysis using non-blocking
verification

Nishant Parekh'® . Wolfgang Ahrendt?® - Martin Fabian'

Received: 10 December 2024 / Accepted: 4 July 2025 / Published online: 20 December 2025
©The Author(s) 2025

Abstract

Smart contracts are programs that can enforce agreements between mutually distrusting
parties, eliminating the need for intermediaries, such as lawyers or banks. As smart con-
tracts are stored on a blockchain ledger, they are immutable after deployment, which
makes assessment of their correctness before deployment vital. Many vulnerabilities of
smart contracts are known, and having means to assess whether a contract is prone to one
or more of these is crucial. A specific such vulnerability is denial-of-service (DoS), which
can make a smart contract unresponsive so that users (including other smart contracts)
cannot interact with it as intended. This can lead (and has led) lead to financial losses, or
disrupt critical services that rely on the contract. Extended finite state machines (EFSM)
are a modelling formalism for discrete-event systems, which provides a systematic ap-
proach to scrutinize smart contract functionalities. With careful modeling, non-blocking
verification can be used to determine whether a contract is vulnerable to DoS attacks. This
paper describes a methodology to automatically convert from the abstract syntax tree of
a smart contract to an EFSM model, and then shows how non-blocking verification can
indeed assess whether DoS attacks can cause harm. Two specific use cases are treated, a
contract implementing a (simple) on-line casino, and an auction contract. Verification of
the EFSM models reveals both contracts to be prone to DoS attacks, and counterexamples
hint at how the contracts can be made non-blocking, meaning that they can be corrected
not to be vulnerable. Automatic conversion and non-blocking verification of the corrected
contracts indeed show that they are no longer prone to DoS attacks.

Keywords Extended finite state machines - Smart contracts - Verification - Non-blocking

1 Introduction

Smart contracts are micro-services executing within a blockchain ecosystem. Their main
purpose is to enforce agreements among mutually distrusting parties without the need for
intermediaries. In addition to traditional communication, smart contracts have the addi-
tional ability to receive and send assets, typically in the form of crypto-currency. As smart

Extended author information available on the last page of the article

@ Springer

http://orcid.org/0009-0003-1994-2903
http://orcid.org/0000-0002-5671-2555
http://orcid.org/0000-0003-1287-9748
https://doi.org/10.1007/s10626-025-00418-5
http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-025-00418-5&domain=pdf&date_stamp=2025-12-18

356 Discrete Event Dynamic Systems (2025) 35:355-387

contracts become increasingly capable of handling more complex interactions and transac-
tions, the potential for, and the effects of, errors and vulnerabilities increase. Even if the
underlying blockchain protocols cannot feasibly be compromised, a smart contract can
itself allow behaviour, unintended by the programmer, that may result in, or be exploited
to, the disadvantage of some users. For instance, an unintended programming error in the
DeFi contract (CoinGeek 2020) has permanently made over $1 million inaccessible to its
owners.

Multiple vulnerabilities of smart contracts are known (SWC Registry 2020; Richter
Vidal et al. 2024), and exploits of these vulnerabilities, called attacks, have caused loss of
huge funds (Atzei et al. 2017; Bartoletti et al. 2024). Moreover, smart contracts are immu-
table once deployed on the blockchain. Thus, it is crucial to, before deployment, assess their
correctness and resilience to vulnerabilities.

That funds become inaccessible to users who have legitimate interest to access them
(according to what was intended by the programmer and understood by the benevolent
users), is referred to as compromised liquidity of the contract. Liquidity problems are a
(prominent) special case of a more general issue smart contracts can have: that a certain
state that was intended to be reachable can become unreachable due to a malicious user
exploiting a reachability vulnerability. Often, the ability to reach a certain state can be
seen as a service offered by the smart contract. Accordingly, exploiting a reachability
vulnerability is in effect a denial-of-service (DoS) attack. This specific vulnerability, also
the focus of our work, is common in smart contracts and is categorized as “DoS with
Failed Call” (SWC-113), in the Smart Contract Weakness Classification registry, (SWC
Registry 2020).

The aim of the work presented here is precisely the detection of reachability vulner-
abilities, i.e., it is analysed whether some party using the contract can provoke a DoS. Every
effort should be made to avoid unintended non-reachability (of actions or states), since it
leads to some parties not being able to execute their rights, and become subject to—poten-
tially substantial—damage that cannot be repaired.

Formal methods are a set of mathematical techniques used for design and verification of
software and hardware systems that allows rigorous analysis and can guarantee correctness
in relation to given requirement specifications. For finite state transition systems, model
checking (Baier and Katoen 2008), one of several formal methods, can verify correctness
by exhaustively evaluating the state space against given specifications.

A specific type of finite state transition systems are Extended Finite State Machines
(EFSMs) (Cheng and Krishnakumar 1996; Chen and Lin 2000; Skoldstam et al. 2007).
These are similar to ordinary finite-state machines, but add bounded discrete variables
together with guards and actions defined over these variables. Mohajerani et al. (2022) show
how state based smart contracts can be modelled as EFSMs by abstracting the contract’s
high-level behaviour, ignoring intermediate execution details. This then allows to use model
checking techniques to verify correctness.

In terms of a finite state model of a smart contract, compromised liquidity means that
all states where the funds can be accessed are unreachable, whatever actions are taken.
This is exactly the notion of blocking; from some state reachable from the initial state,
no marked state where the funds can be accessed is reachable. So, given the source code

@ Springer

Discrete Event Dynamic Systems (2025) 35:355-387 357

of a smart contract, states where the funds are guaranteed to be accessible are specified
as marked. Then, an attacker model is introduced, whereafter the model is verified to be
non-blocking or not. If the model with the specification is non-blocking, that particular
malicious behavior cannot compromise the liquidity of the contract. On the other hand, if
the model should turn out to be blocking, then the malicious behaviour can compromise
the contract’s liquidity, and measures should be taken against that. Typically, if verification
shows that the model is blocking, a counterexample is given that can help indicate how to
correct the contract.

Mohajerani et al. (2022) show how state based smart contracts can be modelled as
EFSMs, and how methods from supervisory control theory (Ramadge and Wonham 1989)
can be applied to verify non-blocking behaviour. Mohajerani et al. (2022) specifcally tar-
geted an online Casino contract, and the model was shown to be blocking with a malicious
player, which indicated a vulnerability of the contract to DoS attacks. The work thus showed
that non-blocking verification can be useful to find smart contract vulnerabilities. However,
Mohajerani et al. (2022) modeled the smart contract manually, a tedious and error prone task
practically impossible for larger contracts. Manual modeling also leads to a more abstracted
model, less true to the actual behavior of the executing contract, which might lead to discov-
ering issues not present in the actual code (false positives), or missing issues that are present
in the code (false negatives).

This paper, which is a significant extension of Parekh et al. (2024), presents an approach
to automatically convert, from their source code, smart contractsto EFSMs. Modeling smart
contracts as EFSMs offers a more compact and descriptive form of modeling over FSMs.
The approach converts variables, modifiers, functions and generic framework behaviour,
into a set of interacting EFSMs, the composition of which models the overall behaviour of
the smart contract. The automatic conversion allows to handle large contracts, and results
in more detailed models, closer to the actual behaviour of the code. The Casino smart con-
tract treated by Mohajerani et al. (2022) is used as an example also here, but differently
from their work, first the behaviour of the code with parties that do not specifically exhibit
malicious behaviour is modelled; this is considered the plant. Then a specification that
expresses malicious behaviour is added for the verification. To show the generality of the
presented approach, an Auction contract is also automatically converted. Again, first the
plant is converted, to which then a specification is added for verification. Formal verifica-
tion of the EFSM models of the two contracts reveals both to be blocking, which shows
that they are vulnerable to DoS attacks. The counterexamples generated by the verification
indicate how the vulnerabilities can be amended, and automatically converting and verify-
ing the updated contracts show them to be non-blocking and hence not vulnerable to the
DoS attacks.

The paper is structured as follows: Section 2 presents an overview of related work. Sec-
tion 3 provides a brief background on the smart contract implementation language Solidity,
EFSMs and SUPREMICA. Section 4 describes the Casino and the Auction contracts, and Sec-
tion 5 details the automatic conversion from the source code, via the abstract syntax tree
to EFSMs. Section 6 presents the non-blocking verification of the EFSM models and the
corrected code, while Section 7 concludes the paper.

@ Springer

358 Discrete Event Dynamic Systems (2025) 35:355-387

2 Related work

Given their increasing importance, and the amount of financial damage that can be caused, it
is not surprising that verification of smart contracts has lately received a lot of attention. As
already mentioned, a number of vulnerabilities are known and have been categorized (Atzei
et al. 2017; SWC Registry 2020; Richter Vidal et al. 2024).

Related work on modelling smart contracts and their verification is presented by Fekih
et al. (2022) that describe modelling smart contracts as EFSMs and verifying them using
the nuXmv (Cavada et al. 2014) model checker. However, in the above-mentioned work,
EFSM models of smart contracts are generated manually. Godoy et al. (2022) present an
approach to assist in validation of smart contracts using predicate abstraction, focusing on
generating models by abstracting smart contract behaviour at function call level. Modelling
of smart contract as PROMELA models and verifying them using SPIN (Holzmann 1997)
is presented in Bai et al. (2018). Suvorov and Ulyantsev (2019) and Mavridou and Laszka
(2018) explore strategies aimed at synthesis of secure smart contracts from EFSMs that ful-
fill requirement specifications. Another approach presented by Madl et al. (2019) investigate
using interface automata for verification purposes.

Another work, presented by Bartoletti et al. (2024), propose a tool, Solvent, which trans-
lates a smart contract and its set of user-defined liquidity properties into SMT constraints
(Barrett et al. 2009) that can be analyzed by SMT solvers such as Z3 (de Moura and Bjerner
2008) or cvc5 (Barbosa et al. 2022).

The work of Bartoletti et al. (2024) and our work are related in so far as some of the DoS
attacks we can detect result in a loss of liquidity. For instance, the Casino example (Sect.
4.1) relates to liquidity problems, whereas the Auction example (Sect. 4.2) does not. But
even in the cases where our work addresses liquidity, the work of Bartoletti et al. (2024)
and our work analyse very different root causes of liquidity. They study the effects of unso-
licited, ‘silent’ Ether transfers through contract destruction, which is not covered by our
analysis. Conversely, we study the effects of reverting (‘failing’) transfers, which is not
covered by their analysis. On that point, they comment “Since considering each transfer
as potentially failing would make most contracts illiquid, a possible approach would be to
allow queries to specify which transfers or addresses to be considered trusted”. We have
a different take on this issue. Having to trust payment-receiving addresses creates a level
of reliance that contradicts the fundamentally trustless ecosystem of smart contracts. As
soon as payment is involved, sender and receiver may have adversarial interests. Indeed,
transfers being potentially unsuccessful presents a risk of denial-of-service (DoS) attacks,
which are well documented among other vulnerabilities in the Smart Contract Weakness
Classification (SWC Registry 2020) as SWC-113, DoS with Failed Call. This weakness is
also recognized as 1.3.2 Improper Exception Handling of External Calls by Richter Vidal
et al. (2024) who present a hierarchical taxonomy of smart contract vulnerabilities. In an
empirical evaluation of smart contract implementations, Parizi et al. (2018) note that all
implementations, in three different smart contract programming languages, of their Contract
3, “King of the currency” (Konstantopoulos 2018) were vulnerable to DoS with unexpected
revert attacks.

Finally, we do not concur with the view, put forward by Bartoletti et al. (2024), that “trans-
fer [...] failing would make most contracts illiquid”. Contracts can be programmed in such a

@ Springer

Discrete Event Dynamic Systems (2025) 35:355-387 359

way that they are resilient against failing transfers. This article describes a method showing
whether or not a contract implementation achieves resilience against failing transfers.

3 Background

This section gives the background necessary to fully appreciate the rest of the paper. First
a brief overview of Ethereum Smart Contracts and the programming language Solid-
ity is given. This is followed by a description of the EFSM modeling formalism used for
verification.

3.1 Smart contracts: Ethereum and Solidity

The first, and still major, blockchain framework for smart contracts is Ethereum (Wood
2023), with its built-in cryptocurrency Ether. Ethereum smart contracts can be thought of as
objects, with fields' making up the state space of the contract, and code offering functional-
ities to callers of the contract. In order to get a first impression, we suggest to glance at Fig.
2, showing an example contract with fields st 3t e, hagshedNumber> Operator, player
, wager, and pot. The public functions, here createcame, placeBet, decideBet
, addToPot and removeFrompPot, offer functionality to callers of the contract. We will
return to the details of the contract language, as well as this concrete contract, later on.

In Ethereum, every user and every contract has a unique address. Every address (user or
contract) has an Ether balance, and can receive and send Ether in any direction (user to user,
user to contract, contract to user, contract to contract). In contrast to user addresses, contract
addresses have the additional feature of code being assigned to them, which is executed
once the contract is called (by a user or by another contract). The executable code is stored
on the blockchain in the form of EVM (Ethereum Virtual Machine) bytecode.

Contract execution in Ethereum features a transaction mechanism. Every call starts a
transaction which is either completed successfully, or reverted if not successful. In the latter
case, all effects so far, like Ether transfer or changes to fields, are undone. An unsuccessful
transaction may revert for various reasons, like for instance running out of gas (see below),
sending of unbacked funds, a failing runtime assertion, a yevert Statement in the code, a
reverting call to another contract, or a reverting transfer, see below.

Ethereum miners look for transaction requests on the network. A transaction request
contains the address of the contract to be called, the call data, and the amount of Ether to
be sent. Miners execute the transaction requests locally on an EVM, one by one, in a fully
sequential manner. Miners are paid for their efforts with units of Ether-prised gas, to be paid
by the address that requested the transaction. A miner logs the transaction requests they
executed, together with the respective effects of the transaction (Ether transfers and field
value changes). When the log reaches a certain size, it is packaged by the miner as a new
block, and suggested as the next block of the Ethereum blockchain. A consensus algorithm
among other miners in the Ethereum network will then check whether the transactions and
the effects reported in the block are in synch (by recomputing all effects and voting on
the results). Once consensus is reached, the block is committed as the next block of the
blockchain.

! called ‘state variables’ in Ethereum terminology

@ Springer

360 Discrete Event Dynamic Systems (2025) 35:355-387

The by far most popular programming language for Ethereum smart contracts is Solid-
ity?. Accordingly, we target Solidity smart contracts in this work. Data types include yint
(unsigned integer), sddress (addresses of users and contracts), enums, structs, arrays,
and mappings associating keys with values. For instance, the declaration mapping
(address => uint) public m declares a field {, which contains a mapping from
addresses to unsigned integers. Fields marked public are read-public, not write-public. In
general, fields of a contract can only ever be modified by code of the same contract. Solidity
offers also some cryptographic primitives, for instance the function ke ccak2 56 computing
a crypto-hash of its argument. The statement require(b) checks the boolean expression
b, and reverts if b is false. If require reverts, the entire transaction (function execution)
reverts. The same is true for any other potentially reverting statement, like also transfer
, see below. The current caller, and the amount of Ether sent with the call, are always avail-
able viamsg . sender and msg . value, respectively. The default unit used for Ether bal-
ance and Ether payments is Wei (= 10~!8 Ether). Units can also be made explicit (like e 1
or ether)- Only payable functions accept payments.

Solidity further features programmable, potentially parameterised, modifiers. For
instance, the Casino contract in Fig. 2 uses the modifiers byOperator, inState (s),
and noact iveBet. They are implemented in the contract but their declarations are omit-
ted from Fig. 2 for brevity. These modifiers expand to, respectively: The Solidity opera-
tions triggering payments and calls deserve special attention as they offer an attack surface
addressed in this work. First of all, sending Ether to another contract, and calling another
contract, is basically the same mechanism in Ethereum. In particular, sending Ether to an
address passes control to the receiver (if the receiver is a contract). This can have problem-
atic consequences of various kinds. One problem that is studied widely in the literature is
re-entrancy, where the receiver of a call or payment calls back before returning. This can
jeopardize the programmer’s attempt to fully reflect the external flow of Ether in the val-
ues of the internal fields. The problem of re-entrancy is addressed in other works, see for
instance (Ahrendt and Bubel 2020). A different problem of control-passing calls and pay-
ments, in combination with the transaction concept, is unwanted effects of reverting calls
and payments. This problem is much less discussed in the literature, and indeed the target
of our work.

If an ongoing transaction executes a call or payment to another contract, this opens
a nested transaction. Whether a revert in the nested transaction also reverts the outer
transaction depends on the programming construct being used. The standard call state-
ment require (msg.sender == operator) ; (where ¢ is a contract address and
require (state == s) ;is a function of ¢) reverts if execution in ¢ reverts. In con-
trast, the low-level call statement require (state != State.BET PLACED) ;
does not revert if execution in ¢ reverts, but returns ¢ . £ (. . .) in that case. For payments,
there is a similar distinction. The statement ¢ transfers the amount of v Wei from the caller
to a. It reverts if a is a contract and the code of @ reverts during execution of the transfer. In
contrast, the statement ¢ . call (. . .) does not revert if execution in a reverts, but returns
false in that case.

This means that the reverting of one’s own contract code is in the hands of an external
party whenever we use statements like ¢ . transfer (v) Of ¢ . send (v), and can lead to

Zhttps://docs.soliditylang.org/en/latest/

@ Springer

https://docs.soliditylang.org/en/latest/

Discrete Event Dynamic Systems (2025) 35:355-387 361

a Do$S of our contract to its users.’ To be clear, reverting of code does not have to result in
a DoS. It is precisely the aim of this work to analyse whether or not an externally caused
revert leads to a DoS.

3.2 Extended finite state machines

Extended finite-state machines (EFSM) (Cheng and Krishnakumar 1993; Skoldstam et al.
2007) extend finite-state machines (FSMs) with bounded, discrete variables, and guard and
action expressions, collectively called updates, associated to the transitions. The guards
and actions are formulas constructed from variables, integer constants, the Boolean literals
true (T) and false (F), and the usual arithmetic and logic connectives. A guard is a predi-
cate for the transition, which when true allows the transition to occur. The action, if specified
for a transition, then updates the variables of the action.

A variable v takes values within a bounded discrete domain D(v), and has an ini-
tial value v° € D(v). Let V ={vg,...,v,} be the set of variables with domain
D(V) =D(vg) X - -- x D(vy,). An element of D(V') is called a valuation and is denoted by
0 = (0, . .., 0,) with 9; € D(v;), and the value associated to variable v; € V' is denoted
0[v;] = 0;. The initial valuation is v° = (vf,...,v5).

Asecond set of variables, called post-transition variables, denotedby V! = {v' |v € V' }
with D(V') = D(V), is used to describe the values of the variables after a transition occurs.
Variables in V are referred to as pre-transition variables to differentiate them from the post-
transition variables in V’. The set of all update formulas using variables in ¥ and V' is
denoted by 11y .

For an update p € Ily, the terms vars(p) and vars’(p) denote the set of all variables,
and the set of post-transition variables, respectively, that occur in p. Updates p € Iy
can thus be interpreted as predicates over their variables, evaluating to T or F, i.e.,
p:D(V)xDV') = {T,F}.

Definition 1 An extended finite-state machine (EFSM) is a tuple E = (X, S, 5°,—, S¥),
where X is a set of events; S is a finite set of locations; — C S x X x Iy, x S is the con-
ditional transition relation; S° C S is the set of initial locations; and S C S is the set of
marked locations.

A transition in E is given as ¢ —% ¢, which means that if update p evaluates to T, the
system can transit from location ¢ to location ¢’ on the occurrence of the event . When the
transition occurs the variables in vars’(p) are updated while the variables not contained in
vars’(p) are unchanged.

EFSMs can be represented as directed graphs with nodes representing locations and
arrows representing transitions. Events, guards and actions associated with a transition are
represented by labels and expressions on the transition. In guards, the post-transition value
of a variable is denoted by a prime, while the pre-transition value is un-primed. For instance,
in Fig. 1, where {S0, S1, S2, S3, S4, S5, S6, S7} is the set of locations, all marked as

3 Using the non-reverting statements player and t rans fer instead is often not a solution either. Not
reverting on a failed call or payment can cause safety issues. Therefore, most style guides strongly advise to
combine player and ¢c]1 ogeAuct ion With a MAX BID on the returned boolean, which brings us
back to the problem of a local revert being in the hand of an external party.

@ Springer

362 Discrete Event Dynamic Systems (2025) 35:355-387

placeBet1 placeBet2
sender!=operator _guess’==HEADS|_guess’==TAILS
»Q
SO S1 S2
placeBetX
player = playerTEMP placeBet3
wager_bet = wager_betTEMP
wager_guess = wager_guessTEMP
state = stateTEMP s7 S3
placeBet4
placeBet7 playerTEMP=sender
stateTEMP=BET_PLACED s6 S5 sa4
O
placeBet6 placeBet5

wager_guessTEMP=_guess Wwager_betTEMP=value

Fig. 1 EFSM model of the Casino £ 53] ge function (see Fig. 2, lines 18-27, and Section 5.2)

denoted by the filled circles, with {S0} the initial location (shown by the small arrow), the
transition {S1} to {S2} is labelled by the event placeBet2, and is guarded by the expres-
sion (_guess’ == HEADS | guess’ == TAILS), which non-deterministically
assigns HEADS or TAILS to the guess variable. Thus, after the transition, in location
{S2}, the value of guess is either HEADS or TAILS.

Typically, EFSM models consist of several interacting components. Such a model is
called an EFSM system, a collection of interacting EFSMs, & = {E1, ..., E,}.

Component interaction in an EFSM system is modeled by synchronous composition
(Hoare 1985), where shared events, that is, events that appear in more than one component
EFSM, are lock-step synchronized, while other events are interleaved. A shared event is
thus enabled in the composition if and only if it is enabled by all the EFSM containing that
event in their alphabet. Furthermore, updates of transitions labeled by shared events are
combined by conjunction.

Definition 2 Given two EFSMs Ey =(X1,51,57,—1,5%) and
Ey = (X9,52,55,—2,55), the synchronous composition of FE; and FEy is
ElHEQ = <21U22,Sl X SQ,—>,S(1) X SS,ST’ X S‘g’),where:

a:p1A\p

(z1,22) “EE (y1,12) ifo e T1NDy, 21 28y,

and 2o 253, Y2 ;
(z1,22) 75 (y1,22) if 0 € 51\ Ty and 1“5y ;
(z1,29) 75 (z1,10) if o €N\ 1 and 20 2584y .

Note that synchronous composition is associative.
For example, the event placeBetl of Fig. 1 synchronizes with the same label in the
EFSMs modeling the ¢ . £ (. . .) modifier shown in Fig. 8, right, and the assignSender
of Fig. 9, so that the transition from SO to S1 in Fig. 1 cannot occur unless ¢ . transfer (v)
is different from the o511 (as required by Fig. 1), and geng (as required by Fig. 8), and
assignSender is inits SO location (see Fig. 9).

The global behavior of an EFSM system £ = {E1, ..., E,} is given by E4|| - - - || E,,.

@ Springer

Discrete Event Dynamic Systems (2025) 35:355-387 363

Non-blocking of an EFSM system, is defined on the flattened system (Mohajerani et al.
2016), where the EFSMs and the variables have been converted into ordinary FSMs. For
EFSMs each location becomes one state and the transitions are labeled by their respective
events, but for variables this is more involved. Essentially each value that may be assigned
to a variable is represented by an explicit state with transitions between these states corre-
sponding to the updates (Mohajerani et al. 2016).

Definition 3 Let £ = (X, S, 5°,—, S) be an EFSM with variable set vars(E) = V. The
monolithic flattening of E is U(E) = (X, Su, —u, Sf;, S§) where

* Qu=QxD(V);
o (2,9) By (y,) if E contains a transition 2 —= y such that p(d, %) = T;

o Q°u=0Q°x{v°}
o Q4 =QYxD(V).

U(E) is the FSM representation of the EFSM, where all the values ¢ of all the variables v
have been embedded into the state set QQr7. This ensures the correct sequencing of transitions
in the FSM. The monolithic flattened EFSM system & is denoted U () = U(E1|| ... ||En).
Non-blocking for an EFSM system can be defined in multiple ways, for instance, based
soleley on marked locations or also considering marked variables. In this work, we define
non-blocking for an EFSM system considering both marked locations and marked variables
which is equivalent to U (&) being non-blocking;

Definition 4 An EFSM system £ is non-blocking if U (£) is non-blocking.

So, the task of determining whether an EFSM system is non-blocking or not boils down to
determining whether the synchronous composition of the flattened system can always reach
some marked state. Though non-blocking verification is performed on the underlying flat-
tened FSM, so that EFSM is just an intermediate representation between the Solidity source
code and the FSM, there are benefits of using EFSMs. One benefit is the model compactness
that comes from allowing bounded, discrete variables; for example, the FSM model of a
variable with a 0..255 domain has 256 states, whereas in the EFSM formalism this can be a
single variable with just that domain. Also, EFSMs allow to associate guards and actions to
transitions, which aligns closely with the source code, making it easier to interpret counter-
examples on the original source code.

In general, verifying non-blocking is computationally hard, but there exist tools that
can perform this for systems of considerable sizes as measured by the number of states and
transitions. One such tool is SUPREMICA (Akesson et al. 2006).

3.3 Supremica
SupreMicA (Akesson et al. 2006) is a tool for synthesis, simulation, and verification of dis-
crete event systems. Efficient algorithms for assessing and guaranteeing well-known SCT

properties such as controllability and non-blocking are implemented in SUPREMICA. In this
paper, the compositional abstraction-based non-blocking (Malik et al. 2023) verification

@ Springer

364 Discrete Event Dynamic Systems (2025) 35:355-387

algorithm is used. Non-blocking is a progress property that, when fulfilled, guarantees that
some significant marked state(s) of the system can always be reached. In the context of this
paper, this aims to guarantee the ability of models of smart contracts to always be able to
reach some state where certain properties hold, such as being able to pay out the funds held
by the contract.

A benfit of using SUPREMICA is that the flattening of the EFSM model is fully automatic,
using partial unfolding (Mohajerani et al. 2013) which results in an FSM model structure
beneficial for the verification procedure, thus potentially allowing to verify larger contracts
within reasonable time and memory limits.

To verify non-blocking, conflict check (Mohajerani et al. 2016; Malik et al. 2023) of
SupreMiICA is used. If the verification determines that the system is blocking, a counterex-
ample is provided, a trace that leads to a blocking state, that is, a state from where no marked
state can be reached. This counterexample may be replayed in SUPREMICA’s simulator to
reveal the core of the problem.

4 Use cases

Two use cases are investigated in this paper, a (simple) on-line Casino contract (VerifyThis
2021), and an Auction contract*. Both of these contracts are prone to DoS attacks, as is
revealed by the respective EFSM models being blocking.

The Casino contract allows an operator to open a casino by submitting to the contract a
secret number on which players can then bet heads or tails. The operator eventually reveals
whether the secret number was heads or tails, and any winnings are then transferred to the
respective players, while the operator can retrieve what remains after having paid out to the
winners.

The Auction contract implements an auction where bidders submit their bids, and if the
submitted bid is higher than the current bid, the new bidder is recorded as the one with the
currently highest bid, and the previous current bidder is reimbursed its bid. The auction
owner can at any time close the auction, at which point the current bid is transferred to the
owner.

4.1 The Casino smart contract

The Solidity code of the Casino contract is shown in Fig. 2°. The implementation features
three explicit states: «511, send> and require, see line 3, defined by the placeBet type
inState:

Based on the modifier gender, in the operator location the operator may create a
game by invoking the state==GAME AVAILABLE function (line 13). To ensure a fair
betting, the Casino must place its bet at the time of game creation. Thus, when calling 1p1.E
, GAME AVAILABLE is assigned a value (line 15) to later decide the game outcome. After
creating a new game, the state changes to BET PLACED (line 16) where a game is now
available. In this state, the player can call anum to place a bet, up to the size of the pot, on

4 A variant of the contract OneAuction in Ahrendt and Bubel (2020)
3Slightly simplified, for a detailed presentation see https://verifythis.github.io/Itc/02casino/

@ Springer

https://verifythis.github.io/ltc/02casino/

Discrete Event Dynamic Systems (2025) 35:355-387 365

contract Casino {

enum State {IDLE, GAME_AVAILABLE, BET_PLACED}
enum Coin {HEADS, TAILS}
struct Wager {uint bet; Coin guess;}

State private state;

bytes32 public hashedNumber;
address public operator, player;
10 Wager private wager;

11 uint public pot;

CoOoO~NOUPWNH-

13 function createGame(bytes32 hashNum) public
14 byOperator, inState(State.IDLE) {

15 hashedNumber = hashNum;

16 state = State.GAME_AVAILABLE;}

18 function placeBet(Coin _guess) public payable
19 inState (State.GAME_AVAILABLE) {

20 require (msg.sender != operator);

21 require (msg.value > 0 && msg.value <= pot);
22 player = msg.sender;

23 wager = Wager ({

24 bet: msg.value,

25 guess: _guess

26 b;

27 state = State.BET_PLACED;}
28

29 function decideBet(uint secretNumber) public
30 byOperator, inState(State.BET_PLACED) {
31 require (hashedNumber ==

32 keccak256 (secretNumber)) ;

33 Coin secret = (secretNumber % 2 == 0)? Coin.HEADS : Coin.TAILS;
34 if (secret == wager.guess) {

35 playerWins () ;

36 } else {

37 operatorWins () ;

38

39 state = State.IDLE;}

40

41 function playerWins() private {
42 tmp = wager.bet;

43 wager .bet = 0;

44 pot = pot - tmp;

45 player.transfer (tmp*2);}

47 function operatorWins() private {
48 pot = pot + wager.bet;
49 wager.bet = 0;}

51 function addToPot() public payable
52 byOperator {
53 pot = pot + msg.value;}

565 function removeFromPot (uint amount) public
56 byOperator , noActiveBet {

57 pot = pot - amount;
58 operator.transfer (amount);}
59 }

Fig. 2 Solidity code for Casino (some details are omitted)

HEADS or TAILS (lines 20-25). This then changes the state of the contract to gt gt e (line
27).

Next, the operator may by inState (s)submit the original secret number to resolve the
bet (line 29). If the secret number is even the coin toss is HEADS, else it is TAILS (line 33).

@ Springer

366 Discrete Event Dynamic Systems (2025) 35:355-387

If the player wins, the original bet is set to zero and only the bet amount is deducted from the
pot representing the sum lost by the casino (lines 43—44). Then, double the bet is transferred
from the contract to the player (line 45). If the operator wins, the bet is added to the pot and
then set to zero (lines 48—49).

The operator may add money to the pot at any state, 1pr,r (line 51). Also, the operator
may remove money from the pot, createcame (line 55), but only if the player has not
placed a bet, that is, if the casino is not in the state cyeatecame. This is ensured by the

modifier ha shedNumber-

4.2 The Auction smart contract

The Solidity code of the Auction contract is shown in Fig. 3. The contract begins by defin-
ing a Boolean variable auctionOpen and initializing it to true, line 2, to denote that
the auction is open to accept biddings. Functions GAME AVAILABLE (lines 11-24) and
placeBet (lines 26-31) can only be called when the auction is open (see lines 13 and
28, respectively). The BET PLACED is initialized to 0 (line 3), and the decideBet 18

1 contract Auction {

2 bool public auctionOpen = true;

3 uint public currentBid = O0;

4 address private auctionOwner;

5 address private currentBidder;

6

7 constructor () public {

8 auctionOwner = msg.sender;

9 }

10

11 function placeBid () public payable {

12 require (msg.sender != auctionOwner);
13 require (auctionOpen);

14 require (msg.value > currentBid);

15

16 address oldBidder = currentBidder;

17 uint o0ldBid = currentBid;

18 currentBidder = msg.sender;

19 currentBid = msg.value;

20

21 if (o0ldBid != 0) {

22 payable (oldBidder) .transfer (0ldBid) ;
23 }

24 X

25

26 function closeAuction() public {

27 require (msg.sender == auctionOwner);
28 require (auctionOpen);

29 auctionOpen = false;

30 payable (auctionOwner) .transfer (currentBid) ;
31 }

32 }

Fig. 3 Solidity code for Auction contract (some details are omitted)

@ Springer

Discrete Event Dynamic Systems (2025) 35:355-387 367

set to be the one constructing the auction (line 8). A bidder can place their bid by calling
the 3ddTopot function (line 11). If the bid placed is higher than the current bid (line 14),
removeFromPot is updated to the caller of BET PLACED and pnoact iveBet is updated
to the new bid (lines 16—19). The old bid amount, if there were such, is then transferred back
to the previous highest bidder through placeBid (line 22). The auction owner can close
the auction by calling function «1ogeauction (line 26), which sets cyrrentBid to
false (line 28), preventing bidders from placing any bids further, and transferring the current
highest bid to themself (line 30). Once the Auction is closed, there is no way to re-open it or
(meaningfully) interact with it.

5 Automatic conversion to EFSMs

The automated conversion traverses the source code’s abstract syntax tree (AST Wikipedia
2024), which is obtained in JSON (ISO/IEC 21778 2017) format from the official Solidity
compiler solc by the command solc --ast-compact-json. The AST consists of
nodes of designated types corresponding to specific Solidity constructs, such as Function-
Definition, FunctionCall, VariableDeclaration etc. Each such node can itself contain nodes
in a hierarchy. The conversion recursively mines the AST for data relevant for generating
the EFSMs. For each node type, specific code is executed and the conversion is kept as
“local” as possible, meaning no global overview of parts of the code is necessary.

For the Casino contract, the automatically converted EFSM model differs significantly
from the manually crafted model presented by Mohajerani et al. (2022). One difference is
that the automatically converted model describes only the plant behavior, it includes no
specification, whereas the model given by Mohajerani et al. (2022) has the specification
embedded in a rather complicated way. Another difference is that the 3uct ionOwner
variable is in the manual model represented by a specific EFSM, which embeds the control
of the other functions, thus making the modifiers redundant. In the automatically converted
model, placeBid is represented by an EFSM variable state, much like in the Solidity
code, and the modifiers are thus explicitly modeled.

5.1 Modeling variables

As EFSMs allow bounded, discrete variables, Solidity variables are directly converted
to EFSM variables. However, some care has to be taken when converting unbounded
Solidity types to bounded EFSM variables. Particularly, in the Casino contract, the
currentBidder Vvariable cannot be modelled since if placeBid is modelled as an
(upper) bounded variable, then a trivial blocking trace calls cyrrentB1id enough times for
oldBidder . transfer (oldBid) to reach its upper bound, plus once more, and then
the system deadlocks. The «1ogenuction variable is automatically ignored by adding
it to an ignore list, so the converter does not generate any auct ionOpen variable in the
EFSM model, nor any transitions for statements involving gt 5t e (lines 21, 44, 48, 53, 57).

Also the Auction contract has a problematic variable, gt 5+ , that causes trivial blocking
when the bidding has reached is upper bound, pot. The pot clause on line 14 of Fig. 3,
requires that a new bid is always higher than the current bid, which is not possible once the
current bid has reached 533ToPot, and then the pot function will always revert. This is a

@ Springer

368 Discrete Event Dynamic Systems (2025) 35:355-387

problem, not only for the EFSM model, but also for the running code, since Solidity’s uint
type is upper bounded to 22° — 1. Thus, it is impossible to show that a bid can always be
successfully placed, since this is not true, neither for the EFSM model nor the actual code.
However, in the Auction model, we cannot simply ignore everything related to pot, as was
done with pot, so the pot clause is modelled and issues related to this are discussed in
Section 6.

Solidity contracts typically have a constructor (shown in Fig. 3, lines 7-9, but not shown
in Fig. 2) that assigns initial values to some variables, and these are initialized accord-
ingly when converted to EFSM variables. But many variables have unknown initial values,
which can be modelled by non-deterministic assignments over the entire range of the vari-
able domain, see for instance the assignment to _guess on the transition from S1 to S2
in Fig. 1.

Additionally, variables of mapping type are handled by first recognizing the key-value
structure. Then, the list of already defined variables of the same type as the key is used to
generate a new set of variables that are defined as type of the value. Variable withdraw-
able defined as mapping type with key-value structure as (address=>uint) atline
60, Fig. 18, is converted to variables namely withdrawable player andwithdraw-
able operator which are of int types.

5.2 Modeling functions

Each function is modeled as a separate EFSM, typically interacting with other EFSMs
through shared events. Generally, an EFSM modeling a function has one transition for each
statement, which roughly corresponds to each line of the code in Fig. 2. From its initial
location, the EFSM has a transition labeled by the initial event, which is constructed from
the function name, appended with the number 1. The EFSM also has a final event that labels
a transition back to its initial location; this label is constructed by appending the function
name with X. This naming scheme guarantees that it is known beforehand which events
denote the call and return, respectively, of a function, so that these events can be used even
before a function has been modeled.

The EFSM model of the ~yrrentBid function is shown in Fig. 1; this models lines
18-27 of Fig. 2. The initial eventplaceBet1 labels the transition from the initial loca-
tion SO, and the MAX BID clause at line 20, ensuring that require is not the caller of
MAX BID is added as a guard. The handling of the modifiers and the placeBid clauses,
lines 19-21 are described in Section 5.3, below.

Inside the cyrrentBid function there is an assignment to the pot variable (lines
23-25), which is of type require (line 5). Since there are no structs in SUPREMICA,
the struct constructor call of gecideret has to be “flattened”. This is automatically done,
and results in two distinct variables wager guess and wager bet.

The placeBet function is called with a parameter require of type operator,
which is an enum (its definition is not shown in Fig. 2, but see line 33) with two values,
HEADS and TAILS. The converter collects this type information, and since the actual value
of placeBet is unknown for the require call, a non-deterministic assignment is made
to the variable placeBet, see the guard on the transition labeled placeBet2 of Fig. 1.

When a function is called from within another function, this is modeled by a self-loop
labeled by the called function’s initial event, and with the called function’s final event label-

@ Springer

Discrete Event Dynamic Systems (2025) 35:355-387 369

decideBet1

secretNumber'==0|secretNumber'==

decideBet2
decideBetFail hashedNumber==secretNumber

!(hashedNumber==secretNumber)

decideBet4
mber%2==0)&secret'==TAILS

playerWinsFail
secretNumber%2==08&secret'==HEADS|!(secret

playerWins1

S4

decideBet5 S3
secret==wager_guess

decideBetX
state = stateTEMP

decideBet9
!(secret==wager_guess)

playerWinsX

S6

decideBet12 operatorWins1

stateTEMP=IDLE

operatorWinsX

Fig. 4 EFSM model of the ¢ 1 function, Fig. 2, lines 29-39

playerWins1 playerWins2
tmpTEMP=wager bet »® wager betTEMP=0

S1 S2

playerWinsX
tmp = tmpTEMP
wager_bet = wager_betTEMP

playerWinsFail playerWins3

playerWinsplayertransferX playerWinsplayertransfer1

S4 playerWinsplayertransferFail S3

Fig.5 EFSM model of the _guess function, Fig. 2, lines 4145

ing a transition from the self-looped location. This is illustrated in Fig. 4, where the wager
and struct Wager functions are called in the locations labeled S6 and S4, respectively.
This corresponds to lines 37 and 35, respectively. When the EFSM of Fig. 4 is in, say, S4,
it cannot transit to S5 until the playerWinsX event is enabled, which requires the EFSM
that models wager (Fig. 5) to first transit on its initial event, playerWins1 and then go
through its other transitions until both EFSMs synchronously transit on the playerWinsX
event. In this way, decideBet initiates the execution of placeBet, and then waits for
_guess to return.

Note that though lines 23-26, and 32 are in the AST designated as FunctionCall, these are
treated separately and do not result in self-loops. The initialization of the operatorWins
struct variable, is described above. The external hashing function playerWins (line 32)
is not modelled at all, as its internal workings are not known. This is handled by adding
playerWins to the abovementioned ignore list, so that the call playerWins is automati-
cally converted into simply playerWins.

@ Springer

370 Discrete Event Dynamic Systems (2025) 35:355-387

5.3 Modifiers and require statements

Modifiers are modeled as single-location EFSMs, with self-looped transitions with the
Boolean expression as guard and labeled by the initial events of the functions that the modi-
fiers and/or playerwins clauses relate to. For instance, the placeBid modifier relates to
the «10seauct ion» byOperator, inState (s), and wager functions, and so the self-looped
transition is labeled by their initial events, see Fig. 8, left. Modifier keccak25 6, see Fig. 8,
right, asserts the current state of the Casino contract by having a parameter _state, thus
enabling certain functions while disabling others, which is why keccak256 has multiple
self-loop transitions instead of one.

Along with modifiers, it is common practice to use require statements within the
function for additional checks. Modeling of byOperator is done by adding the Boolean
expression as a guard on the transition. For instance, cyeatecame Statement on line 20 in
the Casino contract is converted as a guard for the transition from node SO to S1 in Fig. 1.
However, guards corresponding to 5 ddTopot clauses that contain parameters passed to the
function must be added after the non-deterministic assignment of the parameter, along with
a transition back to the source node, in case the guard evaluates to false. For instance,
in the Casino contract, yemoveFromPot Statement on line 32 containing parameter
decideBet, gets converted to the guard on transition from node S1 to S2 in Fig. 4, after
inState (s)has been non-deterministically assigned. Case where the condition specified
for inState (g) on line 32 is false is modeled by the transition decideBetFail from
S1 to SO.

5.4 Modeling framework behavior

The above discussion and models deal with what can be converted directly from the Solid-
ity source code. However, this is not enough to have a useful model, as this code executes
within the Ethereum framework, which adds some behavior of its own that is necessary to
capture. Specifically, this concerns the assignment to addresses of the require variable,
and the behavior of require. As this behavior is not possible to extract from the code,
these models are manually predefined, but in a generic way.

5.4.1 Assign sender and value

Within the Solidity framework, contracts interact with each other by calling public func-
tions. With each such call follows a data packet require, which includes among other
things a reference (address), require, and the amount of Wei sent with the message,
require, to the contract that called the function. The assignment t0 ge cretNumber and
secretNumber i handled by the framework, outside of the Solidity code. In the Casino
contract there are two participants, require and msg . sender, and the behavior of the
public functions depends on which of the participants that called it, so the EFSM model
must include a model for the assignment of t rangfer and transfer- This is done by the
EFSM of Fig. 9.

The self-loop in the SO location, labeled by the assignSev event, non-deterministi-
cally assigns the variable senderthe “address” x0001 (player) or x0002 (operator) and
value to either 0 or 1. Since not much can happen with the Casino until the operator has

@ Springer

Discrete Event Dynamic Systems (2025) 35:355-387 371

created the game, see lines 1316, the initial value of sender is set to the address of the
operator. This might be changed by the non-deterministic assignment in the self-loop, but
since msg cannot be called by the player, only traces that start with the sender being the
operator are of interest for the non-blocking verification.

Out from SO is also a transition to location S1, labeled with the initial eventof each
public function. From S1 is then a transition back to S0 labeled with the final eventsof the
public functions. In this way, senderis assigned an address in location SO, representing
either msg . sender or msg.value, and this address remains constant while any public
function executes, as the EFSM is in its S1 location.

5.4.2 Modelling transfer

When a msg.value occurs, control is passed to the receiver (see Section 3.1) that can
choose either to accept or reject the transferred funds. The EFSMs of Fig. 10, model this by
having an transition from the initial state SO to S1 representing the transfer to the receiver,
and two transitions back from S1 to S0, one of which represents accepted transfer, and the
other (ending with Fail) representing rejected transfer.

Unique event names corresponding to player to an address is generated by concat-
enating the name of the function in which the operator occurs with the value of the
address variable and the identifier t ransfer. For instance, in Fig. 5, the self-loop tran-
sition on location S3 models initiating a msg . sender to msg.value. The event name,
playerWinsplayertransferl, is generated by concatenating the function name
createCGame With the address player and, transferl, which makes up the initial
transition of that particular operator model, see Fig. 10, left. This naming convention
avoids unintentional synchronization with transfers to the same recipient in other functions.
Consequently, distinct EFSMs modeling the outcome of £ rangfer are generated for the
same address from different functions.

When a variable, such as transfer, holds the address of a recipient of a transfer,
such as in Fig. 18, line 70, instead of a self-loop initiating the £ yrangsfer, multiple transi-
tions originate from the same location, see S2 in Fig. 11, each of which corresponds to a
predefined address.

Rejection of player is modelled in a calling function by a transition from the loca-
tion where playerWins is called to a location from where a transition representing the
unsuccessful completion of the function leads to the initial location. For example, in the
player EFSM (Fig. 5), transfer 10 transfer (Fig. 2, line 45) is initiated by the self-
loop, and then rejection of the transfer is represented by the playerWinsplayerFail
transition, which is followed by the playerWinsFail that represents reverting of the
msg . sender function.

As mentioned in Section 3.1, when a transfer is rejected and the calling function
reverts, all effects of the function containing the £ yan g fer are restored to the state before
the call of the function, and this propagates upwards along the call chain. This means that
when modeling a function, a Restore-on-Revert mechanism has to be implemented. There
are several ways to implement this, but what seems simplest is to have a function that could
potentially revert work on temporary shadow variables rather than the actual variables, and
then to assign the values of the shadow variables to the actual variables on successful com-
pletion of the function. In this way, if a revert occurs and the function completes unsuccess-

@ Springer

372 Discrete Event Dynamic Systems (2025) 35:355-387

placeBid1
sender!=auctionOwner

placeBid2
auctionOpen==true

placeBidFail
!(auctionOpen==true;

placeBidFail

placeBid4

value>currentBid s2 placeBidFail

l{value>currentBid)

currentBidder = currentBidderTEMP
currentBid = currentBidTEMP

placeBid6
oldBidder=currentBidder

placeBid15

S11

10
placeBidoldBiddertransferX

placeBidoldBiddertransferFail

placeBid16
(0ldBid!=0)

placeBid8

currentBidderTEMP=sender

placeBid10 placeBidoldBiddertransfer1

placeBid9 oldBid!=0

currentBidTEMP=value

Fig.6 EFSM model of the placeBet function, Fig. 3, lines 11-24

fully, the actual variables have not changed value. Such shadow variables have to be used
for all global variables used in a function, but not for local variables or parameters as when
the function reverts these are just forgotten.

In Fig. 6, the shadow variables are suffixed with “TEMP”, and as can be seen, these are
assigned within the function instead of the actual variables, and then the actual variables
are assigned from their shadows on the i tngraw transition, which represents successful
completion of the function.

5.5 Overview of the models

The automatically converted EFSM models do not include any specification, only the
behavior of the code is modeled, so in SCT terms these make up the plant. The plant is
unmarked, meaning that all EFSMs and all variables have all their locations and domain
values, respectively, marked. This is natural, as marking can be regarded as a type of speci-
fication, the plant does not have any idea about what it is to be used for. Verification of the
plants show then to be non-blocking, as is expected.

For the Casino contract, the plant model consists of 13 EFSMs and 26 variables®, while
the Auction plant model has 5 EFSMs and 11 variables. The biggest EFSMs of Casino,
transfer and playerWins, have 8 locations, while the biggest one for Auction is
transfer With 12 locations. The flattened Casino plant model has 3112 states, 88 events,
and 8064 transitions, while the flattened Auction plant model has 9436 states, 65 events, and
48244 transitions.

Many of the EFSMs have only a single location with self-loops. Notably all EFSMs that
model modifiers, see Fig. 8. However, also player of Casino is a single location with a
single self-loop labelled by addToPot1. This is because playerWins only changes the
value of the £ rans fer variable, which as discussed in Section 5.1 must be omitted from
the conversion.

Many of the variables are 0—1 variables, but notably for Auction the variables related to
bids and bidding, + ransfer, placeBidX, and their shadow variables, plus gecideBet

®The models together with the code for the automatic conversion are available from https:/github.com/nish
antparekh01/Solidity to EFSM/

@ Springer

https://github.com/nishantparekh01/Solidity_to_EFSM/
https://github.com/nishantparekh01/Solidity_to_EFSM/

Discrete Event Dynamic Systems (2025) 35:355-387 373

have larger domains to make bidding at all possible. The state variable of Casino has
the same symbolic domain as in the contract placeBet, placeBid, and 3ddTopot- In
Casino, the sender variable has a binary domain as there are only two parties involved,
the operator and the player. Though there could be more than one player involved, the veri-
fication results presented in Section 6 do not change when the number of players increase.
For the Auction, senderhas a domain of size three, the auction owner and two bidders.
Again, though there could be more than two bidders involved, the verification results do not
change with a larger domain for sender.

The task is now to add a specification to the plant models to verify whether they can still
exhibit desired behaviour with one of the parties exhibiting a malicious behavior.

6 Non-blocking verification

Although the generated plant models account for failing transfers, the issue investigated
in this paper, DoS by rejecting transfer (SWC Registry 2020), concerns a malicious party
that once rejecting a transfer will always reject any re-transfer. Bad about this malicious
behavior is that the ones exhibiting it can at a small financial cost to themselves cause large
financial damage to the other parties involved with the contract.

Non-blocking is a progress property that guarantees that from every reachable state of a
system, some marked state can always be reached. Ramadge and Wonham (1989) formally
defined this as £(S) = L,,(5), where £(.5) is the set of all possible traces of the system S,
and L,,(S) is the set of all traces reaching marked states; £,,(S) then defines all prefixes
of these marked traces. In Computation Tree Logic (CTL, Baier and Katoen 2008) this can
be expressed as AG EF marked. Carefully selecting the marked states of the system, non-
blocking verification can determine if the system can always reach some (marked) state
from where desired behavior can be effected. For smart contracts, such desired behavior
could be to always pay out funds to the respective owner, that is, to guarantee liquidity. A
generalization of this desired behavior is for all transactions to complete successfully.

Note that though the specifications as presented here are specific to the use cases, they
are in fact generic in the sense that the structure will be the same for other use cases, only
the event labels will change.

6.1 The specification

The automatically converted models of Section 5 describe the overall behavior of the smart
contracts as implemented by the code, so these models have all locations marked and take
the place of the plant. To verify properties, specifications that express those properties need
to be added, and these specifications have to be such that non-blocking verification actually
says something meaningful about the system.

Two different models are added as specification, both expressed as FSMs, the attacker
model and the progress specification. The first one describes the malicious behavior that the
attacker exhibits, while the second one describes the desired behavior that should always
be possible even under the attack. With these two specification models added to the plant, if
the system is verified to be non-blocking then this means that the malicious behavior of the
attacker cannot prevent the desired behavior.

@ Springer

374 Discrete Event Dynamic Systems (2025) 35:355-387

Separating the attacker model, the progress specification, and the plant is beneficial as dif-
ferent models can be taken out and “plugged in”, without (ideally) changing any of the other
models. This modular structure is also beneficial for the compositional abstraction-based
non-blocking verification algorithms (Mohajerani et al. 2016) implemented by SUPREMICA.

6.1.1 The attacker model

Attacker models are introduced to explicitly capture pessimistic assumptions of the environ-
ment, where the environment (including attackers) can exercise actions attempting to pre-
vent the system or other users from reaching its/their goal. Having attacker models allows
to model the adversarial behavior explicitly, and to verify whether the system remains non-
blocking even under attack.

The DoS by rejecting transfer attack, also known as “Dos with Failed Call” (listed as
number 113 by SWC Registry 2020), exhibits the malicious behaviour that once rejecting
a transfer the attacker always rejects a transfer. Figure 12 shows the attacker models for
Casino (left) where the player is considered malicious, and Auction (right) where a bidder
is malicious. These models capture the core adversarial behavior relevant to the SWC-113
DoS vulnerability regardless of whether the failed call is caused by a rejected transfer or
another source. The models synchronize with the events of the respective 3 3dTopot mod-
els of Fig. 10. The attacker models stay in their respective initial state until a rejected pot
occurs, whereafter only rejected cyrrentB1id are enabled.

As the receiver of a transfer can always choose to reject it, and thus an attack cannot be
prevented, both states of the attacker model are marked so that the attack on its own cannot
cause blocking. What is to be investigated is whether the consequences of the attack are
harmful, which is captured by the progress specification.

These attacker models capture a simple but very important scenario. There is nothing that
prevents the use of more complicated attacker models, though, as long as these attacks can
be modeled by EFSMs.

6.1.2 The progress specification

In addition to specifying that the malicious party keeps rejecting the transfer, the desired
global state(s) also have to be specified so it can be determined whether the malicious
behaviour can prevent the system from reaching this state (or states), and thus actually
cause harm.

The generic progress specification is shown in Fig. 13. This model creates a one-to-one
correspondence between the possibility of reaching the marked state (which is the non-
blocking property), and the possibility of executing the W event multiple times (Fig. 13,
left) or at least once (right). Thus, such a specification allows to use non-blocking verifica-
tion to determine whether a specific event, W, can always eventually occur, which repre-
sents meaningful progress of the smart contract.

The set of events of the plant alphabet ¥, excluding W, is denoted £ = ¥ \ {w} in Fig.
13. Let G be the plant automaton (which can consist of multiple automata, as described
in Section 5) and K the progress specification of Fig. 13. The composition of these two is
then denoted GJ|K. By definition, the states marked in G||K are the ones marked by both

@ Springer

Discrete Event Dynamic Systems (2025) 35:355-387 375

automata, that is SZ‘H = 5& x 5% (see Def 2). This means that in G||K a state is marked
when G is in a marked state and X is in its marked state S1.

As mentioned above, G||K being non-blocking means that £L(G||K) = L, (G| K), that
is, every trace of the prefix-closed language £(G||K) is a prefix of some trace of the marked
language £, (G||K); this means that from every reachable state some marked state can
always be reached.

For the left progress specification of Fig. 13, call it K, which is applicable when
W is required to occur an unbounded number of times, the marked language con-
sists of all possible traces ending with W, that is, £,,(K) = L(K) N X*w, with ¥*w
denoting the concatenation of all traces of ¥* with W. Since X¢ = Xk it holds that
Lin(G|K) = Lyn(G)N Ly (K), and thus L£,,(G||K) = L, (G) N L(K) N X*w. Also,
since all plant locations and variable domain values are marked, all plant states are marked,
so that £L(G) = L,,(G). Therefore, L,,,(G||K) = L(G) N L(K) N E*w. Again due to
Y = Xk, itholdsthat L(G||K) = L(G) N L(K),andthus £, (G||K) = L(G||K) N X*w,
that is, all traces possible in G|| K and ending with W. Now, G|| K being non-blocking means
that £L(G||K) = L(G||K) N X*w, that is, every trace can be extended to a trace that ends
with w; or put another way, from every reachable state there exists a trace that ends with w.

The above means that the event w can be selected as any event in the system alphabet
3, and non-blocking verification can then determine whether this event can always occur
or not; if the verification determines the system to be blocking, there are reachable states
from where w cannot eventually occur. Generally, smart contracts offer mutually exclusive
outcomes to the involved parties and it is reasonable to guarantee that the outcomes are
independently reachable. An automatic procedure could even try a/l events, one by one, and
flag whenever the system is determined to be blocking for one of them.

For the Casino, from the operators perspective the ability to always successfully remove
any winnings from the pot is crucial, else the liquidity of the contract is compromised. Thus,
it is natural to choose w to be removeFromPotX.

For the Auction, the ability to successfully place a bid is crucial, so in that case the left
progress specification of Fig. 13 is used with w as 51 3nig. However, the Auction has an
added property that it should always be possible to successfully close it, that is, that it should
always be possible for msg.value to occur. But since after closing the Auction, it is not
possible to (meaningfully) interact with it again, it cannot be required that 1, occurs an
unbounded number of times, which is why the right progress specification of Fig. 13 is used
with w equal to GAME AVAILABLE.

6.2 Counterexamples

Non-blocking verification is done by running SUPREMICA’s conflict check on the automati-
cally converted EFSM models together with the relevant specifications. If blocking issues
are discovered, counterexamples are generated by SUPREMICA. These are traces that lead
from the initial state of the system, to a state from where it is not possible to reach any
marked state. These traces can be played back in SUPREMICA, and manually stepped through
event by event, to give insight into why the issue occurs.

If SupreMICA reports that the system is non-blocking, then it has exhaustively checked
the state-space of the system so it is guaranteed, relative to the given specification, that

@ Springer

376 Discrete Event Dynamic Systems (2025) 35:355-387

no blocking issues are present. The non-blocking verification algorithms are presented in
Mohajerani et al. (2016) and Malik et al. (2023).

6.2.1 The Casino counterexample

For the Casino contract the counterexample found is 56 steps long (so for space-saving
only the last part is shown), much longer than the 10-step counterexample for the manually
crafted model (Mohajerani et al. 2022), among other things due to the more detailed model
with the shadow variables that are not present in the model of Mohajerani et al. (2022).
But the two models block in the same way. When the player wins but decides to reject the
transfer of the winnings, and from then on continues indefinitely to do so, the system ends
up in a cyclic trace from which no marked state can be reached. Specifically, this means
that BET PLACED cannot be successfully completed, and so the funds stored in the pot are
locked in forever.

To find the core problem, inspecting the code reveals that £ +an s fer can only be called
by the operator when the contract has no active bet, see Fig. 2, line 56, that is, when the
state variable has the value either transfer Or transfer. Looking at the coun-
terexample (Fig. 14) and relating it to the code (Fig. 2) maps the blocking to line 45. If
placeBidX fails, line 39 of] ogenruct ionx Will not be executed and thus state will
not be assigned the value «1ogenuctionx, Which prevents «1ogenuctionX to suc-
cessfully complete. It also prevents yremoveFrompot from re-initializing the game (line
14). Though yremoveFromPot can be called again, when a malicious player refuses the
1pLE on each call, the contract will never progress to reach its GAME_AVAILABLE state.
Thus, the funds of the Casino can never be retrieved, so that its liquidity is compromised.

6.2.2 The Auction counterexamples

The Auction, though smaller in size of code compared to Casino, has multiple properties
interesting to verify. In all cases the experiments are done with the automatically converted
plant model of the Auction smart contract (Fig. 3), together with the AttackerModel of Fig.
12, right.

An important property to verify is if the Auction can always be successfully closed. If
this is not always possible, a malicious attacker can disrupt the Auction contract to prevent
it from being closed.

To wverify this, the progress specification on the left in Fig. 13 with
player.transfer (wager .bet*2) as w is added to the model. This model blocks.
Investigating the counter example (Fig. 15) shows that the blocking happens because
decideBet cannot occur more than once. This is reasonable, since after the auction is
closed there is no meaningful way to interact with it, the owner and bidders can try, but all
calls are reverted (Fig. 3, lines 13 and 28). Thus, this progress spec requires too much, and
breaking it is legitimate.

The progress specification on the right in Fig. 13, with w = operator, models that
whatever happens after 3ecideBet has occurred the first time is fine. With this progress
specification the system is non-blocking, meaning that even under attack by a malicious
bidder, the auction can always be closed.

@ Springer

Discrete Event Dynamic Systems (2025) 35:355-387 377

Now that it is known that the auction can always be successfully closed, even when under
attack (and under other issues, see below), the progress specification for tyrangfer can
be removed. In fact, the progress specification for 1p1,r must be removed to verify other
properties, since otherwise, trivial counterexamples are obtained in which the auction is first
closed and then no meaningful event can occur, simply because the auction has already been
closed. As discussed in the following paragraphs a separate specificationis introduced that
prevents the auction from closing, and this specification of course conflicts with the progress
specification for «1 ogenuct ionX-

Another important property to verify is whether a bid can always be successfully placed.
For this, the progress specification to the left in Fig. 13 with w = c1ogepuctionXx I8
added to the model. Non-blocking verification shows that this is blocking. Inspecting the
counterexample, Fig. 15, right, shows that the blocking occurs due to the auction having
been closed; after -1 ogenuctionx, Which is always possible (see above) bids can no
longer be placed due to -] ogenuct ionX reverting «1oseauctionx on line 13, Fig. 3.
However, this is a legitimate reason for not being able to place a bid, as no (meaningful)
interaction can be had with a closed auction.

The progress specification over placeBidx expresses that under all circumstance should
it always be possible to successfully place a bid, but this is too strong. What needs to be
expressed is that assuming that the auction is not successfully closed, it should always
be possible to successfully place a bid. This can be expressed by adding a specification
that globally disables ~1ogenuctionx and then verify the progress specification over
closenuctionx. If this is non-blocking, then it is known that the only issue is with
closeluct ionX so that the progress specification holds unless placeBidX is allowed.
So we add a 1 ogepuct 1onx specification, which is an automaton with a single marked
and initial state, and a blocked events list containing only auctionOpen == false.Of
course, this requires the placeBid progress specification to be removed, otherwise it would
conflict with the placeBidX specification as it can never happen that -1 osepuctionX
is always executable, while at the same time that event is disabled.

This blocks. In fact, it deadlocks in a non-marked state, as SUPREMICA’s deadlock
check shows and gives a 5-step counter example trace to (Fig. 16, left). This trace imme-
diately calls placeBidX which then executes until state S5 (Fig. 7) from where only
closeluct ionX is enabled, but which the «1 oseauct 1 onx specification prevents.

So the 31 sableCloseAuct ionx specification is replaced by the c1o0seAuctionx
specification, which globally disables ¢1ogseAuctionX, the initial event of the

closeAuctionFail

S4
closeAuctionX
closeAuctionFail auctionOpen = auctionOpenTEMP

I(auctionOpen==true)

closeAuctiont

sender==auctionOwner closeAuctionauctionOwnertransferFail

S closeAuctionauctionOwnertransferX

closeAuctionauctionOwnertransfer1

closeAuction2

auctionOpen==true closeAuction4

auctionOpenTEMP=false

Fig. 7 EFSM model of the gue s s function, Fig. 3, lines 26-31

@ Springer

378 Discrete Event Dynamic Systems (2025) 35:355-387

createGame1 decideBet1
addToPoti BET_PLACED==state
removeFromPot1
decideBet1

createGamer

’ IDLE==state
sender == operator placeBet1

SO GAME_AVAILABLE==state

Fig. 8 EFSM models of (left) the keccak256 (secretNumber) modifier, and (right) the
secretNumber modifier

assignSev
(sender'==x0001|sender'==x0002) &(value’==0|value’==1)

createGame1
removeFromPot1
decideBet1

placeBetX placeBet1

decideBetX
decideBetFail
createGameX

playerWinsFail
removeFromPotX

removeFromPotFail S1

Fig. 9 EFSM model of the assignment of senderfor Casino contract

playerWinsplayertransferX placeBidoldBiddertransferX

playerWinsplayertransfer1 placeBidoldBiddertransfer1

S0 S1 SO S1

playerWinsplayertransferFail placeBidoldBiddertransferFail

Fig. 10 EFSM models of msg . sender to the player (left) and to the bidder (right)

disableCloseluctionx model. This is a stronger specification, expressing assuming
the auction is never attempted to be closed, it should always be possible to successfully
place a bid. Effectively «1o0senuctionx removes the entire «1ogsenuction EFSM,
since disabling the initial event means that the EFSM can never leave its initial (and marked)
location.

This again blocks, but now not due to «1 ogeauct i onX> but due to another issue, here

called “the 9i sableCloseAuctionXx issue”.

@ Springer

Discrete Event Dynamic Systems (2025) 35:355-387 379

withdraw1
~withdrawable_operator|sender==player&tmp'==withdrawable_player

sender==operator&tmp'=

withdrawFail
withdrawFail

withdrawX
withdrawable_operator = withdrawable_operatorTEMP
withdrawable_player = withdrawable_playerTEMP

\withdrawoperatortransferFail
$1

withdrawoperatortransferX

withdrawoperatortransfert
sender==operator

withdraw2
Sender==operator&withdrawable_operatorTEMP'==0|sender==player8withdrawable_playerTEMP'==

S6 withdrawplayertransfer1 s2
sender-=player

Fig. 11 EFSM model of the £ rgn s fer function in the corrected Casino contract

playerWinsplayertransferX playerWinsplayertransferFail placeBidoldBiddertransferX placeBidoldBiddertransferFail

-

Fig. 12 The attacker model for the Casino, left, and the Auction, right

E
(; w :) w E S
(; w :)
S0 St
E SO S1
Fig. 13 Generic versions of progress specifications K. These specifications aim to guarantee that the event
w € X can always eventually occur. S = 3, and E = X \ {w} is the set of all events except w. The left

model specifies that w should be able to occur again and again. The right model specifies that it is enough
that w occurs once, after which any event (including w) may occur

S0 playerWinsplayertransferFail S0 placeBidoldBiddertransferFail S1

& O 0. Iniil state
&, 1. assignSev

o S, 2. removeFromPot1.[operator==x0001}

& S, 3. removeFromPot2

& 8, 4 removeFromPotoperatortransfer

& 8, 5 removeFromPotoperatortransferFail

& £, 6. removeFromPotFail

> £, 7. createGame1 {operator==x0001}

+ 5, 8. createGame2 {Ihashium}

> 8,9, createGame3

=5, 10. {stateTEMP==GAME_AVAILABLE, TEMP}
=G, 1. assignSev

& S, 12. placeBet! {operator==x0001}

& S, 13. placeBet2

& S, 14. placeBet3

¢ S, 15. placeBet4.(sender==x0002}

5, 16. placeBets (value}

o S, 17. placeBet6.{_guess==HEADS}

= S, 18. placeBet7

& £, 19. placeBetX {stateTEMP==BET_PLACED wager_betTEMP, playerTEMP==x0002,wager_guessTEMP==HEADS}

& &, 20. assignSev

& G, 21 decideBet!.operator==x0001}
¢ G, 22. decideBet2.{IhashedNumber}
o £, 23 decideBetd {IsecretNumber)
& £, 24. decideBet5.{secret==HEADS}
+ £, 25. playerWins1 {wager_bet}

+ 5, 26. playerWins2

5, 27. playerWins3

& B, 20, playerWinsplayertransfert

Fig. 14 The 56-event long blocking trace of the

removeFromPotX

8, 29. playerinsplayertransferX
& 8, 30. playerWinsX {mpTEMP, lwager_betTEWP}

= 8, 31. decideBet12

& 8, 32. decideBetX {state TEMP==IDLE}

o €, 33, assignSev

o S, 34. createGame1.{operator==x0001}

¢ 8, 35. createGame? {lhashNum}

& C, 36, createGame3

-G a7 {StateTEMP==GAME _AVAILABLE, TEMP)
o S, 38. assignSev

o S, 39. placeBet1 {operator==x0001}

& S, 40. placeBet2

= 8, 41. placeBetd

& 8, 42 placeBetd (sender==x0002}

8, 43. placeBetS (value}

o &, 44. placeBet6.{_guess==HEADS}

o &, 45.placeBet7

o G, 46. placeBetX {state TEMP==BET_PLACED,wager_betTEMP,player TEMP==x0002,wager_guessTEMP==HEADS}

o G, 47. assignSev

& S, 48. decideBet1 {operator==x0001}
¢ £, 49. decideBet2 {IhashedNumber}
& 8, 50. decideBetd.{secretNumber}
o S, 51. decideBets {secret==HEADS}
8, 52 playerWins1 {wager_bet)
8, 53. playerWins2

&~ 8, 54. playerWins3

o S, 55. playerWinsplayertransfert

o S, 56. playerWinsplayertransferFail

Casino contract with progress specification for

@ Springer

380 Discrete Event Dynamic Systems (2025) 35:355-387

@ O 0. Initial state o~ O 0. Inltigl state

-G, 1. assignSev -8 1 a55|gn$ev _

@£, 2 placeBid1 {auctionOwner==x0001} -8 2 placeBid1.{auctionOwner==x0001}

S, 3 placeBid2 o £, 3. placeBid2

@-C, 4. placeBid4 o B, 4 placeBid4

@£, 5 placeBid6 {currentBidder==x0002} o B, 5 placeBid6 {currentBidder==x0002}

=L, 6. placeBid7 {lcurrentBid} o &, 6. placeBid7 {IcurrentBid}

=S, 7. placeBid8 {sender==x0003} o &, 7. placeBid8 {sender==x0003}

- L, 8_placeBid9 {value} o G, 8. placeBid9 {value}

@G, 9. placeBid16 o G, 9. placeBid16

@£, 10. placeBidX {currentBidder TEMP==x0003 currentBidTEMP} - €, 10. placeBidX {currentBidderTEMP==x0003,currentBidTEMP}
@£, 11. assignSev o L, 11. assignSev

@£, 12. closeAuction1 {auctionOwner==x0001} o L, 12. closeAuction1 {auctionOwner==x0001}

®-&, 13. closeAuction2 o £, 13. closeAuction2

&, 14. closeAuction4 o G, 14. closeAuction4

-8, 15. closeAuctionauctionOwnertransfer o £, 15. closeAuctionauctionOwnertransfer1

-, 16. closeAuctionauctionOwnertransferX & £, 16. closeAuctionauctionOwnertransferX

w-C, 17. closeAuctionX {auctionOpenTEMP==false} o 5 17. closeAuctionX.{auctionOpen TEMP==false}
w-C, 18. closeAuction1.{auctionOwner==x0001}

Fig. 15 Counterexamples for Auction when verifying Tp1,E (left) and remove FromPot (right) with
the progress specification of Fig. 13, left

o O 0. Initial state Initial state
o C, 1. closeAuction1.{auctionOwner==x0001} assignSev
e G, 2 closeAuction2 placeBid1 {auctionOwner==x0001}
o G, 3. closeAuction4 placeBid2

e G, 4 closeAuctionauctionOwnertransfer1
o L, 5. closeAuctionauctionOwnertransferX

. placeBid4.{currentBid==0}

. placeBid6_{currentBidder==x0002}

. placeBid7 {currentBid==0}

. placeBid8.{sender==x0003}

. placeBid9. {value==4}

. placeBid16

0. placeBidX {currentBidTEMP==4,currentBidderTEMP==x0003}
1. placeBid1.{auctionOwner==x0001}

LA A S e S e S e i S
lolololojololololololoo

0
1
2
3
4
5
6
7
8
9
1
1

Fig. 16 Counter example for Auction when verifying placeBid with MAX BID (left) and with
currentBidTEMP==4) (right)

EFSM variables, just as variables in Solidity, are upper bounded, in SUPREMICAbY a
given (typically small) bound, and in Solidity by default to 22°6 — 1 for unsigned integers’.
Since in the Auction smart contract, the bids are of type uint, in both SUPREMICA and
Solidity, there is is maximum possible bid, call it §1 sableCloseruct ionX- In the Auc-
tion code, Fig. 3, line 14, it is checked that a new bid is higher than the currently active bid,
and if this is not the case, then the call to 31 sableCloselructioni reverts. So once the
current bid has reached 1 ogenuct ion1, no further bids can be placed. The counterex-
ample in Fig. 16, right, shows that when the ~] ogenuct i on completes successfully with
adisableCloseAuctionl, set to 4 in this case (see event 10, c1oseAuction), then
on the next call to -1 ogenuction, blocking occurs since no bid higher than MAX BID
can be given.

Unfortunately, getting around the placeBidx issue is not as easy as was the case with
disableCloseluction¥, it does not seem possible to add a specification that effectively
removes the check for higher bid on line 14 of Fig. 3. This check is in the EFSM model of
disableCloseiuctioni Fig. 6, modelled as guards on the two transitions out from loca-
tion S2, one guarded by placeBidx to S3, and the other by gi sablecioseauctioni to SO.

7Solidity does not support floating point numbers.

@ Springer

Discrete Event Dynamic Systems (2025) 35:355-387 381

What can be done though, is to manually remove these two guards from the EFSM
model. Typically, the plant is considered immutable, but in this particular case it seems
appropriate to change the plant. If those checks for higher bids are removed, this results in a
slightly different Auction, one that accepts any bid, whether higher or lower than the current
one. But the question will the current bid always increase?, though interesting, is not a topic
for this investigation. What is investigated is assuming that the auction is not closed and
that thecyrrentpiq iSsue does not occur, can a bid always be successfully placed? Altering
the auction to not check for higher bids would remove the MAX BID issue in a way similar
to adding the placeBid effectively removes the MAX BID EFSM, and this would allow to
verify whether it is actually the case that a bid can always be placed or not.

This EFSM system, with the attacker model, the progress specification over placeBid
, the MAX BID, and the Auction plant with the two guards checking MAX BID removed,
verifies to be blocking. The 30-step counterexample is shown in Fig. 17. As can be seen,
this blocks when a 1 ogeauction to the placeBid occurs at Step 30. From there on,
the malicious bidder rejects all transfers, and so the system can only cycle around to try the
valuescurrentBid again and again, to always be rejected by the receiver.

In more detail, first a bid of zero occurs at step 10. This is now allowed since the
check for always placing a bid higher then the current one has been removed. No
disableCloseluctionl occurs on this bid, since no old bid different from zero
exists, Fig. 3, line 21. Next, at step 20 a bid of one is placed. Again, no «1 ogeAuction
occurs since the placeBid is still zero. But the next time a bid is placed, since
disableCloseluctioni is different from zero, a cyrrentBid Occurs, which is then
rejected and the system enters a blocking cycle from where no marked state can be reached.
This shows that a malicious bidder can attack Auction to disrupt it, to the detriment of the
auction owner.

6.3 The corrected code

To address the vulnerability caused by unsuccessful transfers, functions calling transfer
must be isolated from other functions. Furthermore, a withdrawal pattern where users “pull”
funds instead of having the contract “pushing” them is implemented. This “pull instead of
push" mechanism is a standard approach to handle the “DoS with Failed Call" vulnerability.
Though the malicious player issue of Casino is a liquidity problem, the malicious bidder of

o O 0. Initial state & G, 16. placeBid7 {currentBid==0}

o £, 1_assignSev o G, 17. placeBid8 {sender==x0002}

o L&, 2 placeBid1.{auctionOwner==x0001} o C, 18 placeBid9 {value==1}

o £, 3 placeBid2 o €, 19_placeBid16

o C, 4 placeBid4 o €, 20. placeBidX {currentBidTEMP==1,currentBidderTEMP==x0002}
o L 5 placeBid6.{currentBidder==x0002} o LB, 21. placeBid1 {auctionOwner==x0001}
o G, 6. placeBid7 {currentBid==0} o €, 22 placeBid2

o £, 7. placeBid8 {sender==x0002} o L, 23 placeBid4

o £, 8 placeBid9 {value==0} o €, 24 placeBid6 {currentBidder==x0002}
o C, 9 placeBid16 o G, 25 placeBid7 {currentBid==1}

o £, 10. placeBidX {currentBidTEMP==0,currentBidder TEMP==x0002} o C, 26. placeBid8 {sender==x0002}

o L, 11. assignSev o X2, 27. placeBid9.{value==1}

o G, 12_placeBid1 {auctionOwner==x0001} o LB, 28 placeBid10

o C, 13_ placeBid2 o L, 29 placeBidoldBiddertransfert

o C, 14_placeBid4 o £, 30. placeBidoldBiddertransferFail

o C, 15. placeBid6 {currentBidder==x0002}

Fig. 17 30-step counterexample for Auction when verifying | (value>currentBid) with
MAX BID and the two guards checking MAX BID removed

@ Springer

382 Discrete Event Dynamic Systems (2025) 35:355-387

60 mapping (address => uint) withdrawable;
61

62 function playerWins() private {

63 pot = pot — wager. bet;

64 withdrawable [player] = withdrawable[player| + wager.bet *2;
65 wager.bet = 0;}

66

67 function withdraw () public {

68 uint tmp = withdrawable [msg.sender |;

69 withdrawable [msg.sender| = 0;

70 msg. sender . transfer (tmp) ; }

Fig. 18 The corrected parts of Casino. The other parts of the code of Fig. 2 remain the same

Auction is not. Still, both contracts suffer from the same attack scenario, and the correction
is consequently the same in both contracts.

6.3.1 The corrected Casino smart contract

To prevent the contract from entering a blocking state, a correction described by Mohajerani
et al. (2022) is to replace the push-based mechanism of transferring the winnings with a
pull-based mechanism allowing players to withdraw their winnings. In Fig. 18, the balance
of 51dB1idder is updated in the £ yan s fer function, line 64, following which transfer
can call withdraw on line 67 to have the winnings transferred. This pull mechanism in
the corrected contract ensures that progress of the contract is independent of acceptance or
rejection of transfer by 01dBid-

Non-blocking verification of the automatically converted corrected code together with
the attacker model and progress specification does not generate any counterexample, which
shows that this DoS vulnerability is no longer present.

6.3.2 The corrected Auction smart contract

The 01dBid and transfer issues of Auction are legitimate. It is interesting to know
that they are there, but there is nothing about them to correct. It should always be possible
to successfully close the auction, and it is, but after being closed it is no longer possible
to successfully place a bid, and this is just as it should be. Likewise, when the bid reaches
transfer, Which is theoretically possible but unrealistic in actual use of the Auction smart
contract, no further bids can be placed, which is also as it should be.

That an attacker can disrupt the Auction is a real issue, though. The consequence of an
attacker placing a small bid and then rejecting the transfer of that bid to herself is that the
auction owner cannot receive higher bids. The only possibility is for the owner to close the
auction. The malicious bidder then loses her bid, but apparently this cost was considered by
the attacker to be worth it.

The correction of the malicious bidder issue is similar to the player solution of Casino.
Instead of the contract issuing a playerWins pushing the funds to the receiver, the
receiver has to pull the funds to themselves by explicitly calling a withdraw function. The
corrected Auction code is not shown, nor is the automatically converted EFSM model, but
non-blocking verification in the same way as described above shows that the corrected code
is not susceptible to malicious bidder attacks.

@ Springer

Discrete Event Dynamic Systems (2025) 35:355-387 383

7 Conclusion

This paper employs non-blocking verification to identify denial-of-service vulnerabilities
in Solidity smart contracts. Specifically, by rejecting the reception of funds, a malicious
user can disrupt the intended workflow of a contract to the detriment of other contract own-
ers. Two examples of Solidity smart contracts, a Casino and an Auction, are described.
An automatic conversion from a significant fragment of Solidity to a model of interacting
EFSMs is described, where the different Solidity function calls and statements are modelled
as transitions of the EFSMs. It is shown that non-blocking verification can find DoS issues
(and other issues that are not as problematic), using EFSM specifications. The automati-
cally generated EFSM models closely mirror functionalities in the smart contract and issues
found in EFSM models were also found to exist in the smart contracts as well. It is also
shown by non-blocking verification that the corrected contract does not suffer from the
malicious behaviour attacks. This work fills a gap between safety and security, as it allows
to investigate code correctness in relation to resilience against malicious attacks. As smart
contracts are increasingly relied upon for financial applications, and since these contracts
are immutable once stored on the blockchain, finding and correcting such issues is of utmost
importance.

Ideas for future work include investigating the role of controllability and synthesis in
relation to smart contracts. Since the presented work only concerns non-blocking, the con-
trollability of events is neglected. But since smart contracts are a kind of two- (or multi-)
player game, modelling some user’s actions as controllable and the other users’ moves as
uncontrollable allows a refined analysis. For instance, scenarios where attackers damage
only themselves could be distinguished from those where attackers damage others.

An interesting work focusing on finding vulnerabilities using Supervisor Control Theory
is presented in Matsui and Lafortune (2022), where synthesis of a supervisor is used as an
indicator of vulnerabilities being present. The analysis checks violation of safety and non-
blocking properties for two communication protocols, namely, the Alternating Bit Protocol
(ABP) and Transmission Control Protocol (TCP). However, the direction of our future work
investigates using SCT to detect bias in a smart contract where one party is inherently
advantageous over other involved parties.

Also, in this work the contracts were corrected manually, and then the corrected code
was automatically converted and verified to be non-blocking. A seemingly useful research
direction would be to investigate if corrections could be made automatically by synthesiz-
ing supervisors that manage to impose resilience on the contracts by avoiding parts of the
underlying state space.

Author Contributions NP implemented the conversion code and was the main author of that section. WA was
the main author of the section on Solidity. MF was the main author of the abstract and the conclusions. All
authors were involved with the whole document. All authors reviewed the manuscript in detail and edited
all parts.

Funding Open access funding provided by Chalmers University of Technology. This work was funded by
Chalmers University of Technology.

Data Availability The models together with the code for the automatic conversion are available from https://
github.com/nishantparekh01/Solidity to EFSM/

@ Springer

https://github.com/nishantparekh01/Solidity_to_EFSM/
https://github.com/nishantparekh01/Solidity_to_EFSM/

384 Discrete Event Dynamic Systems (2025) 35:355-387

Declarations
Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahrendt W, Bubel R (2020) Functional verification of smart contracts via strong data integrity. In: Margaria
T, Steffen B (eds) Leveraging applications of formal methods, verification and validation: applications.
Springer International Publishing, Cham, pp 9-24. https://doi.org/10.1007/978-3-030-61467-6_2

Akesson K, Fabian M, Flordal H et al (2006) Supremica — an integrated environment for verification, syn-
thesis and simulation of discrete event systems. In: 2006 8th international workshop on discrete event
systems. IEEE, pp 384-385. https://doi.org/10.1109/WODES.2006.382401

Atzei N, Bartoletti M, Cimoli T (2017) A survey of attacks on Ethereum smart contracts (SoK). In: Maffei
M, Ryan M (eds) Principles of security and trust. Springer Berlin Heidelberg, Berlin, Heidelberg, pp
164-186. https://doi.org/10.1007/978-3-662-54455-6_8

Bai X, Cheng Z, Duan Z et al (2018) Formal modeling and verification of smart contracts. In: Proceedings of
the 2018 7th international conference on software and computer applications. Association for Computing
Machinery, New York, NY, USA, ICSCA *18, pp 322-326. https://doi.org/10.1145/3185089.3185138

Baier C, Katoen JP (2008) Principles of model checking. MIT Press

Barbosa H, Barrett C, Brain M et al (2022) cvcS: a versatile and industrial-strength SMT solver. In: Fisman
D, Rosu G (eds) Tools and algorithms for the construction and analysis of systems. Springer Interna-
tional Publishing, Cham, pp 415-442. https://doi.org/10.1007/978-3-030-99524-9 24

Barrett C, Sebastiani R, Seshia SA et al (2009) Satisfiability modulo theories. In: Handbook of satisfiability,
frontiers in artificial intelligence and applications, vol 185. IOS Press, pp 825-885. https://doi.org/10.3
233/978-1-58603-929-5-825, https://ebooks.iospress.nl/publication/5011

Bartoletti M, Ferrando A, Lipparini E et al (2024) Solvent: liquidity verification of smart contracts. In: Kos-
matov N, Kovacs L (eds) Integrated formal methods. Springer Nature Switzerland, Cham, pp 256-266.
https://doi.org/10.1007/978-3-031-76554-4_14

Cavada R, Cimatti A, Dorigatti M et al (2014) The nuXmv symbolic model checker. In: Biere A, Bloem R
(eds) Computer aided verification. Springer International Publishing, Cham, pp 334-342. https://doi.or
2/10.1007/978-3-319-08867-9_22

Chen YL, Lin F (2000) Modeling of discrete event systems using finite state machines with parameters. In:
Proceedings of the 2000. IEEE international conference on control applications. Conference Proceed-
ings (Cat. No.00CH37162), pp 941-946. https://doi.org/10.1109/CCA.2000.897591

Cheng KT, Krishnakumar AS (1993) Automatic functional test generation using the extended finite state
machine model. In: Proceedings of the 30th ACM/IEEE design automation conference, pp 86-91.
https://doi.org/10.1145/157485.164585

Cheng KT, Krishnakumar AS (1996) Automatic generation of functional vectors using the extended finite state
machine model. ACM Trans Des Autom Electron Syst 1(1):57-79. https://doi.org/10.1145/225871.225880

CoinGeek (2020) Over $1 million permanently locked in DeFi smart contract. https://coingeek.com/over
-1-million-permanently-locked-in-defi-smart-contract/. Accessed 19 Nov 2024

de Moura L, Bjerner N (2008) Z3: an efficient SMT solver. In: Ramakrishnan CR, Rehof J (eds) Tools and
algorithms for the construction and analysis of systems. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp 337-340. https://doi.org/10.1007/978-3-540-78800-3_24

Fekih R, Lahami M, Jmaiel M et al (2022) Towards model checking approach for smart contract validation
in the EIP-1559 Ethereum. In: 46th IEEE annual computers, software, and applications conference,
COMPSAC 2022, Los Alamitos, CA, USA, June 27 - July 1, 2022, pp 83-88. https://doi.org/10.1109/
COMPSAC54236.2022.00020

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-61467-6_2
https://doi.org/10.1109/WODES.2006.382401
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1145/3185089.3185138
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
https://ebooks.iospress.nl/publication/5011
https://doi.org/10.1007/978-3-031-76554-4_14
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1109/CCA.2000.897591
https://doi.org/10.1145/157485.164585
https://doi.org/10.1145/225871.225880
https://coingeek.com/over-1-million-permanently-locked-in-defi-smart-contract/
https://coingeek.com/over-1-million-permanently-locked-in-defi-smart-contract/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/COMPSAC54236.2022.00020
https://doi.org/10.1109/COMPSAC54236.2022.00020

Discrete Event Dynamic Systems (2025) 35:355-387 385

Godoy J, Galeotti JP, Garbervetsky D et al (2022) Predicate abstractions for smart contract validation. In:
Proceedings of the 25th international conference on model driven engineering languages and systems.
association for computing machinery, New York, NY, USA, MODELS ’22, pp 289-299. https://doi.or
2/10.1145/3550355.3552462

Hoare CAR (1985) Communicating sequential processes. Prentice Hall

Holzmann G (1997) The model checker SPIN. IEEE Trans Software Eng 23(5):279-295. https://doi.org/10
.1109/32.588521

ISO/IEC 21778 (2017) Information technology — the JSON data interchange syntax. https://www.iso.org/sta
ndard/71616.html. Accessed 23 Nov 2024

Konstantopoulos G (2018) How to secure your smart contracts: 6 solidity vulnerabilities and how to avoid
them (part 2). https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-so lidity-vuln
erabilities-and-how-to-avoid-them-part-2-730db0aa4834. Accessed 24 Nov 2024

Madl G, Bathen L, Flores G et al (2019) Formal verification of smart contracts using interface automata. In:
2019 IEEE international conference on blockchain (Blockchain), pp 556—563. https://doi.org/10.1109/
Blockchain.2019.00081

Malik R, Mohajerani S, Fabian M (2023) A survey on compositional algorithms for verification and synthesis
in supervisory control. J Discrete Event Dyn Syst 33(3):279-340. https://doi.org/10.1007/s10626-02
3-00378-8

Matsui S, Lafortune S (2022) Synthesis of winning attacks on communication protocols using supervisory
control theory: two case studies. Discrete Event Dyn Syst 32(4):573-610. https://doi.org/10.1007/s10
626-022-00369-1

Mavridou A, Laszka A (2018) Designing secure Ethereum smart contracts: a finite state machine based
approach. In: Meiklejohn S, Sako K (eds) Financial cryptography and data security. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 523-540. https://doi.org/10.1007/978-3-662-58387-6 28

Mohajerani S, Malik R, Fabian M (2016) A framework for compositional nonblocking verification of
extended finite-state machines. J Discrete Event Dyn Syst 26(1):33-84. https://doi.org/10.1007/s106
26-015-0217-y

Mobhajerani S, Ahrendt W, Fabian M (2022) Modeling and security verification of state-based smart contracts.
IFAC-PapersOnLine 55(28):356-362. https://doi.org/10.1016/j.ifacol.2022.10.366, 16th IFAC Worksh
op on Discrete Event Systems WODES 2022

Mohajerani S, Malik R, Fabian M (2013) Partial unfolding for compositional nonblocking verification of
extended finite-state machines. Tech. rep., Chalmers University of Technology, Goteborg, Sweden; also
The University of Waikato, Hamilton, New Zealand. https://hdl.handle.net/10289/7140, https://researc
h.chalmers.se/publication/172205

Parekh N, Ahrendt W, Fabian M (2024) Automatic conversion of smart contracts for non-blocking veri-
fication. IFAC-PapersOnLine 58(1):282-287. https://doi.org/10.1016/j.ifacol.2024.07.048, 17th IFAC
Workshop on Discrete Event Systems WODES 2024

Parizi RM, Amritraj, Dehghantanha A (2018) Smart contract programming languages on blockchains: an
empirical evaluation of usability and security. In: Chen S, Wang H, Zhang LJ (eds) Blockchain — ICBC
2018. Springer International Publishing, Cham, pp 75-91. https://doi.org/10.1007/978-3-319-94478-4 6

Ramadge PJG, Wonham WM (1989) The control of discrete event systems. Proc IEEE 77(1):81-98

Richter Vidal F, Ivaki N, Laranjeiro N (2024) OpenSCV: an open hierarchical taxonomy for smart contract
vulnerabilities. Empir Softw Eng 29. https://doi.org/10.1007/s10664-024-10446-8

Skoldstam M, Akesson K, Fabian M (2007) Modeling of discrete event systems using finite automata with
variables. In: 2007 46th IEEE conference on decision and control, pp 3387-3392. https://doi.org/10.11
09/CDC.2007.4434894

Suvorov D, Ulyantsev V (2019) Smart contract design meets state machine synthesis: case studies.
arXiv:1906.02906

SWC Registry (2020) Smart contract weakness classification (SWC). https://sweregistry.io/docs/SWC-113/.
Accessed 21 Nov 2024

VerifyThis (2021) VerifyThis long-term challenge. https://verifythis.github.io/ltc/02casino/. Accessed 21
Nov 2024

Wikipedia (2024) Abstract syntax tree. https://en.wikipedia.org/wiki/Abstract syntax_tree. Accessed 23 Nov
2024

Wood G (2023) Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow
Paper. https://ethereum.github.io/yellowpaper/paper.pdf

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1145/3550355.3552462
https://doi.org/10.1145/3550355.3552462
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://www.iso.org/standard/71616.html
https://www.iso.org/standard/71616.html
https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-so%20lidity-vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834
https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-so%20lidity-vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834
https://doi.org/10.1109/Blockchain.2019.00081
https://doi.org/10.1109/Blockchain.2019.00081
https://doi.org/10.1007/s10626-023-00378-8
https://doi.org/10.1007/s10626-023-00378-8
https://doi.org/10.1007/s10626-022-00369-1
https://doi.org/10.1007/s10626-022-00369-1
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/s10626-015-0217-y
https://doi.org/10.1007/s10626-015-0217-y
https://doi.org/10.1016/j.ifacol.2022.10.366
https://hdl.handle.net/10289/7140
https://research.chalmers.se/publication/172205
https://research.chalmers.se/publication/172205
https://doi.org/10.1016/j.ifacol.2024.07.048
https://doi.org/10.1007/978-3-319-94478-4_6
https://doi.org/10.1007/s10664-024-10446-8
https://doi.org/10.1109/CDC.2007.4434894
https://doi.org/10.1109/CDC.2007.4434894
http://arxiv.org/abs/1906.02906
https://swcregistry.io/docs/SWC-113/
https://verifythis.github.io/ltc/02casino/
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://ethereum.github.io/yellowpaper/paper.pdf

386

Discrete Event Dynamic Systems (2025) 35:355-387

@ Springer

Nishant Parekh is a PhD student within the Automation group, at the
Department of Electrical Engineering of Chalmers University of Tech-
nology, Gothenburg, Sweden. His research focuses on formal verifica-
tion of smart contracts, applying and advancing formal methods to
reason about correctness of smart contracts.

Wolfgang Ahrendt is Professor at Chalmers University of Technol-
ogy, Gothenburg, Sweden, and received his Ph.D. in Computer Sci-
ence from the University of Karlsruhe, Germany, in 2001. His
contributions lie in deductive verification of software, runtime verifi-
cation, and combinations of static verification with runtime verifica-
tion and testing. Wolfgang Ahrendt is one of the people behind the
software verification approach and system KeY. Recent application
areas of his work include automotive software safety, smart contracts
and, and Al assisted development of reliable software.

Martin Fabian is Full Professor in Automation and Head of the Auto-
mation Research group at the Department of Electrical Engineering,
Chalmers University of Technology. His research interests include for-
mal methods for automation systems in a broad sense, spanning the
fields of Control Engineering and Computer Science. He has authored
more than 200 publications, and is co-developer of the formal methods
tool Supremica, which implements several state-of-the-art algorithms
for supervisory control synthesis.

Discrete Event Dynamic Systems (2025) 35:355-387

387

Authors and Affiliations

Nishant Parekh'® . Wolfgang Ahrendt?*(- Martin Fabian’

P4 Nishant Parekh
nishantp@chalmers.se

Wolfgang Ahrendt
ahrendt@chalmers.se

Martin Fabian
fabian@chalmers.se
Department of Electrical Engineering, Chalmers University of Technology, Gothenburg,

Sweden

Department of Computer Science, Chalmers University of Technology and University of
Gothenburg, Gothenburg, Sweden

@ Springer

http://orcid.org/0009-0003-1994-2903
http://orcid.org/0000-0002-5671-2555
http://orcid.org/0000-0003-1287-9748

	﻿Smart contract denial-of-service analysis using non-blocking verification
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Related work
	﻿﻿3﻿ ﻿Background
	﻿﻿3.1﻿ ﻿Smart contracts: Ethereum and Solidity
	﻿3.2﻿ ﻿Extended finite state machines
	﻿3.3﻿ ﻿Supremica

	﻿﻿4﻿ ﻿Use cases
	﻿﻿4.1﻿ ﻿The Casino smart contract
	﻿﻿4.2﻿ ﻿The Auction smart contract

	﻿﻿5﻿ ﻿Automatic conversion to EFSMs
	﻿﻿5.1﻿ ﻿Modeling variables
	﻿﻿5.2﻿ ﻿Modeling functions
	﻿﻿5.3﻿ ﻿Modifiers and require statements
	﻿5.4﻿ ﻿Modeling framework behavior
	﻿5.4.1﻿ ﻿Assign sender and value
	﻿5.4.2﻿ ﻿Modelling transfer

	﻿5.5﻿ ﻿Overview of the models
	﻿﻿6﻿ ﻿Non-blocking verification
	﻿6.1﻿ ﻿The specification
	﻿6.1.1﻿ ﻿The attacker model
	﻿6.1.2﻿ ﻿The progress specification

	﻿6.2﻿ ﻿Counterexamples
	﻿6.2.1﻿ ﻿The Casino counterexample
	﻿6.2.2﻿ ﻿The Auction counterexamples

	﻿6.3﻿ ﻿The corrected code
	﻿6.3.1﻿ ﻿The corrected Casino smart contract
	﻿6.3.2﻿ ﻿The corrected Auction smart contract

	﻿﻿7﻿ ﻿Conclusion
	﻿References

