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are outlined.

KEYWORDS

INTRODUCTION

Proficiency in data management is a fundamental skill
to acquire for all orthopaedic and medical researchers
involved in the analysis of complex and heterogeneous
datasets. Previous literature [28, 29, 32, 45, 47, 50]
underscores the resource-intensive nature of medical
research implementing artificial intelligence (Al) and
presents different challenges associated with the
implementation of machine learning (ML), natural lan-
guage processing (NLP) and generative Al for the
analysis of medical data. The performance of Al sys-
tems depends not only on model architecture and
implementation characteristics but also on data quality
and structure. Due to variation in domain-specific
requirements for data collection across medical spe-
cialties, orthopaedic researchers should consider the
context-specific demands of data types, data volume
and data quality for specific projects.

A structured, complete, relevant and high-quality
dataset enhances the practical utility and reliability of the
Al system and is used for model training, optimization
and validation. Conversely, incomplete, nongeneraliz-
able or irrelevant data compromises Al system per-
formance, which in turn wastes resources and produces
output with limited scientific and clinical relevance. While
data collection and management practices may vary
depending on study design, institutional and regional
practices and regulations, the presented work aims to
highlight best practices (Textbox 1) and key principles for
efficient and high-quality data management pipelines in
Al-based orthopaedic research.

A GENERAL DATA MANAGEMENT
WORKFLOW FOR AI-BASED
ORTHOPAEDIC RESEARCH

Following standardized data-management principles
helps identify and minimize downstream errors through-
out the Al research lifecycle. When implemented cor-
rectly, a data management plan considers factors with a
potential impact on model performance prior to data
collection and is monitored continuously throughout the
entire project lifecycle. While data management work-
flows should always be designed and evaluated with the

of improvement, such as registry development, the potential of synthetic
data and gradual transition to continuous data streams for Al applications,

Level of Evidence: Level V.

artificial intelligence, causal inference, data analysis, machine learning, methods

requirements and aims of the specific project in mind, the
following steps serve as a general guide for data man-
agement in Al-based orthopaedic research (Figure 1).

Determining project requirements, data
sources and sample size

The initial step in data management is to identify all
potential variables and data sources required to

TEXTBOX 1. Best practices for data man-
agement in Al-based orthopaedic research.

» Use direct acyclic graphs (DAGs) early in the
data management pipeline to visualize and
assess the causal structure of the proposed
dataset.

* Implement standardized data collection pro-
tocols, validated data entry forms and data
dictionaries to reduce errors during data
entry.

» Base data annotation consensus on domain
expertise, with clearly defined taxonomies for
labelling specific to the qualitative and
quantitative aspects of orthopaedic data.

» Train researchers in efficient data transfor-
mation between wide-format and long-format
data to optimize data for different analyses.

* Apply structured quality frameworks to eval-
uate the data quality of the collected infor-
mation based on dimensions relevant to
orthopaedic research.

» Conduct exploratory data analysis (EDA) to
assess the completeness and balanced rep-
resentation of patient subgroups within the
dataset and thereby detect sources of bias
and error early in the project.

* Ensure compliance with ethical and regula-
tory policies to protect sensitive patient
information throughout the research pipeline.
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1. Project requirements, data
sources, and sample size

 Identify relevant data sources

« Consider model explainability early and
map causal relationships within the dataset

« Use empirical approaches to determine
optimal sample size

4. Cleaning, preprocessing,
organization, and EDA

« Address errors, missing values, and
inconsistencies in the dataset

« Formatting and data dictionaries may
enhance interpretability

+ Conduct EDA to assess the fundamental
characteristics of the dataset

2. Data collection

« Use standardized, secure data-entry forms

instead of error-prone manual entry

« Ensure continuous monitoring and

validation of the entered data

« Leverage NLP and LLMs to extract

information from unstructured documents

5. Annotation and data splitting

« Consider manual, semi-automated, and

automated annotation for supervised ML

« Track inter-rater reliability metrics when

multiple individuals perform data labeling

« Split the data into training, validation, and

testing subsets when relevant
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3. Storage and security

« Establish secure data storage and access

using local or cloud-based platforms

« Deidentify all patient data to protect patient

integrity

« Determine investigators with access to the

dataset across the research pipeline

6. Governance and compliance

« Ensure adherence to international, national,

and local data-regulatory guidelines

« Continuously monitor datasets based on

standardized quality metrics

« Establish data governance committee to

monitor alignment with regulatory and
ethical standards

FIGURE 1 Schematic illustration of the general stages of data management for Al-based orthopaedic research. EDA, exploratory data
analysis; LLM, large language model; ML, machine learning; NLP, natural language processing.

develop a relevant and robust model to address the
research question. Potential sources of data for ortho-
paedics include, but are not limited to, electronic health
records (EHRs), subjective and objective clinical
assessment data, medical imaging databases, ortho-
paedic registries, clinical trial data, wearable devices
and unstructured clinical notes. Early consideration
of data relationships and confounders is crucial.
The resulting Al system must generate accurate,
interpretable and clinically actionable predictions.
Causality in medical research is the ability to reliably
determine whether and why treatments cause positive
or harmful effects. In orthopaedics, understanding the
causal structure of data is particularly challenging
because patient outcomes emerge from complex,
time-dependent interactions among patient-related,
anatomical, physiological and treatment-specific
factors [12]. Determining which of these relationships
are truly causal and supported by sufficient evidence
typically remains an area of ongoing methodological
refinement and debate. As such, explicit discussions
about the assumed causal structure are essential parts
of study design and interdisciplinary collaboration and
should influence data collection, data structure and
subsequent analytical steps.

Direct acyclic graphs (DAGs) provide a visual
approach to assess the causal structure of the proposed
dataset (Figure 2) at an early stage in the data man-
agement pipeline and may clarify the need to adjust for
confounders to assume unbiased interactions [33].
Additionally, DAGs may help pinpoint additional infor-
mation to measure and collect for improved explainability
of the final Al system. Consequently, a causal data
management approach potentially enhances human
interpretability while prioritizing inferential learning over
spurious correlations within the queried data [12]. While
the sample size of datasets to train and evaluate Al
systems varies across use-cases and datasets [5, 34],
an empirical approach to sample size estimations is
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FIGURE 2 Schematic illustration of a directed acyclic

graph (DAG) to visually represent assumed relationships between
variables (yellow spheres V1-4), interventions (blue diamond I) and
outcomes (green rounded rectangle O) for causal modelling.

recommended for the development of orthopaedic Al
systems, including domain-specific generative models
[13, 18, 24]. A priori sample size calculation may be
advantageous in terms of increasing the explainability,
robustness and overall utility of the final model, while
averting wasteful efforts and resource allocation in the
event of an insufficient magnitude of available data.

Data collection

Once relevant data sources are identified, data must be
collected using standardized protocols to ensure
consistency and quality. The widespread use of
spreadsheets for data management in medical
research introduces several potential shortcomings
and sources of error in data management for Al
research in medicine [2, 7]. Data entry into spread-
sheets is typically conducted manually, where format-
ting and human error may often be introduced. Without
the validation of data at entry, introduced errors
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typically remain undetected until later stages of data
analysis, jeopardizing the integrity of research findings.
The use of systems with secure data entry forms, with
labels and validated scales and ranges for the entered
values, is therefore encouraged in every research
scenario.

Generally, errors in data collection can be reduced
by (1) determining specific variables in advance, (2)
designing a suitable data-entry framework, (3) pilot-
testing the data-entry system before starting research,
(4) prospective monitoring of the collected data for
consistency and quality throughout the data collection
process and (5) a final validation of the collected data
based on the range of expected values [22, 36]. The
increasing digitalization of medical reports and patient
records that capture clinically relevant qualitative and
quantitative information, enabling the centralization of
such data in large-scale clinical repositories and inte-
gration with existing radiological datasets and patient
registries. NLP and large language models (LLMs)
provide new semiautomated and automated methods
for clinical information retrieval from unstructured
medical reports and datasets [40, 41, 48, 49].

Storage and security

Secure storage of the collected research data involves
choosing appropriate data storage solutions (e.g.,
cloud-based platforms, centralized local databases)
and implementing access controls to protect sensitive
patient information. The removal of identifiable and
sensitive patient information (ensuring that patients
cannot be reidentified) from such datasets is an
important step for the collection and subsequent shar-
ing of data between interdisciplinary stakeholders
involved in Al-driven medical research. Pseudonymi-
zation, anonymization and deidentification of medical
datasets are resource-intensive, but essential technical
measures to ensure data security. A recent study
highlights the use of an LLM-based clinical data dei-
dentification pipeline using zero-shot inference, with a
99.24% success rate for the removal of sensitive
medical information from unstructured clinical text
data [43], which suggests that automated data anon-
ymization pipelines may facilitate safe and efficient
data deidentification for medical research in the near
future.

In the context of medical data, privacy refers to the
methods that ensure the recording and storage of data
in a manner that protects personal integrity, while
security refers to the measures used to prevent unau-
thorized access and modification to existing datasets.
Healthcare data comprise a special category of sensi-
tive personal information stored in centralized data
repositories and are subject to cybersecurity and
privacy-related breaches [1, 9]. Consequently, it is

essential that data collection and processing pipelines
for Al systems are compliant with national and inter-
national regulatory guidelines to safeguard patient
integrity and prevent potential legal consequences for
healthcare and research organizations. At the most
fundamental level, data management for Al-based
orthopaedic research requires compliance with the
findable, accessible, interoperable and reusable (FAIR)
principles [44], which ensure that the dataset used for
the implementation of the project is FAIR. The specific
regional legal requirements of Al-based medical
research are subject to ongoing development and ex-
ceed the scope of this text. However, the general
characteristics of datasets compliant with data protec-
tion policies include transparency (informed consent,
ethical approval, publicly available communications),
anonymization and the ability of subjects to opt out of
inclusion in the training dataset.

Cleaning, preprocessing, organization
and exploratory analysis

Raw data often contains errors, missing values and
inconsistencies that can negatively impact Al model
performance. This step involves cleaning the data by
identifying and handling entry errors, handling missing
data (e.g., imputation or removal) and transforming the
data into a suitable format for machine readability.
Preprocessing may include tasks like normalization,
feature scaling and handling outliers.

Further consideration of data organization is essen-
tial for implementing efficient data management and
analysis pipelines. The research project may require
different formatting of the collected data with regard to
human- versus machine-readability. While colour-coding
variables and values may be attempted with the aim of
enhanced human-readability, this practice is not bene-
ficial from the perspective of machine readability, which
requires other practices to highlight the desired variables
or groupings within the raw dataset. Instead, the cre-
ation of data dictionaries [23] for variable names and
attributes is recommended to enhance the human
interpretability of variables captured in large datasets.
Most data management platforms enable the collection
of data in two-dimensional data tables, which typically
use a wide or a long format, each with several ad-
vantages and disadvantages based on the intended
purpose. Wide data tables assign one row to one sub-
ject, where each column corresponds to a separate
variable. A wide data format is favourable for human-
readability, enhancing visual interpretability, as well as
low-level computational tasks like summarization and
statistical comparison between two different variables. In
contrast, wide data tables are disadvantageous from the
aspect of machine-readability, as they scale poorly to
the addition of new variables (potentially compromising
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FIGURE 3 Schematic illustration of (a) wide- and (b) long-format data tables with respect to the arrangement of data in a hypothetical
dataset that contains values patient identifier, age, injury and intervention.

existing calculation pipelines), store variable names as
data and are suboptimal for large-scale datasets used
for ML applications. Long data tables assign one row to
each new observation/variable for a specific subject,
with each column corresponding to a specific property of
a variable (meta-data). A long data format is advanta-
geous with regard to machine-readability, facilitating
tasks such as statistical modelling, complex data visu-
alization, time-series analysis of repeated measures
and ML tasks in a scalable manner. However, the frag-
mented structure of long tables hampers human inter-
pretability at a glance (by appearing as repetitive data
entries for a single subject). Rather than using a single,
static format, researchers should learn to convert rapidly
between formats within their preferred pipeline to opti-
mize data for specific tasks (Figure 3).

Exploratory data analysis (EDA) conducted at this
stage of the data management workflow may be ben-
eficial to assess the completeness and distribution of
the collected data, to verify that patient subgroups are
represented equally and to identify remaining sources
of error in the dataset prior to analysis [31].

Annotation and data splitting

Annotation refers to the process of marking or
describing relevant entities or features in raw data (e.g.,
outlining anatomical structures in an image or high-
lighting text spans in a clinical note). Labelling, in

contrast, assigns categorical or numerical values to
those annotated entities (e.g., ‘fractured’ vs. ‘non-
fractured’, or grading the severity of cartilage damage).
Depending on the experimental design, it may be es-
sential to clearly define a detailed taxonomy of labels
for annotating the collected dataset. Comprehensive
and standardized labelling of unstructured data, such
as radiology reports, medical images and physical
therapy progress reports, enhances the granularity of
the overall dataset and grants a deeper understanding
of the variables associated with the studied pathology
or injury. Consequently, thoroughly annotated datasets
provide access to specific predictive diagnostic entities
and outcomes, which are likely to improve model per-
formance, clinical utility and interpretability in the right
context. For supervised ML tasks, data annotation and
labelling are essential. This involves assigning mean-
ingful labels to the data, such as classifying images as
‘fractured’ or ‘non-fractured’, or labelling patient out-
comes as ‘successful’ or ‘unsuccessful’. The contribu-
tion of domain expertise in orthopaedics is warranted
for accurate and consistent annotation standards to
avoid variability across studies, especially when it
comes to labelling medical imaging parameters and
qualitative clinical data.

Before training an Al model, the dataset is typically
split into three subsets: training, validation and testing
sets. The training set is used to fit the model parame-
ters, while the validation set is employed during model
development to fine-tune hyperparameters, monitor
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learning progress and prevent overfitting or selection
bias [14]. Finally, the testing set is reserved for the final
evaluation of model performance and generalization on
previously unseen data. There is no clear consensus
regarding the most optimal train-test data split ratio.
Typical ratios ranging between 50:50 and 90:10, ratio
selection has a direct impact on model performance
and should be considered for each research project to
improve predictive accuracy [30].

Governance and compliance

Continuous data governance and regulatory compliance
throughout both the research stage and subsequent
clinical development and deployment lifecycle are es-
sential to monitor the quality, trustworthiness and safety
of Al systems [47]. This involves establishing and en-
forcing policies and procedures for data handling,
security, privacy and ethical considerations. Regular
audits and adherence to regulations like Health Insur-
ance Portability and Accountability Act (HIPAA) and
General Data Protection Regulation (GDPR) are es-
sential to maintain patient trust and research integrity. In
practice, data governance requires the surveillance of
key metrics such as data drift (changes in patient pop-
ulations or surgical techniques over time), prediction drift
(shift in model output), bias rate, performance decay (in
terms of accuracy, sensitivity, specificity) and regular
quality audits for data entry and labelling (e.g., for
evolving classification systems) [39]. Orthopaedic reg-
istries should implement governance frameworks for
multi-institutional data linkage and consistency, temporal
validation and scenarios where outcome definition and
standards of care change over time. For example, an Al
model predicting prosthetic joint infection risk in a
national registry may require recalibration when new
national antibiotic protocols (data drift) are introduced,
retraining to address underperformance in geriatric pa-
tients (bias detection) and a review of predictive accu-
racy after the adoption of robotic-assisted surgical
techniques (performance decay). Practical collaborative
consortiums such as the Trustworthy and Responsible
Al Network (TRAIN) have recently been established to
facilitate the responsible adoption of Al across different
organizations [8]. Key data management steps from an
Al governance perspective include the continuous
monitoring of real-world datasets for quality, safety,
transparency, sources of bias, scalability and per-
formance shift over time [42].

DATA QUALITY REQUIREMENTS

It is well established that the quality of ML models
hinges on the quality of data used to train and test ML
models for specific tasks. Consequently, it is important

to clarify the aspects of data that may ultimately influ-
ence model quality, to help researchers consistently
fulfil well-defined requirements for Al applications in an
orthopaedic research context.

Currently, there is a shortage of comprehensive fra-
meworks to help improve the integrity and quality of data
for orthopaedic research. Adherence to the Guidelines for
Research Data Integrity (GRDI) framework [27] may serve
as a general reference for orthopaedic researchers to
standardize data quality across research pipelines. How-
ever, Al-based projects require further awareness of the
ongoing development of guidelines to improve reporting
standards and quality specific to preclinical, translational
and clinical Al research [3, 19, 22, 36]. From the per-
spective of data management, the FUTURE-AI guidelines
emphasize clearly defining sources of data variation, data
representativeness and data-related risk management in
the context of the research project [22]. Additionally, the
recently published METRIC framework [36] proposes five
key data quality dimensions to improve the robustness,
interpretability and trustworthiness of Al models deve-
loped with data trained on a specific dataset. The MET-
RIC framework defines the (1) measurement process, (2)
timeliness, (3) representativeness, (4) informativeness
and (5) consistency of datasets as key characteristics
from a quality assessment perspective. While the pre-
sented dimensions may not present an exhaustive set of
quality domains for every orthopaedic research scenario,
awareness of essential data quality domains may help
improve the quality of training and testing data, as well as
the subsequent performance of Al models (Table 1).
Together, these frameworks form a hierarchical contin-
uum: GRDI defines overarching integrity principles,
FUTURE-AI adapts them to the healthcare Al context,
and METRIC provides practical operational criteria for
assessing dataset quality in medical Al research.

FUTURE DIRECTIONS

Improving the quality of orthopaedic
registry data

While registries are frequently queried sources of rep-
resentative and high-quality injury and disease-specific
data in orthopaedic research, several inherent limita-
tions hamper the clinical relevance and interpretability of
registry data for Al-based research [21]. In particular,
inconsistencies in the coding of diagnoses, lack of
granularity with respect to variables associated with the
injury or pathology of interest, information about physical
therapy protocols, and incomplete PROs over time due
to patient attrition render the collected data of sub-
optimal quality for generalizable and clinically relevant Al
system development [21]. The utility of next-generation
orthopaedic registries for Al applications may therefore
require a more comprehensive and broad inclusion of
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TABLE 1
Quality dimension
Measurement process

Device errors

Human-induced errors

Completeness

Source credibility

Timeliness

Age

Currency

Representativeness

Variety

Depth of data

Target class balance

Definition

Technical inaccuracies or imprecision in
measurement tools

Errors introduced through human data
collection or interpretation

Extent of missing values and
representation of relevant variables within
the dataset

Reliability of data sources

The relation between the creation date and
the usage date

How up-to-date the data is

Breadth of demographics and data
sources

Sufficient data volume overall and within
subpopulations

Appropriate representation of outcome
classes
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Data quality properties for Al-based orthopaedic research adapted from clusters defined by the METRIC framework [36].

Examples

.

Calibration errors in radiographic joint angle measurements
Inconsistent CT and MRI image quality

Force plate inaccuracies in gait analysis

Variability in objective knee laxity measurements for ACL
injury

Ambiguity in fracture classification

Variation in the interpretation of clinical exam findings and
surgical outcomes

Inter-observer variability in the correct localization of surgical
landmarks

Data labelling errors in medical records and unstructured
sources

Incomplete PRO scores due to attrition or loss-to-follow-up
Inclusion of all relevant demographic, injury-related and
surgical variables

Inconsistent reporting of comorbidities and confounders
Discrepancies in rehabilitation protocol description and
standardization

Standardized data collection protocols across single-centre
versus multi-centre research

Alignment in the reliability of data sourced from academic
versus community versus private hospitals

Reliability and validity of patient and clinician-reported
outcomes

Clinical relevance of registry data versus randomized
controlled trial data

Obsolete data from outdated procedures no longer represent
the standard of care

Distributional shifts in patient demographics over time
Changes in device/implant technology and design over time

Use of up-to-date injury classification systems
Rehabilitation protocols that conform to the most recently
accepted guidelines

Updated complication reporting standards

Patients included across paediatric, adult and geriatric
populations

Patient-sex representation in joint preservation/replacement
outcomes

Ethnic diversity in anatomical, physiological and genetic
variables

Representation of rare versus common injuries/phenotypes

Adequate overall sample size for reliable assumptions
Sufficient granularity of patient, injury, surgical and
rehabilitation variables (e.g., meniscus tear location, chondral
injury grade, objective knee laxity magnitude, osteoarthritis
stages)

Longitudinal data spanning short- and long-term follow-up
intervals

Balanced representation of treatment success and failure
Proportional inclusion of simple and complex disease/injury
phenotypes

(Continues)
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TABLE 1 (Continued)

Quality dimension Definition
Informativeness

Understandability Clarity and unambiguity of data
Redundancy Duplication of information

Informative missingness = Whether missing values carry meaningful
information

Feature importance Value added by specific data elements

Consistency

Rule-based consistency  Adherence to format and structure rules

Logical consistency Logical soundness without contradictions

Distribution consistency  Similar statistical properties across
subpopulations

Examples

Standardized terminology for surgical techniques and
variables

Consistent use of injury/disease classification and coding
systems

Clarification of primary and revision surgery, and surgical
timing in relation to injury incidence

» Clear and standardized definitions of treatment success and
failure

Overlapping subjective outcome scores that measure the
same phenomenon
Duplicate patient entries

Patients lost to follow-up due to suboptimal outcomes or

attrition

» Lack of advanced imaging to assess relevant anatomic
variables prognostic of disease/injury outcome

» Incomplete rehabilitation data for non-compliant patients

» Relevance of anthropometric data and functional phenotypes
for joint replacement outcomes

» Importance of bone quality measures for fracture fixation

» Assessment of modifiable anatomical variables that may
impact treatment outcomes

Standardized reporting of joint range of motion and laxity
» Consistent radiographic measurement techniques

» Consistent application of fracture classification systems
Standardized complication reporting

Consistent application of RTS criteria

Alignment and content validity of subjective and objective
outcome measures

Consistency between clinical assessment and imaging
findings

Agreement between functional outcome measures and
decision to RTS

» Comparable variance in variables measured across different
institutions

Similar distributions of complications across surgeon
experience levels

Consistent dataset completeness patterns and loss to follow-
up rate across demographic groups and institutions

Abbreviations: ACL, anterior cruciate ligament; Al, artificial intelligence; CT, computed tomography; MRI, magnetic resonance imaging; PRO, patient-reported

outcome; RTS, return to sport.

data regarding patient demographics, injury-related
factors, surgical variables and information pertinent to
physical therapy and rehabilitation. Furthermore, an
improved understanding of the objective role of ana-
tomical factors on patient outcomes requires the adop-
tion of standardized assessments on radiologic imaging
modalities [52]. An Al-assisted approach for the
assessment of quantitative and qualitative structural
imaging biomarkers [15, 25, 37] may reduce human bias
and systematic error, as well as the resource-intensive
nature of imaging data collection, facilitating their future
inclusion in patient registries.

While PROs are frequently collected across regis-
tries and serve as quantitative measures of subjective
functional outcomes in orthopaedic research, several
limitations associated with their use may render them
suboptimal for inclusion in Al systems. In their current
state, the inclusion of PROs model input and predicted
output may be uninformative due to fragmented col-
lection and missing data in the training set, patient
attrition due to inadequate infrastructure for PRO col-
lection, inappropriate PRO selection and lack of vali-
dation for the target population [4, 20, 51]. Future
incorporation of data collected from digital health
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technologies in patient registries presents a potential
opportunity for improvement to address shortcomings
in the measurement of patient-centred clinical out-
comes [26]. Sensor-based technologies and electronic
questionnaires augmented with LLM-based conversa-
tional agents may improve dataset quality by helping
clinicians and orthopaedic researchers determine
which subjective and objective health metrics are
associated with clinically meaningful patient-centric
endpoints, in a pragmatic and data-driven manner
[4, 26, 29].

Synthetic data

Synthetic data is defined as algorithmically generated
information that preserves the inherent statistical
characteristics, relationships and distributions of real-
world data, without additional collection of real-world
information. Synthetic data can be generated using a
variety of methods, ranging from more traditional sta-
tistical modelling-based methods to generative adver-
sarial networks, variational autoencoders and diffusion
models [35, 50]. Potential benefits for use in ortho-
paedic research include reduced security risks and
ethical compliance requirements, and therefore facili-
tated data-sharing across multiple institutions and sta-
keholders. Furthermore, synthetic data can be used to
address imbalances in datasets between subgroups,
and may yield additional data in the setting of small
patient populations, with an otherwise insufficient
sample size to permit adequate testing and validation
splits [10, 16, 17].

In a more pessimistic scenario, widespread gener-
ative Al use may contaminate existing datasets with
synthetic information. This could compromise the
integrity and reliability of real data. The downstream
effect of the phenomenon where ML models ingest the
synthetic output generated by other (or their own) ML
models has been termed Al autophagy [46] and may
inadvertently deter sustainable and ethical medical Al
development [11].

Static versus continuous data streams

It is likely that agentic Al workflows will catalyze a transi-
tion from static to continuous data streams, which will
enable Al systems to gain experience through a dynamic
and continuous process without the need for human
intervention to update training and validation data [38].
While the current standard is to train medical Al systems
on cross-sectional, historical patient data based mainly on
human observations that are subject to variability and
bias, the aim of a continuous data approach is to gain
further insight regarding orthopaedic conditions and
intervention effects based on the continuous monitoring of
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complex patterns, granular domain-specific data and
increased patient engagement [6, 38].

CONCLUSION

This guide aims to empower orthopaedic researchers to
implement robust, transparent and reproducible Al pipe-
lines. As the landscapes of medical Al research, data
governance and legal requirements continue to evolve,
orthopaedic researchers should familiarize themselves
with fundamental data management skills, including
causal learning, annotation, data processing, quality
assessment, EDA and data governance. Taken together,
advancements in registry data quality, the responsible use
of synthetic data, and the transition toward continuous
data streams represent complementary pillars of a next-
generation orthopaedic Al ecosystem. Integrating these
developments will enable more comprehensive, repre-
sentative and dynamically updated datasets—laying the
groundwork for Al systems that continuously learn from
real-world evidence while maintaining clinical relevance,
transparency and trustworthiness. Our goal is to empower
orthopaedic researchers to implement robust, transparent
and reproducible Al pipelines.
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